1
|
Hu Z, Bongiovanni D, Wang Z, Wang X, Song D, Xu J, Morandotti R, Buljan H, Chen Z. Topological orbital angular momentum extraction and twofold protection of vortex transport. NATURE PHOTONICS 2024; 19:162-169. [PMID: 39926337 PMCID: PMC11802459 DOI: 10.1038/s41566-024-01564-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 10/07/2024] [Indexed: 02/11/2025]
Abstract
Vortex phenomena are ubiquitous in nature. In optics, despite the availability of numerous techniques for vortex generation and detection, topological protection of vortex transport with desired orbital angular momentum (OAM) remains a challenge. Here, by use of topological disclination, we demonstrate a scheme to confine and guide vortices featuring arbitrary high-order charges. Such a scheme relies on twofold topological protection: a non-trivial winding in momentum space due to chiral symmetry, and a non-trivial winding in real space due to the complex coupling of OAM modes across the disclination structure. We unveil a vorticity-coordinated rotational symmetry, which sets up a universal relation between the vortex topological charge and the rotational symmetry order of the system. As an example, we construct photonic disclination lattices with a single core but different C n symmetries and achieve robust transport of an optical vortex with preserved OAM solely corresponding to one selected zero-energy vortex mode at the mid-gap. Furthermore, we show that such topological structures can be used for vortex filtering to extract a chosen OAM mode from mixed excitations. Our results illustrate the fundamental interplay of vorticity, disclination and higher-order topology, which may open a new pathway for the development of OAM-based photonic devices such as vortex guides, fibres and lasers.
Collapse
Affiliation(s)
- Zhichan Hu
- The MOE Key Laboratory of Weak-Light Nonlinear Photonics, TEDA Applied Physics Institute and School of Physics, Nankai University, Tianjin, China
| | - Domenico Bongiovanni
- The MOE Key Laboratory of Weak-Light Nonlinear Photonics, TEDA Applied Physics Institute and School of Physics, Nankai University, Tianjin, China
- INRS-EMT, Varennes, Quebec Canada
| | - Ziteng Wang
- The MOE Key Laboratory of Weak-Light Nonlinear Photonics, TEDA Applied Physics Institute and School of Physics, Nankai University, Tianjin, China
| | - Xiangdong Wang
- The MOE Key Laboratory of Weak-Light Nonlinear Photonics, TEDA Applied Physics Institute and School of Physics, Nankai University, Tianjin, China
| | - Daohong Song
- The MOE Key Laboratory of Weak-Light Nonlinear Photonics, TEDA Applied Physics Institute and School of Physics, Nankai University, Tianjin, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, China
| | - Jingjun Xu
- The MOE Key Laboratory of Weak-Light Nonlinear Photonics, TEDA Applied Physics Institute and School of Physics, Nankai University, Tianjin, China
| | | | - Hrvoje Buljan
- The MOE Key Laboratory of Weak-Light Nonlinear Photonics, TEDA Applied Physics Institute and School of Physics, Nankai University, Tianjin, China
- Department of Physics, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Zhigang Chen
- The MOE Key Laboratory of Weak-Light Nonlinear Photonics, TEDA Applied Physics Institute and School of Physics, Nankai University, Tianjin, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, China
| |
Collapse
|
2
|
Casotti E, Poli E, Klaus L, Litvinov A, Ulm C, Politi C, Mark MJ, Bland T, Ferlaino F. Observation of vortices in a dipolar supersolid. Nature 2024; 635:327-331. [PMID: 39506121 DOI: 10.1038/s41586-024-08149-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 10/02/2024] [Indexed: 11/08/2024]
Abstract
Supersolids are states of matter that spontaneously break two continuous symmetries: translational invariance owing to the appearance of a crystal structure and phase invariance owing to phase locking of single-particle wavefunctions, responsible for superfluid phenomena. Although originally predicted to be present in solid helium1-5, ultracold quantum gases provided a first platform to observe supersolids6-10, with particular success coming from dipolar atoms8-12. Phase locking in dipolar supersolids has been investigated through, for example, measurements of the phase coherence8-10 and gapless Goldstone modes13, but quantized vortices, a hydrodynamic fingerprint of superfluidity, have not yet been observed. Here, with the prerequisite pieces at our disposal, namely a method to generate vortices in dipolar gases14,15 and supersolids with two-dimensional crystalline order11,16,17, we report on the theoretical investigation and experimental observation of vortices in the supersolid phase (SSP). Our work reveals a fundamental difference in vortex seeding dynamics between unmodulated and modulated quantum fluids. This opens the door to study the hydrodynamic properties of exotic quantum systems with numerous spontaneously broken symmetries, in disparate domains such as quantum crystals and neutron stars18.
Collapse
Affiliation(s)
- Eva Casotti
- Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften, Innsbruck, Austria
- Universität Innsbruck, Fakultät für Mathematik, Informatik und Physik, Institut für Experimentalphysik, Innsbruck, Austria
| | - Elena Poli
- Universität Innsbruck, Fakultät für Mathematik, Informatik und Physik, Institut für Experimentalphysik, Innsbruck, Austria
| | - Lauritz Klaus
- Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften, Innsbruck, Austria
- Universität Innsbruck, Fakultät für Mathematik, Informatik und Physik, Institut für Experimentalphysik, Innsbruck, Austria
| | - Andrea Litvinov
- Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften, Innsbruck, Austria
| | - Clemens Ulm
- Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften, Innsbruck, Austria
- Universität Innsbruck, Fakultät für Mathematik, Informatik und Physik, Institut für Experimentalphysik, Innsbruck, Austria
| | - Claudia Politi
- Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften, Innsbruck, Austria
- Universität Innsbruck, Fakultät für Mathematik, Informatik und Physik, Institut für Experimentalphysik, Innsbruck, Austria
- Institute for Quantum Electronics, ETH Zürich, Zürich, Switzerland
| | - Manfred J Mark
- Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften, Innsbruck, Austria
- Universität Innsbruck, Fakultät für Mathematik, Informatik und Physik, Institut für Experimentalphysik, Innsbruck, Austria
| | - Thomas Bland
- Universität Innsbruck, Fakultät für Mathematik, Informatik und Physik, Institut für Experimentalphysik, Innsbruck, Austria
| | - Francesca Ferlaino
- Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften, Innsbruck, Austria.
- Universität Innsbruck, Fakultät für Mathematik, Informatik und Physik, Institut für Experimentalphysik, Innsbruck, Austria.
| |
Collapse
|
3
|
Kell A, Breyer M, Eberz D, Köhl M. Exciting the Higgs Mode in a Strongly Interacting Fermi Gas by Interaction Modulation. PHYSICAL REVIEW LETTERS 2024; 133:150403. [PMID: 39454148 DOI: 10.1103/physrevlett.133.150403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/04/2024] [Accepted: 08/29/2024] [Indexed: 10/27/2024]
Abstract
We study the Higgs mode of a strongly interacting Fermi gas in the crossover regime between a fermionic and bosonic superfluid. By periodically modulating the interaction strength of the gas, we parametrically excite the Higgs mode and study its resonance frequency and line width as a function of both interaction strength and temperature. We find that the resonance frequency at low temperature agrees with a local-density approximation of the pairing gap. Both frequency and line width do not exhibit a pronounced variation with temperature, which is theoretically unexpected, however, in qualitative agreement with a different recent study.
Collapse
|
4
|
Buaria D, Lawson JM, Wilczek M. Twisting vortex lines regularize Navier-Stokes turbulence. SCIENCE ADVANCES 2024; 10:eado1969. [PMID: 39270016 PMCID: PMC11421575 DOI: 10.1126/sciadv.ado1969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/26/2024] [Indexed: 09/15/2024]
Abstract
Fluid flows are intrinsically characterized via the topology and dynamics of underlying vortex lines. Turbulence in common fluids like water and air, mathematically described by the incompressible Navier-Stokes equations (INSE), engenders spontaneous self-stretching and twisting of vortex lines, generating a complex hierarchy of structures. While the INSE are routinely used to describe turbulence, their regularity remains unproven; the implicit assumption being that the self-stretching is ultimately regularized by viscosity, preventing any singularities. Here, we uncover an inviscid regularizing mechanism stemming from self-stretching itself, by analyzing the flow topology as perceived by an observer aligned with the vorticity vector undergoing amplification. While, initially, vorticity amplification occurs via increasing twisting of vortex lines, a regularizing anti-twist spontaneously emerges to prevent unbounded growth. By isolating a vortex, we additionally demonstrate the genericity of this self-regularizing anti-twist. Our work, directly linking dynamics of vortices to turbulence statistics, reveals how the Navier-Stokes dynamics avoids the development of singularities even without the aid of viscosity.
Collapse
Affiliation(s)
- Dhawal Buaria
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX 79409, USA
- Max Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany
| | - John M. Lawson
- Department of Aeronautics and Astronautics, University of Southampton, Southampton SO17 1BJ, UK
| | - Michael Wilczek
- Max Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany
- Theoretical Physics I, University of Bayreuth, 95440 Bayreuth, Germany
| |
Collapse
|
5
|
Yang ZH, Ye YL, Zhou B, Baba H, Chen RJ, Ge YC, Hu BS, Hua H, Jiang DX, Kimura M, Li C, Li KA, Li JG, Li QT, Li XQ, Li ZH, Lou JL, Nishimura M, Otsu H, Pang DY, Pu WL, Qiao R, Sakaguchi S, Sakurai H, Satou Y, Togano Y, Tshoo K, Wang H, Wang S, Wei K, Xiao J, Xu FR, Yang XF, Yoneda K, You HB, Zheng T. Observation of the Exotic 0_{2}^{+} Cluster State in ^{8}He. PHYSICAL REVIEW LETTERS 2023; 131:242501. [PMID: 38181133 DOI: 10.1103/physrevlett.131.242501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/05/2023] [Accepted: 11/01/2023] [Indexed: 01/07/2024]
Abstract
We report here the first observation of the 0_{2}^{+} state of ^{8}He, which has been predicted to feature the condensatelike α+^{2}n+^{2}n cluster structure. We show that this state is characterized by a spin parity of 0^{+}, a large isoscalar monopole transition strength, and the emission of a strongly correlated neutron pair, in line with theoretical predictions. Our finding is further supported by the state-of-the-art microscopic α+4n model calculations. The present results may lead to new insights into clustering in neutron-rich nuclear systems and the pair correlation and condensation in quantum many-body systems under strong interactions.
