1
|
Li B, Liu W, Xu J, Huang X, Yang L, Xu F. Decoding maize meristems maintenance and differentiation: integrating single-cell and spatial omics. J Genet Genomics 2025; 52:319-333. [PMID: 39921079 DOI: 10.1016/j.jgg.2025.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/22/2025] [Accepted: 01/22/2025] [Indexed: 02/10/2025]
Abstract
All plant organs are derived from stem cell-containing meristems. In maize, the shoot apical meristem (SAM) is responsible for generating all above-ground structures, including the male and female inflorescence meristems (IMs), which give rise to tassel and ear, respectively. Forward and reverse genetic studies on maize meristem mutants have driven forward our fundamental understanding of meristem maintenance and differentiation mechanisms. However, the high genetic redundancy of the maize genome has impeded progress in functional genomics. This review comprehensively summarizes recent advancements in understanding maize meristem development, with a focus on the integration of single-cell and spatial technologies. We discuss the mechanisms governing stem cell maintenance and differentiation in SAM and IM, emphasizing the roles of gene regulatory networks, hormonal pathways, and cellular omics insights into stress responses and adaptation. Future directions include cross-species comparisons, multi-omics integration, and the application of these technologies to precision breeding and stress adaptation research, with the ultimate goal of translating our understanding of meristem into the development of higher yield varieties.
Collapse
Affiliation(s)
- Bin Li
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, Shandong Key Laboratory of Precision Molecular Crop Design and Breeding School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Wenhao Liu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, Shandong Key Laboratory of Precision Molecular Crop Design and Breeding School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Jie Xu
- Housing and Urban Rural Development Bureau of Jimo District, Qingdao, Shandong 266200, China
| | - Xuxu Huang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, Shandong Key Laboratory of Precision Molecular Crop Design and Breeding School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Long Yang
- Agricultural Big-Data Research Center and College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Fang Xu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, Shandong Key Laboratory of Precision Molecular Crop Design and Breeding School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China.
| |
Collapse
|
2
|
Wang Y, Shaw RK, Fan X. Review: Recent advances in unraveling the genetic architecture of kernel row number in maize. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 352:112366. [PMID: 39710150 DOI: 10.1016/j.plantsci.2024.112366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
Kernel row number (KRN) is an important trait in maize that significantly impacts maize yield. The high heritability of KRN underscores its significance in maize breeding programs. In this review, we summarize recent advances in understanding the mechanisms underlying the formation, differentiation, and regulation of KRN in maize. Specifically, we have discussed gene mapping studies, functional validation of KRN-associated genes, and the application of gene editing techniques to KRN in maize. We summarized the various methods used to map and fine-map QTLs controlling KRN and provide an overview of the current status of cloned KRN-regulating genes. Despite the identification of many genes associated with KRN, the complexity of its regulation-arising from multiple loci and intricate gene interactions-remains a challenge. Balancing KRN with kernel number per row (KNR) and kernel weight is critical for optimizing yield while ensuring stability across different environments. Furthermore, we analyzed the influence of environmental factors on KRN, noting that despite its high heritability, environmental conditions can significantly affect this trait. Combining genotype-phenotype relationships with environmental data using big data and artificial intelligence could enhance maize breeding efficiency and accelerate genetic gains. This review emphasizes the importance of balancing traits, integrating environmental factors, and leveraging advanced technologies in maize breeding to achieve optimal yield and stress tolerance. Finally, we outlined future research perspectives aimed at developing high-yielding maize varieties through advances in KRN-related research.
Collapse
Affiliation(s)
- Yizhu Wang
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan 65000, China.
| | - Ranjan K Shaw
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan 65000, China.
| | - Xingming Fan
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan 65000, China.
| |
Collapse
|
3
|
Wu S, Zhang H, Fang Z, Li Z, Yang N, Yang F. Genetic dissection of ear-related trait divergence between maize and teosinte. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17202. [PMID: 39699908 DOI: 10.1111/tpj.17202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/27/2024] [Accepted: 11/26/2024] [Indexed: 12/20/2024]
Abstract
Maize has undergone remarkable domestication and shows striking differences in architecture and ear morphology compared to its wild progenitor, called teosinte. However, our understanding of the genetic mechanisms underlying the ear morphology differences between teosinte and cultivated maize is still limited. In this study, we explored the genetic basis of ear-related traits at both early and mature stages by analyzing a population derived from a cross between Mo17 and a teosinte line, mexicana. We identified 31 quantitative trait loci (QTLs) associated with four IM-related and four ear-related traits, with 27 QTLs subjected to selection during the domestication process. Several key genes related to ear development were found under selection, including KN1 and RA1. Analysis of gene expression in the IM of developing ears from the population revealed the prominent roles of cis-variants in gene regulation. We also identified a large number of trans-eQTLs responsible for gene expression variation, and enrichment analysis on a trans-eQTL hotspot revealed the possible involvement of the sulfur metabolic pathway in controlling ear traits. Integrating the expression and phenotypic mapping data, we pinpointed several candidate genes potentially influencing ear development. Our findings advance the understanding of the genetic basis driving ear trait variation during maize domestication.
Collapse
Affiliation(s)
- Shenshen Wu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Han Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhengfu Fang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zichao Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ning Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, Hubei, China
| | - Fang Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- State Key Laboratory of Biocontrol, School of Agriculture and Biotechnology, Sun Yat-sen University, Shenzhen, 518107, China
| |
Collapse
|
4
|
Cahn J, Regulski M, Lynn J, Ernst E, de Santis Alves C, Ramakrishnan S, Chougule K, Wei S, Lu Z, Xu X, Ramu U, Drenkow J, Kramer M, Seetharam A, Hufford MB, McCombie WR, Ware D, Jackson D, Schatz MC, Gingeras TR, Martienssen RA. MaizeCODE reveals bi-directionally expressed enhancers that harbor molecular signatures of maize domestication. Nat Commun 2024; 15:10854. [PMID: 39738013 PMCID: PMC11685423 DOI: 10.1038/s41467-024-55195-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 12/04/2024] [Indexed: 01/01/2025] Open
Abstract
Modern maize (Zea mays ssp. mays) was domesticated from Teosinte parviglumis (Zea mays ssp. parviglumis), with subsequent introgressions from Teosinte mexicana (Zea mays ssp. mexicana), yielding increased kernel row number, loss of the hard fruit case and dissociation from the cob upon maturity, as well as fewer tillers. Molecular approaches have identified transcription factors controlling these traits, yet revealed that a complex regulatory network is at play. MaizeCODE deploys ENCODE strategies to catalog regulatory regions in the maize genome, generating histone modification and transcription factor ChIP-seq in parallel with transcriptomics datasets in 5 tissues of 3 inbred lines which span the phenotypic diversity of maize, as well as the teosinte inbred TIL11. Transcriptomic analysis reveals that pollen grains share features with endosperm, and express dozens of "proto-miRNAs" potential vestiges of gene drive and hybrid incompatibility. Integrated analysis with chromatin modifications results in the identification of a comprehensive set of regulatory regions in each tissue of each inbred, and notably of distal enhancers expressing non-coding enhancer RNAs bi-directionally, reminiscent of "super enhancers" in animal genomes. Furthermore, the morphological traits selected during domestication are recapitulated, both in gene expression and within regulatory regions containing enhancer RNAs, while highlighting the conflict between enhancer activity and silencing of the neighboring transposable elements.
Collapse
Affiliation(s)
- Jonathan Cahn
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA
| | - Michael Regulski
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA
| | - Jason Lynn
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA
| | - Evan Ernst
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA
| | - Cristiane de Santis Alves
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA
| | | | - Kapeel Chougule
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA
| | - Sharon Wei
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA
| | - Zhenyuan Lu
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA
| | - Xiaosa Xu
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA
- Department of Plant Biology, University of California, Davis, CA, 95616, USA
| | - Umamaheswari Ramu
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA
| | - Jorg Drenkow
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA
| | - Melissa Kramer
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA
| | - Arun Seetharam
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| | - Matthew B Hufford
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| | - W Richard McCombie
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA
| | - Doreen Ware
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA
- USDA ARS Robert W. Holley Center for Agriculture and Health Cornell University, Ithaca, NY, USA
| | - David Jackson
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA
| | - Michael C Schatz
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA
- Johns Hopkins University; 1900 E. Monument Street, Baltimore, MD, 21205, USA
| | - Thomas R Gingeras
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA.
| | - Robert A Martienssen
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA.
| |
Collapse
|
5
|
Gregory J, Liu X, Chen Z, Gallardo C, Punskovsky J, Koslow G, Galli M, Gallavotti A. Transcriptional corepressors in maize maintain meristem development. PLANT PHYSIOLOGY 2024; 197:kiae476. [PMID: 39255069 PMCID: PMC11663565 DOI: 10.1093/plphys/kiae476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/25/2024] [Accepted: 08/09/2024] [Indexed: 09/12/2024]
Abstract
The formation of the plant body proceeds in a sequential postembryonic manner through the action of meristems. Tightly coordinated meristem regulation is required for development and reproductive success, eventually determining yield in crop species. In maize (Zea mays), the RAMOSA1 ENHANCER LOCUS2 (REL2) family of transcriptional corepressors includes four members, REL2, RELK1 (REL2-LIKE1), RELK2, and RELK3. In a screen for rel2 enhancers, we identified shorter double mutants with enlarged ear inflorescence meristems (IMs) carrying mutations in RELK1. Expression and genetic analysis indicated that REL2 and RELK1 cooperatively regulate ear IM development by controlling genes involved in redox balance, hormone homeostasis, and differentiation, ultimately tipping the meristem toward an environment favorable to expanded expression of the ZmWUSCHEL1 gene, which encodes a key stem-cell promoting transcription factor. We further demonstrated that RELK genes have partially redundant yet diverse functions in the maintenance of various meristem types during development. By exploiting subtle increases in ear IM size in rel2 heterozygous plants, we also showed that extra rows of kernels are formed across a diverse set of F1 hybrids. Our findings reveal that the REL2 family maintains development from embryonic initiation to reproductive growth and can potentially be harnessed for increasing seed yield in a major crop species.
Collapse
Affiliation(s)
- Jason Gregory
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854-8020, USA
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Xue Liu
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854-8020, USA
| | - Zongliang Chen
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854-8020, USA
| | - Cecilia Gallardo
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854-8020, USA
| | - Jason Punskovsky
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854-8020, USA
| | - Gabriel Koslow
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854-8020, USA
| | - Mary Galli
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854-8020, USA
| | - Andrea Gallavotti
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854-8020, USA
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA
| |
Collapse
|
6
|
Blume RY, Hotsuliak VY, Nazarenus TJ, Cahoon EB, Blume YB. Genome-wide identification and diversity of FAD2, FAD3 and FAE1 genes in terms of biotechnological importance in Camelina species. BMC Biotechnol 2024; 24:107. [PMID: 39695603 DOI: 10.1186/s12896-024-00936-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 12/12/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND False flax, or gold-of-pleasure (Camelina sativa) is an oilseed that has received renewed research interest as a promising vegetable oil feedstock for liquid biofuel production and other non-food uses. This species has also emerged as a model for oilseed biotechnology research that aims to enhance seed oil content and fatty acid quality. To date, a number of genetic engineering and gene editing studies on C. sativa have been reported. Among the most common targets for this research are genes, encoding fatty acid desaturases, elongases, and diacylglycerol acyltransferases. However, the majority of these genes in C. sativa are present in multiple copies due to the allohexaploid nature of the species. Therefore, genetic manipulations require a comprehensive understanding of the diversity of such gene targets. RESULTS Here we report the detailed analysis of FAD2, FAD3 and FAE1 gene diversity in five Camelina species, including hexaploid C. sativa and four diploids, namely C. neglecta, C. laxa, C. hispida var. hispida and var. grandiflora. It was established that FAD2, FAD3 and FAE1 homeologs in C. sativa retain very high conservancy, despite their allohexaploid inheritance. High sequence conservancy of the identified genes along with their different expression patterns in C. sativa suggest that subfunctionalization of these homeologs is mainly grounded on the transcriptional balancing between subgenomes. Finally, fatty acid composition of seed lipids in different Camelina species was characterized, suggesting potential variability in the activity of fatty acid elongation/desaturation pathways may vary among these taxa. CONCLUSION It was shown that the FAD2, FAD3 and FAE1 genes retain high conservation, even in allohexaploid C. sativa after polyploidzation, in which the subfunctionalization of the described homeologs is mainly grounded on the expressional differences. The major differences in FA accumulation patterns within the seeds of different species were identified as well. These results provide a foundation for future precise gene editing, which would be based on targeting of particular FAD2, FAD3 and FAE1 gene copies in C. sativa that allow regulating the dosage of the mentioned genes, thus shaping the desired FA composition in cultivated false flax.
Collapse
Affiliation(s)
- Rostyslav Y Blume
- Institute of Food Biotechnology and Genomics of National Academy of Sciences of Ukraine, 2a Baidy-Vyshnevetskoho str., Kyiv, 04123, Ukraine.
| | - Vitaliy Y Hotsuliak
- Institute of Food Biotechnology and Genomics of National Academy of Sciences of Ukraine, 2a Baidy-Vyshnevetskoho str., Kyiv, 04123, Ukraine
| | - Tara J Nazarenus
- Center for Plant Science Innovation & Department of Biochemistry, University of Nebraska-Lincoln, E318 Beadle Center, 1901 Vine Street, Lincoln, NE, 68588, USA
| | - Edgar B Cahoon
- Center for Plant Science Innovation & Department of Biochemistry, University of Nebraska-Lincoln, E318 Beadle Center, 1901 Vine Street, Lincoln, NE, 68588, USA
| | - Yaroslav B Blume
- Institute of Food Biotechnology and Genomics of National Academy of Sciences of Ukraine, 2a Baidy-Vyshnevetskoho str., Kyiv, 04123, Ukraine
| |
Collapse
|
7
|
Ni J, Tang D, Chen Z, Yang S, Wang X, Liu Z, Deng W, Wu H, You C, Yang J, Meng P, Bao R, Rong T, Liu J. Identification and segregation of two closely linked major QTLs for kernel row number in advanced maize-teosinte populations. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:271. [PMID: 39557680 DOI: 10.1007/s00122-024-04780-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/10/2024] [Indexed: 11/20/2024]
Abstract
KEY MESSAGE Two closely linked novel loci, qKRN2-1 and qKRN2-2, associated with kernel row number were fine-mapped on chromosome 2, and a key candidate gene for qKRN2-1 was identified through expression analysis. Kernel row number (KRN) is a crucial factor influencing maize yield and serves as a significant target for maize breeding. The use of wild progenitor species can aid in identifying the essential traits for domestication and breeding. In this study, teosinte (MT1) served as the donor parent, the inbred maize line of Mo17 was used as the recurrent parent, we identified a major quantitative trait locus (QTL) for KRN, designated qKRN2, into two closely linked loci, qKRN2-1 and qKRN2-2. Here, fine mapping was performed to investigate two QTLs, qKRN2-1 and qKRN2-2, within a genomic range of 272 kb and 775 kb, respectively. This was achieved using a progeny test strategy in an advanced backcross population, with the two QTLs explaining 33.49% and 35.30% of the phenotypic variance. Molecular marker-assisted selection resulted in the development of two nearly isogenic lines (NILs), qKRN2-1 and qKRN2-2, which differed only in the segment containing the QTL. Notably, the maize (Mo17) alleles increased the KRN relative to teosinte by approximately 1.4 and 1.2 rows for qKRN2-1 and qKRN2-2, respectively. Zm00001d002989 encodes a cytokinin oxidase/dehydrogenase and its expression in the immature ears exhibited significant differences among the qKRN2-1 NILs. In situ hybridization localized Zm00001d002989 to the primordia of the inflorescence meristem and spikelet pair meristems, is predicted to be the causal gene of qKRN2-1. The findings of this study deepen our understanding of the genetic basis of KRN and hold significant potential for improving maize grain yields.
