1
|
Rock AQ, Srivastava M. Totipotency and high plasticity in an embryo with a stereotyped, invariant cleavage program. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.12.637942. [PMID: 39990477 PMCID: PMC11844520 DOI: 10.1101/2025.02.12.637942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Animal embryos begin as totipotent zygotes, which undergo cell divisions and produce progeny with restricted fate potentials over time. However, the timing of when totipotency is lost and the processes through which embryonic cells acquire fates vary across species. Embryos with invariant cleavage programs, e.g. of nematodes and spiralians, tend to show early restriction of blastomere potency and limited robustness to perturbation, particularly after asymmetric cleavages have occurred. In contrast, embryos with variant cleavage programs, e.g. of vertebrates, tend to specify fates later in development and correspondingly show higher plasticity at early stages. Here, we investigate the embryos of the acoel Hofstenia miamia , which represents an understudied phylum (Xenacoelomorpha) that is distantly related to well-studied developmental systems. Given the invariant 'duet' cleavage program observed in H. miamia embryos, we found unexpected robustness in this species. Isolated 4-cell stage macromeres, the products of an asymmetric, fate specifying cleavage, were totipotent, forming whole organisms upon isolation. Notably, these isolated macromeres produced pharyngeal and neuronal tissues, which they do not produce during normal development. This assay is highly reproducible and can be done at high throughput in H. miamia , making this species an ideal system to investigate the causes of totipotency after specification. Photoconversion-based lineage tracing revealed that rescued cell types are not merely replaced by neoblasts, the adult pluripotent stem cells in H. miamia , suggesting that the macromere's totipotency is the result of changes in the fate potentials of early embryonic cells. Remarkably, all blastomeres at the 8-cell stage were capable of reprogramming their fates in embryo reconstitution assays. By assembling different subsets of 8-cell stage blastomeres, none of which are totipotent on their own, we determined that a minimal unit of two blastomeres, one macromere that produces gut and neoblasts and one micromere that is specified to produce muscle and epidermis, was sufficient to develop into a hatchling worm. Future studies of this system could identify the precise mechanisms that can enable tremendous plasticity, including post-zygotic totipotency, in an embryo with well-defined cellular lineages.
Collapse
|
2
|
Abalde S, Jondelius U. A Phylogenomic Backbone for Acoelomorpha Inferred From Transcriptomic Data. Syst Biol 2025; 74:70-85. [PMID: 39451056 PMCID: PMC11809588 DOI: 10.1093/sysbio/syae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/03/2024] [Accepted: 11/28/2024] [Indexed: 10/26/2024] Open
Abstract
Xenacoelomorpha are mostly microscopic, morphologically simple worms, lacking many structures typical of other bilaterians. Xenacoelomorphs-which include three main groups, namely Acoela, Nemertodermatida, and Xenoturbella-have been proposed to be an early diverging Bilateria, sister to protostomes and deuterostomes, but other phylogenomic analyses have recovered this clade nested within the deuterostomes, as sister to Ambulacraria. The position of Xenacoelomorpha within the metazoan tree has understandably attracted a lot of attention, overshadowing the study of phylogenetic relationships within this group. Given that Xenoturbella includes only six species whose relationships are well understood, we decided to focus on the most speciose Acoelomorpha (Acoela + Nemertodermatida). Here, we have sequenced 29 transcriptomes, doubling the number of sequenced species, to infer a backbone tree for Acoelomorpha based on genomic data. The recovered topology is mostly congruent with previous studies. The most important difference is the recovery of Paratomella as the first off-shoot within Acoela, dramatically changing the reconstruction of the ancestral acoel. Besides, we have detected incongruence between the gene trees and the species tree, likely linked to incomplete lineage sorting, and some signal of introgression between the families Dakuidae and Mecynostomidae, which hampers inferring the correct placement of this family and, particularly, of the genus Notocelis. We have also used this dataset to infer for the first time diversification times within Acoelomorpha, which coincide with known bilaterian diversification and extinction events. Given the importance of morphological data in acoelomorph phylogenetics, we tested several partitions and models. Although morphological data failed to recover a robust phylogeny, phylogenetic placement has proven to be a suitable alternative when a reference phylogeny is available.
Collapse
Affiliation(s)
- Samuel Abalde
- Department of Zoology, Swedish Museum of Natural History, Stockholm, Sweden
| | - Ulf Jondelius
- Department of Zoology, Swedish Museum of Natural History, Stockholm, Sweden
| |
Collapse
|
3
|
Stevens B, Popp R, Valera H, Krueger K, Petersen CP. Injury-induced Neuregulin-ErbB signaling from muscle mobilizes stem cells for whole-body regeneration in Acoels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.23.630141. [PMID: 39764063 PMCID: PMC11703163 DOI: 10.1101/2024.12.23.630141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2025]
Abstract
The activation of progenitor cells near wound sites is a common feature of regeneration across species, but the conserved signaling mechanisms responsible for this step in whole-body regeneration are still incompletely understood. The acoel Hofstenia miamia undergoes whole-body regeneration using Piwi+ pluripotent adult stem cells (neoblasts) that accumulate at amputation sites early in the regeneration process. The EGFR signaling pathway has broad roles in controlling proliferation, migration, differentiation, and cell survival across metazoans. Using a candidate RNAi screening approach, we identify the Hofstenia EGFR erbB4-2 and Neuregulin nrg-1 genes as essential for blastema formation. Structure prediction of NRG-1 and ERBB4-2 proteins supports the likelihood of these factors interacting directly. After amputation injuries, nrg-1 expression is induced in body-wall muscle cells at the wound site by 6 hours and localizes to the tip of the outgrowing blastema over the next several days, while erbB4-2 is broadly expressed, including in muscle and neoblasts. Under nrg-1(RNAi) and erbB4-2(RNAi) conditions that impair blastema formation, animals still undergo the earliest responses to injury to activate expression of the Early Growth Response transcription factor egr, indicating a crucial role for EGFR signaling downstream of initial wound activation. nrg-1(RNAi) and erbB4-2(RNAi) animals possess Piwi+ and H3P+ mitotic neoblasts which hyperproliferate normally after amputation, but these cells fail to accumulate at the wound site. Therefore, muscle provides a source for Neuregulin-ErbB signaling necessary for the mobilization of proliferative progenitors to enable blastema outgrowth for whole-body regeneration in Hofstenia. These results indicate a shared functional requirement for muscle signaling to enable regeneration between planarians and acoels across 550 million years of evolution.
Collapse
Affiliation(s)
- Brian Stevens
- Department of Molecular Biosciences, Northwestern University; Evanston IL 60208
| | - Riley Popp
- Department of Molecular Biosciences, Northwestern University; Evanston IL 60208
| | - Heather Valera
- Department of Molecular Biosciences, Northwestern University; Evanston IL 60208
| | - Kyle Krueger
- Department of Molecular Biosciences, Northwestern University; Evanston IL 60208
| | - Christian P. Petersen
- Department of Molecular Biosciences, Northwestern University; Evanston IL 60208
- Robert Lurie Comprehensive Cancer Center, Northwestern University; Evanston IL 60208
| |
Collapse
|
4
|
Duan Y, Segev T, Veksler-Lublinsky I, Ambros V, Srivastava M. Identification and developmental profiling of microRNAs in the acoel worm Hofstenia miamia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.01.626237. [PMID: 39677803 PMCID: PMC11642771 DOI: 10.1101/2024.12.01.626237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
The acoel worm Hofstenia miamia (H. miamia) has recently emerged as a model organism for studying whole-body regeneration and embryonic development. Previous studies suggest that post-transcriptional mechanisms likely play important roles in whole-body regeneration. Here, we establish a resource for studying H. miamia microRNA-mediated gene regulation, a major aspect of post-transcriptional control in animals. Using small RNA-sequencing samples spanning key developmental stages, we annotated H. miamia microRNAs. Our analysis uncovered a total of 1,050 microRNA loci, including 479 high-confidence loci based on structural and read abundance criteria. Comparison of microRNA seed sequences with those in other bilaterian species revealed that H. miamia encodes the majority of known conserved bilaterian microRNA families and that several microRNA families previously reported only in protostomes or deuterostomes likely have ancient bilaterian origins. We profiled the expression dynamics of the H. miamia miRNAs across embryonic and post-embryonic development. We observed that the let-7 and mir-125 microRNAs are unconventionally enriched at early embryonic stages. To generate hypotheses for miRNA function, we annotated the 3' UTRs of H. miamia protein-coding genes and performed miRNA target site predictions. Focusing on genes that are known to function in the wound response, posterior patterning, and neural differentiation in H. miamia , we found that these processes may be under substantial miRNA regulation. Notably, we found that miRNAs in MIR-7 and MIR-9 families which have target sites in the posterior genes fz-1 , wnt-3 , and sp5 are indeed expressed in the anterior of the animal, consistent with a repressive effect on their corresponding target genes. Our annotation offers candidate miRNAs for further functional investigation, providing a resource for future studies of post-transcriptional control during development and regeneration.
Collapse
|
5
|
Evans SD, Hughes IV, Hughes EB, Dzaugis PW, Dzaugis MP, Gehling JG, García-Bellido DC, Droser ML. A new motile animal with implications for the evolution of axial polarity from the Ediacaran of South Australia. Evol Dev 2024; 26:e12491. [PMID: 39228078 DOI: 10.1111/ede.12491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 08/06/2024] [Accepted: 08/19/2024] [Indexed: 09/05/2024]
Abstract
Fossils of the Ediacara Biota preserve the oldest evidence for complex, macroscopic animals. Most are difficult to constrain phylogenetically, however, the presence of rare, derived groups suggests that many more fossils from this period represent extant groups than are currently appreciated. One approach to recognize such early animals is to instead focus on characteristics widespread in animals today, for example multicellularity, motility, and axial polarity. Here, we describe a new taxon, Quaestio simpsonorum gen. et sp. nov. from the Ediacaran of South Australia. Quaestio is reconstructed with a thin external membrane connecting more resilient tissues with anterior-posterior polarity, left-right asymmetry and tentative evidence for dorsoventral differentiation. Associated trace fossils indicate an epibenthic and motile lifestyle. Our results suggest that Quaestio was a motile eumetazoan with a body plan not previously recognized in the Ediacaran, including definitive evidence of chirality. This organization, combined with previous evidence for axial patterning in a variety of other Ediacara taxa, demonstrates that metazoan body plans were well established in the Precambrian.
Collapse
Affiliation(s)
- Scott D Evans
- Earth, Ocean, and Atmospheric Sciences, Florida State University, Tallahassee, Florida, USA
| | - Ian V Hughes
- Organismic and Evolutionary Biology, Harvard, Cambridge, Massachusetts, USA
| | - Emily B Hughes
- Earth and Atmospheric Sciences, Georgia Tech, Atlanta, Georgia, USA
| | - Peter W Dzaugis
- Donald and Barbara Zucker School of Medicine, Hofstra University, Hempstead, New York, USA
| | | | - James G Gehling
- Earth Sciences, South Australian Museum, Adelaide, South Australia, Australia
| | - Diego C García-Bellido
- Earth Sciences, South Australian Museum, Adelaide, South Australia, Australia
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Mary L Droser
- Earth and Planetary Sciences, University of California Riverside, Riverside, California, USA
| |
Collapse
|
6
|
Yaguchi J, Sakai K, Horiuchi A, Yamamoto T, Yamashita T, Yaguchi S. Light-modulated neural control of sphincter regulation in the evolution of through-gut. Nat Commun 2024; 15:8881. [PMID: 39424783 PMCID: PMC11489725 DOI: 10.1038/s41467-024-53203-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 10/04/2024] [Indexed: 10/21/2024] Open
Abstract
The development of a continuous digestive tract, or through-gut, represents a key milestone in bilaterian evolution. However, the regulatory mechanisms in ancient bilaterians (urbilaterians) are not well understood. Our study, using larval sea urchins as a model, reveals a sophisticated system that prevents the simultaneous opening of the pylorus and anus, entry and exit points of the gut. This regulation is influenced by external light, with blue light affecting the pylorus via serotonergic neurons and both blue and longer wavelengths controlling the anus through cholinergic and dopaminergic neurons. These findings provide new insights into the neural orchestration of sphincter control in a simplified through-gut, which includes the esophagus, stomach, and intestine. Here, we propose that the emergence of the earliest urbilaterian through-gut was accompanied by the evolution of neural systems regulating sphincters in response to light, shedding light on the functional regulation of primordial digestive systems.
