1
|
Eysel UT, Jancke D. Induction of excitatory brain state governs plastic functional changes in visual cortical topology. Brain Struct Funct 2024; 229:531-547. [PMID: 38041743 PMCID: PMC10978694 DOI: 10.1007/s00429-023-02730-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/03/2023] [Indexed: 12/03/2023]
Abstract
Adult visual plasticity underlying local remodeling of the cortical circuitry in vivo appears to be associated with a spatiotemporal pattern of strongly increased spontaneous and evoked activity of populations of cells. Here we review and discuss pioneering work by us and others about principles of plasticity in the adult visual cortex, starting with our study which showed that a confined lesion in the cat retina causes increased excitability in the affected region in the primary visual cortex accompanied by fine-tuned restructuring of neuronal function. The underlying remodeling processes was further visualized with voltage-sensitive dye (VSD) imaging that allowed a direct tracking of retinal lesion-induced reorganization across horizontal cortical circuitries. Nowadays, application of noninvasive stimulation methods pursues the idea further of increased cortical excitability along with decreased inhibition as key factors for the induction of adult cortical plasticity. We used high-frequency transcranial magnetic stimulation (TMS), for the first time in combination with VSD optical imaging, and provided evidence that TMS-amplified excitability across large pools of neurons forms the basis for noninvasively targeting reorganization of orientation maps in the visual cortex. Our review has been compiled on the basis of these four own studies, which we discuss in the context of historical developments in the field of visual cortical plasticity and the current state of the literature. Overall, we suggest markers of LTP-like cortical changes at mesoscopic population level as a main driving force for the induction of visual plasticity in the adult. Elevations in excitability that predispose towards cortical plasticity are most likely a common property of all cortical modalities. Thus, interventions that increase cortical excitability are a promising starting point to drive perceptual and potentially motor learning in therapeutic applications.
Collapse
Affiliation(s)
- Ulf T Eysel
- Department of Neurophysiology, Ruhr University Bochum, 44780, Bochum, Germany.
| | - Dirk Jancke
- Optical Imaging Group, Institut für Neuroinformatik, Ruhr University Bochum, 44780, Bochum, Germany.
| |
Collapse
|
2
|
Carvalho J, Invernizzi A, Martins J, Renken RJ, Cornelissen FW. Local neuroplasticity in adult glaucomatous visual cortex. Sci Rep 2022; 12:21981. [PMID: 36539453 PMCID: PMC9767937 DOI: 10.1038/s41598-022-24709-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 11/18/2022] [Indexed: 12/24/2022] Open
Abstract
The degree to which the adult human visual cortex retains the ability to functionally adapt to damage at the level of the eye remains ill-understood. Previous studies on cortical neuroplasticity primarily focused on the consequences of foveal visual field defects (VFD), yet these findings may not generalize to peripheral defects such as occur in glaucoma. Moreover, recent findings on neuroplasticity are often based on population receptive field (pRF) mapping, but interpreting these results is complicated in the absence of appropriate control conditions. Here, we used fMRI-based neural modeling to assess putative changes in pRFs associated with glaucomatous VFD. We compared the fMRI-signals and pRF in glaucoma participants to those of controls with case-matched simulated VFD. We found that the amplitude of the fMRI-signal is reduced in glaucoma compared to control participants and correlated with disease severity. Furthermore, while coarse retinotopic structure is maintained in all participants with glaucoma, we observed local pRF shifts and enlargements in early visual areas, relative to control participants. These differences suggest that the adult brain retains some degree of local neuroplasticity. This finding has translational relevance, as it is consistent with VFD masking, which prevents glaucoma patients from noticing their VFD and seeking timely treatment.
Collapse
Affiliation(s)
- Joana Carvalho
- grid.4494.d0000 0000 9558 4598Laboratory of Experimental Ophthalmology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands ,grid.421010.60000 0004 0453 9636Pre-Clinical MRI Laboratory, Champalimaud Centre for the Unknown, Avenida de Brasilia, 1400-038 Lisbon, Portugal
| | - Azzurra Invernizzi
- grid.4494.d0000 0000 9558 4598Laboratory of Experimental Ophthalmology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands ,grid.59734.3c0000 0001 0670 2351Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Joana Martins
- grid.4494.d0000 0000 9558 4598Laboratory of Experimental Ophthalmology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Remco J. Renken
- grid.4494.d0000 0000 9558 4598Laboratory of Experimental Ophthalmology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands ,grid.4494.d0000 0000 9558 4598Cognitive Neuroscience Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Frans W. Cornelissen
- grid.4494.d0000 0000 9558 4598Laboratory of Experimental Ophthalmology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
3
|
Kasamatsu T, Imamura K. Ocular dominance plasticity: Molecular mechanisms revisited. J Comp Neurol 2020; 528:3039-3074. [PMID: 32737874 DOI: 10.1002/cne.25001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 07/10/2020] [Indexed: 12/14/2022]
Abstract
Ocular dominance plasticity (ODP) is a type of cortical plasticity operating in visual cortex of mammals that are endowed with binocular vision based on the competition-driven disparity. Earlier, a molecular mechanism was proposed that catecholamines play an important role in the maintenance of ODP in kittens. Having survived the initial test, the hypothesis was further advanced to identify noradrenaline (NA) as a key factor that regulates ODP in the immature cortex. Later, the ODP-promoting effect of NA is extended to the adult with age-related limitations. Following the enhanced NA availability, the chain events downstream lead to the β-adrenoreceptor-induced cAMP accumulation, which in turn activates the protein kinase A. Eventually, the protein kinase translocates to the cell nucleus to activate cAMP responsive element binding protein (CREB). CREB is a cellular transcription factor that controls the transcription of various genes, underpinning neuronal plasticity and long-term memory. In the advent of molecular genetics in that various types of new tools have become available with relative ease, ODP research has lightly adopted in the rodent model the original concepts and methodologies. Here, after briefly tracing the strategic maturation of our quest, the review moves to the later development of the field, with the emphasis placed around the following issues: (a) Are we testing ODP per se? (b) What does monocular deprivation deprive of the immature cortex? (c) The critical importance of binocular competition, (d) What is the adult plasticity? (e) Excitation-Inhibition balance in local circuits, and (f) Species differences in the animal models.