Collapse
Affiliation(s)
- Z H Yang
- School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China
- RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Y L Ye
- School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China
| | - B Zhou
- Key Laboratory of Nuclear Physics and Ion-beam Application (MOE), Institute of Modern Physics, Fudan University, Shanghai 200433, China
- Shanghai Research Center for Theoretical Nuclear Physics, NSFC and Fudan University, Shanghai 200438, China
- Department of Physics, Hokkaido University, 060-0810 Sapporo, Japan
| | - H Baba
- RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - R J Chen
- Institute of Modern Physics, Chinese Academy of Science, Lanzhou 730000, China
| | - Y C Ge
- School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China
| | - B S Hu
- School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China
| | - H Hua
- School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China
| | - D X Jiang
- School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China
| | - M Kimura
- RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Department of Physics, Hokkaido University, 060-0810 Sapporo, Japan
- Nuclear Reaction Data Centre, Hokkaido University, 060-0810 Sapporo, Japan
| | - C Li
- RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - K A Li
- Institute of Modern Physics, Chinese Academy of Science, Lanzhou 730000, China
| | - J G Li
- School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China
| | - Q T Li
- School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China
| | - X Q Li
- School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China
| | - Z H Li
- School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China
| | - J L Lou
- School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China
| | - M Nishimura
- RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - H Otsu
- RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - D Y Pang
- School of Physics and Beijing Key Laboratory of Advanced Nuclear Materials and Physics, Beihang University, Beijing 100191, China
| | - W L Pu
- School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China
| | - R Qiao
- School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China
| | - S Sakaguchi
- RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Department of Physics, Kyushu University, 819-0395 Fukuoka, Japan
| | - H Sakurai
- RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Y Satou
- Rare Isotope Science Project, Institute for Basic Science, Daejeon 34000, Republic of Korea
| | - Y Togano
- RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - K Tshoo
- Rare Isotope Science Project, Institute for Basic Science, Daejeon 34000, Republic of Korea
| | - H Wang
- RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Department of Physics, Tokyo Institute of Technology, 2-12-1 Oh-Okayama, Meguro, Tokyo 152-8551, Japan
| | - S Wang
- RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - K Wei
- School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China
| | - J Xiao
- School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China
| | - F R Xu
- School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China
| | - X F Yang
- School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China
| | - K Yoneda
- RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - H B You
- School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China
| | - T Zheng
- School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China
| |
Collapse
|
6
|
Léonard J, Kim S, Kwan J, Segura P, Grusdt F, Repellin C, Goldman N, Greiner M. Realization of a fractional quantum Hall state with ultracold atoms. Nature 2023; 619:495-499. [PMID: 37344594 DOI: 10.1038/s41586-023-06122-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 04/24/2023] [Indexed: 06/23/2023]
Abstract
Strongly interacting topological matter1 exhibits fundamentally new phenomena with potential applications in quantum information technology2,3. Emblematic instances are fractional quantum Hall (FQH) states4, in which the interplay of a magnetic field and strong interactions gives rise to fractionally charged quasi-particles, long-ranged entanglement and anyonic exchange statistics. Progress in engineering synthetic magnetic fields5-21 has raised the hope to create these exotic states in controlled quantum systems. However, except for a recent Laughlin state of light22, preparing FQH states in engineered systems remains elusive. Here we realize a FQH state with ultracold atoms in an optical lattice. The state is a lattice version of a bosonic ν = 1/2 Laughlin state4,23 with two particles on 16 sites. This minimal system already captures many hallmark features of Laughlin-type FQH states24-28: we observe a suppression of two-body interactions, we find a distinctive vortex structure in the density correlations and we measure a fractional Hall conductivity of σH/σ0 = 0.6(2) by means of the bulk response to a magnetic perturbation. Furthermore, by tuning the magnetic field, we map out the transition point between the normal and the FQH regime through a spectroscopic investigation of the many-body gap. Our work provides a starting point for exploring highly entangled topological matter with ultracold atoms29-33.
Collapse
Affiliation(s)
- Julian Léonard
- Department of Physics, Harvard University, Cambridge, MA, USA.
- Vienna Center for Quantum Science and Technology, Atominstitut, TU Wien, Vienna, Austria.
| | - Sooshin Kim
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Joyce Kwan
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Perrin Segura
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Fabian Grusdt
- Department of Physics and ASC, Ludwig-Maximilians-Universität München, Munich, Germany
- Munich Center for Quantum Science and Technology (MCQST), Munich, Germany
| | | | - Nathan Goldman
- Center for Nonlinear Phenomena and Complex Systems (CENOLI), Université Libre de Bruxelles, Brussels, Belgium
| | - Markus Greiner
- Department of Physics, Harvard University, Cambridge, MA, USA
| |
Collapse
|
7
|
Biswas S, Ghosh A, Majumder S. Artificial magnetism for a harmonically trapped Fermi gas in a synthetic magnetic field. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2023; 35:255801. [PMID: 36958038 DOI: 10.1088/1361-648x/acc719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/23/2023] [Indexed: 06/18/2023]
Abstract
We have analytically explored the artificial magnetism for a 3D spin-polarized harmonically trapped ideal Fermi gas of electrically neutral particles exposed to a uniform synthetic magnetic field. Though polarization of the spin is necessary for trapping electrically neutral atoms in a magneto-optical trap, Pauli paramagnetism can not be studied for the spin-polarized Fermi system. However, it is possible to study Landau diamagnetism and de Haas-van Alphen effect for such a system. We have unified the artificial Landau diamagnetism and the artificial de Haas-van Alphen effect in a single framework for all temperatures as well as for all possible magnitudes of the synthetic magnetic field in the thermodynamic limit. Our prediction is testable in the present-day experimental setup for ultracold fermionic atoms in magneto-optical trap.
Collapse
Affiliation(s)
- Shyamal Biswas
- School of Physics, University of Hyderabad, C.R. Rao Road, Gachibowli, Hyderabad 500046, India
| | - Avijit Ghosh
- School of Physics, University of Hyderabad, C.R. Rao Road, Gachibowli, Hyderabad 500046, India
| | - Soumyadeep Majumder
- School of Physics, University of Hyderabad, C.R. Rao Road, Gachibowli, Hyderabad 500046, India
| |
Collapse
|
8
|
Reyes-Ayala I, Miotti M, Hemmerling M, Dubessy R, Perrin H, Romero-Rochin V, Bagnato VS. Carnot Cycles in a Harmonically Confined Ultracold Gas across Bose-Einstein Condensation. ENTROPY (BASEL, SWITZERLAND) 2023; 25:311. [PMID: 36832677 PMCID: PMC9955479 DOI: 10.3390/e25020311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Carnot cycles of samples of harmonically confined ultracold 87Rb fluids, near and across Bose-Einstein condensation (BEC), are analyzed. This is achieved through the experimental determination of the corresponding equation of state in terms of the appropriate global thermodynamics for non-uniform confined fluids. We focus our attention on the efficiency of the Carnot engine when the cycle occurs for temperatures either above or below the critical temperature and when BEC is crossed during the cycle. The measurement of the cycle efficiency reveals a perfect agreement with the theoretical prediction (1-TL/TH), with TH and TL serving as the temperatures of the hot and cold heat exchange reservoirs. Other cycles are also considered for comparison.
Collapse
Affiliation(s)
- Ignacio Reyes-Ayala
- Instituto de Fisica de São Carlos, Universidade de São Paulo, CP 369, São Carlos 13560-970, São Paulo, Brazil
| | - Marcos Miotti
- Instituto de Fisica de São Carlos, Universidade de São Paulo, CP 369, São Carlos 13560-970, São Paulo, Brazil
| | - Michal Hemmerling
- Instituto de Fisica de São Carlos, Universidade de São Paulo, CP 369, São Carlos 13560-970, São Paulo, Brazil
| | - Romain Dubessy
- Laboratoire de Physique des Lasers, Université Sorbonne Paris Nord, CNRS UMR 7538, F-93430 Villetaneuse, France
| | - Hélène Perrin
- Laboratoire de Physique des Lasers, Université Sorbonne Paris Nord, CNRS UMR 7538, F-93430 Villetaneuse, France
| | - Victor Romero-Rochin
- Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, Ciudad de México 01000, Mexico
| | - Vanderlei Salvador Bagnato
- Instituto de Fisica de São Carlos, Universidade de São Paulo, CP 369, São Carlos 13560-970, São Paulo, Brazil
- Biomedical Engineering Department, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
9
|
Klaus L, Bland T, Poli E, Politi C, Lamporesi G, Casotti E, Bisset RN, Mark MJ, Ferlaino F. Observation of vortices and vortex stripes in a dipolar condensate. NATURE PHYSICS 2022; 18:1453-1458. [PMID: 36506337 PMCID: PMC9726643 DOI: 10.1038/s41567-022-01793-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/08/2022] [Indexed: 06/17/2023]
Abstract
Quantized vortices are a prototypical feature of superfluidity that have been observed in multiple quantum gas experiments. But the occurrence of vortices in dipolar quantum gases-a class of ultracold gases characterized by long-range anisotropic interactions-has not been reported yet. Here we exploit the anisotropic nature of the dipole-dipole interaction of a dysprosium Bose-Einstein condensate to induce angular symmetry breaking in an otherwise cylindrically symmetric pancake-shaped trap. Tilting the magnetic field towards the radial plane deforms the cloud into an ellipsoid, which is then set into rotation. At stirring frequencies approaching the radial trap frequency, we observe the generation of dynamically unstable surface excitations, which cause angular momentum to be pumped into the system through vortices. Under continuous rotation, the vortices arrange into a stripe configuration along the field, in close agreement with numerical simulations.
Collapse
Affiliation(s)
- Lauritz Klaus
- Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften, Innsbruck, Austria
- Institut für Experimentalphysik, Universität Innsbruck, Innsbruck, Austria
| | - Thomas Bland
- Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften, Innsbruck, Austria
- Institut für Experimentalphysik, Universität Innsbruck, Innsbruck, Austria
| | - Elena Poli
- Institut für Experimentalphysik, Universität Innsbruck, Innsbruck, Austria
| | - Claudia Politi
- Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften, Innsbruck, Austria
- Institut für Experimentalphysik, Universität Innsbruck, Innsbruck, Austria
| | - Giacomo Lamporesi
- INO-CNR BEC Center and Dipartimento di Fisica, Università di Trento, Povo, Italy
| | - Eva Casotti
- Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften, Innsbruck, Austria
- Institut für Experimentalphysik, Universität Innsbruck, Innsbruck, Austria
| | - Russell N. Bisset
- Institut für Experimentalphysik, Universität Innsbruck, Innsbruck, Austria
| | - Manfred J. Mark
- Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften, Innsbruck, Austria
- Institut für Experimentalphysik, Universität Innsbruck, Innsbruck, Austria
| | - Francesca Ferlaino
- Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften, Innsbruck, Austria
- Institut für Experimentalphysik, Universität Innsbruck, Innsbruck, Austria
| |
Collapse
|
10
|
Jheng SD, Chen TW, Cheng SC. Spontaneous giant vortices and circular supercurrents in a trapped exciton-polariton condensate. OPTICS EXPRESS 2022; 30:35325-35337. [PMID: 36258486 DOI: 10.1364/oe.468330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/23/2022] [Indexed: 06/16/2023]
Abstract
We theoretically study an exciton-polariton condensate trapped in a harmonic potential with an annular pump. With a circular pump, predictions were made for a spontaneous rotating vortex lattice packed by singly quantized vortices. If the circular pump is replaced by an annular pump, singly quantized vortices are absorbed into the central hole and form a multiply quantized vortex. For a sufficiently narrow annular width, all vortices are absorbed into the central hole, ultimately forming a giant vortex with supersonic circular supercurrents flowing around it. Vortex-antivortex pairs can be generated if a defect is present in these supersonic circular supercurrents. We further discover that the motion of the vortex-antivortex pairs depends on the position at which they were generated. We suggest that this property can be used to control whether the velocity of the circular supercurrents is above or below the sound velocity.
Collapse
|
11
|
Norcia MA, Poli E, Politi C, Klaus L, Bland T, Mark MJ, Santos L, Bisset RN, Ferlaino F. Can Angular Oscillations Probe Superfluidity in Dipolar Supersolids? PHYSICAL REVIEW LETTERS 2022; 129:040403. [PMID: 35939003 DOI: 10.1103/physrevlett.129.040403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/03/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
Angular oscillations can provide a useful probe of the superfluid properties of a system. Such measurements have recently been applied to dipolar supersolids, which exhibit both density modulation and phase coherence, and for which robust probes of superfluidity are particularly interesting. So far, these investigations have been confined to linear droplet arrays, which feature relatively simple excitation spectra, but limited sensitivity to the effects of superfluidity. Here, we explore angular oscillations in systems with 2D structure which, in principle, have greater sensitivity to superfluidity. In both experiment and simulation, we find that the interplay of superfluid and crystalline excitations leads to a frequency of angular oscillations that remains nearly unchanged even when the superfluidity of the system is altered dramatically. This indicates that angular oscillation measurements do not always provide a robust experimental probe of superfluidity with typical experimental protocols.
