1
|
Padhi C, Zhu L, Chen JY, Moreira R, van der Donk WA. Biosynthesis of Macrocyclic Peptides by Formation and Crosslinking of ortho -Tyrosines. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.04.647296. [PMID: 40291698 PMCID: PMC12026744 DOI: 10.1101/2025.04.04.647296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Ribosomally synthesized and posttranslationally modified peptides (RiPPs) are a growing class of natural products that possess many activities that are of potential translational interest. Multinuclear non-heme iron dependent oxidative enzymes (MNIOs), until recently termed domain of unknown function 692 (DUF692), have been gaining interest because of their involvement in a range of biochemical reactions that are remarkable from a chemical perspective. Over 13,500 putative MNIO-encoding biosynthetic gene clusters (BGCs) have been identified by sequence similarity networks (SSNs). In this study, we identified a set of precursor peptides containing a conserved FHAFRF-motif in MNIO-encoding BGCs. These BGCs follow a conserved synteny with genes encoding an MNIO, a RiPP recognition element (RRE)-containing partner protein, an arginase, and a B12-dependent radical SAM enzyme (rSAM). Using heterologous reconstitution of a representative BGC from Peribacillus simplex ( pbs cluster) in E. coli , we demonstrated that the MNIO in conjunction with the partner protein catalyzes ortho -hydroxylation of each of the phenylalanine residues in the conserved FRF-motif, the arginase forms an ornithine by deguanidination of the arginine in the motif, and the B12-rSAM crosslinks the ortho -Tyr side side chains by a C-C linkage forming a novel macrocyclic molecule. Substrate scope studies suggested tolerance of the MNIO and the B12-rSAM towards substituting the Phe residues with tyrosines in the conserved motif with the position of hydroxylation and crosslinking being maintained. Overall, this study expands the diverse array of posttranslational modifications catalyzed by MNIOs and B12-rSAM enzymes. TOC Graphic
Collapse
|
2
|
Dhara D, Mulard LA, Hollenstein M. Natural, modified and conjugated carbohydrates in nucleic acids. Chem Soc Rev 2025; 54:2948-2983. [PMID: 39936337 DOI: 10.1039/d4cs00799a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Storage of genetic information in DNA occurs through a unique ordering of canonical base pairs. However, this would not be possible in the absence of the sugar-phosphate backbone which is essential for duplex formation. While over a hundred nucleobase modifications have been identified (mainly in RNA), Nature is rather conservative when it comes to alterations at the level of the (deoxy)ribose sugar moiety. This trend is not reflected in synthetic analogues of nucleic acids where modifications of the sugar entity is commonplace to improve the properties of DNA and RNA. In this review article, we describe the main incentives behind sugar modifications in nucleic acids and we highlight recent progress in this field with a particular emphasis on therapeutic applications, the development of xeno-nucleic acids (XNAs), and on interrogating nucleic acid etiology. We also describe recent strategies to conjugate carbohydrates and oligosaccharides to oligonucleotides since this represents a particularly powerful strategy to improve the therapeutic index of oligonucleotide drugs. The advent of glycoRNAs combined with progress in nucleic acid and carbohydrate chemistry, protein engineering, and delivery methods will undoubtedly yield more potent sugar-modified nucleic acids for therapeutic, biotechnological, and synthetic biology applications.
Collapse
Affiliation(s)
- Debashis Dhara
- Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, Institut Pasteur, Université Paris Cité, CNRS UMR 352328, rue du Docteur Roux, 75724 Paris Cedex 15, France.
- Department of Structural Biology and Chemistry, Laboratory for Chemistry of Biomolecules, Institut Pasteur, Université Paris Cité, CNRS UMR 3523, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Laurence A Mulard
- Department of Structural Biology and Chemistry, Laboratory for Chemistry of Biomolecules, Institut Pasteur, Université Paris Cité, CNRS UMR 3523, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Marcel Hollenstein
- Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, Institut Pasteur, Université Paris Cité, CNRS UMR 352328, rue du Docteur Roux, 75724 Paris Cedex 15, France.
| |
Collapse
|
3
|
Wang B, Solinski AE, Radle MI, Peduzzi OM, Knox HL, Cui J, Maurya RK, Yennawar NH, Booker SJ. Structural Evidence for DUF512 as a Radical S-Adenosylmethionine Cobalamin-Binding Domain. ACS BIO & MED CHEM AU 2024; 4:319-330. [PMID: 39712206 PMCID: PMC11659888 DOI: 10.1021/acsbiomedchemau.4c00067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 12/24/2024]
Abstract
Cobalamin (Cbl)-dependent radical S-adenosylmethionine (SAM) enzymes constitute a large subclass of radical SAM (RS) enzymes that use Cbl to catalyze various types of reactions, the most common of which are methylations. Most Cbl-dependent RS enzymes contain an N-terminal Rossmann fold that aids Cbl binding. Recently, it has been demonstrated that the methanogenesis marker protein 10 (Mmp10) requires Cbl to methylate an arginine residue in the α-subunit of methyl coenzyme M reductase. However, Mmp10 contains a Cbl-binding domain in the C-terminal region of its primary structure that does not share significant sequence similarity with canonical RS Cbl-binding domains. Bioinformatic analysis of Mmp10 identified DUF512 (Domain of Unknown Function 512) as a potential Cbl-binding domain in RS enzymes. In this paper, four randomly selected DUF512-containing proteins from various organisms were overexpressed, purified, and shown to bind Cbl. X-ray crystal structures of DUF512-containing proteins from Clostridium sporogenes and Pyrococcus furiosus were determined, confirming their C-terminal Cbl-binding domains. The structure of the DUF512-containing protein from C. sporogenes is the first of an RS enzyme containing a PDZ domain. Its RS domain has an unprecedented β3α4 core, whereas most RS enzymes adopt a (βα)6 core. The DUF512-containing protein from P. furiosus has no PDZ domain, but its RS domain also has an uncommon (βα)5 core.
Collapse
Affiliation(s)
- Bo Wang
- Department
of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Amy E. Solinski
- Department
of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Matthew I. Radle
- Department
of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Olivia M. Peduzzi
- Department
of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Hayley L. Knox
- Department
of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Jiayuan Cui
- Department
of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Ravi K. Maurya
- Department
of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Neela H. Yennawar
- The
Huck Institutes of the Life Sciences, The
Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Squire J. Booker
- Department
of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department
of Biochemistry and Molecular Biology, The
Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Howard
Hughes Medical Institute, The Pennsylvania
State University, University
Park, Pennsylvania 16802, United States
| |
Collapse
|
4
|
Viegas J. Profile of Catherine Drennan. Proc Natl Acad Sci U S A 2024; 121:e2420751121. [PMID: 39514313 PMCID: PMC11573533 DOI: 10.1073/pnas.2420751121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
|
5
|
Li J, Yuan B, Li C, Zhao Z, Guo J, Zhang P, Qu G, Sun Z. Stereoselective Synthesis of Oxetanes Catalyzed by an Engineered Halohydrin Dehalogenase. Angew Chem Int Ed Engl 2024:e202411326. [PMID: 39252480 DOI: 10.1002/anie.202411326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/07/2024] [Accepted: 09/09/2024] [Indexed: 09/11/2024]
Abstract
Although biocatalysis has garnered widespread attention in both industrial and academic realms, the enzymatic synthesis of chiral oxetanes remains an underdeveloped field. Halohydrin dehalogenases (HHDHs) are industrially relevant enzymes that have been engineered to accomplish the reversible transformation of epoxides. In this study, a biocatalytic platform was constructed for the stereoselective kinetic resolution of chiral oxetanes and formation of 1,3-disubstituted alcohols. HheC from Agrobacterium radiobacter AD1 was engineered to identify key variants capable of catalyzing the dehalogenation of γ-haloalcohols (via HheC M1-M3) and ring opening of oxetanes (via HheC M4-M5) to access both (R)- and (S)-configured products with high stereoselectivity and remarkable catalytic activity, yielding up to 49 % with enantioselectivities exceeding 99 % ee and E>200. The current strategy is broadly applicable as demonstrated by expansion of the substrate scope to include up to 18 examples for dehalogenation and 16 examples for ring opening. Additionally, the functionalized products are versatile building blocks for pharmaceutical applications. To shed light on the molecular recognition mechanisms for the relevant variants, molecular dynamic (MD) simulations were performed. The current strategy expands the scope of HHDH-catalyzed chiral oxetane ring construction, offering efficient access to both enantiomers of chiral oxetanes and 1,3-disubstituted alcohols.
Collapse
Affiliation(s)
- Junkuan Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 300308, Tianjin, P. R. China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, 300308, Tianjin, P. R. China
| | - Bo Yuan
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 300308, Tianjin, P. R. China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, 300308, Tianjin, P. R. China
| | - Congcong Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 300308, Tianjin, P. R. China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, 300308, Tianjin, P. R. China
| | - Zhouzhou Zhao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 300308, Tianjin, P. R. China
| | - Jiaxin Guo
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 300308, Tianjin, P. R. China
| | - Pengpeng Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 300308, Tianjin, P. R. China
| | - Ge Qu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 300308, Tianjin, P. R. China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, 300308, Tianjin, P. R. China
| | - Zhoutong Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 300308, Tianjin, P. R. China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, 300308, Tianjin, P. R. China
| |
Collapse
|
6
|
Wang R, Xu H, Banerjee A, Cui Z, Ma Y, Whittingham WG, Yang P, Li A. Mild Approach to Nucleoside Analogues via Photoredox/Cu-Catalyzed Decarboxylative C-N Bond Formation. Total Synthesis of Oxetanocin A. Org Lett 2024; 26:2691-2696. [PMID: 38011311 DOI: 10.1021/acs.orglett.3c00914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The conventional N-glycosylation methods for nucleoside synthesis usually require strongly acidic or basic conditions. Here we report the decarboxylative C(sp3)-N coupling of glycosyl N-hydroxyphthalimide esters with nucleobases via dual photoredox/Cu catalysis, which offered a mild approach to nucleoside analogues. A total synthesis of oxetanocin A, an antiviral natural product containing an oxetanose moiety, has been achieved by using this method.