Collapse
Affiliation(s)
- Junko Yaguchi
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka, 415-0025, Japan
| | - Kazumi Sakai
- Department of Biophysics, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto, Kyoto, 606-8502, Japan
| | - Atsushi Horiuchi
- Department of Biophysics, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto, Kyoto, 606-8502, Japan
| | - Takashi Yamamoto
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Takahiro Yamashita
- Department of Biophysics, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto, Kyoto, 606-8502, Japan
| | - Shunsuke Yaguchi
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka, 415-0025, Japan.
- Japan Science and Technology Agency, PRESTO, 7 Gobancho, Chiyoda-ku, 102-0076, Tokyo, Japan.
| |
Collapse
|
7
|
Redmond AK. Acoelomorph flatworm monophyly is a long-branch attraction artefact obscuring a clade of Acoela and Xenoturbellida. Proc Biol Sci 2024; 291:20240329. [PMID: 39288803 PMCID: PMC11407873 DOI: 10.1098/rspb.2024.0329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/27/2024] [Accepted: 07/30/2024] [Indexed: 09/19/2024] Open
Abstract
Acoelomorpha is a broadly accepted clade of bilaterian animals made up of the fast-evolving, morphologically simple, mainly marine flatworm lineages Acoela and Nemertodermatida. Phylogenomic studies support Acoelomorpha's close relationship with the slowly evolving and similarly simplistic Xenoturbella, together forming the phylum Xenacoelomorpha. The phylogenetic placement of Xenacoelomorpha amongst bilaterians is controversial, with some studies supporting Xenacoelomorpha as the sister group to all other bilaterians, implying that their simplicity may be representative of early bilaterians. Others propose that this placement is an error resulting from the fast-evolving Acoelomorpha, and instead suggest that they are the degenerate sister group to Ambulacraria. Perhaps as a result of this debate, internal xenacoelomorph relationships have been somewhat overlooked at a phylogenomic scale. Here, I employ a highly targeted approach to detect and overcome possible phylogenomic error in the relationship between Xenoturbella and the fast-evolving acoelomorph flatworms. The results indicate that the subphylum Acoelomorpha is a long-branch attraction artefact obscuring a previously undiscovered clade comprising Xenoturbella and Acoela, which I name Xenacoela. The findings also suggest that Xenacoelomorpha is not the sister group to all other bilaterians. This study provides a template for future efforts aimed at discovering and correcting unrecognized long-branch attraction artefacts throughout the tree of life.
Collapse
|
8
|
Liu H, Steenwyk JL, Zhou X, Schultz DT, Kocot KM, Shen XX, Rokas A, Li Y. A taxon-rich and genome-scale phylogeny of Opisthokonta. PLoS Biol 2024; 22:e3002794. [PMID: 39283949 PMCID: PMC11426530 DOI: 10.1371/journal.pbio.3002794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 09/26/2024] [Accepted: 08/07/2024] [Indexed: 09/27/2024] Open
Abstract
Ancient divergences within Opisthokonta-a major lineage that includes organisms in the kingdoms Animalia, Fungi, and their unicellular relatives-remain contentious. To assess progress toward a genome-scale Opisthokonta phylogeny, we conducted the most taxon rich phylogenomic analysis using sets of genes inferred with different orthology inference methods and established the geological timeline of Opisthokonta diversification. We also conducted sensitivity analysis by subsampling genes or taxa from the full data matrix based on filtering criteria previously shown to improve phylogenomic inference. We found that approximately 85% of internal branches were congruent across data matrices and the approaches used. Notably, the use of different orthology inference methods was a substantial contributor to the observed incongruence: analyses using the same set of orthologs showed high congruence of 97% to 98%, whereas different sets of orthologs resulted in somewhat lower congruence (87% to 91%). Examination of unicellular Holozoa relationships suggests that the instability observed across varying gene sets may stem from weak phylogenetic signals. Our results provide a comprehensive Opisthokonta phylogenomic framework that will be useful for illuminating ancient evolutionary episodes concerning the origin and diversification of the 2 major eukaryotic kingdoms and emphasize the importance of investigating effects of orthology inference on phylogenetic analyses to resolve ancient divergences.
Collapse
Affiliation(s)
- Hongyue Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Jacob L Steenwyk
- Howards Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Xiaofan Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Darrin T Schultz
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, California, United States of America
- Monterey Bay Aquarium Research Institute, Moss Landing, California, United States of America
| | - Kevin M Kocot
- University of Alabama, Department of Biological Sciences & Alabama Museum of Natural History, Tuscaloosa, Alabama, United States of America
| | - Xing-Xing Shen
- Institute of Insect Sciences and Centre for Evolutionary and Organismal Biology, Zhejiang University, Hangzhou, China
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Vanderbilt Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Yuanning Li
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| |
Collapse
|
9
|
Schiffer PH, Natsidis P, Leite DJ, Robertson HE, Lapraz F, Marlétaz F, Fromm B, Baudry L, Simpson F, Høye E, Zakrzewski AC, Kapli P, Hoff KJ, Müller S, Marbouty M, Marlow H, Copley RR, Koszul R, Sarkies P, Telford MJ. Insights into early animal evolution from the genome of the xenacoelomorph worm Xenoturbella bocki. eLife 2024; 13:e94948. [PMID: 39109482 PMCID: PMC11521371 DOI: 10.7554/elife.94948] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 07/03/2024] [Indexed: 10/30/2024] Open
Abstract
The evolutionary origins of Bilateria remain enigmatic. One of the more enduring proposals highlights similarities between a cnidarian-like planula larva and simple acoel-like flatworms. This idea is based in part on the view of the Xenacoelomorpha as an outgroup to all other bilaterians which are themselves designated the Nephrozoa (protostomes and deuterostomes). Genome data can provide important comparative data and help understand the evolution and biology of enigmatic species better. Here, we assemble and analyze the genome of the simple, marine xenacoelomorph Xenoturbella bocki, a key species for our understanding of early bilaterian evolution. Our highly contiguous genome assembly of X. bocki has a size of ~111 Mbp in 18 chromosome-like scaffolds, with repeat content and intron, exon, and intergenic space comparable to other bilaterian invertebrates. We find X. bocki to have a similar number of genes to other bilaterians and to have retained ancestral metazoan synteny. Key bilaterian signaling pathways are also largely complete and most bilaterian miRNAs are present. Overall, we conclude that X. bocki has a complex genome typical of bilaterians, which does not reflect the apparent simplicity of its body plan that has been so important to proposals that the Xenacoelomorpha are the simple sister group of the rest of the Bilateria.
Collapse
Affiliation(s)
- Philipp H Schiffer
- Center for Life’s Origins and Evolution, Department of Genetics, Evolution and Environment, University College LondonLondonUnited Kingdom
- worm~lab, Institute of Zoology, University of CologneCologneGermany
| | - Paschalis Natsidis
- Center for Life’s Origins and Evolution, Department of Genetics, Evolution and Environment, University College LondonLondonUnited Kingdom
| | - Daniel J Leite
- Center for Life’s Origins and Evolution, Department of Genetics, Evolution and Environment, University College LondonLondonUnited Kingdom
- Department of Biosciences, Durham UniversityDurhamUnited Kingdom
| | - Helen E Robertson
- Center for Life’s Origins and Evolution, Department of Genetics, Evolution and Environment, University College LondonLondonUnited Kingdom
| | - François Lapraz
- Center for Life’s Origins and Evolution, Department of Genetics, Evolution and Environment, University College LondonLondonUnited Kingdom
- Université Côte D'Azur, CNRS, Inserm, iBVNiceFrance
| | - Ferdinand Marlétaz
- Center for Life’s Origins and Evolution, Department of Genetics, Evolution and Environment, University College LondonLondonUnited Kingdom
| | - Bastian Fromm
- The Arctic University Museum of Norway, UiT – The Arctic University of NorwayTromsøNorway
| | - Liam Baudry
- Collège Doctoral, Sorbonne UniversitéParisFrance
| | - Fraser Simpson
- Center for Life’s Origins and Evolution, Department of Genetics, Evolution and Environment, University College LondonLondonUnited Kingdom
| | - Eirik Høye
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University HospitalOsloNorway
- Institute of Clinical Medicine, Medical Faculty, University of OsloOsloNorway
| | - Anne C Zakrzewski
- Center for Life’s Origins and Evolution, Department of Genetics, Evolution and Environment, University College LondonLondonUnited Kingdom
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity ScienceBerlinGermany
| | - Paschalia Kapli
- Center for Life’s Origins and Evolution, Department of Genetics, Evolution and Environment, University College LondonLondonUnited Kingdom
| | - Katharina J Hoff
- University of Greifswald, Institute for Mathematics and Computer ScienceGreifswaldGermany
- University of Greifswald, Center for Functional Genomics of MicrobesGreifswaldGermany
| | - Steven Müller
- Center for Life’s Origins and Evolution, Department of Genetics, Evolution and Environment, University College LondonLondonUnited Kingdom
- Royal Brompton Hospital, Guy's and St Thomas' NHS Foundation TrustLondonUnited Kingdom
| | - Martial Marbouty
- Institut Pasteur, Université de Paris, CNRS UMR3525, Unité Régulation Spatiale des GénomesParisFrance
| | - Heather Marlow
- The University of Chicago, Division of Biological SciencesChicagoUnited States
| | - Richard R Copley
- Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), Sorbonne UniversiteVillefranche-sur-merFrance
| | - Romain Koszul
- Institut Pasteur, Université de Paris, CNRS UMR3525, Unité Régulation Spatiale des GénomesParisFrance
| | - Peter Sarkies
- Department of Biochemistry, University of OxfordOxfordUnited Kingdom
| | - Maximilian J Telford
- Center for Life’s Origins and Evolution, Department of Genetics, Evolution and Environment, University College LondonLondonUnited Kingdom
| |
Collapse
|
10
|
Hulett RE, Rivera-López C, Gehrke AR, Gompers A, Srivastava M. A wound-induced differentiation trajectory for neurons. Proc Natl Acad Sci U S A 2024; 121:e2322864121. [PMID: 38976727 PMCID: PMC11260127 DOI: 10.1073/pnas.2322864121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/03/2024] [Indexed: 07/10/2024] Open
Abstract
Animals capable of whole-body regeneration can replace any missing cell type and regenerate fully functional new organs, including new brains, de novo. The regeneration of a new brain requires the formation of diverse neural cell types and their assembly into an organized structure with correctly wired circuits. Recent work in various regenerative animals has revealed transcriptional programs required for the differentiation of distinct neural subpopulations, however, how these transcriptional programs are initiated in response to injury remains unknown. Here, we focused on the highly regenerative acoel worm, Hofstenia miamia, to study wound-induced transcriptional regulatory events that lead to the production of neurons and subsequently a functional brain. Footprinting analysis using chromatin accessibility data on a chromosome-scale genome assembly revealed that binding sites for the Nuclear Factor Y (NFY) transcription factor complex were significantly bound during regeneration, showing a dynamic increase in binding within one hour upon amputation specifically in tail fragments, which will regenerate a new brain. Strikingly, NFY targets were highly enriched for genes with neuronal function. Single-cell transcriptome analysis combined with functional studies identified soxC+ stem cells as a putative progenitor population for multiple neural subtypes. Further, we found that wound-induced soxC expression is likely under direct transcriptional control by NFY, uncovering a mechanism for the initiation of a neural differentiation pathway by early wound-induced binding of a transcriptional regulator.
Collapse
Affiliation(s)
- Ryan E. Hulett
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA02138
| | - Carlos Rivera-López
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA02138
- Department of Molecular and Cell Biology, Harvard University, Cambridge, MA02138
| | - Andrew R. Gehrke
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA02138
| | - Annika Gompers
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA02138
| | - Mansi Srivastava
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA02138
| |
Collapse
|
11
|
Martinez P, Bailly X, Sprecher SG, Hartenstein V. The Acoel nervous system: morphology and development. Neural Dev 2024; 19:9. [PMID: 38907301 PMCID: PMC11191258 DOI: 10.1186/s13064-024-00187-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/15/2024] [Indexed: 06/23/2024] Open
Abstract
Acoel flatworms have played a relevant role in classical (and current) discussions on the evolutionary origin of bilaterian animals. This is mostly derived from the apparent simplicity of their body architectures. This tenet has been challenged over the last couple of decades, mostly because detailed studies of their morphology and the introduction of multiple genomic technologies have unveiled a complexity of cell types, tissular arrangements and patterning mechanisms that were hidden below this 'superficial' simplicity. One tissue that has received a particular attention has been the nervous system (NS). The combination of ultrastructural and single cell methodologies has revealed unique cellular diversity and developmental trajectories for most of their neurons and associated sensory systems. Moreover, the great diversity in NS architectures shown by different acoels offers us with a unique group of animals where to study key aspects of neurogenesis and diversification od neural systems over evolutionary time.In this review we revisit some recent developments in the characterization of the acoel nervous system structure and the regulatory mechanisms that contribute to their embryological development. We end up by suggesting some promising avenues to better understand how this tissue is organized in its finest cellular details and how to achieve a deeper knowledge of the functional roles that genes and gene networks play in its construction.
