1
|
Zhang H, Jiang L, Du X, Qian Z, Wu G, Jiang Y, Mao Z. The cGAS-Ku80 complex regulates the balance between two end joining subpathways. Cell Death Differ 2024; 31:792-803. [PMID: 38664591 PMCID: PMC11164703 DOI: 10.1038/s41418-024-01296-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 06/12/2024] Open
Abstract
As the major DNA sensor that activates the STING-TBK1 signaling cascade, cGAS is mainly present in the cytosol. A number of recent reports have indicated that cGAS also plays critical roles in the nucleus. Our previous work demonstrated for the first time that cGAS is translocated to the nucleus upon the occurrence of DNA damage and inhibits homologous recombination (HR), one of the two major pathways of DNA double strand break (DSB) repair. However, whether nuclear cGAS regulates the other DSB repair pathway, nonhomologous end joining (NHEJ), which can be further divided into the less error-prone canonical NHEJ (c-NHEJ) and more mutagenic alternative NHEJ (alt-NHEJ) subpathways, has not been characterized. Here, we demonstrated that cGAS tipped the balance of the two NHEJ subpathways toward c-NHEJ. Mechanistically, the cGAS-Ku80 complex enhanced the interaction between DNA-PKcs and the deubiquitinase USP7 to improve DNA-PKcs protein stability, thereby promoting c-NHEJ. In contrast, the cGAS-Ku80 complex suppressed alt-NHEJ by directly binding to the promoter of Polθ to suppress its transcription. Together, these findings reveal a novel function of nuclear cGAS in regulating DSB repair, suggesting that the presence of cGAS in the nucleus is also important in the maintenance of genome integrity.
Collapse
Affiliation(s)
- Haiping Zhang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Lijun Jiang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xinyi Du
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhen Qian
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Guizhu Wu
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Ying Jiang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China.
| | - Zhiyong Mao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China.
| |
Collapse
|
2
|
Tong J, Song J, Zhang W, Zhai J, Guan Q, Wang H, Liu G, Zheng C. When DNA-damage responses meet innate and adaptive immunity. Cell Mol Life Sci 2024; 81:185. [PMID: 38630271 PMCID: PMC11023972 DOI: 10.1007/s00018-024-05214-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 04/19/2024]
Abstract
When cells proliferate, stress on DNA replication or exposure to endogenous or external insults frequently results in DNA damage. DNA-Damage Response (DDR) networks are complex signaling pathways used by multicellular organisms to prevent DNA damage. Depending on the type of broken DNA, the various pathways, Base-Excision Repair (BER), Nucleotide Excision Repair (NER), Mismatch Repair (MMR), Homologous Recombination (HR), Non-Homologous End-Joining (NHEJ), Interstrand Crosslink (ICL) repair, and other direct repair pathways, can be activated separately or in combination to repair DNA damage. To preserve homeostasis, innate and adaptive immune responses are effective defenses against endogenous mutation or invasion by external pathogens. It is interesting to note that new research keeps showing how closely DDR components and the immune system are related. DDR and immunological response are linked by immune effectors such as the cyclic GMP-AMP synthase (cGAS)-Stimulator of Interferon Genes (STING) pathway. These effectors act as sensors of DNA damage-caused immune response. Furthermore, DDR components themselves function in immune responses to trigger the generation of inflammatory cytokines in a cascade or even trigger programmed cell death. Defective DDR components are known to disrupt genomic stability and compromise immunological responses, aggravating immune imbalance and leading to serious diseases such as cancer and autoimmune disorders. This study examines the most recent developments in the interaction between DDR elements and immunological responses. The DDR network's immune modulators' dual roles may offer new perspectives on treating infectious disorders linked to DNA damage, including cancer, and on the development of target immunotherapy.
Collapse
Affiliation(s)
- Jie Tong
- College of Life Science, Hebei University, Baoding, 071002, China
- Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Jiangwei Song
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100089, China
| | - Wuchao Zhang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, 071000, China
| | - Jingbo Zhai
- Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Medical College, Inner Mongolia Minzu University, Tongliao, 028000, China
| | - Qingli Guan
- The Affiliated Hospital of Chinese PLA 80th Group Army, Weifang, 261000, China
| | - Huiqing Wang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Gentao Liu
- Department of Oncology, Tenth People's Hospital Affiliated to Tongji University & Cancer Center, Tongji University School of Medicine, Shanghai, 20000, China.
| | - Chunfu Zheng
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
3
|
Brambati A, Sacco O, Porcella S, Heyza J, Kareh M, Schmidt JC, Sfeir A. RHINO directs MMEJ to repair DNA breaks in mitosis. Science 2023; 381:653-660. [PMID: 37440612 PMCID: PMC10561558 DOI: 10.1126/science.adh3694] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023]
Abstract
Nonhomologous end-joining (NHEJ) and homologous recombination (HR) are the primary pathways for repairing DNA double-strand breaks (DSBs) during interphase, whereas microhomology-mediated end-joining (MMEJ) has been regarded as a backup mechanism. Through CRISPR-Cas9-based synthetic lethal screens in cancer cells, we identified subunits of the 9-1-1 complex (RAD9A-RAD1-HUS1) and its interacting partner, RHINO, as crucial MMEJ factors. We uncovered an unexpected function for RHINO in restricting MMEJ to mitosis. RHINO accumulates in M phase, undergoes Polo-like kinase 1 (PLK1) phosphorylation, and interacts with polymerase θ (Polθ), enabling its recruitment to DSBs for subsequent repair. Additionally, we provide evidence that MMEJ activity in mitosis repairs persistent DSBs that originate in S phase. Our findings offer insights into the synthetic lethal relationship between the genes POLQ and BRCA1 and BRAC2 and the synergistic effect of Polθ and poly(ADP-ribose) polymerase (PARP) inhibitors.
Collapse
Affiliation(s)
- Alessandra Brambati
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Olivia Sacco
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Sarina Porcella
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Joshua Heyza
- Institute for Quantitative Health Sciences and Engineering, Michigan State University; East Lansing, MI, USA
- Department of Obstetrics, Gynecology, and Reproductive Biology, Michigan State University; East Lansing, MI, USA
| | - Mike Kareh
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Jens C. Schmidt
- Institute for Quantitative Health Sciences and Engineering, Michigan State University; East Lansing, MI, USA
- Department of Obstetrics, Gynecology, and Reproductive Biology, Michigan State University; East Lansing, MI, USA
| | - Agnel Sfeir
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| |
Collapse
|
4
|
Rodriguez-Berriguete G, Ranzani M, Prevo R, Puliyadi R, Machado N, Bolland HR, Millar V, Ebner D, Boursier M, Cerutti A, Cicconi A, Galbiati A, Grande D, Grinkevich V, Majithiya JB, Piscitello D, Rajendra E, Stockley ML, Boulton SJ, Hammond EM, Heald RA, Smith GC, Robinson HM, Higgins GS. Small-Molecule Polθ Inhibitors Provide Safe and Effective Tumor Radiosensitization in Preclinical Models. Clin Cancer Res 2023; 29:1631-1642. [PMID: 36689546 PMCID: PMC10102842 DOI: 10.1158/1078-0432.ccr-22-2977] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/19/2022] [Accepted: 01/19/2023] [Indexed: 01/24/2023]
Abstract
PURPOSE DNA polymerase theta (Polθ, encoded by the POLQ gene) is a DNA repair enzyme critical for microhomology mediated end joining (MMEJ). Polθ has limited expression in normal tissues but is frequently overexpressed in cancer cells and, therefore, represents an ideal target for tumor-specific radiosensitization. In this study we evaluate whether targeting Polθ with novel small-molecule inhibitors is a feasible strategy to improve the efficacy of radiotherapy. EXPERIMENTAL DESIGN We characterized the response to Polθ inhibition in combination with ionizing radiation in different cancer cell models in vitro and in vivo. RESULTS Here, we show that ART558 and ART899, two novel and specific allosteric inhibitors of the Polθ DNA polymerase domain, potently radiosensitize tumor cells, particularly when combined with fractionated radiation. Importantly, noncancerous cells were not radiosensitized by Polθ inhibition. Mechanistically, we show that the radiosensitization caused by Polθ inhibition is most effective in replicating cells and is due to impaired DNA damage repair. We also show that radiosensitization is still effective under hypoxia, suggesting that these inhibitors may help overcome hypoxia-induced radioresistance. In addition, we describe for the first time ART899 and characterize it as a potent and specific Polθ inhibitor with improved metabolic stability. In vivo, the combination of Polθ inhibition using ART899 with fractionated radiation is well tolerated and results in a significant reduction in tumor growth compared with radiation alone. CONCLUSIONS These results pave the way for future clinical trials of Polθ inhibitors in combination with radiotherapy.
Collapse
Affiliation(s)
| | - Marco Ranzani
- Artios Pharma, Babraham Research Campus, Cambridge, United Kingdom
| | - Remko Prevo
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Rathi Puliyadi
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Nicole Machado
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Hannah R. Bolland
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Val Millar
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Daniel Ebner
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Marie Boursier
- Artios Pharma, Babraham Research Campus, Cambridge, United Kingdom
| | - Aurora Cerutti
- Artios Pharma, Babraham Research Campus, Cambridge, United Kingdom
| | | | | | - Diego Grande
- Artios Pharma, Babraham Research Campus, Cambridge, United Kingdom
| | - Vera Grinkevich
- Artios Pharma, Babraham Research Campus, Cambridge, United Kingdom
| | | | | | - Eeson Rajendra
- Artios Pharma, Babraham Research Campus, Cambridge, United Kingdom
| | | | - Simon J. Boulton
- Artios Pharma, Babraham Research Campus, Cambridge, United Kingdom
- The Francis Crick Institute, London, United Kingdom
| | - Ester M. Hammond
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Robert A. Heald
- Artios Pharma, Babraham Research Campus, Cambridge, United Kingdom
| | | | | | - Geoff S. Higgins
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
5
|
Chai R, Zhang Q, Wu J, Shi Z, Li Y, Gao Y, Qi Y, Qiu L. Single-Stranded DNA-Binding Proteins Mediate DSB Repair and Effectively Improve CRISPR/Cas9 Genome Editing in Escherichia coli and Pseudomonas. Microorganisms 2023; 11:microorganisms11040850. [PMID: 37110272 PMCID: PMC10143710 DOI: 10.3390/microorganisms11040850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/22/2023] [Accepted: 03/25/2023] [Indexed: 03/29/2023] Open
Abstract
Single-stranded DNA-binding proteins (SSBs) are essential for all living organisms. Whether SSBs can repair DNA double-strand breaks (DSBs) and improve the efficiency of CRISPR/Cas9-mediated genome editing has not been determined. Here, based on a pCas/pTargetF system, we constructed pCas-SSB and pCas-T4L by replacing the λ-Red recombinases with Escherichia coli SSB and phage T4 DNA ligase in pCas, respectively. Inactivation of the E. coli lacZ gene with homologous donor dsDNA increased the gene editing efficiency of pCas-SSB/pTargetF by 21.4% compared to pCas/pTargetF. Inactivation of the E. coli lacZ gene via NHEJ increased the gene editing efficiency of pCas-SSB/pTargetF by 33.2% compared to pCas-T4L/pTargetF. Furthermore, the gene-editing efficiency of pCas-SSB/pTargetF in E. coli (ΔrecA, ΔrecBCD, ΔSSB) with or without donor dsDNA did not differ. Additionally, pCas-SSB/pTargetF with donor dsDNA successfully deleted the wp116 gene in Pseudomonas sp. UW4. These results demonstrate that E. coli SSB repairs DSBs caused by CRISPR/Cas9 and effectively improves CRISPR/Cas9 genome editing in E. coli and Pseudomonas.