Collapse
Affiliation(s)
- Takuji Kasamatsu
- Smith-Kettlewell Eye Research Institute, San Francisco, California, USA
| | - Kazuyuki Imamura
- Department of Systems Life Engineering, Maebashi Institute of Technology, Maebashi-shi, Gunma, Japan
| |
Collapse
|
4
|
Rapid topographic reorganization in adult human primary visual cortex (V1) during noninvasive and reversible deprivation. Proc Natl Acad Sci U S A 2020; 117:11059-11067. [PMID: 32354998 DOI: 10.1073/pnas.1921860117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Can the primary visual cortex (V1), once wired up in development, change in adulthood? Although numerous studies have demonstrated topographic reorganization in adult V1 following the loss of bottom-up input, others have challenged such findings, offering alternative explanations. Here we use a noninvasive and reversible deprivation paradigm and converging neural and behavioral approaches to address these alternatives in the experimental test case of short-term topographic reorganization in adult human V1. Specifically, we patched one eye in typical adults, thereby depriving the cortical representation of the other eye's blind spot (BS), and immediately tested for topographic reorganization using functional magnetic resonance imaging and psychophysics. Strikingly, within just minutes of eye-patching, the BS representation in V1 began responding to stimuli presented outside of the BS, and these same stimuli were perceived as elongated toward the BS. Thus, we provide converging neural and behavioral evidence of rapid topographic reorganization in adult human V1, and the strongest evidence yet that visual deprivation produces bona fide cortical change.
Collapse
|
5
|
Castaldi E, Lunghi C, Morrone MC. Neuroplasticity in adult human visual cortex. Neurosci Biobehav Rev 2020; 112:542-552. [DOI: 10.1016/j.neubiorev.2020.02.028] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 12/30/2019] [Accepted: 02/20/2020] [Indexed: 12/27/2022]
|
6
|
Dumoulin SO, Knapen T. How Visual Cortical Organization Is Altered by Ophthalmologic and Neurologic Disorders. Annu Rev Vis Sci 2018; 4:357-379. [DOI: 10.1146/annurev-vision-091517-033948] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Receptive fields are a core property of cortical organization. Modern neuroimaging allows routine access to visual population receptive fields (pRFs), enabling investigations of clinical disorders. Yet how the underlying neural circuitry operates is controversial. The controversy surrounds observations that measurements of pRFs can change in healthy adults as well as in patients with a range of ophthalmological and neurological disorders. The debate relates to the balance between plasticity and stability of the underlying neural circuitry. We propose that to move the debate forward, the field needs to define the implied mechanism. First, we review the pRF changes in both healthy subjects and those with clinical disorders. Then, we propose a computational model that describes how pRFs can change in healthy humans. We assert that we can correctly interpret the pRF changes in clinical disorders only if we establish the capabilities and limitations of pRF dynamics in healthy humans with mechanistic models that provide quantitative predictions.
Collapse
Affiliation(s)
- Serge O. Dumoulin
- Spinoza Centre for Neuroimaging, 1105 BK Amsterdam, Netherlands
- Department of Experimental and Applied Psychology, VU University Amsterdam, 1181 BT Amsterdam, Netherlands
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, 3584 CS Utrecht, Netherlands
| | - Tomas Knapen
- Spinoza Centre for Neuroimaging, 1105 BK Amsterdam, Netherlands
- Department of Experimental and Applied Psychology, VU University Amsterdam, 1181 BT Amsterdam, Netherlands
| |
Collapse
|
7
|
Beyeler M, Rokem A, Boynton GM, Fine I. Learning to see again: biological constraints on cortical plasticity and the implications for sight restoration technologies. J Neural Eng 2017; 14:051003. [PMID: 28612755 DOI: 10.1088/1741-2552/aa795e] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The 'bionic eye'-so long a dream of the future-is finally becoming a reality with retinal prostheses available to patients in both the US and Europe. However, clinical experience with these implants has made it apparent that the visual information provided by these devices differs substantially from normal sight. Consequently, the ability of patients to learn to make use of this abnormal retinal input plays a critical role in whether or not some functional vision is successfully regained. The goal of the present review is to summarize the vast basic science literature on developmental and adult cortical plasticity with an emphasis on how this literature might relate to the field of prosthetic vision. We begin with describing the distortion and information loss likely to be experienced by visual prosthesis users. We then define cortical plasticity and perceptual learning, and describe what is known, and what is unknown, about visual plasticity across the hierarchy of brain regions involved in visual processing, and across different stages of life. We close by discussing what is known about brain plasticity in sight restoration patients and discuss biological mechanisms that might eventually be harnessed to improve visual learning in these patients.
Collapse
Affiliation(s)
- Michael Beyeler
- Department of Psychology, University of Washington, Seattle, WA, United States of America. Institute for Neuroengineering, University of Washington, Seattle, WA, United States of America. eScience Institute, University of Washington, Seattle, WA, United States of America
| | | | | | | |
Collapse
|
8
|
Lemos J, Pereira D, Castelo-Branco M. Visual Cortex Plasticity Following Peripheral Damage To The Visual System: fMRI Evidence. Curr Neurol Neurosci Rep 2016; 16:89. [DOI: 10.1007/s11910-016-0691-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
9
|
Abstract
Progress in magnetic resonance imaging (MRI) now makes it possible to identify the major white matter tracts in the living human brain. These tracts are important because they carry many of the signals communicated between different brain regions. MRI methods coupled with biophysical modeling can measure the tissue properties and structural features of the tracts that impact our ability to think, feel, and perceive. This review describes the fundamental ideas of the MRI methods used to identify the major white matter tracts in the living human brain.
