1
|
Kikuta H, Takeda S, Akada R, Hoshida H. Genome-wide screening reveals repression by nuclear exosome as a prerequisite for intron-mediated enhancement in Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2025; 1868:195089. [PMID: 40220860 DOI: 10.1016/j.bbagrm.2025.195089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/12/2025] [Accepted: 04/06/2025] [Indexed: 04/14/2025]
Abstract
Introns can enhance gene expression, a phenomenon called intron-mediated enhancement (IME). Previously proposed IME mechanisms do not sufficiently explain the variability in enhancement levels, suggesting that IME mechanism has not been fully understood. A comprehensive screening of genes involved in IME can provide valuable insights. Recently, using a luciferase coding sequence (yCLuc), we showed that IME functions by relieving repression rather than simply enhancing expression. The expression of yCLuc is repressed by the specific nucleotide sequence UCUU, and adding an intron relieves this repression in the yeast Saccharomyces cerevisiae. Herein, genome-wide screenings were conducted using S. cerevisiae knockout strain libraries to identify genes involved in IME. For screening, yCLuc was expressed with and without an intron in knockout strains. Consequently, CDC73, a regulator of RNA polymerase II (RNAPII), was identified as essential for enhancement. Additionally, 23 genes specifically involved in the repression were identified. These 23 genes are related to nuclear exosomes, RNA modification, RNAPII regulation, the nuclear pore complex, ribosomes, and chromatin modification. Among these, genes associated with nuclear exosomes, which degrade various RNAs in the nucleus, showed the largest impact on expression. The RNA sequence UCUU has been reported as a target for RNA degradation by nuclear exosomes. These findings suggested that UCUU-containing coding sequences are primarily repressed via RNA degradation by the nuclear exosome through UCUU recognition, with this repression being relieved by the presence of an intron.
Collapse
Affiliation(s)
- Hiroki Kikuta
- Division of Applied Chemistry, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 2-16-1 Tokiwadai, Ube 755-8611, Japan
| | - Shunya Takeda
- Division of Applied Chemistry, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 2-16-1 Tokiwadai, Ube 755-8611, Japan
| | - Rinji Akada
- Division of Applied Chemistry, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 2-16-1 Tokiwadai, Ube 755-8611, Japan; Research Center for Thermotolerant Microbial Resources, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8315, Japan; Yamaguchi University Biomedical Engineering Center, 2-16-1 Tokiwadai, Ube 755-8611, Japan
| | - Hisashi Hoshida
- Division of Applied Chemistry, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 2-16-1 Tokiwadai, Ube 755-8611, Japan; Research Center for Thermotolerant Microbial Resources, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8315, Japan; Yamaguchi University Biomedical Engineering Center, 2-16-1 Tokiwadai, Ube 755-8611, Japan.
| |
Collapse
|
2
|
Skamagki M, Zhang C, Hacisuleyman E, Galleti G, Wu C, Vinagolu RK, Cha H, Ata D, Kim J, Weiskittel T, Diop M, Aung T, Del Latto M, Kim AS, Li Z, Miele M, Zhao R, Tang LH, Hendrickson RC, Romesser PB, Smith JJ, Giannakakou P, Darnell RB, Bott MJ, Li H, Kim K. Aging-dependent dysregulation of EXOSC2 is maintained in cancer as a dependency. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.04.647279. [PMID: 40236131 PMCID: PMC11996493 DOI: 10.1101/2025.04.04.647279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Reprogramming of aged donor tissue cells into induced pluripotent stem cells (A-iPSC) preserved the epigenetic memory of aged-donor tissue, defined as genomic instability and poor tissue differentiation in our previous study. The unbalanced expression of RNA exosome subunits affects the RNA degradation complex function and is associated with geriatric diseases including premature aging and cancer progression. We hypothesized that the age-dependent progressive subtle dysregulation of EXOSC2 (exosome component 2) causes the aging traits (abnormal cell cycle and poor tissue differentiation). We used embryonic stem cells as a tool to study EXOSC2 function as the aging trait epigenetic memory determined in A-iPSC because these aging traits could not be studied in senesced aged cells or immortalized cancer cells. We found that the regulatory subunit of PP2A phosphatase, PPP2R5E, is a key target of EXOSC2 and this regulation is preserved in stem cells and cancer.
Collapse
|
3
|
Bressman ZJ, Corbett AH, Ghalei H. Built differently or defective: can RNA exosomopathies cause ribosome heterogeneity? Philos Trans R Soc Lond B Biol Sci 2025; 380:20230382. [PMID: 40045779 PMCID: PMC11883433 DOI: 10.1098/rstb.2023.0382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/02/2024] [Accepted: 09/20/2024] [Indexed: 03/09/2025] Open
Abstract
The RNA exosome is an essential, evolutionarily conserved ribonuclease required for processing and degradation of key cellular RNAs. The complex maintains RNA homeostasis within every cell by ensuring the proper maturation, quality control and turnover of various RNA species including rRNAs. A growing list of diseases, collectively termed RNA exosomopathies, are caused by mutations in genes encoding structural subunits of the RNA exosome complex. RNA exosomopathies often result in tissue-specific defects, particularly manifesting as neurological disorders, which is intriguing given the ubiquitous functions and expression of the RNA exosome. One such ubiquitous, essential function of the RNA exosome is its involvement in ribosome biogenesis. In this review, we discuss the established connections between the RNA exosome and ribosome biogenesis, exploring the potential mechanisms through which RNA exosomopathies could influence ribosome heterogeneity, leading to aberrant translation and pathogenesis. We highlight the critical need for research in this area that can aid in understanding the complex aetiology of RNA exosomopathies and the future development of therapeutic strategies to mitigate pathology.This article is part of the discussion meeting issue 'Ribosome diversity and its impact on protein synthesis, development and disease'.
Collapse
Affiliation(s)
- Zachary J. Bressman
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA30322, USA
- Department of Biology, Emory College of Arts and Sciences, Atlanta, GA30322, USA
- Graduate Program in Biochemistry, Cell, and Developmental Biology, Emory University, Atlanta, GA30322, USA
| | - Anita H. Corbett
- Department of Biology, Emory College of Arts and Sciences, Atlanta, GA30322, USA
| | - Homa Ghalei
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA30322, USA
| |
Collapse
|
4
|
Imamura K, Garland W, Schmid M, Jakobsen L, Sato K, Rouvière JO, Jakobsen KP, Burlacu E, Lopez ML, Lykke-Andersen S, Andersen JS, Jensen TH. A functional connection between the Microprocessor and a variant NEXT complex. Mol Cell 2024; 84:4158-4174.e6. [PMID: 39515294 DOI: 10.1016/j.molcel.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/26/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024]
Abstract
In mammalian cells, primary miRNAs are cleaved at their hairpin structures by the Microprocessor complex, whose core is composed of DROSHA and DGCR8. Here, we show that 5' flanking regions, resulting from Microprocessor cleavage, are targeted by the RNA exosome in mouse embryonic stem cells (mESCs). This is facilitated by a physical link between DGCR8 and the nuclear exosome targeting (NEXT) component ZCCHC8. Surprisingly, however, both biochemical and mutagenesis studies demonstrate that a variant NEXT complex, containing the RNA helicase MTR4 but devoid of the RNA-binding protein RBM7, is the active entity. This Microprocessor-NEXT variant also targets stem-loop-containing RNAs expressed from other genomic regions, such as enhancers. By contrast, Microprocessor does not contribute to the turnover of less structured NEXT substrates. Our results therefore demonstrate that MTR4-ZCCHC8 can link to either RBM7 or DGCR8/DROSHA to target different RNA substrates depending on their structural context.
Collapse
Affiliation(s)
- Katsutoshi Imamura
- Department of Molecular Biology and Genetics, Universitetsbyen 81, Aarhus University, Aarhus, Denmark; Department of Systems Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - William Garland
- Department of Molecular Biology and Genetics, Universitetsbyen 81, Aarhus University, Aarhus, Denmark
| | - Manfred Schmid
- Department of Molecular Biology and Genetics, Universitetsbyen 81, Aarhus University, Aarhus, Denmark
| | - Lis Jakobsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, Odense, Denmark
| | - Kengo Sato
- School of Life Science and Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Jérôme O Rouvière
- Department of Molecular Biology and Genetics, Universitetsbyen 81, Aarhus University, Aarhus, Denmark
| | - Kristoffer Pors Jakobsen
- Department of Molecular Biology and Genetics, Universitetsbyen 81, Aarhus University, Aarhus, Denmark
| | - Elena Burlacu
- Department of Molecular Biology and Genetics, Universitetsbyen 81, Aarhus University, Aarhus, Denmark
| | - Marta Loureiro Lopez
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, Odense, Denmark
| | - Søren Lykke-Andersen
- Department of Molecular Biology and Genetics, Universitetsbyen 81, Aarhus University, Aarhus, Denmark
| | - Jens S Andersen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, Odense, Denmark
| | - Torben Heick Jensen
- Department of Molecular Biology and Genetics, Universitetsbyen 81, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
5
|
Yin Z, Ma L, Tian X, Sun Q, Zhang C, Wang Y, Miao Y, Xue X, Wang Y, Wang J, Zhang X, Hou X. Downregulation of the m 6A reader YTHDC2 upregulates exosome content in lung adenocarcinoma via inhibiting IFIT and OAS family members. J Biol Chem 2024; 300:107783. [PMID: 39303913 PMCID: PMC11736008 DOI: 10.1016/j.jbc.2024.107783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 08/01/2024] [Accepted: 08/28/2024] [Indexed: 09/22/2024] Open
Abstract
N6-Methyladenosine (m6A) is the most prevalent mRNA modification. Its biological function primarily relies on its "Reader" protein, such as YTHDC2. Previous studies have shown that YTHDC2 downregulation is a procarcinogenic phenomenon in lung adenocarcinoma (LUAD). However, further investigation is needed to understand the molecular mechanisms of downstream genes and the associated biological phenomena following YTHDC2 downregulation. Here, we found that YTHDC2 knockout upregulated exosome content in LUAD. Following YTHDC2 knockout, the mRNA levels of OAS family members (OASs) and IFIT family members (IFITs) also decreased; and inhibition of OASs and IFITs could promote exosome content. Several m6A modification sites on the NT domain of OASs and the TPR12 domain of IFITs were found to increase the stability of OASs and IFITs in a YTHDC2-dependent manner. OASs and IFITs affected exosome content through target genes including RAB5A, RAB7, and RAB11A, and three arginine (R) amino acids on IFITs were critical for combination IFITs with targeted RAB mRNAs and subsequent degradation. Simultaneously, OASs degraded targeted RABs through RNAseL. Additionally, mutual bindings between OASs and IFITs were critical for their target gene degradation. Collectively, the above findings might provide a theoretical basis for the treatment of LUAD patients with low YTHDC2 expression.
Collapse
Affiliation(s)
- Zhixin Yin
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lifang Ma
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoting Tian
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi Sun
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Congcong Zhang
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yikun Wang
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yayou Miao
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiangfei Xue
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongjie Wang
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiayi Wang
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xiao Zhang
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xumin Hou
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
6
|
Bao J, Su B, Chen Z, Sun Z, Peng J, Zhao S. A UTP3-dependent nucleolar translocation pathway facilitates pre-rRNA 5'ETS processing. Nucleic Acids Res 2024; 52:9671-9694. [PMID: 39036955 PMCID: PMC11381329 DOI: 10.1093/nar/gkae631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 06/27/2024] [Accepted: 07/09/2024] [Indexed: 07/23/2024] Open
Abstract
The ribosome small subunit (SSU) is assembled by the SSU processome which contains approximately 70 non-ribosomal protein factors. Whilst the biochemical mechanisms of the SSU processome in 18S rRNA processing and maturation have been extensively studied, how SSU processome components enter the nucleolus has yet to be systematically investigated. Here, in examining the nucleolar localization of 50 human SSU processome components, we found that UTP3, together with another 24 proteins, enter the nucleolus autonomously. For the remaining 25 proteins we found that UTP3/SAS10 assists the nucleolar localization of five proteins (MPP10, UTP25, EMG1 and the two UTP-B components UTP12 and UTP13), likely through its interaction with nuclear importin α. This 'ferrying' function of UTP3 was then confirmed as conserved in the zebrafish. We also found that knockdown of human UTP3 impairs cleavage at the A0-site while loss-of-function of either utp3/sas10 or utp13/tbl3 in zebrafish causes the accumulation of aberrantly processed 5'ETS products, which highlights the crucial role of UTP3 in mediating 5'ETS processing. Mechanistically, we found that UTP3 facilitates the degradation of processed 5'ETS by recruiting the RNA exosome component EXOSC10 to the nucleolus. These findings lay the groundwork for studying the mechanism of cytoplasm-to-nucleolus trafficking of SSU processome components.