Collapse
Affiliation(s)
- Matthew A Norcia
- Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften, Innsbruck 6020, Austria
| | - Elena Poli
- Institut für Experimentalphysik, Universität Innsbruck, Innsbruck 6020, Austria
| | - Claudia Politi
- Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften, Innsbruck 6020, Austria
- Institut für Experimentalphysik, Universität Innsbruck, Innsbruck 6020, Austria
| | - Lauritz Klaus
- Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften, Innsbruck 6020, Austria
- Institut für Experimentalphysik, Universität Innsbruck, Innsbruck 6020, Austria
| | - Thomas Bland
- Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften, Innsbruck 6020, Austria
- Institut für Experimentalphysik, Universität Innsbruck, Innsbruck 6020, Austria
| | - Manfred J Mark
- Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften, Innsbruck 6020, Austria
- Institut für Experimentalphysik, Universität Innsbruck, Innsbruck 6020, Austria
| | - Luis Santos
- Institut für Theoretische Physik, Leibniz Universität Hannover, 30167 Hannover, Germany
| | - Russell N Bisset
- Institut für Experimentalphysik, Universität Innsbruck, Innsbruck 6020, Austria
| | - Francesca Ferlaino
- Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften, Innsbruck 6020, Austria
- Institut für Experimentalphysik, Universität Innsbruck, Innsbruck 6020, Austria
| |
Collapse
|
12
|
Observing the loss and revival of long-range phase coherence through disorder quenches. Proc Natl Acad Sci U S A 2022; 119:2111078118. [PMID: 34983842 PMCID: PMC8740730 DOI: 10.1073/pnas.2111078118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2021] [Indexed: 11/18/2022] Open
Abstract
Relaxation of quantum systems is a central problem in nonequilibrium physics. In contrast to classical systems, the underlying quantum dynamics results not only from atomic interactions but also from the long-range coherence of the many-body wave function. Experimentally, nonequilibrium states of quantum fluids are usually created using moving objects or laser potentials, directly perturbing and detecting the system's density. However, the fate of long-range phase coherence for hydrodynamic motion of disordered quantum systems is less explored, especially in three dimensions. Here, we unravel how the density and phase coherence of a Bose-Einstein condensate of 6Li2 molecules respond upon quenching on or off an optical speckle potential. We find that, as the disorder is switched on, long-range phase coherence breaks down one order of magnitude faster than the density of the quantum gas responds. After removing it, the system needs two orders of magnitude longer times to reestablish quantum coherence, compared to the density response. We compare our results with numerical simulations of the Gross-Pitaevskii equation on large three-dimensional grids, finding an overall good agreement. Our results shed light on the importance of long-range coherence and possibly long-lived phase excitations for the relaxation of nonequilibrium quantum many-body systems.
Collapse
|
13
|
Kwon WJ, Del Pace G, Xhani K, Galantucci L, Muzi Falconi A, Inguscio M, Scazza F, Roati G. Sound emission and annihilations in a programmable quantum vortex collider. Nature 2021; 600:64-69. [PMID: 34853459 DOI: 10.1038/s41586-021-04047-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/22/2021] [Indexed: 11/09/2022]
Abstract
In quantum fluids, the quantization of circulation forbids the diffusion of a vortex swirling flow seen in classical viscous fluids. Yet, accelerating quantum vortices may lose their energy into acoustic radiations1,2, similar to the way electric charges decelerate on emitting photons. The dissipation of vortex energy underlies central problems in quantum hydrodynamics3, such as the decay of quantum turbulence, highly relevant to systems as varied as neutron stars, superfluid helium and atomic condensates4,5. A deep understanding of the elementary mechanisms behind irreversible vortex dynamics has been a goal for decades3,6, but it is complicated by the shortage of conclusive experimental signatures7. Here we address this challenge by realizing a programmable vortex collider in a planar, homogeneous atomic Fermi superfluid with tunable inter-particle interactions. We create on-demand vortex configurations and monitor their evolution, taking advantage of the accessible time and length scales of ultracold Fermi gases8,9. Engineering collisions within and between vortex-antivortex pairs allows us to decouple relaxation of the vortex energy due to sound emission and that due to interactions with normal fluid (that is, mutual friction). We directly visualize how the annihilation of vortex dipoles radiates a sound pulse. Further, our few-vortex experiments extending across different superfluid regimes reveal non-universal dissipative dynamics, suggesting that fermionic quasiparticles localized inside the vortex core contribute significantly to dissipation, thereby opening the route to exploring new pathways for quantum turbulence decay, vortex by vortex.
Collapse
Affiliation(s)
- W J Kwon
- European Laboratory for Nonlinear Spectroscopy (LENS), Sesto Fiorentino, Italy. .,Istituto Nazionale di Ottica del Consiglio Nazionale delle Ricerche (CNR-INO), Sesto Fiorentino, Italy.
| | - G Del Pace
- European Laboratory for Nonlinear Spectroscopy (LENS), Sesto Fiorentino, Italy.,Istituto Nazionale di Ottica del Consiglio Nazionale delle Ricerche (CNR-INO), Sesto Fiorentino, Italy
| | - K Xhani
- European Laboratory for Nonlinear Spectroscopy (LENS), Sesto Fiorentino, Italy.,Istituto Nazionale di Ottica del Consiglio Nazionale delle Ricerche (CNR-INO), Sesto Fiorentino, Italy
| | - L Galantucci
- Joint Quantum Centre (JQC) Durham-Newcastle, School of Mathematics, Statistics and Physics, Newcastle University, Newcastle upon Tyne, UK
| | - A Muzi Falconi
- European Laboratory for Nonlinear Spectroscopy (LENS), Sesto Fiorentino, Italy.,Istituto Nazionale di Ottica del Consiglio Nazionale delle Ricerche (CNR-INO), Sesto Fiorentino, Italy
| | - M Inguscio
- European Laboratory for Nonlinear Spectroscopy (LENS), Sesto Fiorentino, Italy.,Istituto Nazionale di Ottica del Consiglio Nazionale delle Ricerche (CNR-INO), Sesto Fiorentino, Italy.,Department of Engineering, Campus Bio-Medico University of Rome, Rome, Italy
| | - F Scazza
- European Laboratory for Nonlinear Spectroscopy (LENS), Sesto Fiorentino, Italy.,Istituto Nazionale di Ottica del Consiglio Nazionale delle Ricerche (CNR-INO), Sesto Fiorentino, Italy.,Department of Physics, University of Trieste, Trieste, Italy
| | - G Roati
- European Laboratory for Nonlinear Spectroscopy (LENS), Sesto Fiorentino, Italy.,Istituto Nazionale di Ottica del Consiglio Nazionale delle Ricerche (CNR-INO), Sesto Fiorentino, Italy
| |
Collapse
|
14
|
Grünebohm A, Marathe M, Khachaturyan R, Schiedung R, Lupascu DC, Shvartsman VV. Interplay of domain structure and phase transitions: theory, experiment and functionality. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 34:073002. [PMID: 34731841 DOI: 10.1088/1361-648x/ac3607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/03/2021] [Indexed: 06/13/2023]
Abstract
Domain walls and phase boundaries are fundamental ingredients of ferroelectrics and strongly influence their functional properties. Although both interfaces have been studied for decades, often only a phenomenological macroscopic understanding has been established. The recent developments in experiments and theory allow to address the relevant time and length scales and revisit nucleation, phase propagation and the coupling of domains and phase transitions. This review attempts to specify regularities of domain formation and evolution at ferroelectric transitions and give an overview on unusual polar topological structures that appear as transient states and at the nanoscale. We survey the benefits, validity, and limitations of experimental tools as well as simulation methods to study phase and domain interfaces. We focus on the recent success of these tools in joint scale-bridging studies to solve long lasting puzzles in the field and give an outlook on recent trends in superlattices.
Collapse
Affiliation(s)
- Anna Grünebohm
- Interdisciplinary Centre for Advanced Materials Simulations (ICAMS), Ruhr-University Bochum, 44801 Bochum, Germany
| | - Madhura Marathe
- Interdisciplinary Centre for Advanced Materials Simulations (ICAMS), Ruhr-University Bochum, 44801 Bochum, Germany
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain
- Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Ruben Khachaturyan
- Interdisciplinary Centre for Advanced Materials Simulations (ICAMS), Ruhr-University Bochum, 44801 Bochum, Germany
| | - Raphael Schiedung
- Interdisciplinary Centre for Advanced Materials Simulations (ICAMS), Ruhr-University Bochum, 44801 Bochum, Germany
- National Institute for Material Science (NIMS), Tsukuba 305-0047, Japan
| | - Doru C Lupascu
- Institute for Materials Science and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 45141 Essen, Germany
| | - Vladimir V Shvartsman
- Institute for Materials Science and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 45141 Essen, Germany
| |
Collapse
|
15
|
Hachmann M, Kiefer Y, Riebesehl J, Eichberger R, Hemmerich A. Quantum Degenerate Fermi Gas in an Orbital Optical Lattice. PHYSICAL REVIEW LETTERS 2021; 127:033201. [PMID: 34328765 DOI: 10.1103/physrevlett.127.033201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Spin-polarized samples and spin mixtures of quantum degenerate fermionic atoms are prepared in selected excited Bloch bands of an optical checkerboard square lattice. For the spin-polarized case, extreme band lifetimes above 10 s are observed, reflecting the suppression of collisions by Pauli's exclusion principle. For spin mixtures, lifetimes are reduced by an order of magnitude by two-body collisions between different spin components, but still remarkably large values of about 1 s are found. By analyzing momentum spectra, we can directly observe the orbital character of the optical lattice. The observations demonstrated here form the basis for exploring the physics of Fermi gases with two paired spin components in orbital optical lattices, including the regime of unitarity.
Collapse
Affiliation(s)
- M Hachmann
- Institut für Laserphysik, Universität Hamburg, 22761 Hamburg, Germany
- Zentrum für Optische Quantentechnologien, Universität Hamburg, 22761 Hamburg, Germany
| | - Y Kiefer
- Institut für Laserphysik, Universität Hamburg, 22761 Hamburg, Germany
- Zentrum für Optische Quantentechnologien, Universität Hamburg, 22761 Hamburg, Germany
| | - J Riebesehl
- Institut für Laserphysik, Universität Hamburg, 22761 Hamburg, Germany
| | - R Eichberger
- Institut für Laserphysik, Universität Hamburg, 22761 Hamburg, Germany
- Zentrum für Optische Quantentechnologien, Universität Hamburg, 22761 Hamburg, Germany
| | - A Hemmerich
- Institut für Laserphysik, Universität Hamburg, 22761 Hamburg, Germany
- Zentrum für Optische Quantentechnologien, Universität Hamburg, 22761 Hamburg, Germany
- The Hamburg Center for Ultrafast Imaging, Universität Hamburg, 22761 Hamburg, Germany
| |
Collapse
|
16
|
Grémaud B, Batrouni GG. Pairing and Pair Superfluid Density in One-Dimensional Two-Species Fermionic and Bosonic Hubbard Models. PHYSICAL REVIEW LETTERS 2021; 127:025301. [PMID: 34296933 DOI: 10.1103/physrevlett.127.025301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 06/04/2021] [Indexed: 06/13/2023]
Abstract
We use unbiased computational methods to elucidate the onset and properties of pair superfluidity in two-species fermionic and bosonic systems with onsite interspecies attraction loaded in a uniform, i.e., with no confining potential, one-dimensional optical lattice. We compare results from quantum Monte Carlo (QMC) and density matrix renormalization group (DMRG), emphasizing the one-to-one correspondence between the Drude weight tensor, calculated with DMRG, and the various winding numbers extracted from the QMC. Our results show that, for any nonvanishing attractive interaction, pairs form and are the sole contributors to superfluidity; there are no individual contributions due to the separate species. For weak attraction, the pair size diverges exponentially, i.e., Bardeen-Cooper-Schrieffer (BCS) pairing, requiring huge systems to bring out the pair-only nature of the superfluid. This crucial property is largely overlooked in many studies, thereby misinterpreting the origin and nature of the superfluid. We compare and contrast this with the repulsive case and show that the behavior is very different, contradicting previous claims about drag superfluidity and the symmetry of properties for attractive and repulsive interactions. Finally, our results show that the situation is similar for soft-core bosons: superfluidity is due only to pairs, even for the smallest attractive interaction strength compatible with the largest system sizes that we could attain.