Collapse
Affiliation(s)
- Jixing Ni
- Maize Research Institute, Sichuan Agricultural University, No.211 Huiming Road, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Dengguo Tang
- Maize Research Institute, Sichuan Agricultural University, No.211 Huiming Road, Wenjiang District, Chengdu, 611130, Sichuan, China
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Zhengjie Chen
- Maize Research Institute, Sichuan Agricultural University, No.211 Huiming Road, Wenjiang District, Chengdu, 611130, Sichuan, China
- Sichuan Advanced Agricultural and Industrial Institute, China Agriculture University, No.8 Xingyuan Road, Xinjin District, Chengdu, 611430, Sichuan, China
| | - Sijia Yang
- Maize Research Institute, Sichuan Agricultural University, No.211 Huiming Road, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Xueying Wang
- Maize Research Institute, Sichuan Agricultural University, No.211 Huiming Road, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Zhiqin Liu
- Maize Research Institute, Sichuan Agricultural University, No.211 Huiming Road, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Wujiao Deng
- Maize Research Institute, Sichuan Agricultural University, No.211 Huiming Road, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Haimei Wu
- Maize Research Institute, Sichuan Agricultural University, No.211 Huiming Road, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Chong You
- Maize Research Institute, Sichuan Agricultural University, No.211 Huiming Road, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Jinchang Yang
- Maize Research Institute, Sichuan Agricultural University, No.211 Huiming Road, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Pengxu Meng
- Maize Research Institute, Sichuan Agricultural University, No.211 Huiming Road, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Ruifan Bao
- Maize Research Institute, Sichuan Agricultural University, No.211 Huiming Road, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Tingzhao Rong
- Maize Research Institute, Sichuan Agricultural University, No.211 Huiming Road, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Jian Liu
- Maize Research Institute, Sichuan Agricultural University, No.211 Huiming Road, Wenjiang District, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
8
|
Zou G, Ding Y, Xu J, Feng Z, Cao N, Chen H, Liu H, Zheng X, Liu X, Zhang L. Genome-wide dissection of genes shaping inflorescence morphology in 242 Chinese south-north sorghum accessions. Sci Rep 2024; 14:25828. [PMID: 39468118 PMCID: PMC11519468 DOI: 10.1038/s41598-024-76568-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 10/15/2024] [Indexed: 10/30/2024] Open
Abstract
The inflorescences morphology (IM) of sorghum (Sorghum bicolor L. Moench) affects its resistance to pests, diseases, and grain yields. However, the specific genetic factors underlying in IM are not yet fully elucidated. Here we conducted a comprehensive genome-wide association analysis (GWAS) to identify the stable and adaptive Quantitative Trait Loci (QTL) for five IM traits (panicle length, the number of cob nodes, the number of primary branches, the largest length of the primary branch, and panicle type) in a sorghum panel, which adapted to different environments from the south to north in China. Totally, 2,015,850 high quality single nucleotide polymorphisms (SNPs) were obtained. Population structure analysis showed that two distinct genetic sub-populations were divided according to their geographic origin. Seventy-one QTLs distributed in 41 genetic regions on 9 chromosomes were identified. These regions harbored 21 high-confident candidate genes that were homologous to rice domestication genes, including 7 related to IM. Two domestication-related genes (Sobic.003G052700 and Sobic.006G247700) were located into two major QTL regions (QTL3.4721839 and QTL6.58709500) which were identified in multi-environments. Allelic variations in the two genes displayed a geographical pattern, indicating that different IM traits were selected by south and north sorghum breeders, such as south sorghums had long and loose panicles in order to adapt the hot and humid climate, while north sorghums had short and compact panicle to increase planting density and grain yield per unit area due to dry climate. This work provides new breeding strategies and resources for developing locally adapted sorghum varieties.
Collapse
Affiliation(s)
- Guihua Zou
- Institute of Virology and Biotechnology, Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Zhejiang Key Laboratory of Digital Dry Land Crops, Hangzhou, 310021, China
| | - Yanqing Ding
- Guizhou Institute of Upland Crops, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, China
| | - Jianxia Xu
- Guizhou Institute of Upland Crops, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, China
| | - Zhou Feng
- Guizhou Institute of Upland Crops, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, China
| | - Ning Cao
- Guizhou Institute of Upland Crops, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, China
| | - Heyun Chen
- Institute of Virology and Biotechnology, Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Zhejiang Key Laboratory of Digital Dry Land Crops, Hangzhou, 310021, China
| | - Heqin Liu
- Institute of Virology and Biotechnology, Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Zhejiang Key Laboratory of Digital Dry Land Crops, Hangzhou, 310021, China
| | - Xueqiang Zheng
- Institute of Virology and Biotechnology, Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Zhejiang Key Laboratory of Digital Dry Land Crops, Hangzhou, 310021, China
| | - Xiuhui Liu
- Institute of Virology and Biotechnology, Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Zhejiang Key Laboratory of Digital Dry Land Crops, Hangzhou, 310021, China
| | - Liyi Zhang
- Guizhou Institute of Upland Crops, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, China.
| |
Collapse
|
9
|
Li J, Yao X, Lai H, Zhang X, Zhong J. The diversification of the shoot branching system: A quantitative and comparative perspective in meristem determinacy. CURRENT OPINION IN PLANT BIOLOGY 2024; 81:102574. [PMID: 38917775 DOI: 10.1016/j.pbi.2024.102574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 05/13/2024] [Accepted: 05/24/2024] [Indexed: 06/27/2024]
Abstract
Reiterative shoot branching largely defines important yield components of crops and is essentially controlled by programs that direct the initiation, dormancy release, and differentiation of meristems in the axils of leaves. Here, we focus on meristem determinacy, defining the number of reiterations that shape the shoot architectures and exhibit enormous diversity in a wide range of species. The meristem determinacy per se is hierarchically complex and context-dependent for the successively emerged meristems, representing a crucial mechanism in shaping the complexity of the shoot branching. In addition, we have highlighted that two key components of axillary meristem developmental programs may have been co-opted in controlling flower/ear number of an axillary inflorescence in legumes/maize, hinting at the diversification of axillary-meristem-patterning programs in different lineages. This begs the question how axillary meristem patterning programs may have diversified during plant evolution and hence helped shape the rich variation in shoot branching systems.
Collapse
Affiliation(s)
- Jiajia Li
- Guangdong Laboratory for Lingnan Modern Agriculture & the State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources & College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Xiani Yao
- Guangdong Laboratory for Lingnan Modern Agriculture & the State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources & College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Huan Lai
- Guangdong Laboratory for Lingnan Modern Agriculture & the State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources & College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Xuelian Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture & the State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources & College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Jinshun Zhong
- Guangdong Laboratory for Lingnan Modern Agriculture & the State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources & College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Laboratory of the Developmental Biology and Environmental Adaptation of Agricultural Organisms, South China Agricultural University, Guangzhou 510642, Guangdong, China; South China Institute for Soybean Innovation Research, South China Agricultural University, Guangzhou 510642, Guangdong, China.
| |
Collapse
|
10
|
Roque E, Rodas AL, Beltrán JP, Gómez-Mena C, Cañas LA. SUPERMAN genes: uncovering a new function in the development of complex inflorescences. PHYSIOLOGIA PLANTARUM 2024; 176:e14496. [PMID: 39223912 DOI: 10.1111/ppl.14496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/15/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024]
Abstract
The Arabidopsis SUPERMAN (SUP) gene and its orthologs in eudicots are crucial in regulating the number of reproductive floral organs. In Medicago truncatula, in addition to this function, a novel role in controlling meristem activity during compound inflorescence development was assigned to the SUP-ortholog (MtSUP). These findings led us to investigate whether the role of SUP genes in inflorescence development was legume-specific or could be extended to other eudicots. To assess that, we used Solanum lycopersicum as a model system with a cymose complex inflorescence and Arabidopsis thaliana as the best-known example of simple inflorescence. We conducted a detailed comparative expression analysis of SlSUP and SUP from vegetative stages to flower transition. In addition, we performed an exhaustive phenotypic characterisation of two different slsup and sup mutants during the plant life cycle. Our findings reveal that SlSUP is required for precise regulation of the meristems that control shoot and inflorescence architecture in tomato. In contrast, in Arabidopsis, SUP performs no meristematic function, but we found a role of SUP in floral transition. Our findings suggest that the functional divergence of SUP-like genes contributed to the modification of inflorescence architecture during angiosperm evolution.
Collapse
Affiliation(s)
- Edelín Roque
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV). Ciudad Politécnica de la Innovación, Valencia, Spain
| | - Ana Lucía Rodas
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV). Ciudad Politécnica de la Innovación, Valencia, Spain
| | - José Pío Beltrán
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV). Ciudad Politécnica de la Innovación, Valencia, Spain
| | - Concepción Gómez-Mena
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV). Ciudad Politécnica de la Innovación, Valencia, Spain
| | - Luis A Cañas
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV). Ciudad Politécnica de la Innovación, Valencia, Spain
| |
Collapse
|
11
|
Schlegel L, Bhardwaj R, Shahryary Y, Demirtürk D, Marand A, Schmitz R, Johannes F. GenomicLinks: deep learning predictions of 3D chromatin interactions in the maize genome. NAR Genom Bioinform 2024; 6:lqae123. [PMID: 39318505 PMCID: PMC11420838 DOI: 10.1093/nargab/lqae123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/25/2024] [Accepted: 08/30/2024] [Indexed: 09/26/2024] Open
Abstract
Gene regulation in eukaryotes is partly shaped by the 3D organization of chromatin within the cell nucleus. Distal interactions between cis-regulatory elements and their target genes are widespread, and many causal loci underlying heritable agricultural traits have been mapped to distal non-coding elements. The biology underlying chromatin loop formation in plants is poorly understood. Dissecting the sequence features that mediate distal interactions is an important step toward identifying putative molecular mechanisms. Here, we trained GenomicLinks, a deep learning model, to identify DNA sequence features predictive of 3D chromatin interactions in maize. We found that the presence of binding motifs of specific transcription factor classes, especially bHLH, is predictive of chromatin interaction specificities. Using an in silico mutagenesis approach we show the removal of these motifs from loop anchors leads to reduced interaction probabilities. We were able to validate these predictions with single-cell co-accessibility data from different maize genotypes that harbor natural substitutions in these TF binding motifs. GenomicLinks is currently implemented as an open-source web tool, which should facilitate its wider use in the plant research community.
Collapse
Affiliation(s)
- Luca Schlegel
- TUM School of Life Sciences, Plant Epigenomics, Technical University of Munich, Freising, 85354, Germany
| | - Rohan Bhardwaj
- TUM School of Life Sciences, Plant Epigenomics, Technical University of Munich, Freising, 85354, Germany
| | - Yadollah Shahryary
- TUM School of Life Sciences, Plant Epigenomics, Technical University of Munich, Freising, 85354, Germany
| | - Defne Demirtürk
- TUM School of Life Sciences, Plant Epigenomics, Technical University of Munich, Freising, 85354, Germany
| | - Alexandre P Marand
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Robert J Schmitz
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Frank Johannes
- TUM School of Life Sciences, Plant Epigenomics, Technical University of Munich, Freising, 85354, Germany
| |
Collapse
|
12
|
Sun Y, Dong L, Kang L, Zhong W, Jackson D, Yang F. Progressive meristem and single-cell transcriptomes reveal the regulatory mechanisms underlying maize inflorescence development and sex differentiation. MOLECULAR PLANT 2024; 17:1019-1037. [PMID: 38877701 DOI: 10.1016/j.molp.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/23/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
Maize develops separate ear and tassel inflorescences with initially similar morphology but ultimately different architecture and sexuality. The detailed regulatory mechanisms underlying these changes still remain largely unclear. In this study, through analyzing the time-course meristem transcriptomes and floret single-cell transcriptomes of ear and tassel, we revealed the regulatory dynamics and pathways underlying inflorescence development and sex differentiation. We identified 16 diverse gene clusters with differential spatiotemporal expression patterns and revealed biased regulation of redox, programmed cell death, and hormone signals during meristem differentiation between ear and tassel. Notably, based on their dynamic expression patterns, we revealed the roles of two RNA-binding proteins in regulating inflorescence meristem activity and axillary meristem formation. Moreover, using the transcriptional profiles of 53 910 single cells, we uncovered the cellular heterogeneity between ear and tassel florets. We found that multiple signals associated with either enhanced cell death or reduced growth are responsible for tassel pistil suppression, while part of the gibberellic acid signal may act non-cell-autonomously to regulate ear stamen arrest during sex differentiation. We further showed that the pistil-protection gene SILKLESS 1 (SK1) functions antagonistically to the known pistil-suppression genes through regulating common molecular pathways, and constructed a regulatory network for pistil-fate determination. Collectively, our study provides a deep understanding of the regulatory mechanisms underlying inflorescence development and sex differentiation in maize, laying the foundation for identifying new regulators and pathways for maize hybrid breeding and improvement.
Collapse
Affiliation(s)
- Yonghao Sun
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Liang Dong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Lu Kang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Wanshun Zhong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - David Jackson
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Fang Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; School of Agriculture, Sun Yat-Sen University, Shenzhen 518107, China.
| |
Collapse
|
13
|
Bellino C, Herrera FE, Rodrigues D, Garay AS, Huck SV, Reinheimer R. Molecular Evolution of RAMOSA1 (RA1) in Land Plants. Biomolecules 2024; 14:550. [PMID: 38785957 PMCID: PMC11117814 DOI: 10.3390/biom14050550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024] Open
Abstract
RAMOSA1 (RA1) is a Cys2-His2-type (C2H2) zinc finger transcription factor that controls plant meristem fate and identity and has played an important role in maize domestication. Despite its importance, the origin of RA1 is unknown, and the evolution in plants is only partially understood. In this paper, we present a well-resolved phylogeny based on 73 amino acid sequences from 48 embryophyte species. The recovered tree topology indicates that, during grass evolution, RA1 arose from two consecutive SUPERMAN duplications, resulting in three distinct grass sequence lineages: RA1-like A, RA1-like B, and RA1; however, most of these copies have unknown functions. Our findings indicate that RA1 and RA1-like play roles in the nucleus despite lacking a traditional nuclear localization signal. Here, we report that copies diversified their coding region and, with it, their protein structure, suggesting different patterns of DNA binding and protein-protein interaction. In addition, each of the retained copies diversified regulatory elements along their promoter regions, indicating differences in their upstream regulation. Taken together, the evidence indicates that the RA1 and RA1-like gene families in grasses underwent subfunctionalization and neofunctionalization enabled by gene duplication.