Collapse
Affiliation(s)
- Pedro Martinez
- Departament de Genètica, Microbiologia I Estadística, Universitat de Barcelona, Av. Diagonal 643, Barcelona, 08028, Spain.
- ICREA (Institut Català de Recerca I Estudis Avancats), Barcelona, Spain.
| | - Xavier Bailly
- Station Biologique de Roscoff, Multicellular Marine Models (M3) Team, FR2424, CNRS / Sorbonne Université - Place Georges Teissier, Roscoff, 29680, France
| | - Simon G Sprecher
- Department of Biology, University of Fribourg, 10, Ch. Du Musée, Fribourg, 1700, Switzerland
| | - Volker Hartenstein
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles (UCLA), Los Angeles, CA, USA.
| |
Collapse
|
12
|
de Miguel Bonet MDM, Hartenstein V. Ultrastructural analysis and 3D reconstruction of the frontal sensory-glandular complex and its neural projections in the platyhelminth Macrostomum lignano. Cell Tissue Res 2024:10.1007/s00441-024-03901-x. [PMID: 38898317 DOI: 10.1007/s00441-024-03901-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024]
Abstract
The marine microturbellarian Macrostomum lignano (Platyhelminthes, Rhabditophora) is an emerging laboratory model used by a growing community of researchers because it is easy to cultivate, has a fully sequenced genome, and offers multiple molecular tools for its study. M. lignano has a compartmentalized brain that receives sensory information from receptors integrated in the epidermis. Receptors of the head, as well as accompanying glands and specialized epidermal cells, form a compound sensory structure called the frontal glandular complex. In this study, we used semi-serial transmission electron microscopy (TEM) to document the types, ultrastructure, and three-dimensional architecture of the cells of the frontal glandular complex. We distinguish a ventral compartment formed by clusters of type 1 (multiciliated) sensory receptors from a central domain where type 2 (collar) sensory receptors predominate. Six different types of glands (rhammite glands, mucoid glands, glands with aster-like and perimaculate granula, vacuolated glands, and buckle glands) are closely associated with type 1 sensory receptors. Endings of a seventh type of gland (rhabdite gland) define a dorsal domain of the frontal glandular complex. A pair of ciliary photoreceptors is closely associated with the base of the frontal glandular complex. Bundles of dendrites, connecting the receptor endings with their cell bodies which are located in the brain, form the (frontal) peripheral nerves. Nerve fibers show a varicose structure, with thick segments alternating with thin segments, and are devoid of a glial layer. This distinguishes platyhelminths from larger and/or more complex invertebrates whose nerves are embedded in prominent glial sheaths.
Collapse
Affiliation(s)
- Maria Del Mar de Miguel Bonet
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles (UCLA), Los Angeles, CA, USA
- Department of Biomedicine and Biotechnology, University of Alcalá (UAH), Madrid, Spain
- BioWorld Science, Clarivate Analytics, Barcelona, Spain
| | - Volker Hartenstein
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles (UCLA), Los Angeles, CA, USA.
| |
Collapse
|
13
|
Ordoñez JF, Wollesen T. Unfolding the ventral nerve center of chaetognaths. Neural Dev 2024; 19:5. [PMID: 38720353 PMCID: PMC11078758 DOI: 10.1186/s13064-024-00182-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 04/17/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Chaetognaths are a clade of marine worm-like invertebrates with a heavily debated phylogenetic position. Their nervous system superficially resembles the protostome type, however, knowledge regarding the molecular processes involved in neurogenesis is lacking. To better understand these processes, we examined the expression profiles of marker genes involved in bilaterian neurogenesis during post-embryonic stages of Spadella cephaloptera. We also investigated whether the transcription factor encoding genes involved in neural patterning are regionally expressed in a staggered fashion along the mediolateral axis of the nerve cord as it has been previously demonstrated in selected vertebrate, insect, and annelid models. METHODS The expression patterns of genes involved in neural differentiation (elav), neural patterning (foxA, nkx2.2, pax6, pax3/7, and msx), and neuronal function (ChAT and VAChT) were examined in S. cephaloptera hatchlings and early juveniles using whole-mount fluorescent in situ hybridization and confocal microscopy. RESULTS The Sce-elav + profile of S. cephaloptera hatchlings reveals that, within 24 h of post-embryonic development, the developing neural territories are not limited to the regions previously ascribed to the cerebral ganglion, the ventral nerve center (VNC), and the sensory organs, but also extend to previously unreported CNS domains that likely contribute to the ventral cephalic ganglia. In general, the neural patterning genes are expressed in distinct neural subpopulations of the cerebral ganglion and the VNC in hatchlings, eventually becoming broadly expressed with reduced intensity throughout the CNS in early juveniles. Neural patterning gene expression domains are also present outside the CNS, including the digestive tract and sensory organs. ChAT and VAChT domains within the CNS are predominantly observed in specific subpopulations of the VNC territory adjacent to the ventral longitudinal muscles in hatchlings. CONCLUSIONS The observed spatial expression domains of bilaterian neural marker gene homologs in S. cephaloptera suggest evolutionarily conserved roles in neurogenesis for these genes among bilaterians. Patterning genes expressed in distinct regions of the VNC do not show a staggered medial-to-lateral expression profile directly superimposable to other bilaterian models. Only when the VNC is conceptually laterally unfolded from the longitudinal muscle into a flat structure, an expression pattern bearing resemblance to the proposed conserved bilaterian mediolateral regionalization becomes noticeable. This finding supports the idea of an ancestral mediolateral patterning of the trunk nervous system in bilaterians.
Collapse
Affiliation(s)
- June F Ordoñez
- Unit for Integrative Zoology, Department of Evolutionary Biology, University of Vienna, 1030, Vienna, Austria
| | - Tim Wollesen
- Unit for Integrative Zoology, Department of Evolutionary Biology, University of Vienna, 1030, Vienna, Austria.
| |
Collapse
|
14
|
Robertson HE, Sebé-Pedrós A, Saudemont B, Loe-Mie Y, Zakrzewski AC, Grau-Bové X, Mailhe MP, Schiffer P, Telford MJ, Marlow H. Single cell atlas of Xenoturbella bocki highlights limited cell-type complexity. Nat Commun 2024; 15:2469. [PMID: 38503762 PMCID: PMC10951248 DOI: 10.1038/s41467-024-45956-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/07/2024] [Indexed: 03/21/2024] Open
Abstract
Phylogenetic analyses over the last two decades have united a few small, and previously orphan clades, the nematodermatids, acoels and xenoturbelids, into the phylum Xenacoelomorpha. Some phylogenetic analyses support a sister relationship between Xenacoelomorpha and Ambulacraria (Xenambulacraria), while others suggest that Xenacoelomorpha may be sister to the rest of the Bilateria (Nephrozoa). An understanding of the cell type complements of Xenacoelomorphs is essential to assessing these alternatives as well as to our broader understanding of bilaterian cell type evolution. Employing whole organism single-cell RNA-seq in the marine xenacoelomorph worm Xenoturbella bocki, we show that Xenambulacrarian nerve nets share regulatory features and a peptidergic identity with those found in cnidarians and protostomes and more broadly share muscle and gland cell similarities with other metazoans. Taken together, these data are consistent with broad homologies of animal gland, muscle, and neurons as well as more specific affinities between Xenoturbella and acoel gut and epidermal tissues, consistent with the monophyly of Xenacoelomorpha.
Collapse
Affiliation(s)
- Helen E Robertson
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL, USA
- (Epi)genomics of Animal Development Unit, Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris, France
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Arnau Sebé-Pedrós
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- ICREA, Barcelona, Spain
| | - Baptiste Saudemont
- (Epi)genomics of Animal Development Unit, Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris, France
| | - Yann Loe-Mie
- (Epi)genomics of Animal Development Unit, Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris, France
| | - Anne-C Zakrzewski
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Xavier Grau-Bové
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Marie-Pierre Mailhe
- (Epi)genomics of Animal Development Unit, Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris, France
| | - Philipp Schiffer
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London, UK
- Institute of Zoology, Section Developmental Biology, University of Cologne, Köln, Wormlab, Germany
| | - Maximilian J Telford
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London, UK.
| | - Heather Marlow
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL, USA.
- (Epi)genomics of Animal Development Unit, Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris, France.
| |
Collapse
|
15
|
Kapli P, Kotari I, Telford MJ, Goldman N, Yang Z. DNA Sequences Are as Useful as Protein Sequences for Inferring Deep Phylogenies. Syst Biol 2023; 72:1119-1135. [PMID: 37366056 PMCID: PMC10627555 DOI: 10.1093/sysbio/syad036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Indexed: 06/28/2023] Open
Abstract
Inference of deep phylogenies has almost exclusively used protein rather than DNA sequences based on the perception that protein sequences are less prone to homoplasy and saturation or to issues of compositional heterogeneity than DNA sequences. Here, we analyze a model of codon evolution under an idealized genetic code and demonstrate that those perceptions may be misconceptions. We conduct a simulation study to assess the utility of protein versus DNA sequences for inferring deep phylogenies, with protein-coding data generated under models of heterogeneous substitution processes across sites in the sequence and among lineages on the tree, and then analyzed using nucleotide, amino acid, and codon models. Analysis of DNA sequences under nucleotide-substitution models (possibly with the third codon positions excluded) recovered the correct tree at least as often as analysis of the corresponding protein sequences under modern amino acid models. We also applied the different data-analysis strategies to an empirical dataset to infer the metazoan phylogeny. Our results from both simulated and real data suggest that DNA sequences may be as useful as proteins for inferring deep phylogenies and should not be excluded from such analyses. Analysis of DNA data under nucleotide models has a major computational advantage over protein-data analysis, potentially making it feasible to use advanced models that account for among-site and among-lineage heterogeneity in the nucleotide-substitution process in inference of deep phylogenies.
Collapse
Affiliation(s)
- Paschalia Kapli
- Department of Genetics, University College London, Gower Street, London WC1E 6BT, UK
| | - Ioanna Kotari
- Department of Genetics, University College London, Gower Street, London WC1E 6BT, UK
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, 1210, Austria
| | - Maximilian J Telford
- Department of Genetics, University College London, Gower Street, London WC1E 6BT, UK
| | - Nick Goldman
- European Molecular Biology Laboratory - European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Ziheng Yang
- Department of Genetics, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
16
|
Szánthó LL, Lartillot N, Szöllősi GJ, Schrempf D. Compositionally Constrained Sites Drive Long-Branch Attraction. Syst Biol 2023; 72:767-780. [PMID: 36946562 PMCID: PMC10405358 DOI: 10.1093/sysbio/syad013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/01/2023] [Accepted: 03/16/2023] [Indexed: 03/23/2023] Open
Abstract
Accurate phylogenies are fundamental to our understanding of the pattern and process of evolution. Yet, phylogenies at deep evolutionary timescales, with correspondingly long branches, have been fraught with controversy resulting from conflicting estimates from models with varying complexity and goodness of fit. Analyses of historical as well as current empirical datasets, such as alignments including Microsporidia, Nematoda, or Platyhelminthes, have demonstrated that inadequate modeling of across-site compositional heterogeneity, which is the result of biochemical constraints that lead to varying patterns of accepted amino acids along sequences, can lead to erroneous topologies that are strongly supported. Unfortunately, models that adequately account for across-site compositional heterogeneity remain computationally challenging or intractable for an increasing fraction of contemporary datasets. Here, we introduce "compositional constraint analysis," a method to investigate the effect of site-specific constraints on amino acid composition on phylogenetic inference. We show that more constrained sites with lower diversity and less constrained sites with higher diversity exhibit ostensibly conflicting signals under models ignoring across-site compositional heterogeneity that lead to long-branch attraction artifacts and demonstrate that more complex models accounting for across-site compositional heterogeneity can ameliorate this bias. We present CAT-posterior mean site frequencies (PMSF), a pipeline for diagnosing and resolving phylogenetic bias resulting from inadequate modeling of across-site compositional heterogeneity based on the CAT model. CAT-PMSF is robust against long-branch attraction in all alignments we have examined. We suggest using CAT-PMSF when convergence of the CAT model cannot be assured. We find evidence that compositionally constrained sites are driving long-branch attraction in two metazoan datasets and recover evidence for Porifera as the sister group to all other animals. [Animal phylogeny; cross-site heterogeneity; long-branch attraction; phylogenomics.].