Collapse
Affiliation(s)
- Jiayang Bao
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Baochun Su
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zheyan Chen
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhaoxiang Sun
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jinrong Peng
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shuyi Zhao
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
7
|
de Amorim JL, Leung SW, Haji-Seyed-Javadi R, Hou Y, Yu DS, Ghalei H, Khoshnevis S, Yao B, Corbett AH. The putative RNA helicase DDX1 associates with the nuclear RNA exosome and modulates RNA/DNA hybrids (R-loops). J Biol Chem 2024; 300:105646. [PMID: 38219817 PMCID: PMC10875230 DOI: 10.1016/j.jbc.2024.105646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 12/19/2023] [Accepted: 12/23/2023] [Indexed: 01/16/2024] Open
Abstract
The RNA exosome is a ribonuclease complex that mediates both RNA processing and degradation. This complex is evolutionarily conserved, ubiquitously expressed, and required for fundamental cellular functions, including rRNA processing. The RNA exosome plays roles in regulating gene expression and protecting the genome, including modulating the accumulation of RNA-DNA hybrids (R-loops). The function of the RNA exosome is facilitated by cofactors, such as the RNA helicase MTR4, which binds/remodels RNAs. Recently, missense mutations in RNA exosome subunit genes have been linked to neurological diseases. One possibility to explain why missense mutations in genes encoding RNA exosome subunits lead to neurological diseases is that the complex may interact with cell- or tissue-specific cofactors that are impacted by these changes. To begin addressing this question, we performed immunoprecipitation of the RNA exosome subunit, EXOSC3, in a neuronal cell line (N2A), followed by proteomic analyses to identify novel interactors. We identified the putative RNA helicase, DDX1, as an interactor. DDX1 plays roles in double-strand break repair, rRNA processing, and R-loop modulation. To explore the functional connections between EXOSC3 and DDX1, we examined the interaction following double-strand breaks and analyzed changes in R-loops in N2A cells depleted for EXOSC3 or DDX1 by DNA/RNA immunoprecipitation followed by sequencing. We find that EXOSC3 interaction with DDX1 is decreased in the presence of DNA damage and that loss of EXOSC3 or DDX1 alters R-loops. These results suggest EXOSC3 and DDX1 interact during events of cellular homeostasis and potentially suppress unscrupulous expression of genes promoting neuronal projection.
Collapse
Affiliation(s)
- Julia L de Amorim
- Department of Biology, Emory College of Arts and Sciences, Atlanta, Georgia, USA; Graduate Program in Biochemistry, Cell, and Development Biology, Emory University, Atlanta, Georgia, USA
| | - Sara W Leung
- Department of Biology, Emory College of Arts and Sciences, Atlanta, Georgia, USA
| | - Ramona Haji-Seyed-Javadi
- Department of Radiation Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA; Graduate Program in Genetics and Molecular Biology Graduate Program, Emory University, Atlanta, Georgia, USA
| | - Yingzi Hou
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - David S Yu
- Department of Radiation Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Homa Ghalei
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Sohail Khoshnevis
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Bing Yao
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Anita H Corbett
- Department of Biology, Emory College of Arts and Sciences, Atlanta, Georgia, USA.
| |
Collapse
|
8
|
Filippopoulou C, Thomé CC, Perdikari S, Ntini E, Simos G, Bohnsack KE, Chachami G. Hypoxia-driven deSUMOylation of EXOSC10 promotes adaptive changes in the transcriptome profile. Cell Mol Life Sci 2024; 81:58. [PMID: 38279024 PMCID: PMC10817850 DOI: 10.1007/s00018-023-05035-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/12/2023] [Accepted: 11/06/2023] [Indexed: 01/28/2024]
Abstract
Reduced oxygen availability (hypoxia) triggers adaptive cellular responses via hypoxia-inducible factor (HIF)-dependent transcriptional activation. Adaptation to hypoxia also involves transcription-independent processes like post-translational modifications; however, these mechanisms are poorly characterized. Investigating the involvement of protein SUMOylation in response to hypoxia, we discovered that hypoxia strongly decreases the SUMOylation of Exosome subunit 10 (EXOSC10), the catalytic subunit of the RNA exosome, in an HIF-independent manner. EXOSC10 is a multifunctional exoribonuclease enriched in the nucleolus that mediates the processing and degradation of various RNA species. We demonstrate that the ubiquitin-specific protease 36 (USP36) SUMOylates EXOSC10 and we reveal SUMO1/sentrin-specific peptidase 3 (SENP3) as the enzyme-mediating deSUMOylation of EXOSC10. Under hypoxia, EXOSC10 dissociates from USP36 and translocates from the nucleolus to the nucleoplasm concomitant with its deSUMOylation. Loss of EXOSC10 SUMOylation does not detectably affect rRNA maturation but affects the mRNA transcriptome by modulating the expression levels of hypoxia-related genes. Our data suggest that dynamic modulation of EXOSC10 SUMOylation and localization under hypoxia regulates the RNA degradation machinery to facilitate cellular adaptation to low oxygen conditions.
Collapse
Affiliation(s)
- Chrysa Filippopoulou
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Biopolis, 41500, Larissa, Greece
| | - Chairini C Thomé
- Department of Molecular Biology, University Medical Center Göttingen, 37073, Göttingen, Germany
| | - Sofia Perdikari
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas (FORTH), 70013, Heraklion, Greece
| | - Evgenia Ntini
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas (FORTH), 70013, Heraklion, Greece
| | - George Simos
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Biopolis, 41500, Larissa, Greece
- Gerald Bronfman Department of Oncology, Faculty of Medicine, McGill University, Montreal, Canada
| | - Katherine E Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, 37073, Göttingen, Germany
| | - Georgia Chachami
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Biopolis, 41500, Larissa, Greece.
| |
Collapse
|
9
|
Yim MK, Stuart CJ, Pond MI, van Hoof A, Johnson SJ. Conserved Residues at the Mtr4 C-Terminus Coordinate Helicase Activity and Exosome Interactions. Biochemistry 2024; 63:159-170. [PMID: 38085597 PMCID: PMC10984559 DOI: 10.1021/acs.biochem.3c00401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Mtr4 is an essential RNA helicase involved in nuclear RNA processing and degradation and is a member of the Ski2-like helicase family. Ski2-like helicases share a common core architecture that includes two RecA-like domains, a winged helix, and a helical bundle (HB) domain. In Mtr4, a short C-terminal tail immediately follows the HB domain and is positioned at the interface of the RecA-like domains. The tail ends with a SLYΦ sequence motif that is highly conserved in a subset of Ski2-like helicases. Here, we show that this sequence is critical for Mtr4 function. Mutations in the C-terminus result in decreased RNA unwinding activity. Mtr4 is a key activator of the RNA exosome complex, and mutations in the SLYΦ motif produce a slow growth phenotype when combined with a partial exosome defect in S. cerevisiae, suggesting an important role of the C-terminus of Mtr4 and the RNA exosome. We further demonstrate that C-terminal mutations impair RNA degradation activity by the major RNA exosome nuclease Rrp44 in vitro. These data demonstrate a role for the Mtr4 C-terminus in regulating helicase activity and coordinating Mtr4-exosome interactions.
Collapse
Affiliation(s)
- Matthew K. Yim
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT, 84322, USA
| | - Catherine J. Stuart
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center at Houston, Houston, Texas, 77030, USA
| | - Markell I. Pond
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT, 84322, USA
| | - Ambro van Hoof
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center at Houston, Houston, Texas, 77030, USA
| | - Sean J. Johnson
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT, 84322, USA
| |
Collapse
|
10
|
Krempl C, Lazzaretti D, Sprangers R. A structural biology view on the enzymes involved in eukaryotic mRNA turnover. Biol Chem 2023; 404:1101-1121. [PMID: 37709756 DOI: 10.1515/hsz-2023-0182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/24/2023] [Indexed: 09/16/2023]
Abstract
The cellular environment contains numerous ribonucleases that are dedicated to process mRNA transcripts that have been targeted for degradation. Here, we review the three dimensional structures of the ribonuclease complexes (Pan2-Pan3, Ccr4-Not, Xrn1, exosome) and the mRNA decapping enzymes (Dcp2, DcpS) that are involved in mRNA turnover. Structures of major parts of these proteins have been experimentally determined. These enzymes and factors do not act in isolation, but are embedded in interaction networks which regulate enzyme activity and ensure that the appropriate substrates are recruited. The structural details of the higher order complexes that form can, in part, be accurately deduced from known structural data of sub-complexes. Interestingly, many of the ribonuclease and decapping enzymes have been observed in structurally different conformations. Together with experimental data, this highlights that structural changes are often important for enzyme function. We conclude that the known structural data of mRNA decay factors provide important functional insights, but that static structural data needs to be complemented with information regarding protein motions to complete the picture of how transcripts are turned over. In addition, we highlight multiple aspects that influence mRNA turnover rates, but that have not been structurally characterized so far.
Collapse
Affiliation(s)
- Christina Krempl
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, D-93053 Regensburg, Germany
| | - Daniela Lazzaretti
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, D-93053 Regensburg, Germany
| | - Remco Sprangers
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, D-93053 Regensburg, Germany
| |
Collapse
|
11
|
Schneider C, Bohnsack KE. Caught in the act-Visualizing ribonucleases during eukaryotic ribosome assembly. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1766. [PMID: 36254602 DOI: 10.1002/wrna.1766] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/22/2022] [Accepted: 09/24/2022] [Indexed: 07/20/2023]
Abstract
Ribosomes are essential macromolecular machines responsible for translating the genetic information encoded in mRNAs into proteins. Ribosomes are composed of ribosomal RNAs and proteins (rRNAs and RPs) and the rRNAs fulfill both catalytic and architectural functions. Excision of the mature eukaryotic rRNAs from their precursor transcript is achieved through a complex series of endoribonucleolytic cleavages and exoribonucleolytic processing steps that are precisely coordinated with other aspects of ribosome assembly. Many ribonucleases involved in pre-rRNA processing have been identified and pre-rRNA processing pathways are relatively well defined. However, momentous advances in cryo-electron microscopy have recently enabled structural snapshots of various pre-ribosomal particles from budding yeast (Saccharomyces cerevisiae) and human cells to be captured and, excitingly, these structures not only allow pre-rRNAs to be observed before and after cleavage events, but also enable ribonucleases to be visualized on their target RNAs. These structural views of pre-rRNA processing in action allow a new layer of understanding of rRNA maturation and how it is coordinated with other aspects of ribosome assembly. They illuminate mechanisms of target recognition by the diverse ribonucleases involved and reveal how the cleavage/processing activities of these enzymes are regulated. In this review, we discuss the new insights into pre-rRNA processing gained by structural analyses and the growing understanding of the mechanisms of ribonuclease regulation. This article is categorized under: Translation > Ribosome Biogenesis RNA Processing > rRNA Processing.