Collapse
|
6
|
Brambati A, Sacco O, Porcella S, Heyza J, Kareh M, Schmidt JC, Sfeir A. RHINO restricts MMEJ activity to mitosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.16.532763. [PMID: 36993461 PMCID: PMC10055031 DOI: 10.1101/2023.03.16.532763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
DNA double-strand breaks (DSBs) are toxic lesions that can lead to genome instability if not properly repaired. Breaks incurred in G1 phase of the cell cycle are predominantly fixed by non-homologous end-joining (NHEJ), while homologous recombination (HR) is the primary repair pathway in S and G2. Microhomology-mediated end-joining (MMEJ) is intrinsically error-prone and considered a backup DSB repair pathway that becomes essential when HR and NHEJ are compromised. In this study, we uncover MMEJ as the major DSB repair pathway in M phase. Using CRISPR/Cas9-based synthetic lethal screens, we identify subunits of the 9-1-1 complex (RAD9A-HUS1-RAD1) and its interacting partner, RHINO, as critical MMEJ factors. Mechanistically, we show that the function of 9-1-1 and RHINO in MMEJ is inconsistent with their well-established role in ATR signaling. Instead, RHINO plays an unexpected and essential role in directing mutagenic repair to M phase by directly binding to Polymerase theta (Polθ) and promoting its recruitment to DSBs in mitosis. In addition, we provide evidence that mitotic MMEJ repairs persistent DNA damage that originates in S phase but is not repaired by HR. The latter findings could explain the synthetic lethal relationship between POLQ and BRCA1/2 and the synergistic effect of Polθ and PARP inhibitors. In summary, our study identifies MMEJ as the primary pathway for repairing DSBs during mitosis and highlights an unanticipated role for RHINO in directing mutagenic repair to M phase.
Collapse
|
7
|
Buehl CJ, Goff NJ, Hardwick SW, Gellert M, Blundell TL, Yang W, Chaplin AK, Meek K. Two distinct long-range synaptic complexes promote different aspects of end processing prior to repair of DNA breaks by non-homologous end joining. Mol Cell 2023; 83:698-714.e4. [PMID: 36724784 PMCID: PMC9992237 DOI: 10.1016/j.molcel.2023.01.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 11/29/2022] [Accepted: 01/06/2023] [Indexed: 02/03/2023]
Abstract
Non-homologous end joining is the major double-strand break repair (DSBR) pathway in mammals. DNA-PK is the hub and organizer of multiple steps in non-homologous end joining (NHEJ). Recent high-resolution structures show how two distinct NHEJ complexes "synapse" two DNA ends. One complex includes a DNA-PK dimer mediated by XLF, whereas a distinct DNA-PK dimer forms via a domain-swap mechanism where the C terminus of Ku80 from one DNA-PK protomer interacts with another DNA-PK protomer in trans. Remarkably, the distance between the two synapsed DNA ends in both dimers is the same (∼115 Å), which matches the distance observed in the initial description of an NHEJ long-range synaptic complex. Here, a mutational strategy is used to demonstrate distinct cellular function(s) of the two dimers: one promoting fill-in end processing, while the other promotes DNA end resection. Thus, the specific DNA-PK dimer formed (which may be impacted by DNA end structure) dictates the mechanism by which ends will be made ligatable.
Collapse
Affiliation(s)
- Christopher J Buehl
- College of Veterinary Medicine, Department of Microbiology & Molecular Genetics, Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, MI 48824, USA
| | - Noah J Goff
- College of Veterinary Medicine, Department of Microbiology & Molecular Genetics, Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, MI 48824, USA
| | - Steven W Hardwick
- CryoEM Facility, Department of Biochemistry, University of Cambridge, Sanger Building, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Martin Gellert
- Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tom L Blundell
- Department of Biochemistry, University of Cambridge, Sanger Building, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Wei Yang
- Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Amanda K Chaplin
- Department of Biochemistry, University of Cambridge, Sanger Building, Tennis Court Road, Cambridge CB2 1GA, UK; Leicester Institute for Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, UK.
| | - Katheryn Meek
- College of Veterinary Medicine, Department of Microbiology & Molecular Genetics, Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
8
|
Li C, Zhu H, Jin S, Maksoud LM, Jain N, Sun J, Gao Y. Structural basis of DNA polymerase θ mediated DNA end joining. Nucleic Acids Res 2023; 51:463-474. [PMID: 36583344 PMCID: PMC9841435 DOI: 10.1093/nar/gkac1201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/31/2022] Open
Abstract
DNA polymerase θ (Pol θ) plays an essential role in the microhomology-mediated end joining (MMEJ) pathway for repairing DNA double-strand breaks. However, the mechanisms by which Pol θ recognizes microhomologous DNA ends and performs low-fidelity DNA synthesis remain unclear. Here, we present cryo-electron microscope structures of the polymerase domain of Lates calcarifer Pol θ with long and short duplex DNA at up to 2.4 Å resolution. Interestingly, Pol θ binds to long and short DNA substrates similarly, with extensive interactions around the active site. Moreover, Pol θ shares a similar active site as high-fidelity A-family polymerases with its finger domain well-closed but differs in having hydrophilic residues surrounding the nascent base pair. Computational simulations and mutagenesis studies suggest that the unique insertion loops of Pol θ help to stabilize short DNA binding and assemble the active site for MMEJ repair. Taken together, our results illustrate the structural basis of Pol θ-mediated MMEJ.
Collapse
Affiliation(s)
- Chuxuan Li
- Department of Biosciences, Rice University, Houston, TX 77005, USA
| | - Hanwen Zhu
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Shikai Jin
- Department of Biosciences, Rice University, Houston, TX 77005, USA
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA
| | - Leora M Maksoud
- Department of Biosciences, Rice University, Houston, TX 77005, USA
| | - Nikhil Jain
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Ji Sun
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Yang Gao
- Department of Biosciences, Rice University, Houston, TX 77005, USA
| |
Collapse
|
9
|
Jiang Y. Contribution of Microhomology to Genome Instability: Connection between DNA Repair and Replication Stress. Int J Mol Sci 2022; 23:12937. [PMID: 36361724 PMCID: PMC9657218 DOI: 10.3390/ijms232112937] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/23/2022] [Accepted: 10/23/2022] [Indexed: 11/23/2023] Open
Abstract
Microhomology-mediated end joining (MMEJ) is a highly mutagenic pathway to repair double-strand breaks (DSBs). MMEJ was thought to be a backup pathway of homologous recombination (HR) and canonical nonhomologous end joining (C-NHEJ). However, it attracts more attention in cancer research due to its special function of microhomology in many different aspects of cancer. In particular, it is initiated with DNA end resection and upregulated in homologous recombination-deficient cancers. In this review, I summarize the following: (1) the recent findings and contributions of MMEJ to genome instability, including phenotypes relevant to MMEJ; (2) the interaction between MMEJ and other DNA repair pathways; (3) the proposed mechanistic model of MMEJ in DNA DSB repair and a new connection with microhomology-mediated break-induced replication (MMBIR); and (4) the potential clinical application by targeting MMEJ based on synthetic lethality for cancer therapy.
Collapse
Affiliation(s)
- Yuning Jiang
- Department of Radiation Oncology, University of Virginia, Charlottesville, VA 22903, USA
| |
Collapse
|
10
|
Goff NJ, Brenière M, Buehl CJ, de Melo AJ, Huskova H, Ochi T, Blundell TL, Mao W, Yu K, Modesti M, Meek K. Catalytically inactive DNA ligase IV promotes DNA repair in living cells. Nucleic Acids Res 2022; 50:11058-11071. [PMID: 36263813 PMCID: PMC9638927 DOI: 10.1093/nar/gkac913] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/18/2022] [Indexed: 11/17/2022] Open
Abstract
DNA double strand breaks (DSBs) are induced by external genotoxic agents (ionizing radiation or genotoxins) or by internal processes (recombination intermediates in lymphocytes or by replication errors). The DNA ends induced by these genotoxic processes are often not ligatable, requiring potentially mutagenic end-processing to render ends compatible for ligation by non-homologous end-joining (NHEJ). Using single molecule approaches, Loparo et al. propose that NHEJ fidelity can be maintained by restricting end-processing to a ligation competent short-range NHEJ complex that 'maximizes the fidelity of DNA repair'. These in vitro studies show that although this short-range NHEJ complex requires DNA ligase IV (Lig4), its catalytic activity is dispensable. Here using cellular models, we show that inactive Lig4 robustly promotes DNA repair in living cells. Compared to repair products from wild-type cells, those isolated from cells with inactive Lig4 show a somewhat increased fraction that utilize micro-homology (MH) at the joining site consistent with alternative end-joining (a-EJ). But unlike a-EJ in the absence of NHEJ, a large percentage of joints isolated from cells with inactive Lig4 occur with no MH - thus, clearly distinct from a-EJ. Finally, biochemical assays demonstrate that the inactive Lig4 complex promotes the activity of DNA ligase III (Lig3).
Collapse
Affiliation(s)
- Noah J Goff
- College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA,Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA,Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, MI 48824, USA
| | - Manon Brenière
- Centre de Recherche en Cancérologie de Marseille, CNRS UMR7258, Inserm U1068, Institut Paoli-Calmettes, Aix-Marseille Universiteé, Marseille, France
| | - Christopher J Buehl
- College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA,Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA,Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, MI 48824, USA
| | - Abinadabe J de Melo
- Centre de Recherche en Cancérologie de Marseille, CNRS UMR7258, Inserm U1068, Institut Paoli-Calmettes, Aix-Marseille Universiteé, Marseille, France
| | - Hana Huskova
- Centre de Recherche en Cancérologie de Marseille, CNRS UMR7258, Inserm U1068, Institut Paoli-Calmettes, Aix-Marseille Universiteé, Marseille, France
| | - Takashi Ochi
- The Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9TJ, UK
| | - Tom L Blundell
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Weifeng Mao
- College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA,Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | - Kefei Yu
- College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA,Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | - Mauro Modesti
- Correspondence may also be addressed to Mauro Modesti.
| | | |
Collapse
|
11
|
DNA Polymerase Theta Plays a Critical Role in Pancreatic Cancer Development and Metastasis. Cancers (Basel) 2022; 14:cancers14174077. [PMID: 36077614 PMCID: PMC9454495 DOI: 10.3390/cancers14174077] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), due to its genomic heterogeneity and lack of effective treatment, despite decades of intensive research, will become the second leading cause of cancer-related deaths by 2030. Step-wise acquisition of mutations, due to genomic instability, is considered to drive the development of PDAC; the KRAS mutation occurs in 95 to 100% of human PDAC, and is already detectable in early premalignant lesions designated as pancreatic intraepithelial neoplasia (PanIN). This mutation is possibly the key event leading to genomic instability and PDAC development. Our study aimed to investigate the role of the error-prone DNA double-strand breaks (DSBs) repair pathway, alt-EJ, in the presence of the KRAS G12D mutation in pancreatic cancer development. Our findings show that oncogenic KRAS contributes to increasing the expression of Polθ, Lig3, and Mre11, key components of alt-EJ in both mouse and human PDAC models. We further confirm increased catalytic activity of alt-EJ in a mouse and human model of PDAC bearing the KRAS G12D mutation. Subsequently, we focused on estimating the impact of alt-EJ inactivation by polymerase theta (Polθ) deletion on pancreatic cancer development, and survival in genetically engineered mouse models (GEMMs) and cancer patients. Here, we show that even though Polθ deficiency does not fully prevent the development of pancreatic cancer, it significantly delays the onset of PanIN formation, prolongs the overall survival of experimental mice, and correlates with the overall survival of pancreatic cancer patients in the TCGA database. Our study clearly demonstrates the role of alt-EJ in the development of PDAC, and alt-EJ may be an attractive therapeutic target for pancreatic cancer patients.