Collapse
Affiliation(s)
- Brian A Wandell
- Department of Psychology and Stanford Neurosciences Institute, Stanford University, Stanford, California 94305;
| |
Collapse
|
10
|
Zhou J, Reynaud A, Hess RF. Real-time modulation of perceptual eye dominance in humans. Proc Biol Sci 2015; 281:rspb.2014.1717. [PMID: 25274364 DOI: 10.1098/rspb.2014.1717] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Ocular dominance (OD) has long served as the model for neural plasticity. The shift of OD has been demonstrated by monocular deprivation in animals only during early visual development. Here, for the first time, we show that perceptual eye dominance can be modulated in real time in normal human adults by varying the spatial image content of movies seen dichoptically by the two eyes over a period as short as 2.5 h. Unlike OD shifts seen in early visual development, this modulation in human eye dominance is not simply a consequence of reduced interocular correlation (e.g. synchronicity) or overall contrast energy, but due to the amplitude reductions of specific image components in one eye's view. The spatial properties driving this eye dominance change suggest that the underlying mechanism is binocular but not orientationally selective, therefore uniquely locating it to layer 4 B of area V1.
Collapse
Affiliation(s)
- Jiawei Zhou
- McGill Vision Research, Department of Ophthalmology, McGill University, Montreal, Province of Quebec, Canada
| | - Alexandre Reynaud
- McGill Vision Research, Department of Ophthalmology, McGill University, Montreal, Province of Quebec, Canada
| | - Robert F Hess
- McGill Vision Research, Department of Ophthalmology, McGill University, Montreal, Province of Quebec, Canada
| |
Collapse
|
11
|
Abstract
The functional architecture of adult cerebral cortex retains a capacity for experience-dependent change. This is seen after focal binocular lesions as rapid changes in receptive field (RF) of the lesion projection zone (LPZ) in the primary visual cortex (V1). To study the dynamics of the circuitry underlying these changes longitudinally, we implanted microelectrode arrays in macaque (Macaca mulatta) V1, eliminating the possibility of sampling bias, which was a concern in previous studies. With this method, we observed a rapid initial recovery in the LPZ and, during the following weeks, 63-89% of the sites in the LPZ showed recovery of visual responses with significant position tuning. The RFs shifted ∼3° away from the scotoma. In the absence of a lesion, visual stimulation surrounding an artificial scotoma did not elicit visual responses, suggesting that the postlesion RF shifts resulted from cortical reorganization. Interestingly, although both spikes and LFPs gave consistent prelesion position tuning, only spikes reflected the postlesion remapping.
Collapse
|
12
|
fMRI of the rod scotoma elucidates cortical rod pathways and implications for lesion measurements. Proc Natl Acad Sci U S A 2015; 112:5201-6. [PMID: 25848028 DOI: 10.1073/pnas.1423673112] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Are silencing, ectopic shifts, and receptive field (RF) scaling in cortical scotoma projection zones (SPZs) the result of long-term reorganization (plasticity) or short-term adaptation? Electrophysiological studies of SPZs after retinal lesions in animal models remain controversial, because they are unable to conclusively answer this question because of limitations of the methodology. Here, we used functional MRI (fMRI) visual field mapping through population RF (pRF) modeling with moving bar stimuli under photopic and scotopic conditions to measure the effects of the rod scotoma in human early visual cortex. As a naturally occurring central scotoma, it has a large cortical representation, is free of traumatic lesion complications, is completely reversible, and has not reorganized under normal conditions (but can as seen in rod monochromats). We found that the pRFs overlapping the SPZ in V1, V2, V3, hV4, and VO-1 generally (i) reduced their blood oxygen level-dependent signal coherence and (ii) shifted their pRFs more eccentric but (iii) scaled their pRF sizes in variable ways. Thus, silencing, ectopic shifts, and pRF scaling in SPZs are not unique identifiers of cortical reorganization; rather, they can be the expected result of short-term adaptation. However, are there differences between rod and cone signals in V1, V2, V3, hV4, and VO-1? We did not find differences for all five maps in more peripheral eccentricities outside of rod scotoma influence in coherence, eccentricity representation, or pRF size. Thus, rod and cone signals seem to be processed similarly in cortex.
Collapse
|
13
|
Boucard CC, Rauschecker JP, Neufang S, Berthele A, Doll A, Manoliu A, Riedl V, Sorg C, Wohlschläger A, Mühlau M. Visual imagery and functional connectivity in blindness: a single-case study. Brain Struct Funct 2015; 221:2367-74. [PMID: 25690326 DOI: 10.1007/s00429-015-1010-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 02/09/2015] [Indexed: 12/20/2022]
Abstract
We present a case report on visual brain plasticity after total blindness acquired in adulthood. SH lost her sight when she was 27. Despite having been totally blind for 43 years, she reported to strongly rely on her vivid visual imagery. Three-Tesla magnetic resonance imaging (MRI) of SH and age-matched controls was performed. The MRI sequence included anatomical MRI, resting-state functional MRI, and task-related functional MRI where SH was instructed to imagine colours, faces, and motion. Compared to controls, voxel-based analysis revealed white matter loss along SH's visual pathway as well as grey matter atrophy in the calcarine sulci. Yet we demonstrated activation in visual areas, including V1, using functional MRI. Of the four identified visual resting-state networks, none showed alterations in spatial extent; hence, SH's preserved visual imagery seems to be mediated by intrinsic brain networks of normal extent. Time courses of two of these networks showed increased correlation with that of the inferior posterior default mode network, which may reflect adaptive changes supporting SH's strong internal visual representations. Overall, our findings demonstrate that conscious visual experience is possible even after years of absence of extrinsic input.