Collapse
Affiliation(s)
- Ruonan Wang
- College of Chemistry and Henan Institute of Advanced Technology, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Hao Xu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Arpan Banerjee
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Zhongwen Cui
- College of Chemistry and Henan Institute of Advanced Technology, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Yuyong Ma
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - William G Whittingham
- Jealott's Hill International Research Centre, Syngenta Limited, Bracknell, Berkshire RG42 6EY, United Kingdom
| | - Peng Yang
- College of Chemistry and Henan Institute of Advanced Technology, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Ang Li
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
7
|
Jiang B, Gao L, Wang H, Sun Y, Zhang X, Ke H, Liu S, Ma P, Liao Q, Wang Y, Wang H, Liu Y, Du R, Rogge T, Li W, Shang Y, Houk KN, Xiong X, Xie D, Huang S, Lei X, Yan J. Characterization and heterologous reconstitution of Taxus biosynthetic enzymes leading to baccatin III. Science 2024; 383:622-629. [PMID: 38271490 DOI: 10.1126/science.adj3484] [Citation(s) in RCA: 60] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 01/10/2024] [Indexed: 01/27/2024]
Abstract
Paclitaxel is a well known anticancer compound. Its biosynthesis involves the formation of a highly functionalized diterpenoid core skeleton (baccatin III) and the subsequent assembly of a phenylisoserinoyl side chain. Despite intensive investigation for half a century, the complete biosynthetic pathway of baccatin III remains unknown. In this work, we identified a bifunctional cytochrome P450 enzyme [taxane oxetanase 1 (TOT1)] in Taxus mairei that catalyzes an oxidative rearrangement in paclitaxel oxetane formation, which represents a previously unknown enzyme mechanism for oxetane ring formation. We created a screening strategy based on the taxusin biosynthesis pathway and uncovered the enzyme responsible for the taxane oxidation of the C9 position (T9αH1). Finally, we artificially reconstituted a biosynthetic pathway for the production of baccatin III in tobacco.
Collapse
Affiliation(s)
- Bin Jiang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Lei Gao
- Beijing National Laboratory for Molecular Sciences, Peking-Tsinghua Center for Life Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Haijun Wang
- Beijing National Laboratory for Molecular Sciences, Peking-Tsinghua Center for Life Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Yaping Sun
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Xiaolin Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Han Ke
- Beijing National Laboratory for Molecular Sciences, Peking-Tsinghua Center for Life Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Shengchao Liu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Pengchen Ma
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Qinggang Liao
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yue Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Huan Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yugeng Liu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Ran Du
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Torben Rogge
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Wei Li
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yi Shang
- Yunnan Key Laboratory of Potato Biology, The CAAS-YNNU-YINMORE Joint Academy of Potato Sciences, Yunnan Normal University, Kunming, China
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Xingyao Xiong
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Daoxin Xie
- Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Sanwen Huang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Xiaoguang Lei
- Beijing National Laboratory for Molecular Sciences, Peking-Tsinghua Center for Life Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Institute for Cancer Research, Shenzhen Bay Laboratory, Shenzhen, China
| | - Jianbin Yan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
8
|
Lachowicz J, Lee J, Sagatova A, Jew K, Grove TL. The new epoch of structural insights into radical SAM enzymology. Curr Opin Struct Biol 2023; 83:102720. [PMID: 37862762 DOI: 10.1016/j.sbi.2023.102720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/22/2023]
Abstract
The Radical SAM (RS) superfamily of enzymes catalyzes a wide array of enzymatic reactions. The majority of these enzymes employ an electron from a reduced [4Fe-4S]+1 cluster to facilitate the reductive cleavage of S-adenosyl-l-methionine, thereby producing a highly reactive 5'-deoxyadenosyl radical (5'-dA⋅) and l-methionine. Typically, RS enzymes use this 5'-dA⋅ to extract a hydrogen atom from the target substrate, starting the cascade of an expansive and impressive variety of chemical transformations. While a great deal of understanding has been gleaned for 5'-dA⋅ formation, because of the chemical diversity within this superfamily, the subsequent chemical transformations have only been fully elucidated in a few examples. In addition, with the advent of new sequencing technology, the size of this family now surpasses 700,000 members, with the number of uncharacterized enzymes and domains also rapidly expanding. In this review, we outline the history of RS enzyme characterization in what we term "epochs" based on advances in technology designed for stably producing these enzymes in an active state. We propose that the state of the field has entered the fourth epoch, which we argue should commence with a protein structure initiative focused solely on RS enzymes to properly tackle this unique superfamily and uncover more novel chemical transformations that likely exist.
Collapse
Affiliation(s)
- Jake Lachowicz
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - James Lee
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Alia Sagatova
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Kristen Jew
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Tyler L Grove
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
9
|
Benjdia A, Berteau O. B 12-dependent radical SAM enzymes: Ever expanding structural and mechanistic diversity. Curr Opin Struct Biol 2023; 83:102725. [PMID: 37931378 DOI: 10.1016/j.sbi.2023.102725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/26/2023] [Accepted: 10/03/2023] [Indexed: 11/08/2023]
Abstract
In the last decade, B12-dependent radical SAM enzymes have emerged as central biocatalysts in the biosynthesis of a myriad of natural products. Notably, these enzymes have been shown to catalyze carbon-carbon bond formation on unactivated carbon atoms leading to unusual methylations. Recently, structural studies have revealed unprecedented insights into the complex chemistry catalyzed by these enzymes. In this review, we cover recent advances in our understanding of B12-dependent radical SAM enzymes from a mechanistic and structural perspective. We discuss the unanticipated diversity of these enzymes which suggests evolutionary links between various biosynthetic and metabolic pathways from antibiotic to RiPP and methane biosynthesis.
Collapse
Affiliation(s)
- Alhosna Benjdia
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, ChemSyBio, 78350, Jouy-en-Josas, France.
| | - Olivier Berteau
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, ChemSyBio, 78350, Jouy-en-Josas, France.
| |
Collapse
|
10
|
Lee YH, Yeh YC, Fan PH, Zhong A, Ruszczycky MW, Liu HW. Changing Fates of the Substrate Radicals Generated in the Active Sites of the B 12-Dependent Radical SAM Enzymes OxsB and AlsB. J Am Chem Soc 2023; 145:3656-3664. [PMID: 36719327 PMCID: PMC9940012 DOI: 10.1021/jacs.2c12953] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
OxsB is a B12-dependent radical SAM enzyme that catalyzes the oxidative ring contraction of 2'-deoxyadenosine 5'-phosphate to the dehydrogenated, oxetane containing precursor of oxetanocin A phosphate. AlsB is a homologue of OxsB that participates in a similar reaction during the biosynthesis of albucidin. Herein, OxsB and AlsB are shown to also catalyze radical mediated, stereoselective C2'-methylation of 2'-deoxyadenosine monophosphate. This reaction proceeds with inversion of configuration such that the resulting product also possesses a C2' hydrogen atom available for abstraction. However, in contrast to methylation, subsequent rounds of catalysis result in C-C dehydrogenation of the newly added methyl group to yield a 2'-methylidene followed by radical addition of a 5'-deoxyadenosyl moiety to produce a heterodimer. These observations expand the scope of reactions catalyzed by B12-dependent radical SAM enzymes and emphasize the susceptibility of radical intermediates to bifurcation along different reaction pathways even within the highly organized active site of an enzyme.
Collapse
Affiliation(s)
- Yu-Hsuan Lee
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Yu-Cheng Yeh
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Po-Hsun Fan
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Aoshu Zhong
- Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, Texas 78712, United States
| | - Mark W. Ruszczycky
- Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, Texas 78712, United States
| | - Hung-wen Liu
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States; Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
11
|
Deng WH, Liao RZ. Sequential C-H Methylation Catalyzed by the B 12 -Dependent SAM Enzyme TokK: Comprehensive Theoretical Study of Selectivities. Chemistry 2023; 29:e202202995. [PMID: 36321632 DOI: 10.1002/chem.202202995] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 12/14/2022]
Abstract
TokK is a B12 -dependent radical SAM enzyme involved in the biosynthesis of the β-lactam antibiotic asparenomycin A. It can catalyze three methylations on different sp3 -hybridized carbon positions to introduce an isopropyl side chain at the β-lactam ring of pantetheinylated carbapenem. Herein, we report a quantum chemical study of the reaction mechanism of TokK. A stepwise ''push-pull'' radical relay mechanism is proposed for each methylation: a 5'-deoxyadenosine radical first abstracts a hydrogen atom from the substrate in the active site, then methylcobalamin directionally donates a methyl group to the substrate. More importantly, calculations were able to uncover the origin of observed chemoselectivity and stereoselectivity for the first methylation and regioselectivity for the following two methylations. Further detailed distortion/interaction analysis can help to unravel the main factors controlling the selectivities. Our findings of sequential methylations by TokK could have profound implications for studying other B12 -dependent radical SAM enzymes.