Collapse
|
12
|
Cisneros-Aguirre M, Lopezcolorado FW, Tsai LJ, Bhargava R, Stark JM. The importance of DNAPKcs for blunt DNA end joining is magnified when XLF is weakened. Nat Commun 2022; 13:3662. [PMID: 35760797 PMCID: PMC9237100 DOI: 10.1038/s41467-022-31365-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 06/10/2022] [Indexed: 12/13/2022] Open
Abstract
Canonical non-homologous end joining (C-NHEJ) factors can assemble into a long-range (LR) complex with DNA ends relatively far apart that contains DNAPKcs, XLF, XRCC4, LIG4, and the KU heterodimer and a short-range (SR) complex lacking DNAPKcs that has the ends positioned for ligation. Since the SR complex can form de novo, the role of the LR complex (i.e., DNAPKcs) for chromosomal EJ is unclear. We have examined EJ of chromosomal blunt DNA double-strand breaks (DSBs), and found that DNAPKcs is significantly less important than XLF for such EJ. However, weakening XLF via disrupting interaction interfaces causes a marked requirement for DNAPKcs, its kinase activity, and its ABCDE-cluster autophosphorylation sites for blunt DSB EJ. In contrast, other aspects of genome maintenance are sensitive to DNAPKcs kinase inhibition in a manner that is not further enhanced by XLF loss (i.e., suppression of homology-directed repair and structural variants, and IR-resistance). We suggest that DNAPKcs is required to position a weakened XLF in an LR complex that can transition into a functional SR complex for blunt DSB EJ, but also has distinct functions for other aspects of genome maintenance. DNAPKcs and its kinase activity are required for blunt DNA break end joining when the bridging factor XLF is weakened, but for homologous recombination and radiation resistance, the influence of DNAPKcs is not further enhanced with loss of XLF.
Collapse
Affiliation(s)
- Metztli Cisneros-Aguirre
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, 1500 E Duarte Rd, Duarte, CA 91010, USA.,Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, 1500 E Duarte Rd, Duarte, CA 91010, USA
| | - Felicia Wednesday Lopezcolorado
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, 1500 E Duarte Rd, Duarte, CA 91010, USA
| | - Linda Jillianne Tsai
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, 1500 E Duarte Rd, Duarte, CA 91010, USA.,Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, 1500 E Duarte Rd, Duarte, CA 91010, USA
| | - Ragini Bhargava
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, 1500 E Duarte Rd, Duarte, CA 91010, USA.,Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, 1500 E Duarte Rd, Duarte, CA 91010, USA.,Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jeremy M Stark
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, 1500 E Duarte Rd, Duarte, CA 91010, USA. .,Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, 1500 E Duarte Rd, Duarte, CA 91010, USA.
| |
Collapse
|
13
|
Abstract
Adaptive immunity in jawed vertebrates relies on the assembly of antigen receptor genes by the recombination activating gene 1 (RAG1)-RAG2 (collectively RAG) recombinase in a reaction known as V(D)J recombination. Extensive biochemical and structural evidence indicates that RAG and V(D)J recombination evolved from the components of a RAG-like (RAGL) transposable element through a process known as transposon molecular domestication. This Review describes recent advances in our understanding of the functional and structural transitions that occurred during RAG evolution. We use the structures of RAG and RAGL enzymes to trace the evolutionary adaptations that yielded a RAG recombinase with exquisitely regulated cleavage activity and a multilayered array of mechanisms to suppress transposition. We describe how changes in modes of DNA binding, alterations in the dynamics of protein-DNA complexes, single amino acid mutations and a modular design likely enabled RAG family enzymes to survive and spread in the genomes of eukaryotes. These advances highlight the insight that can be gained from viewing evolution of vertebrate immunity through the lens of comparative genome analyses coupled with structural biology and biochemistry.
Collapse
|
14
|
Bai W, Zhao B, Gu M, Dong J. Alternative end-joining in BCR gene rearrangements and translocations. Acta Biochim Biophys Sin (Shanghai) 2022; 54:782-795. [PMID: 35593472 PMCID: PMC9828324 DOI: 10.3724/abbs.2022051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Programmed DNA double-strand breaks (DSBs) occur during antigen receptor gene recombination, namely V(D)J recombination in developing B lymphocytes and class switch recombination (CSR) in mature B cells. Repair of these DSBs by classical end-joining (c-NHEJ) enables the generation of diverse BCR repertoires for efficient humoral immunity. Deletion of or mutation in c-NHEJ genes in mice and humans confer various degrees of primary immune deficiency and predisposition to lymphoid malignancies that often harbor oncogenic chromosomal translocations. In the absence of c-NHEJ, alternative end-joining (A-EJ) catalyzes robust CSR and to a much lesser extent, V(D)J recombination, but the mechanisms of A-EJ are only poorly defined. In this review, we introduce recent advances in the understanding of A-EJ in the context of V(D)J recombination and CSR with emphases on DSB end processing, DNA polymerases and ligases, and discuss the implications of A-EJ to lymphoid development and chromosomal translocations.
Collapse
Affiliation(s)
- Wanyu Bai
- Department of ImmunologyZhongshan School of MedicineSun Yat-sen UniversityGuangzhou510080China,Key Laboratory of Tropical Disease Control (Sun Yat-sen University)Ministry of EducationGuangzhou510080China
| | - Bo Zhao
- Department of ImmunologyZhongshan School of MedicineSun Yat-sen UniversityGuangzhou510080China,Key Laboratory of Tropical Disease Control (Sun Yat-sen University)Ministry of EducationGuangzhou510080China
| | - Mingyu Gu
- Department of ImmunologyZhongshan School of MedicineSun Yat-sen UniversityGuangzhou510080China,Key Laboratory of Tropical Disease Control (Sun Yat-sen University)Ministry of EducationGuangzhou510080China
| | - Junchao Dong
- Department of ImmunologyZhongshan School of MedicineSun Yat-sen UniversityGuangzhou510080China,Key Laboratory of Tropical Disease Control (Sun Yat-sen University)Ministry of EducationGuangzhou510080China,Correspondence address. Tel: +86-20-87330571; E-mail:
| |
Collapse
|
15
|
Luo S, Qiao R, Zhang X. DNA Damage Response and Repair in Adaptive Immunity. Front Cell Dev Biol 2022; 10:884873. [PMID: 35663402 PMCID: PMC9157429 DOI: 10.3389/fcell.2022.884873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 03/31/2022] [Indexed: 11/16/2022] Open
Abstract
The diversification of B-cell receptor (BCR), as well as its secreted product, antibody, is a hallmark of adaptive immunity, which has more specific roles in fighting against pathogens. The antibody diversification is from recombination-activating gene (RAG)-initiated V(D)J recombination, activation-induced cytidine deaminase (AID)-initiated class switch recombination (CSR), and V(D)J exon somatic hypermutation (SHM). The proper repair of RAG- and AID-initiated DNA lesions and double-strand breaks (DSBs) is required for promoting antibody diversification, suppressing genomic instability, and oncogenic translocations. DNA damage response (DDR) factors and DSB end-joining factors are recruited to the RAG- and AID-initiated DNA lesions and DSBs to coordinately resolve them for generating productive recombination products during antibody diversification. Recently, cohesin-mediated loop extrusion is proposed to be the underlying mechanism of V(D)J recombination and CSR, which plays essential roles in promoting the orientation-biased deletional end-joining . Here, we will discuss the mechanism of DNA damage repair in antibody diversification.
Collapse
Affiliation(s)
- Sha Luo
- Biomedical Pioneering Innovation Center, Innovation Center for Genomics, Peking University, Beijing, China
- Academy for Advanced Interdisciplinery Studies, Peking University, Beijing, China
| | - Ruolin Qiao
- Biomedical Pioneering Innovation Center, Innovation Center for Genomics, Peking University, Beijing, China
- Academy for Advanced Interdisciplinery Studies, Peking University, Beijing, China
| | - Xuefei Zhang
- Biomedical Pioneering Innovation Center, Innovation Center for Genomics, Peking University, Beijing, China
| |
Collapse
|
16
|
Christie SM, Fijen C, Rothenberg E. V(D)J Recombination: Recent Insights in Formation of the Recombinase Complex and Recruitment of DNA Repair Machinery. Front Cell Dev Biol 2022; 10:886718. [PMID: 35573672 PMCID: PMC9099191 DOI: 10.3389/fcell.2022.886718] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/01/2022] [Indexed: 11/13/2022] Open
Abstract
V(D)J recombination is an essential mechanism of the adaptive immune system, producing a diverse set of antigen receptors in developing lymphocytes via regulated double strand DNA break and subsequent repair. DNA cleavage is initiated by the recombinase complex, consisting of lymphocyte specific proteins RAG1 and RAG2, while the repair phase is completed by classical non-homologous end joining (NHEJ). Many of the individual steps of this process have been well described and new research has increased the scale to understand the mechanisms of initiation and intermediate stages of the pathway. In this review we discuss 1) the regulatory functions of RAGs, 2) recruitment of RAGs to the site of recombination and formation of a paired complex, 3) the transition from a post-cleavage complex containing RAGs and cleaved DNA ends to the NHEJ repair phase, and 4) the potential redundant roles of certain factors in repairing the break. Regulatory (non-core) domains of RAGs are not necessary for catalytic activity, but likely influence recruitment and stabilization through interaction with modified histones and conformational changes. To form long range paired complexes, recent studies have found evidence in support of large scale chromosomal contraction through various factors to utilize diverse gene segments. Following the paired cleavage event, four broken DNA ends must now make a regulated transition to the repair phase, which can be controlled by dynamic conformational changes and post-translational modification of the factors involved. Additionally, we examine the overlapping roles of certain NHEJ factors which allows for prevention of genomic instability due to incomplete repair in the absence of one, but are lethal in combined knockouts. To conclude, we focus on the importance of understanding the detail of these processes in regards to off-target recombination or deficiency-mediated clinical manifestations.
Collapse
Affiliation(s)
- Shaun M. Christie
- *Correspondence: Shaun M. Christie, ; Carel Fijen, ; Eli Rothenberg,
| | - Carel Fijen
- *Correspondence: Shaun M. Christie, ; Carel Fijen, ; Eli Rothenberg,
| | - Eli Rothenberg
- *Correspondence: Shaun M. Christie, ; Carel Fijen, ; Eli Rothenberg,
| |
Collapse
|
17
|
Ramsden DA, Carvajal-Garcia J, Gupta GP. Mechanism, cellular functions and cancer roles of polymerase-theta-mediated DNA end joining. Nat Rev Mol Cell Biol 2022; 23:125-140. [PMID: 34522048 DOI: 10.1038/s41580-021-00405-2] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2021] [Indexed: 02/08/2023]
Abstract
Cellular pathways that repair chromosomal double-strand breaks (DSBs) have pivotal roles in cell growth, development and cancer. These DSB repair pathways have been the target of intensive investigation, but one pathway - alternative end joining (a-EJ) - has long resisted elucidation. In this Review, we highlight recent progress in our understanding of a-EJ, especially the assignment of DNA polymerase theta (Polθ) as the predominant mediator of a-EJ in most eukaryotes, and discuss a potential molecular mechanism by which Polθ-mediated end joining (TMEJ) occurs. We address possible cellular functions of TMEJ in resolving DSBs that are refractory to repair by non-homologous end joining (NHEJ), DSBs generated following replication fork collapse and DSBs present owing to stalling of repair by homologous recombination. We also discuss how these context-dependent cellular roles explain how TMEJ can both protect against and cause genome instability, and the emerging potential of Polθ as a therapeutic target in cancer.
Collapse
Affiliation(s)
- Dale A Ramsden
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Juan Carvajal-Garcia
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Gaorav P Gupta
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
18
|
Libri A, Marton T, Deriano L. The (Lack of) DNA Double-Strand Break Repair Pathway Choice During V(D)J Recombination. Front Genet 2022; 12:823943. [PMID: 35082840 PMCID: PMC8785701 DOI: 10.3389/fgene.2021.823943] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 12/13/2021] [Indexed: 01/08/2023] Open
Abstract
DNA double-strand breaks (DSBs) are highly toxic lesions that can be mended via several DNA repair pathways. Multiple factors can influence the choice and the restrictiveness of repair towards a given pathway in order to warrant the maintenance of genome integrity. During V(D)J recombination, RAG-induced DSBs are (almost) exclusively repaired by the non-homologous end-joining (NHEJ) pathway for the benefit of antigen receptor gene diversity. Here, we review the various parameters that constrain repair of RAG-generated DSBs to NHEJ, including the peculiarity of DNA DSB ends generated by the RAG nuclease, the establishment and maintenance of a post-cleavage synaptic complex, and the protection of DNA ends against resection and (micro)homology-directed repair. In this physiological context, we highlight that certain DSBs have limited DNA repair pathway choice options.