Collapse
Affiliation(s)
- Carolina Bellino
- Fellow of Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina (CONICET), Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, CONICET, CCT-Santa Fe, Ruta Nacional N° 168 Km 0, s/n, Paraje el Pozo, Santa Fe S3000, Argentina;
| | - Fernando E. Herrera
- Member of Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina (CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Paraje El Pozo, Santa Fe S3000, Argentina; (F.E.H.); (D.R.)
| | - Daniel Rodrigues
- Member of Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina (CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Paraje El Pozo, Santa Fe S3000, Argentina; (F.E.H.); (D.R.)
| | - A. Sergio Garay
- Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Paraje El Pozo, Santa Fe S3000, Argentina;
| | - Sofía V. Huck
- Fellow of Agencia Nacional de Promoción de la Investigación, el Desarrollo Tecnológico y la Innovación, Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, CONICET, CCT-Santa Fe, Ruta Nacional N° 168 Km 0, s/n, Paraje el Pozo, Santa Fe S3000, Argentina;
| | - Renata Reinheimer
- Member of Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina (CONICET), Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, FCA, CONICET, CCT-Santa Fe, Ruta Nacional N° 168 Km 0, s/n, Paraje el Pozo, Santa Fe S3000, Argentina
| |
Collapse
|
14
|
Jafari F, Wang B, Wang H, Zou J. Breeding maize of ideal plant architecture for high-density planting tolerance through modulating shade avoidance response and beyond. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:849-864. [PMID: 38131117 DOI: 10.1111/jipb.13603] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/27/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Maize is a major staple crop widely used as food, animal feed, and raw materials in industrial production. High-density planting is a major factor contributing to the continuous increase of maize yield. However, high planting density usually triggers a shade avoidance response and causes increased plant height and ear height, resulting in lodging and yield loss. Reduced plant height and ear height, more erect leaf angle, reduced tassel branch number, earlier flowering, and strong root system architecture are five key morphological traits required for maize adaption to high-density planting. In this review, we summarize recent advances in deciphering the genetic and molecular mechanisms of maize involved in response to high-density planting. We also discuss some strategies for breeding advanced maize cultivars with superior performance under high-density planting conditions.
Collapse
Affiliation(s)
- Fereshteh Jafari
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Baobao Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- National Nanfan Research Institute, CAAS, Sanya, 572025, China
| | - Haiyang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Junjie Zou
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- National Nanfan Research Institute, CAAS, Sanya, 572025, China
| |
Collapse
|
15
|
Wang Y, Luo Y, Guo X, Li Y, Yan J, Shao W, Wei W, Wei X, Yang T, Chen J, Chen L, Ding Q, Bai M, Zhuo L, Li L, Jackson D, Zhang Z, Xu X, Yan J, Liu H, Liu L, Yang N. A spatial transcriptome map of the developing maize ear. NATURE PLANTS 2024; 10:815-827. [PMID: 38745100 DOI: 10.1038/s41477-024-01683-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 04/03/2024] [Indexed: 05/16/2024]
Abstract
A comprehensive understanding of inflorescence development is crucial for crop genetic improvement, as inflorescence meristems give rise to reproductive organs and determine grain yield. However, dissecting inflorescence development at the cellular level has been challenging owing to a lack of specific marker genes to distinguish among cell types, particularly in different types of meristems that are vital for organ formation. In this study, we used spatial enhanced resolution omics-sequencing (Stereo-seq) to construct a precise spatial transcriptome map of the developing maize ear primordium, identifying 12 cell types, including 4 newly defined cell types found mainly in the inflorescence meristem. By extracting the meristem components for detailed clustering, we identified three subtypes of meristem and validated two MADS-box genes that were specifically expressed at the apex of determinate meristems and involved in stem cell determinacy. Furthermore, by integrating single-cell RNA transcriptomes, we identified a series of spatially specific networks and hub genes that may provide new insights into the formation of different tissues. In summary, this study provides a valuable resource for research on cereal inflorescence development, offering new clues for yield improvement.
Collapse
Affiliation(s)
- Yuebin Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Yun Luo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Xing Guo
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, China
- BGI Research, Wuhan, China
| | - Yunfu Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Jiali Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Wenwen Shao
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, China
- BGI Research, Wuhan, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Wenjie Wei
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Xiaofeng Wei
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, China
- China National GeneBank, Shenzhen, China
| | - Tao Yang
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, China
- China National GeneBank, Shenzhen, China
| | - Jing Chen
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, China
- China National GeneBank, Shenzhen, China
| | - Lihua Chen
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, China
| | - Qian Ding
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Minji Bai
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Lin Zhuo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Li Li
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, China
| | - David Jackson
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Zuxin Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Xun Xu
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, China
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Huan Liu
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, China.
- Guangdong Laboratory of Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Shenzhen, China.
| | - Lei Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China.
- Hubei Hongshan Laboratory, Wuhan, China.
| | - Ning Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China.
- Hubei Hongshan Laboratory, Wuhan, China.
| |
Collapse
|
16
|
Zhang Y, Shen C, Shi J, Shi J, Zhang D. Boosting Triticeae crop grain yield by manipulating molecular modules to regulate inflorescence architecture: insights and knowledge from other cereal crops. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:17-35. [PMID: 37935244 DOI: 10.1093/jxb/erad386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 11/02/2023] [Indexed: 11/09/2023]
Abstract
One of the challenges for global food security is to reliably and sustainably improve the grain yield of cereal crops. One solution is to modify the architecture of the grain-bearing inflorescence to optimize for grain number and size. Cereal inflorescences are complex structures, with determinacy, branching patterns, and spikelet/floret growth patterns that vary by species. Recent decades have witnessed rapid advancements in our understanding of the genetic regulation of inflorescence architecture in rice, maize, wheat, and barley. Here, we summarize current knowledge on key genetic factors underlying the different inflorescence morphologies of these crops and model plants (Arabidopsis and tomato), focusing particularly on the regulation of inflorescence meristem determinacy and spikelet meristem identity and determinacy. We also discuss strategies to identify and utilize these superior alleles to optimize inflorescence architecture and, ultimately, improve crop grain yield.
Collapse
Affiliation(s)
- Yueya Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai 200240, China
| | - Chaoqun Shen
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai 200240, China
| | - Jin Shi
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai 200240, China
| | - Jianxin Shi
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai 200240, China
- Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Sanya 572025, China
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai 200240, China
- Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Sanya 572025, China
- School of Agriculture, Food, and Wine, University of Adelaide, Adelaide, South Australia 5064, Australia
| |
Collapse
|
17
|
Xie Y, Zhao Y, Chen L, Wang Y, Xue W, Kong D, Li C, Zhou L, Li H, Zhao Y, Wang B, Xu M, Zhao B, Bilska-Kos A, Wang H. ZmELF3.1 integrates the RA2-TSH4 module to repress maize tassel branching. THE NEW PHYTOLOGIST 2024; 241:490-503. [PMID: 37858961 DOI: 10.1111/nph.19329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 09/08/2023] [Indexed: 10/21/2023]
Abstract
Tassel branch number (TBN) is a key agronomic trait for adapting to high-density planting and grain yield in maize. However, the molecular regulatory mechanisms underlying tassel branching are still largely unknown. Here, we used molecular and genetic studies together to show that ZmELF3.1 plays a critical role in regulating TBN in maize. Previous studies showed that ZmELF3.1 forms the evening complex through interacting with ZmELF4 and ZmLUX to regulate flowering in maize and that RA2 and TSH4 (ZmSBP2) suppresses and promotes TBN in maize, respectively. In this study, we show that loss-of-function mutants of ZmELF3.1 exhibit a significant increase of TBN. We also show that RA2 directly binds to the promoter of TSH4 and represses its expression, thus leading to reduced TBN. We further demonstrate that ZmELF3.1 directly interacts with both RA2 and ZmELF4.2 to form tri-protein complexes that further enhance the binding of RA2 to the promoter of TSH4, leading to suppressed TSH4 expression and consequently decreased TBN. Our combined results establish a novel functional link between the ELF3-ELF4-RA2 complex and miR156-SPL regulatory module in regulating tassel branching and provide a valuable target for genetic improvement of tassel branching in maize.
Collapse
Affiliation(s)
- Yurong Xie
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Hainan Yazhou Bay Seed Lab, Sanya, 572025, China
| | - Yongping Zhao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lihong Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yanli Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Weicong Xue
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Dexin Kong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Changyu Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Linyu Zhou
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Huiru Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yanfeng Zhao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Baobao Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Hainan Yazhou Bay Seed Lab, Sanya, 572025, China
| | - Miaoyun Xu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Hainan Yazhou Bay Seed Lab, Sanya, 572025, China
| | - Binbin Zhao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Anna Bilska-Kos
- Plant Breeding and Acclimatization Institute-National Research Institute, Department of Biochemistry and Biotechnology, Radzików, 05-870, Błonie, Poland
| | - Haiyang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
18
|
Shen X, Xiao B, Kaderbek T, Lin Z, Tan K, Wu Q, Yuan L, Lai J, Zhao H, Song W. Dynamic transcriptome landscape of developing maize ear. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1856-1870. [PMID: 37731154 DOI: 10.1111/tpj.16457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/19/2023] [Accepted: 08/26/2023] [Indexed: 09/22/2023]
Abstract
Seed number and harvesting ability in maize (Zea mays L.) are primarily determined by the architecture of female inflorescence, namely the ear. Therefore, ear morphogenesis contributes to grain yield and as such is one of the key target traits during maize breeding. However, the molecular networks of this highly dynamic and complex grain-bearing inflorescence remain largely unclear. As a first step toward characterizing these networks, we performed a high-spatio-temporal-resolution investigation of transcriptomes using 130 ear samples collected from developing ears with length from 0.1 mm to 19.0 cm. Comparisons of these mRNA populations indicated that these spatio-temporal transcriptomes were clearly separated into four distinct stages stages I, II, III, and IV. A total of 23 793 genes including 1513 transcription factors (TFs) were identified in the investigated developing ears. During the stage I of ear morphogenesis, 425 genes were predicted to be involved in a co-expression network established by eight hub TFs. Moreover, 9714 ear-specific genes were identified in the seven kinds of meristems. Additionally, 527 genes including 59 TFs were identified as especially expressed in ear and displayed high temporal specificity. These results provide a high-resolution atlas of gene activity during ear development and help to unravel the regulatory modules associated with the differentiation of the ear in maize.
Collapse
Affiliation(s)
- Xiaomeng Shen
- State Key Laboratory of Maize Bio-breeding, China Agricultural University, Beijing, 100193, P.R. China
- Department of Plant Genetics and Breeding, National Maize Improvement Center, China Agricultural University, Beijing, 100193, P.R. China
| | - Bing Xiao
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, P.R. China
| | - Tangnur Kaderbek
- State Key Laboratory of Maize Bio-breeding, China Agricultural University, Beijing, 100193, P.R. China
- Department of Plant Genetics and Breeding, National Maize Improvement Center, China Agricultural University, Beijing, 100193, P.R. China
| | - Zhen Lin
- State Key Laboratory of Maize Bio-breeding, China Agricultural University, Beijing, 100193, P.R. China
- Department of Plant Genetics and Breeding, National Maize Improvement Center, China Agricultural University, Beijing, 100193, P.R. China
| | - Kaiwen Tan
- State Key Laboratory of Maize Bio-breeding, China Agricultural University, Beijing, 100193, P.R. China
- Department of Plant Genetics and Breeding, National Maize Improvement Center, China Agricultural University, Beijing, 100193, P.R. China
| | - Qingyu Wu
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
| | - Lixing Yuan
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, P.R. China
| | - Jinsheng Lai
- State Key Laboratory of Maize Bio-breeding, China Agricultural University, Beijing, 100193, P.R. China
- Department of Plant Genetics and Breeding, National Maize Improvement Center, China Agricultural University, Beijing, 100193, P.R. China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, P.R. China
| | - Haiming Zhao
- State Key Laboratory of Maize Bio-breeding, China Agricultural University, Beijing, 100193, P.R. China
- Department of Plant Genetics and Breeding, National Maize Improvement Center, China Agricultural University, Beijing, 100193, P.R. China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, P.R. China
| | - Weibin Song
- State Key Laboratory of Maize Bio-breeding, China Agricultural University, Beijing, 100193, P.R. China
- Department of Plant Genetics and Breeding, National Maize Improvement Center, China Agricultural University, Beijing, 100193, P.R. China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, P.R. China
| |
Collapse
|
19
|
Ni J, You C, Chen Z, Tang D, Wu H, Deng W, Wang X, Yang J, Bao R, Liu Z, Meng P, Rong T, Liu J. Deploying QTL-seq rapid identification and separation of the major QTLs of tassel branch number for fine-mapping in advanced maize populations. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:88. [PMID: 38045561 PMCID: PMC10686902 DOI: 10.1007/s11032-023-01431-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/08/2023] [Indexed: 12/05/2023]
Abstract
The tassel competes with the ear for nutrients and shields the upper leaves, thereby reducing the yield of grain. The tassel branch number (TBN) is a pivotal determinant of tassel size, wherein the reduced TBN has the potential to enhance the transmission of light and reduce the consumption of nutrients, which should ultimately result in increased yield. Consequently, the TBN has emerged as a vital target trait in contemporary breeding programs that focus on compact maize varieties. In this study, QTL-seq technology and advanced population mapping were used to rapidly identify and dissect the major effects of the TBN on QTL. Advanced mapping populations (BC4F2 and BC4F3) were derived from the inbred lines 18-599 (8-11 TBN) and 3237 (0-1 TBN) through phenotypic recurrent selection. First, 13 genomic regions associated with the TBN were detected using quantitative trait locus (QTL)-seq and were located on chromosomes 2 and 5. Subsequently, validated loci within these regions were identified by QTL-seq. Three QTLs for TBN were identified in the BC4F2 populations by traditional QTL mapping, with each QTL explaining the phenotypic variation of 6.13-18.17%. In addition, for the major QTL (qTBN2-2 and qTBN5-1), residual heterozygous lines (RHLs) were developed from the BC4F2 population. These two major QTLs were verified in the RHLs by QTL mapping, with the phenotypic variation explained (PVE) of 21.57% and 30.75%, respectively. Near-isogenic lines (NILs) of qTBN2-2 and qTBN5-1 were constructed. There were significant differences between the NILs in TBN. These results will enhance our understanding of the genetic basis of TBN and provide a solid foundation for the fine-mapping of TBN. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01431-y.