Collapse
Affiliation(s)
- Wen-Hao Deng
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica Hubei Key Laboratory of Materials Chemistry and Service Failure School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Rong-Zhen Liao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica Hubei Key Laboratory of Materials Chemistry and Service Failure School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
12
|
Huang R, Zhi N, Yu L, Li Y, Wu X, He J, Zhu H, Qiao J, Liu X, Tian C, Wang J, Dong M. Genetically Encoded Photosensitizer Protein Reduces Iron–Sulfur Clusters of Radical SAM Enzymes. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Rongrong Huang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Ning Zhi
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Lu Yu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Yaoyang Li
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xiangyu Wu
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Jiale He
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Hongji Zhu
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Jianjun Qiao
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xiaohong Liu
- Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Changlin Tian
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- The First Affiliated Hospital of USTC, School of Life Sciences, Division of Life Sciences and Medicine, Joint Center for Biological Analytical Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jiangyun Wang
- Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Min Dong
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
13
|
Zhang X, Wang Z, Li Z, Shaik S, Wang B. [4Fe–4S]-Mediated Proton-Coupled Electron Transfer Enables the Efficient Degradation of Chloroalkenes by Reductive Dehalogenases. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Xuan Zhang
- State Key Laboratory Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Zikuan Wang
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| | - Zhen Li
- State Key Laboratory Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Sason Shaik
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Binju Wang
- State Key Laboratory Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| |
Collapse
|
14
|
Mathur Y, Hazra AB. Methylations in vitamin B 12 biosynthesis and catalysis. Curr Opin Struct Biol 2022; 77:102490. [PMID: 36371846 DOI: 10.1016/j.sbi.2022.102490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 11/12/2022]
Abstract
Vitamin B12 is an essential biomolecule that assists in the catalysis of methyl transfer and radical-based reactions in cellular metabolism. The structure of B12 is characterized by a tetrapyrrolic corrin ring with a central cobalt ion coordinated with an upper ligand, and a lower ligand anchored via a nucleotide loop. Multiple methyl groups decorate B12, and their presence (or absence) have structural and functional consequences. In this minireview, we focus on the methyl groups that distinguish vitamin B12 from other tetrapyrrolic biomolecules and from its own naturally occurring analogues called cobamides. We draw information from recent advances in the field to understand the origins of these methyl groups and the enzymes that incorporate them, and discuss their biological significance.
Collapse
Affiliation(s)
- Yamini Mathur
- Department of Biology, Indian Institute of Science Education and Research, Pune, India. https://twitter.com/yaminipmathur
| | - Amrita B Hazra
- Department of Biology, Indian Institute of Science Education and Research, Pune, India; Department of Chemistry, Indian Institute of Science Education and Research, Pune, India.
| |
Collapse
|
15
|
Cobalamin Riboswitches Are Broadly Sensitive to Corrinoid Cofactors to Enable an Efficient Gene Regulatory Strategy. mBio 2022; 13:e0112122. [PMID: 35993747 PMCID: PMC9600662 DOI: 10.1128/mbio.01121-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
In bacteria, many essential metabolic processes are controlled by riboswitches, gene regulatory RNAs that directly bind and detect metabolites. Highly specific effector binding enables riboswitches to respond to a single biologically relevant metabolite. Cobalamin riboswitches are a potential exception because over a dozen chemically similar but functionally distinct cobalamin variants (corrinoid cofactors) exist in nature. Here, we measured cobalamin riboswitch activity in vivo using a Bacillus subtilis fluorescent reporter system and found, among 38 tested riboswitches, a subset responded to corrinoids promiscuously, while others were semiselective. Analyses of chimeric riboswitches and structural models indicate, unlike other riboswitch classes, cobalamin riboswitches indirectly differentiate among corrinoids by sensing differences in their structural conformation. This regulatory strategy aligns riboswitch-corrinoid specificity with cellular corrinoid requirements in a B. subtilis model. Thus, bacteria can employ broadly sensitive riboswitches to cope with the chemical diversity of essential metabolites. IMPORTANCE Some bacterial mRNAs contain a region called a riboswitch which controls gene expression by binding to a metabolite in the cell. Typically, riboswitches sense and respond to a limited range of cellular metabolites, often just one type. In this work, we found the cobalamin (vitamin B12) riboswitch class is an exception, capable of sensing and responding to multiple variants of B12-collectively called corrinoids. We found cobalamin riboswitches vary in corrinoid specificity with some riboswitches responding to each of the corrinoids we tested, while others responding only to a subset of corrinoids. Our results suggest the latter class of riboswitches sense intrinsic conformational differences among corrinoids in order to support the corrinoid-specific needs of the cell. These findings provide insight into how bacteria sense and respond to an exceptionally diverse, often essential set of enzyme cofactors.
Collapse
|
16
|
Fan PH, Geng Y, Romo AJ, Zhong A, Zhang J, Yeh YC, Lee YH, Liu HW. Two Radical SAM Enzymes Are Necessary and Sufficient for the In Vitro Production of the Oxetane Nucleoside Antiviral Agent Albucidin. Angew Chem Int Ed Engl 2022; 61:e202210362. [PMID: 36064953 PMCID: PMC9561071 DOI: 10.1002/anie.202210362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Indexed: 11/09/2022]
Abstract
Oxetanocin A and albucidin are two oxetane natural products. While the biosynthesis of oxetanocin A has been described, less is known about albucidin. In this work, the albucidin biosynthetic gene cluster is identified in Streptomyces. Heterologous expression in a nonproducing strain demonstrates that the genes alsA and alsB are necessary and sufficient for albucidin biosynthesis confirming a previous study (Myronovskyi et al. Microorganisms 2020, 8, 237). A two-step construction of albucidin 4'-phosphate from 2'-deoxyadenosine monophosphate (2'-dAMP) is shown to be catalyzed in vitro by the cobalamin dependent radical S-adenosyl-l-methionine (SAM) enzyme AlsB, which catalyzes a ring contraction, and the radical SAM enzyme AlsA, which catalyzes elimination of a one-carbon fragment. Isotope labelling studies show that AlsB catalysis begins with stereospecific H-atom transfer of the C2'-pro-R hydrogen from 2'-dAMP to 5'-deoxyadenosine, and that the eliminated one-carbon fragment originates from C3' of 2'-dAMP.
Collapse
Affiliation(s)
- Po-Hsun Fan
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Yujie Geng
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, Texas 78712, United States
| | - Anthony J. Romo
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, Texas 78712, United States
| | - Aoshu Zhong
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, Texas 78712, United States
| | - Jiawei Zhang
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Yu-Cheng Yeh
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Yu-Hsuan Lee
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Hung-wen Liu
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
17
|
Yan YC, Zhang H, Hu K, Zhou SM, Chen Q, Qu RY, Yang GF. A mini-review on synthesis and antiviral activity of natural product oxetanocin A derivatives. Bioorg Med Chem 2022; 72:116968. [PMID: 36054994 DOI: 10.1016/j.bmc.2022.116968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 08/02/2022] [Accepted: 08/16/2022] [Indexed: 11/29/2022]
Abstract
Oxetanocin A (Oxt-A), a novel oxetanosyl N-glycoside nucleoside, was isolated from Bacillus megaterium in 1986. It carries an oxetane ring on the sugar moiety of the nucleoside scaffold, which contributes to differences in its structure from those of common tetrahydrofuranyl-based nucleosides. In view of the unique 3D-spatial framework, the complete synthesis of Oxt-A has been achieved by multiple research groups. The pharmacological properties of this natural product have also been broadly investigated by pharmacists and chemists since its discovery. Notably, the potential antiviral effect of Oxt-A has captured attention of researchers in the field of antiviral agent development. Furthermore, epidemic outbreaks caused by viruses have been stimulating the preparation and modification of various Oxt-A analogs over the past few decades. However, none of the studies have overviewed the antiviral efficacies of this naturally occurring scaffold yet. Thus, the present review summarizes the synthesis, structural modification, and antiviral activities of Oxt-A and its derivatives. We believe that these comprehensive descriptions will provide a novel perspective for the discovery of antivirus drugs with well-improved performance and pave newer paths for combating sudden public health issues triggered by viruses in the future.
Collapse
Affiliation(s)
- Yao-Chao Yan
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Hu Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Kai Hu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Shao-Meng Zhou
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Qiong Chen
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Ren-Yu Qu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, PR China.
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, PR China.
| |
Collapse
|
18
|
Jäger C, Croft AK. If It Is Hard, It Is Worth Doing: Engineering Radical Enzymes from Anaerobes. Biochemistry 2022; 62:241-252. [PMID: 36121716 PMCID: PMC9850924 DOI: 10.1021/acs.biochem.2c00376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
With a pressing need for sustainable chemistries, radical enzymes from anaerobes offer a shortcut for many chemical transformations and deliver highly sought-after functionalizations such as late-stage C-H functionalization, C-C bond formation, and carbon-skeleton rearrangements, among others. The challenges in handling these oxygen-sensitive enzymes are reflected in their limited industrial exploitation, despite what they may deliver. With an influx of structures and mechanistic understanding, the scope for designed radical enzymes to deliver wanted processes becomes ever closer. Combined with new advances in computational methods and workflows for these complex systems, the outlook for an increased use of radical enzymes in future processes is exciting.