Collapse
Affiliation(s)
- Alice Libri
- Genome Integrity, Immunity and Cancer Unit, Institut Pasteur, Université de Paris, INSERM U1223, Equipe Labellisée Ligue Contre Le Cancer, Paris, France
| | - Timea Marton
- Genome Integrity, Immunity and Cancer Unit, Institut Pasteur, Université de Paris, INSERM U1223, Equipe Labellisée Ligue Contre Le Cancer, Paris, France
| | - Ludovic Deriano
- Genome Integrity, Immunity and Cancer Unit, Institut Pasteur, Université de Paris, INSERM U1223, Equipe Labellisée Ligue Contre Le Cancer, Paris, France
| |
Collapse
|
19
|
Frock RL, Sadeghi C, Meng J, Wang JL. DNA End Joining: G0-ing to the Core. Biomolecules 2021; 11:biom11101487. [PMID: 34680120 PMCID: PMC8533500 DOI: 10.3390/biom11101487] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/28/2022] Open
Abstract
Humans have evolved a series of DNA double-strand break (DSB) repair pathways to efficiently and accurately rejoin nascently formed pairs of double-stranded DNA ends (DSEs). In G0/G1-phase cells, non-homologous end joining (NHEJ) and alternative end joining (A-EJ) operate to support covalent rejoining of DSEs. While NHEJ is predominantly utilized and collaborates extensively with the DNA damage response (DDR) to support pairing of DSEs, much less is known about A-EJ collaboration with DDR factors when NHEJ is absent. Non-cycling lymphocyte progenitor cells use NHEJ to complete V(D)J recombination of antigen receptor genes, initiated by the RAG1/2 endonuclease which holds its pair of targeted DSBs in a synapse until each specified pair of DSEs is handed off to the NHEJ DSB sensor complex, Ku. Similar to designer endonuclease DSBs, the absence of Ku allows for A-EJ to access RAG1/2 DSEs but with random pairing to complete their repair. Here, we describe recent insights into the major phases of DSB end joining, with an emphasis on synapsis and tethering mechanisms, and bring together new and old concepts of NHEJ vs. A-EJ and on RAG2-mediated repair pathway choice.
Collapse
|
20
|
Gillyard T, Davis J. DNA double-strand break repair in cancer: A path to achieving precision medicine. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 364:111-137. [PMID: 34507781 DOI: 10.1016/bs.ircmb.2021.06.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The assessment of DNA damage can be a significant diagnostic for precision medicine. DNA double strand break (DSBs) pathways in cancer are the primary targets in a majority of anticancer therapies, yet the molecular vulnerabilities that underlie each tumor can vary widely making the application of precision medicine challenging. Identifying and understanding these interindividual vulnerabilities enables the design of targeted DSB inhibitors along with evolving precision medicine approaches to selectively kill cancer cells with minimal side effects. A major challenge however, is defining exactly how to target unique differences in DSB repair pathway mechanisms. This review comprises a brief overview of the DSB repair mechanisms in cancer and includes results obtained with revolutionary advances such as CRISPR/Cas9 and machine learning/artificial intelligence, which are rapidly advancing not only our understanding of determinants of DSB repair choice, but also how it can be used to advance precision medicine. Scientific innovation in the methods used to diagnose and treat cancer is converging with advances in basic science and translational research. This revolution will continue to be a critical driver of precision medicine that will enable precise targeting of unique individual mechanisms. This review aims to lay the foundation for achieving this goal.
Collapse
Affiliation(s)
- Taneisha Gillyard
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN, United States
| | - Jamaine Davis
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN, United States.
| |
Collapse
|
21
|
Thompson MK, Sobol RW, Prakash A. Exploiting DNA Endonucleases to Advance Mechanisms of DNA Repair. BIOLOGY 2021; 10:530. [PMID: 34198612 PMCID: PMC8232306 DOI: 10.3390/biology10060530] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 12/17/2022]
Abstract
The earliest methods of genome editing, such as zinc-finger nucleases (ZFN) and transcription activator-like effector nucleases (TALENs), utilize customizable DNA-binding motifs to target the genome at specific loci. While these approaches provided sequence-specific gene-editing capacity, the laborious process of designing and synthesizing recombinant nucleases to recognize a specific target sequence, combined with limited target choices and poor editing efficiency, ultimately minimized the broad utility of these systems. The discovery of clustered regularly interspaced short palindromic repeat sequences (CRISPR) in Escherichia coli dates to 1987, yet it was another 20 years before CRISPR and the CRISPR-associated (Cas) proteins were identified as part of the microbial adaptive immune system, by targeting phage DNA, to fight bacteriophage reinfection. By 2013, CRISPR/Cas9 systems had been engineered to allow gene editing in mammalian cells. The ease of design, low cytotoxicity, and increased efficiency have made CRISPR/Cas9 and its related systems the designer nucleases of choice for many. In this review, we discuss the various CRISPR systems and their broad utility in genome manipulation. We will explore how CRISPR-controlled modifications have advanced our understanding of the mechanisms of genome stability, using the modulation of DNA repair genes as examples.
Collapse
Affiliation(s)
- Marlo K. Thompson
- Mitchell Cancer Institute, University of South Alabama Health, Mobile, AL 36604, USA; (M.K.T.); (R.W.S.)
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL 36688, USA
| | - Robert W. Sobol
- Mitchell Cancer Institute, University of South Alabama Health, Mobile, AL 36604, USA; (M.K.T.); (R.W.S.)
- Department of Pharmacology, University of South Alabama, Mobile, AL 36688, USA
| | - Aishwarya Prakash
- Mitchell Cancer Institute, University of South Alabama Health, Mobile, AL 36604, USA; (M.K.T.); (R.W.S.)
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL 36688, USA
| |
Collapse
|
22
|
Ku70 suppresses alternative end joining in G1-arrested progenitor B cells. Proc Natl Acad Sci U S A 2021; 118:2103630118. [PMID: 34006647 DOI: 10.1073/pnas.2103630118] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Classical nonhomologous end joining (C-NHEJ) repairs DNA double-strand breaks (DSBs) throughout interphase but predominates in G1 phase when homologous recombination is unavailable. Complexes containing the Ku70/80 ("Ku") and XRCC4/ligase IV (Lig4) core C-NHEJ factors are required, respectively, for sensing and joining DSBs. While XRCC4/Lig4 are absolutely required for joining RAG1/2 endonuclease ("RAG")-initiated DSBs during V(D)J recombination in G1-phase progenitor lymphocytes, cycling cells deficient for XRCC4/Lig4 also can join chromosomal DSBs by alternative end-joining (A-EJ) pathways. Restriction of V(D)J recombination by XRCC4/Lig4-mediated joining has been attributed to RAG shepherding V(D)J DSBs exclusively into the C-NHEJ pathway. Here, we report that A-EJ of DSB ends generated by RAG1/2, Cas9:gRNA, and Zinc finger endonucleases in Lig4-deficient G1-arrested progenitor B cell lines is suppressed by Ku. Thus, while diverse DSBs remain largely as free broken ends in Lig4-deficient G1-arrested progenitor B cells, deletion of Ku70 increases DSB rejoining and translocation levels to those observed in Ku70-deficient counterparts. Correspondingly, while RAG-initiated V(D)J DSB joining is abrogated in Lig4-deficient G1-arrested progenitor B cell lines, joining of RAG-generated DSBs in Ku70-deficient and Ku70/Lig4 double-deficient lines occurs through a translocation-like A-EJ mechanism. Thus, in G1-arrested, Lig4-deficient progenitor B cells are functionally end-joining suppressed due to Ku-dependent blockage of A-EJ, potentially in association with G1-phase down-regulation of Lig1. Finally, we suggest that differential impacts of Ku deficiency versus Lig4 deficiency on V(D)J recombination, neuronal apoptosis, and embryonic development results from Ku-mediated inhibition of A-EJ in the G1 cell cycle phase in Lig4-deficient developing lymphocyte and neuronal cells.
Collapse
|
23
|
Can neural signals override cellular decisions in the presence of DNA damage? DNA Repair (Amst) 2021; 103:103127. [PMID: 33990031 DOI: 10.1016/j.dnarep.2021.103127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 11/23/2022]
Abstract
Cells within an organism are in constant crosstalk with their surrounding environment. Short and long-range signals influence cellular behavior associated with division, differentiation, and death. This crosstalk among cells underlies tissue renewal to guarantee faithful replacement of old or damaged cells over many years. Renewing tissues also offer recurrent opportunities for DNA damage and cellular transformation that tend to occur with aging. Most cells with extensive DNA damage have limited options such as halting cell cycle to repair DNA, undergo senescence, or programmed cell death. However, in some cases cells carrying toxic forms of DNA damage survive and proliferate. The underlying factors driving survival and proliferation of cells with DNA damage remain unknown. Here we discuss potential roles the nervous system may play in influencing the fate of cells with DNA damage. We present a brief survey highlighting the implications the nervous system has in regeneration, regulation of stem cells, modulation of the immune system, and its contribution to cancer progression. Finally, we propose the use of planarian flatworms as a convenient model organism to molecularly dissect the influence of neural signals over cellular fate regulation in the presence of DNA damage.
Collapse
|
24
|
Ghosh D, Raghavan SC. Nonhomologous end joining: new accessory factors fine tune the machinery. Trends Genet 2021; 37:582-599. [PMID: 33785198 DOI: 10.1016/j.tig.2021.03.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 03/01/2021] [Accepted: 03/04/2021] [Indexed: 01/08/2023]
Abstract
Nonhomologous DNA end joining (NHEJ) is one of the major DNA double-strand break (DSB) repair pathways in eukaryotes. The well-known critical proteins involved in NHEJ include Ku70/80, DNA-PKcs, Artemis, DNA pol λ/μ, DNA ligase IV-XRCC4, and XLF. Recent studies have added a number of new proteins to the NHEJ repertoire namely paralog of XRCC4 and XLF (PAXX), modulator of retroviral infection (MRI)/ cell cycle regulator of NHEJ (CYREN), transactivation response DNA-binding protein (TARDBP) of 43 kDa (TDP-43), intermediate filament family orphan (IFFO1), ERCC excision repair 6 like 2 (ERCC6L2), and RNase H2. PAXX acts as a stabilizing factor for the main NHEJ components. MRI/CYREN seems to play a dual role stimulating NHEJ in the G1 phase of the cell cycle, while inhibiting the pathway in the S and G2 phases. TDP-43 can recruit the ligase IV-XRCC4 complex to the DSB sites and stimulate ligation in neuronal cells. RNase H2 excises out the ribonucleotides inserted during repair by DNA polymerase μ/TdT. This review provides a brief glimpse into how these new partners were discovered and their contribution to the mechanism and regulation of NHEJ.
Collapse
Affiliation(s)
- Dipayan Ghosh
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Sathees C Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
25
|
Meek K. Activation of DNA-PK by hairpinned DNA ends reveals a stepwise mechanism of kinase activation. Nucleic Acids Res 2020; 48:9098-9108. [PMID: 32716029 PMCID: PMC7498359 DOI: 10.1093/nar/gkaa614] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/08/2020] [Accepted: 07/14/2020] [Indexed: 12/12/2022] Open
Abstract
As its name implies, the DNA dependent protein kinase (DNA-PK) requires DNA double-stranded ends for enzymatic activation. Here, I demonstrate that hairpinned DNA ends are ineffective for activating the kinase toward many of its well-studied substrates (p53, XRCC4, XLF, HSP90). However, hairpinned DNA ends robustly stimulate certain DNA-PK autophosphorylations. Specifically, autophosphorylation sites within the ABCDE cluster are robustly phosphorylated when DNA-PK is activated by hairpinned DNA ends. Of note, phosphorylation of the ABCDE sites is requisite for activation of the Artemis nuclease that associates with DNA-PK to mediate hairpin opening. This finding suggests a multi-step mechanism of kinase activation. Finally, I find that all non-homologous end joining (NHEJ) defective cells (whether deficient in components of the DNA-PK complex or components of the ligase complex) are similarly deficient in joining DNA double-stranded breaks (DSBs) with hairpinned termini.