Collapse
Affiliation(s)
- Jixing Ni
- Maize Research Institute, Sichuan Agricultural University, No. 211 Huiming Road, Wenjiang District, Chengdu, 611130 Sichuan China
| | - Chong You
- Maize Research Institute, Sichuan Agricultural University, No. 211 Huiming Road, Wenjiang District, Chengdu, 611130 Sichuan China
| | - Zhengjie Chen
- Sichuan Advanced Agricultural & Industrial Institute, China Agriculture University, No.8 Xingyuan Road, Xinjin District, Chengdu, 611430 Sichuan China
| | - Dengguo Tang
- Maize Research Institute, Sichuan Agricultural University, No. 211 Huiming Road, Wenjiang District, Chengdu, 611130 Sichuan China
| | - Haimei Wu
- Maize Research Institute, Sichuan Agricultural University, No. 211 Huiming Road, Wenjiang District, Chengdu, 611130 Sichuan China
| | - Wujiao Deng
- Maize Research Institute, Sichuan Agricultural University, No. 211 Huiming Road, Wenjiang District, Chengdu, 611130 Sichuan China
| | - Xueying Wang
- Maize Research Institute, Sichuan Agricultural University, No. 211 Huiming Road, Wenjiang District, Chengdu, 611130 Sichuan China
| | - Jinchang Yang
- Maize Research Institute, Sichuan Agricultural University, No. 211 Huiming Road, Wenjiang District, Chengdu, 611130 Sichuan China
| | - Ruifan Bao
- Maize Research Institute, Sichuan Agricultural University, No. 211 Huiming Road, Wenjiang District, Chengdu, 611130 Sichuan China
| | - Zhiqin Liu
- Maize Research Institute, Sichuan Agricultural University, No. 211 Huiming Road, Wenjiang District, Chengdu, 611130 Sichuan China
| | - Pengxu Meng
- Maize Research Institute, Sichuan Agricultural University, No. 211 Huiming Road, Wenjiang District, Chengdu, 611130 Sichuan China
| | - Tingzhao Rong
- Maize Research Institute, Sichuan Agricultural University, No. 211 Huiming Road, Wenjiang District, Chengdu, 611130 Sichuan China
| | - Jian Liu
- Maize Research Institute, Sichuan Agricultural University, No. 211 Huiming Road, Wenjiang District, Chengdu, 611130 Sichuan China
| |
Collapse
|
20
|
Xie Y, Ying S, Li Z, Zhang Y, Zhu J, Zhang J, Wang M, Diao H, Wang H, Zhang Y, Ye L, Zhuang Y, Zhao F, Teng W, Zhang W, Tong Y, Cho J, Dong Z, Xue Y, Zhang Y. Transposable element-initiated enhancer-like elements generate the subgenome-biased spike specificity of polyploid wheat. Nat Commun 2023; 14:7465. [PMID: 37978184 PMCID: PMC10656477 DOI: 10.1038/s41467-023-42771-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 10/20/2023] [Indexed: 11/19/2023] Open
Abstract
Transposable elements (TEs) comprise ~85% of the common wheat genome, which are highly diverse among subgenomes, possibly contribute to polyploid plasticity, but the causality is only assumed. Here, by integrating data from gene expression cap analysis and epigenome profiling via hidden Markov model in common wheat, we detect a large proportion of enhancer-like elements (ELEs) derived from TEs producing nascent noncoding transcripts, namely ELE-RNAs, which are well indicative of the regulatory activity of ELEs. Quantifying ELE-RNA transcriptome across typical developmental stages reveals that TE-initiated ELE-RNAs are mainly from RLG_famc7.3 specifically expanded in subgenome A. Acquisition of spike-specific transcription factor binding likely confers spike-specific expression of RLG_famc7.3-initiated ELE-RNAs. Knockdown of RLG_famc7.3-initiated ELE-RNAs resulted in global downregulation of spike-specific genes and abnormal spike development. These findings link TE expansion to regulatory specificity and polyploid developmental plasticity, highlighting the functional impact of TE-driven regulatory innovation on polyploid evolution.
Collapse
Affiliation(s)
- Yilin Xie
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Songbei Ying
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Zijuan Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu'e Zhang
- University of the Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, and The Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jiafu Zhu
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Jinyu Zhang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Meiyue Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Huishan Diao
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Haoyu Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
- Henan University, School of Life Science, Kaifeng, Henan, 457000, China
| | - Yuyun Zhang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Luhuan Ye
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Yili Zhuang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Fei Zhao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Wan Teng
- University of the Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, and The Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wenli Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu, 210095, China
| | - Yiping Tong
- University of the Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, and The Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jungnam Cho
- Department of Biosciences, Durham University, Durham, DH1 3LE, United Kingdom.
| | - Zhicheng Dong
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China.
| | - Yongbiao Xue
- University of the Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, and The Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Centre for Bioinformation, Beijing, 100101, China.
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China.
| | - Yijing Zhang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
21
|
Li T, Yang H, Zhang X, Zhu L, Zhang J, Wei N, Li R, Dong Y, Feng Z, Zhang X, Xue J, Xu S. Genetic architecture of ear traits based on association mapping and co-expression networks in maize inbred lines and hybrids. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:78. [PMID: 37928364 PMCID: PMC10624778 DOI: 10.1007/s11032-023-01426-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023]
Abstract
Ear traits are key contributors to grain yield in maize; therefore, exploring their genetic basis facilitates the improvement of grain yield. However, the underlying molecular mechanisms of ear traits remain obscure in both inbred lines and hybrids. Here, two association panels, respectively, comprising 203 inbred lines (IP) and 246 F1 hybrids (HP) were employed to identify candidate genes for six ear traits. The IP showed higher phenotypic variation and lower phenotypic mean than the HP for all traits, except ear tip-barrenness length. By conducting a genome-wide association study (GWAS) across multiple environments, 101 and 228 significant single-nucleotide polymorphisms (SNPs) associated with six ear traits were identified in the IP and HP, respectively. Of these significant SNPs identified in the HP, most showed complete-incomplete dominance and over-dominance effects for each ear trait. Combining a gene co-expression network with GWAS results, 186 and 440 candidate genes were predicted in the IP and HP, respectively, including known ear development genes ids1 and sid1. Of these, nine candidate genes were detected in both populations and expressed in maize ear and spikelet tissues. Furthermore, two key shared genes (GRMZM2G143330 and GRMZM2G171139) in both populations were found to be significantly associated with ear traits in the maize Goodman diversity panel with high-density variations. These findings advance our knowledge of the genetic architecture of ear traits between inbred lines and hybrids and provide a valuable resource for the genetic improvement of ear traits in maize. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01426-9.
Collapse
Affiliation(s)
- Ting Li
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
- Maize Engineering Technology Research Centre of Shaanxi Province, Yangling, 712100 Shaanxi China
| | - Haoxiang Yang
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
- Maize Engineering Technology Research Centre of Shaanxi Province, Yangling, 712100 Shaanxi China
| | - Xiaojun Zhang
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
- Maize Engineering Technology Research Centre of Shaanxi Province, Yangling, 712100 Shaanxi China
| | - Liangjia Zhu
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
- Maize Engineering Technology Research Centre of Shaanxi Province, Yangling, 712100 Shaanxi China
| | - Jun Zhang
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
- Maize Engineering Technology Research Centre of Shaanxi Province, Yangling, 712100 Shaanxi China
| | - Ningning Wei
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
- Maize Engineering Technology Research Centre of Shaanxi Province, Yangling, 712100 Shaanxi China
| | - Ranran Li
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
- Maize Engineering Technology Research Centre of Shaanxi Province, Yangling, 712100 Shaanxi China
| | - Yuan Dong
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
- Maize Engineering Technology Research Centre of Shaanxi Province, Yangling, 712100 Shaanxi China
| | - Zhiqian Feng
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
- Maize Engineering Technology Research Centre of Shaanxi Province, Yangling, 712100 Shaanxi China
| | - Xinghua Zhang
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
- Maize Engineering Technology Research Centre of Shaanxi Province, Yangling, 712100 Shaanxi China
| | - Jiquan Xue
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
- Maize Engineering Technology Research Centre of Shaanxi Province, Yangling, 712100 Shaanxi China
| | - Shutu Xu
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
- Maize Engineering Technology Research Centre of Shaanxi Province, Yangling, 712100 Shaanxi China
| |
Collapse
|
22
|
Chawla R, Poonia A, Samantara K, Mohapatra SR, Naik SB, Ashwath MN, Djalovic IG, Prasad PVV. Green revolution to genome revolution: driving better resilient crops against environmental instability. Front Genet 2023; 14:1204585. [PMID: 37719711 PMCID: PMC10500607 DOI: 10.3389/fgene.2023.1204585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/11/2023] [Indexed: 09/19/2023] Open
Abstract
Crop improvement programmes began with traditional breeding practices since the inception of agriculture. Farmers and plant breeders continue to use these strategies for crop improvement due to their broad application in modifying crop genetic compositions. Nonetheless, conventional breeding has significant downsides in regard to effort and time. Crop productivity seems to be hitting a plateau as a consequence of environmental issues and the scarcity of agricultural land. Therefore, continuous pursuit of advancement in crop improvement is essential. Recent technical innovations have resulted in a revolutionary shift in the pattern of breeding methods, leaning further towards molecular approaches. Among the promising approaches, marker-assisted selection, QTL mapping, omics-assisted breeding, genome-wide association studies and genome editing have lately gained prominence. Several governments have progressively relaxed their restrictions relating to genome editing. The present review highlights the evolutionary and revolutionary approaches that have been utilized for crop improvement in a bid to produce climate-resilient crops observing the consequence of climate change. Additionally, it will contribute to the comprehension of plant breeding succession so far. Investing in advanced sequencing technologies and bioinformatics will deepen our understanding of genetic variations and their functional implications, contributing to breakthroughs in crop improvement and biodiversity conservation.
Collapse
Affiliation(s)
- Rukoo Chawla
- Department of Genetics and Plant Breeding, Maharana Pratap University of Agriculture and Technology, Udaipur, Rajasthan, India
| | - Atman Poonia
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh Haryana Agricultural University, Bawal, Haryana, India
| | - Kajal Samantara
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Sourav Ranjan Mohapatra
- Department of Forest Biology and Tree Improvement, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India
| | - S. Balaji Naik
- Institute of Integrative Biology and Systems, University of Laval, Quebec City, QC, Canada
| | - M. N. Ashwath
- Department of Forest Biology and Tree Improvement, Kerala Agricultural University, Thrissur, Kerala, India
| | - Ivica G. Djalovic
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, Novi Sad, Serbia
| | - P. V. Vara Prasad
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
23
|
Wang X, Li J, Han L, Liang C, Li J, Shang X, Miao X, Luo Z, Zhu W, Li Z, Li T, Qi Y, Li H, Lu X, Li L. QTG-Miner aids rapid dissection of the genetic base of tassel branch number in maize. Nat Commun 2023; 14:5232. [PMID: 37633966 PMCID: PMC10460418 DOI: 10.1038/s41467-023-41022-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 08/21/2023] [Indexed: 08/28/2023] Open
Abstract
Genetic dissection of agronomic traits is important for crop improvement and global food security. Phenotypic variation of tassel branch number (TBN), a major breeding target, is controlled by many quantitative trait loci (QTLs). The lack of large-scale QTL cloning methodology constrains the systematic dissection of TBN, which hinders modern maize breeding. Here, we devise QTG-Miner, a multi-omics data-based technique for large-scale and rapid cloning of quantitative trait genes (QTGs) in maize. Using QTG-Miner, we clone and verify seven genes underlying seven TBN QTLs. Compared to conventional methods, QTG-Miner performs well for both major- and minor-effect TBN QTLs. Selection analysis indicates that a substantial number of genes and network modules have been subjected to selection during maize improvement. Selection signatures are significantly enriched in multiple biological pathways between female heterotic groups and male heterotic groups. In summary, QTG-Miner provides a large-scale approach for rapid cloning of QTGs in crops and dissects the genetic base of TBN for further maize breeding.
Collapse
Affiliation(s)
- Xi Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Juan Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Linqian Han
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Chengyong Liang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Jiaxin Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Xiaoyang Shang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Xinxin Miao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Zi Luo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Wanchao Zhu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Zhao Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Tianhuan Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Yongwen Qi
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510325, Guangdong, China
| | - Huihui Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
| | - Xiaoduo Lu
- Institute of Molecular Breeding for Maize, Qilu Normal University, Jinan, 250200, China
| | - Lin Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
- Hubei Hongshan Laboratory, Wuhan, 430070, China.
| |
Collapse
|
24
|
Ruidong S, Shijin H, Yuwei Q, Yimeng L, Xiaohang Z, Ying L, Xihang L, Mingyang D, Xiangling L, Fenghai L. Identification of QTLs and their candidate genes for the number of maize tassel branches in F 2 from two higher generation sister lines using QTL mapping and RNA-seq analysis. FRONTIERS IN PLANT SCIENCE 2023; 14:1202755. [PMID: 37641589 PMCID: PMC10460468 DOI: 10.3389/fpls.2023.1202755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 07/18/2023] [Indexed: 08/31/2023]
Abstract
Tassel branch number is an important agronomic trait that is closely associated with maize kernels and yield. The regulation of genes associated with tassel branch development can provide a theoretical basis for analyzing tassel branch growth and improving maize yield. In this study. we used two high-generation sister maize lines, PCU (unbranched) and PCM (multiple-branched), to construct an F2 population comprising 190 individuals, which were genotyped and mapped using the Maize6H-60K single-nucleotide polymorphism array. Candidate genes associated with tassel development were subsequently identified by analyzing samples collected at three stages of tassel growth via RNA-seq. A total of 13 quantitative trait loci (QTLs) and 22 quantitative trait nucleotides (QTNs) associated with tassel branch number (TBN) were identified, among which, two major QTLs, qTBN6.06-1 and qTBN6.06-2, on chromosome 6 were identified in two progeny populations, accounting for 15.07% to 37.64% of the phenotypic variation. Moreover, we identified 613 genes that were differentially expressed between PCU and PCM, which, according to Kyoto Encyclopedia of Genes and Genomes enrichment analysis, were enriched in amino acid metabolism and plant signal transduction pathways. Additionally, we established that the phytohormone content of Stage I tassels and the levels of indole-3-acetic acid (IAA) and IAA-glucose were higher in PCU than in PCM plants, whereas contrastingly, the levels of 5-deoxymonopolyl alcohol in PCM were higher than those in PCU. On the basis of these findings, we speculate that differences in TBN may be related to hormone content. Collectively, by combining QTL mapping and RNA-seq analysis, we identified five candidate genes associated with TBN. This study provides theoretical insights into the mechanism of tassel branch development in maize.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Lv Xiangling
- Special Corn Institute, Shenyang Agricultural University, Shenyang, China
| | - Li Fenghai
- Special Corn Institute, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
25
|
Dong Z, Wang Y, Bao J, Li Y, Yin Z, Long Y, Wan X. The Genetic Structures and Molecular Mechanisms Underlying Ear Traits in Maize ( Zea mays L.). Cells 2023; 12:1900. [PMID: 37508564 PMCID: PMC10378120 DOI: 10.3390/cells12141900] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Maize (Zea mays L.) is one of the world's staple food crops. In order to feed the growing world population, improving maize yield is a top priority for breeding programs. Ear traits are important determinants of maize yield, and are mostly quantitatively inherited. To date, many studies relating to the genetic and molecular dissection of ear traits have been performed; therefore, we explored the genetic loci of the ear traits that were previously discovered in the genome-wide association study (GWAS) and quantitative trait locus (QTL) mapping studies, and refined 153 QTL and 85 quantitative trait nucleotide (QTN) clusters. Next, we shortlisted 19 common intervals (CIs) that can be detected simultaneously by both QTL mapping and GWAS, and 40 CIs that have pleiotropic effects on ear traits. Further, we predicted the best possible candidate genes from 71 QTL and 25 QTN clusters that could be valuable for maize yield improvement.