Collapse
Affiliation(s)
- Claudia Schneider
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Katherine E Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
12
|
Yuan Y, Mao X, Abubakar YS, Zheng W, Wang Z, Zhou J, Zheng H. Genome-Wide Characterization of the RNA Exosome Complex in Relation to Growth, Development, and Pathogenicity of Fusarium graminearum. Microbiol Spectr 2023; 11:e0505822. [PMID: 37158744 PMCID: PMC10269758 DOI: 10.1128/spectrum.05058-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/14/2023] [Indexed: 05/10/2023] Open
Abstract
The RNA exosome complex is a conserved, multisubunit RNase complex that contributes to the processing and degradation of RNAs in mammalian cells. However, the roles of the RNA exosome in phytopathogenic fungi and how it relates to fungal development and pathogenicity remain unclear. Herein, we identified 12 components of the RNA exosome in the wheat fungal pathogen Fusarium graminearum. Live-cell imaging showed that all the components of the RNA exosome complex are localized in the nucleus. FgEXOSC1 and FgEXOSCA were successfully knocked out; they are both involved in the vegetative growth, sexual reproduction, and pathogenicity of F. graminearum. Moreover, deletion of FgEXOSC1 resulted in abnormal toxisomes, decreased deoxynivalenol (DON) production, and downregulation of the expression levels of DON biosynthesis genes. The RNA-binding domain and N-terminal region of FgExosc1 are required for its normal localization and functions. Transcriptome sequencing (RNA-seq) showed that the disruption of FgEXOSC1 resulted in differential expression of 3,439 genes. Genes involved in processing of noncoding RNA (ncRNA), rRNA and ncRNA metabolism, ribosome biogenesis, and ribonucleoprotein complex biogenesis were significantly upregulated. Furthermore, subcellular localization, green fluorescent protein (GFP) pulldown, and coimmunoprecipitation (co-IP) assays demonstrated that FgExosc1 associates with the other components of the RNA exosome to form the RNA exosome complex in F. graminearum. Deletion of FgEXOSC1 and FgEXOSCA reduced the relative expression of some of the other subunits of the RNA exosome. Deletion of FgEXOSC1 affected the localization of FgExosc4, FgExosc6, and FgExosc7. In summary, our study reveals that the RNA exosome is involved in vegetative growth, sexual reproduction, DON production, and pathogenicity of F. graminearum. IMPORTANCE The RNA exosome complex is the most versatile RNA degradation machinery in eukaryotes. However, little is known about how this complex regulates the development and pathogenicity of plant-pathogenic fungi. In this study, we systematically identified 12 components of the RNA exosome complex in Fusarium head blight fungus Fusarium graminearum and first unveiled their subcellular localizations and established their biological functions in relation to the fungal development and pathogenesis. All the RNA exosome components are localized in the nucleus. FgExosc1 and FgExoscA are both required for the vegetative growth, sexual reproduction, DON production and pathogenicity in F. graminearum. FgExosc1 is involved in ncRNA processing, rRNA and ncRNA metabolism process, ribosome biogenesis and ribonucleoprotein complex biogenesis. FgExosc1 associates with the other components of RNA exosome complex and form the exosome complex in F. graminearum. Our study provides new insights into the role of the RNA exosome in regulating RNA metabolism, which is associated with fungal development and pathogenicity.
Collapse
Affiliation(s)
- Yanping Yuan
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, China
- Fujian Universities Key Laboratory for Plant-Microbe Interaction, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xuzhao Mao
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, China
- Fujian Universities Key Laboratory for Plant-Microbe Interaction, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yakubu Saddeeq Abubakar
- Fujian Universities Key Laboratory for Plant-Microbe Interaction, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria
| | - Wenhui Zheng
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Zonghua Wang
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, China
- Fujian Universities Key Laboratory for Plant-Microbe Interaction, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jie Zhou
- Fujian Universities Key Laboratory for Plant-Microbe Interaction, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Huawei Zheng
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, China
| |
Collapse
|
13
|
de Amorim JL, Leung SW, Haji-Seyed-Javadi R, Hou Y, Yu DS, Ghalei H, Khoshnevis S, Yao B, Corbett AH. The RNA helicase DDX1 associates with the nuclear RNA exosome and modulates R-loops. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.17.537228. [PMID: 37131662 PMCID: PMC10153151 DOI: 10.1101/2023.04.17.537228] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The RNA exosome is a ribonuclease complex that mediates both RNA processing and degradation. This complex is evolutionarily conserved, ubiquitously expressed, and required for fundamental cellular functions, including rRNA processing. The RNA exosome plays roles in regulating gene expression and protecting the genome, including modulating the accumulation of RNA-DNA hybrids (R-loops). The function of the RNA exosome is facilitated by cofactors, such as the RNA helicase MTR4, which binds/remodels RNAs. Recently, missense mutations in RNA exosome subunit genes have been linked to neurological diseases. One possibility to explain why missense mutations in genes encoding RNA exosome subunits lead to neurological diseases is that the complex may interact with cell- or tissue-specific cofactors that are impacted by these changes. To begin addressing this question, we performed immunoprecipitation of the RNA exosome subunit, EXOSC3, in a neuronal cell line (N2A) followed by proteomic analyses to identify novel interactors. We identified the putative RNA helicase, DDX1, as an interactor. DDX1 plays roles in double-strand break repair, rRNA processing, and R-loop modulation. To explore the functional connections between EXOSC3 and DDX1, we examined the interaction following double-strand breaks, and analyzed changes in R-loops in N2A cells depleted for EXOSC3 or DDX1 by DNA/RNA immunoprecipitation followed by sequencing (DRIP-Seq). We find that EXOSC3 interaction with DDX1 is decreased in the presence of DNA damage and that loss of EXOSC3 or DDX1 alters R-loops. These results suggest EXOSC3 and DDX1 interact during events of cellular homeostasis and potentially suppress unscrupulous expression of genes promoting neuronal projection.
Collapse
|
14
|
Ohguchi Y, Ohguchi H. DIS3: The Enigmatic Gene in Multiple Myeloma. Int J Mol Sci 2023; 24:ijms24044079. [PMID: 36835493 PMCID: PMC9958658 DOI: 10.3390/ijms24044079] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/01/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Recent studies have revealed the genetic aberrations involved in the initiation and progression of various cancers, including multiple myeloma (MM), via next-generation sequencing analysis. Notably, DIS3 mutations have been identified in approximately 10% of patients with MM. Moreover, deletions of the long arm of chromosome 13, that includes DIS3, are present in approximately 40% of patients with MM. Regardless of the high incidence of DIS3 mutations and deletions, their contribution to the pathogenesis of MM has not yet been determined. Herein, we summarize the molecular and physiological functions of DIS3, focusing on hematopoiesis, and discuss the characteristics and potential roles of DIS3 mutations in MM. Recent findings highlight the essential roles of DIS3 in RNA homeostasis and normal hematopoiesis and suggest that the reduced activity of DIS3 may be involved in myelomagenesis by increasing genome instability.
Collapse
Affiliation(s)
- Yasuyo Ohguchi
- Division of Disease Epigenetics, Institute of Resource Development and Analysis, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Hiroto Ohguchi
- Division of Disease Epigenetics, Institute of Resource Development and Analysis, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| |
Collapse
|
15
|
Guerra-Slompo E, Cesaro G, Guimarães B, Zanchin N. Dissecting Trypanosoma brucei RRP44 function in the maturation of segmented ribosomal RNA using a regulated genetic complementation system. Nucleic Acids Res 2023; 51:396-419. [PMID: 36610751 PMCID: PMC9841430 DOI: 10.1093/nar/gkac1217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 11/29/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
Trypanosoma brucei belongs to a group of protozoans presenting fragmented large subunit rRNA. Its LSU rRNA equivalent to the 25S/28S rRNA of other eukaryotes is split into six fragments, requiring additional processing for removal of the extra spacer sequences. We have used a genetic complementation strategy to further investigate the T. brucei RRP44 nuclease in pre-rRNA maturation. TbRRP44 contains both a PIN and a RNB domain whose homologues are found in association with the exosome complex. We found that the exonucleolytic activity of the RNB domain as well as the physical presence of the PIN domain are essential for TbRRP44 function, while a catalytic site mutation in the PIN domain has no detectable effect on cell growth. A new endonucleolytic cleavage site in ITS1 was identified. In addition to the 5.8S rRNA 3'-end maturation, TbRRP44 is required for degradation of the excised 5'-ETS and for removal of part of ITS1 during maturation of the 18S rRNA 3'-end. TbRRP44 deficiency leads to accumulation of many LSU intermediate precursors, most of them not detected in control cells. TbRRP44 is also required for U3 snoRNA and spliced leader processing, indicating that TbRRP44 may have a wide role in RNA processing in T. brucei.
Collapse
Affiliation(s)
- Eloise Pavão Guerra-Slompo
- Carlos Chagas Institute, Oswaldo Cruz Foundation, FIOCRUZ, R. Prof. Algacyr Munhoz Mader 3775, 81350-010, Curitiba-PR, Brazil
| | - Giovanna Cesaro
- Carlos Chagas Institute, Oswaldo Cruz Foundation, FIOCRUZ, R. Prof. Algacyr Munhoz Mader 3775, 81350-010, Curitiba-PR, Brazil,Biochemistry Postgraduate Program, Federal University of Paraná, Curitiba-PR, Brazil
| | - Beatriz Gomes Guimarães
- Carlos Chagas Institute, Oswaldo Cruz Foundation, FIOCRUZ, R. Prof. Algacyr Munhoz Mader 3775, 81350-010, Curitiba-PR, Brazil,Biochemistry Postgraduate Program, Federal University of Paraná, Curitiba-PR, Brazil
| | | |
Collapse
|
16
|
Cesaro G, da Soler HT, Guerra-Slompo E, Haouz A, Legrand P, Zanchin N, Guimaraes B. Trypanosoma brucei RRP44: a versatile enzyme for processing structured and non-structured RNA substrates. Nucleic Acids Res 2022; 51:380-395. [PMID: 36583334 PMCID: PMC9841401 DOI: 10.1093/nar/gkac1199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 11/25/2022] [Accepted: 12/21/2022] [Indexed: 12/31/2022] Open
Abstract
Rrp44/Dis3 is a conserved eukaryotic ribonuclease that acts on processing and degradation of nearly all types of RNA. It contains an endo- (PIN) and an exonucleolytic (RNB) domain and, its depletion in model organisms supports its essential function for cell viability. In Trypanosoma brucei, depletion of Rrp44 (TbRRP44) blocks maturation of ribosomal RNA, leading to disruption of ribosome synthesis and inhibition of cell proliferation. We have determined the crystal structure of the exoribonucleolytic module of TbRRP44 in an active conformation, revealing novel details of the catalytic mechanism of the RNB domain. For the first time, the position of the second magnesium involved in the two-metal-ion mechanism was determined for a member of the RNase II family. In vitro, TbRRP44 acts preferentially on non-structured uridine-rich RNA substrates. However, we demonstrated for the first time that both TbRRP44 and its homologue from Saccharomyces cerevisiae can also degrade structured substrates without 3'-end overhang, suggesting that Rrp44/Dis3 ribonucleases may be involved in degradation of a wider panel of RNA than has been assumed. Interestingly, deletion of TbRRP44 PIN domain impairs RNA binding to different extents, depending on the type of substrate.
Collapse
Affiliation(s)
- Giovanna Cesaro
- Carlos Chagas Institute, Oswaldo Cruz Foundation, FIOCRUZ, Curitiba-PR, Brazil,Biochemistry Postgraduate Program, Federal University of Paraná, Curitiba-PR, Brazil
| | | | | | - Ahmed Haouz
- Institut Pasteur, Plate-forme de cristallographie-C2RT, UMR-3528 CNRS, Paris, France
| | | | | | | |
Collapse
|
17
|
Wu S, Tian P, Tan T. CRISPR-Cas13 technology portfolio and alliance with other genetic tools. Biotechnol Adv 2022; 61:108047. [DOI: 10.1016/j.biotechadv.2022.108047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/03/2022] [Accepted: 09/29/2022] [Indexed: 11/02/2022]
|
18
|
MTR4 adaptor PICT1 functions in two distinct steps during pre-rRNA processing. Biochem Biophys Res Commun 2022; 637:203-209. [DOI: 10.1016/j.bbrc.2022.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/08/2022] [Indexed: 11/10/2022]
|
19
|
Fujiwara N, Shigemoto M, Hirayama M, Fujita KI, Seno S, Matsuda H, Nagahama M, Masuda S. MPP6 stimulates both RRP6 and DIS3 to degrade a specified subset of MTR4-sensitive substrates in the human nucleus. Nucleic Acids Res 2022; 50:8779-8806. [PMID: 35902094 PMCID: PMC9410898 DOI: 10.1093/nar/gkac559] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 06/10/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
Recent in vitro reconstitution analyses have proven that the physical interaction between the exosome core and MTR4 helicase, which promotes the exosome activity, is maintained by either MPP6 or RRP6. However, knowledge regarding the function of MPP6 with respect to in vivo exosome activity remains scarce. Here, we demonstrate a facilitative function of MPP6 that composes a specific part of MTR4-dependent substrate decay by the human exosome. Using RNA polymerase II-transcribed poly(A)+ substrate accumulation as an indicator of a perturbed exosome, we found functional redundancy between RRP6 and MPP6 in the decay of these poly(A)+ transcripts. MTR4 binding to the exosome core via MPP6 was essential for MPP6 to exert its redundancy with RRP6. However, at least for the decay of our identified exosome substrates, MTR4 recruitment by MPP6 was not functionally equivalent to recruitment by RRP6. Genome-wide classification of substrates based on their sensitivity to each exosome component revealed that MPP6 deals with a specific range of substrates and highlights the importance of MTR4 for their decay. Considering recent findings of competitive binding to the exosome between auxiliary complexes, our results suggest that the MPP6-incorporated MTR4-exosome complex is one of the multiple alternative complexes rather than the prevailing one.