Collapse
Affiliation(s)
- Christine C Boucard
- Department of Neurology, Klinikum Rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany.,TUM, Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Josef P Rauschecker
- TUM, Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,Institute for Advanced Study, Technische Universität München, Munich, Germany.,Laboratory of Integrative Neuroscience and Cognition, Department of Neuroscience, Georgetown University Medical Center, Washington, DC, 20057-1460, USA
| | - Susanne Neufang
- Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Würzburg, Germany
| | - Achim Berthele
- Department of Neurology, Klinikum Rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany
| | - Anselm Doll
- TUM, Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,Department of Psychiatry, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany.,Munich Center for Neurosciences, Brain and Mind, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Andrej Manoliu
- TUM, Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,Department of Psychiatry, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany
| | - Valentin Riedl
- TUM, Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Christian Sorg
- TUM, Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,Department of Psychiatry, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany
| | - Afra Wohlschläger
- TUM, Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Mark Mühlau
- Department of Neurology, Klinikum Rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany. .,TUM, Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Munich, Germany. .,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
14
|
|
15
|
Haak KV, Langers DR, Renken R, van Dijk P, Borgstein J, Cornelissen FW. Abnormal visual field maps in human cortex: A mini-review and a case report. Cortex 2014; 56:14-25. [DOI: 10.1016/j.cortex.2012.12.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 11/21/2012] [Accepted: 12/04/2012] [Indexed: 10/27/2022]
|
16
|
Abstract
The functional properties of adult cortical neurons are subject to alterations in sensory experience. Retinal lesions lead to remapping of cortical topography in the region of primary visual cortex representing the lesioned part of the retina, the lesion projection zone (LPZ), with receptive fields shifting to the intact parts of the retina. Neurons within the LPZ receive strengthened input from the surrounding region by growth of the plexus of excitatory long-range horizontal connections. Here, by combining cell type-specific labeling with a genetically engineered recombinant adeno-associated virus and in vivo two-photon microscopy in adult macaques, we showed that the remapping was also associated with alterations in the axonal arbors of inhibitory neurons, which underwent a parallel process of pruning and growth. The axons of inhibitory neurons located within the LPZ extended across the LPZ border, suggesting a mechanism by which new excitatory input arising from the peri-LPZ is balanced by reciprocal inhibition arising from the LPZ.
Collapse
|
17
|
Vaina LM, Soloviev S, Calabro FJ, Buonanno F, Passingham R, Cowey A. Reorganization of retinotopic maps after occipital lobe infarction. J Cogn Neurosci 2013; 26:1266-82. [PMID: 24345177 DOI: 10.1162/jocn_a_00538] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
We studied patient JS, who had a right occipital infarct that encroached on visual areas V1, V2v, and VP. When tested psychophysically, he was very impaired at detecting the direction of motion in random dot displays where a variable proportion of dots moving in one direction (signal) were embedded in masking motion noise (noise dots). The impairment on this motion coherence task was especially marked when the display was presented to the upper left (affected) visual quadrant, contralateral to his lesion. However, with extensive training, by 11 months his threshold fell to the level of healthy participants. Training on the motion coherence task generalized to another motion task, the motion discontinuity task, on which he had to detect the presence of an edge that was defined by the difference in the direction of the coherently moving dots (signal) within the display. He was much better at this task at 8 than 3 months, and this improvement was associated with an increase in the activation of the human MT complex (hMT(+)) and in the kinetic occipital region as shown by repeated fMRI scans. We also used fMRI to perform retinotopic mapping at 3, 8, and 11 months after the infarct. We quantified the retinotopy and areal shifts by measuring the distances between the center of mass of functionally defined areas, computed in spherical surface-based coordinates. The functionally defined retinotopic areas V1, V2v, V2d, and VP were initially smaller in the lesioned right hemisphere, but they increased in size between 3 and 11 months. This change was not found in the normal, left hemisphere of the patient or in either hemispheres of the healthy control participants. We were interested in whether practice on the motion coherence task promoted the changes in the retinotopic maps. We compared the results for patient JS with those from another patient (PF) who had a comparable lesion but had not been given such practice. We found similar changes in the maps in the lesioned hemisphere of PF. However, PF was only scanned at 3 and 7 months, and the biggest shifts in patient JS were found between 8 and 11 months. Thus, it is important to carry out a prospective study with a trained and untrained group so as to determine whether the patterns of reorganization that we have observed can be further promoted by training.
Collapse
|
18
|
Wang Z, Qi HX, Kaas JH, Roe AW, Chen LM. Functional signature of recovering cortex: dissociation of local field potentials and spiking activity in somatosensory cortices of spinal cord injured monkeys. Exp Neurol 2013; 249:132-43. [PMID: 24017995 DOI: 10.1016/j.expneurol.2013.08.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 08/08/2013] [Accepted: 08/22/2013] [Indexed: 11/27/2022]
Abstract
After disruption of dorsal column afferents at high cervical spinal levels in adult monkeys, somatosensory cortical neurons recover responsiveness to tactile stimulation of the hand; this reactivation correlates with a recovery of hand use. However, it is not known if all neuronal response properties recover, and whether different cortical areas recover in a similar manner. To address this, we recorded neuronal activity in cortical area 3b and S2 in adult squirrel monkeys weeks after unilateral lesion of the dorsal columns. We found that in response to vibrotactile stimulation, local field potentials remained robust at all frequency ranges. However, neuronal spiking activity failed to follow at high frequencies (≥15 Hz). We suggest that the failure to generate spiking activity at high stimulus frequency reflects a changed balance of inhibition and excitation in both area 3b and S2, and that this mismatch in spiking and local field potential is a signature of an early phase of recovering cortex (<two months).