Collapse
Affiliation(s)
- Lénárd L Szánthó
- Department of Biological Physics, Eötvös University, Budapest, Hungary
- ELTE-MTA “Lendület” Evolutionary Genomics Research Group, Budapest, Hungary
- Institute of Evolution, Centre for Ecological Research, Budapest, Hungary
| | - Nicolas Lartillot
- Laboratoire de Biométrie et Biologie Evolutive UMR 5558, CNRS, Université de Lyon, Villeurbanne, France
| | - Gergely J Szöllősi
- Department of Biological Physics, Eötvös University, Budapest, Hungary
- ELTE-MTA “Lendület” Evolutionary Genomics Research Group, Budapest, Hungary
- Institute of Evolution, Centre for Ecological Research, Budapest, Hungary
| | - Dominik Schrempf
- Department of Biological Physics, Eötvös University, Budapest, Hungary
| |
Collapse
|
17
|
Lartillot N. Identifying the Best Approximating Model in Bayesian Phylogenetics: Bayes Factors, Cross-Validation or wAIC? Syst Biol 2023; 72:616-638. [PMID: 36810802 PMCID: PMC10276628 DOI: 10.1093/sysbio/syad004] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 01/20/2023] [Accepted: 02/17/2023] [Indexed: 02/23/2023] Open
Abstract
There is still no consensus as to how to select models in Bayesian phylogenetics, and more generally in applied Bayesian statistics. Bayes factors are often presented as the method of choice, yet other approaches have been proposed, such as cross-validation or information criteria. Each of these paradigms raises specific computational challenges, but they also differ in their statistical meaning, being motivated by different objectives: either testing hypotheses or finding the best-approximating model. These alternative goals entail different compromises, and as a result, Bayes factors, cross-validation, and information criteria may be valid for addressing different questions. Here, the question of Bayesian model selection is revisited, with a focus on the problem of finding the best-approximating model. Several model selection approaches were re-implemented, numerically assessed and compared: Bayes factors, cross-validation (CV), in its different forms (k-fold or leave-one-out), and the widely applicable information criterion (wAIC), which is asymptotically equivalent to leave-one-out cross-validation (LOO-CV). Using a combination of analytical results and empirical and simulation analyses, it is shown that Bayes factors are unduly conservative. In contrast, CV represents a more adequate formalism for selecting the model returning the best approximation of the data-generating process and the most accurate estimates of the parameters of interest. Among alternative CV schemes, LOO-CV and its asymptotic equivalent represented by the wAIC, stand out as the best choices, conceptually and computationally, given that both can be simultaneously computed based on standard Markov chain Monte Carlo runs under the posterior distribution. [Bayes factor; cross-validation; marginal likelihood; model comparison; wAIC.].
Collapse
Affiliation(s)
- Nicolas Lartillot
- Université de Lyon, Université Lyon 1, CNRS, VetAgro Sup, Laboratoire de Biométrie et Biologie Evolutive, UMR5558, Villeurbanne, France
| |
Collapse
|
18
|
Fleming JF, Valero‐Gracia A, Struck TH. Identifying and addressing methodological incongruence in phylogenomics: A review. Evol Appl 2023; 16:1087-1104. [PMID: 37360032 PMCID: PMC10286231 DOI: 10.1111/eva.13565] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/07/2023] [Accepted: 05/17/2023] [Indexed: 06/28/2023] Open
Abstract
The availability of phylogenetic data has greatly expanded in recent years. As a result, a new era in phylogenetic analysis is dawning-one in which the methods we use to analyse and assess our data are the bottleneck to producing valuable phylogenetic hypotheses, rather than the need to acquire more data. This makes the ability to accurately appraise and evaluate new methods of phylogenetic analysis and phylogenetic artefact identification more important than ever. Incongruence in phylogenetic reconstructions based on different datasets may be due to two major sources: biological and methodological. Biological sources comprise processes like horizontal gene transfer, hybridization and incomplete lineage sorting, while methodological ones contain falsely assigned data or violations of the assumptions of the underlying model. While the former provides interesting insights into the evolutionary history of the investigated groups, the latter should be avoided or minimized as best as possible. However, errors introduced by methodology must first be excluded or minimized to be able to conclude that biological sources are the cause. Fortunately, a variety of useful tools exist to help detect such misassignments and model violations and to apply ameliorating measurements. Still, the number of methods and their theoretical underpinning can be overwhelming and opaque. Here, we present a practical and comprehensive review of recent developments in techniques to detect artefacts arising from model violations and poorly assigned data. The advantages and disadvantages of the different methods to detect such misleading signals in phylogenetic reconstructions are also discussed. As there is no one-size-fits-all solution, this review can serve as a guide in choosing the most appropriate detection methods depending on both the actual dataset and the computational power available to the researcher. Ultimately, this informed selection will have a positive impact on the broader field, allowing us to better understand the evolutionary history of the group of interest.
Collapse
|
19
|
Hulett RE, Gehrke AR, Gompers A, Rivera-López C, Srivastava M. A wound-induced differentiation trajectory for neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.10.540286. [PMID: 37214981 PMCID: PMC10197691 DOI: 10.1101/2023.05.10.540286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Animals capable of whole-body regeneration can replace any missing cell type and regenerate fully-functional new organs, de novo . The regeneration of a new brain requires the formation of diverse neuronal cell types and their assembly into an organized structure and correctly-wired circuits. Recent work in various regenerative animals has revealed transcriptional programs required for the differentiation of distinct neuronal subpopulations, however how these transcriptional programs are initiated upon amputation remains unknown. Here, we focused on the highly regenerative acoel worm, Hofstenia miamia , to study wound-induced transcriptional regulatory events that lead to the production of neurons. Footprinting analysis using chromatin accessibility data on an improved genome assembly revealed that binding sites for the NFY transcription factor complex were significantly bound during regeneration, showing a dynamic increase in binding within one hour upon amputation specifically in tail fragments, which will regenerate a new brain. Strikingly, NFY targets were highly enriched for genes with neuronal functional. Single-cell transcriptome analysis combined with functional studies identified sox4 + stem cells as the likely progenitor population for multiple neuronal subtypes. Further, we found that wound-induced sox4 expression is likely under direct transcriptional control by NFY, uncovering a mechanism for how early wound-induced binding of a transcriptional regulator results in the initiation of a neuronal differentiation pathway. Highlights A new chromosome-scale assembly for Hofstenia enables comprehensive analysis of transcription factor binding during regeneration NFY motifs become dynamically bound by 1hpa in regenerating tail fragments, particularly in the loci of neural genes A sox4 + neural-specialized stem cell is identified using scRNA-seq sox4 is wound-induced and required for differentiation of multiple neural cell types NFY regulates wound-induced expression of sox4 during regeneration.
Collapse
|
20
|
Hulett RE, Kimura JO, Bolaños DM, Luo YJ, Rivera-López C, Ricci L, Srivastava M. Acoel single-cell atlas reveals expression dynamics and heterogeneity of adult pluripotent stem cells. Nat Commun 2023; 14:2612. [PMID: 37147314 PMCID: PMC10163032 DOI: 10.1038/s41467-023-38016-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 04/11/2023] [Indexed: 05/07/2023] Open
Abstract
Adult pluripotent stem cell (aPSC) populations underlie whole-body regeneration in many distantly-related animal lineages, but how the underlying cellular and molecular mechanisms compare across species is unknown. Here, we apply single-cell RNA sequencing to profile transcriptional cell states of the acoel worm Hofstenia miamia during postembryonic development and regeneration. We identify cell types shared across stages and their associated gene expression dynamics during regeneration. Functional studies confirm that the aPSCs, also known as neoblasts, are the source of differentiated cells and reveal transcription factors needed for differentiation. Subclustering of neoblasts recovers transcriptionally distinct subpopulations, the majority of which are likely specialized to differentiated lineages. One neoblast subset, showing enriched expression of the histone variant H3.3, appears to lack specialization. Altogether, the cell states identified in this study facilitate comparisons to other species and enable future studies of stem cell fate potentials.
Collapse
Affiliation(s)
- Ryan E Hulett
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, 02138, USA
| | - Julian O Kimura
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, 02138, USA
| | - D Marcela Bolaños
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, 02138, USA
| | - Yi-Jyun Luo
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, 02138, USA
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Carlos Rivera-López
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, 02138, USA
- Department of Molecular and Cell Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Lorenzo Ricci
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, 02138, USA
| | - Mansi Srivastava
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
21
|
Li Y, Dunn FS, Murdock DJE, Guo J, Rahman IA, Cong P. Cambrian stem-group ambulacrarians and the nature of the ancestral deuterostome. Curr Biol 2023:S0960-9822(23)00530-4. [PMID: 37167976 DOI: 10.1016/j.cub.2023.04.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 02/17/2023] [Accepted: 04/19/2023] [Indexed: 05/13/2023]
Abstract
Deuterostomes are characterized by some of the most widely divergent body plans in the animal kingdom. These striking morphological differences have hindered efforts to predict ancestral characters, with the origin and earliest evolution of the group remaining ambiguous. Several iconic Cambrian fossils have been suggested to be early deuterostomes and hence could help elucidate ancestral character states. However, their phylogenetic relationships are controversial. Here, we describe new, exceptionally preserved specimens of the discoidal metazoan Rotadiscus grandis from the early Cambrian Chengjiang biota of China. These reveal a previously unknown double spiral structure, which we interpret as a chordate-like covering to a coelomopore, located adjacent to a horseshoe-shaped tentacle complex. The tentacles differ in key aspects from those seen in lophophorates and are instead more similar to the tentacular systems of extant pterobranchs and echinoderms. Thus, Rotadiscus exhibits a chimeric combination of ambulacrarian and chordate characters. Phylogenetic analyses recover Rotadiscus and closely related fossil taxa as stem ambulacrarians, filling a significant morphological gap in the deuterostome tree of life. These results allow us to reconstruct the ancestral body plans of major clades of deuterostomes, revealing that key traits of extant forms, such as a post-anal region, gill bars, and a U-shaped gut, evolved through convergence.
Collapse
Affiliation(s)
- Yujing Li
- Yunnan Normal University, Kunming 650500, China; Yunnan Key Laboratory for Palaeobiology & MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Institute of Palaeontology, Yunnan University, Kunming 650500, China; State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Frances S Dunn
- Oxford University Museum of Natural History, University of Oxford, Oxford OX1 3PW, UK
| | - Duncan J E Murdock
- Oxford University Museum of Natural History, University of Oxford, Oxford OX1 3PW, UK
| | - Jin Guo
- Yunnan Key Laboratory for Palaeobiology & MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Institute of Palaeontology, Yunnan University, Kunming 650500, China; Management Committee of the Chengjiang Fossil Site World Heritage, Chengjiang 652599, China
| | - Imran A Rahman
- Oxford University Museum of Natural History, University of Oxford, Oxford OX1 3PW, UK; The Natural History Museum, London SW7 5BD, UK.
| | - Peiyun Cong
- Yunnan Key Laboratory for Palaeobiology & MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Institute of Palaeontology, Yunnan University, Kunming 650500, China.
| |
Collapse
|
22
|
Nakano H, Nakano A, Maeno A, Thorndyke MC. Induced spawning with gamete release from body ruptures during reproduction of Xenoturbella bocki. Commun Biol 2023; 6:172. [PMID: 36805023 PMCID: PMC9938242 DOI: 10.1038/s42003-023-04549-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 02/02/2023] [Indexed: 02/19/2023] Open
Abstract
Xenoturbella is a marine invertebrate with a simple body plan, with recent phylogenomic studies suggesting that it forms the phylum Xenacoelomorpha together with the acoelomorphs. The phylogenetic position of the phylum is still under debate, whether it is an early branching bilaterian or a sister group to the Ambulacraria. Phylogenetic traits often appear during development, and larva resembling the cnidarian planula has been reported for Xenoturbella. However, subsequent developmental studies on Xenoturbella have been scarce. This is mainly due to the difficulties in collecting and keeping adult animals, resulting in the lack of data on the reproduction of the animal, such as the breeding season and the spawning pattern. Here we report on the reproduction of X. bocki and confirm that its breeding season is winter. Spawning induction resulted in gametes being released from body ruptures and not the mouth. No evidence supported the animal as a simultaneous hermaphrodite.