Collapse
Affiliation(s)
- Naoko Fujiwara
- Graduate School of Biostudies, Kyoto University, Kyoto, Kyoto 606-8502, Japan
| | - Maki Shigemoto
- Graduate School of Biostudies, Kyoto University, Kyoto, Kyoto 606-8502, Japan
| | - Mizuki Hirayama
- Graduate School of Biostudies, Kyoto University, Kyoto, Kyoto 606-8502, Japan
| | - Ken-Ichi Fujita
- Graduate School of Biostudies, Kyoto University, Kyoto, Kyoto 606-8502, Japan.,Division of Gene Expression Mechanism, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Shigeto Seno
- Graduate School of Information Science and Technology, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hideo Matsuda
- Graduate School of Information Science and Technology, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masami Nagahama
- Laboratory of Molecular and Cellular Biochemistry, Meiji Pharmaceutical University, Kiyose, Tokyo 204-8588, Japan
| | - Seiji Masuda
- Graduate School of Biostudies, Kyoto University, Kyoto, Kyoto 606-8502, Japan.,Department of Food Science and Nutrition, Faculty of Agriculture Kindai University, Nara, Nara 631-8505, Japan.,Agricultural Technology and Innovation Research Institute, Kindai University, Nara, Nara 631-8505, Japan.,Antiaging center, Kindai University, Higashiosaka, Osaka 577-8502, Japan
| |
Collapse
|
20
|
Puno MR, Lima CD. Structural basis for RNA surveillance by the human nuclear exosome targeting (NEXT) complex. Cell 2022; 185:2132-2147.e26. [PMID: 35688134 PMCID: PMC9210550 DOI: 10.1016/j.cell.2022.04.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 03/04/2022] [Accepted: 04/08/2022] [Indexed: 02/07/2023]
Abstract
RNA quality control relies on co-factors and adaptors to identify and prepare substrates for degradation by ribonucleases such as the 3' to 5' ribonucleolytic RNA exosome. Here, we determined cryogenic electron microscopy structures of human nuclear exosome targeting (NEXT) complexes bound to RNA that reveal mechanistic insights to substrate recognition and early steps that precede RNA handover to the exosome. The structures illuminate ZCCHC8 as a scaffold, mediating homodimerization while embracing the MTR4 helicase and flexibly anchoring RBM7 to the helicase core. All three subunits collaborate to bind the RNA, with RBM7 and ZCCHC8 surveying sequences upstream of the 3' end to facilitate RNA capture by MTR4. ZCCHC8 obscures MTR4 surfaces important for RNA binding and extrusion as well as MPP6-dependent recruitment and docking onto the RNA exosome core, interactions that contribute to RNA surveillance by coordinating RNA capture, translocation, and extrusion from the helicase to the exosome for decay.
Collapse
Affiliation(s)
- M Rhyan Puno
- Structural Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Christopher D Lima
- Structural Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Howard Hughes Medical Institute, 1275 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
21
|
Villa T, Porrua O. Pervasive transcription: a controlled risk. FEBS J 2022. [PMID: 35587776 DOI: 10.1111/febs.16530] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/26/2022] [Accepted: 05/17/2022] [Indexed: 11/30/2022]
Abstract
Transcriptome-wide interrogation of eukaryotic genomes has unveiled the pervasive nature of RNA polymerase II transcription. Virtually, any DNA region with an accessible chromatin structure can be transcribed, resulting in a mass production of noncoding RNAs (ncRNAs) with the potential of interfering with gene expression programs. Budding yeast has proved to be a powerful model organism to understand the mechanisms at play to control pervasive transcription and overcome the risks of hazardous disruption of cellular functions. In this review, we focus on the actors and strategies yeasts employ to govern ncRNA production, and we discuss recent findings highlighting the dangers of losing control over pervasive transcription.
Collapse
Affiliation(s)
- Tommaso Villa
- Institut Jacques Monod CNRS, Université de Paris Cité France
| | - Odil Porrua
- Institut Jacques Monod CNRS, Université de Paris Cité France
| |
Collapse
|
22
|
Gerlach P, Garland W, Lingaraju M, Salerno-Kochan A, Bonneau F, Basquin J, Jensen TH, Conti E. Structure and regulation of the nuclear exosome targeting complex guides RNA substrates to the exosome. Mol Cell 2022; 82:2505-2518.e7. [PMID: 35688157 PMCID: PMC9278407 DOI: 10.1016/j.molcel.2022.04.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/07/2022] [Accepted: 04/08/2022] [Indexed: 11/30/2022]
Abstract
In mammalian cells, spurious transcription results in a vast repertoire of unproductive non-coding RNAs, whose deleterious accumulation is prevented by rapid decay. The nuclear exosome targeting (NEXT) complex plays a central role in directing non-functional transcripts to exosome-mediated degradation, but the structural and molecular mechanisms remain enigmatic. Here, we elucidated the architecture of the human NEXT complex, showing that it exists as a dimer of MTR4-ZCCHC8-RBM7 heterotrimers. Dimerization preconfigures the major MTR4-binding region of ZCCHC8 and arranges the two MTR4 helicases opposite to each other, with each protomer able to function on many types of RNAs. In the inactive state of the complex, the 3′ end of an RNA substrate is enclosed in the MTR4 helicase channel by a ZCCHC8 C-terminal gatekeeping domain. The architecture of a NEXT-exosome assembly points to the molecular and regulatory mechanisms with which the NEXT complex guides RNA substrates to the exosome. NEXT homodimerizes through two intertwined ZCCHC8 subunits ZCCHC8 binds MTR4 with both constitutive and regulatory interactions Stable MTR4 arch interactions orient the two helicases in opposite directions Regulatory interactions at the MTR4 helicase domain guide RNA to the exosome
Collapse
Affiliation(s)
- Piotr Gerlach
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, Munich, Germany.
| | - William Garland
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Mahesh Lingaraju
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, Munich, Germany
| | - Anna Salerno-Kochan
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, Munich, Germany
| | - Fabien Bonneau
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, Munich, Germany
| | - Jérôme Basquin
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, Munich, Germany
| | - Torben Heick Jensen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Elena Conti
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, Munich, Germany.
| |
Collapse
|
23
|
Gockert M, Schmid M, Jakobsen L, Jens M, Andersen JS, Jensen TH. Rapid factor depletion highlights intricacies of nucleoplasmic RNA degradation. Nucleic Acids Res 2022; 50:1583-1600. [PMID: 35048984 PMCID: PMC8860595 DOI: 10.1093/nar/gkac001] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 12/13/2021] [Accepted: 01/05/2022] [Indexed: 12/15/2022] Open
Abstract
Turnover of nucleoplasmic transcripts by the mammalian multi-subunit RNA exosome is mediated by two adaptors: the Nuclear EXosome Targeting (NEXT) complex and the Poly(A) tail eXosome Targeting (PAXT) connection. Functional analyses of NEXT and PAXT have largely utilized long-term factor depletion strategies, facilitating the appearance of indirect phenotypes. Here, we rapidly deplete NEXT, PAXT and core exosome components, uncovering the direct consequences of their acute losses. Generally, proteome changes are sparse and largely dominated by co-depletion of other exosome and adaptor subunits, reflecting possible subcomplex compositions. While parallel high-resolution 3′ end sequencing of newly synthesized RNA confirms previously established factor specificities, it concomitantly demonstrates an inflation of long-term depletion datasets by secondary effects. Most strikingly, a general intron degradation phenotype, observed in long-term NEXT depletion samples, is undetectable upon short-term depletion, which instead emphasizes NEXT targeting of snoRNA-hosting introns. Further analysis of these introns uncovers an unusual mode of core exosome-independent RNA decay. Our study highlights the accumulation of RNAs as an indirect result of long-term decay factor depletion, which we speculate is, at least partly, due to the exhaustion of alternative RNA decay pathways.
Collapse
Affiliation(s)
- Maria Gockert
- Department of Molecular Biology and Genetics, Aarhus University, C.F. Møllers Allé 3, Building 1130, 8000 Aarhus C, Denmark
| | - Manfred Schmid
- Department of Molecular Biology and Genetics, Aarhus University, C.F. Møllers Allé 3, Building 1130, 8000 Aarhus C, Denmark
| | - Lis Jakobsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Marvin Jens
- Department of Biology, Massachusetts Institute of Technology, 31 Ames Street, 68-271A, Cambridge, MA 02139-4307, USA
| | - Jens S Andersen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Torben Heick Jensen
- Department of Molecular Biology and Genetics, Aarhus University, C.F. Møllers Allé 3, Building 1130, 8000 Aarhus C, Denmark
| |
Collapse
|
24
|
Moraleva AA, Deryabin AS, Rubtsov YP, Rubtsova MP, Dontsova OA. Eukaryotic Ribosome Biogenesis: The 40S Subunit. Acta Naturae 2022; 14:14-30. [PMID: 35441050 PMCID: PMC9013438 DOI: 10.32607/actanaturae.11540] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 02/02/2022] [Indexed: 11/29/2022] Open
Abstract
The formation of eukaryotic ribosomes is a sequential process of ribosomal precursors maturation in the nucleolus, nucleoplasm, and cytoplasm. Hundreds of ribosomal biogenesis factors ensure the accurate processing and formation of the ribosomal RNAs' tertiary structure, and they interact with ribosomal proteins. Most of what we know about the ribosome assembly has been derived from yeast cell studies, and the mechanisms of ribosome biogenesis in eukaryotes are considered quite conservative. Although the main stages of ribosome biogenesis are similar across different groups of eukaryotes, this process in humans is much more complicated owing to the larger size of the ribosomes and pre-ribosomes and the emergence of regulatory pathways that affect their assembly and function. Many of the factors involved in the biogenesis of human ribosomes have been identified using genome-wide screening based on RNA interference. This review addresses the key aspects of yeast and human ribosome biogenesis, using the 40S subunit as an example. The mechanisms underlying these differences are still not well understood, because, unlike yeast, there are no effective methods for characterizing pre-ribosomal complexes in humans. Understanding the mechanisms of human ribosome assembly would have an incidence on a growing number of genetic diseases (ribosomopathies) caused by mutations in the genes encoding ribosomal proteins and ribosome biogenesis factors. In addition, there is evidence that ribosome assembly is regulated by oncogenic signaling pathways, and that defects in the ribosome biogenesis are linked to the activation of tumor suppressors.
Collapse
Affiliation(s)
- A. A. Moraleva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russia
| | - A. S. Deryabin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russia
| | - Yu. P. Rubtsov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russia
| | - M. P. Rubtsova
- Lomonosov Moscow State University, Faculty of Chemistry, Moscow, 119991 Russia
| | - O. A. Dontsova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russia
- Lomonosov Moscow State University, Faculty of Chemistry, Moscow, 119991 Russia
- Skolkovo Institute of Science and Technology, Moscow, 121205 Russia
| |
Collapse
|
25
|
Mitterer V, Pertschy B. RNA folding and functions of RNA helicases in ribosome biogenesis. RNA Biol 2022; 19:781-810. [PMID: 35678541 PMCID: PMC9196750 DOI: 10.1080/15476286.2022.2079890] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Eukaryotic ribosome biogenesis involves the synthesis of ribosomal RNA (rRNA) and its stepwise folding into the unique structure present in mature ribosomes. rRNA folding starts already co-transcriptionally in the nucleolus and continues when pre-ribosomal particles further maturate in the nucleolus and upon their transit to the nucleoplasm and cytoplasm. While the approximate order of folding of rRNA subdomains is known, especially from cryo-EM structures of pre-ribosomal particles, the actual mechanisms of rRNA folding are less well understood. Both small nucleolar RNAs (snoRNAs) and proteins have been implicated in rRNA folding. snoRNAs hybridize to precursor rRNAs (pre-rRNAs) and thereby prevent premature folding of the respective rRNA elements. Ribosomal proteins (r-proteins) and ribosome assembly factors might have a similar function by binding to rRNA elements and preventing their premature folding. Besides that, a small group of ribosome assembly factors are thought to play a more active role in rRNA folding. In particular, multiple RNA helicases participate in individual ribosome assembly steps, where they are believed to coordinate RNA folding/unfolding events or the release of proteins from the rRNA. In this review, we summarize the current knowledge on mechanisms of RNA folding and on the specific function of the individual RNA helicases involved. As the yeast Saccharomyces cerevisiae is the organism in which ribosome biogenesis and the role of RNA helicases in this process is best studied, we focused our review on insights from this model organism, but also make comparisons to other organisms where applicable.