Collapse
Affiliation(s)
- Zheng Wang
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
| | | | | | | | | |
Collapse
|
19
|
Hertz J, Qu B, Hu Y, Patel RD, Valenzuela DA, Goldberg JL. Survival and integration of developing and progenitor-derived retinal ganglion cells following transplantation. Cell Transplant 2013; 23:855-72. [PMID: 23636049 DOI: 10.3727/096368913x667024] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
There is considerable interest in transplanting stem cells or progenitors into the injured nervous system and enhancing their differentiation into mature, integrated, functional neurons. Little is known, however, about what intrinsic or extrinsic signals control the integration of differentiated neurons, either during development or in the adult. Here we ask whether purified, postmitotic, differentiated retinal ganglion cells (RGCs) directly isolated from rat retina or derived from in vitro-differentiated retinal progenitor cells can survive, migrate, extend neurites, and form morphologic synapses in a host retina, in vivo and ex vivo. We found that acutely purified primary and in vitro-differentiated RGCs survive transplantation and migrate into deeper retinal layers, including into their normal environment, the ganglion cell layer (GCL). Transplanted RGCs from a wide range of developmental ages, but not from adults, were capable of extending lengthy neurites in the normal and injured adult rat retina ex vivo and to a lesser degree after transplantation in vivo. We have also demonstrated that RGCs may be differentiated and purified from retinal precursor cultures and that they share many of the same cell biological properties as primary RGCs. We have established that progenitor-derived RGCs have similar capacity for integration as developing primary RGCs but appear to form a lower number of presynaptic punctae. This work provides insight for further understanding of the integration of developing RGCs into their normal environment and following injury.
Collapse
Affiliation(s)
- Jonathan Hertz
- Bascom Palmer Eye Institute, Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | | | | | | | | |
Collapse
|
20
|
Zheng X, Zhou Z, Wang X, Zhang F, Zhang X, Wang Y, Wei G, Wang S, Xu X. Hind Wings in Basal Birds and the Evolution of Leg Feathers. Science 2013; 339:1309-12. [DOI: 10.1126/science.1228753] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
21
|
Abstract
The visual cortex has the capacity for experience-dependent change, or cortical plasticity, that is retained throughout life. Plasticity is invoked for encoding information during perceptual learning, by internally representing the regularities of the visual environment, which is useful for facilitating intermediate-level vision--contour integration and surface segmentation. The same mechanisms have adaptive value for functional recovery after CNS damage, such as that associated with stroke or neurodegenerative disease. A common feature to plasticity in primary visual cortex (V1) is an association field that links contour elements across the visual field. The circuitry underlying the association field includes a plexus of long-range horizontal connections formed by cortical pyramidal cells. These connections undergo rapid and exuberant sprouting and pruning in response to removal of sensory input, which can account for the topographic reorganization following retinal lesions. Similar alterations in cortical circuitry may be involved in perceptual learning, and the changes observed in V1 may be representative of how learned information is encoded throughout the cerebral cortex.
Collapse
|
22
|
Koehl MAR, Evangelista D, Yang K. Using physical models to study the gliding performance of extinct animals. Integr Comp Biol 2011; 51:1002-18. [PMID: 21937667 DOI: 10.1093/icb/icr112] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Aerodynamic studies using physical models of fossil organisms can provide quantitative information about how performance of defined activities, such as gliding, depends on specific morphological features. Such analyses allow us to rule out hypotheses about the function of extinct organisms that are not physically plausible and to determine if and how specific morphological features and postures affect performance. The purpose of this article is to provide a practical guide for the design of dynamically scaled physical models to study the gliding of extinct animals using examples from our research on the theropod dinosaur, †Microraptor gui, which had flight feathers on its hind limbs as well as on its forelimbs. Analysis of the aerodynamics of †M. gui can shed light on the design of gliders with large surfaces posterior to the center of mass and provide functional information to evolutionary biologists trying to unravel the origins of flight in the dinosaurian ancestors and sister groups to birds. Measurements of lift, drag, side force, and moments in pitch, roll, and yaw on models in a wind tunnel can be used to calculate indices of gliding and parachuting performance, aerodynamic static stability, and control effectiveness in maneuvering. These indices permit the aerodynamic performance of bodies of different shape, size, stiffness, texture, and posture to be compared and thus can provide insights about the design of gliders, both biological and man-made. Our measurements of maximum lift-to-drag ratios of 2.5-3.1 for physical models of †M. gui suggest that its gliding performance was similar to that of flying squirrels and that the various leg postures that might have been used by †M. gui make little difference to that aspect of aerodynamic performance. We found that body orientation relative to the movement of air past the animal determines whether it is difficult or easy to maneuver.
Collapse
Affiliation(s)
- M A R Koehl
- Department of Integrative Biology, University of California Berkeley, CA 94720-3140, USA.
| | | | | |
Collapse
|
23
|
Gias C, Vugler A, Lawrence J, Carr AJ, Chen LL, Ahmado A, Semo M, Coffey PJ. Degeneration of cortical function in the Royal College of Surgeons rat. Vision Res 2011; 51:2176-85. [PMID: 21871912 DOI: 10.1016/j.visres.2011.08.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Revised: 06/13/2011] [Accepted: 08/10/2011] [Indexed: 10/17/2022]
Abstract
The purpose of the current study was to determine the progress of cortical functional degeneration in the Royal College of Surgeons (RCS) rat. Cortical responses were measured with optical imaging of intrinsic signals using gratings of various spatial frequencies. Subsequently, electrophysiological recordings were also taken across cortical layers in response to a pulse of broad-spectrum light. We found significant degeneration in the cortical processing of visual information as early as 4 weeks of age. These results show that degeneration in the cortical response of the RCS rat starts before development has been properly completed.