Collapse
Affiliation(s)
- Katheryn Meek
- Department of Microbiology & Molecular Genetics, and Department of Pathobiology & Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
26
|
The molecular basis and disease relevance of non-homologous DNA end joining. Nat Rev Mol Cell Biol 2020; 21:765-781. [PMID: 33077885 DOI: 10.1038/s41580-020-00297-8] [Citation(s) in RCA: 251] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2020] [Indexed: 12/26/2022]
Abstract
Non-homologous DNA end joining (NHEJ) is the predominant repair mechanism of any type of DNA double-strand break (DSB) during most of the cell cycle and is essential for the development of antigen receptors. Defects in NHEJ result in sensitivity to ionizing radiation and loss of lymphocytes. The most critical step of NHEJ is synapsis, or the juxtaposition of the two DNA ends of a DSB, because all subsequent steps rely on it. Recent findings show that, like the end processing step, synapsis can be achieved through several mechanisms. In this Review, we first discuss repair pathway choice between NHEJ and other DSB repair pathways. We then integrate recent insights into the mechanisms of NHEJ synapsis with updates on other steps of NHEJ, such as DNA end processing and ligation. Finally, we discuss NHEJ-related human diseases, including inherited disorders and neoplasia, which arise from rare failures at different NHEJ steps.
Collapse
|
27
|
Repair of G1 induced DNA double-strand breaks in S-G2/M by alternative NHEJ. Nat Commun 2020; 11:5239. [PMID: 33067475 PMCID: PMC7567796 DOI: 10.1038/s41467-020-19060-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 09/28/2020] [Indexed: 12/20/2022] Open
Abstract
The alternative non-homologous end-joining (NHEJ) pathway promotes DNA double-strand break (DSB) repair in cells deficient for NHEJ or homologous recombination, suggesting that it operates at all stages of the cell cycle. Here, we use an approach in which DNA breaks can be induced in G1 cells and their repair tracked, enabling us to show that joining of DSBs is not functional in G1-arrested XRCC4-deficient cells. Cell cycle entry into S-G2/M restores DSB repair by Pol θ-dependent and PARP1-independent alternative NHEJ with repair products bearing kilo-base long DNA end resection, micro-homologies and chromosome translocations. We identify a synthetic lethal interaction between XRCC4 and Pol θ under conditions of G1 DSBs, associated with accumulation of unresolved DNA ends in S-G2/M. Collectively, our results support the conclusion that the repair of G1 DSBs progressing to S-G2/M by alternative NHEJ drives genomic instability and represent an attractive target for future DNA repair-based cancer therapies. Depending on the cell cycle stage, cells can repair their genome via different pathways. Here the authors reveal mechanistic insights into repair of double strand breaks induced during G1 in an error-prone manner by Pol θ-dependent and PARP1-independent alt NHEJ during the SG2/M phases of the cell cycle
Collapse
|
28
|
Zhang Y, Corbett E, Wu S, Schatz DG. Structural basis for the activation and suppression of transposition during evolution of the RAG recombinase. EMBO J 2020; 39:e105857. [PMID: 32945578 DOI: 10.15252/embj.2020105857] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/17/2020] [Accepted: 08/20/2020] [Indexed: 11/09/2022] Open
Abstract
Jawed vertebrate adaptive immunity relies on the RAG1/RAG2 (RAG) recombinase, a domesticated transposase, for assembly of antigen receptor genes. Using an integration-activated form of RAG1 with methionine at residue 848 and cryo-electron microscopy, we determined structures that capture RAG engaged with transposon ends and U-shaped target DNA prior to integration (the target capture complex) and two forms of the RAG strand transfer complex that differ based on whether target site DNA is annealed or dynamic. Target site DNA base unstacking, flipping, and melting by RAG1 methionine 848 explain how this residue activates transposition, how RAG can stabilize sharp bends in target DNA, and why replacement of residue 848 by arginine during RAG domestication led to suppression of transposition activity. RAG2 extends a jawed vertebrate-specific loop to interact with target site DNA, and functional assays demonstrate that this loop represents another evolutionary adaptation acquired during RAG domestication to inhibit transposition. Our findings identify mechanistic principles of the final step in cut-and-paste transposition and the molecular and structural logic underlying the transformation of RAG from transposase to recombinase.
Collapse
Affiliation(s)
- Yuhang Zhang
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Elizabeth Corbett
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Shenping Wu
- Department of Pharmacology, Yale School of Medicine West Haven, New Haven, CT, USA
| | - David G Schatz
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
29
|
Hanscom T, McVey M. Regulation of Error-Prone DNA Double-Strand Break Repair and Its Impact on Genome Evolution. Cells 2020; 9:E1657. [PMID: 32660124 PMCID: PMC7407515 DOI: 10.3390/cells9071657] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 12/17/2022] Open
Abstract
Double-strand breaks are one of the most deleterious DNA lesions. Their repair via error-prone mechanisms can promote mutagenesis, loss of genetic information, and deregulation of the genome. These detrimental outcomes are significant drivers of human diseases, including many cancers. Mutagenic double-strand break repair also facilitates heritable genetic changes that drive organismal adaptation and evolution. In this review, we discuss the mechanisms of various error-prone DNA double-strand break repair processes and the cellular conditions that regulate them, with a focus on alternative end joining. We provide examples that illustrate how mutagenic double-strand break repair drives genome diversity and evolution. Finally, we discuss how error-prone break repair can be crucial to the induction and progression of diseases such as cancer.
Collapse
Affiliation(s)
| | - Mitch McVey
- Department. of Biology, Tufts University, Medford, MA 02155, USA;
| |
Collapse
|
30
|
Wang XS, Lee BJ, Zha S. The recent advances in non-homologous end-joining through the lens of lymphocyte development. DNA Repair (Amst) 2020; 94:102874. [PMID: 32623318 DOI: 10.1016/j.dnarep.2020.102874] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/16/2020] [Accepted: 05/24/2020] [Indexed: 12/17/2022]
Abstract
Lymphocyte development requires ordered assembly and subsequent modifications of the antigen receptor genes through V(D)J recombination and Immunoglobulin class switch recombination (CSR), respectively. While the programmed DNA cleavage events are initiated by lymphocyte-specific factors, the resulting DNA double-strand break (DSB) intermediates activate the ATM kinase-mediated DNA damage response (DDR) and rely on the ubiquitously expressed classical non-homologous end-joining (cNHEJ) pathway including the DNA-dependent protein kinase (DNA-PK), and, in the case of CSR, also the alternative end-joining (Alt-EJ) pathway, for repair. Correspondingly, patients and animal models with cNHEJ or DDR defects develop distinct types of immunodeficiency reflecting their specific DNA repair deficiency. The unique end-structure, sequence context, and cell cycle regulation of V(D)J recombination and CSR also provide a valuable platform to study the mechanisms of, and the interplay between, cNHEJ and DDR. Here, we compare and contrast the genetic consequences of DNA repair defects in V(D)J recombination and CSR with a focus on the newly discovered cNHEJ factors and the kinase-dependent structural roles of ATM and DNA-PK in animal models. Throughout, we try to highlight the pending questions and emerging differences that will extend our understanding of cNHEJ and DDR in the context of primary immunodeficiency and lymphoid malignancies.
Collapse
Affiliation(s)
- Xiaobin S Wang
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, United States; Graduate Program of Pathobiology and Molecular Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, United States
| | - Brian J Lee
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, United States
| | - Shan Zha
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, United States; Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, United States; Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, United States; Department of Immunology and Microbiology, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, United States.
| |
Collapse
|
31
|
Chu SH, Chabon JR, Matovina CN, Minehart JC, Chen BR, Zhang J, Kumar V, Xiong Y, Callen E, Hung PJ, Feng Z, Koche RP, Liu XS, Chaudhuri J, Nussenzweig A, Sleckman BP, Armstrong SA. Loss of H3K36 Methyltransferase SETD2 Impairs V(D)J Recombination during Lymphoid Development. iScience 2020; 23:100941. [PMID: 32169821 PMCID: PMC7066224 DOI: 10.1016/j.isci.2020.100941] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/25/2020] [Accepted: 02/21/2020] [Indexed: 12/17/2022] Open
Abstract
Repair of DNA double-stranded breaks (DSBs) during lymphocyte development is essential for V(D)J recombination and forms the basis of immunoglobulin variable region diversity. Understanding of this process in lymphogenesis has historically been centered on the study of RAG1/2 recombinases and a set of classical non-homologous end-joining factors. Much less has been reported regarding the role of chromatin modifications on this process. Here, we show a role for the non-redundant histone H3 lysine methyltransferase, Setd2, and its modification of lysine-36 trimethylation (H3K36me3), in the processing and joining of DNA ends during V(D)J recombination. Loss leads to mis-repair of Rag-induced DNA DSBs, especially when combined with loss of Atm kinase activity. Furthermore, loss reduces immune repertoire and a severe block in lymphogenesis as well as causes post-mitotic neuronal apoptosis. Together, these studies are suggestive of an important role of Setd2/H3K36me3 in these two mammalian developmental processes that are influenced by double-stranded break repair.
Collapse
Affiliation(s)
- S Haihua Chu
- Department of Pediatric Oncology, Dana Farber Cancer Institute, and Division of Hematology/Oncology, Boston Children's Hospital, 450 Brookline Avenue, Boston, MA 02215-5450, USA
| | - Jonathan R Chabon
- Department of Pediatric Oncology, Dana Farber Cancer Institute, and Division of Hematology/Oncology, Boston Children's Hospital, 450 Brookline Avenue, Boston, MA 02215-5450, USA
| | - Chloe N Matovina
- Department of Pediatric Oncology, Dana Farber Cancer Institute, and Division of Hematology/Oncology, Boston Children's Hospital, 450 Brookline Avenue, Boston, MA 02215-5450, USA
| | | | - Bo-Ruei Chen
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Jian Zhang
- Center for Computational Biology, Beijing Institute of Basic Medical Sciences, Beijing, China; Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Vipul Kumar
- Howard Hughes Medical Institute, Department of Pediatrics, Department of Genetics, Harvard Medical School, Boston, MA, USA; Harvard-MIT MD-PhD Program, Harvard Medical School, Boston, MA, USA
| | - Yijun Xiong
- Department of Pediatric Oncology, Dana Farber Cancer Institute, and Division of Hematology/Oncology, Boston Children's Hospital, 450 Brookline Avenue, Boston, MA 02215-5450, USA
| | - Elsa Callen
- Laboratory of Genome Integrity, National Cancer Institute National Institutes of Health, Bethesda, MD, USA
| | - Putzer J Hung
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Zhaohui Feng
- Department of Pediatric Oncology, Dana Farber Cancer Institute, and Division of Hematology/Oncology, Boston Children's Hospital, 450 Brookline Avenue, Boston, MA 02215-5450, USA
| | - Richard P Koche
- Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - X Shirley Liu
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jayanta Chaudhuri
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Andre Nussenzweig
- Laboratory of Genome Integrity, National Cancer Institute National Institutes of Health, Bethesda, MD, USA
| | - Barry P Sleckman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Scott A Armstrong
- Department of Pediatric Oncology, Dana Farber Cancer Institute, and Division of Hematology/Oncology, Boston Children's Hospital, 450 Brookline Avenue, Boston, MA 02215-5450, USA.
| |
Collapse
|
32
|
Sun A, Xu K, Liu H, Li H, Shi Y, Zhu X, Liang T, Li X, Cao X, Ji Y, Jiang T, Xu C, Liu X. The evolution of zebrafish RAG2 protein is required for adapting to the elevated body temperature of the higher endothermic vertebrates. Sci Rep 2020; 10:4126. [PMID: 32139788 PMCID: PMC7057966 DOI: 10.1038/s41598-020-61019-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 02/19/2020] [Indexed: 11/21/2022] Open
Abstract
The recombination activating gene (RAG or RAG1/RAG2 complex)-mediated adaptive immune system is a hallmark of jawed vertebrates. It has been reported that RAG originated in invertebrates. However, whether RAG further evolved once it arose in jawed vertebrates remains largely unknown. Here, we found that zebrafish RAG (zRAG) had a lower activity than mouse RAG (mRAG). Intriguingly, the attenuated stability of zebrafish RAG2 (zRAG2), but not zebrafish RAG1, caused the reduced V(D)J recombination efficiency compared to mRAG at 37 °C which are the body temperature of most endotherms except birds. Importantly, the lower temperature 28 °C, which is the best temperature for zebrafish growth, made the recombination efficiency of zRAG similar to that of mRAG by improving the stability of zRAG2. Consistent with the prementioned observation, the V(D)J recombination of Rag2KI/KI mice, which zRAG2 was substituted for mRAG2, was also severely impaired. Unexpectedly, Rag2KI/KI mice developed cachexia syndromes accompanied by premature death. Taken together, our findings illustrate that the evolution of zebrafish RAG2 protein is required for adapting to the elevated body temperature of the higher endothermic vertebrates.