Collapse
|
19
|
Fan PH, Geng Y, Romo AJ, Zhong A, Zhang J, Yeh YC, Lee YH, Liu HW. Two Radical SAM Enzymes Are Necessary and Sufficient for the In Vitro Production of the Oxetane Nucleoside Antiviral Agent Albucidin. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Po-Hsun Fan
- The University of Texas at Austin Chemistry The University of Texas at Austin 78712-1139 Austin UNITED STATES
| | - Yujie Geng
- The University of Texas at Austin College of Pharmacy College of Pharmacy 78712-1139 Austin UNITED STATES
| | - Anthony J Romo
- The University of Texas at Austin College of Pharmacy College of Pharmacy 78712-1139 Austin UNITED STATES
| | - Aoshu Zhong
- The University of Texas at Austin College of Pharmacy College of Pharmacy 78712-1139 Austin UNITED STATES
| | - Jiawei Zhang
- The University of Texas at Austin Chemistry The University of Texas at Austin 78712-1139 Austin UNITED STATES
| | - Yu-Cheng Yeh
- UT Austin: The University of Texas at Austin Chemistry The University of Texas at Austin 78712-1139 Austin UNITED STATES
| | - Yu-Hsuan Lee
- UT Austin: The University of Texas at Austin Chemistry The University of Texas at Austin 78712-1139 Austin UNITED STATES
| | - Hung-wen Liu
- University of Texas at Austin Phar-Med Chem/3.206 1 University Station A1935PHR 3.206B 78712-0128 Austin UNITED STATES
| |
Collapse
|
20
|
Sinner EK, Li R, Marous DR, Townsend CA. ThnL, a B12-dependent radical S-adenosylmethionine enzyme, catalyzes thioether bond formation in carbapenem biosynthesis. Proc Natl Acad Sci U S A 2022; 119:e2206494119. [PMID: 35969793 PMCID: PMC9407657 DOI: 10.1073/pnas.2206494119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/19/2022] [Indexed: 11/18/2022] Open
Abstract
Complex carbapenems are important clinical antibiotics used to treat recalcitrant infections. Their biosynthetic gene clusters contain three essential B12-dependent radical S-adenosylmethionine (rSAM) enzymes. The majority of characterized enzymes in this subfamily catalyze methyl transfer, but only one is required to sequentially install all methionine-derived carbons in complex carbapenems. Therefore, it is probable that the other two rSAM enzymes have noncanonical functions. Through a series of fermentation and in vitro experiments, we show that ThnL uses radical SAM chemistry to catalyze thioether bond formation between C2 of a carbapenam precursor and pantetheine, uniting initial bicycle assembly common to all carbapenems with later tailoring events unique to complex carbapenems. ThnL also catalyzes reversible thiol/disulfide redox on pantetheine. Neither of these functions has been observed previously in a B12-dependent radical SAM enzyme. ThnL expands the known activity of this subclass of enzymes beyond carbon-carbon bond formation or rearrangement. It is also the only radical SAM enzyme currently known to catalyze carbon-sulfur bond formation with only an rSAM Fe-S cluster and no additional auxiliary clusters.
Collapse
Affiliation(s)
- Erica K. Sinner
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218
| | - Rongfeng Li
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218
| | - Daniel R. Marous
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218
| | - Craig A. Townsend
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218
| |
Collapse
|
21
|
Gagsteiger J, Jahn S, Heidinger L, Gericke L, Andexer JN, Friedrich T, Loenarz C, Layer G. A Cobalamin-Dependent Radical SAM Enzyme Catalyzes the Unique C α -Methylation of Glutamine in Methyl-Coenzyme M Reductase. Angew Chem Int Ed Engl 2022; 61:e202204198. [PMID: 35638156 PMCID: PMC9401015 DOI: 10.1002/anie.202204198] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Indexed: 12/22/2022]
Abstract
Methyl‐coenzyme M reductase, which is responsible for the production of the greenhouse gas methane during biological methane formation, carries several unique posttranslational amino acid modifications, including a 2‐(S)‐methylglutamine. The enzyme responsible for the Cα‐methylation of this glutamine is not known. Herein, we identify and characterize a cobalamin‐dependent radical SAM enzyme as the glutamine C‐methyltransferase. The recombinant protein from Methanoculleus thermophilus binds cobalamin in a base‐off, His‐off conformation and contains a single [4Fe‐4S] cluster. The cobalamin cofactor cycles between the methyl‐cob(III)alamin, cob(II)alamin and cob(I)alamin states during catalysis and produces methylated substrate, 5′‐deoxyadenosine and S‐adenosyl‐l‐homocysteine in a 1 : 1 : 1 ratio. The newly identified glutamine C‐methyltransferase belongs to the class B radical SAM methyltransferases known to catalyze challenging methylation reactions of sp3‐hybridized carbon atoms.
Collapse
Affiliation(s)
- Jana Gagsteiger
- Institut für Pharmazeutische Wissenschaften, Pharmazeutische Biologie, Albert-Ludwigs-Universität Freiburg, Stefan-Meier-Str. 19, 79104, Freiburg, Germany
| | - Sören Jahn
- Institut für Pharmazeutische Wissenschaften, Pharmazeutische und Medizinische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 25, 79104, Freiburg, Germany
| | - Lorenz Heidinger
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Lukas Gericke
- Institut für Pharmazeutische Wissenschaften, Pharmazeutische und Medizinische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 25, 79104, Freiburg, Germany
| | - Jennifer N Andexer
- Institut für Pharmazeutische Wissenschaften, Pharmazeutische und Medizinische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 25, 79104, Freiburg, Germany
| | - Thorsten Friedrich
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Christoph Loenarz
- Institut für Pharmazeutische Wissenschaften, Pharmazeutische und Medizinische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 25, 79104, Freiburg, Germany
| | - Gunhild Layer
- Institut für Pharmazeutische Wissenschaften, Pharmazeutische Biologie, Albert-Ludwigs-Universität Freiburg, Stefan-Meier-Str. 19, 79104, Freiburg, Germany
| |
Collapse
|
22
|
Lichstrahl MS, Townsend CA, Sinner EK. Stereochemical course of cobalamin-dependent radical SAM methylation by TokK and ThnK. RSC Chem Biol 2022; 3:1028-1034. [PMID: 36042702 PMCID: PMC9358933 DOI: 10.1039/d2cb00113f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/06/2022] [Indexed: 11/21/2022] Open
Abstract
Complex carbapenems are important clinical antibiotics for difficult-to-treat infections. An essential step in the biosyntheses of these natural products is stereospecific methylation at C6 and subsequent alkylations by cobalamin-dependent radical SAM methylases such as TokK and ThnK. We have prepared isotopically labeled substrates in a stereospecific manner and found that both homologous enzymes selectively abstract the 6-pro-S hydrogen, followed by methyl transfer to the opposite face to give the (6R)-methyl carbapenam product proceeding, therefore, by inversion of absolute configuration at C6. These data clarify an unexpected ambiguity in the recently solved substrate-bound crystal structure of TokK and have led to a stereochemically complete mechanistic proposal for both TokK and ThnK.
Collapse
Affiliation(s)
- Michael S Lichstrahl
- Department of Chemistry, The Johns Hopkins University 3400 N Charles St Baltimore Maryland USA
| | - Craig A Townsend
- Department of Chemistry, The Johns Hopkins University 3400 N Charles St Baltimore Maryland USA
| | - Erica K Sinner
- Department of Chemistry, The Johns Hopkins University 3400 N Charles St Baltimore Maryland USA
| |
Collapse
|
23
|
Bridwell-Rabb J, Li B, Drennan CL. Cobalamin-Dependent Radical S-Adenosylmethionine Enzymes: Capitalizing on Old Motifs for New Functions. ACS BIO & MED CHEM AU 2022; 2:173-186. [PMID: 35726326 PMCID: PMC9204698 DOI: 10.1021/acsbiomedchemau.1c00051] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 01/21/2023]
Abstract
The members of the radical S-adenosylmethionine (SAM) enzyme superfamily are responsible for catalyzing a diverse set of reactions in a multitude of biosynthetic pathways. Many members of this superfamily accomplish their transformations using the catalytic power of a 5'-deoxyadenosyl radical (5'-dAdo•), but there are also enzymes within this superfamily that bind auxiliary cofactors and extend the catalytic repertoire of SAM. In particular, the cobalamin (Cbl)-dependent class synergistically uses Cbl to facilitate challenging methylation and radical rearrangement reactions. Despite identification of this class by Sofia et al. 20 years ago, the low sequence identity between members has led to difficulty in predicting function of uncharacterized members, pinpointing catalytic residues, and elucidating reaction mechanisms. Here, we capitalize on the three recent structures of Cbl-dependent radical SAM enzymes that use common cofactors to facilitate ring contraction as well as radical-based and non-radical-based methylation reactions. With these three structures as a framework, we describe how the Cbl-dependent radical SAM enzymes repurpose the traditional SAM- and Cbl-binding motifs to form an active site where both Cbl and SAM can participate in catalysis. In addition, we describe how, in some cases, the classic SAM- and Cbl-binding motifs support the diverse functionality of this enzyme class, and finally, we define new motifs that are characteristic of Cbl-dependent radical SAM enzymes.