Collapse
Affiliation(s)
- B Grémaud
- Aix-Marseille Univ, Université de Toulon, CNRS, CPT, IPhU, AMUtech, Marseille, France
- Centre for Quantum Technologies, National University of Singapore, 2 Science Drive 3, 117542 Singapore
- Department of Physics, National University of Singapore, 2 Science Drive 3, 117542 Singapore
| | - G G Batrouni
- Centre for Quantum Technologies, National University of Singapore, 2 Science Drive 3, 117542 Singapore
- Department of Physics, National University of Singapore, 2 Science Drive 3, 117542 Singapore
- Université Côte d'Azur, INPHYNI, CNRS, 06103 Nice, France
- Beijing Computational Science Research Center, Beijing 100193, China
| |
Collapse
|
17
|
Cuestas E, Majtey AP. A generalized molecule approach capturing the Feshbach-induced pairing physics in the BEC-BCS crossover. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:255601. [PMID: 33848988 DOI: 10.1088/1361-648x/abf7a2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/13/2021] [Indexed: 06/12/2023]
Abstract
By including the effect of a trap with characteristic energy given by the Fermi temperatureTFin a two-body two-channel model for Feshbach resonances, we reproduce the measured binding energy of ultracold molecules in a40K atomic Fermi gas. We also reproduce the experimental closed-channel fractionZacross the BEC-BCS crossover and into the BCS regime of a6Li atomic Fermi gas. We obtain the expected behaviorZ∝TFat unitarity, together with the recently measured proportionality constant. Our results are also in agreement with recent measurements of theZdependency onTFon the BCS side, where a significant quantitative discrepancy between experimental data and theory's predictions has been repeatedly reported. In order to contrast with future experiments we report the proportionality constant at unitarity betweenZandTFpredicted by our model for a40K atomic Fermi gas.
Collapse
Affiliation(s)
- Eloisa Cuestas
- Facultad de Matemática, Astronomía, Física y Computación (FaMAF), Universidad Nacional de Córdoba (UNC), Av. Medina Allende s/n, Ciudad Universitaria, X5000HUA, Córdoba, Argentina
- Instituto de Física Enrique Gaviola (IFEG), Consejo de Investigaciones Científicas y Técnicas de la República Argentina (CONICET), Córdoba, Argentina
| | - Ana P Majtey
- Facultad de Matemática, Astronomía, Física y Computación (FaMAF), Universidad Nacional de Córdoba (UNC), Av. Medina Allende s/n, Ciudad Universitaria, X5000HUA, Córdoba, Argentina
- Instituto de Física Enrique Gaviola (IFEG), Consejo de Investigaciones Científicas y Técnicas de la República Argentina (CONICET), Córdoba, Argentina
| |
Collapse
|
18
|
Liu XP, Yao XC, Deng Y, Wang XQ, Wang YX, Huang CJ, Li X, Chen YA, Pan JW. Universal Dynamical Scaling of Quasi-Two-Dimensional Vortices in a Strongly Interacting Fermionic Superfluid. PHYSICAL REVIEW LETTERS 2021; 126:185302. [PMID: 34018783 DOI: 10.1103/physrevlett.126.185302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 09/02/2020] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
Vortices play a leading role in many fascinating quantum phenomena. Here we generate a large number of vortices by thermally quenching a fermionic superfluid of ^{6}Li atoms in an oblate optical trap and study their annihilation dynamics and spatial distribution. Over a wide interaction range from the attractive to the repulsive side across the Feshbach resonance, these quasi-two-dimensional vortices are observed to follow algebraic scaling laws both in time and space, having exponents consistent with the two-dimensional universality. We further simulate the classical XY model on the square lattice by a Glauber dynamics and find good agreement between the numerical and experimental behaviors. Our work provides a direct demonstration of the universal 2D vortex dynamics.
Collapse
Affiliation(s)
- Xiang-Pei Liu
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
- Shanghai Branch, CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China
- Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
| | - Xing-Can Yao
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
- Shanghai Branch, CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China
- Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
| | - Youjin Deng
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
- Shanghai Branch, CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China
- Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
- MinJiang Collaborative Center for Theoretical Physics, College of Physics and Electronic Information Engineering, Minjiang University, Fuzhou 350108, China
| | - Xiao-Qiong Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
- Shanghai Branch, CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China
- Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
| | - Yu-Xuan Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
- Shanghai Branch, CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China
- Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
| | - Chun-Jiong Huang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
- Shanghai Branch, CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China
| | - Xiaopeng Li
- State Key Laboratory of Surface Physics, Institute of Nanoelectronics and Quantum Computing,and Department of Physics, Fudan University, Shanghai 200433, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
| | - Yu-Ao Chen
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
- Shanghai Branch, CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China
- Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
| | - Jian-Wei Pan
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
- Shanghai Branch, CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China
- Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
| |
Collapse
|
19
|
Wang Y, Li Y, Wu J, Liu W, Hu J, Ma J, Xiao L, Jia S. Hybrid evaporative cooling of 133Cs atoms to Bose-Einstein condensation. OPTICS EXPRESS 2021; 29:13960-13967. [PMID: 33985122 DOI: 10.1364/oe.419854] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
The Bose-Einstein condensation (BEC) of 133Cs atoms offers an appealing platform for studying the many-body physics of interacting Bose quantum gases, owing to the rich Feshbach resonances that can be readily achieved in the low magnetic field region. However, it is notoriously difficult to cool 133Cs atoms to their quantum degeneracy. Here we report a hybrid evaporative cooling of 133Cs atoms to BEC. Our approach relies on a combination of the magnetically tunable evaporation with the optical evaporation of atoms in a magnetically levitated optical dipole trap overlapping with a dimple trap. The magnetic field gradient is reduced for the magnetically tunable evaporation. The subsequent optical evaporation is performed by lowering the depth of the dimple trap. We study the dependence of the peak phase space density (PSD) and temperature on the number of atoms during the evaporation process, as well as how the PSD and atom number vary with the trap depth. The results are in excellent agreement with the equation model for evaporative cooling.
Collapse
|
20
|
Kim K, Kim H, Kim J, Kwon C, Kim JS, Kim BJ. Direct observation of excitonic instability in Ta 2NiSe 5. Nat Commun 2021; 12:1969. [PMID: 33785740 PMCID: PMC8010035 DOI: 10.1038/s41467-021-22133-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 03/02/2021] [Indexed: 02/01/2023] Open
Abstract
Coulomb attraction between electrons and holes in a narrow-gap semiconductor or a semimetal is predicted to lead to an elusive phase of matter dubbed excitonic insulator. However, direct observation of such electronic instability remains extremely rare. Here, we report the observation of incipient divergence in the static excitonic susceptibility of the candidate material Ta2NiSe5 using Raman spectroscopy. Critical fluctuations of the excitonic order parameter give rise to quasi-elastic scattering of B2g symmetry, whose intensity grows inversely with temperature toward the Weiss temperature of TW ≈ 237 K, which is arrested by a structural phase transition driven by an acoustic phonon of the same symmetry at TC = 325 K. Concurrently, a B2g optical phonon becomes heavily damped to the extent that its trace is almost invisible around TC, which manifests a strong electron-phonon coupling that has obscured the identification of the low-temperature phase as an excitonic insulator for more than a decade. Our results unambiguously reveal the electronic origin of the phase transition.
Collapse
Affiliation(s)
- Kwangrae Kim
- Department of Physics, Pohang University of Science and Technology, Pohang, South Korea
- Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science (IBS), Pohang, South Korea
| | - Hoon Kim
- Department of Physics, Pohang University of Science and Technology, Pohang, South Korea
- Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science (IBS), Pohang, South Korea
| | - Jonghwan Kim
- Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science (IBS), Pohang, South Korea
- Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Changil Kwon
- Department of Physics, Pohang University of Science and Technology, Pohang, South Korea
- Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science (IBS), Pohang, South Korea
| | - Jun Sung Kim
- Department of Physics, Pohang University of Science and Technology, Pohang, South Korea
- Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science (IBS), Pohang, South Korea
| | - B J Kim
- Department of Physics, Pohang University of Science and Technology, Pohang, South Korea.
- Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science (IBS), Pohang, South Korea.
| |
Collapse
|
21
|
Tanzi L, Maloberti JG, Biagioni G, Fioretti A, Gabbanini C, Modugno G. Evidence of superfluidity in a dipolar supersolid from nonclassical rotational inertia. Science 2021; 371:1162-1165. [PMID: 33602866 DOI: 10.1126/science.aba4309] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/02/2021] [Indexed: 11/02/2022]
Abstract
A key manifestation of superfluidity in liquids and gases is a reduction of the moment of inertia under slow rotations. Nonclassical rotational effects have also been considered in the context of the elusive supersolid phase of matter, in which superfluidity coexists with a lattice structure. Here, we show that the recently discovered supersolid phase in dipolar quantum gases features a reduced moment of inertia. Using a dipolar gas of dysprosium atoms, we studied a peculiar rotational oscillation mode in a harmonic potential, the scissors mode, previously investigated in ordinary superfluids. From the measured moment of inertia, we deduced a superfluid fraction that is different from zero and of order of unity, providing direct evidence of the superfluid nature of the dipolar supersolid.
Collapse
Affiliation(s)
- L Tanzi
- CNR-INO, Sede Secondaria di Pisa, 56124 Pisa, Italy.,LENS and Dipartimento di Fisica e Astronomia, Università di Firenze, 50019 Sesto Fiorentino, Italy
| | - J G Maloberti
- CNR-INO, Sede Secondaria di Pisa, 56124 Pisa, Italy.,LENS and Dipartimento di Fisica e Astronomia, Università di Firenze, 50019 Sesto Fiorentino, Italy
| | - G Biagioni
- CNR-INO, Sede Secondaria di Pisa, 56124 Pisa, Italy.,LENS and Dipartimento di Fisica e Astronomia, Università di Firenze, 50019 Sesto Fiorentino, Italy
| | - A Fioretti
- CNR-INO, Sede Secondaria di Pisa, 56124 Pisa, Italy
| | - C Gabbanini
- CNR-INO, Sede Secondaria di Pisa, 56124 Pisa, Italy
| | - G Modugno
- CNR-INO, Sede Secondaria di Pisa, 56124 Pisa, Italy. .,LENS and Dipartimento di Fisica e Astronomia, Università di Firenze, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
22
|
Modelling quantum aspects of disruption of a white dwarf star by a black hole. Sci Rep 2021; 11:2286. [PMID: 33504841 PMCID: PMC7840777 DOI: 10.1038/s41598-021-81707-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 01/07/2021] [Indexed: 11/19/2022] Open
Abstract
We study the final stages of the evolution of a binary system consisted of a black hole and a white dwarf star. We implement the quantum hydrodynamic equations and carry out numerical simulations. As a model of a white dwarf star we consider a zero temperature droplet of attractively interacting degenerate atomic bosons and spin-polarized atomic fermions. Such mixtures are investigated experimentally nowadays. We find that the white dwarf star is stripped off its mass while passing the periastron. Due to nonlinear effects, the accretion disk originated from the white dwarf becomes fragmented and the onset of a quantum turbulence with giant quantized vortices present in the bosonic component of the accretion disk is observed. The binary system ends its life in a spectacular way, revealing quantum features underlying the white dwarf star’s structure. We find a charged mass, falling onto a black hole, could be responsible for recently discovered ultraluminous X-ray bursts. The simulations show that final passage of a white dwarf near a black hole can cause a gamma-ray burst.