Collapse
Affiliation(s)
- Ao Sun
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ke Xu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Haifeng Liu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Hua Li
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yaohuang Shi
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Xiaoyan Zhu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Tao Liang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xinyue Li
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xianxia Cao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yanhong Ji
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, 710061, China
| | - Taijiao Jiang
- Center of System Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Chenqi Xu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xiaolong Liu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China. .,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
33
|
Brambati A, Barry RM, Sfeir A. DNA polymerase theta (Polθ) - an error-prone polymerase necessary for genome stability. Curr Opin Genet Dev 2020; 60:119-126. [PMID: 32302896 PMCID: PMC7230004 DOI: 10.1016/j.gde.2020.02.017] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 12/21/2022]
Abstract
Mammalian cells have evolved multiple pathways to repair DNA double strand breaks (DSBs) and ensure genome stability. In addition to non-homologous end-joining (NHEJ) and homologous recombination (HR), cells evolved an error-prone repair pathway termed microhomology-mediated end joining (MMEJ). The mutagenic outcome of MMEJ derives from the activity of DNA polymerase theta (Polθ) - a multidomain enzyme that is minimally expressed in normal tissue but overexpressed in tumors. Polθ expression is particularly crucial for the proliferation of HR deficient cancer cells. As a result, this mutagenic repair emerged as an attractive target for cancer therapy, and inhibitors are currently in pre-clinical development. Here, we review the multifunctionality of this enigmatic polymerase, focusing on its role during DSB repair in mammalian cells and its impact on cancer genomes.
Collapse
Affiliation(s)
- Alessandra Brambati
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, NYU School of Medicine, New York, NY 10016, USA
| | - Raymond Mario Barry
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, NYU School of Medicine, New York, NY 10016, USA
| | - Agnel Sfeir
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, NYU School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
34
|
Stinson BM, Moreno AT, Walter JC, Loparo JJ. A Mechanism to Minimize Errors during Non-homologous End Joining. Mol Cell 2019; 77:1080-1091.e8. [PMID: 31862156 DOI: 10.1016/j.molcel.2019.11.018] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/09/2019] [Accepted: 11/22/2019] [Indexed: 01/15/2023]
Abstract
Enzymatic processing of DNA underlies all DNA repair, yet inappropriate DNA processing must be avoided. In vertebrates, double-strand breaks are repaired predominantly by non-homologous end joining (NHEJ), which directly ligates DNA ends. NHEJ has the potential to be highly mutagenic because it uses DNA polymerases, nucleases, and other enzymes that modify incompatible DNA ends to allow their ligation. Using frog egg extracts that recapitulate NHEJ, we show that end processing requires the formation of a "short-range synaptic complex" in which DNA ends are closely aligned in a ligation-competent state. Furthermore, single-molecule imaging directly demonstrates that processing occurs within the short-range complex. This confinement of end processing to a ligation-competent complex ensures that DNA ends undergo ligation as soon as they become compatible, thereby minimizing mutagenesis. Our results illustrate how the coordination of enzymatic catalysis with higher-order structural organization of substrate maximizes the fidelity of DNA repair.
Collapse
Affiliation(s)
- Benjamin M Stinson
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Andrew T Moreno
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Johannes C Walter
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA.
| | - Joseph J Loparo
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
35
|
Kopa P, Macieja A, Galita G, Witczak ZJ, Poplawski T. DNA Double Strand Breaks Repair Inhibitors: Relevance as Potential New Anticancer Therapeutics. Curr Med Chem 2019; 26:1483-1493. [PMID: 29446719 DOI: 10.2174/0929867325666180214113154] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/22/2018] [Accepted: 01/23/2018] [Indexed: 12/19/2022]
Abstract
DNA double-strand breaks are considered one of the most lethal forms of DNA damage. Many effective anticancer therapeutic approaches used chemical and physical methods to generate DNA double-strand breaks in the cancer cells. They include: IR and drugs which mimetic its action, topoisomerase poisons, some alkylating agents or drugs which affected DNA replication process. On the other hand, cancer cells are mostly characterized by highly effective systems of DNA damage repair. There are two main DNA repair pathways used to fix double-strand breaks: NHEJ and HRR. Their activity leads to a decreased effect of chemotherapy. Targeting directly or indirectly the DNA double-strand breaks response by inhibitors seems to be an exciting option for anticancer therapy and is a part of novel trends that arise after the clinical success of PARP inhibitors. These trends will provide great opportunities for the development of DNA repair inhibitors as new potential anticancer drugs. The main objective of this article is to address these new promising advances.
Collapse
Affiliation(s)
- Paulina Kopa
- Department of Immunopathology, Faculty of Biomedical Sciences and Postgraduate Training, Medical University of Lodz, Lodz 90-752, Poland
| | - Anna Macieja
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz 90-236, Poland
| | - Grzegorz Galita
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz 90-236, Poland
| | - Zbigniew J Witczak
- Department of Pharmaceutical Sciences, Nesbitt School of Pharmacy, Wilkes University, Wilkes-Barre, PA 18766, United States
| | - Tomasz Poplawski
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz 90-236, Poland
| |
Collapse
|
36
|
Eltrombopag promotes DNA repair in human hematopoietic stem and progenitor cells. Exp Hematol 2019; 73:1-6.e6. [PMID: 30986494 DOI: 10.1016/j.exphem.2019.03.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/14/2019] [Accepted: 03/16/2019] [Indexed: 12/14/2022]
Abstract
A causal link between hematopoietic stem/progenitor cell (HSPC) dysfunction and DNA damage accrual has been proposed. Clinically relevant strategies to maintain genome integrity in these cells are needed. Here we report that eltrombopag, a small molecule agonist of the thrombopoietin (TPO) receptor used in the clinic, promotes DNA double-strand break (DSB) repair in human HSPCs. We found that eltrombopag specifically activates the classic nonhomologous end-joining (C-NHEJ) DNA repair mechanism, a pathway known to support genome integrity. Eltrombopag-mediated DNA repair results in enhanced genome stability, survival, and function of primary human HSPCs, as demonstrated in karyotyping analyses, colony-forming unit assays and after transplantation in immunodeficient NSG mice. Eltrombopag may offer a new therapeutic modality to protect human HSPCs against genome insults.
Collapse
|
37
|
Zhang Y, Cheng TC, Huang G, Lu Q, Surleac MD, Mandell JD, Pontarotti P, Petrescu AJ, Xu A, Xiong Y, Schatz DG. Transposon molecular domestication and the evolution of the RAG recombinase. Nature 2019; 569:79-84. [PMID: 30971819 PMCID: PMC6494689 DOI: 10.1038/s41586-019-1093-7] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 03/07/2019] [Indexed: 12/11/2022]
Abstract
Domestication of a transposon (a DNA sequence that can change its position in a genome) to give rise to the RAG1-RAG2 recombinase (RAG) and V(D)J recombination, which produces the diverse repertoire of antibodies and T cell receptors, was a pivotal event in the evolution of the adaptive immune system of jawed vertebrates. The evolutionary adaptations that transformed the ancestral RAG transposase into a RAG recombinase with appropriately regulated DNA cleavage and transposition activities are not understood. Here, beginning with cryo-electron microscopy structures of the amphioxus ProtoRAG transposase (an evolutionary relative of RAG), we identify amino acid residues and domains the acquisition or loss of which underpins the propensity of RAG for coupled cleavage, its preference for asymmetric DNA substrates and its inability to perform transposition in cells. In particular, we identify two adaptations specific to jawed-vertebrates-arginine 848 in RAG1 and an acidic region in RAG2-that together suppress RAG-mediated transposition more than 1,000-fold. Our findings reveal a two-tiered mechanism for the suppression of RAG-mediated transposition, illuminate the evolution of V(D)J recombination and provide insight into the principles that govern the molecular domestication of transposons.
Collapse
Affiliation(s)
- Yuhang Zhang
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Tat Cheung Cheng
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | | | - Qingyi Lu
- Beijing University of Chinese Medicine, Beijing, China
| | - Marius D Surleac
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Jeffrey D Mandell
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Pierre Pontarotti
- Aix Marseille Univ IRD, APHM, MEPHI, IHU Méditerranée Infection, Marseille, France.,Centre National de la Recherche Scientifique, Marseille, France
| | - Andrei J Petrescu
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Anlong Xu
- Beijing University of Chinese Medicine, Beijing, China. .,State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou, China.
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.
| | - David G Schatz
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
38
|
Villa A, Notarangelo LD. RAG gene defects at the verge of immunodeficiency and immune dysregulation. Immunol Rev 2019; 287:73-90. [PMID: 30565244 PMCID: PMC6309314 DOI: 10.1111/imr.12713] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 08/21/2018] [Indexed: 12/18/2022]
Abstract
Mutations of the recombinase activating genes (RAG) in humans underlie a broad spectrum of clinical and immunological phenotypes that reflect different degrees of impairment of T- and B-cell development and alterations of mechanisms of central and peripheral tolerance. Recent studies have shown that this phenotypic heterogeneity correlates, albeit imperfectly, with different levels of recombination activity of the mutant RAG proteins. Furthermore, studies in patients and in newly developed animal models carrying hypomorphic RAG mutations have disclosed various mechanisms underlying immune dysregulation in this condition. Careful annotation of clinical outcome and immune reconstitution in RAG-deficient patients who have received hematopoietic stem cell transplantation has shown that progress has been made in the treatment of this disease, but new approaches remain to be tested to improve stem cell engraftment and durable immune reconstitution. Finally, initial attempts have been made to treat RAG deficiency with gene therapy.
Collapse
Affiliation(s)
- Anna Villa
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), Division of Regenerative Medicine, Stem Cell and Gene Therapy, San Raffaele Scientific Institute, Milan, Italy
- Milan Unit, Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Milan, Italy
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
39
|
Macaisne N, Kessler Z, Yanowitz JL. Meiotic Double-Strand Break Proteins Influence Repair Pathway Utilization. Genetics 2018; 210:843-856. [PMID: 30242011 PMCID: PMC6218235 DOI: 10.1534/genetics.118.301402] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 09/13/2018] [Indexed: 12/13/2022] Open
Abstract
Double-strand breaks (DSBs) are among the most deleterious lesions DNA can endure. Yet, DSBs are programmed at the onset of meiosis, and are required to facilitate appropriate reduction of ploidy in daughter cells. Repair of these breaks is tightly controlled to favor homologous recombination (HR)-the only repair pathway that can form crossovers. However, little is known about how the activities of alternative repair pathways are regulated at these stages. We discovered an unexpected synthetic interaction between the DSB machinery and strand-exchange proteins. Depleting the Caenorhabditis elegans DSB-promoting factors HIM-5 and DSB-2 suppresses the formation of chromosome fusions that arise in the absence of RAD-51 or other strand-exchange mediators. Our investigations reveal that nonhomologous and theta-mediated end joining (c-NHEJ and TMEJ, respectively) and single strand annealing (SSA) function redundantly to repair DSBs when HR is compromised, and that HIM-5 influences the utilization of TMEJ and SSA.