Collapse
Affiliation(s)
- Jennifer Bridwell-Rabb
- Department
of Chemistry, University of Michigan, 930 N University Avenue, Ann Arbor, Michigan 48109, United States,
| | - Bin Li
- Department
of Chemistry, University of Michigan, 930 N University Avenue, Ann Arbor, Michigan 48109, United States
| | - Catherine L. Drennan
- Department
of Chemistry, Massachusetts Institute of
Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States,Department
of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States,Howard
Hughes Medical Institute, Massachusetts
Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
24
|
Layer G, Jahn M, Moser J, Jahn D. Radical SAM Enzymes Involved in Tetrapyrrole Biosynthesis and Insertion. ACS BIO & MED CHEM AU 2022; 2:196-204. [PMID: 37101575 PMCID: PMC10114771 DOI: 10.1021/acsbiomedchemau.1c00061] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
The anaerobic biosyntheses of heme, heme d 1, and bacteriochlorophyll all require the action of radical SAM enzymes. During heme biosynthesis in some bacteria, coproporphyrinogen III dehydrogenase (CgdH) catalyzes the decarboxylation of two propionate side chains of coproporphyrinogen III to the corresponding vinyl groups of protoporphyrinogen IX. Its solved crystal structure was the first published structure for a radical SAM enzyme. In bacteria, heme is inserted into enzymes by the cytoplasmic heme chaperone HemW, a radical SAM enzyme structurally highly related to CgdH. In an alternative heme biosynthesis route found in archaea and sulfate-reducing bacteria, the two radical SAM enzymes AhbC and AhbD catalyze the removal of two acetate groups (AhbC) or the decarboxylation of two propionate side chains (AhbD). NirJ, a close homologue of AhbC, is required for propionate side chain removal during the formation of heme d 1 in some denitrifying bacteria. Biosynthesis of the fifth ring (ring E) of all chlorophylls is based on an unusual six-electron oxidative cyclization step. The sophisticated conversion of Mg-protoporphyrin IX monomethylester to protochlorophyllide is facilitated by an oxygen-independent cyclase termed BchE, which is a cobalamin-dependent radical SAM enzyme. Most of the radical SAM enzymes involved in tetrapyrrole biosynthesis were recognized as such by Sofia et al. in 2001 (Nucleic Acids Res.2001, 29, 1097-1106) and were biochemically characterized thereafter. Although much has been achieved, the challenging tetrapyrrole substrates represent a limiting factor for enzyme/substrate cocrystallization and the ultimate elucidation of the corresponding enzyme mechanisms.
Collapse
Affiliation(s)
- Gunhild Layer
- Institut
für Pharmazeutische Wissenschaften, Pharmazeutische Biologie, Albert-Ludwigs-Universität Freiburg, Stefan-Meier-Str. 19, 79104 Freiburg im Breisgau, Germany
- . Phone: ++49
0761 203 8373
| | - Martina Jahn
- Institut
für Mikrobiologie, Technische Universität
Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany
| | - Jürgen Moser
- Institut
für Mikrobiologie, Technische Universität
Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany
| | - Dieter Jahn
- Braunschweig
Integrated Center of Systems Biology BRICS, Technische Universität Braunschweig, Rebenring 56, 38106 Braunschweig, Germany
| |
Collapse
|
25
|
Dill Z, Li B, Bridwell-Rabb J. Purification and structural elucidation of a cobalamin-dependent radical SAM enzyme. Methods Enzymol 2022; 669:91-116. [PMID: 35644182 DOI: 10.1016/bs.mie.2021.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The cobalamin (Cbl)-dependent radical S-adenosylmethionine (SAM) enzymes use a [4Fe-4S] cluster, SAM, and Cbl to carry out remarkable catalytic feats in a large number of biosynthetic pathways. However, despite the abundance of annotated Cbl-dependent radical SAM enzymes, relatively few molecular details exist regarding how these enzymes function. Traditionally, challenges associated with purifying and reconstituting Cbl-dependent radical SAM enzymes have hindered biochemical studies aimed at elucidating the structures and mechanisms of these enzymes. Herein, we describe a bottom-up approach that was used to crystallize OxsB, learn about the overall architecture of a Cbl-dependent radical SAM enzyme, and facilitate mechanistic studies. We report lessons learned from the crystallization of different states of OxsB, including the apo-, selenomethionine (SeMet)-labeled, and fully reconstituted form of OxsB that has a [4Fe-4S] cluster, SAM, and Cbl bound. Further, we suggest that, when appropriate, this bottom-up method can be used to facilitate studies on enzymes in this class for which there are challenges associated with purifying and reconstituting the active enzyme.
Collapse
Affiliation(s)
- Zerick Dill
- Department of Chemistry, University of Michigan, Ann Arbor, MI, United States; Program in Chemical Biology, University of Michigan, Ann Arbor, MI, United States
| | - Bin Li
- Department of Chemistry, University of Michigan, Ann Arbor, MI, United States
| | - Jennifer Bridwell-Rabb
- Department of Chemistry, University of Michigan, Ann Arbor, MI, United States; Program in Chemical Biology, University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
26
|
Soualmia F, Guillot A, Sabat N, Brewee C, Kubiak X, Haumann M, Guinchard X, Benjdia A, Berteau O. Exploring the Biosynthetic Potential of TsrM, a B 12 -dependent Radical SAM Methyltransferase Catalyzing Non-radical Reactions. Chemistry 2022; 28:e202200627. [PMID: 35253932 DOI: 10.1002/chem.202200627] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Indexed: 12/20/2022]
Abstract
B12 -dependent radical SAM enzymes are an emerging enzyme family with approximately 200,000 proteins. These enzymes have been shown to catalyze chemically challenging reactions such as methyl transfer to sp2- and sp3-hybridized carbon atoms. However, to date we have little information regarding their complex mechanisms and their biosynthetic potential. Here we show, using X-ray absorption spectroscopy, mutagenesis and synthetic probes that the vitamin B12 -dependent radical SAM enzyme TsrM catalyzes not only C- but also N-methyl transfer reactions further expanding its synthetic versatility. We also demonstrate that TsrM has the unique ability to directly transfer a methyl group to the benzyl core of tryptophan, including the least reactive position C4. Collectively, our study supports that TsrM catalyzes non-radical reactions and establishes the usefulness of radical SAM enzymes for novel biosynthetic schemes including serial alkylation reactions at particularly inert C-H bonds.
Collapse
Affiliation(s)
- Feryel Soualmia
- Micalis Institute, ChemSyBio, Université Paris-Saclay, INRAE, AgroParisTech, 78350, Jouy-en-Josas, France
| | - Alain Guillot
- Micalis Institute, ChemSyBio, Université Paris-Saclay, INRAE, AgroParisTech, 78350, Jouy-en-Josas, France
| | - Nazarii Sabat
- UPR 2301, Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, 91198, Gif-sur-Yvette, France
| | - Clémence Brewee
- Micalis Institute, ChemSyBio, Université Paris-Saclay, INRAE, AgroParisTech, 78350, Jouy-en-Josas, France
| | - Xavier Kubiak
- Micalis Institute, ChemSyBio, Université Paris-Saclay, INRAE, AgroParisTech, 78350, Jouy-en-Josas, France
| | - Michael Haumann
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Xavier Guinchard
- UPR 2301, Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, 91198, Gif-sur-Yvette, France
| | - Alhosna Benjdia
- Micalis Institute, ChemSyBio, Université Paris-Saclay, INRAE, AgroParisTech, 78350, Jouy-en-Josas, France
| | - Olivier Berteau
- Micalis Institute, ChemSyBio, Université Paris-Saclay, INRAE, AgroParisTech, 78350, Jouy-en-Josas, France
| |
Collapse
|
27
|
Gagsteiger J, Jahn S, Heidinger L, Gericke L, Andexer JN, Friedrich T, Loenarz C, Layer G. A Cobalamin‐Dependent Radical SAM Enzyme Catalyzes the Unique Cα‐Methylation of Glutamine in Methyl‐Coenzyme M Reductase. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jana Gagsteiger
- Albert-Ludwigs-Universität Freiburg, Fakultät für Chemie und Pharmazie Institut für Pharmazeutische Wissenschaften, Pharmazeutische Biologie GERMANY
| | - Sören Jahn
- Albert-Ludwigs-Universität Freiburg, Fakultät für Chemie und Pharmazie Institut für Pharmazeutische Wissenschaften, Pharmazeutische und Medizinische Chemie GERMANY
| | - Lorenz Heidinger
- Albert-Ludwigs-Universität Freiburg Institut für Biochemie GERMANY
| | - Lukas Gericke
- Albert-Ludwigs-Universität Freiburg, Fakultät für Chemie und Pharmazie Institut für Pharmazeutische Wissenschaften, Pharmazeutische und Medizinische Chemie GERMANY
| | - Jennifer N. Andexer
- Albert-Ludwigs-Universität Freiburg, Fakultät für Chemie und Pharmazie Institut für Pharmazeutische Wissenschaften, Pharmazeutische und Medizinische Chemie GERMANY
| | - Thorsten Friedrich
- Albert-Ludwigs-Universität Freiburg, Fakultät für Chemie und Pharmazie Institut für Biochemie GERMANY
| | - Christoph Loenarz
- Albert-Ludwigs-Universität Freiburg, Fakultät für Chemie und Pharmazie Institut für Pharmazeutische Wissenschaften, Pharmazeutische und Medizinische Chemie GERMANY
| | - Gunhild Layer
- Albert-Ludwigs-Universität Freiburg, Fakultät für Chemie und Pharmazie Institut für Pharmazeutische Wissenschaften, Pharmazeutische Biologie Stefan-Meier-Str. 19 79104 Freiburg GERMANY
| |
Collapse
|
28
|
Jeyachandran VR, Boal AK. Structural insights into auxiliary cofactor usage by radical S-adenosylmethionine enzymes. Curr Opin Chem Biol 2022; 68:102153. [PMID: 35512465 DOI: 10.1016/j.cbpa.2022.102153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/22/2022] [Accepted: 03/28/2022] [Indexed: 11/03/2022]
Abstract
Radical S-adenosylmethionine (SAM) enzymes use a common catalytic core for diverse transformations. While all radical SAM enzymes bind a Fe4S4 cluster via a characteristic tri-cysteine motif, many bind additional metal cofactors. Recently reported structures of radical SAM enzymes that use methylcobalamin or additional iron-sulfur clusters as cosubstrates show that these auxiliary units are anchored by N- and C-terminal domains that vary significantly in size and topology. Despite this architectural diversity, all use a common surface for auxiliary cofactor docking. In the sulfur insertion and metallocofactor assembly systems evaluated here, interaction with iron-sulfur cluster assembly proteins or downstream scaffold proteins is an important component of catalysis. Structures of these complexes represent important new frontiers in structural analysis of radical SAM enzymes.