Collapse
Affiliation(s)
- Valentin Mitterer
- Biochemistry Center, Heidelberg University, Im Neuenheimer Feld 328, Heidelberg, Germany
- BioTechMed-Graz, Graz, Austria
| | - Brigitte Pertschy
- BioTechMed-Graz, Graz, Austria
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, Graz, Austria
| |
Collapse
|
26
|
Ogami K, Suzuki HI. Nuclear RNA Exosome and Pervasive Transcription: Dual Sculptors of Genome Function. Int J Mol Sci 2021; 22:13401. [PMID: 34948199 PMCID: PMC8707817 DOI: 10.3390/ijms222413401] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/10/2021] [Accepted: 12/10/2021] [Indexed: 01/14/2023] Open
Abstract
The genome is pervasively transcribed across various species, yielding numerous non-coding RNAs. As a counterbalance for pervasive transcription, various organisms have a nuclear RNA exosome complex, whose structure is well conserved between yeast and mammalian cells. The RNA exosome not only regulates the processing of stable RNA species, such as rRNAs, tRNAs, small nucleolar RNAs, and small nuclear RNAs, but also plays a central role in RNA surveillance by degrading many unstable RNAs and misprocessed pre-mRNAs. In addition, associated cofactors of RNA exosome direct the exosome to distinct classes of RNA substrates, suggesting divergent and/or multi-layer control of RNA quality in the cell. While the RNA exosome is essential for cell viability and influences various cellular processes, mutations and alterations in the RNA exosome components are linked to the collection of rare diseases and various diseases including cancer, respectively. The present review summarizes the relationships between pervasive transcription and RNA exosome, including evolutionary crosstalk, mechanisms of RNA exosome-mediated RNA surveillance, and physiopathological effects of perturbation of RNA exosome.
Collapse
Affiliation(s)
- Koichi Ogami
- Division of Molecular Oncology, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan;
| | - Hiroshi I. Suzuki
- Division of Molecular Oncology, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan;
- Institute for Glyco-core Research (iGCORE), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| |
Collapse
|
27
|
Nair L, Zhang W, Laffleur B, Jha MK, Lim J, Lee H, Wu L, Alvarez NS, Liu ZP, Munteanu EL, Swayne T, Hanna JH, Ding L, Rothschild G, Basu U. Mechanism of noncoding RNA-associated N 6-methyladenosine recognition by an RNA processing complex during IgH DNA recombination. Mol Cell 2021; 81:3949-3964.e7. [PMID: 34450044 PMCID: PMC8571800 DOI: 10.1016/j.molcel.2021.07.037] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/04/2021] [Accepted: 07/28/2021] [Indexed: 01/13/2023]
Abstract
Immunoglobulin heavy chain (IgH) locus-associated G-rich long noncoding RNA (SμGLT) is important for physiological and pathological B cell DNA recombination. We demonstrate that the METTL3 enzyme-catalyzed N6-methyladenosine (m6A) RNA modification drives recognition and 3' end processing of SμGLT by the RNA exosome, promoting class switch recombination (CSR) and suppressing chromosomal translocations. The recognition is driven by interaction of the MPP6 adaptor protein with nuclear m6A reader YTHDC1. MPP6 and YTHDC1 promote CSR by recruiting AID and the RNA exosome to actively transcribe SμGLT. Direct suppression of m6A modification of SμGLT or of m6A reader YTHDC1 reduces CSR. Moreover, METTL3, an essential gene for B cell development in the bone marrow and germinal center, suppresses IgH-associated aberrant DNA breaks and prevents genomic instability. Taken together, we propose coordinated and central roles for MPP6, m6A modification, and m6A reader proteins in controlling long noncoding RNA processing, DNA recombination, and development in B cells.
Collapse
Affiliation(s)
- Lekha Nair
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Wanwei Zhang
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Brice Laffleur
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Mukesh K Jha
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Junghyun Lim
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Heather Lee
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Department of Rehabilitation and Regenerative Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Lijing Wu
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Nehemiah S Alvarez
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Zhi-Ping Liu
- Department of Biomedical Engineering, School of Control Science and Engineering, Shandong University, Jinan 250061, Shandong, China
| | - Emilia L Munteanu
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Theresa Swayne
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Jacob H Hanna
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Lei Ding
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Department of Rehabilitation and Regenerative Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Gerson Rothschild
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| | - Uttiya Basu
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
28
|
Hojka-Osinska A, Chlebowski A, Grochowska J, Owczarek EP, Affek K, Kłosowska-Kosicka K, Szczesny RJ, Dziembowski A. Landscape of functional interactions of human processive ribonucleases revealed by high-throughput siRNA screenings. iScience 2021; 24:103036. [PMID: 34541468 PMCID: PMC8437785 DOI: 10.1016/j.isci.2021.103036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 06/09/2021] [Accepted: 08/23/2021] [Indexed: 11/24/2022] Open
Abstract
Processive exoribonucleases are executors of RNA decay. In humans, their physical but not functional interactions were thoughtfully investigated. Here we have screened cells deficient in DIS3, XRN2, EXOSC10, DIS3L, and DIS3L2 with a custom siRNA library and determined their genetic interactions (GIs) with diverse pathways of RNA metabolism. We uncovered a complex network of positive interactions that buffer alterations in RNA degradation and reveal reciprocal cooperation with genes involved in transcription, RNA export, and splicing. Further, we evaluated the functional distinctness of nuclear DIS3 and cytoplasmic DIS3L using a library of all known genes associated with RNA metabolism. Our analysis revealed that DIS3 mutation suppresses RNA splicing deficiency, while DIS3L GIs disclose the interplay of cytoplasmic RNA degradation with nuclear RNA processing. Finally, genome-wide DIS3 GI map uncovered relations with genes not directly involved in RNA metabolism, like microtubule organization or regulation of telomerase activity.
Collapse
Affiliation(s)
- Anna Hojka-Osinska
- International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Aleksander Chlebowski
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Joanna Grochowska
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Ewelina P. Owczarek
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Kamila Affek
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, 02-106 Warsaw, Poland
| | | | - Roman J. Szczesny
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Andrzej Dziembowski
- International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, 02-106 Warsaw, Poland
- Department of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| |
Collapse
|
29
|
Novačić A, Šupljika N, Bekavac N, Žunar B, Stuparević I. Interplay of the RNA Exosome Complex and RNA-Binding Protein Ssd1 in Maintaining Cell Wall Stability in Yeast. Microbiol Spectr 2021; 9:e0029521. [PMID: 34259554 PMCID: PMC8552689 DOI: 10.1128/spectrum.00295-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 06/18/2021] [Indexed: 11/20/2022] Open
Abstract
Yeast cell wall stability is important for cell division and survival under stress conditions. The expression of cell-wall-related proteins is regulated by several pathways involving RNA-binding proteins and RNases. The multiprotein RNA exosome complex provides the 3'→5' exoribonuclease activity that is critical for maintaining the stability and integrity of the yeast cell wall under stress conditions such as high temperatures. In this work, we show that the temperature sensitivity of RNA exosome mutants is most pronounced in the W303 genetic background due to the nonfunctional ssd1-d allele. This gene encodes the RNA-binding protein Ssd1, which is involved in the posttranscriptional regulation of cell-wall-related genes. Expression of the functional SSD1-V allele from its native genomic locus or from a centromeric plasmid suppresses the growth defects and aberrant morphology of RNA exosome mutant cells at high temperatures or upon treatment with cell wall stressors. Moreover, combined inactivation of the RNA exosome catalytic subunit Rrp6 and Ssd1 results in a synthetically sick phenotype of cell wall instability, as these proteins may function in parallel pathways (i.e., via different mRNA targets) to maintain cell wall stability. IMPORTANCE Stressful conditions such as high temperatures can compromise cellular integrity and cause bursting. In microorganisms surrounded by a cell wall, such as yeast, the cell wall is the primary shield that protects cells from environmental stress. Therefore, remodeling its structure requires inputs from multiple signaling pathways and regulators. In this work, we identify the interplay of the RNA exosome complex and the RNA-binding protein Ssd1 as an important factor in the yeast cell wall stress response. These proteins operate in independent pathways to support yeast cell wall stability. This work highlights the contribution of RNA-binding proteins in the regulation of yeast cell wall structure, providing new insights into yeast physiology.
Collapse
Affiliation(s)
- Ana Novačić
- Laboratory of Biochemistry, Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Nada Šupljika
- Laboratory of Biochemistry, Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Nikša Bekavac
- Laboratory of Biochemistry, Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Bojan Žunar
- Laboratory of Biochemistry, Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Igor Stuparević
- Laboratory of Biochemistry, Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
30
|
Bayne RA, Jayachandran U, Kasprowicz A, Bresson S, Tollervey D, Wallace EWJ, Cook A. Yeast Ssd1 is a non-enzymatic member of the RNase II family with an alternative RNA recognition site. Nucleic Acids Res 2021; 50:2923-2937. [PMID: 34302485 PMCID: PMC8934651 DOI: 10.1093/nar/gkab615] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 06/07/2021] [Accepted: 07/07/2021] [Indexed: 01/07/2023] Open
Abstract
Ssd1, a conserved fungal RNA-binding protein, is important in stress responses, cell division and virulence. Ssd1 is closely related to Dis3L2 of the RNase II family of nucleases, but lacks catalytic activity and likely suppresses translation of bound mRNAs. Previous studies identified RNA motifs enriched in Ssd1-associated transcripts, yet the sequence requirements for Ssd1 binding are not defined. Here, we identify precise binding sites of Ssd1 on RNA using in vivo cross-linking and cDNA analysis. These sites are enriched in 5' untranslated regions of a subset of mRNAs encoding cell wall proteins. We identified a conserved bipartite motif that binds Ssd1 with high affinity in vitro. Active RNase II enzymes have a characteristic, internal RNA binding path; the Ssd1 crystal structure at 1.9 Å resolution shows that remnants of regulatory sequences block this path. Instead, RNA binding activity has relocated to a conserved patch on the surface of the protein. Structure-guided mutations of this surface prevent Ssd1 from binding RNA in vitro and phenocopy Ssd1 deletion in vivo. These studies provide a new framework for understanding the function of a pleiotropic post-transcriptional regulator of gene expression and give insights into the evolution of regulatory and binding elements in the RNase II family.
Collapse
Affiliation(s)
- Rosemary A Bayne
- Institute of Cell Biology and SynthSys, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Uma Jayachandran
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Aleksandra Kasprowicz
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Stefan Bresson
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - David Tollervey
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Edward W J Wallace
- Correspondence may also be addressed to Edward W.J. Wallace. Tel: +44 131 6513348; Fax: +44 131 6505379;
| | - Atlanta G Cook
- To whom correspondence should be addressed. Tel: +44 131 6504995; Fax: +44 131 6505379;
| |
Collapse
|
31
|
Abula A, Li X, Quan X, Yang T, Liu Y, Guo H, Li T, Ji X. Molecular mechanism of RNase R substrate sensitivity for RNA ribose methylation. Nucleic Acids Res 2021; 49:4738-4749. [PMID: 33788943 PMCID: PMC8096214 DOI: 10.1093/nar/gkab202] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/09/2021] [Accepted: 03/13/2021] [Indexed: 02/01/2023] Open
Abstract
RNA 2′-O-methylation is widely distributed and plays important roles in various cellular processes. Mycoplasma genitalium RNase R (MgR), a prokaryotic member of the RNase II/RNB family, is a 3′-5′ exoribonuclease and is particularly sensitive to RNA 2′-O-methylation. However, how RNase R interacts with various RNA species and exhibits remarkable sensitivity to substrate 2′-O-methyl modifications remains elusive. Here we report high-resolution crystal structures of MgR in apo form and in complex with various RNA substrates. The structural data together with extensive biochemical analysis quantitively illustrate MgR’s ribonuclease activity and significant sensitivity to RNA 2′-O-methylation. Comparison to its related homologs reveals an exquisite mechanism for the recognition and degradation of RNA substrates. Through structural and mutagenesis studies, we identified proline 277 to be responsible for the significant sensitivity of MgR to RNA 2′-O-methylation within the RNase II/RNB family. We also generated several MgR variants with modulated activities. Our work provides a mechanistic understanding of MgR activity that can be harnessed as a powerful RNA analytical tool that will open up a new venue for RNA 2′-O-methylations research in biological and clinical samples.