Collapse
Affiliation(s)
- Carlos Gias
- Institute of Ophthalmology, University College London, 11-43 Bath Street, EC1V 9EL London, UK.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Vision restoration after brain and retina damage: the "residual vision activation theory". PROGRESS IN BRAIN RESEARCH 2011; 192:199-262. [PMID: 21763527 DOI: 10.1016/b978-0-444-53355-5.00013-0] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Vision loss after retinal or cerebral visual injury (CVI) was long considered to be irreversible. However, there is considerable potential for vision restoration and recovery even in adulthood. Here, we propose the "residual vision activation theory" of how visual functions can be reactivated and restored. CVI is usually not complete, but some structures are typically spared by the damage. They include (i) areas of partial damage at the visual field border, (ii) "islands" of surviving tissue inside the blind field, (iii) extrastriate pathways unaffected by the damage, and (iv) downstream, higher-level neuronal networks. However, residual structures have a triple handicap to be fully functional: (i) fewer neurons, (ii) lack of sufficient attentional resources because of the dominant intact hemisphere caused by excitation/inhibition dysbalance, and (iii) disturbance in their temporal processing. Because of this resulting activation loss, residual structures are unable to contribute much to everyday vision, and their "non-use" further impairs synaptic strength. However, residual structures can be reactivated by engaging them in repetitive stimulation by different means: (i) visual experience, (ii) visual training, or (iii) noninvasive electrical brain current stimulation. These methods lead to strengthening of synaptic transmission and synchronization of partially damaged structures (within-systems plasticity) and downstream neuronal networks (network plasticity). Just as in normal perceptual learning, synaptic plasticity can improve vision and lead to vision restoration. This can be induced at any time after the lesion, at all ages and in all types of visual field impairments after retinal or brain damage (stroke, neurotrauma, glaucoma, amblyopia, age-related macular degeneration). If and to what extent vision restoration can be achieved is a function of the amount of residual tissue and its activation state. However, sustained improvements require repetitive stimulation which, depending on the method, may take days (noninvasive brain stimulation) or months (behavioral training). By becoming again engaged in everyday vision, (re)activation of areas of residual vision outlasts the stimulation period, thus contributing to lasting vision restoration and improvements in quality of life.
Collapse
|
25
|
Weil RS, Rees G. A new taxonomy for perceptual filling-in. ACTA ACUST UNITED AC 2010; 67:40-55. [PMID: 21059374 PMCID: PMC3119792 DOI: 10.1016/j.brainresrev.2010.10.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 10/20/2010] [Accepted: 10/31/2010] [Indexed: 11/24/2022]
Abstract
Perceptual filling-in occurs when structures of the visual system interpolate information across regions of visual space where that information is physically absent. It is a ubiquitous and heterogeneous phenomenon, which takes place in different forms almost every time we view the world around us, such as when objects are occluded by other objects or when they fall behind the blind spot. Yet, to date, there is no clear framework for relating these various forms of perceptual filling-in. Similarly, whether these and other forms of filling-in share common mechanisms is not yet known. Here we present a new taxonomy to categorize the different forms of perceptual filling-in. We then examine experimental evidence for the processes involved in each type of perceptual filling-in. Finally, we use established theories of general surface perception to show how contextualizing filling-in using this framework broadens our understanding of the possible shared mechanisms underlying perceptual filling-in. In particular, we consider the importance of the presence of boundaries in determining the phenomenal experience of perceptual filling-in.
Collapse
Affiliation(s)
- Rimona S Weil
- Wellcome Trust Centre for Neuroimaging, University College London, 12 Queen Square, London WC1N 3BG, UK.
| | | |
Collapse
|
26
|
Rauschecker JP, Leaver AM, Mühlau M. Tuning out the noise: limbic-auditory interactions in tinnitus. Neuron 2010; 66:819-26. [PMID: 20620868 DOI: 10.1016/j.neuron.2010.04.032] [Citation(s) in RCA: 533] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2010] [Indexed: 11/27/2022]
Abstract
Tinnitus, the most common auditory disorder, affects about 40 million people in the United States alone, and its incidence is rising due to an aging population and increasing noise exposure. Although several approaches for the alleviation of tinnitus exist, there is as of yet no cure. The present article proposes a testable model for tinnitus that is grounded in recent findings from human imaging and focuses on brain areas in cortex, thalamus, and ventral striatum. Limbic and auditory brain areas are thought to interact at the thalamic level. While a tinnitus signal originates from lesion-induced plasticity of the auditory pathways, it can be tuned out by feedback connections from limbic regions, which block the tinnitus signal from reaching auditory cortex. If the limbic regions are compromised, this "noise-cancellation" mechanism breaks down, and chronic tinnitus results. Hopefully, this model will ultimately enable the development of effective treatment.
Collapse
Affiliation(s)
- Josef P Rauschecker
- Laboratory of Integrative Neuroscience and Cognition, Georgetown University Medical Center, Washington, DC 20057-1460, USA.
| | | | | |
Collapse
|
27
|
Yamahachi H, Marik SA, McManus JNJ, Denk W, Gilbert CD. Rapid axonal sprouting and pruning accompany functional reorganization in primary visual cortex. Neuron 2009; 64:719-29. [PMID: 20005827 PMCID: PMC2818836 DOI: 10.1016/j.neuron.2009.11.026] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2009] [Indexed: 11/19/2022]
Abstract
The functional architecture of adult cerebral cortex retains a capacity for experience-dependent change. This is seen following focal binocular lesions, which induce rapid changes in receptive field size and position. To follow the dynamics of the circuitry underlying these changes, we imaged the intrinsic long-range horizontal connections within the lesion projection zone (LPZ) in adult macaque primary visual cortex. To image the same axons over time, we combined viral vector-mediated EGFP transfer and two-photon microscopy. The lesion triggered, within the first week, an approximately 2-fold outgrowth of axons toward the center of the LPZ. Over the subsequent month, axonal density declined due to a parallel process of pruning and sprouting but maintained a net increase relative to prelesion levels. The rate of turnover of axonal boutons also increased. The axonal restructuring recapitulates the pattern of exuberance and pruning seen in early development and correlates well with the functional changes following retinal lesions.
Collapse
|
28
|
Wandell BA, Smirnakis SM. Plasticity and stability of visual field maps in adult primary visual cortex. Nat Rev Neurosci 2009; 10:873-84. [PMID: 19904279 DOI: 10.1038/nrn2741] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
It is important to understand the balance between cortical plasticity and stability in various systems and across spatial scales in the adult brain. Here we review studies of adult plasticity in primary visual cortex (V1), which has a key role in distributing visual information. There are claims of plasticity at multiple spatial scales in adult V1, but a number of inconsistencies in the supporting data raise questions about the extent and nature of such plasticity. Our understanding of the extent of plasticity in V1 is further limited by a lack of quantitative models to guide the interpretation of the data. These problems limit efforts to translate research findings about adult cortical plasticity into significant clinical, educational and policy applications.