Collapse
Affiliation(s)
- Vivian Robert Jeyachandran
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Amie K Boal
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA; Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
29
|
Ulrich EC, Drennan CL. The Atypical Cobalamin-Dependent S-Adenosyl-l-Methionine Nonradical Methylase TsrM and Its Radical Counterparts. J Am Chem Soc 2022; 144:5673-5684. [PMID: 35344653 PMCID: PMC8992657 DOI: 10.1021/jacs.1c12064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Indexed: 12/29/2022]
Abstract
Cobalamin (Cbl)-dependent S-adenosyl-l-methionine (AdoMet) radical methylases are known for their use of a dual cofactor system to perform challenging radical methylation reactions at unactivated carbon and phosphorus centers. These enzymes are part of a larger subgroup of Cbl-dependent AdoMet radical enzymes that also perform difficult ring contractions and radical rearrangements. This subgroup is a largely untapped reservoir of diverse chemistry that requires steady efforts in biochemical and structural characterization to reveal its complexity. In this Perspective, we highlight the significant efforts over many years to elucidate the function, mechanism, and structure of TsrM, an unexpected nonradical methylase in this subgroup. We also discuss recent achievements in characterizing radical methylase subgroup members that exemplify how key tools in mechanistic enzymology are valuable time and again. Finally, we identify recent enzyme activity studies that have made use of bioinformatic analyses to expand our definition of the subgroup. Additional breakthroughs in radical (and nonradical) enzymatic chemistry and challenging transformations from the unexplored space of this subgroup are undoubtedly on the horizon.
Collapse
Affiliation(s)
- Emily C. Ulrich
- Department
of Biology and Department of Chemistry, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Catherine L. Drennan
- Department
of Biology and Department of Chemistry, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
- Howard
Hughes Medical Institute, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
30
|
Jeter VL, Escalante-Semerena JC. Elevated Levels of an Enzyme Involved in Coenzyme B 12 Biosynthesis Kills Escherichia coli. mBio 2022; 13:e0269721. [PMID: 35012330 PMCID: PMC8749415 DOI: 10.1128/mbio.02697-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/29/2021] [Indexed: 11/24/2022] Open
Abstract
Cobamides are cobalt-containing cyclic tetrapyrroles involved in the metabolism of organisms from all domains of life but produced de novo only by some bacteria and archaea. The pathway is thought to involve up to 30 enzymes, five of which comprise the so-called "late" steps of cobamide biosynthesis. Two of these reactions activate the corrin ring, one activates the nucleobase, a fourth one condenses activated precursors, and a phosphatase yields the final product of the pathway. The penultimate step is catalyzed by a polytopic integral membrane protein, namely, the cobamide (5'-phosphate) synthase, also known as cobamide synthase. At present, the reason for the association of all putative and bona fide cobamide synthases to cell membranes is unclear and intriguing. Here, we show that, in Escherichia coli, elevated levels of cobamide synthase kill the cell by dissipating the proton motive force and compromising membrane stability. We also show that overproduction of the phosphatase that catalyzes the last step of the pathway or phage shock protein A prevents cell death when the gene encoding cobamide synthase is overexpressed. We propose that in E. coli, and probably all cobamide producers, cobamide synthase anchors a multienzyme complex responsible for the assembly of vitamin B12 and other cobamides. IMPORTANCE E. coli is the best-studied prokaryote, and some strains of this bacterium are human pathogens. We show that when the level of the enzyme that catalyzes the penultimate step of vitamin B12 biosynthesis is elevated, the viability of E. coli decreases. These findings are of broad significance because the enzyme alluded to is an integral membrane protein in all cobamide-producing bacteria, many of which are human pathogens. Our results may provide new avenues for the development of antimicrobials, because none of the enzymes involved in vitamin B12 biosynthesis are present in mammalian cells.
Collapse
Affiliation(s)
- Victoria L. Jeter
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | | |
Collapse
|
31
|
Sinner E, Marous DR, Townsend CA. Evolution of Methods for the Study of Cobalamin-Dependent Radical SAM Enzymes. ACS BIO & MED CHEM AU 2022; 2:4-10. [PMID: 35341020 PMCID: PMC8950095 DOI: 10.1021/acsbiomedchemau.1c00032] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
While bioinformatic evidence of cobalamin-dependent radical S-adenosylmethionine (SAM) enzymes has existed since the naming of the radical SAM superfamily in 2001, none were biochemically characterized until 2011. In the past decade, the field has flourished as methodological advances have facilitated study of the subfamily. Because of the ingenuity and perseverance of researchers in this field, we now have functional, mechanistic, and structural insight into how this class of enzymes harnesses the power of both the cobalamin and radical SAM cofactors to achieve catalysis. All of the early characterized enzymes in this subfamily were methylases, but the activity of these enzymes has recently been expanded beyond methylation. We anticipate that the characterized functions of these enzymes will become both better understood and increasingly diverse with continued study.
Collapse
Affiliation(s)
- Erica
K. Sinner
- Department
of Chemistry, Johns Hopkins University, 3400 N Charles St., Baltimore, Maryland 21218, United States
| | - Daniel R. Marous
- Department
of Chemistry, Wittenberg University, 200 W Ward St., Springfield, Ohio 45504, United States
| | - Craig A. Townsend
- Department
of Chemistry, Johns Hopkins University, 3400 N Charles St., Baltimore, Maryland 21218, United States
| |
Collapse
|
32
|
Wu J, Chen SL. Key Piece in the Wolfe Cycle of Methanogenesis: The S–S Bond Dissociation Conducted by Noncubane [Fe4S4] Cluster-Dependent Heterodisulfide Reductase. ACS Catal 2022. [DOI: 10.1021/acscatal.1c06036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jue Wu
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Shi-Lu Chen
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
33
|
Lee YH, Liu HW. Studies of GenK and OxsB, two B 12-dependent radical SAM enzymes involved in natural product biosynthesis. Methods Enzymol 2022; 669:71-90. [PMID: 35644181 PMCID: PMC9178707 DOI: 10.1016/bs.mie.2021.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The B12-dependent radical SAM enzymes are an emerging subgroup of biological catalysts that bind a cobalamin cofactor in addition to the canonical [Fe4S4] cluster characteristic of radical SAM enzymes. Most of the B12-dependent radical SAM enzymes that have been characterized mediated methyltransfer reactions; however, a small number are known to catalyze more diverse reactions such as ring contractions. Thus, Genk is a methyltransferase from the gentamicin C biosynthetic pathway, whereas OxsB catalyzes the oxidative ring contraction of 2'-deoxyadenosine 5'-phosphates to generate an oxetane aldehyde during the biosynthesis of oxetanocin A. The preparation and in vitro characterization of such enzymes is complicated by the presence of two redox sensitive cofactors in addition to challenges in obtaining soluble protein for study. This chapter describes expression, purification and assay methodologies for GenK and OxsB highlighting the use of denaturation/refolding protocols for solubilizing inclusion bodies as well as the use of cluster assembly and cobalamin uptake machinery during in vivo expression.
Collapse
Affiliation(s)
- Yu-Hsuan Lee
- Department of Chemistry, University of Texas at Austin, Austin, TX, United States
| | - Hung-Wen Liu
- Department of Chemistry, University of Texas at Austin, Austin, TX, United States; Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, TX, United States.
| |
Collapse
|
34
|
Crystallographic snapshots of a B 12-dependent radical SAM methyltransferase. Nature 2022; 602:336-342. [PMID: 35110733 PMCID: PMC8828468 DOI: 10.1038/s41586-021-04355-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 12/15/2021] [Indexed: 01/01/2023]
Abstract
By catalysing the microbial formation of methane, methyl-coenzyme M reductase has a central role in the global levels of this greenhouse gas1,2. The activity of methyl-coenzyme M reductase is profoundly affected by several unique post-translational modifications3–6, such as a unique C-methylation reaction catalysed by methanogenesis marker protein 10 (Mmp10), a radical S-adenosyl-l-methionine (SAM) enzyme7,8. Here we report the spectroscopic investigation and atomic resolution structure of Mmp10 from Methanosarcina acetivorans, a unique B12 (cobalamin)-dependent radical SAM enzyme9. The structure of Mmp10 reveals a unique enzyme architecture with four metallic centres and critical structural features involved in the control of catalysis. In addition, the structure of the enzyme–substrate complex offers a glimpse into a B12-dependent radical SAM enzyme in a precatalytic state. By combining electron paramagnetic resonance spectroscopy, structural biology and biochemistry, our study illuminates the mechanism by which the emerging superfamily of B12-dependent radical SAM enzymes catalyse chemically challenging alkylation reactions and identifies distinctive active site rearrangements to provide a structural rationale for the dual use of the SAM cofactor for radical and nucleophilic chemistry. Structural and spectroscopic studies show how a B12-dependent radical SAM enzyme catalyses unique and challenging alkylation chemistry, including protein post-translational modification required for methane biosynthesis.