Collapse
Affiliation(s)
- Zhenying Dong
- Research Institute of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; (Z.D.)
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Yanbo Wang
- Research Institute of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; (Z.D.)
| | - Jianxi Bao
- Research Institute of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; (Z.D.)
| | - Ya’nan Li
- Research Institute of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; (Z.D.)
| | - Zechao Yin
- Research Institute of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; (Z.D.)
| | - Yan Long
- Research Institute of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; (Z.D.)
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Xiangyuan Wan
- Research Institute of Biology and Agriculture, Shunde Innovation School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; (Z.D.)
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| |
Collapse
|
26
|
Li J, Wang X, Wei J, Miao X, Shang X, Li L. Genetic mapping and functional analysis of a classical tassel branch number mutant Tp2 in maize. FRONTIERS IN PLANT SCIENCE 2023; 14:1183697. [PMID: 37332723 PMCID: PMC10275490 DOI: 10.3389/fpls.2023.1183697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/16/2023] [Indexed: 06/20/2023]
Abstract
Tassel branch number is a key trait that contributes greatly to grain yield in maize (Zea mays). We obtained a classical mutant from maize genetics cooperation stock center, Teopod2 (Tp2), which exhibits severely decreased tassel branch. We conducted a comprehensive study, including phenotypic investigation, genetic mapping, transcriptome analysis, overexpression and CRISPR knock-out, and tsCUT&Tag of Tp2 gene for the molecular dissection of Tp2 mutant. Phenotypic investigation showed that it is a pleiotropic dominant mutant, which is mapped to an interval of approximately 139-kb on Chromosome 10 harboring two genes Zm00001d025786 and zma-miR156h. Transcriptome analysis showed that the relative expression level of zma-miR156h was significantly increased in mutants. Meanwhile, overexpression of zma-miR156h and knockout materials of ZmSBP13 exhibited significantly decreased tassel branch number, a similar phenotype with Tp2 mutant, suggesting that zma-miR156h is the causal gene of Tp2 and targets ZmSBP13 gene. Besides, the potential downstream genes of ZmSBP13 were uncovered and showed that it may target multiple proteins to regulate inflorescence structure. Overall, we characterized and cloned Tp2 mutant, and proposed a zma-miR156h-ZmSBP13 model functioning in regulating tassel branch development in maize, which is an essential measure to satisfy the increasing demands of cereals.
Collapse
Affiliation(s)
- Juan Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Xi Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Junfeng Wei
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Xinxin Miao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Xiaoyang Shang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Lin Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
27
|
Wang Y, Bi Y, Jiang F, Shaw RK, Sun J, Hu C, Guo R, Fan X. Mapping and Functional Analysis of QTL for Kernel Number per Row in Tropical and Temperate-Tropical Introgression Lines of Maize ( Zea mays L.). Curr Issues Mol Biol 2023; 45:4416-4430. [PMID: 37232750 DOI: 10.3390/cimb45050281] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/10/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023] Open
Abstract
Kernel number per row (KNR) is an essential component of maize (Zea mays L.) grain yield (GY), and understanding its genetic mechanism is crucial to improve GY. In this study, two F7 recombinant inbred line (RIL) populations were created using a temperate-tropical introgression line TML418 and a tropical inbred line CML312 as female parents and a backbone maize inbred line Ye107 as the common male parent. Bi-parental quantitative trait locus (QTL) mapping and genome-wide association analysis (GWAS) were then performed on 399 lines of the two maize RIL populations for KNR in two different environments using 4118 validated single nucleotide polymorphism (SNP) markers. This study aimed to: (1) detect molecular markers and/or the genomic regions associated with KNR; (2) identify the candidate genes controlling KNR; and (3) analyze whether the candidate genes are useful in improving GY. The authors reported a total of 7 QTLs tightly linked to KNR through bi-parental QTL mapping and identified 21 SNPs significantly associated with KNR through GWAS. Among these, a highly confident locus qKNR7-1 was detected at two locations, Dehong and Baoshan, with both mapping approaches. At this locus, three novel candidate genes (Zm00001d022202, Zm00001d022168, Zm00001d022169) were identified to be associated with KNR. These candidate genes were primarily involved in the processes related to compound metabolism, biosynthesis, protein modification, degradation, and denaturation, all of which were related to the inflorescence development affecting KNR. These three candidate genes were not reported previously and are considered new candidate genes for KNR. The progeny of the hybrid Ye107 × TML418 exhibited strong heterosis for KNR, which the authors believe might be related to qKNR7-1. This study provides a theoretical foundation for future research on the genetic mechanism underlying KNR in maize and the use of heterotic patterns to develop high-yielding hybrids.
Collapse
Affiliation(s)
- Yuling Wang
- Institute of Resource Plants, Yunnan University, Kunming 650504, China
| | - Yaqi Bi
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Fuyan Jiang
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Ranjan Kumar Shaw
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Jiachen Sun
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650500, China
| | - Can Hu
- Institute of Resource Plants, Yunnan University, Kunming 650504, China
| | - Ruijia Guo
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Xingming Fan
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| |
Collapse
|
28
|
Li Q, Liu N, Wu C. Novel insights into maize (Zea mays) development and organogenesis for agricultural optimization. PLANTA 2023; 257:94. [PMID: 37031436 DOI: 10.1007/s00425-023-04126-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
In maize, intrinsic hormone activities and sap fluxes facilitate organogenesis patterning and plant holistic development; these hormone movements should be a primary focus of developmental biology and agricultural optimization strategies. Maize (Zea mays) is an important crop plant with distinctive life history characteristics and structural features. Genetic studies have extended our knowledge of maize developmental processes, genetics, and molecular ecophysiology. In this review, the classical life cycle and life history strategies of maize are analyzed to identify spatiotemporal organogenesis properties and develop a definitive understanding of maize development. The actions of genes and hormones involved in maize organogenesis and sex determination, along with potential molecular mechanisms, are investigated, with findings suggesting central roles of auxin and cytokinins in regulating maize holistic development. Furthermore, investigation of morphological and structural characteristics of maize, particularly node ubiquity and the alternate attachment pattern of lateral organs, yields a novel regulatory model suggesting that maize organ initiation and subsequent development are derived from the stimulation and interaction of auxin and cytokinin fluxes. Propositions that hormone activities and sap flow pathways control organogenesis are thoroughly explored, and initiation and development processes of distinctive maize organs are discussed. Analysis of physiological factors driving hormone and sap movement implicates cues of whole-plant activity for hormone and sap fluxes to stimulate maize inflorescence initiation and organ identity determination. The physiological origins and biogenetic mechanisms underlying maize floral sex determination occurring at the tassel and ear spikelet are thoroughly investigated. The comprehensive outline of maize development and morphogenetic physiology developed in this review will enable farmers to optimize field management and will provide a reference for de novo crop domestication and germplasm improvement using genome editing biotechnologies, promoting agricultural optimization.
Collapse
Affiliation(s)
- Qinglin Li
- Crop Genesis and Novel Agronomy Center, Yangling, 712100, Shaanxi, China.
| | - Ning Liu
- Shandong ZhongnongTiantai Seed Co., Ltd, Pingyi, 273300, Shandong, China
| | - Chenglai Wu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
- College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| |
Collapse
|
29
|
Trentin HU, Yavuz R, Dermail A, Frei UK, Dutta S, Lübberstedt T. A Comparison between Inbred and Hybrid Maize Haploid Inducers. PLANTS (BASEL, SWITZERLAND) 2023; 12:1095. [PMID: 36903955 PMCID: PMC10005713 DOI: 10.3390/plants12051095] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/27/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
The effectiveness of haploid induction systems is regarded not only for high haploid induction rate (HIR) but also resource savings. Isolation fields are proposed for hybrid induction. However, efficient haploid production depends on inducer traits such as high HIR, abundant pollen production, and tall plants. Seven hybrid inducers and their respective parents were evaluated over three years for HIR, seeds set in cross-pollinations, plant and ear height, tassel size, and tassel branching. Mid-parent heterosis was estimated to quantify how much inducer traits improve in hybrids in comparison to their parents. Heterosis benefits hybrid inducers for plant height, ear height, and tassel size. Two hybrid inducers, BH201/LH82-Ped126 and BH201/LH82-Ped128, are promising for haploid induction in isolation fields. Hybrid inducers offer convenience and resource-effectiveness for haploid induction by means of improving plant vigor without compromising HIR.
Collapse
Affiliation(s)
| | - Recep Yavuz
- Department of Agronomy, Iowa State University, Ames, IA 50011, USA
| | - Abil Dermail
- Department of Agronomy, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand
| | | | - Somak Dutta
- Department of Statistics, Iowa State University, Ames, IA 50011, USA
| | | |
Collapse
|
30
|
Strable J, Unger-Wallace E, Aragón Raygoza A, Briggs S, Vollbrecht E. Interspecies transfer of RAMOSA1 orthologs and promoter cis sequences impacts maize inflorescence architecture. PLANT PHYSIOLOGY 2023; 191:1084-1101. [PMID: 36508348 PMCID: PMC9922432 DOI: 10.1093/plphys/kiac559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 06/26/2022] [Indexed: 06/18/2023]
Abstract
Grass inflorescences support floral structures that each bear a single grain, where variation in branch architecture directly impacts yield. The maize (Zea mays) RAMOSA1 (ZmRA1) transcription factor acts as a key regulator of inflorescence development by imposing branch meristem determinacy. Here, we show RA1 transcripts accumulate in boundary domains adjacent to spikelet meristems in sorghum (Sorghum bicolor, Sb) and green millet (Setaria viridis, Sv) inflorescences similar as in the developing maize tassel and ear. To evaluate the functional conservation of syntenic RA1 orthologs and promoter cis sequences in maize, sorghum, and setaria, we utilized interspecies gene transfer and assayed genetic complementation in a common inbred background by quantifying recovery of normal branching in highly ramified ra1-R mutants. A ZmRA1 transgene that includes endogenous upstream and downstream flanking sequences recovered normal tassel and ear branching in ra1-R. Interspecies expression of two transgene variants of the SbRA1 locus, modeled as the entire endogenous tandem duplication or just the nonframeshifted downstream copy, complemented ra1-R branching defects and induced unusual fasciation and branch patterns. The SvRA1 locus lacks conserved, upstream noncoding cis sequences found in maize and sorghum; interspecies expression of a SvRA1 transgene did not or only partially recovered normal inflorescence forms. Driving expression of the SvRA1 coding region by the ZmRA1 upstream region, however, recovered normal inflorescence morphology in ra1-R. These data leveraging interspecies gene transfer suggest that cis-encoded temporal regulation of RA1 expression is a key factor in modulating branch meristem determinacy that ultimately impacts grass inflorescence architecture.
Collapse
|
31
|
Zhao D, Chen P, Chen Z, Zhang L, Wang Y, Xu L. Genome-wide analysis of the LBD family in rice: Gene functions, structure and evolution. Comput Biol Med 2023; 153:106452. [PMID: 36603440 DOI: 10.1016/j.compbiomed.2022.106452] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/06/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022]
Abstract
Recent evidence suggests that LATERAL ORGAN BOUNDARIES DOMAIN (LBD) proteins are involved in different developmental processes of plants. Although the roles of LBD proteins in root development, leaf development and plant defense have been well summarized, their functional diversity and regulation mechanisms are still unclear. One of the reasons for the above problems is the lack of selection and classification of functional protein features of LBD genes. Combined with the existing research results, we found that LBD genes have similar features and mechanics and tend to be in the same phylogenetic branch. Research on the function of the LBD gene can expand our understanding of the diversity and function of LBD proteins. Therefore, to fully understand this large family, it is necessary to review functional studies through in-depth phylogenetic analysis of more genome-available species.
Collapse
Affiliation(s)
- Da Zhao
- School of Food and Drug, Shenzhen Polytechnic, Shenzhen Polytechnic, 7098 Liuxian Street, Shenzhen, 518055, China; Jiangxi Normal University, College of Life Sciences, 330022, China.
| | - Pingli Chen
- Guangdong Key Laboratory of New Technology in Rice Breeding, The Rice Research Institute of Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
| | - Zheng Chen
- Jiangxi Normal University, College of Life Sciences, 330022, China.
| | - Lijun Zhang
- School of Food and Drug, Shenzhen Polytechnic, Shenzhen Polytechnic, 7098 Liuxian Street, Shenzhen, 518055, China.
| | - Yansu Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, No.4 Block 2 North Jianshe Road, Chengdu, 610054, China.
| | - Lei Xu
- School of Electronics and Communication Engineering, Shenzhen Polytechnic, Shenzhen, 518055, China.
| |
Collapse
|
32
|
Li K, Tassinari A, Giuliani S, Rosignoli S, Urbany C, Tuberosa R, Salvi S. QTL mapping identifies novel major loci for kernel row number-associated ear fasciation, ear prolificacy and tillering in maize ( Zea mays L.). FRONTIERS IN PLANT SCIENCE 2023; 13:1017983. [PMID: 36704171 PMCID: PMC9871824 DOI: 10.3389/fpls.2022.1017983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 12/14/2022] [Indexed: 05/31/2023]
Abstract
Maize ear fasciation originates from excessive or abnormal proliferation of the ear meristem and usually manifests as flattened multiple-tipped ear and/or disordered kernel arrangement. Ear prolificacy expresses as multiple ears per plant or per node. Both ear fasciation and prolificacy can affect grain yield. The genetic control of the two traits was studied using two recombinant inbred line populations (B73 × Lo1016 and Lo964 × Lo1016) with Lo1016 and Lo964 as donors of ear fasciation and prolificacy, respectively. Ear fasciation-related traits, number of kernel rows (KRN), ear prolificacy and number of tillers were phenotyped in multi-year field experiments. Ear fasciation traits and KRN showed relatively high heritability (h 2 > 0.5) except ratio of ear diameters. For all ear fasciation-related traits, fasciation level positively correlated with KRN (0.30 ≤ r ≤ 0.68). Prolificacy and tillering were not correlated and their h 2 ranged from 0.41 to 0.78. QTL mapping identified four QTLs for ear fasciation, on chromosomes 1 (two QTLs), 5 and 7, the latter two overlapping with QTLs for number of kernel rows. Notably, at these QTLs, the Lo1016 alleles increased both ear fasciation and KRN across populations, thus showing potential breeding applicability. Four and five non-overlapping QTLs were mapped for ear prolificacy and tillering, respectively. Two ear fasciation QTLs, qFas1.2 and qFas7, overlapped with fasciation QTLs mapped in other studies and spanned compact plant2 and ramosa1 candidate genes. Our study identified novel ear fasciation loci and alleles positively affecting grain yield components, and ear prolificacy and tillering loci which are unexpectedly still segregating in elite maize materials, contributing useful information for genomics-assisted breeding programs.