Collapse
Affiliation(s)
- Brian A Wandell
- Stanford University, Psychology Department, Jordan Hall, Stanford, California 94305, USA.
| | | |
Collapse
|
29
|
Leonhardt R, Dinse HR. Receptive field plasticity of area 17 visual cortical neurons of adult rats. Exp Brain Res 2009; 199:401-10. [PMID: 19756553 DOI: 10.1007/s00221-009-1992-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2009] [Accepted: 08/12/2009] [Indexed: 11/27/2022]
Abstract
In contrast to somatosensory cortex (SI), where the pervasiveness of reorganizational capacities is well-established, plasticity of receptive fields (RFs) of adult primary visual cortex (VI) remains controversial. To investigate RF plasticity in VI of adult rats, we here used intracortical microstimulation (ICMS) to overcome particularities related to stimulus presentation and training procedures which limit comparison across modalities. Our results show that VI RFs can be altered by ICMS; however, changes depended on the pre-ICMS RF size. Initially small RFs expanded after 2 h of ICMS with little signs of recovery within the next hours, while initially large RFs remained unaffected. Inspection of the time course of neuron responses revealed, however, that in large RFs early response components were enhanced, while late response components were reduced resulting in changes of the spatiotemporal RF properties. Although plastic changes in VI showed a substantial heterogeneity, our results indicate a capacity of VI neurons to undergo plastic changes comparable to SI neurons. However, the magnitude and aspects of reversibility appeared to be different suggesting a significant modality-specificity of reorganizational changes of cortical sensory neurons.
Collapse
Affiliation(s)
- Ralph Leonhardt
- Neural Plasticity Laboratory, Department of Theoretical Biology, Institute for Neuroinformatics, Ruhr-University Bochum, 44780 Bochum, Germany
| | | |
Collapse
|
30
|
Xerri C. Imprinting of idyosyncratic experience in cortical sensory maps: Neural substrates of representational remodeling and correlative perceptual changes. Behav Brain Res 2008; 192:26-41. [DOI: 10.1016/j.bbr.2008.02.038] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Revised: 02/27/2008] [Accepted: 02/27/2008] [Indexed: 11/25/2022]
|
31
|
Baker CI, Dilks DD, Peli E, Kanwisher N. Reorganization of visual processing in macular degeneration: replication and clues about the role of foveal loss. Vision Res 2008; 48:1910-9. [PMID: 18620725 DOI: 10.1016/j.visres.2008.05.020] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2007] [Revised: 04/11/2008] [Accepted: 05/23/2008] [Indexed: 10/21/2022]
Abstract
We previously reported large-scale reorganization of visual processing (i.e., activation of "foveal" cortex by peripheral stimuli) in two individuals with loss of foveal input from macular degeneration [Baker, C.I., Peli, E., Knouf, N., & Kanwisher, N. G. (2005). Reorganization of visual processing in macular degeneration. Journal of Neuroscience, 25(3), 614-618]. Here, we replicate this result in three new individuals. Further, we test the hypothesis that this reorganization is dependent on complete loss of foveal input. In two other individuals with extensive retinal lesions but some foveal sparing we found no evidence for reorganization. We conclude that large-scale reorganization of visual processing in MD occurs only in the complete absence of functional foveal vision.
Collapse
Affiliation(s)
- Chris I Baker
- Laboratory of Brain and Cognition, National Institute of Mental Health, NIH, 10 Center Drive, Building 10, Room 4C104, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
32
|
McManus JNJ, Ullman S, Gilbert CD. A Computational Model of Perceptual Fill-in Following Retinal Degeneration. J Neurophysiol 2008; 99:2086-100. [DOI: 10.1152/jn.00871.2007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The ablation of afferent input results in the reorganization of sensory and motor cortices. In the primary visual cortex (V1), binocular retinal lesions deprive a corresponding cortical region [lesion projection zone (LPZ)] of visual input. Nevertheless, neurons in the LPZ regain responsiveness by shifting their receptive fields (RFs) outside the retinal lesions; this re-emergence of neural activity is paralleled by the perceptual completion of disrupted visual input in human subjects with retinal damage. To determine whether V1 reorganization can account for perceptual fill-in, we developed a neural network model that simulates the cortical remapping in V1. The model shows that RF shifts mediated by the plexus of spatial- and orientation-dependent horizontal connections in V1 can engender filling-in that is both robust and consistent with psychophysical reports of perceptual completion. Our model suggests that V1 reorganization may underlie perceptual fill-in, and it predicts spatial relationships between the original and remapped RFs that can be tested experimentally. More generally, it provides a general explanation for adaptive functional changes following CNS lesions, based on the recruitment of existing cortical connections that are involved in normal integrative mechanisms.
Collapse
|
33
|
Dilks DD, Serences JT, Rosenau BJ, Yantis S, McCloskey M. Human adult cortical reorganization and consequent visual distortion. J Neurosci 2007; 27:9585-94. [PMID: 17804619 PMCID: PMC2695877 DOI: 10.1523/jneurosci.2650-07.2007] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2006] [Revised: 07/17/2007] [Accepted: 07/19/2007] [Indexed: 11/21/2022] Open
Abstract
Neural and behavioral evidence for cortical reorganization in the adult somatosensory system after loss of sensory input (e.g., amputation) has been well documented. In contrast, evidence for reorganization in the adult visual system is far less clear: neural evidence is the subject of controversy, behavioral evidence is sparse, and studies combining neural and behavioral evidence have not previously been reported. Here, we report converging behavioral and neuroimaging evidence from a stroke patient (B.L.) in support of cortical reorganization in the adult human visual system. B.L.'s stroke spared the primary visual cortex (V1), but destroyed fibers that normally provide input to V1 from the upper left visual field (LVF). As a consequence, B.L. is blind in the upper LVF, and exhibits distorted perception in the lower LVF: stimuli appear vertically elongated, toward and into the blind upper LVF. For example, a square presented in the lower LVF is perceived as a rectangle extending upward. We hypothesized that the perceptual distortion was a consequence of cortical reorganization in V1. Extensive behavioral testing supported our hypothesis, and functional magnetic resonance imaging (fMRI) confirmed V1 reorganization. Together, the behavioral and fMRI data show that loss of input to V1 after a stroke leads to cortical reorganization in the adult human visual system, and provide the first evidence that reorganization of the adult visual system affects visual perception. These findings contribute to our understanding of the human adult brain's capacity to change and has implications for topics ranging from learning to recovery from brain damage.