Collapse
|
35
|
Knox HL, Sinner EK, Townsend CA, Boal AK, Booker SJ. Structure of a B 12-dependent radical SAM enzyme in carbapenem biosynthesis. Nature 2022; 602:343-348. [PMID: 35110734 PMCID: PMC8950224 DOI: 10.1038/s41586-021-04392-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 12/22/2021] [Indexed: 11/08/2022]
Abstract
Carbapenems are antibiotics of last resort in the clinic. Owing to their potency and broad-spectrum activity, they are an important part of the antibiotic arsenal. The vital role of carbapenems is exemplified by the approval acquired by Merck from the US Food and Drug Administration (FDA) for the use of an imipenem combination therapy to treat the increased levels of hospital-acquired and ventilator-associated bacterial pneumonia that have occurred during the COVID-19 pandemic1. The C6 hydroxyethyl side chain distinguishes the clinically used carbapenems from the other classes of β-lactam antibiotics and is responsible for their low susceptibility to inactivation by occluding water from the β-lactamase active site2. The construction of the C6 hydroxyethyl side chain is mediated by cobalamin- or B12-dependent radical S-adenosylmethionine (SAM) enzymes3. These radical SAM methylases (RSMTs) assemble the alkyl backbone by sequential methylation reactions, and thereby underlie the therapeutic usefulness of clinically used carbapenems. Here we present X-ray crystal structures of TokK, a B12-dependent RSMT that catalyses three-sequential methylations during the biosynthesis of asparenomycin A. These structures, which contain the two metallocofactors of the enzyme and were determined in the presence and absence of a carbapenam substrate, provide a visualization of a B12-dependent RSMT that uses the radical mechanism that is shared by most of these enzymes. The structures provide insight into the stereochemistry of initial C6 methylation and suggest that substrate positioning governs the rate of each methylation event.
Collapse
Affiliation(s)
- Hayley L Knox
- Department of Chemistry, Pennsylvania State University, University Park, PA, USA
| | - Erica K Sinner
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, USA
| | - Craig A Townsend
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, USA.
| | - Amie K Boal
- Department of Chemistry, Pennsylvania State University, University Park, PA, USA.
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA.
| | - Squire J Booker
- Department of Chemistry, Pennsylvania State University, University Park, PA, USA.
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA.
- The Howard Hughes Medical Institute, Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
36
|
Zhi N, Zhu H, Qiao J, Dong M. Recent progress in radical SAM enzymes: New reactions and mechanisms. CHINESE SCIENCE BULLETIN-CHINESE 2021. [DOI: 10.1360/tb-2021-1067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
37
|
Suh CE, Carder HM, Wendlandt AE. Selective Transformations of Carbohydrates Inspired by Radical-Based Enzymatic Mechanisms. ACS Chem Biol 2021; 16:1814-1828. [PMID: 33988380 DOI: 10.1021/acschembio.1c00190] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Enzymes are a longstanding source of inspiration for synthetic reaction development. However, enzymatic reactivity and selectivity are frequently untenable in a synthetic context, as the principles that govern control in an enzymatic setting often do not translate to small molecule catalysis. Recent synthetic methods have revealed the viability of using small molecule catalysts to promote highly selective radical-mediated transformations of minimally protected sugar substrates. These transformations share conceptual similarities with radical SAM enzymes found in microbial carbohydrate biosynthesis and present opportunities for synthetic chemists to access microbial and unnatural carbohydrate building blocks without the need for protecting groups or lengthy synthetic sequences. Here, we highlight strategies through which radical reaction pathways can enable the site-, regio-, and diastereoselective transformation of minimally protected carbohydrates in both synthetic and enzymatic systems.
Collapse
Affiliation(s)
- Carolyn E. Suh
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Hayden M. Carder
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Alison E. Wendlandt
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
38
|
Lee YJ, Dai N, Müller SI, Guan C, Parker MJ, Fraser ME, Walsh SE, Sridar J, Mulholland A, Nayak K, Sun Z, Lin YC, Comb DG, Marks K, Gonzalez R, Dowling DP, Bandarian V, Saleh L, Corrêa IR, Weigele PR. Pathways of thymidine hypermodification. Nucleic Acids Res 2021; 50:3001-3017. [PMID: 34522950 PMCID: PMC8989533 DOI: 10.1093/nar/gkab781] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/25/2021] [Accepted: 09/12/2021] [Indexed: 11/15/2022] Open
Abstract
The DNAs of bacterial viruses are known to contain diverse, chemically complex modifications to thymidine that protect them from the endonuclease-based defenses of their cellular hosts, but whose biosynthetic origins are enigmatic. Up to half of thymidines in the Pseudomonas phage M6, the Salmonella phage ViI, and others, contain exotic chemical moieties synthesized through the post-replicative modification of 5-hydroxymethyluridine (5-hmdU). We have determined that these thymidine hypermodifications are derived from free amino acids enzymatically installed on 5-hmdU. These appended amino acids are further sculpted by various enzyme classes such as radical SAM isomerases, PLP-dependent decarboxylases, flavin-dependent lyases and acetyltransferases. The combinatorial permutations of thymidine hypermodification genes found in viral metagenomes from geographically widespread sources suggests an untapped reservoir of chemical diversity in DNA hypermodifications.
Collapse
Affiliation(s)
- Yan-Jiun Lee
- Research Department, New England Biolabs, Inc., 240 County Road, Ipswich, MA01938, USA
| | - Nan Dai
- Research Department, New England Biolabs, Inc., 240 County Road, Ipswich, MA01938, USA
| | - Stephanie I Müller
- Research Department, New England Biolabs, Inc., 240 County Road, Ipswich, MA01938, USA
| | - Chudi Guan
- Research Department, New England Biolabs, Inc., 240 County Road, Ipswich, MA01938, USA
| | - Mackenzie J Parker
- Research Department, New England Biolabs, Inc., 240 County Road, Ipswich, MA01938, USA
| | - Morgan E Fraser
- Research Department, New England Biolabs, Inc., 240 County Road, Ipswich, MA01938, USA
| | - Shannon E Walsh
- Research Department, New England Biolabs, Inc., 240 County Road, Ipswich, MA01938, USA
| | - Janani Sridar
- Research Department, New England Biolabs, Inc., 240 County Road, Ipswich, MA01938, USA
| | - Andrew Mulholland
- Research Department, New England Biolabs, Inc., 240 County Road, Ipswich, MA01938, USA
| | - Krutika Nayak
- Research Department, New England Biolabs, Inc., 240 County Road, Ipswich, MA01938, USA
| | - Zhiyi Sun
- Research Department, New England Biolabs, Inc., 240 County Road, Ipswich, MA01938, USA
| | - Yu-Cheng Lin
- Research Department, New England Biolabs, Inc., 240 County Road, Ipswich, MA01938, USA
| | - Donald G Comb
- Research Department, New England Biolabs, Inc., 240 County Road, Ipswich, MA01938, USA
| | - Katherine Marks
- Research Department, New England Biolabs, Inc., 240 County Road, Ipswich, MA01938, USA
| | - Reyaz Gonzalez
- Chemistry Department, University of Massachusetts Boston, 100 William T. Morrissey Blvd. Boston, MA02125, USA
| | - Daniel P Dowling
- Chemistry Department, University of Massachusetts Boston, 100 William T. Morrissey Blvd. Boston, MA02125, USA
| | - Vahe Bandarian
- Department of Chemistry, University of Utah, 315 South 1400 East Salt Lake City, UT 84112, USA
| | - Lana Saleh
- Research Department, New England Biolabs, Inc., 240 County Road, Ipswich, MA01938, USA
| | - Ivan R Corrêa
- Research Department, New England Biolabs, Inc., 240 County Road, Ipswich, MA01938, USA
| | - Peter R Weigele
- Research Department, New England Biolabs, Inc., 240 County Road, Ipswich, MA01938, USA
| |
Collapse
|
39
|
Abstract
![]()
TYW1 is a radical S-adenosyl-l-methionine
(SAM) enzyme that catalyzes the condensation of pyruvate and N-methylguanosine-containing tRNAPhe, forming
4-demethylwyosine-containing tRNAPhe. Homologues of TYW1
are found in both archaea and eukarya; archaeal homologues consist
of a single domain, while eukaryal homologues contain a flavin binding
domain in addition to the radical SAM domain shared with archaeal
homologues. In this study, TYW1 from Saccharomyces cerevisiae (ScTYW1) was heterologously expressed in Escherichia coli and purified to homogeneity. ScTYW1 is purified with 0.54 ± 0.07 and 4.2 ± 1.9 equiv of
flavin mononucleotide (FMN) and iron, respectively, per mole of protein,
suggesting the protein is ∼50% replete with Fe–S clusters
and FMN. While both NADPH and NADH are sufficient for activity, significantly
more product is observed when used in combination with flavin nucleotides. ScTYW1 is the first example of a radical SAM flavoenzyme
that is active with NAD(P)H alone.
Collapse
Affiliation(s)
- Anthony P Young
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Vahe Bandarian
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
40
|
Ye Y, Fu H, Hyster TK. Activation modes in biocatalytic radical cyclization reactions. J Ind Microbiol Biotechnol 2021; 48:kuab021. [PMID: 33674826 PMCID: PMC8210684 DOI: 10.1093/jimb/kuab021] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/26/2021] [Indexed: 12/17/2022]
Abstract
Radical cyclizations are essential reactions in the biosynthesis of secondary metabolites and the chemical synthesis of societally valuable molecules. In this review, we highlight the general mechanisms utilized in biocatalytic radical cyclizations. We specifically highlight cytochrome P450 monooxygenases (P450s) involved in the biosynthesis of mycocyclosin and vancomycin, nonheme iron- and α-ketoglutarate-dependent dioxygenases (Fe/αKGDs) used in the biosynthesis of kainic acid, scopolamine, and isopenicillin N, and radical S-adenosylmethionine (SAM) enzymes that facilitate the biosynthesis of oxetanocin A, menaquinone, and F420. Beyond natural mechanisms, we also examine repurposed flavin-dependent "ene"-reductases (ERED) for non-natural radical cyclization. Overall, these general mechanisms underscore the opportunity for enzymes to augment and enhance the synthesis of complex molecules using radical mechanisms.