Collapse
|
23
|
Chen KJ, Wu F, Peng SG, Yi W, He L. Generating Giant Vortex in a Fermi Superfluid via Spin-Orbital-Angular-Momentum Coupling. PHYSICAL REVIEW LETTERS 2020; 125:260407. [PMID: 33449717 DOI: 10.1103/physrevlett.125.260407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 12/10/2020] [Indexed: 06/12/2023]
Abstract
Spin-orbital-angular-momentum (SOAM) coupling has been realized in recent experiments of Bose-Einstein condensates [Chen et al., Phys. Rev. Lett. 121, 113204 (2018)PRLTAO0031-900710.1103/PhysRevLett.121.113204 and Zhang et al., Phys. Rev. Lett. 122, 110402 (2019)PRLTAO0031-900710.1103/PhysRevLett.122.110402], where the orbital angular momentum imprinted upon bosons leads to quantized vortices. For fermions, such an exotic synthetic gauge field can provide fertile ground for fascinating pairing schemes and rich superfluid phases, which are yet to be explored. Here we demonstrate how SOAM coupling stabilizes vortices in Fermi superfluids through a unique mechanism that can be viewed as the angular analog to that of the spin-orbit-coupling-induced Fulde-Ferrell state under a Fermi surface deformation. Remarkably, the vortex size is comparable with the beam waist of Raman lasers generating the SOAM coupling, which is typically much larger than previously observed vortices in Fermi superfluids. With tunable size and core structure, these giant vortex states provide unprecedented experimental access to topological defects in Fermi superfluids.
Collapse
Affiliation(s)
- Ke-Ji Chen
- Department of Physics and State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua University, Beijing 100084, China
| | - Fan Wu
- Department of Physics and State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua University, Beijing 100084, China
| | - Shi-Guo Peng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Wei Yi
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
- CAS Center For Excellence in Quantum Information and Quantum Physics, Hefei 230026, China
| | - Lianyi He
- Department of Physics and State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua University, Beijing 100084, China
| |
Collapse
|
24
|
Jahromi SS, Orús R. Thermal bosons in 3d optical lattices via tensor networks. Sci Rep 2020; 10:19051. [PMID: 33149156 PMCID: PMC7642398 DOI: 10.1038/s41598-020-75548-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/13/2020] [Indexed: 11/26/2022] Open
Abstract
Ultracold atoms in optical lattices are one of the most promising experimental setups to simulate strongly correlated systems. However, efficient numerical algorithms able to benchmark experiments at low-temperatures in interesting 3d lattices are lacking. To this aim, here we introduce an efficient tensor network algorithm to accurately simulate thermal states of local Hamiltonians in any infinite lattice, and in any dimension. We apply the method to simulate thermal bosons in optical lattices. In particular, we study the physics of the (soft-core and hard-core) Bose–Hubbard model on the infinite pyrochlore and cubic lattices with unprecedented accuracy. Our technique is therefore an ideal tool to benchmark realistic and interesting optical-lattice experiments.
Collapse
Affiliation(s)
- Saeed S Jahromi
- Donostia International Physics Center, Paseo Manuel de Lardizabal 4, 20018, San Sebastián, Spain
| | - Román Orús
- Donostia International Physics Center, Paseo Manuel de Lardizabal 4, 20018, San Sebastián, Spain. .,Ikerbasque Foundation for Science, Maria Diaz de Haro 3, 48013, Bilbao, Spain. .,Multiverse Computing, Paseo de Miramón 170, 20014, San Sebastián, Spain.
| |
Collapse
|
25
|
Lu X, Fei R, Zhu L, Yang L. Meron-like topological spin defects in monolayer CrCl 3. Nat Commun 2020; 11:4724. [PMID: 32948762 PMCID: PMC7501285 DOI: 10.1038/s41467-020-18573-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 08/26/2020] [Indexed: 11/30/2022] Open
Abstract
Noncollinear spin textures in low-dimensional magnetic systems have been studied for decades because of their extraordinary properties and promising applications derived from the chirality and topological nature. However, material realizations of topological spin states are still limited. Employing first-principles and Monte Carlo simulations, we propose that monolayer chromium trichloride (CrCl3) can be a promising candidate for observing the vortex/antivortex type of topological defects, so-called merons. The numbers of vortices and antivortices are found to be the same, maintaining an overall integer topological unit. By perturbing with external magnetic fields, we show the robustness of these meron pairs and reveal a rich phase space to tune the hybridization between the ferromagnetic order and meron-like defects. The signatures of topological excitations under external magnetic field also provide crucial information for experimental justifications. Our study predicts that two-dimensional magnets with weak spin-orbit coupling can be a promising family for realizing meron-like spin textures.
Collapse
Affiliation(s)
- Xiaobo Lu
- Department of Physics, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Ruixiang Fei
- Department of Physics, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Linghan Zhu
- Department of Physics, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Li Yang
- Department of Physics, Washington University in St. Louis, St. Louis, MO, 63130, USA.
- Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| |
Collapse
|
26
|
Roux K, Konishi H, Helson V, Brantut JP. Strongly correlated Fermions strongly coupled to light. Nat Commun 2020; 11:2974. [PMID: 32532985 PMCID: PMC7293285 DOI: 10.1038/s41467-020-16767-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/20/2020] [Indexed: 11/17/2022] Open
Abstract
Strong quantum correlations in matter are responsible for some of the most extraordinary properties of materials, from magnetism to high-temperature superconductivity, but their integration in quantum devices requires a strong, coherent coupling with photons, which still represents a formidable technical challenge in solid state systems. In cavity quantum electrodynamics, quantum gases such as Bose-Einstein condensates or lattice gases have been strongly coupled with light. However, neither Fermionic quantum matter, comparable to electrons in solids, nor atomic systems with controlled interactions, have thus far been strongly coupled with photons. Here we report on the strong coupling of a quantum-degenerate unitary Fermi gas with light in a high finesse cavity. We map out the spectrum of the coupled system and observe well resolved dressed states, resulting from the strong coupling of cavity photons with each spin component of the gas. We investigate spin-balanced and spin-polarized gases and find quantitative agreement with ab initio calculation describing light-matter interaction. Our system offers complete and simultaneous control of atom-atom and atom-photon interactions in the quantum degenerate regime, opening a wide range of perspectives for quantum simulation.
Collapse
Affiliation(s)
- Kevin Roux
- Institute of Physics, EPFL, 1015, Lausanne, Switzerland
| | | | - Victor Helson
- Institute of Physics, EPFL, 1015, Lausanne, Switzerland
| | | |
Collapse
|
27
|
Oscillatory-like expansion of a Fermionic superfluid. Sci Bull (Beijing) 2020; 65:7-11. [PMID: 36659071 DOI: 10.1016/j.scib.2019.10.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/25/2019] [Accepted: 10/14/2019] [Indexed: 01/21/2023]
Abstract
We study the expansion behaviors of a Fermionic superfluid in a cigar-shaped optical dipole trap for the whole BEC-BCS crossover and various temperatures. At low temperature (0.06(1)TF), the atom cloud undergoes an anisotropic hydrodynamic expansion over 30 ms, which behaves like oscillation in the horizontal plane. By analyzing the expansion dynamics according to the superfluid hydrodynamic equation, the effective polytropic index γ¯ of Equation-of-State (EoS) of Fermionic superfluid is extracted. The γ¯ values show a non-monotonic behavior over the BEC-BCS crossover, and have a good agreement with the theoretical results in the unitarity and BEC side. The normalized quasi-frequencies of the oscillatory expansion are measured, which drop significantly from the BEC side to the BCS side and reach a minimum value of 1.73 around 1/kFa=-0.25. Our work improves the understanding of the dynamic properties of strongly interacting Fermi gas.
Collapse
|
28
|
Green A, Li H, Toh JHS, Tang X, McCormick KC, Li M, Tiesinga E, Kotochigova S, Gupta S. Feshbach Resonances in p-Wave Three-Body Recombination within Fermi-Fermi Mixtures of Open-Shell 6Li and Closed-Shell 173Yb Atoms. PHYSICAL REVIEW. X 2020; 10:10.1103/PhysRevX.10.031037. [PMID: 34408918 PMCID: PMC8369980 DOI: 10.1103/physrevx.10.031037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We report on the observation of magnetic Feshbach resonances in a Fermi-Fermi mixture of ultracold atoms with extreme mass imbalance and on their unique p-wave dominated three-body recombination processes. Our system consists of open-shell alkali-metal 6Li and closed-shell 173Yb atoms, both spin polarized and held at various temperatures between 1 and 20 μK. We confirm that Feshbach resonances in this system are solely the result of a weak separation-dependent hyperfine coupling between the electronic spin of 6Li and the nuclear spin of 173Yb. Our analysis also shows that three-body recombination rates are controlled by the identical fermion nature of the mixture, even in the presence of s-wave collisions between the two species and with recombination rate coefficients outside the Wigner threshold regime at our lowest temperature. Specifically, a comparison of experimental and theoretical line shapes of the recombination process indicates that the characteristic asymmetric line shape as a function of applied magnetic field and a maximum recombination rate coefficient that is independent of temperature can only be explained by triatomic collisions with nonzero, p-wave total orbital angular momentum. The resonances can be used to form ultracold doublet ground-state molecules and to simulate quantum superfluidity in mass-imbalanced mixtures.
Collapse
Affiliation(s)
- Alaina Green
- Department of Physics, University of Washington, Seattle, Washington 98195, USA
| | - Hui Li
- Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Jun Hui See Toh
- Department of Physics, University of Washington, Seattle, Washington 98195, USA
| | - Xinxin Tang
- Department of Physics, University of Washington, Seattle, Washington 98195, USA
| | | | - Ming Li
- Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Eite Tiesinga
- Joint Quantum Institute and Joint Center for Quantum Information and Computer Science, National Institute of Standards and Technology and University of Maryland, Gaithersburg, Maryland 20899, USA
| | | | - Subhadeep Gupta
- Department of Physics, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
29
|
Sachkou YP, Baker CG, Harris GI, Stockdale OR, Forstner S, Reeves MT, He X, McAuslan DL, Bradley AS, Davis MJ, Bowen WP. Coherent vortex dynamics in a strongly interacting superfluid on a silicon chip. Science 2019; 366:1480-1485. [PMID: 31857478 DOI: 10.1126/science.aaw9229] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 11/06/2019] [Indexed: 11/02/2022]
Abstract
Quantized vortices are fundamental to the two-dimensional dynamics of superfluids, from quantum turbulence to phase transitions. However, surface effects have prevented direct observations of coherent two-dimensional vortex dynamics in strongly interacting systems. Here, we overcome this challenge by confining a thin film of superfluid helium at microscale on the atomically smooth surface of a silicon chip. An on-chip optical microcavity allows laser initiation of clusters of quasi-two-dimensional vortices and nondestructive observation of their decay in a single shot. Coherent dynamics dominate, with thermal vortex diffusion suppressed by five orders of magnitude. This establishes an on-chip platform with which to study emergent phenomena in strongly interacting superfluids and to develop quantum technologies such as precision inertial sensors.