Collapse
Affiliation(s)
- Hiroaki Nakano
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1, Shimoda, Shizuoka, 415-0025, Japan. .,Kristineberg Marine Research Station, University of Gothenburg, Kristineberg 566, Fiskebäckskil, 45178, Sweden.
| | - Ako Nakano
- grid.20515.330000 0001 2369 4728Shimoda Marine Research Center, University of Tsukuba, 5-10-1, Shimoda, Shizuoka 415-0025 Japan
| | - Akiteru Maeno
- grid.288127.60000 0004 0466 9350Cell Architecture Laboratory, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540 Japan
| | - Michael C. Thorndyke
- grid.8761.80000 0000 9919 9582Kristineberg Marine Research Station, University of Gothenburg, Kristineberg 566, Fiskebäckskil, 45178 Sweden
| |
Collapse
|
23
|
Martinez P, Ustyantsev K, Biryukov M, Mouton S, Glasenburg L, Sprecher SG, Bailly X, Berezikov E. Genome assembly of the acoel flatworm Symsagittifera roscoffensis, a model for research on body plan evolution and photosymbiosis. G3 (BETHESDA, MD.) 2023; 13:jkac336. [PMID: 36542495 PMCID: PMC9911081 DOI: 10.1093/g3journal/jkac336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
Symsagittifera roscoffensis is a well-known member of the order Acoela that lives in symbiosis with the algae Tetraselmis convolutae during its adult stage. Its natural habitat is the eastern coast of the Atlantic, where at specific locations thousands of individuals can be found, mostly, lying in large pools on the surface of sand at low tide. As a member of the Acoela it has been thought as a proxy for ancestral bilaterian animals; however, its phylogenetic position remains still debated. In order to understand the basic structural characteristics of the acoel genome, we sequenced and assembled the genome of aposymbiotic species S. roscoffensis. The size of this genome was measured to be in the range of 910-940 Mb. Sequencing of the genome was performed using PacBio Hi-Fi technology. Hi-C and RNA-seq data were also generated to scaffold and annotate it. The resulting assembly is 1.1 Gb large (covering 118% of the estimated genome size) and highly continuous, with N50 scaffold size of 1.04 Mb. The repetitive fraction of the genome is 61%, of which 85% (half of the genome) are LTR retrotransposons. Genome-guided transcriptome assembly identified 34,493 genes, of which 29,351 are protein coding (BUSCO score 97.6%), and 30.2% of genes are spliced leader trans-spliced. The completeness of this genome suggests that it can be used extensively to characterize gene families and conduct accurate phylogenomic reconstructions.
Collapse
Affiliation(s)
- Pedro Martinez
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain
- Institut Català de Recerca i Estudis Avançats (ICREA), Barcelona 08193, Spain
| | - Kirill Ustyantsev
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen 9700AD, The Netherlands
| | - Mikhail Biryukov
- Institute of Cytology and Genetics SB RAS, Novosibirsk 630090, Russia
| | - Stijn Mouton
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen 9700AD, The Netherlands
| | - Liza Glasenburg
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen 9700AD, The Netherlands
| | - Simon G Sprecher
- Department of Biology, University of Fribourg, Chemin du Musee 10, 1700 Fribourg, Switzerland
| | - Xavier Bailly
- Station Biologique de Roscoff, Multicellular Marine Models (M3) team, FR2424, CNRS/Sorbonne Université—Place Georges Teissier, 29680 Roscoff, France
| | - Eugene Berezikov
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen 9700AD, The Netherlands
| |
Collapse
|
24
|
Nanglu K, Cole SR, Wright DF, Souto C. Worms and gills, plates and spines: the evolutionary origins and incredible disparity of deuterostomes revealed by fossils, genes, and development. Biol Rev Camb Philos Soc 2023; 98:316-351. [PMID: 36257784 DOI: 10.1111/brv.12908] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 01/12/2023]
Abstract
Deuterostomes are the major division of animal life which includes sea stars, acorn worms, and humans, among a wide variety of ecologically and morphologically disparate taxa. However, their early evolution is poorly understood, due in part to their disparity, which makes identifying commonalities difficult, as well as their relatively poor early fossil record. Here, we review the available morphological, palaeontological, developmental, and molecular data to establish a framework for exploring the origins of this important and enigmatic group. Recent fossil discoveries strongly support a vermiform ancestor to the group Hemichordata, and a fusiform active swimmer as ancestor to Chordata. The diverse and anatomically bewildering variety of forms among the early echinoderms show evidence of both bilateral and radial symmetry. We consider four characteristics most critical for understanding the form and function of the last common ancestor to Deuterostomia: Hox gene expression patterns, larval morphology, the capacity for biomineralization, and the morphology of the pharyngeal region. We posit a deuterostome last common ancestor with a similar antero-posterior gene regulatory system to that found in modern acorn worms and cephalochordates, a simple planktonic larval form, which was later elaborated in the ambulacrarian lineage, the ability to secrete calcium minerals in a limited fashion, and a pharyngeal respiratory region composed of simple pores. This animal was likely to be motile in adult form, as opposed to the sessile origins that have been historically suggested. Recent debates regarding deuterostome monophyly as well as the wide array of deuterostome-affiliated problematica further suggest the possibility that those features were not only present in the last common ancestor of Deuterostomia, but potentially in the ur-bilaterian. The morphology and development of the early deuterostomes, therefore, underpin some of the most significant questions in the study of metazoan evolution.
Collapse
Affiliation(s)
- Karma Nanglu
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA
| | - Selina R Cole
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, 10th & Constitution Avenue NW, Washington, DC, 20560, USA.,Sam Noble Museum, University of Oklahoma, 2401 Chautauqua Avenue, Norman, OK, 73072, USA.,School of Geosciences, University of Oklahoma, 100 E Boyd Street, Norman, OK, 73019, USA
| | - David F Wright
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, 10th & Constitution Avenue NW, Washington, DC, 20560, USA.,Sam Noble Museum, University of Oklahoma, 2401 Chautauqua Avenue, Norman, OK, 73072, USA.,School of Geosciences, University of Oklahoma, 100 E Boyd Street, Norman, OK, 73019, USA
| | - Camilla Souto
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, 10th & Constitution Avenue NW, Washington, DC, 20560, USA.,School of Natural Sciences & Mathematics, Stockton University, 101 Vera King Farris Dr, Galloway, NJ, 08205, USA
| |
Collapse
|
25
|
Juravel K, Porras L, Höhna S, Pisani D, Wörheide G. Exploring genome gene content and morphological analysis to test recalcitrant nodes in the animal phylogeny. PLoS One 2023; 18:e0282444. [PMID: 36952565 PMCID: PMC10035847 DOI: 10.1371/journal.pone.0282444] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/14/2023] [Indexed: 03/25/2023] Open
Abstract
An accurate phylogeny of animals is needed to clarify their evolution, ecology, and impact on shaping the biosphere. Although datasets of several hundred thousand amino acids are nowadays routinely used to test phylogenetic hypotheses, key deep nodes in the metazoan tree remain unresolved: the root of animals, the root of Bilateria, and the monophyly of Deuterostomia. Instead of using the standard approach of amino acid datasets, we performed analyses of newly assembled genome gene content and morphological datasets to investigate these recalcitrant nodes in the phylogeny of animals. We explored extensively the choices for assembling the genome gene content dataset and model choices of morphological analyses. Our results are robust to these choices and provide additional insights into the early evolution of animals, they are consistent with sponges as the sister group of all the other animals, the worm-like bilaterian lineage Xenacoelomorpha as the sister group of the other Bilateria, and tentatively support monophyletic Deuterostomia.
Collapse
Affiliation(s)
- Ksenia Juravel
- Department of Earth and Environmental Sciences, Paleontology & Geobiology, Ludwig-Maximilians-Universität München, München, Germany
| | - Luis Porras
- Department of Earth and Environmental Sciences, Paleontology & Geobiology, Ludwig-Maximilians-Universität München, München, Germany
| | - Sebastian Höhna
- Department of Earth and Environmental Sciences, Paleontology & Geobiology, Ludwig-Maximilians-Universität München, München, Germany
- GeoBio-Center, Ludwig-Maximilians-Universität München, München, Germany
| | - Davide Pisani
- Bristol Palaeobiology Group, School of Biological Sciences and School of Earth Sciences, University of Bristol, Bristol, United Kingdom
| | - Gert Wörheide
- Department of Earth and Environmental Sciences, Paleontology & Geobiology, Ludwig-Maximilians-Universität München, München, Germany
- GeoBio-Center, Ludwig-Maximilians-Universität München, München, Germany
- SNSB-Bayerische Staatssammlung für Paläontologie und Geologie, München, Germany
| |
Collapse
|
26
|
Duruz J, Sprecher SG. Evolution and Origins of Nervous Systems. Neurogenetics 2023. [DOI: 10.1007/978-3-031-07793-7_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
27
|
Mulhair PO, McCarthy CGP, Siu-Ting K, Creevey CJ, O'Connell MJ. Filtering artifactual signal increases support for Xenacoelomorpha and Ambulacraria sister relationship in the animal tree of life. Curr Biol 2022; 32:5180-5188.e3. [PMID: 36356574 DOI: 10.1016/j.cub.2022.10.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 08/09/2022] [Accepted: 10/18/2022] [Indexed: 11/10/2022]
Abstract
Conflicting studies place a group of bilaterian invertebrates containing xenoturbellids and acoelomorphs, the Xenacoelomorpha, as either the primary emerging bilaterian phylum1,2,3,4,5,6 or within Deuterostomia, sister to Ambulacraria.7,8,9,10,11 Although their placement as sister to the rest of Bilateria supports relatively simple morphology in the ancestral bilaterian, their alternative placement within Deuterostomia suggests a morphologically complex ancestral bilaterian along with extensive loss of major phenotypic traits in the Xenacoelomorpha. Recent studies have questioned whether Deuterostomia should be considered monophyletic at all.10,12,13 Hidden paralogy and poor phylogenetic signal present a major challenge for reconstructing species phylogenies.14,15,16,17,18 Here, we assess whether these issues have contributed to the conflict over the placement of Xenacoelomorpha. We reanalyzed published datasets, enriching for orthogroups whose gene trees support well-resolved clans elsewhere in the animal tree.16 We find that most genes in previously published datasets violate incontestable clans, suggesting that hidden paralogy and low phylogenetic signal affect the ability to reconstruct branching patterns at deep nodes in the animal tree. We demonstrate that removing orthogroups that cannot recapitulate incontestable relationships alters the final topology that is inferred, while simultaneously improving the fit of the model to the data. We discover increased, but ultimately not conclusive, support for the existence of Xenambulacraria in our set of filtered orthogroups. At a time when we are progressing toward sequencing all life on the planet, we argue that long-standing contentious issues in the tree of life will be resolved using smaller amounts of better quality data that can be modeled adequately.19.
Collapse
Affiliation(s)
- Peter O Mulhair
- Computational and Molecular Evolutionary Biology Research Group, School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; Computational and Molecular Evolutionary Biology Research Group, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Charley G P McCarthy
- Computational and Molecular Evolutionary Biology Research Group, School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Karen Siu-Ting
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast BT9 5DL, UK
| | - Christopher J Creevey
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast BT9 5DL, UK
| | - Mary J O'Connell
- Computational and Molecular Evolutionary Biology Research Group, School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; Computational and Molecular Evolutionary Biology Research Group, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
28
|
Gaunt SJ. Seeking Sense in the Hox Gene Cluster. J Dev Biol 2022; 10:48. [PMID: 36412642 PMCID: PMC9680502 DOI: 10.3390/jdb10040048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/31/2022] [Accepted: 11/09/2022] [Indexed: 11/18/2022] Open
Abstract
The Hox gene cluster, responsible for patterning of the head-tail axis, is an ancestral feature of all bilaterally symmetrical animals (the Bilateria) that remains intact in a wide range of species. We can say that the Hox cluster evolved successfully only once since it is commonly the same in all groups, with labial-like genes at one end of the cluster expressed in the anterior embryo, and Abd-B-like genes at the other end of the cluster expressed posteriorly. This review attempts to make sense of the Hox gene cluster and to address the following questions. How did the Hox cluster form in the protostome-deuterostome last common ancestor, and why was this with a particular head-tail polarity? Why is gene clustering usually maintained? Why is there collinearity between the order of genes along the cluster and the positions of their expressions along the embryo? Why do the Hox gene expression domains overlap along the embryo? Why have vertebrates duplicated the Hox cluster? Why do Hox gene knockouts typically result in anterior homeotic transformations? How do animals adapt their Hox clusters to evolve new structural patterns along the head-tail axis?