Collapse
Affiliation(s)
- Nicolas Macaisne
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, Pennsylvania 15213
| | - Zebulin Kessler
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, Pennsylvania 15213
| | - Judith L Yanowitz
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, Pennsylvania 15213
| |
Collapse
|
40
|
Taheri-Ghahfarokhi A, Taylor BJ, Nitsch R, Lundin A, Cavallo AL, Madeyski-Bengtson K, Karlsson F, Clausen M, Hicks R, Mayr LM, Bohlooly-Y M, Maresca M. Decoding non-random mutational signatures at Cas9 targeted sites. Nucleic Acids Res 2018; 46:8417-8434. [PMID: 30032200 PMCID: PMC6144780 DOI: 10.1093/nar/gky653] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 07/05/2018] [Accepted: 07/09/2018] [Indexed: 12/15/2022] Open
Abstract
The mutation patterns at Cas9 targeted sites contain unique information regarding the nuclease activity and repair mechanisms in mammalian cells. However, analytical framework for extracting such information are lacking. Here, we present a novel computational platform called Rational InDel Meta-Analysis (RIMA) that enables an in-depth comprehensive analysis of Cas9-induced genetic alterations, especially InDels mutations. RIMA can be used to quantitate the contribution of classical microhomology-mediated end joining (c-MMEJ) pathway in the formation of mutations at Cas9 target sites. We used RIMA to compare mutational signatures at 15 independent Cas9 target sites in human A549 wildtype and A549-POLQ knockout cells to elucidate the role of DNA polymerase θ in c-MMEJ. Moreover, the single nucleotide insertions at the Cas9 target sites represent duplications of preceding nucleotides, suggesting that the flexibility of the Cas9 nuclease domains results in both blunt- and staggered-end cuts. Thymine at the fourth nucleotide before protospacer adjacent motif (PAM) results in a two-fold higher occurrence of single nucleotide InDels compared to guanine at the same position. This study provides a novel approach for the characterization of the Cas9 nucleases with improved accuracy in predicting genome editing outcomes and a potential strategy for homology-independent targeted genomic integration.
Collapse
Affiliation(s)
- Amir Taheri-Ghahfarokhi
- Translational Genomics, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Benjamin J M Taylor
- Discovery Biology, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Cambridge, UK
| | - Roberto Nitsch
- Translational Genomics, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
- Advanced Medicines Safety, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Anders Lundin
- Translational Genomics, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Anna-Lina Cavallo
- Translational Genomics, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Katja Madeyski-Bengtson
- Translational Genomics, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Fredrik Karlsson
- Quantitative Biology, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Maryam Clausen
- Translational Genomics, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Ryan Hicks
- Translational Genomics, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Lorenz M Mayr
- Translational Genomics, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
- GE Healthcare Life Sciences, The Grove Centre, White Lion Road, Amersham HP7 9LL, UK
| | - Mohammad Bohlooly-Y
- Translational Genomics, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Marcello Maresca
- Translational Genomics, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
41
|
Ata H, Ekstrom TL, Martínez-Gálvez G, Mann CM, Dvornikov AV, Schaefbauer KJ, Ma AC, Dobbs D, Clark KJ, Ekker SC. Robust activation of microhomology-mediated end joining for precision gene editing applications. PLoS Genet 2018; 14:e1007652. [PMID: 30208061 PMCID: PMC6152997 DOI: 10.1371/journal.pgen.1007652] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 09/24/2018] [Accepted: 08/22/2018] [Indexed: 11/18/2022] Open
Abstract
One key problem in precision genome editing is the unpredictable plurality of sequence outcomes at the site of targeted DNA double stranded breaks (DSBs). This is due to the typical activation of the versatile Non-homologous End Joining (NHEJ) pathway. Such unpredictability limits the utility of somatic gene editing for applications including gene therapy and functional genomics. For germline editing work, the accurate reproduction of the identical alleles using NHEJ is a labor intensive process. In this study, we propose Microhomology-mediated End Joining (MMEJ) as a viable solution for improving somatic sequence homogeneity in vivo, capable of generating a single predictable allele at high rates (56% ~ 86% of the entire mutant allele pool). Using a combined dataset from zebrafish (Danio rerio) in vivo and human HeLa cell in vitro, we identified specific contextual sequence determinants surrounding genomic DSBs for robust MMEJ pathway activation. We then applied our observation to prospectively design MMEJ-inducing sgRNAs against a variety of proof-of-principle genes and demonstrated high levels of mutant allele homogeneity. MMEJ-based DNA repair at these target loci successfully generated F0 mutant zebrafish embryos and larvae that faithfully recapitulated previously reported, recessive, loss-of-function phenotypes. We also tested the generalizability of our approach in cultured human cells. Finally, we provide a novel algorithm, MENTHU (http://genesculpt.org/menthu/), for improved and facile prediction of candidate MMEJ loci. We believe that this MMEJ-centric approach will have a broader impact on genome engineering and its applications. For example, whereas somatic mosaicism hinders efficient recreation of knockout mutant allele at base pair resolution via the standard NHEJ-based approach, we demonstrate that F0 founders transmitted the identical MMEJ allele of interest at high rates. Most importantly, the ability to directly dictate the reading frame of an endogenous target will have important implications for gene therapy applications in human genetic diseases.
Collapse
Affiliation(s)
- Hirotaka Ata
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, United States of America
- Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States of America
- Medical Scientist Training Program, Mayo Clinic, Rochester, MN, United States of America
| | - Thomas L. Ekstrom
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, United States of America
| | - Gabriel Martínez-Gálvez
- Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States of America
| | - Carla M. Mann
- Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, United States of America
| | - Alexey V. Dvornikov
- Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States of America
| | - Kyle J. Schaefbauer
- Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States of America
| | - Alvin C. Ma
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Drena Dobbs
- Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, United States of America
| | - Karl J. Clark
- Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States of America
| | - Stephen C. Ekker
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, United States of America
- Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States of America
| |
Collapse
|
42
|
Bhargava R, Sandhu M, Muk S, Lee G, Vaidehi N, Stark JM. C-NHEJ without indels is robust and requires synergistic function of distinct XLF domains. Nat Commun 2018; 9:2484. [PMID: 29950655 PMCID: PMC6021437 DOI: 10.1038/s41467-018-04867-5] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 05/25/2018] [Indexed: 01/17/2023] Open
Abstract
To investigate the fidelity of canonical non-homologous end joining (C-NHEJ), we developed an assay to detect EJ between distal ends of two Cas9-induced chromosomal breaks that are joined without causing insertion/deletion mutations (indels). Here we find that such EJ requires several core C-NHEJ factors, including XLF. Using variants of this assay, we find that C-NHEJ is required for EJ events that use 1-2, but not ≥3, nucleotides of terminal microhomology. We also investigated XLF residues required for EJ without indels, finding that one of two binding domains is essential (L115 or C-terminal lysines that bind XRCC4 and KU/DNA, respectively), and that disruption of one of these domains sensitizes XLF to mutations that affect its dimer interface, which we examined with molecular dynamic simulations. Thus, C-NHEJ, including synergistic function of distinct XLF domains, is required for EJ of chromosomal breaks without indels.
Collapse
Affiliation(s)
- Ragini Bhargava
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, 1500 E Duarte Rd., Duarte, CA, 91010, USA
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, 1500 E Duarte Rd., Duarte, CA, 91010, USA
| | - Manbir Sandhu
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, 1500 E Duarte Rd., Duarte, CA, 91010, USA
- Department of Molecular Immunology, Beckman Research Institute of the City of Hope, 1500 E Duarte Rd., Duarte, CA, 91010, USA
| | - Sanychen Muk
- Department of Molecular Immunology, Beckman Research Institute of the City of Hope, 1500 E Duarte Rd., Duarte, CA, 91010, USA
| | - Gabriella Lee
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, 1500 E Duarte Rd., Duarte, CA, 91010, USA
| | - Nagarajan Vaidehi
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, 1500 E Duarte Rd., Duarte, CA, 91010, USA
- Department of Molecular Immunology, Beckman Research Institute of the City of Hope, 1500 E Duarte Rd., Duarte, CA, 91010, USA
| | - Jeremy M Stark
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, 1500 E Duarte Rd., Duarte, CA, 91010, USA.
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, 1500 E Duarte Rd., Duarte, CA, 91010, USA.
| |
Collapse
|
43
|
Hewitt SL, Wong JB, Lee JH, Nishana M, Chen H, Coussens M, Arnal SM, Blumenberg LM, Roth DB, Paull TT, Skok JA. The Conserved ATM Kinase RAG2-S365 Phosphorylation Site Limits Cleavage Events in Individual Cells Independent of Any Repair Defect. Cell Rep 2018; 21:979-993. [PMID: 29069605 PMCID: PMC5662208 DOI: 10.1016/j.celrep.2017.09.084] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 08/23/2017] [Accepted: 09/25/2017] [Indexed: 12/03/2022] Open
Abstract
Many DNA lesions associated with lymphoid malignancies are linked to off-target cleavage by the RAG1/2 recombinase. However, off-target cleavage has mostly been analyzed in the context of DNA repair defects, confounding any mechanistic understanding of cleavage deregulation. We identified a conserved SQ phosphorylation site on RAG2 365 to 366 that is involved in feedback control of RAG cleavage. Mutation of serine 365 to a non-phosphorylatable alanine permits bi-allelic and bi-locus RAG-mediated breaks in the same cell, leading to reciprocal translocations. This phenomenon is analogous to the phenotype we described for ATM kinase inactivation. Here, we establish deregulated cleavage itself as a driver of chromosomal instability without the associated repair defect. Intriguingly, a RAG2-S365E phosphomimetic rescues the deregulated cleavage of ATM inactivation, reducing the incidence of reciprocal translocations. These data support a model in which feedback control of cleavage and maintenance of genome stability involves ATM-mediated phosphorylation of RAG2.
Collapse
Affiliation(s)
- Susannah L Hewitt
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - Jason B Wong
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - Ji-Hoon Lee
- Howard Hughes Medical Institute, Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | | | - Hongxi Chen
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - Marc Coussens
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Suzzette M Arnal
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - Lili M Blumenberg
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - David B Roth
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tanya T Paull
- Howard Hughes Medical Institute, Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Jane A Skok
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
44
|
Dahal S, Dubey S, Raghavan SC. Homologous recombination-mediated repair of DNA double-strand breaks operates in mammalian mitochondria. Cell Mol Life Sci 2018; 75:1641-1655. [PMID: 29116362 PMCID: PMC11105789 DOI: 10.1007/s00018-017-2702-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 10/23/2017] [Accepted: 10/30/2017] [Indexed: 10/18/2022]
Abstract
Mitochondrial DNA is frequently exposed to oxidative damage, as compared to nuclear DNA. Previously, we have shown that while microhomology-mediated end joining can account for DNA deletions in mitochondria, classical nonhomologous DNA end joining, the predominant double-strand break (DSB) repair pathway in nucleus, is undetectable. In the present study, we investigated the presence of homologous recombination (HR) in mitochondria to maintain its genomic integrity. Biochemical studies revealed that HR-mediated repair of DSBs is more efficient in the mitochondria of testes as compared to that of brain, kidney and spleen. Interestingly, a significant increase in the efficiency of HR was observed when a DSB was introduced. Analyses of the clones suggest that most of the recombinants were generated through reciprocal exchange, while ~ 30% of recombinants were due to gene conversion in testicular extracts. Colocalization and immunoblotting studies showed the presence of RAD51 and MRN complex proteins in the mitochondria and immunodepletion of MRE11, RAD51 or NIBRIN suppressed the HR-mediated repair. Thus, our results reveal importance of homologous recombination in the maintenance of mitochondrial genome stability.
Collapse
Affiliation(s)
- Sumedha Dahal
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560 012, India
| | - Shubham Dubey
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560 012, India
| | - Sathees C Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560 012, India.
| |
Collapse
|
45
|
Sallmyr A, Tomkinson AE. Repair of DNA double-strand breaks by mammalian alternative end-joining pathways. J Biol Chem 2018. [PMID: 29530982 DOI: 10.1074/jbc.tm117.000375] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Alternative end-joining (a-EJ) pathways, which repair DNA double-strand breaks (DSBs), are initiated by end resection that generates 3' single strands. This reaction is shared, at least in part, with homologous recombination but distinguishes a-EJ from the major nonhomologous end-joining pathway. Although the a-EJ pathways make only a minor and poorly understood contribution to DSB repair in nonmalignant cells, there is growing interest in these pathways, as they generate genomic rearrangements that are hallmarks of cancer cells. Here, we review and discuss the current understanding of the mechanisms and regulation of a-EJ pathways, the role of a-EJ in human disease, and the potential utility of a-EJ as a therapeutic target in cancer.