Collapse
Affiliation(s)
- Kai Li
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Bologna, Italy
| | - Alberto Tassinari
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Bologna, Italy
| | - Silvia Giuliani
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Bologna, Italy
| | - Serena Rosignoli
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Bologna, Italy
| | | | - Roberto Tuberosa
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Bologna, Italy
| | - Silvio Salvi
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Bologna, Italy
| |
Collapse
|
33
|
Dang D, Guan Y, Zheng H, Zhang X, Zhang A, Wang H, Ruan Y, Qin L. Genome-Wide Association Study and Genomic Prediction on Plant Architecture Traits in Sweet Corn and Waxy Corn. PLANTS (BASEL, SWITZERLAND) 2023; 12:303. [PMID: 36679015 PMCID: PMC9867343 DOI: 10.3390/plants12020303] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/01/2023] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Sweet corn and waxy corn has a better taste and higher accumulated nutritional value than regular maize, and is widely planted and popularly consumed throughout the world. Plant height (PH), ear height (EH), and tassel branch number (TBN) are key plant architecture traits, which play an important role in improving grain yield in maize. In this study, a genome-wide association study (GWAS) and genomic prediction analysis were conducted on plant architecture traits of PH, EH, and TBN in a fresh edible maize population consisting of 190 sweet corn inbred lines and 287 waxy corn inbred lines. Phenotypic data from two locations showed high heritability for all three traits, with significant differences observed between sweet corn and waxy corn for both PH and EH. The differences between the three subgroups of sweet corn were not obvious for all three traits. Population structure and PCA analysis results divided the whole population into three subgroups, i.e., sweet corn, waxy corn, and the subgroup mixed with sweet and waxy corn. Analysis of GWAS was conducted with 278,592 SNPs obtained from resequencing data; 184, 45, and 68 significantly associated SNPs were detected for PH, EH, and TBN, respectively. The phenotypic variance explained (PVE) values of these significant SNPs ranged from 3.50% to 7.0%. The results of this study lay the foundation for further understanding the genetic basis of plant architecture traits in sweet corn and waxy corn. Genomic selection (GS) is a new approach for improving quantitative traits in large plant breeding populations that uses whole-genome molecular markers. The marker number and marker quality are essential for the application of GS in maize breeding. GWAS can choose the most related markers with the traits, so it can be used to improve the predictive accuracy of GS.
Collapse
Affiliation(s)
- Dongdong Dang
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
- CIMMYT-China Specialty Maize Research Center, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
- International Maize and Wheat Improvement Center (CIMMYT), El Batan, Texcoco 56237, Mexico
| | - Yuan Guan
- CIMMYT-China Specialty Maize Research Center, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Hongjian Zheng
- CIMMYT-China Specialty Maize Research Center, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Xuecai Zhang
- International Maize and Wheat Improvement Center (CIMMYT), El Batan, Texcoco 56237, Mexico
| | - Ao Zhang
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Hui Wang
- CIMMYT-China Specialty Maize Research Center, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Yanye Ruan
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Li Qin
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
34
|
Yan P, Li W, Zhou E, Xing Y, Li B, Liu J, Zhang Z, Ding D, Fu Z, Xie H, Tang J. Integrating BSA-Seq with RNA-Seq Reveals a Novel Fasciated Ear5 Mutant in Maize. Int J Mol Sci 2023; 24:ijms24021182. [PMID: 36674701 PMCID: PMC9867142 DOI: 10.3390/ijms24021182] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Increasing grain yield is required to meet the rapidly expanding demands for food, feed, and fuel. Inflorescence meristems are central to plant growth and development. However, the question concerning whether inflorescence development can be regulated to improve grain yield remains unclear. Here, we describe a naturally occurring single recessive mutation called fea5 that can increase grain yield in maize. Using bulk segregant analysis sequencing (BSA-seq), the candidate region was initially mapped to a large region on chromosome 4 (4.68 Mb-11.26 Mb). Transcriptome sequencing (RNA-seq) revealed a total of 1246 differentially expressed genes (DEGs), of which 835 were up-regulated and 411 were down-regulated. Further analysis revealed the enrichment of DEGs in phytohormone signal transduction. Consistently, phytohormone profiling indicated that auxin (IAA), jasmonic acid (JA), ethylene (ETH), and cytokinin (CK) levels increased significantly, whereas the gibberellin (GA) level decreased significantly in fea5. By integrating BSA-seq with RNA-seq, we identified Zm00001d048841 as the most likely candidate gene. Our results provide valuable insight into this new germplasm resource and the molecular mechanism underlying fasciated ears that produce a higher kernel row number in maize.
Collapse
Affiliation(s)
- Pengshuai Yan
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Weihua Li
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
- The Shennong Laboratory, Zhengzhou 450002, China
- Correspondence: (W.L.); (J.T.); Tel.: +86-371-56990188 (W.L.); +86-371-56990336 (J.T.)
| | - Enxiang Zhou
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Ye Xing
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Bing Li
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Jing Liu
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Zhanhui Zhang
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Dong Ding
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Zhiyuan Fu
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Huiling Xie
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Jihua Tang
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
- The Shennong Laboratory, Zhengzhou 450002, China
- Correspondence: (W.L.); (J.T.); Tel.: +86-371-56990188 (W.L.); +86-371-56990336 (J.T.)
| |
Collapse
|
35
|
Cuellar-Garrido LF, Ruiz-Sanchez E, Vargas-Ponce O, Whipple CJ. Ontogeny and anatomy of Bouteloua (Poaceae: Chloridoideae) species display a basipetal branch formation and a novel modified leaf structure in grasses. ANNALS OF BOTANY 2022; 130:737-747. [PMID: 35961673 PMCID: PMC9670754 DOI: 10.1093/aob/mcac104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND AIMS Shoot ontogenesis in grasses follows a transition from a vegetative phase into a reproductive phase. Current studies provide insight into how branch and spikelet formation occur during the reproductive phase. However, these studies do not explain all the complex diversity of grass inflorescence forms and are mostly focused on model grasses. Moreover, truncated inflorescences of the non-model grass genus Urochloa (Panicoideae) with formation of primary branches have basipetal initiation of branches. Bouteloua species (Chloridoideae) are non-model grasses that form truncated inflorescences of primary branches with apical vestiges of uncertain homology at the tips of branching events and sterile florets above the lowermost fertile floret. Sterile florets are reduced to rudimentary lemmas composed of three large awns diverging from an awn column. Conflict about the awn column identity of this rudimentary lemma is often addressed in species descriptions of this genus. We test if Bouteloua species can display basipetal initiation of branches and explore the identity of vestiges and the awn column of rudimentary lemmas. METHODS We surveyed the inflorescence ontogeny and branch/awn anatomy of Bouteloua species and compared results with recent ontogenetic studies of chloridoids. KEY RESULTS Bouteloua arizonica has florets with basipetal maturation. Branches display basipetal branch initiation and maturation. Branch vestiges are formed laterally by meristems during early branching events. The spikelet meristem forms the awn column of rudimentary lemmas. Vestiges and sterile floret awns have anatomical similarities to C4 leaves. CONCLUSIONS Basipetal initiation of branches is a novel feature for Chloridoideae grasses. Branch vestiges are novel vegetative grass structures. Sterile floret awn columns are likely to be extensions of the rachilla.
Collapse
Affiliation(s)
- Luis Fernando Cuellar-Garrido
- Doctorado en Ciencias en Biosistemática, Ecología y Manejo de Recursos Naturales y Agrícolas (BEMARENA), Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Camino Ing. Ramón Padilla Sánchez 2100, Zapopan, Jalisco 45200, México
- Laboratorio Nacional de Identificación y Caracterización Vegetal, Instituto de Botánica, Universidad de Guadalajara, Camino Ing. Ramón Padilla Sánchez 2100, Zapopan, Jalisco 45200, México
| | - Eduardo Ruiz-Sanchez
- Departamento de Botánica y Zoología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Camino Ing. Ramón Padilla Sánchez 2100, Zapopan, Jalisco 45200, México
- Laboratorio Nacional de Identificación y Caracterización Vegetal, Instituto de Botánica, Universidad de Guadalajara, Camino Ing. Ramón Padilla Sánchez 2100, Zapopan, Jalisco 45200, México
| | - Ofelia Vargas-Ponce
- Departamento de Botánica y Zoología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Camino Ing. Ramón Padilla Sánchez 2100, Zapopan, Jalisco 45200, México
- Laboratorio Nacional de Identificación y Caracterización Vegetal, Instituto de Botánica, Universidad de Guadalajara, Camino Ing. Ramón Padilla Sánchez 2100, Zapopan, Jalisco 45200, México
| | - Clinton J Whipple
- Department of Biology, Brigham Young University, 4102 LSB, Provo, UT 84602, USA
| |
Collapse
|
36
|
Li X, Ran R, Chen G, Zhao P. Genomic Variation Underlying the Breeding Selection of Quinoa Varieties Longli-4 and CA3-1 in China. Int J Mol Sci 2022; 23:14030. [PMID: 36430511 PMCID: PMC9693436 DOI: 10.3390/ijms232214030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/05/2022] [Accepted: 11/06/2022] [Indexed: 11/16/2022] Open
Abstract
Quinoa (Chenopodium quinoa) is a well-known climate-resilient crop and has been introduced into multiple marginal lands across the world, including China, to improve food security and/or balanced nutrient supplies. Conventional breeding has been widely applied in the selection and breeding of quinoa varieties in China since 1980s; however, few studies have been implemented on the genetic variances among different varieties developed by diversity breeding objectives. In this study, the phenotypic and genetic differences between two varieties (Longli-4 and CA3-1) from China were systematically analyzed. A total of 407,651 and 2,731,411 single nucleotide polymorphisms (SNPs) and 212,724 and 587,935 small insertion and deletion (INDELs) were detected for Longli-4 and CA3-1, respectively, when compared with the reference genome of PI614886. The SNPs/INDELs were unevenly distributed across each chromosome for both varieties. There were 143,996 SNPs and 83,410 INDELs shared between Longli-4 and CA3-1, accounting for 4% of the total variances. The variation was then screened based on the SNP effects. There were 818 and 73 genes with the variety-specific non-synonymous and stop-gain variation in Longli-4, whereas there were 13,701 and 733 genes in CA3-1. Specifically, 3501 genes with the non-synonymous variation and 74 genes with the stop-gain variation were found in both Longli-4 and CA3-1. These results suggest that convergent selection occurred during the different breeding processes. A set of candidate genes related to agronomic traits and domestication were further selected to detect the genetic divergence in detail in the two varieties. Only one domestication gene was identified having Longli-4-specific stop-gain variation. Twelve candidate genes related to betalain (1), flowering (4), seed size (2), domestication (1), and saponin (4) were identified having CA3-1-specific stop-gain variation. Interestingly, one seed size gene homologous of CKX1 (cytokinin oxidase/dehydrogenase 1) had the stop-gain variation in both varieties. This research will therefore provide guidance for the molecular-assisted breeding in quinoa.
Collapse
Affiliation(s)
- Xiaofeng Li
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruilan Ran
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guoxiong Chen
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Pengshan Zhao
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- Shapotou Desert Research & Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
37
|
Du Y, Wu B, Xing Y, Zhang Z. Conservation and divergence: Regulatory networks underlying reproductive branching in rice and maize. J Adv Res 2022; 41:179-190. [PMID: 36328747 PMCID: PMC9637487 DOI: 10.1016/j.jare.2022.01.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/27/2021] [Accepted: 01/26/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Cereal crops are a major source of raw food and nutrition for humans worldwide. Inflorescence of cereal crops is their reproductive organ, which also contributes to crop productivity. The branching pattern in flowering plant species not only determines inflorescence architecture but also determines the grain yield. There are good reviews describing the grass inflorescence architecture contributing to the final grain yield. However, very few discuss the aspects of inflorescence branching. AIM OF REVIEW This review aimed at systematically and comprehensively summarizing the latest progress in the field of conservation and divergence of genetic regulatory network that controls inflorescence branching in maize and rice, provide strategies to efficiently utilize the achievements in reproductive branching for crop yield improvement, and suggest a potential regulatory network underlying the inflorescence branching and vegetative branching system. KEY SCIENTIFIC CONCEPTS OF REVIEW Inflorescence branching is the consequence of a series of developmental events including the initiation, outgrowth, determinacy, and identity of reproductive axillary meristems, and it is controlled by a complex functional hierarchy of genetic networks. Initially, we compared the inflorescence architecture of maize and rice; then, we reviewed the genetic regulatory pathways controlling the inflorescence meristem size, bud initiation, and outgrowth, and the key transition steps that shape the inflorescence branching in maize and rice; additionally, we summarized strategies to effectively apply the recent advances in inflorescence branching for crop yield improvement. Finally, we discussed how the newly discovered hormones coordinate the regulation of inflorescence branching and yield traits. Furthermore, we discussed the possible reason behind distinct regulatory pathways for vegetative and inflorescence branching.
Collapse
Affiliation(s)
- Yanfang Du
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Bi Wu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongzhong Xing
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China.
| | - Zuxin Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
38
|
Fei X, Wang Y, Zheng Y, Shen X, E L, Ding J, Lai J, Song W, Zhao H. Identification of two new QTLs of maize (Zea mays L.) underlying kernel row number using the HNAU-NAM1 population. BMC Genomics 2022; 23:593. [PMID: 35971070 PMCID: PMC9380338 DOI: 10.1186/s12864-022-08793-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 07/14/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Maize kernel row number (KRN) is one of the most important yield traits and has changed greatly during maize domestication and selection. Elucidating the genetic basis of KRN will be helpful to improve grain yield in maize. RESULTS Here, we measured KRN in four environments using a nested association mapping (NAM) population named HNAU-NAM1 with 1,617 recombinant inbred lines (RILs) that were derived from 12 maize inbred lines with a common parent, GEMS41. Then, five consensus quantitative trait loci (QTLs) distributing on four chromosomes were identified in at least three environments along with the best linear unbiased prediction (BLUP) values by the joint linkage mapping (JLM) method. These QTLs were further validated by the separate linkage mapping (SLM) and genome-wide association study (GWAS) methods. Three KRN genes cloned through the QTL assay were found in three of the five consensus QTLs, including qKRN1.1, qKRN2.1 and qKRN4.1. Two new QTLs of KRN, qKRN4.2 and qKRN9.1, were also identified. On the basis of public RNA-seq and genome annotation data, five genes highly expressed in ear tissue were considered candidate genes contributing to KRN. CONCLUSIONS This study carried out a comprehensive analysis of the genetic architecture of KRN by using a new NAM population under multiple environments. The present results provide solid information for understanding the genetic components underlying KRN and candidate genes in qKRN4.2 and qKRN9.1. Single-nucleotide polymorphisms (SNPs) closely linked to qKRN4.2 and qKRN9.1 could be used to improve inbred yield during molecular breeding in maize.