Collapse
Affiliation(s)
- Stephen J Gaunt
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| |
Collapse
|
29
|
Martynov AV, Korshunova TA. Renewed perspectives on the sedentary-pelagic last common bilaterian ancestor. CONTRIBUTIONS TO ZOOLOGY 2022. [DOI: 10.1163/18759866-bja10034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
Various evaluations of the last common bilaterian ancestor (lcba) currently suggest that it resembled either a microscopic, non-segmented motile adult; or, on the contrary, a complex segmented adult motile urbilaterian. These fundamental inconsistencies remain largely unexplained. A majority of multidisciplinary data regarding sedentary adult ancestral bilaterian organization is overlooked. The sedentary-pelagic model is supported now by a number of novel developmental, paleontological and molecular phylogenetic data: (1) data in support of sedentary sponges, in the adult stage, as sister to all other Metazoa; (2) a similarity of molecular developmental pathways in both adults and larvae across sedentary sponges, cnidarians, and bilaterians; (3) a cnidarian-bilaterian relationship, including a unique sharing of a bona fide Hox-gene cluster, of which the evolutionary appearance does not connect directly to a bilaterian motile organization; (4) the presence of sedentary and tube-dwelling representatives of the main bilaterian clades in the early Cambrian; (5) an absence of definite taxonomic attribution of Ediacaran taxa reconstructed as motile to any true bilaterian phyla; (6) a similarity of tube morphology (and the clear presence of a protoconch-like apical structure of the Ediacaran sedentary Cloudinidae) among shells of the early Cambrian, and later true bilaterians, such as semi-sedentary hyoliths and motile molluscs; (7) recent data that provide growing evidence for a complex urbilaterian, despite a continuous molecular phylogenetic controversy. The present review compares the main existing models and reconciles the sedentary model of an urbilaterian and the model of a larva-like lcba with a unified sedentary(adult)-pelagic(larva) model of the lcba.
Collapse
Affiliation(s)
- Alexander V. Martynov
- Zoological Museum, Moscow State University, Bolshaya Nikitskaya Str. 6, 125009 Moscow, Russia,
| | - Tatiana A. Korshunova
- Koltzov Institute of Developmental Biology RAS, 26 Vavilova Str., 119334 Moscow, Russia
| |
Collapse
|
30
|
Ceccolini F, Cianferoni F. A replacement name for Pelophila Dörjes, 1968 (Xenacoelomorpha: Acoela, Convolutidae). GRAELLSIA 2022. [DOI: 10.3989/graellsia.2022.v78.339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Se ha detectado un homónimo más moderno entre los Acoela (Xenacoelomorpha, Acoelomorpha) y se propone el siguiente nombre sustitutivo: Acoelopelophila Ceccolini & Cianferoni nom. nov. pro Pelophila Dörjes, 1968 nec Dejean, 1821. Se da también la siguiente nueva combinación: Acoelopelophila lutheri (Westblad, 1946) comb. nov.
Collapse
|
31
|
Srivastava M. Studying development, regeneration, stem cells, and more in the acoel Hofstenia miamia. Curr Top Dev Biol 2022; 147:153-172. [PMID: 35337448 DOI: 10.1016/bs.ctdb.2022.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Acoel worms represent an enigmatic lineage of animals (Acoelomorpha) that has danced around the tree of animal life. Morphology-based classification placed them as flatworms (Phylum Platyhelminthes), with much of their biology being interpreted as a variation on what is observed in better-studied members of that phylum. However, molecular phylogenies suggest that acoels belong to a clade (Xenacoelomorpha) that could be a sister group to other animals with bilateral symmetry (Bilateria) or could belong within deuterostomes, closely related to a group that includes sea stars (Ambulacraria). This change in phylogenetic position has led to renewed interest in the biology of acoels, which can now offer insights into the evolution of many bilaterian traits. The acoel Hofstenia miamia has emerged as a powerful new research organism that enables mechanistic studies of xenacoelomorph biology, especially of developmental and regenerative processes. This article explains the motivation for developing Hofstenia as a new model system, describes Hofstenia biology, highlights the tools and resources that make Hofstenia a good research organism, and considers the questions that Hofstenia is well-positioned to answer. Finally, looking to the future, this article serves as an invitation to new and established scientists to join the growing community of researchers studying this exciting model system.
Collapse
Affiliation(s)
- Mansi Srivastava
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, United States.
| |
Collapse
|
32
|
Glossiphoniid leeches as a touchstone for studies of development in clitellate annelids. Curr Top Dev Biol 2022; 147:433-468. [PMID: 35337458 DOI: 10.1016/bs.ctdb.2021.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
My goals in this chapter are to share my enthusiasm for studying the biology of leeches, to place this work in context by presenting my rationale for studying non-traditional biological models in general, and to sample just three of the questions that intrigue me in leech biology, namely segmentation, genome evolution and neuronal fate specification. I first became excited about the idea of using leeches as a subject of investigation as an undergraduate in 1970 and have been engaged in this work since I arrived at Berkeley as a postdoc in 1976, intending to study leech neurobiology. Both my research interests and the rationale for the work have expanded greatly since then. What follows is a fragmentary personal and historical account-the interested reader may find more comprehensive treatments elsewhere (Kuo et al., 2020; Shankland & Savage, 1997; Shain, 2009; Weisblat & Huang, 2001; Weisblat & Kuo, 2009, 2014; Weisblat & Winchell, 2020).
Collapse
|
33
|
Nässel DR, Wu SF. Cholecystokinin/sulfakinin peptide signaling: conserved roles at the intersection between feeding, mating and aggression. Cell Mol Life Sci 2022; 79:188. [PMID: 35286508 PMCID: PMC8921109 DOI: 10.1007/s00018-022-04214-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 12/27/2022]
Abstract
Neuropeptides are the most diverse messenger molecules in metazoans and are involved in regulation of daily physiology and a wide array of behaviors. Some neuropeptides and their cognate receptors are structurally and functionally well conserved over evolution in bilaterian animals. Among these are peptides related to gastrin and cholecystokinin (CCK). In mammals, CCK is produced by intestinal endocrine cells and brain neurons, and regulates gall bladder contractions, pancreatic enzyme secretion, gut functions, satiety and food intake. Additionally, CCK plays important roles in neuromodulation in several brain circuits that regulate reward, anxiety, aggression and sexual behavior. In invertebrates, CCK-type peptides (sulfakinins, SKs) are, with a few exceptions, produced by brain neurons only. Common among invertebrates is that SKs mediate satiety and regulate food ingestion by a variety of mechanisms. Also regulation of secretion of digestive enzymes has been reported. Studies of the genetically tractable fly Drosophila have advanced our understanding of SK signaling mechanisms in regulation of satiety and feeding, but also in gustatory sensitivity, locomotor activity, aggression and reproductive behavior. A set of eight SK-expressing brain neurons plays important roles in regulation of these competing behaviors. In males, they integrate internal state and external stimuli to diminish sex drive and increase aggression. The same neurons also diminish sugar gustation, induce satiety and reduce feeding. Although several functional roles of CCK/SK signaling appear conserved between Drosophila and mammals, available data suggest that the underlying mechanisms differ.
Collapse
Affiliation(s)
- Dick R Nässel
- Department of Zoology, Stockholm University, 10691, Stockholm, Sweden.
| | - Shun-Fan Wu
- College of Plant Protection/Laboratory of Bio-Interactions and Crop Health, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
34
|
Asai M, Miyazawa H, Yanase R, Inaba K, Nakano H. A New Species of Acoela Possessing a Middorsal Appendage with a Possible Sensory Function. Zoolog Sci 2022; 39:147-156. [DOI: 10.2108/zs210058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 11/03/2021] [Indexed: 11/17/2022]
Affiliation(s)
- Masashi Asai
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1, Shimoda, Shizuoka, 415-0025, Japan
| | - Hideyuki Miyazawa
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1, Shimoda, Shizuoka, 415-0025, Japan
| | - Ryuji Yanase
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1, Shimoda, Shizuoka, 415-0025, Japan
| | - Kazuo Inaba
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1, Shimoda, Shizuoka, 415-0025, Japan
| | - Hiroaki Nakano
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1, Shimoda, Shizuoka, 415-0025, Japan
| |
Collapse
|
35
|
Abstract
In his prominent book Regeneration (1901), T.H. Morgan's collected and synthesized theoretical and experimental findings from a diverse array of regenerating animals and plants. Through his endeavor, he introduced a new way to study regeneration and its evolution, setting a conceptual framework that still guides today's research and that embraces the contemporary evolutionary and developmental approaches.In the first part of the chapter, we summarize Morgan's major tenets and use it as a narrative thread to advocate interpreting regenerative biology through the theoretical tools provided by evolution and developmental biology, but also to highlight potential caveats resulting from the rapid proliferation of comparative studies and from the expansion of experimental laboratory models. In the second part, we review some experimental evo-devo approaches, highlighting their power and some of their interpretative dangers. Finally, in order to further understand the evolution of regenerative abilities, we portray an adaptive perspective on the evolution of regeneration and suggest a framework for investigating the adaptive nature of regeneration.
Collapse
Affiliation(s)
| | - Alexandre Alié
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Villefranche-sur-Mer, France
| | - Stefano Tiozzo
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Villefranche-sur-Mer, France.
| |
Collapse
|
36
|
Fromm B, Høye E, Domanska D, Zhong X, Aparicio-Puerta E, Ovchinnikov V, Umu SU, Chabot PJ, Kang W, Aslanzadeh M, Tarbier M, Mármol-Sánchez E, Urgese G, Johansen M, Hovig E, Hackenberg M, Friedländer MR, Peterson KJ. MirGeneDB 2.1: toward a complete sampling of all major animal phyla. Nucleic Acids Res 2021; 50:D204-D210. [PMID: 34850127 PMCID: PMC8728216 DOI: 10.1093/nar/gkab1101] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/20/2021] [Accepted: 11/23/2021] [Indexed: 12/03/2022] Open
Abstract
We describe an update of MirGeneDB, the manually curated microRNA gene database. Adhering to uniform and consistent criteria for microRNA annotation and nomenclature, we substantially expanded MirGeneDB with 30 additional species representing previously missing metazoan phyla such as sponges, jellyfish, rotifers and flatworms. MirGeneDB 2.1 now consists of 75 species spanning over ∼800 million years of animal evolution, and contains a total number of 16 670 microRNAs from 1549 families. Over 6000 microRNAs were added in this update using ∼550 datasets with ∼7.5 billion sequencing reads. By adding new phylogenetically important species, especially those relevant for the study of whole genome duplication events, and through updating evolutionary nodes of origin for many families and genes, we were able to substantially refine our nomenclature system. All changes are traceable in the specifically developed MirGeneDB version tracker. The performance of read-pages is improved and microRNA expression matrices for all tissues and species are now also downloadable. Altogether, this update represents a significant step toward a complete sampling of all major metazoan phyla, and a widely needed foundation for comparative microRNA genomics and transcriptomics studies. MirGeneDB 2.1 is part of RNAcentral and Elixir Norway, publicly and freely available at http://www.mirgenedb.org/.