Collapse
Affiliation(s)
- Daniel D Dilks
- Department of Cognitive Science, Johns Hopkins University, Baltimore, Maryland 21218, USA.
| | | | | | | | | |
Collapse
|
34
|
Seitz AR, Dinse HR. A common framework for perceptual learning. Curr Opin Neurobiol 2007; 17:148-53. [PMID: 17317151 DOI: 10.1016/j.conb.2007.02.004] [Citation(s) in RCA: 181] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2006] [Accepted: 02/09/2007] [Indexed: 10/23/2022]
Abstract
In this review, we summarize recent evidence that perceptual learning can occur not only under training conditions but also in situations of unattended and passive sensory stimulation. We suggest that the key to learning is to boost stimulus-related activity that is normally insufficient exceed a learning threshold. We discuss how factors such as attention and reinforcement have crucial, permissive roles in learning. We observe, however, that highly optimized stimulation protocols can also boost responses and promote learning. This helps to reconcile observations of how learning can occur (or fail to occur) in seemingly contradictory circumstances, and argues that different processes that affect learning operate through similar mechanisms that are probably based on, and mediated by, neuromodulatory factors.
Collapse
Affiliation(s)
- Aaron R Seitz
- Department of Psychology, Boston University, 64 Cummington Street, Boston, MA 02215, USA
| | | |
Collapse
|
35
|
Henriksson L, Raninen A, Näsänen R, Hyvärinen L, Vanni S. Training-induced cortical representation of a hemianopic hemifield. J Neurol Neurosurg Psychiatry 2007; 78:74-81. [PMID: 16980334 PMCID: PMC2117784 DOI: 10.1136/jnnp.2006.099374] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Patients with homonymous hemianopia often have some residual sensitivity for visual stimuli in their blind hemifield. Previous imaging studies suggest an important role for extrastriate cortical areas in such residual vision, but results of training to improve vision in patients with hemianopia are conflicting. OBJECTIVE To show that intensive training with flicker stimulation in the chronic stage of stroke can reorganise visual cortices of an adult patient. METHODS A 61-year-old patient with homonymous hemianopia was trained with flicker stimulation, starting 22 months after stroke. Changes in functioning during training were documented with magnetoencephalography, and the cortical organisation after training was examined with functional magnetic resonance imaging (fMRI). RESULTS Both imaging methods showed that, after training, visual information from both hemifields was processed mainly in the intact hemisphere. The fMRI mapping results showed the representations of both the blind and the normal hemifield in the same set of cortical areas in the intact hemisphere, more specifically in the visual motion-sensitive area V5, in a region around the superior temporal sulcus and in retinotopic visual areas V1 (primary visual cortex), V2, V3 and V3a. CONCLUSIONS Intensive training of a blind hemifield can induce cortical reorganisation in an adult patient, and this case shows an ipsilateral representation of the trained visual hemifield in several cortical areas, including the primary visual cortex.
Collapse
Affiliation(s)
- L Henriksson
- Advanced Magnetic Imaging Centre and Brain Research Unit of Low Temperature Laboratory, Helsinki University of Technology, Espoo, Finland.
| | | | | | | | | |
Collapse
|
36
|
Abstract
Experience-dependent plasticity is a prominent feature of the mammalian visual cortex. Although such neural changes are most evident during development, adult cortical circuits can be modified by a variety of manipulations, such as perceptual learning and visual deprivation. Elucidating the underlying mechanisms at the cellular and synaptic levels is an essential step in understanding neural plasticity in the mature animal. Although developmental and adult plasticity share many common features, notable differences may be attributed to developmental cortical changes at multiple levels. These range from shifts in the molecular profiles of cortical neurons to changes in the spatiotemporal dynamics of network activity. In this review, we will discuss recent progress and remaining challenges in understanding adult visual plasticity, focusing on the primary visual cortex.
Collapse
Affiliation(s)
- Uma R Karmarkar
- Division of Neurobiology, Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720, USA
| | | |
Collapse
|
37
|
Dynamics and specificity of cortical map reorganization after retinal lesions. Proc Natl Acad Sci U S A 2006; 103:10805-10. [PMID: 16818873 DOI: 10.1073/pnas.0604539103] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neurons in the mature visual cortex deprived of their normal retinotopic inputs by matched binocular retinal lesions are initially silenced but become reactivated with time when the "blind" cortical lesion projection zone (LPZ) is filled in by new suprathreshold visual responses. In an attempt to gain further insight into the dynamics of this process, we investigated in detail the spatiotemporal pattern of single-cell properties and recording probability during cortical reorganization up to 12 months after retinal lesions. In the early phases of filling in, a transient peak of hyperactivity moves from the border of the normal cortex into the LPZ and forms the leading edge of a functional reconnection process. In the course of this process hyperactive cells inside the LPZ develop ectopic receptive fields that are initially enlarged and regain orientation specificity. During the proceeding recovery, hyperactivity and receptive field size normalize, while the quality of orientation tuning remains reduced at longer distances inside the LPZ at all stages of recovery up to 1 year. Within the adult anatomical framework of cortical connectivity, the maximal lateral distance of reconnection is limited, and the probability to encounter spiking cells decreases with increasing distance inside the LPZ. However, this recording probability was significantly increased after 1 year.
Collapse
|
38
|
|