Collapse
Affiliation(s)
- Xiaohong Fei
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing, 100193, People's Republic of China
- Department of Plant Genetics and Breeding, National Maize Improvement Center, China Agricultural University, Beijing, 100193, People's Republic of China
- Longping Agriculture Science Co. Ltd, Beijing, 100004, People's Republic of China
| | - Yifei Wang
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing, 100193, People's Republic of China
- Department of Plant Genetics and Breeding, National Maize Improvement Center, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Yunxiao Zheng
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing, 100193, People's Republic of China
- Department of Plant Genetics and Breeding, National Maize Improvement Center, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Xiaomeng Shen
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing, 100193, People's Republic of China
- Department of Plant Genetics and Breeding, National Maize Improvement Center, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Lizhu E
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing, 100193, People's Republic of China
- Department of Plant Genetics and Breeding, National Maize Improvement Center, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Junqiang Ding
- State Key Laboratory of Wheat and Maize Crop Science and Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou, 450046, People's Republic of China
| | - Jinsheng Lai
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing, 100193, People's Republic of China
- Department of Plant Genetics and Breeding, National Maize Improvement Center, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Weibin Song
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing, 100193, People's Republic of China.
- Department of Plant Genetics and Breeding, National Maize Improvement Center, China Agricultural University, Beijing, 100193, People's Republic of China.
| | - Haiming Zhao
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing, 100193, People's Republic of China.
- Department of Plant Genetics and Breeding, National Maize Improvement Center, China Agricultural University, Beijing, 100193, People's Republic of China.
| |
Collapse
|
39
|
McSteen P, Kellogg EA. Molecular, cellular, and developmental foundations of grass diversity. Science 2022; 377:599-602. [PMID: 35926032 DOI: 10.1126/science.abo5035] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Humans have cultivated grasses for food, feed, beverages, and construction materials for millennia. Grasses also dominate the landscape in vast parts of the world, where they have adapted morphologically and physiologically, diversifying to form ~12,000 species. Sequences of hundreds of grass genomes show that they are essentially collinear; nonetheless, not all species have the same complement of genes. Here, we focus on the molecular, cellular, and developmental bases of grain yield and dispersal-traits that are essential for domestication. Distinct genes, networks, and pathways were selected in different crop species, reflecting underlying genomic diversity. With increasing genomic resources becoming available in nondomesticated species, we anticipate advances in coming years that illuminate the ecological and economic success of the grasses.
Collapse
Affiliation(s)
- Paula McSteen
- Division of Biological Sciences, Bond Life Sciences Center, Interdisciplinary Plant Group, University of Missouri, 1201 Rollins Street, Columbia, MO 65211, USA
| | | |
Collapse
|
40
|
Zhang L, MacQueen A, Weng X, Behrman KD, Bonnette J, Reilley JL, Rouquette FM, Fay PA, Wu Y, Fritschi FB, Mitchell RB, Lowry DB, Boe AR, Juenger TE. The genetic basis for panicle trait variation in switchgrass (Panicum virgatum). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:2577-2592. [PMID: 35780149 PMCID: PMC9325832 DOI: 10.1007/s00122-022-04096-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/31/2022] [Indexed: 06/15/2023]
Abstract
We investigate the genetic basis of panicle architecture in switchgrass in two mapping populations across a latitudinal gradient, and find many stable, repeatable genetic effects and limited genetic interactions with the environment. Grass species exhibit large diversity in panicle architecture influenced by genes, the environment, and their interaction. The genetic study of panicle architecture in perennial grasses is limited. In this study, we evaluate the genetic basis of panicle architecture including panicle length, primary branching number, and secondary branching number in an outcrossed switchgrass QTL population grown across ten field sites in the central USA through multi-environment mixed QTL analysis. We also evaluate genetic effects in a diversity panel of switchgrass grown at three of the ten field sites using genome-wide association (GWAS) and multivariate adaptive shrinkage. Furthermore, we search for candidate genes underlying panicle traits in both of these independent mapping populations. Overall, 18 QTL were detected in the QTL mapping population for the three panicle traits, and 146 unlinked genomic regions in the diversity panel affected one or more panicle trait. Twelve of the QTL exhibited consistent effects (i.e., no QTL by environment interactions or no QTL × E), and most (four of six) of the effects with QTL × E exhibited site-specific effects. Most (59.3%) significant partially linked diversity panel SNPs had significant effects in all panicle traits and all field sites and showed pervasive pleiotropy and limited environment interactions. Panicle QTL co-localized with significant SNPs found using GWAS, providing additional power to distinguish between true and false associations in the diversity panel.
Collapse
Affiliation(s)
- Li Zhang
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, 78712, USA.
| | - Alice MacQueen
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, 78712, USA
| | - Xiaoyu Weng
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, 78712, USA
| | - Kathrine D Behrman
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, 78712, USA
| | - Jason Bonnette
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, 78712, USA
| | - John L Reilley
- Kika de la Garza Plant Materials Center, National Resources Conservation Service, US Department of Agriculture, Kingsville, TX, 78363, USA
| | - Francis M Rouquette
- Texas A&M AgriLife Research and Extension Center, Texas A&M University, Overton, TX, 75684, USA
| | - Philip A Fay
- Grassland, Soil and Water Research Laboratory, Agricultural Research Service, US Department of Agriculture, Temple, TX, 76502, USA
| | - Yanqi Wu
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Felix B Fritschi
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Robert B Mitchell
- Wheat, Sorghum, and Forage Research Unit, Agricultural Research Service, US Department of Agriculture, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - David B Lowry
- Department of Plant Biology and DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 48824, USA
| | - Arvid R Boe
- Departmentof Agronomy, Horticulture & Plant Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Thomas E Juenger
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
41
|
Kellogg EA. Genetic control of branching patterns in grass inflorescences. THE PLANT CELL 2022; 34:2518-2533. [PMID: 35258600 PMCID: PMC9252490 DOI: 10.1093/plcell/koac080] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/02/2022] [Indexed: 05/13/2023]
Abstract
Inflorescence branching in the grasses controls the number of florets and hence the number of seeds. Recent data on the underlying genetics come primarily from rice and maize, although new data are accumulating in other systems as well. This review focuses on a window in developmental time from the production of primary branches by the inflorescence meristem through to the production of glumes, which indicate the transition to producing a spikelet. Several major developmental regulatory modules appear to be conserved among most or all grasses. Placement and development of primary branches are controlled by conserved auxin regulatory genes. Subtending bracts are repressed by a network including TASSELSHEATH4, and axillary branch meristems are regulated largely by signaling centers that are adjacent to but not within the meristems themselves. Gradients of SQUAMOSA-PROMOTER BINDING-like and APETALA2-like proteins and their microRNA regulators extend along the inflorescence axis and the branches, governing the transition from production of branches to production of spikelets. The relative speed of this transition determines the extent of secondary and higher order branching. This inflorescence regulatory network is modified within individual species, particularly as regards formation of secondary branches. Differences between species are caused both by modifications of gene expression and regulators and by presence or absence of critical genes. The unified networks described here may provide tools for investigating orphan crops and grasses other than the well-studied maize and rice.
Collapse
|
42
|
Xiao Y, Guo J, Dong Z, Richardson A, Patterson E, Mangrum S, Bybee S, Bertolini E, Bartlett M, Chuck G, Eveland AL, Scanlon MJ, Whipple C. Boundary domain genes were recruited to suppress bract growth and promote branching in maize. SCIENCE ADVANCES 2022; 8:eabm6835. [PMID: 35704576 PMCID: PMC9200273 DOI: 10.1126/sciadv.abm6835] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Grass inflorescence development is diverse and complex and involves sophisticated but poorly understood interactions of genes regulating branch determinacy and leaf growth. Here, we use a combination of transcript profiling and genetic and phylogenetic analyses to investigate tasselsheath1 (tsh1) and tsh4, two maize genes that simultaneously suppress inflorescence leaf growth and promote branching. We identify a regulatory network of inflorescence leaf suppression that involves the phase change gene tsh4 upstream of tsh1 and the ligule identity gene liguleless2 (lg2). We also find that a series of duplications in the tsh1 gene lineage facilitated its shift from boundary domain in nongrasses to suppressed inflorescence leaves of grasses. Collectively, these results suggest that the boundary domain genes tsh1 and lg2 were recruited to inflorescence leaves where they suppress growth and regulate a nonautonomous signaling center that promotes inflorescence branching, an important component of yield in cereal grasses.
Collapse
Affiliation(s)
- Yuguo Xiao
- Department of Biology, Brigham Young University, 4102 LSB, Provo, UT 84602, USA
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Jinyan Guo
- Department of Biology, Brigham Young University, 4102 LSB, Provo, UT 84602, USA
| | - Zhaobin Dong
- Plant Gene Expression Center, Albany, CA 94710, USA
| | - Annis Richardson
- Plant Gene Expression Center, Albany, CA 94710, USA
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, Scotland, UK
| | - Erin Patterson
- Biology Department, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Sidney Mangrum
- Department of Biology, Brigham Young University, 4102 LSB, Provo, UT 84602, USA
| | - Seth Bybee
- Department of Biology, Brigham Young University, 4102 LSB, Provo, UT 84602, USA
| | | | - Madelaine Bartlett
- Biology Department, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - George Chuck
- Plant Gene Expression Center, Albany, CA 94710, USA
| | | | - Michael J. Scanlon
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Clinton Whipple
- Department of Biology, Brigham Young University, 4102 LSB, Provo, UT 84602, USA
- Corresponding author.
| |
Collapse
|
43
|
Zhong J, Kong F. The control of compound inflorescences: insights from grasses and legumes. TRENDS IN PLANT SCIENCE 2022; 27:564-576. [PMID: 34973922 DOI: 10.1016/j.tplants.2021.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 11/16/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
A major challenge in biology is to understand how organisms have increased developmental complexity during evolution. Inflorescences, with remarkable variation in branching systems, are a fitting model to understand architectural complexity. Inflorescences bear flowers that may become fruits and/or seeds, impacting crop productivity and species fitness. Great advances have been achieved in understanding the regulation of complex inflorescences, particularly in economically and ecologically important grasses and legumes. Surprisingly, a synthesis is still lacking regarding the common or distinct principles underlying the regulation of inflorescence complexity. Here, we synthesize the similarities and differences in the regulation of compound inflorescences in grasses and legumes, and propose that the emergence of novel higher-order repetitive modules is key to the evolution of inflorescence complexity.
Collapse
Affiliation(s)
- Jinshun Zhong
- School of Life Sciences, South China Agricultural University, Wushan Street 483, Guangzhou 510642, China; Institute for Plant Genetics, Heinrich-Heine University, Universitätsstraße 1, D-40225 Düsseldorf, Germany; Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-50829 Köln, Germany; Cluster of Excellence on Plant Sciences, 'SMART Plants for Tomorrow's Needs', Heinrich-Heine University, Universitätsstraße 1, D-40225 Düsseldorf, Germany.
| | - Fanjiang Kong
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
44
|
Zhu C, Box MS, Thiruppathi D, Hu H, Yu Y, Martin C, Doust AN, McSteen P, Kellogg EA. Pleiotropic and nonredundant effects of an auxin importer in Setaria and maize. PLANT PHYSIOLOGY 2022; 189:715-734. [PMID: 35285930 DOI: 10.1101/2021.10.14.464408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 02/16/2022] [Indexed: 05/26/2023]
Abstract
Directional transport of auxin is critical for inflorescence and floral development in flowering plants, but the role of auxin influx carriers (AUX1 proteins) has been largely overlooked. Taking advantage of available AUX1 mutants in green millet (Setaria viridis) and maize (Zea mays), we uncover previously unreported aspects of plant development that are affected by auxin influx, including higher order branches in the inflorescence, stigma branch number, glume (floral bract) development, and plant fertility. However, disruption of auxin flux does not affect all parts of the plant, with little obvious effect on inflorescence meristem size, time to flowering, and anther morphology. In double mutant studies in maize, disruptions of ZmAUX1 also affect vegetative development. A green fluorescent protein (GFP)-tagged construct of the Setaria AUX1 protein Sparse Panicle1 (SPP1) under its native promoter showed that SPP1 localizes to the plasma membrane of outer tissue layers in both roots and inflorescences, and accumulates specifically in inflorescence branch meristems, consistent with the mutant phenotype and expected auxin maxima. RNA-seq analysis indicated that most gene expression modules are conserved between mutant and wild-type plants, with only a few hundred genes differentially expressed in spp1 inflorescences. Using clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 technology, we disrupted SPP1 and the other four AUX1 homologs in S. viridis. SPP1 has a larger effect on inflorescence development than the others, although all contribute to plant height, tiller formation, and leaf and root development. The AUX1 importers are thus not fully redundant in S. viridis. Our detailed phenotypic characterization plus a stable GFP-tagged line offer tools for future dissection of the function of auxin influx proteins.