Collapse
Affiliation(s)
- Abudureyimu Abula
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xiaona Li
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xing Quan
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Tingting Yang
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yue Liu
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Hangtian Guo
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Tinghan Li
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xiaoyun Ji
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.,Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China.,Engineering Research Center of Protein and Peptide Medicine, Ministry of Education, China
| |
Collapse
|
32
|
Ma L, Zhang X, Yu K, Xu X, Chen T, Shi Y, Wang Y, Qiu S, Guo S, Cui J, Miao Y, Tian X, Du L, Yu Y, Xia J, Wang J. Targeting SLC3A2 subunit of system X C- is essential for m 6A reader YTHDC2 to be an endogenous ferroptosis inducer in lung adenocarcinoma. Free Radic Biol Med 2021; 168:25-43. [PMID: 33785413 DOI: 10.1016/j.freeradbiomed.2021.03.023] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/16/2021] [Accepted: 03/20/2021] [Indexed: 12/16/2022]
Abstract
The m6A reader YT521-B homology containing 2 (YTHDC2) has been identified to inhibit lung adenocarcinoma (LUAD) tumorigenesis by suppressing solute carrier 7A11 (SLC7A11)-dependent antioxidant function. SLC7A11 is a major functional subunit of system XC-. Inhibition of system XC- can induce ferroptosis. However, whether suppressing SLC7A11 is sufficient for YTHDC2 to be an endogenous ferroptosis inducer in LUAD is unknown. Here, we found that induction of YTHDC2 to a high level can induce ferroptosis in LUAD cells but not in lung and bronchus epithelial cells. In addition to SLC7A11, solute carrier 3A2 (SLC3A2), another subunit of system XC- was equally important for YTHDC2-induced ferroptosis. YTHDC2 m6A-dependently destabilized Homeo box A13 (HOXA13) mRNA because a potential m6A recognition site was identified within its 3' untranslated region (3'UTR). Interestingly, HOXA13 acted as a transcription factor to stimulate SLC3A2 expression. Thereby, YTHDC2 suppressed SLC3A2 via inhibiting HOXA13 in an m6A-indirect manner. Mouse experiments further confirmed the associations among YTHDC2, SLC3A2 and HOXA13, and demonstrated that SLC3A2 and SLC7A11 were both important for YTHDC2-impaired tumor growth and -induced lipid peroxidation in vivo. Moreover, higher expression of SLC7A11, SLC3A2 and HOXA13 indicate poorer clinical outcome in YTHDC2-suppressed LUAD patients. In conclusion, YTHDC2 is believed to be a powerful endogenous ferroptosis inducer and targeting SLC3A2 subunit of system XC- is essential for this process. Increasing YTHDC2 is an alternative ferroptosis-based therapy to treat LUAD.
Collapse
Affiliation(s)
- Lifang Ma
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China; Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Xiao Zhang
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Keke Yu
- Department of Bio-bank, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Xin Xu
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Tianxiang Chen
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Yi Shi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorder, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Yikun Wang
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Shiyu Qiu
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Susu Guo
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200072, China
| | - Jiangtao Cui
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Yayou Miao
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Xiaoting Tian
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Lutao Du
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, 250033, Shandong province, China
| | - Yongchun Yu
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Jinjing Xia
- Department of Respiratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Jiayi Wang
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China; Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200072, China.
| |
Collapse
|
33
|
Das M, Zattas D, Zinder JC, Wasmuth EV, Henri J, Lima CD. Substrate discrimination and quality control require each catalytic activity of TRAMP and the nuclear RNA exosome. Proc Natl Acad Sci U S A 2021; 118:e2024846118. [PMID: 33782132 PMCID: PMC8040639 DOI: 10.1073/pnas.2024846118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Quality control requires discrimination between functional and aberrant species to selectively target aberrant substrates for destruction. Nuclear RNA quality control in Saccharomyces cerevisiae includes the TRAMP complex that marks RNA for decay via polyadenylation followed by helicase-dependent 3' to 5' degradation by the RNA exosome. Using reconstitution biochemistry, we show that polyadenylation and helicase activities of TRAMP cooperate with processive and distributive exoribonuclease activities of the nuclear RNA exosome to protect stable RNA from degradation while selectively targeting and degrading less stable RNA. Substrate discrimination is lost when the distributive exoribonuclease activity of Rrp6 is inactivated, leading to degradation of stable and unstable RNA species. These data support a proofreading mechanism in which deadenylation by Rrp6 competes with Mtr4-dependent degradation to protect stable RNA while selectively targeting and degrading unstable RNA.
Collapse
Affiliation(s)
- Mom Das
- Structural Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Dimitrios Zattas
- Structural Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - John C Zinder
- Structural Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Tri-Institutional Training Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Elizabeth V Wasmuth
- Structural Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Julien Henri
- Structural Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Christopher D Lima
- Structural Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065;
- HHMI, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| |
Collapse
|
34
|
Frazier MN, Pillon MC, Kocaman S, Gordon J, Stanley RE. Structural overview of macromolecular machines involved in ribosome biogenesis. Curr Opin Struct Biol 2021; 67:51-60. [PMID: 33099228 PMCID: PMC8058114 DOI: 10.1016/j.sbi.2020.09.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 12/17/2022]
Abstract
The production of ribosomes is essential for ensuring the translational capacity of cells. Because of its high energy demand ribosome production is subject to stringent cellular controls. Hundreds of ribosome assembly factors are required to facilitate assembly of nascent ribosome particles with high fidelity. Many ribosome assembly factors organize into macromolecular machines that drive complex steps of the production pathway. Recent advances in structural biology, in particular cryo-EM, have provided detailed information about the structure and function of these higher order enzymatic assemblies. Here, we summarize recent structures revealing molecular insight into these macromolecular machines with an emphasis on the interplay between discrete active sites.
Collapse
Affiliation(s)
- Meredith N Frazier
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Monica C Pillon
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Seda Kocaman
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Jacob Gordon
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Robin E Stanley
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
35
|
Novačić A, Beauvais V, Oskomić M, Štrbac L, Dantec AL, Rahmouni AR, Stuparević I. Yeast RNA exosome activity is necessary for maintaining cell wall stability through proper protein glycosylation. Mol Biol Cell 2021; 32:363-375. [PMID: 33439673 PMCID: PMC8098854 DOI: 10.1091/mbc.e20-08-0544-t] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/25/2020] [Accepted: 01/06/2021] [Indexed: 12/01/2022] Open
Abstract
Nuclear RNA exosome is the main 3'→5' RNA degradation and processing complex in eukaryotic cells and its dysregulation therefore impacts gene expression and viability. In this work we show that RNA exosome activity is necessary for maintaining cell wall stability in yeast Saccharomyces cerevisiae. While the essential RNA exosome catalytic subunit Dis3 provides exoribonuclease catalytic activity, the second catalytic subunit Rrp6 has a noncatalytic role in this process. RNA exosome cofactors Rrp47 and Air1/2 are also involved. RNA exosome mutants undergo osmoremedial cell lysis at high temperature or at physiological temperature upon treatment with cell wall stressors. Finally, we show that a defect in protein glycosylation is a major reason for cell wall instability of RNA exosome mutants. Genes encoding enzymes that act in the early steps of the protein glycosylation pathway are down-regulated at high temperature in cells lacking Rrp6 protein or Dis3 exoribonuclease activity and overexpression of the essential enzyme Psa1, that catalyzes synthesis of the mannosylation precursor, suppresses temperature sensitivity and aberrant morphology of these cells. Furthermore, this defect is connected to a temperature-dependent increase in accumulation of noncoding RNAs transcribed from loci of relevant glycosylation-related genes.
Collapse
Affiliation(s)
- Ana Novačić
- Laboratory of Biochemistry, Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Valentin Beauvais
- Centre de Biophysique Moléculaire, UPR 4301 du CNRS, 45071 Orléans, France
| | - Marina Oskomić
- Laboratory of Biochemistry, Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Lucija Štrbac
- Laboratory of Biochemistry, Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Aurélia Le Dantec
- Centre de Biophysique Moléculaire, UPR 4301 du CNRS, 45071 Orléans, France
| | - A. Rachid Rahmouni
- Centre de Biophysique Moléculaire, UPR 4301 du CNRS, 45071 Orléans, France
| | - Igor Stuparević
- Laboratory of Biochemistry, Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
36
|
Ishida YI, Miyao S, Saito M, Hiraishi N, Nagahama M. Interactome analysis of the Tudor domain-containing protein SPF30 which associates with the MTR4-exosome RNA-decay machinery under the regulation of AAA-ATPase NVL2. Int J Biochem Cell Biol 2021; 132:105919. [PMID: 33422691 DOI: 10.1016/j.biocel.2021.105919] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 12/24/2022]
Abstract
The AAA-ATPase NVL2 associates with an RNA helicase MTR4 and the nuclear RNA exosome in the course of ribosome biogenesis. In our proteomic screen, we had identified a ribosome biogenesis factor WDR74 as a MTR4-interacting partner, whose dissociation is stimulated by the ATP hydrolysis of NVL2. In this study, we report the identification of splicing factor 30 (SPF30), another MTR4-interacting protein with a similar regulatory mechanism. SPF30 is a pre-mRNA splicing factor harboring a Tudor domain in its central region, which regulates various cellular events by binding to dimethylarginine-modified proteins. The interaction between SPF30 and the exosome core is mediated by MTR4 and RRP6, a catalytic component of the nuclear exosome. The N- and C-terminal regions, but not the Tudor domain, of SPF30 are involved in the association with MTR4 and the exosome. The knockdown of SPF30 caused subtle delay in the 12S pre-rRNA processing to mature 5.8S rRNA, even though no obvious effect was observed on the ribosome subunit profile in the cells. Shotgun proteomic analysis to search for SPF30-interacting proteins indicated its role in ribosome biogenesis, pre-mRNA splicing, and box C/D snoRNA biogenesis. These results suggest that SPF30 collaborates with the MTR4-exosome machinery to play a functional role in multiple RNA metabolic pathways, some of which may be regulated by the ATP hydrolysis of NVL2.
Collapse
Affiliation(s)
- Yo-Ichi Ishida
- Laboratory of Molecular and Cellular Biochemistry, Meiji Pharmaceutical University, Kiyose, Tokyo 204-8588, Japan
| | - Sotaro Miyao
- Laboratory of Molecular and Cellular Biochemistry, Meiji Pharmaceutical University, Kiyose, Tokyo 204-8588, Japan
| | - Mitsuaki Saito
- Laboratory of Molecular and Cellular Biochemistry, Meiji Pharmaceutical University, Kiyose, Tokyo 204-8588, Japan
| | - Nobuhiro Hiraishi
- Laboratory of Molecular and Cellular Biochemistry, Meiji Pharmaceutical University, Kiyose, Tokyo 204-8588, Japan
| | - Masami Nagahama
- Laboratory of Molecular and Cellular Biochemistry, Meiji Pharmaceutical University, Kiyose, Tokyo 204-8588, Japan.
| |
Collapse
|
37
|
Fraga de Andrade I, Mehta C, Bresnick EH. Post-transcriptional control of cellular differentiation by the RNA exosome complex. Nucleic Acids Res 2020; 48:11913-11928. [PMID: 33119769 PMCID: PMC7708067 DOI: 10.1093/nar/gkaa883] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/21/2020] [Accepted: 09/30/2020] [Indexed: 12/12/2022] Open
Abstract
Given the complexity of intracellular RNA ensembles and vast phenotypic remodeling intrinsic to cellular differentiation, it is instructive to consider the role of RNA regulatory machinery in controlling differentiation. Dynamic post-transcriptional regulation of protein-coding and non-coding transcripts is vital for establishing and maintaining proteomes that enable or oppose differentiation. By contrast to extensively studied transcriptional mechanisms governing differentiation, many questions remain unanswered regarding the involvement of post-transcriptional mechanisms. Through its catalytic activity to selectively process or degrade RNAs, the RNA exosome complex dictates the levels of RNAs comprising multiple RNA classes, thereby regulating chromatin structure, gene expression and differentiation. Although the RNA exosome would be expected to control diverse biological processes, studies to elucidate its biological functions and how it integrates into, or functions in parallel with, cell type-specific transcriptional mechanisms are in their infancy. Mechanistic analyses have demonstrated that the RNA exosome confers expression of a differentiation regulatory receptor tyrosine kinase, downregulates the telomerase RNA component TERC, confers genomic stability and promotes DNA repair, which have considerable physiological and pathological implications. In this review, we address how a broadly operational RNA regulatory complex interfaces with cell type-specific machinery to control cellular differentiation.