Collapse
Affiliation(s)
- Annahita Sallmyr
- From the Departments of Internal Medicine and Molecular Genetics and Microbiology, University of New Mexico Comprehensive Cancer Center, University of New Mexico, Albuquerque, New Mexico 87131
| | - Alan E Tomkinson
- From the Departments of Internal Medicine and Molecular Genetics and Microbiology, University of New Mexico Comprehensive Cancer Center, University of New Mexico, Albuquerque, New Mexico 87131
| |
Collapse
|
46
|
Schimmel J, Kool H, van Schendel R, Tijsterman M. Mutational signatures of non-homologous and polymerase theta-mediated end-joining in embryonic stem cells. EMBO J 2017; 36:3634-3649. [PMID: 29079701 PMCID: PMC5730883 DOI: 10.15252/embj.201796948] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 09/05/2017] [Accepted: 09/29/2017] [Indexed: 12/11/2022] Open
Abstract
Cells employ potentially mutagenic DNA repair mechanisms to avoid the detrimental effects of chromosome breaks on cell survival. While classical non-homologous end-joining (cNHEJ) is largely error-free, alternative end-joining pathways have been described that are intrinsically mutagenic. Which end-joining mechanisms operate in germ and embryonic cells and thus contribute to heritable mutations found in congenital diseases is, however, still largely elusive. Here, we determined the genetic requirements for the repair of CRISPR/Cas9-induced chromosomal breaks of different configurations, and establish the mutational consequences. We find that cNHEJ and polymerase theta-mediated end-joining (TMEJ) act both parallel and redundant in mouse embryonic stem cells and account for virtually all end-joining activity. Surprisingly, mutagenic repair by polymerase theta (Pol θ, encoded by the Polq gene) is most prevalent for blunt double-strand breaks (DSBs), while cNHEJ dictates mutagenic repair of DSBs with protruding ends, in which the cNHEJ polymerases lambda and mu play minor roles. We conclude that cNHEJ-dependent repair of DSBs with protruding ends can explain de novo formation of tandem duplications in mammalian genomes.
Collapse
Affiliation(s)
- Joost Schimmel
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Hanneke Kool
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Robin van Schendel
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Marcel Tijsterman
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
47
|
Gomez-Tourino I, Kamra Y, Baptista R, Lorenc A, Peakman M. T cell receptor β-chains display abnormal shortening and repertoire sharing in type 1 diabetes. Nat Commun 2017; 8:1792. [PMID: 29176645 PMCID: PMC5702608 DOI: 10.1038/s41467-017-01925-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 10/25/2017] [Indexed: 01/10/2023] Open
Abstract
Defects in T cell receptor (TCR) repertoire are proposed to predispose to autoimmunity. Here we show, by analyzing >2 × 108TCRB sequences of circulating naive, central memory, regulatory and stem cell-like memory CD4+ T cell subsets from patients with type 1 diabetes and healthy donors, that patients have shorter TCRB complementarity-determining region 3s (CDR3), in all cell subsets, introduced by increased deletions/reduced insertions during VDJ rearrangement. High frequency of short CDR3s is also observed in unproductive TCRB sequences, which are not subjected to thymic culling, suggesting that the shorter CDR3s arise independently of positive/negative selection. Moreover, TCRB CDR3 clonotypes expressed by autoantigen-specific CD4+ T cells are shorter compared with anti-viral T cells, and with those from healthy donors. Thus, early events in thymic T cell development and repertoire generation are abnormal in type 1 diabetes, which suggest that short CDR3s increase the potential for self-recognition, conferring heightened risk of autoimmune disease. T cell receptors are generated by somatic gene recombination, and are normally selected against autoreactivity. Here the authors show that CD4 T cells from patients with autoimmune type 1 diabetes have shorter TCRβ sequences, broader repertoire diversity, and more repertoire sharing than those from healthy individuals.
Collapse
Affiliation(s)
- Iria Gomez-Tourino
- Department of Immunobiology, Faculty of Life Sciences & Medicine, King's College London, 2nd Floor, Borough Wing, Guy's Hospital, London, SE1 9RT, UK.,National Institute for Health Research, Biomedical Research Centre at Guy's and St Thomas' Hospital Foundation Trust and King's College London, Guy's Hospital, London, SE1 9RT, UK.,Immunology Laboratory, Biomedical Research Center (CINBIO), Centro Singular de Investigación de Galicia, University of Vigo, Campus Universitario de Vigo, Pontevedra, 36310, Spain
| | - Yogesh Kamra
- Department of Immunobiology, Faculty of Life Sciences & Medicine, King's College London, 2nd Floor, Borough Wing, Guy's Hospital, London, SE1 9RT, UK
| | - Roman Baptista
- Department of Immunobiology, Faculty of Life Sciences & Medicine, King's College London, 2nd Floor, Borough Wing, Guy's Hospital, London, SE1 9RT, UK.,National Institute for Health Research, Biomedical Research Centre at Guy's and St Thomas' Hospital Foundation Trust and King's College London, Guy's Hospital, London, SE1 9RT, UK
| | - Anna Lorenc
- Department of Immunobiology, Faculty of Life Sciences & Medicine, King's College London, 2nd Floor, Borough Wing, Guy's Hospital, London, SE1 9RT, UK
| | - Mark Peakman
- Department of Immunobiology, Faculty of Life Sciences & Medicine, King's College London, 2nd Floor, Borough Wing, Guy's Hospital, London, SE1 9RT, UK. .,National Institute for Health Research, Biomedical Research Centre at Guy's and St Thomas' Hospital Foundation Trust and King's College London, Guy's Hospital, London, SE1 9RT, UK.
| |
Collapse
|
48
|
Han J, Ruan C, Huen MSY, Wang J, Xie A, Fu C, Liu T, Huang J. BRCA2 antagonizes classical and alternative nonhomologous end-joining to prevent gross genomic instability. Nat Commun 2017; 8:1470. [PMID: 29133916 PMCID: PMC5684403 DOI: 10.1038/s41467-017-01759-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 10/13/2017] [Indexed: 12/27/2022] Open
Abstract
BRCA2-deficient cells exhibit gross genomic instability, but the underlying mechanisms are not fully understood. Here we report that inactivation of BRCA2 but not RAD51 destabilizes RPA-coated single-stranded DNA (ssDNA) structures at resected DNA double-strand breaks (DSBs) and greatly enhances the frequency of nuclear fragmentation following cell exposure to DNA damage. Importantly, these BRCA2-associated deficits are fueled by the aberrant activation of classical (c)- and alternative (alt)- nonhomologous end-joining (NHEJ), and rely on the well-defined DNA damage signaling pathway involving the pro-c-NHEJ factor 53BP1 and its downstream effector RIF1. We further show that the 53BP1–RIF1 axis promotes toxic end-joining events via the retention of Artemis at DNA damage sites. Accordingly, loss of 53BP1, RIF1, or Artemis prolongs the stability of RPA-coated DSB intermediates in BRCA2-deficient cells and restores nuclear integrity. We propose that BRCA2 antagonizes 53BP1, RIF1, and Artemis-dependent c-NHEJ and alt-NHEJ to prevent gross genomic instability in a RAD51-independent manner. The genomic instability phenotype characteristic of BRCA2-deficient cells is not fully mechanistically understood. Here the authors show BRCA2 inactivation destabilizes RPA-coated single-stranded DNA and leads to toxic non homologous end-joining events.
Collapse
Affiliation(s)
- Jinhua Han
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Chunyan Ruan
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Michael S Y Huen
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Jiadong Wang
- Institute of Systems Biomedicine, Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Anyong Xie
- Institute of Translational Medicine, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Chun Fu
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Ting Liu
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Jun Huang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
49
|
Bonnet M, Sarmento LM, Martins AC, Sobral D, Silva J, Demengeot J. iRAGu: A Novel Inducible and Reversible Mouse Model for Ubiquitous Recombinase Activity. Front Immunol 2017; 8:1525. [PMID: 29176980 PMCID: PMC5686385 DOI: 10.3389/fimmu.2017.01525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 10/27/2017] [Indexed: 11/17/2022] Open
Abstract
Developing lymphocytes express the recombination activating genes (RAGs) 1 and 2 products that form a site specific recombinase complex (RAG), introducing double strand DNA breaks (DSBs) at recombination signal sequences (RSSs) flanking the V, D, and J gene segments in the antigen receptor loci. The subsequent steps in the reaction consist in the ligation of DSBs by ubiquitous enzymes of the non-homologous end joining DNA repair pathway. This mutagenesis process is responsible for the generation of the very large clonal diversity of T and B lymphocytes, itself allowing the recognition of a virtually open-ended antigenic universe. Sequences resembling RSS are found at high frequency all over the genome, and involved in RAG mediated illegitimate recombination and translocations. Hence, natural and induced ectopic activity of RAG is a threat to the genome only recently underscored. Here, we report and characterize a novel mouse transgenic system for which ubiquitous expression of the recombinase is inducible. In this system, the RAG1 protein is constitutively expressed and functional, while the RAG2 protein, coupled to the estrogen receptor, becomes functionally active upon 4-hydroxytamoxifen (TAM) administration. We describe two transgenic lines. The first one, when introgressed into an endogenous Rag2−/− genetic background is faithfully recapitulating lymphocyte development, repertoire dynamics and cryptic rearrangements, in a TAM-dependent manner. In this model, deprivation of TAM is followed by lymphocyte development arrest, evidencing the reversibility of the system. The second transgenic line is leaky, as the transgenes promote lymphocyte differentiation in absence of TAM treatment. Upon TAM-induction defects in lymphocytes composition and global health reveals the deleterious effect of uncontrolled RAG activity. Overall, this novel transgenic model provides a tool where RAG activity can be specifically manipulated to assess the dynamics of lymphocyte differentiation and the challenges imposed by the recombinase on the vertebrate genome.
Collapse
Affiliation(s)
- Marie Bonnet
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | | | | | - Joana Silva
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | |
Collapse
|
50
|
Nickoloff JA, Jones D, Lee SH, Williamson EA, Hromas R. Drugging the Cancers Addicted to DNA Repair. J Natl Cancer Inst 2017; 109:3832892. [PMID: 28521333 PMCID: PMC5436301 DOI: 10.1093/jnci/djx059] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 03/10/2017] [Indexed: 12/29/2022] Open
Abstract
Defects in DNA repair can result in oncogenic genomic instability. Cancers occurring from DNA repair defects were once thought to be limited to rare inherited mutations (such as BRCA1 or 2). It now appears that a clinically significant fraction of cancers have acquired DNA repair defects. DNA repair pathways operate in related networks, and cancers arising from loss of one DNA repair component typically become addicted to other repair pathways to survive and proliferate. Drug inhibition of the rescue repair pathway prevents the repair-deficient cancer cell from replicating, causing apoptosis (termed synthetic lethality). However, the selective pressure of inhibiting the rescue repair pathway can generate further mutations that confer resistance to the synthetic lethal drugs. Many such drugs currently in clinical use inhibit PARP1, a repair component to which cancers arising from inherited BRCA1 or 2 mutations become addicted. It is now clear that drugs inducing synthetic lethality may also be therapeutic in cancers with acquired DNA repair defects, which would markedly broaden their applicability beyond treatment of cancers with inherited DNA repair defects. Here we review how each DNA repair pathway can be attacked therapeutically and evaluate DNA repair components as potential drug targets to induce synthetic lethality. Clinical use of drugs targeting DNA repair will markedly increase when functional and genetic loss of repair components are consistently identified. In addition, future therapies will exploit artificial synthetic lethality, where complementary DNA repair pathways are targeted simultaneously in cancers without DNA repair defects.
Collapse
Affiliation(s)
- Jac A Nickoloff
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Dennie Jones
- Department of Medicine and the Cancer Center, University of Florida Health, Gainesville, FL, USA
| | - Suk-Hee Lee
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Elizabeth A Williamson
- Department of Medicine and the Cancer Center, University of Florida Health, Gainesville, FL, USA
| | - Robert Hromas
- Department of Medicine and the Cancer Center, University of Florida Health, Gainesville, FL, USA
| |
Collapse
|