Collapse
Affiliation(s)
- Yauhen P Sachkou
- Australian Research Council Centre of Excellence for Engineered Quantum Systems, School of Mathematics and Physics, University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Christopher G Baker
- Australian Research Council Centre of Excellence for Engineered Quantum Systems, School of Mathematics and Physics, University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Glen I Harris
- Australian Research Council Centre of Excellence for Engineered Quantum Systems, School of Mathematics and Physics, University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Oliver R Stockdale
- Australian Research Council Centre of Excellence in Future Low-Energy Electronics Technologies, School of Mathematics and Physics, University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Stefan Forstner
- Australian Research Council Centre of Excellence for Engineered Quantum Systems, School of Mathematics and Physics, University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Matthew T Reeves
- Australian Research Council Centre of Excellence in Future Low-Energy Electronics Technologies, School of Mathematics and Physics, University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Xin He
- Australian Research Council Centre of Excellence for Engineered Quantum Systems, School of Mathematics and Physics, University of Queensland, St. Lucia, Queensland 4072, Australia
| | - David L McAuslan
- Australian Research Council Centre of Excellence for Engineered Quantum Systems, School of Mathematics and Physics, University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Ashton S Bradley
- Department of Physics, Centre for Quantum Science, and Dodd-Walls Centre for Photonic and Quantum Technologies, University of Otago, Dunedin 9016, New Zealand
| | - Matthew J Davis
- Australian Research Council Centre of Excellence for Engineered Quantum Systems, School of Mathematics and Physics, University of Queensland, St. Lucia, Queensland 4072, Australia.,Australian Research Council Centre of Excellence in Future Low-Energy Electronics Technologies, School of Mathematics and Physics, University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Warwick P Bowen
- Australian Research Council Centre of Excellence for Engineered Quantum Systems, School of Mathematics and Physics, University of Queensland, St. Lucia, Queensland 4072, Australia.
| |
Collapse
|
30
|
Wang L, Jiang Y, He L, Zhuang P. Chiral vortices and pseudoscalar condensation due to rotation. Int J Clin Exp Med 2019. [DOI: 10.1103/physrevd.100.114009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
31
|
Gregory PD, Frye MD, Blackmore JA, Bridge EM, Sawant R, Hutson JM, Cornish SL. Sticky collisions of ultracold RbCs molecules. Nat Commun 2019; 10:3104. [PMID: 31308368 PMCID: PMC6629645 DOI: 10.1038/s41467-019-11033-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/13/2019] [Indexed: 12/04/2022] Open
Abstract
Understanding and controlling collisions is crucial to the burgeoning field of ultracold molecules. All experiments so far have observed fast loss of molecules from the trap. However, the dominant mechanism for collisional loss is not well understood when there are no allowed 2-body loss processes. Here we experimentally investigate collisional losses of nonreactive ultracold 87Rb133Cs molecules, and compare our findings with the sticky collision hypothesis that pairs of molecules form long-lived collision complexes. We demonstrate that loss of molecules occupying their rotational and hyperfine ground state is best described by second-order rate equations, consistent with the expectation for complex-mediated collisions, but that the rate is lower than the limit of universal loss. The loss is insensitive to magnetic field but increases for excited rotational states. We demonstrate that dipolar effects lead to significantly faster loss for an incoherent mixture of rotational states.
Collapse
Affiliation(s)
- Philip D Gregory
- Joint Quantum Centre (JQC), Durham-Newcastle, Department of Physics, Durham University, Durham, DH1 3LE, UK
| | - Matthew D Frye
- Joint Quantum Centre (JQC), Durham-Newcastle, Department of Chemistry, Durham University, Durham, DH1 3LE, UK
| | - Jacob A Blackmore
- Joint Quantum Centre (JQC), Durham-Newcastle, Department of Physics, Durham University, Durham, DH1 3LE, UK
| | - Elizabeth M Bridge
- Joint Quantum Centre (JQC), Durham-Newcastle, Department of Physics, Durham University, Durham, DH1 3LE, UK
| | - Rahul Sawant
- Joint Quantum Centre (JQC), Durham-Newcastle, Department of Physics, Durham University, Durham, DH1 3LE, UK
| | - Jeremy M Hutson
- Joint Quantum Centre (JQC), Durham-Newcastle, Department of Chemistry, Durham University, Durham, DH1 3LE, UK.
| | - Simon L Cornish
- Joint Quantum Centre (JQC), Durham-Newcastle, Department of Physics, Durham University, Durham, DH1 3LE, UK.
| |
Collapse
|
32
|
Zhang Z, Li F, Malpuech G, Zhang Y, Bleu O, Koniakhin S, Li C, Zhang Y, Xiao M, Solnyshkov DD. Particlelike Behavior of Topological Defects in Linear Wave Packets in Photonic Graphene. PHYSICAL REVIEW LETTERS 2019; 122:233905. [PMID: 31298888 DOI: 10.1103/physrevlett.122.233905] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 04/08/2019] [Indexed: 06/10/2023]
Abstract
Topological defects, such as quantum vortices, determine the properties of quantum fluids. Their study has been at the center of activity in solid state and BEC communities. In parallel, the nontrivial behavior of linear wave packets with complex phase patterns was investigated by singular optics. Here, we study the formation, evolution, and interaction of optical vortices in wave packets at the Dirac point in photonic graphene. We show that while their exact behavior goes beyond the Dirac equation and requires a full account of the lattice properties, it can be still approximately described by an effective theory considering the phase singularities as "particles". These particles are capable of mutual interaction, with their trajectory obeying the laws of dynamics.
Collapse
Affiliation(s)
- Zhaoyang Zhang
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Feng Li
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
- Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, United Kingdom
| | - G Malpuech
- Institut Pascal, Université Clermont Auvergne, CNRS, SIGMA Clermont, F-63000 Clermont-Ferrand, France
| | - Yiqi Zhang
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - O Bleu
- Institut Pascal, Université Clermont Auvergne, CNRS, SIGMA Clermont, F-63000 Clermont-Ferrand, France
| | - S Koniakhin
- Institut Pascal, Université Clermont Auvergne, CNRS, SIGMA Clermont, F-63000 Clermont-Ferrand, France
| | - Changbiao Li
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yanpeng Zhang
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Min Xiao
- Department of Physics, University of Arkansas, Fayetteville, Arkansas 72701, USA
- National Laboratory of Solid State Microstructures and School of Physics, Nanjing University, Nanjing 210093, China
| | - D D Solnyshkov
- Institut Pascal, Université Clermont Auvergne, CNRS, SIGMA Clermont, F-63000 Clermont-Ferrand, France
| |
Collapse
|
33
|
Cichy A, Kapcia KJ, Ptok A. Phase separations induced by a trapping potential in one-dimensional fermionic systems as a source of core-shell structures. Sci Rep 2019; 9:6719. [PMID: 31040295 PMCID: PMC6491563 DOI: 10.1038/s41598-019-42044-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/19/2019] [Indexed: 11/24/2022] Open
Abstract
Ultracold fermionic gases in optical lattices give a great opportunity for creating different types of novel states. One of them is phase separation induced by a trapping potential between different types of superfluid phases. The core-shell structures, occurring in systems with a trapping potential, are a good example of such separations. The types and the sequences of phases which emerge in such structures can depend on spin-imbalance, shape of the trap and on-site interaction strength. In this work, we investigate the properties of such structures within an attractive Fermi gas loaded in the optical lattice, in the presence of the trapping potential and their relations to the phase diagram of the homogeneous system. Moreover, we show how external and internal parameters of the system and parameters of the trap influence their properties. In particular, we show a possible occurrence of the core-shell structure in a system with a harmonic trap, containing the BCS and FFLO states. Additionally, we find a spatial separation of two superfuild states in the system, one in the BCS limit as well as the other one in the tightly bound local pairs (BEC) regime.
Collapse
Affiliation(s)
- Agnieszka Cichy
- Faculty of Physics, Adam Mickiewicz University, ul. Umultowska 85, PL-61-614, Poznań, Poland. .,Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 9, D-55099, Mainz, Germany.
| | - Konrad Jerzy Kapcia
- Institute of Nuclear Physics, Polish Academy of Sciences, ul. W. E. Radzikowskiego 152, PL-31342, Kraków, Poland.
| | - Andrzej Ptok
- Institute of Nuclear Physics, Polish Academy of Sciences, ul. W. E. Radzikowskiego 152, PL-31342, Kraków, Poland.
| |
Collapse
|
34
|
Manzetti S, Trounev A. Supersymmetric Hamiltonian and Vortex Formation Model in a Quantum Nonlinear System in an Inhomogeneous Electromagnetic Field. ADVANCED THEORY AND SIMULATIONS 2019. [DOI: 10.1002/adts.201900011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Sergio Manzetti
- Uppsala University, BMC, Dept Mol. Cell BiolBox 596 SE-75124 Uppsala Sweden
- Fjordforsk A/S6894 Vangsnes Norway
| | - Alexander Trounev
- Fjordforsk A/S6894 Vangsnes Norway
- A & E Trounev IT Consulting M4C 1T2 Toronto Canada
| |
Collapse
|
35
|
Mäkinen JT, Dmitriev VV, Nissinen J, Rysti J, Volovik GE, Yudin AN, Zhang K, Eltsov VB. Half-quantum vortices and walls bounded by strings in the polar-distorted phases of topological superfluid 3He. Nat Commun 2019; 10:237. [PMID: 30651558 PMCID: PMC6335426 DOI: 10.1038/s41467-018-08204-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 12/21/2018] [Indexed: 11/13/2022] Open
Abstract
Symmetries of the physical world have guided formulation of fundamental laws, including relativistic quantum field theory and understanding of possible states of matter. Topological defects (TDs) often control the universal behavior of macroscopic quantum systems, while topology and broken symmetries determine allowed TDs. Taking advantage of the symmetry-breaking patterns in the phase diagram of nanoconfined superfluid 3He, we show that half-quantum vortices (HQVs)-linear topological defects carrying half quantum of circulation-survive transitions from the polar phase to other superfluid phases with polar distortion. In the polar-distorted A phase, HQV cores in 2D systems should harbor non-Abelian Majorana modes. In the polar-distorted B phase, HQVs form composite defects-walls bounded by strings hypothesized decades ago in cosmology. Our experiments establish the superfluid phases of 3He in nanostructured confinement as a promising topological media for further investigations ranging from topological quantum computing to cosmology and grand unification scenarios.