Collapse
Affiliation(s)
- Isabela Fraga de Andrade
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue, 4009 WIMR, Madison, WI 53705, USA
| | - Charu Mehta
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue, 4009 WIMR, Madison, WI 53705, USA
| | - Emery H Bresnick
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue, 4009 WIMR, Madison, WI 53705, USA
| |
Collapse
|
38
|
Lau B, Cheng J, Flemming D, La Venuta G, Berninghausen O, Beckmann R, Hurt E. Structure of the Maturing 90S Pre-ribosome in Association with the RNA Exosome. Mol Cell 2020; 81:293-303.e4. [PMID: 33326748 DOI: 10.1016/j.molcel.2020.11.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/01/2020] [Accepted: 11/04/2020] [Indexed: 12/12/2022]
Abstract
Ribosome assembly is catalyzed by numerous trans-acting factors and coupled with irreversible pre-rRNA processing, driving the pathway toward mature ribosomal subunits. One decisive step early in this progression is removal of the 5' external transcribed spacer (5'-ETS), an RNA extension at the 18S rRNA that is integrated into the huge 90S pre-ribosome structure. Upon endo-nucleolytic cleavage at an internal site, A1, the 5'-ETS is separated from the 18S rRNA and degraded. Here we present biochemical and cryo-electron microscopy analyses that depict the RNA exosome, a major 3'-5' exoribonuclease complex, in a super-complex with the 90S pre-ribosome. The exosome is docked to the 90S through its co-factor Mtr4 helicase, a processive RNA duplex-dismantling helicase, which strategically positions the exosome at the base of 5'-ETS helices H9-H9', which are dislodged in our 90S-exosome structures. These findings suggest a direct role of the exosome in structural remodeling of the 90S pre-ribosome to drive eukaryotic ribosome synthesis.
Collapse
Affiliation(s)
- Benjamin Lau
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Jingdong Cheng
- Gene Center, Department of Biochemistry and Center for Integrated Protein Science Munich (CiPSM), Ludwig-Maximilians-Universität München, Feodor-Lynen-Straße 25, 81377 Munich, Germany
| | - Dirk Flemming
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Giuseppe La Venuta
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Otto Berninghausen
- Gene Center, Department of Biochemistry and Center for Integrated Protein Science Munich (CiPSM), Ludwig-Maximilians-Universität München, Feodor-Lynen-Straße 25, 81377 Munich, Germany
| | - Roland Beckmann
- Gene Center, Department of Biochemistry and Center for Integrated Protein Science Munich (CiPSM), Ludwig-Maximilians-Universität München, Feodor-Lynen-Straße 25, 81377 Munich, Germany.
| | - Ed Hurt
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany.
| |
Collapse
|
39
|
Xie W, Sowemimo I, Hayashi R, Wang J, Burkard TR, Brennecke J, Ameres SL, Patel DJ. Structure-function analysis of microRNA 3'-end trimming by Nibbler. Proc Natl Acad Sci U S A 2020; 117:30370-30379. [PMID: 33199607 PMCID: PMC7720153 DOI: 10.1073/pnas.2018156117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Nibbler (Nbr) is a 3'-to-5' exoribonuclease whose catalytic 3'-end trimming activity impacts microRNA (miRNA) and PIWI-interacting RNA (piRNA) biogenesis. Here, we report on structural and functional studies to decipher the contributions of Nbr's N-terminal domain (NTD) and exonucleolytic domain (EXO) in miRNA 3'-end trimming. We have solved the crystal structures of the NTD core and EXO domains of Nbr, both in the apo-state. The NTD-core domain of Aedes aegypti Nbr adopts a HEAT-like repeat scaffold with basic patches constituting an RNA-binding surface exhibiting a preference for binding double-strand RNA (dsRNA) over single-strand RNA (ssRNA). Structure-guided functional assays in Drosophila S2 cells confirmed a principal role of the NTD in exonucleolytic miRNA trimming, which depends on basic surface patches. Gain-of-function experiments revealed a potential role of the NTD in recruiting Nbr to Argonaute-bound small RNA substrates. The EXO domain of A. aegypti and Drosophila melanogaster Nbr adopt a mixed α/β-scaffold with a deep pocket lined by a DEDDy catalytic cleavage motif. We demonstrate that Nbr's EXO domain exhibits Mn2+-dependent ssRNA-specific 3'-to-5' exoribonuclease activity. Modeling of a 3' terminal Uridine into the catalytic pocket of Nbr EXO indicates that 2'-O-methylation of the 3'-U would result in a steric clash with a tryptophan side chain, suggesting that 2'-O-methylation protects small RNAs from Nbr-mediated trimming. Overall, our data establish that Nbr requires its NTD as a substrate recruitment platform to execute exonucleolytic miRNA maturation, catalyzed by the ribonuclease EXO domain.
Collapse
Affiliation(s)
- Wei Xie
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Ivica Sowemimo
- Institute of Molecular Biotechnology, Vienna BioCenter, 1030 Vienna, Austria
| | - Rippei Hayashi
- Department of Genome Sciences, The John Curtin School of Medical Research, Australian National University, Canberra 2601, Australia
| | - Juncheng Wang
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Thomas R Burkard
- Institute of Molecular Biotechnology, Vienna BioCenter, 1030 Vienna, Austria
| | - Julius Brennecke
- Institute of Molecular Biotechnology, Vienna BioCenter, 1030 Vienna, Austria;
| | - Stefan L Ameres
- Institute of Molecular Biotechnology, Vienna BioCenter, 1030 Vienna, Austria;
- Max Perutz Labs, University of Vienna, Vienna BioCenter, 1030 Vienna, Austria
| | - Dinshaw J Patel
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065;
| |
Collapse
|
40
|
The m 6A reader YTHDC2 inhibits lung adenocarcinoma tumorigenesis by suppressing SLC7A11-dependent antioxidant function. Redox Biol 2020; 38:101801. [PMID: 33232910 PMCID: PMC7691619 DOI: 10.1016/j.redox.2020.101801] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/29/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022] Open
Abstract
The biological functions of N6-methyladenosine (m6A) RNA methylation are mainly dependent on the reader; however, its role in lung tumorigenesis remains unclear. Here, we have demonstrated that the m6A reader YT521-B homology domain containing 2 (YTHDC2) is frequently suppressed in lung adenocarcinoma (LUAD). Downregulation of YTHDC2 was associated with poor clinical outcome of LUAD. YTHDC2 decreased tumorigenesis in a spontaneous LUAD mouse model. Moreover, YTHDC2 exhibited antitumor activity in human LUAD cells. Mechanistically, YTHDC2, via its m6A-recognizing YTH domain, suppressed cystine uptake and blocked the downstream antioxidant program. Administration of cystine downstream antioxidants to pulmonary YTHDC2-overexpressing mice rescued lung tumorigenesis. Furthermore, solute carrier 7A11 (SLC7A11), the catalytic subunit of system XC−, was identified to be the direct target of YTHDC2. YTHDC2 destabilized SLC7A11 mRNA in an m6A-dependent manner because YTHDC2 preferentially bound to m6A-modified SLC7A11 mRNA and thereafter promoted its decay. Clinically, a large proportion of acinar LUAD subtype cases exhibited simultaneous YTHDC2 downregulation and SLC7A11 elevation. Patient-derived xenograft (PDX) mouse models generated from acinar LUAD showed sensitivity to system XC− inhibitors. Collectively, the promotion of cystine uptake via the suppression of YTHDC2 is critical for LUAD tumorigenesis, and blocking this process may benefit future treatment. The m6A reader YTHDC2 is frequently suppressed in LUAD and indicates poor prognosis. YTHDC2 suppresses the antioxidant function of system XC− via its m6A reading domain. The mRNA encoding SLC7A11 is a direct target of YTHDC2. YTHDC2 preferentially accelerates the decay of m6A-methylated SLC7A11 mRNA. LUAD with YTHDC2 suppression is sensitive to system XC− inhibitors.
Collapse
|
41
|
Weick EM, Lima CD. RNA helicases are hubs that orchestrate exosome-dependent 3'-5' decay. Curr Opin Struct Biol 2020; 67:86-94. [PMID: 33147539 DOI: 10.1016/j.sbi.2020.09.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/14/2020] [Accepted: 09/20/2020] [Indexed: 01/10/2023]
Abstract
The RNA exosome is a conserved complex of proteins that mediates 3'-5' RNA processing and decay. Its functions range from processing of non-coding RNAs such as ribosomal RNAs and decay of aberrant transcripts in the nucleus to cytoplasmic mRNA turnover and quality control. Ski2-like RNA helicases translocate substrates to exosome-associated ribonucleases and interact with the RNA exosome either directly or as part of multi-subunit helicase-containing complexes that identify and target RNA substrates for decay. Recent structures of these helicases with their RNA-binding partners or the RNA exosome have advanced our understanding of a system of modular and mutually exclusive contacts between the exosome and exosome-associated helicase complexes that shape the transcriptome by orchestrating exosome-dependent 3'-5' decay.
Collapse
Affiliation(s)
- Eva-Maria Weick
- Structural Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Christopher D Lima
- Structural Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Howard Hughes Medical Institute, 1275 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
42
|
Wermuth PJ, Jimenez SA. Molecular characteristics and functional differences of anti-PM/Scl autoantibodies and two other distinct and unique supramolecular structures known as "EXOSOMES". Autoimmun Rev 2020; 19:102644. [PMID: 32801042 DOI: 10.1016/j.autrev.2020.102644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 04/10/2020] [Indexed: 02/06/2023]
Abstract
The term "exosome" has been applied to three distinct supramolecular entities, namely the PM/Scl autoantibodies or "RNA exosomes", transforming DNA fragments termed "DNA exosomes", and small size extracellular vesicles knows as "exosomes". Some of the molecular components of the "PM/Scl exosome complex" or "RNA exosome" are recognized by specific autoantibodies present in the serum from some Systemic Sclerosis (SSc), polymyositis (PM) and polymyositis SSc (PM/Scl) overlap syndrome patients. On the other hand, one of the most active focuses of laboratory investigation in the last decade has been the biogenesis and role of extracellular vesicles known as "exosomes". The remarkable ability of these "exosome" vesicles to alter the cellular phenotype following fusion with target cells and the release of their macromolecular cargo has revealed a possible role in the pathogenesis of numerous diseases, including malignant, inflammatory, and autoimmune disorders and may allow them to serve as theranostic agents for personalized and precision medicine. The indiscriminate use of the term "exosome" to refer to these three distinct molecular entities has engendered great confusion in the scientific literature. Here, we review the molecular characteristics and functional differences between the three molecular structures identified as "exosomes". Given the rapidly growing scientific interest in extravesicular exosomes, unless a solution is found the confusion in the literature resulting from the use of the term "exosomes" will markedly increase.
Collapse
Affiliation(s)
- Peter J Wermuth
- Jefferson Institute of Molecular Medicine and Scleroderma Center, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | - Sergio A Jimenez
- Jefferson Institute of Molecular Medicine and Scleroderma Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
43
|
Kilchert C, Kecman T, Priest E, Hester S, Aydin E, Kus K, Rossbach O, Castello A, Mohammed S, Vasiljeva L. System-wide analyses of the fission yeast poly(A) + RNA interactome reveal insights into organization and function of RNA-protein complexes. Genome Res 2020; 30:1012-1026. [PMID: 32554781 PMCID: PMC7397868 DOI: 10.1101/gr.257006.119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 05/18/2020] [Indexed: 01/12/2023]
Abstract
Large RNA-binding complexes play a central role in gene expression and orchestrate production, function, and turnover of mRNAs. The accuracy and dynamics of RNA–protein interactions within these molecular machines are essential for their function and are mediated by RNA-binding proteins (RBPs). Here, we show that fission yeast whole-cell poly(A)+ RNA–protein crosslinking data provide information on the organization of RNA–protein complexes. To evaluate the relative enrichment of cellular RBPs on poly(A)+ RNA, we combine poly(A)+ RNA interactome capture with a whole-cell extract normalization procedure. This approach yields estimates of in vivo RNA-binding activities that identify subunits within multiprotein complexes that directly contact RNA. As validation, we trace RNA interactions of different functional modules of the 3′ end processing machinery and reveal additional contacts. Extending our analysis to different mutants of the RNA exosome complex, we explore how substrate channeling through the complex is affected by mutation. Our data highlight the central role of the RNA helicase Mtl1 in regulation of the complex and provide insights into how different components contribute to engagement of the complex with substrate RNA. In addition, we characterize RNA-binding activities of novel RBPs that have been recurrently detected in the RNA interactomes of multiple species. We find that many of these, including cyclophilins and thioredoxins, are substoichiometric RNA interactors in vivo. Because RBPomes show very good overall agreement between species, we propose that the RNA-binding characteristics we observe in fission yeast are likely to apply to related proteins in higher eukaryotes as well.