Collapse
Affiliation(s)
- Bastian Fromm
- The Arctic University Museum of Norway, UiT- The Arctic University of Norway, Tromsø, Norway.,Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Eirik Høye
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Diana Domanska
- Center for Bioinformatics, Department of Informatics, University of Oslo, Oslo, Norway.,Department of Pathology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Xiangfu Zhong
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, Sweden
| | - Ernesto Aparicio-Puerta
- Department of Genetics, Faculty of Sciences, MNAT Excellence Unit, University of Granada, Granada, Spain.,Biotechnology Institute, CIBM, Granada, Spain.,Biohealth Research Institute (ibs.GRANADA), University Hospitals of Granada, University of Granada, Granada, Spain
| | - Vladimir Ovchinnikov
- Computational and Molecular Evolutionary Biology Research Group, School of life sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
| | - Sinan U Umu
- Department of Research, Cancer Registry of Norway, Oslo, Norway
| | - Peter J Chabot
- Department of Biological Sciences, Dartmouth College, Hanover, USA
| | - Wenjing Kang
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.,Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Solna, Sweden
| | - Morteza Aslanzadeh
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Marcel Tarbier
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.,Science for Life Laboratory, Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Solna, Sweden
| | - Emilio Mármol-Sánchez
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.,Centre for Palaeogenetics, Stockholm, Sweden
| | | | - Morten Johansen
- Center for Bioinformatics, Department of Informatics, University of Oslo, Oslo, Norway
| | - Eivind Hovig
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.,Center for Bioinformatics, Department of Informatics, University of Oslo, Oslo, Norway
| | - Michael Hackenberg
- Department of Genetics, Faculty of Sciences, MNAT Excellence Unit, University of Granada, Granada, Spain.,Biotechnology Institute, CIBM, Granada, Spain.,Biohealth Research Institute (ibs.GRANADA), University Hospitals of Granada, University of Granada, Granada, Spain
| | - Marc R Friedländer
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Kevin J Peterson
- Department of Biological Sciences, Dartmouth College, Hanover, USA
| |
Collapse
|
37
|
Moroz LL, Nikitin MA, Poličar PG, Kohn AB, Romanova DY. Evolution of glutamatergic signaling and synapses. Neuropharmacology 2021; 199:108740. [PMID: 34343611 PMCID: PMC9233959 DOI: 10.1016/j.neuropharm.2021.108740] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/13/2022]
Abstract
Glutamate (Glu) is the primary excitatory transmitter in the mammalian brain. But, we know little about the evolutionary history of this adaptation, including the selection of l-glutamate as a signaling molecule in the first place. Here, we used comparative metabolomics and genomic data to reconstruct the genealogy of glutamatergic signaling. The origin of Glu-mediated communications might be traced to primordial nitrogen and carbon metabolic pathways. The versatile chemistry of L-Glu placed this molecule at the crossroad of cellular biochemistry as one of the most abundant metabolites. From there, innovations multiplied. Many stress factors or injuries could increase extracellular glutamate concentration, which led to the development of modular molecular systems for its rapid sensing in bacteria and archaea. More than 20 evolutionarily distinct families of ionotropic glutamate receptors (iGluRs) have been identified in eukaryotes. The domain compositions of iGluRs correlate with the origins of multicellularity in eukaryotes. Although L-Glu was recruited as a neuro-muscular transmitter in the early-branching metazoans, it was predominantly a non-neuronal messenger, with a possibility that glutamatergic synapses evolved more than once. Furthermore, the molecular secretory complexity of glutamatergic synapses in invertebrates (e.g., Aplysia) can exceed their vertebrate counterparts. Comparative genomics also revealed 15+ subfamilies of iGluRs across Metazoa. However, most of this ancestral diversity had been lost in the vertebrate lineage, preserving AMPA, Kainate, Delta, and NMDA receptors. The widespread expansion of glutamate synapses in the cortical areas might be associated with the enhanced metabolic demands of the complex brain and compartmentalization of Glu signaling within modular neuronal ensembles.
Collapse
Affiliation(s)
- Leonid L Moroz
- Whitney Laboratory for Marine Biosciences, University of Florida, St. Augustine, FL, 32080, USA; Departments of Neuroscience and McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA.
| | - Mikhail A Nikitin
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119991, Russia; Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, 127994, Russia
| | - Pavlin G Poličar
- Whitney Laboratory for Marine Biosciences, University of Florida, St. Augustine, FL, 32080, USA; Faculty of Computer and Information Science, University of Ljubljana, SI-1000, Ljubljana, Slovenia
| | - Andrea B Kohn
- Whitney Laboratory for Marine Biosciences, University of Florida, St. Augustine, FL, 32080, USA
| | - Daria Y Romanova
- Cellular Neurobiology of Learning Lab, Institute of Higher Nervous Activity and Neurophysiology, Moscow, 117485, Russia.
| |
Collapse
|
38
|
Atherton S, Jondelius U. Phylogenetic assessment and systematic revision of the acoel family Isodiametridae. Zool J Linn Soc 2021. [DOI: 10.1093/zoolinnean/zlab050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Isodiametridae is a large family of Acoela with 22 nominal genera and nearly 100 species. Unfortunately, systematics of Isodiametridae, as it stands, is highly problematic. Genera frequently have been proposed without reference to an explicit phylogenetic hypothesis, such that the current classification system holds little or no predictive power. Many taxa do not fit with the family diagnosis, and it is increasingly difficult to determine in which taxon a new species should be described. Herein, we reconstruct the phylogenetic relationships of Acoela with a focus on Isodiametridae using both previously published and new ribosomal and mitochondrial sequence data. Our dataset comprises sequences from 45 species representing 16 of the 22 isodiametrid genera. Our results recovered a well-supported Isodiametridae, but provided further evidence that the family and several genera within require revision. We have updated the classification system of Isodiametridae to be consistent with its phylogeny, including the transference of Otocelis to Otocelididae, Postaphanostoma and Faerlea to Mecynostomidae and Alluna to Actinoposthiidae. Six other genera are placed in synonymy. We review the morphological taxonomy and provide an identification key of the genera in the revised family.
Collapse
Affiliation(s)
- Sarah Atherton
- Department of Zoology, Naturhistoriska riksmuseet, Stockholm, Sweden
| | - Ulf Jondelius
- Department of Zoology, Naturhistoriska riksmuseet, Stockholm, Sweden
- Department of Zoology, Systematics and Evolution, Stockholm Universitet, Stockholm, Sweden
| |
Collapse
|
39
|
Duruz J, Kaltenrieder C, Ladurner P, Bruggmann R, Martìnez P, Sprecher SG. Acoel Single-Cell Transcriptomics: Cell Type Analysis of a Deep Branching Bilaterian. Mol Biol Evol 2021; 38:1888-1904. [PMID: 33355655 PMCID: PMC8097308 DOI: 10.1093/molbev/msaa333] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Bilaterian animals display a wide variety of cell types, organized into defined anatomical structures and organ systems, which are mostly absent in prebilaterian animals. Xenacoelomorpha are an early-branching bilaterian phylum displaying an apparently relatively simple anatomical organization that have greatly diverged from other bilaterian clades. In this study, we use whole-body single-cell transcriptomics on the acoel Isodiametra pulchra to identify and characterize different cell types. Our analysis identifies the existence of ten major cell type categories in acoels all contributing to main biological functions of the organism: metabolism, locomotion and movements, behavior, defense, and development. Interestingly, although most cell clusters express core fate markers shared with other animal clades, we also describe a surprisingly large number of clade-specific marker genes, suggesting the emergence of clade-specific common molecular machineries functioning in distinct cell types. Together, these results provide novel insight into the evolution of bilaterian cell types and open the door to a better understanding of the origins of the bilaterian body plan and their constitutive cell types.
Collapse
Affiliation(s)
- Jules Duruz
- Department of Biology, Institute of Zoology, University of Fribourg, Fribourg, Switzerland
| | - Cyrielle Kaltenrieder
- Department of Biology, Institute of Zoology, University of Fribourg, Fribourg, Switzerland
| | - Peter Ladurner
- Institute of Zoology and Center of Molecular Bioscience Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Rémy Bruggmann
- Institute of Cell Biology, University of Bern, Bern, Switzerland.,Interfaculty Bioinformatics Unit, University of Bern, Bern, Switzerland
| | - Pedro Martìnez
- Departament de Genètica, Universitat de Barcelona, Barcelona, Catalonia, Spain.,Institut Català de Recerca i Estudis Avancats (ICREA), Passeig de Lluís Companys, Barcelona, Spain
| | - Simon G Sprecher
- Department of Biology, Institute of Zoology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
40
|
Kimura JO, Ricci L, Srivastava M. Embryonic development in the acoel Hofstenia miamia. Development 2021; 148:270768. [PMID: 34196362 DOI: 10.1242/dev.188656] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/20/2021] [Indexed: 01/03/2023]
Abstract
Acoels are marine worms that belong to the phylum Xenacoelomorpha, a deep-diverging bilaterian lineage. This makes acoels an attractive system for studying the evolution of major bilaterian traits. Thus far, acoel development has not been described in detail at the morphological and transcriptomic levels in a species in which functional genetic studies are possible. We present a set of developmental landmarks for embryogenesis in the highly regenerative acoel Hofstenia miamia. We generated a developmental staging atlas from zygote to hatched worm based on gross morphology, with accompanying bulk transcriptome data. Hofstenia embryos undergo a stereotyped cleavage program known as duet cleavage, which results in two large vegetal pole 'macromeres' and numerous small animal pole 'micromeres'. These macromeres become internalized as micromere progeny proliferate and move vegetally. We also noted a second, previously undescribed, cell-internalization event at the animal pole, following which we detected major body axes and tissues corresponding to all three germ layers. Our work on Hofstenia embryos provides a resource for mechanistic investigations of acoel development, which will yield insights into the evolution of bilaterian development and regeneration.
Collapse
Affiliation(s)
- Julian O Kimura
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - Lorenzo Ricci
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - Mansi Srivastava
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
41
|
Ramirez AN, Loubet-Senear K, Srivastava M. A Regulatory Program for Initiation of Wnt Signaling during Posterior Regeneration. Cell Rep 2021; 32:108098. [PMID: 32877680 DOI: 10.1016/j.celrep.2020.108098] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/03/2020] [Accepted: 08/11/2020] [Indexed: 12/17/2022] Open
Abstract
Whole-body regeneration relies on the re-establishment of body axes for patterning of new tissue. Wnt signaling is required to correctly regenerate tissues along the primary axis in many animals. However, the causal mechanisms that first launch Wnt signaling during regeneration are poorly characterized. We use the acoel worm Hofstenia miamia to identify processes that initiate Wnt signaling during posterior regeneration and find that the ligand wnt-3 is upregulated early in posterior-facing wounds. Functional studies reveal that wnt-3 is required to regenerate posterior tissues. wnt-3 is expressed in stem cells, it is needed for their proliferation, and its function is stem cell dependent. Chromatin accessibility data reveal that wnt-3 activation requires input from the general wound response. In addition, the expression of a different Wnt ligand, wnt-1, before amputation is required for wound-induced activation of wnt-3. Our study establishes a gene regulatory network for initiating Wnt signaling in posterior tissues in a bilaterian.
Collapse
Affiliation(s)
- Alyson N Ramirez
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Kaitlyn Loubet-Senear
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Mansi Srivastava
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
42
|
Hernandez AM, Ryan JF. Six-state Amino Acid Recoding is not an Effective Strategy to Offset Compositional Heterogeneity and Saturation in Phylogenetic Analyses. Syst Biol 2021; 70:1200-1212. [PMID: 33837789 PMCID: PMC8513762 DOI: 10.1093/sysbio/syab027] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 01/25/2023] Open
Abstract
Six-state amino acid recoding strategies are commonly applied to combat the effects of compositional heterogeneity and substitution saturation in phylogenetic analyses. While these methods have been endorsed from a theoretical perspective, their performance has never been extensively tested. Here, we test the effectiveness of six-state recoding approaches by comparing the performance of analyses on recoded and non-recoded data sets that have been simulated under gradients of compositional heterogeneity or saturation. In our simulation analyses, non-recoding approaches consistently outperform six-state recoding approaches. Our results suggest that six-state recoding strategies are not effective in the face of high saturation. Furthermore, while recoding strategies do buffer the effects of compositional heterogeneity, the loss of information that accompanies six-state recoding outweighs its benefits. In addition, we evaluate recoding schemes with 9, 12, 15, and 18 states and show that these consistently outperform six-state recoding. Our analyses of other recoding schemes suggest that under conditions of very high compositional heterogeneity, it may be advantageous to apply recoding using more than six states, but we caution that applying any recoding should include sufficient justification. Our results have important implications for the more than 90 published papers that have incorporated six-state recoding, many of which have significant bearing on relationships across the tree of life. [Compositional heterogeneity; Dayhoff 6-state recoding; S&R 6-state recoding; six-state amino acid recoding; substitution saturation.]