Collapse
Affiliation(s)
- J T Mäkinen
- Low Temperature Laboratory, Department of Applied Physics, Aalto University, FI-00076, Aalto, Finland.
| | - V V Dmitriev
- P. L. Kapitza Institute for Physical Problems of RAS, Moscow, Russian Federation, 119334
| | - J Nissinen
- Low Temperature Laboratory, Department of Applied Physics, Aalto University, FI-00076, Aalto, Finland
| | - J Rysti
- Low Temperature Laboratory, Department of Applied Physics, Aalto University, FI-00076, Aalto, Finland
| | - G E Volovik
- Low Temperature Laboratory, Department of Applied Physics, Aalto University, FI-00076, Aalto, Finland
- Landau Institute for Theoretical Physics, Chernogolovka, Russian Federation, 142432
| | - A N Yudin
- P. L. Kapitza Institute for Physical Problems of RAS, Moscow, Russian Federation, 119334
| | - K Zhang
- Low Temperature Laboratory, Department of Applied Physics, Aalto University, FI-00076, Aalto, Finland
- Department of Mathematics and Statistics, University of Helsinki, P.O. Box 68, FI-00014, Helsinki, Finland
| | - V B Eltsov
- Low Temperature Laboratory, Department of Applied Physics, Aalto University, FI-00076, Aalto, Finland
| |
Collapse
|
36
|
Kinnunen JJ, Wu Z, Bruun GM. Induced p-Wave Pairing in Bose-Fermi Mixtures. PHYSICAL REVIEW LETTERS 2018; 121:253402. [PMID: 30608823 DOI: 10.1103/physrevlett.121.253402] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Indexed: 06/09/2023]
Abstract
Cooper pairing caused by an induced interaction represents a paradigm in our description of fermionic superfluidity. Here, we present a strong coupling theory for the critical temperature of p-wave pairing between spin polarized fermions immersed in a Bose-Einstein condensate. The fermions interact via the exchange of phonons in the condensate, and our self-consistent theory takes into account the full frequency and momentum dependence of the resulting induced interaction. We demonstrate that both retardation and self-energy effects are important for obtaining a reliable value of the critical temperature. Focusing on experimentally relevant systems, we perform a systematic analysis varying the boson-boson and boson-fermion interaction strength as well as their masses, and identify the most suitable system for realizing a p-wave superfluid. Our results show that such a superfluid indeed is experimentally within reach using light bosons mixed with heavy fermions.
Collapse
Affiliation(s)
- Jami J Kinnunen
- Department of Applied Physics, Aalto University, FI-00076 Aalto, Finland
| | - Zhigang Wu
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Georg M Bruun
- Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark
| |
Collapse
|
37
|
Park JW, Ko B, Shin Y. Critical Vortex Shedding in a Strongly Interacting Fermionic Superfluid. PHYSICAL REVIEW LETTERS 2018; 121:225301. [PMID: 30547641 DOI: 10.1103/physrevlett.121.225301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Indexed: 06/09/2023]
Abstract
We study the critical vortex shedding in a strongly interacting fermionic superfluid of ^{6}Li across the BEC-BCS crossover. By moving an optical obstacle in the sample and directly imaging the vortices after the time of flight, the critical velocity u_{vor} for vortex shedding is measured as a function of the obstacle travel distance L. The observed u_{vor} increases with decreasing L, where the rate of increase is the highest in the unitary regime. In the deep Bose-Einstein condensation regime, an empirical dissipation model well captures the dependence of u_{vor} on L, characterized by a constant value of η=-[d(1/u_{vor})/d(1/L)]. However, as the system is tuned across the resonance, a step increase of η develops about a characteristic distance L_{c} as L is increased, where L_{c} is comparable to the obstacle size. This bimodal behavior is strengthened as the system is tuned towards the BCS regime. We attribute this evolution of u_{vor} to the emergence of the underlying fermionic degree of freedom in the vortex-shedding dynamics of a Fermi condensate.
Collapse
Affiliation(s)
- Jee Woo Park
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul 08826, Korea
| | - Bumsuk Ko
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul 08826, Korea
- Center for Correlated Electron Systems, Institute for Basic Science, Seoul 08826, Korea
| | - Y Shin
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul 08826, Korea
- Center for Correlated Electron Systems, Institute for Basic Science, Seoul 08826, Korea
| |
Collapse
|
38
|
Ptok A, Cichy A, Domański T. Quantum engineering of Majorana quasiparticles in one-dimensional optical lattices. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:355602. [PMID: 30051875 DOI: 10.1088/1361-648x/aad659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We propose a feasible way of engineering Majorana-type quasiparticles in ultracold fermionic gases on a one-dimensional (1D) optical lattice. For this purpose, imbalanced ultracold atoms interacting by the spin-orbit coupling should be hybridized with a three-dimensional Bose-Einstein condensate molecular cloud. We show that the Majorana-type excitations can be created or annihilated upon constraining the profile of a trapping potential and/or an internal scattering barier. This process is modeled within the Bogoliubov-de Gennes approach. Our study is relevant also to nanoscopic 1D superconductors, where both potentials can be imposed by electrostatic means.
Collapse
Affiliation(s)
- Andrzej Ptok
- Institute of Nuclear Physics, Polish Academy of Sciences, ul. E. Radzikowskiego 152, PL-31342 Kraków, Poland
| | | | | |
Collapse
|
39
|
Gänger B, Phieler J, Nagler B, Widera A. A versatile apparatus for fermionic lithium quantum gases based on an interference-filter laser system. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2018; 89:093105. [PMID: 30278689 DOI: 10.1063/1.5045827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 08/25/2018] [Indexed: 06/08/2023]
Abstract
We report on the design and construction of a versatile setup for experiments with ultracold lithium (Li) gases. We discuss our methods to prepare an atomic beam and laser cool it in a Zeeman slower and a subsequent magneto-optical trap, which rely on established methods. We focus on our laser system based on a stable interference-filter-stabilized, linear-extended-cavity diode laser, so far unreported for lithium wavelengths. Moreover, we describe our optical setup to combine various laser frequencies for cooling, manipulation, and detection of Li atoms. We characterize the performance of our system preparing degenerate samples of Li atoms via forced evaporation in a hybrid crossed-beam optical-dipole trap plus confining magnetic trap. Our apparatus allows one to produce quantum gases of N ≈ 105…106 fermionic lithium-6 atoms at nanokelvin temperatures in cycle times below 10 s. Our optical system is particularly suited to study the dynamics of fermionic superfluids in engineered optical potentials.
Collapse
Affiliation(s)
- Benjamin Gänger
- Department of Physics and Research Center OPTIMAS, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Jan Phieler
- Department of Physics and Research Center OPTIMAS, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Benjamin Nagler
- Department of Physics and Research Center OPTIMAS, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Artur Widera
- Department of Physics and Research Center OPTIMAS, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany
| |
Collapse
|
40
|
Shkedrov C, Florshaim Y, Ness G, Gandman A, Sagi Y. High-Sensitivity rf Spectroscopy of a Strongly Interacting Fermi Gas. PHYSICAL REVIEW LETTERS 2018; 121:093402. [PMID: 30230882 DOI: 10.1103/physrevlett.121.093402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 06/25/2018] [Indexed: 06/08/2023]
Abstract
rf spectroscopy is one of the most powerful probing techniques in the field of ultracold gases. We report on a novel rf spectroscopy scheme with which we can detect very weak signals of only a few atoms. Using this method, we extended the experimentally accessible photon-energies range by an order of magnitude compared to previous studies. We directly verify a universal property of fermions with short-range interactions which is a power-law scaling of the rf spectrum tail all the way up to the interaction scale. We also determine, with high precision, the trap average contact parameter for different interaction strength. Finally, we employ our technique to precisely measure the binding energy of Feshbach molecules in an extended range of magnetic fields. These data are used to extract a new calibration of the Feshbach resonance between the two lowest energy levels of ^{40}K.
Collapse
Affiliation(s)
- Constantine Shkedrov
- Physics Department, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Yanay Florshaim
- Physics Department, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Gal Ness
- Physics Department, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Andrey Gandman
- Physics Department, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Yoav Sagi
- Physics Department, Technion-Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
41
|
Mizushima T, Machida K. Multifaceted properties of Andreev bound states: interplay of symmetry and topology. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2018; 376:20150355. [PMID: 29941630 PMCID: PMC6030149 DOI: 10.1098/rsta.2015.0355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/11/2018] [Indexed: 06/08/2023]
Abstract
Andreev bound states (ABSs) ubiquitously emerge as a consequence of non-trivial topological structures of the order parameter of superfluids and superconductors and significantly contribute to thermodynamics and low-energy quantum transport phenomena. We here share the current status of our knowledge on their multifaceted properties such as Majorana fermions and odd-frequency pairing. A unified concept behind ABSs originates from a soliton state in the one-dimensional Dirac equation with mass domain wall and interplay of ABSs with symmetry and topology enrich their physical characteristics. We make an overview of ABSs with a special focus on superfluid 3He. The quantum liquid confined to restricted geometries serves as a rich repository of noteworthy quantum phenomena, such as the mass acquisition of Majorana fermions driven by spontaneous symmetry breaking, topological quantum criticality, Weyl superfluidity and the anomalous magnetic response. The marriage of the superfluid 3He and nano-fabrication techniques will take one to a new horizon of topological quantum phenomena associated with ABSs.This article is part of the theme issue 'Andreev bound states'.
Collapse
Affiliation(s)
- T Mizushima
- Department of Materials Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - K Machida
- Department of Physics, Ritsumeikan University, Kusatsu 525-8577, Japan
| |
Collapse
|
42
|
Lepoutre S, Gabardos L, Kechadi K, Pedri P, Gorceix O, Maréchal E, Vernac L, Laburthe-Tolra B. Collective Spin Modes of a Trapped Quantum Ferrofluid. PHYSICAL REVIEW LETTERS 2018; 121:013201. [PMID: 30028151 DOI: 10.1103/physrevlett.121.013201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Indexed: 06/08/2023]
Abstract
We report on the observation of a collective spin mode in a spinor Bose-Einstein condensate. Initially, all spins point perpendicular to the external magnetic field. The lowest energy mode consists of a sinusoidal oscillation of the local spin around its original axis, with an oscillation amplitude that linearly depends on the spatial coordinates. The frequency of the oscillation is set by the zero-point kinetic energy of the BEC. The observations are in excellent agreement with hydrodynamic equations. The observed spin mode has a universal character, independent of the atomic spin and spin-dependent contact interactions.
Collapse
Affiliation(s)
- S Lepoutre
- Université Paris 13, Sorbonne Paris Cité, Laboratoire de Physique des Lasers, F-93430 Villetaneuse, France and CNRS, UMR 7538, LPL, F-93430 Villetaneuse, France
| | - L Gabardos
- Université Paris 13, Sorbonne Paris Cité, Laboratoire de Physique des Lasers, F-93430 Villetaneuse, France and CNRS, UMR 7538, LPL, F-93430 Villetaneuse, France
| | - K Kechadi
- Université Paris 13, Sorbonne Paris Cité, Laboratoire de Physique des Lasers, F-93430 Villetaneuse, France and CNRS, UMR 7538, LPL, F-93430 Villetaneuse, France
| | - P Pedri
- Université Paris 13, Sorbonne Paris Cité, Laboratoire de Physique des Lasers, F-93430 Villetaneuse, France and CNRS, UMR 7538, LPL, F-93430 Villetaneuse, France
| | - O Gorceix
- Université Paris 13, Sorbonne Paris Cité, Laboratoire de Physique des Lasers, F-93430 Villetaneuse, France and CNRS, UMR 7538, LPL, F-93430 Villetaneuse, France
| | - E Maréchal
- Université Paris 13, Sorbonne Paris Cité, Laboratoire de Physique des Lasers, F-93430 Villetaneuse, France and CNRS, UMR 7538, LPL, F-93430 Villetaneuse, France
| | - L Vernac
- Université Paris 13, Sorbonne Paris Cité, Laboratoire de Physique des Lasers, F-93430 Villetaneuse, France and CNRS, UMR 7538, LPL, F-93430 Villetaneuse, France
| | - B Laburthe-Tolra
- Université Paris 13, Sorbonne Paris Cité, Laboratoire de Physique des Lasers, F-93430 Villetaneuse, France and CNRS, UMR 7538, LPL, F-93430 Villetaneuse, France
| |
Collapse
|
43
|
Kinnunen JJ, Baarsma JE, Martikainen JP, Törmä P. The Fulde-Ferrell-Larkin-Ovchinnikov state for ultracold fermions in lattice and harmonic potentials: a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2018; 81:046401. [PMID: 29293087 DOI: 10.1088/1361-6633/aaa4ad] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We review the concepts and the present state of theoretical studies of spin-imbalanced superfluidity, in particular the elusive Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state, in the context of ultracold quantum gases. The comprehensive presentation of the theoretical basis for the FFLO state that we provide is useful also for research on the interplay between magnetism and superconductivity in other physical systems. We focus on settings that have been predicted to be favourable for the FFLO state, such as optical lattices in various dimensions and spin-orbit coupled systems. These are also the most likely systems for near-future experimental observation of the FFLO state. Theoretical bounds, such as Bloch's and Luttinger's theorems, and experimentally important limitations, such as finite-size effects and trapping potentials, are considered. In addition, we provide a comprehensive review of the various ideas presented for the observation of the FFLO state. We conclude our review with an analysis of the open questions related to the FFLO state, such as its stability, superfluid density, collective modes and extending the FFLO superfluid concept to new types of lattice systems.