Collapse
Affiliation(s)
- Chuanmei Zhu
- Donald Danforth Plant Science Center, St Louis, Missouri 63132, USA
| | - Mathew S Box
- Donald Danforth Plant Science Center, St Louis, Missouri 63132, USA
| | | | - Hao Hu
- Department of Plant Biology, Ecology, and Evolution, Oklahoma State University, Oklahoma 74078, USA
| | - Yunqing Yu
- Donald Danforth Plant Science Center, St Louis, Missouri 63132, USA
| | - Callista Martin
- Donald Danforth Plant Science Center, St Louis, Missouri 63132, USA
| | - Andrew N Doust
- Department of Plant Biology, Ecology, and Evolution, Oklahoma State University, Oklahoma 74078, USA
| | - Paula McSteen
- Division of Biological Sciences, Interdisciplinary Plant Group, and Missouri Maize Center, University of Missouri, Columbia, Missouri 65211, USA
| | | |
Collapse
|
45
|
Zhu C, Box MS, Thiruppathi D, Hu H, Yu Y, Martin C, Doust AN, McSteen P, Kellogg EA. Pleiotropic and nonredundant effects of an auxin importer in Setaria and maize. PLANT PHYSIOLOGY 2022; 189:715-734. [PMID: 35285930 PMCID: PMC9157071 DOI: 10.1093/plphys/kiac115] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Directional transport of auxin is critical for inflorescence and floral development in flowering plants, but the role of auxin influx carriers (AUX1 proteins) has been largely overlooked. Taking advantage of available AUX1 mutants in green millet (Setaria viridis) and maize (Zea mays), we uncover previously unreported aspects of plant development that are affected by auxin influx, including higher order branches in the inflorescence, stigma branch number, glume (floral bract) development, and plant fertility. However, disruption of auxin flux does not affect all parts of the plant, with little obvious effect on inflorescence meristem size, time to flowering, and anther morphology. In double mutant studies in maize, disruptions of ZmAUX1 also affect vegetative development. A green fluorescent protein (GFP)-tagged construct of the Setaria AUX1 protein Sparse Panicle1 (SPP1) under its native promoter showed that SPP1 localizes to the plasma membrane of outer tissue layers in both roots and inflorescences, and accumulates specifically in inflorescence branch meristems, consistent with the mutant phenotype and expected auxin maxima. RNA-seq analysis indicated that most gene expression modules are conserved between mutant and wild-type plants, with only a few hundred genes differentially expressed in spp1 inflorescences. Using clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 technology, we disrupted SPP1 and the other four AUX1 homologs in S. viridis. SPP1 has a larger effect on inflorescence development than the others, although all contribute to plant height, tiller formation, and leaf and root development. The AUX1 importers are thus not fully redundant in S. viridis. Our detailed phenotypic characterization plus a stable GFP-tagged line offer tools for future dissection of the function of auxin influx proteins.
Collapse
Affiliation(s)
- Chuanmei Zhu
- Donald Danforth Plant Science Center, St Louis, Missouri 63132, USA
| | - Mathew S Box
- Donald Danforth Plant Science Center, St Louis, Missouri 63132, USA
| | | | - Hao Hu
- Department of Plant Biology, Ecology, and Evolution, Oklahoma State University, Oklahoma 74078, USA
| | - Yunqing Yu
- Donald Danforth Plant Science Center, St Louis, Missouri 63132, USA
| | - Callista Martin
- Donald Danforth Plant Science Center, St Louis, Missouri 63132, USA
| | - Andrew N Doust
- Department of Plant Biology, Ecology, and Evolution, Oklahoma State University, Oklahoma 74078, USA
| | - Paula McSteen
- Division of Biological Sciences, Interdisciplinary Plant Group, and Missouri Maize Center, University of Missouri, Columbia, Missouri 65211, USA
| | | |
Collapse
|
46
|
Wang Y, Bao J, Wei X, Wu S, Fang C, Li Z, Qi Y, Gao Y, Dong Z, Wan X. Genetic Structure and Molecular Mechanisms Underlying the Formation of Tassel, Anther, and Pollen in the Male Inflorescence of Maize ( Zea mays L.). Cells 2022; 11:1753. [PMID: 35681448 PMCID: PMC9179574 DOI: 10.3390/cells11111753] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 02/08/2023] Open
Abstract
Maize tassel is the male reproductive organ which is located at the plant's apex; both its morphological structure and fertility have a profound impact on maize grain yield. More than 40 functional genes regulating the complex tassel traits have been cloned up to now. However, the detailed molecular mechanisms underlying the whole process, from male inflorescence meristem initiation to tassel morphogenesis, are seldom discussed. Here, we summarize the male inflorescence developmental genes and construct a molecular regulatory network to further reveal the molecular mechanisms underlying tassel-trait formation in maize. Meanwhile, as one of the most frequently studied quantitative traits, hundreds of quantitative trait loci (QTLs) and thousands of quantitative trait nucleotides (QTNs) related to tassel morphology have been identified so far. To reveal the genetic structure of tassel traits, we constructed a consensus physical map for tassel traits by summarizing the genetic studies conducted over the past 20 years, and identified 97 hotspot intervals (HSIs) that can be repeatedly mapped in different labs, which will be helpful for marker-assisted selection (MAS) in improving maize yield as well as for providing theoretical guidance in the subsequent identification of the functional genes modulating tassel morphology. In addition, maize is one of the most successful crops in utilizing heterosis; mining of the genic male sterility (GMS) genes is crucial in developing biotechnology-based male-sterility (BMS) systems for seed production and hybrid breeding. In maize, more than 30 GMS genes have been isolated and characterized, and at least 15 GMS genes have been promptly validated by CRISPR/Cas9 mutagenesis within the past two years. We thus summarize the maize GMS genes and further update the molecular regulatory networks underlying male fertility in maize. Taken together, the identified HSIs, genes and molecular mechanisms underlying tassel morphological structure and male fertility are useful for guiding the subsequent cloning of functional genes and for molecular design breeding in maize. Finally, the strategies concerning efficient and rapid isolation of genes controlling tassel morphological structure and male fertility and their application in maize molecular breeding are also discussed.
Collapse
Affiliation(s)
- Yanbo Wang
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Graduate School, Research Center of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, China; (Y.W.); (J.B.); (X.W.); (S.W.); (C.F.); (Y.Q.); (Y.G.)
| | - Jianxi Bao
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Graduate School, Research Center of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, China; (Y.W.); (J.B.); (X.W.); (S.W.); (C.F.); (Y.Q.); (Y.G.)
| | - Xun Wei
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Graduate School, Research Center of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, China; (Y.W.); (J.B.); (X.W.); (S.W.); (C.F.); (Y.Q.); (Y.G.)
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co., Ltd., Beijing 100192, China;
| | - Suowei Wu
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Graduate School, Research Center of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, China; (Y.W.); (J.B.); (X.W.); (S.W.); (C.F.); (Y.Q.); (Y.G.)
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co., Ltd., Beijing 100192, China;
| | - Chaowei Fang
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Graduate School, Research Center of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, China; (Y.W.); (J.B.); (X.W.); (S.W.); (C.F.); (Y.Q.); (Y.G.)
| | - Ziwen Li
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co., Ltd., Beijing 100192, China;
| | - Yuchen Qi
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Graduate School, Research Center of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, China; (Y.W.); (J.B.); (X.W.); (S.W.); (C.F.); (Y.Q.); (Y.G.)
| | - Yuexin Gao
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Graduate School, Research Center of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, China; (Y.W.); (J.B.); (X.W.); (S.W.); (C.F.); (Y.Q.); (Y.G.)
| | - Zhenying Dong
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Graduate School, Research Center of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, China; (Y.W.); (J.B.); (X.W.); (S.W.); (C.F.); (Y.Q.); (Y.G.)
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co., Ltd., Beijing 100192, China;
| | - Xiangyuan Wan
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Graduate School, Research Center of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, China; (Y.W.); (J.B.); (X.W.); (S.W.); (C.F.); (Y.Q.); (Y.G.)
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co., Ltd., Beijing 100192, China;
| |
Collapse
|
47
|
Pei Y, Deng Y, Zhang H, Zhang Z, Liu J, Chen Z, Cai D, Li K, Du Y, Zang J, Xin P, Chu J, Chen Y, Zhao L, Liu J, Chen H. EAR APICAL DEGENERATION1 regulates maize ear development by maintaining malate supply for apical inflorescence. THE PLANT CELL 2022; 34:2222-2241. [PMID: 35294020 PMCID: PMC9134072 DOI: 10.1093/plcell/koac093] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/12/2022] [Indexed: 05/12/2023]
Abstract
Ear length (EL) is a key trait that contributes greatly to grain yield in maize (Zea mays). While numerous quantitative trait loci for EL have been identified, few causal genes have been studied in detail. Here we report the characterization of ear apical degeneration1 (ead1) exhibiting strikingly shorter ears and the map-based cloning of the casual gene EAD1. EAD1 is preferentially expressed in the xylem of immature ears and encodes an aluminum-activated malate transporter localizing to the plasma membrane. We show that EAD1 is a malate efflux transporter and loss of EAD1 leads to lower malate contents in the apical part of developing inflorescences. Exogenous injections of malate rescued the shortened ears of ead1. These results demonstrate that EAD1 plays essential roles in regulating maize ear development by delivering malate through xylem vessels to the apical part of the immature ear. Overexpression of EAD1 led to greater EL and kernel number per row and the EAD1 genotype showed a positive association with EL in two different genetic segregating populations. Our work elucidates the critical role of EAD1 in malate-mediated female inflorescence development and provides a promising genetic resource for enhancing maize grain yield.
Collapse
Affiliation(s)
| | | | - Huairen Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhaogui Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jie Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Zhibin Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Darun Cai
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Kai Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yimo Du
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Jie Zang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Peiyong Xin
- National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinfang Chu
- National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuhang Chen
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100039, China
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Li Zhao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Juan Liu
- Author for correspondence: (H.C.); (J.L.)
| | | |
Collapse
|
48
|
Li M, Zheng Y, Cui D, Du Y, Zhang D, Sun W, Du H, Zhang Z. GIF1 controls ear inflorescence architecture and floral development by regulating key genes in hormone biosynthesis and meristem determinacy in maize. BMC PLANT BIOLOGY 2022; 22:127. [PMID: 35303806 PMCID: PMC8932133 DOI: 10.1186/s12870-022-03517-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/07/2022] [Indexed: 05/30/2023]
Abstract
BACKGROUND Inflorescence architecture and floral development in flowering plants are determined by genetic control of meristem identity, determinacy, and maintenance. The ear inflorescence meristem in maize (Zea mays) initiates short branch meristems called spikelet pair meristems, thus unlike the tassel inflorescence, the ears lack long branches. Maize growth-regulating factor (GRF)-interacting factor1 (GIF1) regulates branching and size of meristems in the tassel inflorescence by binding to Unbranched3. However, the regulatory pathway of gif1 in ear meristems is relatively unknown. RESULT In this study, we found that loss-of-function gif1 mutants had highly branched ears, and these extra branches repeatedly produce more branches and florets with unfused carpels and an indeterminate floral apex. In addition, GIF1 interacted in vivo with nine GRFs, subunits of the SWI/SNF chromatin-remodeling complex, and hormone biosynthesis-related proteins. Furthermore, key meristem-determinacy gene RAMOSA2 (RA2) and CLAVATA signaling-related gene CLV3/ENDOSPERM SURROUNDING REGION (ESR) 4a (CLE4a) were directly bound and regulated by GIF1 in the ear inflorescence. CONCLUSIONS Our findings suggest that GIF1 working together with GRFs recruits SWI/SNF chromatin-remodeling ATPases to influence DNA accessibility in the regions that contain genes involved in hormone biosynthesis, meristem identity and determinacy, thus driving the fate of axillary meristems and floral organ primordia in the ear-inflorescence of maize.
Collapse
Affiliation(s)
- Manfei Li
- College of Life Science, Yangtze University, Jingzhou, 434025, People's Republic of China
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yuanyuan Zheng
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Di Cui
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yanfang Du
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Dan Zhang
- College of Agronomy, Tarim University, Alar, Xinjiang, 843300, People's Republic of China
| | - Wei Sun
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Hewei Du
- College of Life Science, Yangtze University, Jingzhou, 434025, People's Republic of China.
| | - Zuxin Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
49
|
Koppolu R, Chen S, Schnurbusch T. Evolution of inflorescence branch modifications in cereal crops. CURRENT OPINION IN PLANT BIOLOGY 2022; 65:102168. [PMID: 35016076 DOI: 10.1016/j.pbi.2021.102168] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 12/03/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
Grasses are ubiquitous in our daily lives, with gramineous cereal crops such as maize, rice, and wheat constituting a large proportion of our daily staple food intake. Evolutionary forces, especially over the past ∼20 million years, have shaped grass adaptability, inflorescence architecture, and reproductive success. Here, we provide basic information on grass evolution and inflorescence structures mainly related to two inflorescence types: branched panicle- and spike-type inflorescences, the latter of which has highly modified branching. We summarize and compare known genetic pathways underlying each infloresecence type and discuss how the maize RAMOSA, rice ABERRANT PANICLE ORGANIZATION, and Triticeae COMPOSITUM pathways are regulated. Our analyses might lay the foundation for understanding species-specific gene regulatory networks that could result in improved sink capacities.
Collapse
Affiliation(s)
- Ravi Koppolu
- Independent HEISENBERG Research Group Plant Architecture, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466 Seeland, Germany.
| | - Shulin Chen
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Thorsten Schnurbusch
- Independent HEISENBERG Research Group Plant Architecture, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466 Seeland, Germany; Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany.
| |
Collapse
|
50
|
Wang L, Upadhyaya HD, Zheng J, Liu Y, Singh SK, Gowda CLL, Kumar R, Zhu Y, Wang YH, Li J. Genome-Wide Association Mapping Identifies Novel Panicle Morphology Loci and Candidate Genes in Sorghum. FRONTIERS IN PLANT SCIENCE 2021; 12:743838. [PMID: 34675951 PMCID: PMC8525895 DOI: 10.3389/fpls.2021.743838] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
Panicle morphology is an important trait in racial classification and can determine grain yield and other agronomic traits in sorghum. In this study, we performed association mapping of panicle length, panicle width, panicle compactness, and peduncle recurving in the sorghum mini core panel measured in multiple environments with 6,094,317 single nucleotide polymorphism (SNP) markers. We mapped one locus each on chromosomes 7 and 9 to recurving peduncles and eight loci for panicle length, panicle width, and panicle compactness. Because panicle length was positively correlated with panicle width, all loci for panicle length and width were colocalized. Among the eight loci, two each were on chromosomes 1, 2, and 6, and one each on chromosomes 8 and 10. The two loci on chromosome 2, i.e., Pm 2-1 and Pm 2-2, were detected in 7 and 5 out of 11 testing environments, respectively. Pm 2-2 colocalized with panicle compactness. Candidate genes were identified from both loci. The rice Erect Panicle2 (EP2) ortholog was among the candidate genes in Pm 2-2. EP2 regulates panicle erectness and panicle length in rice and encodes a novel plant-specific protein with unknown functions. The results of this study may facilitate the molecular identification of panicle morphology-related genes and the enhancement of yield and adaptation in sorghum.
Collapse
Affiliation(s)
- Lihua Wang
- College of Agriculture, Anhui Science and Technology University, Chuzhou, China
| | - Hari D. Upadhyaya
- Gene Bank, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheruvu, India
| | - Jian Zheng
- College of Agriculture, Anhui Science and Technology University, Chuzhou, China
| | - Yanlong Liu
- College of Agriculture, Anhui Science and Technology University, Chuzhou, China
| | - Shailesh Kumar Singh
- Gene Bank, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheruvu, India
| | - C. L. L. Gowda
- Gene Bank, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheruvu, India
| | - Rajendra Kumar
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Yongqun Zhu
- Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences (SAAS), Chengdu, China
| | - Yi-Hong Wang
- Department of Biology, University of Louisiana at Lafayette, Lafayette, LA, United States
| | - Jieqin Li
- College of Agriculture, Anhui Science and Technology University, Chuzhou, China
| |
Collapse
|