Collapse
Affiliation(s)
- Alexandra M Hernandez
- Whitney Laboratory for Marine Bioscience, 9505 Ocean Shore Boulevard, St. Augustine, FL, 32080, USA.,Department of Biology, University of Florida, 220 Bartram Hall, P.O. Box 118525, Gainesville, FL, 32611, USA
| | - Joseph F Ryan
- Whitney Laboratory for Marine Bioscience, 9505 Ocean Shore Boulevard, St. Augustine, FL, 32080, USA.,Department of Biology, University of Florida, 220 Bartram Hall, P.O. Box 118525, Gainesville, FL, 32611, USA
| |
Collapse
|
43
|
Structural analysis of the statocyst and nervous system of Praesagittifera naikaiensis, an acoel flatworm, during development after hatching. ZOOMORPHOLOGY 2021. [DOI: 10.1007/s00435-021-00521-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
44
|
Evidence for sponges as sister to all other animals from partitioned phylogenomics with mixture models and recoding. Nat Commun 2021; 12:1783. [PMID: 33741994 PMCID: PMC7979703 DOI: 10.1038/s41467-021-22074-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 02/24/2021] [Indexed: 11/08/2022] Open
Abstract
Resolving the relationships between the major lineages in the animal tree of life is necessary to understand the origin and evolution of key animal traits. Sponges, characterized by their simple body plan, were traditionally considered the sister group of all other animal lineages, implying a gradual increase in animal complexity from unicellularity to complex multicellularity. However, the availability of genomic data has sparked tremendous controversy as some phylogenomic studies support comb jellies taking this position, requiring secondary loss or independent origins of complex traits. Here we show that incorporating site-heterogeneous mixture models and recoding into partitioned phylogenomics alleviates systematic errors that hamper commonly-applied phylogenetic models. Testing on real datasets, we show a great improvement in model-fit that attenuates branching artefacts induced by systematic error. We reanalyse key datasets and show that partitioned phylogenomics does not support comb jellies as sister to other animals at either the supermatrix or partition-specific level.
Collapse
|
45
|
Praher D, Zimmermann B, Dnyansagar R, Miller DJ, Moya A, Modepalli V, Fridrich A, Sher D, Friis-Møller L, Sundberg P, Fôret S, Ashby R, Moran Y, Technau U. Conservation and turnover of miRNAs and their highly complementary targets in early branching animals. Proc Biol Sci 2021; 288:20203169. [PMID: 33622129 PMCID: PMC7935066 DOI: 10.1098/rspb.2020.3169] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 01/25/2021] [Indexed: 12/16/2022] Open
Abstract
MicroRNAs (miRNAs) are crucial post-transcriptional regulators that have been extensively studied in Bilateria, a group comprising the majority of extant animals, where more than 30 conserved miRNA families have been identified. By contrast, bilaterian miRNA targets are largely not conserved. Cnidaria is the sister group to Bilateria and thus provides a unique opportunity for comparative studies. Strikingly, like their plant counterparts, cnidarian miRNAs have been shown to predominantly have highly complementary targets leading to transcript cleavage by Argonaute proteins. Here, we assess the conservation of miRNAs and their targets by small RNA sequencing followed by miRNA target prediction in eight species of Anthozoa (sea anemones and corals), the earliest-branching cnidarian class. We uncover dozens of novel miRNAs but only a few conserved ones. Further, given their high complementarity, we were able to computationally identify miRNA targets in each species. Besides evidence for conservation of specific miRNA target sites, which are maintained between sea anemones and stony corals across 500 Myr of evolution, we also find indications for convergent evolution of target regulation by different miRNAs. Our data indicate that cnidarians have only few conserved miRNAs and corresponding targets, despite their high complementarity, suggesting a high evolutionary turnover.
Collapse
Affiliation(s)
- Daniela Praher
- Department of Neurosciences and Developmental Biology; Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Bob Zimmermann
- Department of Neurosciences and Developmental Biology; Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Rohit Dnyansagar
- Department of Neurosciences and Developmental Biology; Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - David J. Miller
- Department of Molecular and Cell Biology, Comparative Genomics Centre, James Cook University, Townsville, Queensland, Australia
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
| | - Aurelie Moya
- Department of Molecular and Cell Biology, Comparative Genomics Centre, James Cook University, Townsville, Queensland, Australia
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
| | - Vengamanaidu Modepalli
- Department of Ecology, Evolution and Behavior; Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- The Marine Biological Association of the United Kingdom, Citadel Hill, Plymouth, UK
| | - Arie Fridrich
- Department of Ecology, Evolution and Behavior; Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Daniel Sher
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Lene Friis-Møller
- Danish Shellfish Centre, DTU Aqua, Technical University of Denmark, Lyngby, Denmark
| | - Per Sundberg
- Department of Zoology, University of Gothenburg, Gothenburg, Sweden
| | - Sylvain Fôret
- Health Research Institute, Faculty of Education, Science, Technology and Mathematics, University of Canberra, Canberra, Australia
| | - Regan Ashby
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, Australia
| | - Yehu Moran
- Department of Ecology, Evolution and Behavior; Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ulrich Technau
- Department of Neurosciences and Developmental Biology; Faculty of Life Sciences, University of Vienna, Vienna, Austria
| |
Collapse
|
46
|
Hikosaka-Katayama T, Watanuki N, Niiho S, Hikosaka A. Geographical Distribution and Genetic Diversity of Praesagittifera naikaiensis (Acoelomorpha) in the Seto Inland Sea, Japan. Zoolog Sci 2021; 37:314-322. [PMID: 32729709 DOI: 10.2108/zs190119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 03/25/2020] [Indexed: 11/17/2022]
Abstract
Acoel flatworms are simple bilaterians that lack digestive lumens and coelomic cavities. Although they are a significant taxon for evaluating the evolution of metazoans, suitable species for biological experiments are not available in Japan. We recently focused on Praesagittifera naikaiensis, which inhabits the sandy shores of intertidal zones in the Seto Inland Sea in Japan, as a candidate for a representative acoel species to be used in experiments. However, reports on its distribution range remain limited. Here, we surveyed the habitats of P. naikaiensis on 108 beaches along the Seto Inland Sea. Praesagittifera naikaiensis is reported here from 37 sites (six previously known and 31 newly discovered sites) spread over a wide area of the Seto Inland Sea, from Awaji Island in Hyogo Prefecture to Fukuoka Prefecture (364 km direct distance). Based on the mitochondrial cytochrome oxidase subunit I (COI) gene haplotypes, we evaluated the genetic diversity of 145 individuals collected from 33 sites. Out of 42 COI haplotypes, 13 haplotypes were shared by multiple individuals. The most frequent haplotype was observed in 67 individuals collected from 31 sites. Eight other haplotypes were detected at geographically distant locations (maximum of 299 km direct distance). Multiple haplotypes were found at 32 sites. These results demonstrate that sufficient genetic flow exists among P. naikaiensis populations throughout the Seto Inland Sea. Molecular phylogenetic analysis of the COI haplotypes of P. naikaiensis revealed that all specimens were grouped into one clade. The genetic homogeneity of the animals in this area favors their use as an experimental animal.
Collapse
Affiliation(s)
- Tomoe Hikosaka-Katayama
- Center for Gene Science, Hiroshima University, 1-4-2 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - Nanami Watanuki
- Faculty of Integrated Arts and Sciences, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| | - Saki Niiho
- Faculty of Integrated Arts and Sciences, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| | - Akira Hikosaka
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan,
| |
Collapse
|
47
|
Abstract
Hemichordates, along with echinoderms and chordates, belong to the lineage of bilaterians called the deuterostomes. Their phylogenetic position as an outgroup to chordates provides an opportunity to investigate the evolutionary origins of the chordate body plan and reconstruct ancestral deuterostome characters. The body plans of the hemichordates and chordates are organizationally divergent making anatomical comparisons very challenging. The developmental underpinnings of animal body plans are often more conservative than the body plans they regulate, and offer a novel data set for making comparisons between morphologically divergent body architectures. Here I review the hemichordate developmental data generated over the past 20 years that further test hypotheses of proposed morphological affinities between the two taxa, but also compare the conserved anteroposterior, dorsoventral axial patterning programs and germ layer specification programs. These data provide an opportunity to determine which developmental programs are ancestral deuterostome or bilaterian innovations, and which ones occurred in stem chordates or vertebrates representing developmental novelties of the chordate body plan.
Collapse
|
48
|
Phylogenomic analyses recover a clade of large-bodied decapodiform cephalopods. Mol Phylogenet Evol 2020; 156:107038. [PMID: 33285289 DOI: 10.1016/j.ympev.2020.107038] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 10/30/2020] [Accepted: 12/01/2020] [Indexed: 12/14/2022]
Abstract
Phylogenetic relationships among the squids and cuttlefishes (Cephalopoda:Decapodiformes) have resisted clarification for decades, despite multiple analyses of morphological, molecular and combined data sets. More recently, analyses of complete mitochondrial genomes and hundreds of nuclear loci have yielded similarly ambiguous results. In this study, we re-evaluate hypotheses of decapodiform relationships by increasing taxonomic breadth and utilizing higher-quality genome and transcriptome data for several taxa. We also employ analytical approaches to (1) identify contamination in transcriptome data, (2) better assess model adequacy, and (3) account for potential biases. Using this larger data set, we consistently recover a clade comprising Myopsida (closed-eye squid), Sepiida (cuttlefishes), and Oegopsida (open-eye squid) that is sister to a Sepiolida (bobtail and bottletail squid) clade. Idiosepiida (pygmy squid) is consistently recovered as the sister group to all sampled decapodiform lineages. Further, a weighted Shimodaira-Hasegawa test applied to one of our larger data matrices rejects all alternatives to these ordinal-level relationships. At present, available nuclear genome-scale data support nested clades of relatively large-bodied decapodiform cephalopods to the exclusion of pygmy squids, but improved taxon sampling and additional genomic data will be needed to test these novel hypotheses rigorously.
Collapse
|
49
|
Kapli P, Telford MJ. Topology-dependent asymmetry in systematic errors affects phylogenetic placement of Ctenophora and Xenacoelomorpha. SCIENCE ADVANCES 2020; 6:eabc5162. [PMID: 33310849 PMCID: PMC7732190 DOI: 10.1126/sciadv.abc5162] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 10/27/2020] [Indexed: 05/21/2023]
Abstract
The evolutionary relationships of two animal phyla, Ctenophora and Xenacoelomorpha, have proved highly contentious. Ctenophora have been proposed as the most distant relatives of all other animals (Ctenophora-first rather than the traditional Porifera-first). Xenacoelomorpha may be primitively simple relatives of all other bilaterally symmetrical animals (Nephrozoa) or simplified relatives of echinoderms and hemichordates (Xenambulacraria). In both cases, one of the alternative topologies must be a result of errors in tree reconstruction. Here, using empirical data and simulations, we show that the Ctenophora-first and Nephrozoa topologies (but not Porifera-first and Ambulacraria topologies) are strongly supported by analyses affected by systematic errors. Accommodating this finding suggests that empirical studies supporting Ctenophora-first and Nephrozoa trees are likely to be explained by systematic error. This would imply that the alternative Porifera-first and Xenambulacraria topologies, which are supported by analyses designed to minimize systematic error, are the most credible current alternatives.
Collapse
Affiliation(s)
- Paschalia Kapli
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Maximilian J Telford
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
50
|
Larouche‐Bilodeau C, Guilbeault‐Mayers X, Cameron CB. Filter feeding, deviations from bilateral symmetry, developmental noise, and heterochrony of hemichordate and cephalochordate gills. Ecol Evol 2020; 10:13544-13554. [PMID: 33304558 PMCID: PMC7713955 DOI: 10.1002/ece3.6962] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/01/2020] [Accepted: 10/05/2020] [Indexed: 12/02/2022] Open
Abstract
We measured gill slit fluctuating asymmetry (FA), a measure of developmental noise, in adults of three invertebrate deuterostomes with different feeding modes: the cephalochordate Branchiostoma floridae (an obligate filter feeder), the enteropneusts Protoglossus graveolens (a facultative filter feeder/deposit feeder) and Saccoglossus bromophenolosus (a deposit feeder). FA was substantially and significantly low in B. floridae and P. graveolens and high in S. bromophenolosus. Our results suggest that the gills of species that have experienced a relaxation of the filter feeding trait exhibit elevated FA. We found that the timing of development of the secondary collagenous gill bars, compared to the primary gill bars, was highly variable in P. graveolens but not the other two species, demonstrating an independence of gill FA from gill bar heterochrony. We also discovered the occasional ectopic expression of a second set of paired gills posterior to the first set of gills in the enteropneusts and that these were more common in S. bromophenolosus. Moreover, our finding that gill slits in enteropneusts exhibit bilateral symmetry suggests that the left-sidedness of larval cephalochordate gills, and the directional asymmetry of Cambrian stylophoran echinoderm fossil gills, evolved independently from a bilaterally symmetrical ancestor.
Collapse
|