Collapse
Affiliation(s)
- Jami J Kinnunen
- COMP Center of Excellence, Department of Applied Physics, Aalto University, Fi-00076, Aalto, Finland
| | | | | | | |
Collapse
|
44
|
He L, Hu H, Liu XJ. Realizing Fulde-Ferrell Superfluids via a Dark-State Control of Feshbach Resonances. PHYSICAL REVIEW LETTERS 2018; 120:045302. [PMID: 29437455 DOI: 10.1103/physrevlett.120.045302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Indexed: 06/08/2023]
Abstract
We propose that the long-sought Fulde-Ferrell superfluidity with nonzero momentum pairing can be realized in ultracold two-component Fermi gases of ^{40}K or ^{6}Li atoms by optically tuning their magnetic Feshbach resonances via the creation of a closed-channel dark state with a Doppler-shifted Stark effect. In this scheme, two counterpropagating optical fields are applied to couple two molecular states in the closed channel to an excited molecular state, leading to a significant violation of Galilean invariance in the dark-state regime and hence to the possibility of Fulde-Ferrell superfluidity. We develop a field theoretical formulation for both two-body and many-body problems and predict that the Fulde-Ferrell state has remarkable properties, such as anisotropic single-particle dispersion relation, suppressed superfluid density at zero temperature, anisotropic sound velocity, and rotonic collective mode. The latter two features can be experimentally probed using Bragg spectroscopy, providing a smoking-gun proof of Fulde-Ferrell superfluidity.
Collapse
Affiliation(s)
- Lianyi He
- Department of Physics and State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua University, Beijing 100084, China
| | - Hui Hu
- Centre for Quantum and Optical Science, Swinburne University of Technology, Melbourne 3122, Australia
| | - Xia-Ji Liu
- Centre for Quantum and Optical Science, Swinburne University of Technology, Melbourne 3122, Australia
| |
Collapse
|
45
|
De Angelis L, Alpeggiani F, Di Falco A, Kuipers L. Persistence and Lifelong Fidelity of Phase Singularities in Optical Random Waves. PHYSICAL REVIEW LETTERS 2017; 119:203903. [PMID: 29219386 DOI: 10.1103/physrevlett.119.203903] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Indexed: 06/07/2023]
Abstract
Phase singularities are locations where light is twisted like a corkscrew, with positive or negative topological charge depending on the twisting direction. Among the multitude of singularities arising in random wave fields, some can be found at the same location, but only when they exhibit opposite topological charge, which results in their mutual annihilation. New pairs can be created as well. With near-field experiments supported by theory and numerical simulations, we study the persistence and pairing statistics of phase singularities in random optical fields as a function of the excitation wavelength. We demonstrate how such entities can encrypt fundamental properties of the random fields in which they arise.
Collapse
Affiliation(s)
- L De Angelis
- Kavli Institute of Nanoscience, Delft University of Technology, 2600 GA Delft, The Netherlands
- Center for Nanophotonics, AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - F Alpeggiani
- Kavli Institute of Nanoscience, Delft University of Technology, 2600 GA Delft, The Netherlands
- Center for Nanophotonics, AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - A Di Falco
- SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews KY16 9SS, United Kingdom
| | - L Kuipers
- Kavli Institute of Nanoscience, Delft University of Technology, 2600 GA Delft, The Netherlands
- Center for Nanophotonics, AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| |
Collapse
|
46
|
Mueller EJ. Review of pseudogaps in strongly interacting Fermi gases. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2017; 80:104401. [PMID: 28686169 DOI: 10.1088/1361-6633/aa7e53] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A central challenge in modern condensed matter physics is developing the tools for understanding nontrivial yet unordered states of matter. One important idea to emerge in this context is that of a 'pseudogap': the fact that under appropriate circumstances the normal state displays a suppression of the single particle spectral density near the Fermi level, reminiscent of the gaps seen in ordered states of matter. While these concepts arose in a solid state context, they are now being explored in cold gases. This article reviews the current experimental and theoretical understanding of the normal state of strongly interacting Fermi gases, with particular focus on the phenomonology which is traditionally associated with the pseudogap.
Collapse
Affiliation(s)
- Erich J Mueller
- Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca NY 14853, United States of America
| |
Collapse
|
47
|
Yoon S, Watanabe G. Pairing Dynamics of Polar States in a Quenched p-Wave Superfluid Fermi Gas. PHYSICAL REVIEW LETTERS 2017; 119:100401. [PMID: 28949180 DOI: 10.1103/physrevlett.119.100401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Indexed: 06/07/2023]
Abstract
We study the pairing dynamics of polar states in a single species p-wave superfluid Fermi gas following a sudden change of the interaction strength. The anisotropy of pair interaction together with the presence of the centrifugal barrier results in profoundly different pairing dynamics compared to the s-wave case. Depending on the direction of quenches, quench to the BCS regime results in large oscillatory depletion of momentum occupation inside the Fermi sea or large oscillatory filling of momentum occupation. A crucial role of the resonant state supported by the centrifugal barrier in the pairing dynamics is elucidated.
Collapse
Affiliation(s)
- Sukjin Yoon
- Center for Theoretical Physics of Complex Systems, Institute for Basic Science (IBS), Daejeon 34051, Korea
- Asia Pacific Center for Theoretical Physics, Pohang, Gyeongsangbuk-do 37637, Korea
- Quantum Universe Center, Korea Institute for Advanced Study, Seoul 02455, Korea
| | - Gentaro Watanabe
- Center for Theoretical Physics of Complex Systems, Institute for Basic Science (IBS), Daejeon 34051, Korea
- Asia Pacific Center for Theoretical Physics, Pohang, Gyeongsangbuk-do 37637, Korea
- Department of Physics and Zhejiang Institute of Modern Physics, Zhejiang University, Hangzhou, Zhejiang 310027, China
- University of Science and Technology, Daejeon 34113, Korea
- Department of Physics, POSTECH, Pohang, Gyeongsangbuk-do 37673, Korea
| |
Collapse
|
48
|
Above-threshold scattering about a Feshbach resonance for ultracold atoms in an optical collider. Nat Commun 2017; 8:452. [PMID: 28878374 PMCID: PMC5587761 DOI: 10.1038/s41467-017-00458-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 06/29/2017] [Indexed: 11/13/2022] Open
Abstract
Ultracold atomic gases have realized numerous paradigms of condensed matter physics, where control over interactions has crucially been afforded by tunable Feshbach resonances. So far, the characterization of these Feshbach resonances has almost exclusively relied on experiments in the threshold regime near zero energy. Here, we use a laser-based collider to probe a narrow magnetic Feshbach resonance of rubidium above threshold. By measuring the overall atomic loss from colliding clouds as a function of magnetic field, we track the energy-dependent resonance position. At higher energy, our collider scheme broadens the loss feature, making the identification of the narrow resonance challenging. However, we observe that the collisions give rise to shifts in the center-of-mass positions of outgoing clouds. The shifts cross zero at the resonance and this allows us to accurately determine its location well above threshold. Our inferred resonance positions are in excellent agreement with theory. Studies on energy-dependent scattering of ultracold atoms were previously carried out near zero collision energies. Here, the authors observe a magnetic Feshbach resonance in ultracold Rb collisions for above-threshold energies and their method can also be used to detect higher partial wave resonances.
Collapse
|
49
|
Krinner S, Esslinger T, Brantut JP. Two-terminal transport measurements with cold atoms. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:343003. [PMID: 28749788 DOI: 10.1088/1361-648x/aa74a1] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In recent years, the ability of cold atom experiments to explore condensed-matter-related questions has dramatically progressed. Transport experiments, in particular, have expanded to the point in which conductance and other transport coefficients can now be measured in a way that is directly analogous to solid-state physics, extending cold-atom-based quantum simulations into the domain of quantum electronic devices. In this topical review, we describe the transport experiments performed with cold gases in the two-terminal configuration, with an emphasis on the specific features of cold atomic gases compared to solid-state physics. We present the experimental techniques and the main experimental findings, focusing on-but not restricted to-the recent experiments performed by our group. We finally discuss the perspectives opened up by this approach, the main technical and conceptual challenges for future developments, and potential applications in quantum simulation for transport phenomena and mesoscopic physics problems.
Collapse
Affiliation(s)
- Sebastian Krinner
- Institute for Quantum Electronics, ETH Zurich, 8093 Zurich, Switzerland
| | | | | |
Collapse
|
50
|
Krauser JS, Heinze J, Götze S, Langbecker M, Fläschner N, Cook L, Hanna TM, Tiesinga E, Sengstock K, Becker C. Investigation of Feshbach resonances in ultracold 40K spin mixtures. PHYSICAL REVIEW. A 2017; 95:042701. [PMID: 29876533 PMCID: PMC5986192 DOI: 10.1103/physreva.95.042701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Magnetically tunable Feshbach resonances are an indispensable tool for experiments with atomic quantum gases. We report on 37 thus far unpublished Feshbach resonances and four further probable Feshbach resonances in spin mixtures of ultracold fermionic 40K with temperatures well below 100 nK. In particular, we locate a broad resonance at B = 389.7G with a magnetic width of 26.7 G. Here 1 G = 10-4 T. Furthermore, by exciting low-energy spin waves, we demonstrate a means to precisely determine the zero crossing of the scattering length for this broad Feshbach resonance. Our findings allow for further tunability in experiments with ultracold 40K quantum gases.
Collapse
Affiliation(s)
- J. S. Krauser
- Institut für Laser-Physik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Zentrum für Optische Quantentechnologien, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - J. Heinze
- Institut für Laser-Physik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Zentrum für Optische Quantentechnologien, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - S. Götze
- Institut für Laser-Physik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - M. Langbecker
- Institut für Laser-Physik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Institut für Physik, Johannes Gutenberg Universität Mainz, Staudingerweg 7, 55128 Mainz, Germany
| | - N. Fläschner
- Institut für Laser-Physik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - L. Cook
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - T. M. Hanna
- Joint Quantum Institute, National Institute of Standards and Technology and the University of Maryland, Gaithersburg, Maryland 20899, USA
| | - E. Tiesinga
- Joint Quantum Institute, National Institute of Standards and Technology and the University of Maryland, Gaithersburg, Maryland 20899, USA
| | - K. Sengstock
- Institut für Laser-Physik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Zentrum für Optische Quantentechnologien, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - C. Becker
- Institut für Laser-Physik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Zentrum für Optische Quantentechnologien, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|