Collapse
Affiliation(s)
- Cornelia Kilchert
- Institut für Biochemie, Justus-Liebig-Universität Gießen, 35392 Gießen, Germany
| | - Tea Kecman
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, United Kingdom
| | - Emily Priest
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, United Kingdom
| | - Svenja Hester
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, United Kingdom
| | - Ebru Aydin
- Institut für Biochemie, Justus-Liebig-Universität Gießen, 35392 Gießen, Germany
| | - Krzysztof Kus
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, United Kingdom
| | - Oliver Rossbach
- Institut für Biochemie, Justus-Liebig-Universität Gießen, 35392 Gießen, Germany
| | - Alfredo Castello
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, United Kingdom
| | - Shabaz Mohammed
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, United Kingdom.,Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, OX1 3TA, United Kingdom
| | - Lidia Vasiljeva
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, United Kingdom
| |
Collapse
|
44
|
Okuda EK, Gonzales-Zubiate FA, Gadal O, Oliveira CC. Nucleolar localization of the yeast RNA exosome subunit Rrp44 hints at early pre-rRNA processing as its main function. J Biol Chem 2020; 295:11195-11213. [PMID: 32554806 DOI: 10.1074/jbc.ra120.013589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/12/2020] [Indexed: 01/12/2023] Open
Abstract
The RNA exosome is a multisubunit protein complex involved in RNA surveillance of all classes of RNA, and is essential for pre-rRNA processing. The exosome is conserved throughout evolution, present in archaea and eukaryotes from yeast to humans, where it localizes to the nucleus and cytoplasm. The catalytically active subunit Rrp44/Dis3 of the exosome in budding yeast (Saccharomyces cerevisiae) is considered a protein present in these two subcellular compartments, and here we report that it not only localizes mainly to the nucleus, but is concentrated in the nucleolus, where the early pre-rRNA processing reactions take place. Moreover, we show by confocal microscopy analysis that the core exosome subunits Rrp41 and Rrp43 also localize largely to the nucleus and strongly accumulate in the nucleolus. These results shown here shed additional light on the localization of the yeast exosome and have implications regarding the main function of this RNase complex, which seems to be primarily in early pre-rRNA processing and surveillance.
Collapse
Affiliation(s)
- Ellen K Okuda
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | | | - Olivier Gadal
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Carla C Oliveira
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
45
|
EXOSC9 depletion attenuates P-body formation, stress resistance, and tumorigenicity of cancer cells. Sci Rep 2020; 10:9275. [PMID: 32518284 PMCID: PMC7283315 DOI: 10.1038/s41598-020-66455-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 05/21/2020] [Indexed: 01/16/2023] Open
Abstract
Cancer cells adapt to various stress conditions by optimizing gene expression profiles via transcriptional and translational regulation. However, whether and how EXOSC9, a component of the RNA exosome complex, regulates adaptation to stress conditions and tumorigenicity in cancer cells remain unclear. Here, we examined the effects of EXOSC9 depletion on cancer cell growth under various stress conditions. EXOSC9 depletion attenuated growth and survival under various stress conditions in cancer cells. Interestingly, this also decreased the number of P-bodies, which are messenger ribonucleoprotein particles (mRNPs) required for stress adaptation. Meanwhile, EXOSC2/EXOSC4 depletion also attenuated P-body formation and stress resistance with decreased EXOSC9 protein. EXOSC9-mediated stress resistance and P-body formation were found to depend on the intact RNA-binding motif of this protein. Further, RNA-seq analyses identified 343 EXOSC9-target genes, among which, APOBEC3G contributed to defects in stress resistance and P-body formation in MDA-MB-231 cells. Finally, EXOSC9 also promoted xenografted tumor growth of MDA-MB-231 cells in an intact RNA-binding motif-dependent manner. Database analyses further showed that higher EXOSC9 activity, estimated based on the expression of 343 target genes, was correlated with poorer prognosis in some cancer patients. Thus, drugs targeting activity of the RNA exosome complex or EXOSC9 might be useful for cancer treatment.
Collapse
|
46
|
Davidson L, Francis L, Cordiner RA, Eaton JD, Estell C, Macias S, Cáceres JF, West S. Rapid Depletion of DIS3, EXOSC10, or XRN2 Reveals the Immediate Impact of Exoribonucleolysis on Nuclear RNA Metabolism and Transcriptional Control. Cell Rep 2020; 26:2779-2791.e5. [PMID: 30840897 PMCID: PMC6403362 DOI: 10.1016/j.celrep.2019.02.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 01/09/2019] [Accepted: 02/04/2019] [Indexed: 12/26/2022] Open
Abstract
Cell-based studies of human ribonucleases traditionally rely on methods that deplete proteins slowly. We engineered cells in which the 3′→5′ exoribonucleases of the exosome complex, DIS3 and EXOSC10, can be rapidly eliminated to assess their immediate roles in nuclear RNA biology. The loss of DIS3 has the greatest impact, causing the substantial accumulation of thousands of transcripts within 60 min. These transcripts include enhancer RNAs, promoter upstream transcripts (PROMPTs), and products of premature cleavage and polyadenylation (PCPA). These transcripts are unaffected by the rapid loss of EXOSC10, suggesting that they are rarely targeted to it. More direct detection of EXOSC10-bound transcripts revealed its substrates to prominently include short 3′ extended ribosomal and small nucleolar RNAs. Finally, the 5′→3′ exoribonuclease, XRN2, has little activity on exosome substrates, but its elimination uncovers different mechanisms for the early termination of transcription from protein-coding gene promoters. Engineered human cells for rapid inducible degradation of EXOSC10 and DIS3 DIS3 degrades the majority of nuclear exosome substrates Direct targets of EXOSC10 include ribosomal and small nucleolar RNAs XRN2 has little activity on exosome substrates
Collapse
Affiliation(s)
- Lee Davidson
- The Living Systems Institute, University of Exeter, Stocker Rd, Exeter EX4 4QD, UK
| | - Laura Francis
- The Living Systems Institute, University of Exeter, Stocker Rd, Exeter EX4 4QD, UK
| | - Ross A Cordiner
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Joshua D Eaton
- The Living Systems Institute, University of Exeter, Stocker Rd, Exeter EX4 4QD, UK
| | - Chris Estell
- The Living Systems Institute, University of Exeter, Stocker Rd, Exeter EX4 4QD, UK
| | - Sara Macias
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Javier F Cáceres
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Steven West
- The Living Systems Institute, University of Exeter, Stocker Rd, Exeter EX4 4QD, UK.
| |
Collapse
|
47
|
Lingaraju M, Schuller JM, Falk S, Gerlach P, Bonneau F, Basquin J, Benda C, Conti E. To Process or to Decay: A Mechanistic View of the Nuclear RNA Exosome. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2020; 84:155-163. [PMID: 32493762 DOI: 10.1101/sqb.2019.84.040295] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The RNA exosome was originally discovered in yeast as an RNA-processing complex required for the maturation of 5.8S ribosomal RNA (rRNA), one of the constituents of the large ribosomal subunit. The exosome is now known in eukaryotes as the major 3'-5' RNA degradation machine involved in numerous processing, turnover, and surveillance pathways, both in the nucleus and the cytoplasm. Yet its role in maturing the 5.8S rRNA in the pre-60S ribosomal particle remains probably the most intricate and emblematic among its functions, as it involves all the RNA unwinding, degradation, and trimming activities embedded in this macromolecular complex. Here, we propose a comprehensive mechanistic model, based on current biochemical and structural data, explaining the dual functions of the nuclear exosome-the constructive versus the destructive mode.
Collapse
Affiliation(s)
- Mahesh Lingaraju
- Max-Planck-Institute of Biochemistry, Department of Structural Cell Biology, D-82152 Martinsried/Munich, Germany
| | - Jan M Schuller
- Max-Planck-Institute of Biochemistry, Department of Structural Cell Biology, D-82152 Martinsried/Munich, Germany
| | - Sebastian Falk
- Max Perutz Labs, Department of Structural and Computational Biology, University of Vienna, 1030, Vienna, Austria
| | - Piotr Gerlach
- Max-Planck-Institute of Biochemistry, Department of Structural Cell Biology, D-82152 Martinsried/Munich, Germany
| | - Fabien Bonneau
- Max-Planck-Institute of Biochemistry, Department of Structural Cell Biology, D-82152 Martinsried/Munich, Germany
| | - Jérôme Basquin
- Max-Planck-Institute of Biochemistry, Department of Structural Cell Biology, D-82152 Martinsried/Munich, Germany
| | - Christian Benda
- Max-Planck-Institute of Biochemistry, Department of Structural Cell Biology, D-82152 Martinsried/Munich, Germany
| | - Elena Conti
- Max-Planck-Institute of Biochemistry, Department of Structural Cell Biology, D-82152 Martinsried/Munich, Germany
| |
Collapse
|
48
|
Wu Z, Liao Q, Liu B. idenPC-MIIP: identify protein complexes from weighted PPI networks using mutual important interacting partner relation. Brief Bioinform 2020; 22:1972-1983. [PMID: 32065215 DOI: 10.1093/bib/bbaa016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/15/2020] [Accepted: 01/27/2020] [Indexed: 12/28/2022] Open
Abstract
Protein complexes are key units for studying a cell system. During the past decades, the genome-scale protein-protein interaction (PPI) data have been determined by high-throughput approaches, which enables the identification of protein complexes from PPI networks. However, the high-throughput approaches often produce considerable fraction of false positive and negative samples. In this study, we propose the mutual important interacting partner relation to reflect the co-complex relationship of two proteins based on their interaction neighborhoods. In addition, a new algorithm called idenPC-MIIP is developed to identify protein complexes from weighted PPI networks. The experimental results on two widely used datasets show that idenPC-MIIP outperforms 17 state-of-the-art methods, especially for identification of small protein complexes with only two or three proteins.
Collapse
Affiliation(s)
- Zhourun Wu
- School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, Guangdong, China
| | - Qing Liao
- School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, Guangdong, China
| | - Bin Liu
- School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, China, and School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
49
|
Zinoviev A, Ayupov RK, Abaeva IS, Hellen CUT, Pestova TV. Extraction of mRNA from Stalled Ribosomes by the Ski Complex. Mol Cell 2020; 77:1340-1349.e6. [PMID: 32006463 DOI: 10.1016/j.molcel.2020.01.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 11/13/2019] [Accepted: 01/07/2020] [Indexed: 11/26/2022]
Abstract
The evolutionarily conserved Ski2-Ski3-Ski8 (Ski) complex containing the 3'→5' RNA helicase Ski2 binds to 80S ribosomes near the mRNA entrance and facilitates 3'→5' exosomal degradation of mRNA during ribosome-associated mRNA surveillance pathways. Here, we assayed Ski's activity using an in vitro reconstituted translation system and report that this complex efficiently extracts mRNA from 80S ribosomes in the 3'→5' direction in a nucleotide-by-nucleotide manner. The process is ATP dependent and can occur on pre- and post-translocation ribosomal complexes. The Ski complex can engage productively with mRNA and extract it from 80S complexes containing as few as 19 (but not 13) 3'-terminal mRNA nucleotides starting from the P site. The mRNA-extracting activity of the Ski complex suggests that its role in mRNA quality control pathways is not limited to acceleration of exosomal degradation and could include clearance of stalled ribosomes from mRNA, poising mRNA for degradation and rendering stalled ribosomes recyclable by Pelota/Hbs1/ABCE1.
Collapse
Affiliation(s)
- Alexandra Zinoviev
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Rustam K Ayupov
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Irina S Abaeva
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Christopher U T Hellen
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Tatyana V Pestova
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA.
| |
Collapse
|
50
|
Keidel A, Conti E, Falk S. Purification and Reconstitution of the S. cerevisiae TRAMP and Ski Complexes for Biochemical and Structural Studies. Methods Mol Biol 2020; 2062:491-513. [PMID: 31768992 DOI: 10.1007/978-1-4939-9822-7_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The RNA exosome is a macromolecular machine that degrades a large variety of RNAs from their 3'-end. It comprises the major 3'-to-5' exonuclease in the cell, completely degrades erroneous and overly abundant RNAs, and is also involved in the precise processing of RNAs. To degrade transcripts both specifically and efficiently the exosome functions together with compartment-specific cofactors. In the yeast S. cerevisiae, the exosome associates with the Ski complex in the cytoplasm and with Mtr4 alone or with Mtr4 as part of the TRAMP complex in the nucleus. Here we describe how to produce, purify, and assemble the Ski and TRAMP complexes from S. cerevisiae.
Collapse
Affiliation(s)
- Achim Keidel
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Elena Conti
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, Martinsried, Germany.
| | - Sebastian Falk
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, Martinsried, Germany.
- Max Perutz Laboratories, Department of Structural and Computational Biology, University of Vienna, Vienna, Austria.
| |
Collapse
|