Collapse
Affiliation(s)
- Yuxuan Ye
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Haigen Fu
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Todd K Hyster
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
41
|
Zhong A, Lee YH, Liu YN, Liu HW. Biosynthesis of Oxetanocin-A Includes a B 12-Dependent Radical SAM Enzyme That Can Catalyze both Oxidative Ring Contraction and the Demethylation of SAM. Biochemistry 2021; 60:537-546. [PMID: 33560833 PMCID: PMC7904626 DOI: 10.1021/acs.biochem.0c00915] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Oxetanocin-A is an antitumor, antiviral, and antibacterial nucleoside. It is biosynthesized via the oxidative ring contraction of a purine nucleoside co-opted from primary metabolism. This reaction is catalyzed by a B12-dependent radical S-adenosyl-l-methionine (SAM) enzyme, OxsB, and a phosphohydrolase, OxsA. Previous experiments showed that the product of the OxsB/OxsA-catalyzed reaction is an oxetane aldehyde produced alongside an uncharacterized byproduct. Experiments reported herein reveal that OxsB/OxsA complex formation is crucial for the ring contraction reaction and that reduction of the aldehyde intermediate is catalyzed by a nonspecific dehydrogenase from the general cellular pool. In addition, the byproduct is identified as a 1,3-thiazinane adduct between the aldehyde and l-homocysteine. While homocysteine was never included in the OxsB/OxsA assays, the data suggest that it can be generated from SAM via S-adenosyl-l-homocysteine (SAH). Further study revealed that conversion of SAM to SAH is facilitated by OxsB; however, the subsequent conversion of SAH to homocysteine is due to protein contaminants that co-purify with OxsA. Nevertheless, the observed demethylation of SAM to SAH suggests possible methyltransferase activity of OxsB, and substrate methylation was indeed detected in the OxsB-catalyzed reaction. This work is significant because it not only completes the description of the oxetanocin-A biosynthetic pathway but also suggests that OxsB may be capable of methyltransferase activity.
Collapse
Affiliation(s)
- Aoshu Zhong
- Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, TX 78712, USA
| | - Yu-Hsuan Lee
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA
| | - Yung-nan Liu
- Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, TX 78712, USA
| | - Hung-wen Liu
- Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, TX 78712, USA
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
42
|
Knox HL, Chen PYT, Blaszczyk AJ, Mukherjee A, Grove TL, Schwalm EL, Wang B, Drennan CL, Booker SJ. Structural basis for non-radical catalysis by TsrM, a radical SAM methylase. Nat Chem Biol 2021; 17:485-491. [PMID: 33462497 PMCID: PMC7990684 DOI: 10.1038/s41589-020-00717-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 11/09/2020] [Accepted: 11/24/2020] [Indexed: 12/19/2022]
Abstract
TsrM methylates C2 of the indole ring of L-tryptophan (Trp) during the biosynthesis of the quinaldic acid moiety of thiostrepton. It is annotated as a cobalamin-dependent radical S-adenosylmethionine (SAM) methylase; however, TsrM does not reductively cleave SAM to the universal 5ʹ-deoxyadenosyl 5ʹ-radical intermediate, a hallmark of radical-SAM (RS) enzymes. Herein, we report structures of TsrM from Kitasatospora setae, the first of a cobalamin-dependent radical SAM methylase. Unexpectedly, the structures show an essential arginine residue that resides in the proximal coordination sphere of the cobalamin cofactor and a [4Fe–4S] cluster that is ligated by a glutamyl residue and three cysteines in a canonical CxxxCxxC RS motif. Structures in the presence of substrates suggest a substrate-assisted mechanism of catalysis, wherein the carboxylate group of SAM serves as a general base to deprotonate N1 of the tryptophan substrate, facilitating formation of a C2 carbanion. The first crystal structures of a cobalamin-dependent radical SAM methylase reveal an unexpected mode of methylation.
Collapse
Affiliation(s)
- Hayley L Knox
- Department of Chemistry, Pennsylvania State University, University Park, PA, USA
| | - Percival Yang-Ting Chen
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA.,Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, USA
| | - Anthony J Blaszczyk
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA.,Catalent Pharma Solutions, Gaithersburg, MD, USA
| | - Arnab Mukherjee
- Department of Chemistry, Pennsylvania State University, University Park, PA, USA
| | - Tyler L Grove
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Erica L Schwalm
- Department of Chemistry, Pennsylvania State University, University Park, PA, USA.,Merck & Co., Inc., Rahway, NJ, USA
| | - Bo Wang
- Department of Chemistry, Pennsylvania State University, University Park, PA, USA
| | - Catherine L Drennan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Squire J Booker
- Department of Chemistry, Pennsylvania State University, University Park, PA, USA. .,Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA. .,Howard Hughes Medical Institute, Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
43
|
Vitamin B 12-dependent biosynthesis ties amplified 2-methylhopanoid production during oceanic anoxic events to nitrification. Proc Natl Acad Sci U S A 2020; 117:32996-33004. [PMID: 33318211 DOI: 10.1073/pnas.2012357117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bacterial hopanoid lipids are ubiquitous in the geologic record and serve as biomarkers for reconstructing Earth's climatic and biogeochemical evolution. Specifically, the abundance of 2-methylhopanoids deposited during Mesozoic ocean anoxic events (OAEs) and other intervals has been interpreted to reflect proliferation of nitrogen-fixing marine cyanobacteria. However, there currently is no conclusive evidence for 2-methylhopanoid production by extant marine cyanobacteria. As an alternative explanation, here we report 2-methylhopanoid production by bacteria of the genus Nitrobacter, cosmopolitan nitrite oxidizers that inhabit nutrient-rich freshwater, brackish, and marine environments. The model organism Nitrobacter vulgaris produced only trace amounts of 2-methylhopanoids when grown in minimal medium or with added methionine, the presumed biosynthetic methyl donor. Supplementation of cultures with cobalamin (vitamin B12) increased nitrite oxidation rates and stimulated a 33-fold increase of 2-methylhopanoid abundance, indicating that the biosynthetic reaction mechanism is cobalamin dependent. Because Nitrobacter spp. cannot synthesize cobalamin, we postulate that they acquire it from organisms inhabiting a shared ecological niche-for example, ammonia-oxidizing archaea. We propose that during nutrient-rich conditions, cobalamin-based mutualism intensifies upper water column nitrification, thus promoting 2-methylhopanoid deposition. In contrast, anoxia underlying oligotrophic surface ocean conditions in restricted basins would prompt shoaling of anaerobic ammonium oxidation, leading to low observed 2-methylhopanoid abundances. The first scenario is consistent with hypotheses of enhanced nutrient loading during OAEs, while the second is consistent with the sedimentary record of Pliocene-Pleistocene Mediterranean sapropel events. We thus hypothesize that nitrogen cycling in the Pliocene-Pleistocene Mediterranean resembled modern, highly stratified basins, whereas no modern analog exists for OAEs.
Collapse
|
44
|
Mg-protoporphyrin IX monomethyl ester cyclase from Rhodobacter capsulatus: radical SAM-dependent synthesis of the isocyclic ring of bacteriochlorophylls. Biochem J 2020; 477:4635-4654. [DOI: 10.1042/bcj20200761] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 11/17/2022]
Abstract
During bacteriochlorophyll a biosynthesis, the oxygen-independent conversion of Mg-protoporphyrin IX monomethyl ester (Mg-PME) to protochlorophyllide (Pchlide) is catalyzed by the anaerobic Mg-PME cyclase termed BchE. Bioinformatics analyses in combination with pigment studies of cobalamin-requiring Rhodobacter capsulatus mutants indicated an unusual radical S-adenosylmethionine (SAM) and cobalamin-dependent BchE catalysis. However, in vitro biosynthesis of the isocyclic ring moiety of bacteriochlorophyll using purified recombinant BchE has never been demonstrated. We established a spectroscopic in vitro activity assay which was subsequently validated by HPLC analyses and H218O isotope label transfer onto the carbonyl-group (C-131-oxo) of the isocyclic ring of Pchlide. The reaction product was further converted to chlorophyllide in the presence of light-dependent Pchlide reductase. BchE activity was stimulated by increasing concentrations of NADPH or SAM, and inhibited by S-adenosylhomocysteine. Subcellular fractionation experiments revealed that membrane-localized BchE requires an additional, heat-sensitive cytosolic component for activity. BchE catalysis was not sustained in chimeric experiments when a cytosolic extract from E. coli was used as a substitute. Size-fractionation of the soluble R. capsulatus fraction indicated that enzymatic activity relies on a specific component with an estimated molecular mass between 3 and 10 kDa. A structure guided site-directed mutagenesis approach was performed on the basis of a three-dimensional homology model of BchE. A newly established in vivo complementation assay was used to investigate 24 BchE mutant proteins. Potential ligands of the [4Fe-4S] cluster (Cys204, Cys208, Cys211), of SAM (Phe210, Glu308 and Lys320) and of the proposed cobalamin cofactor (Asp248, Glu249, Leu29, Thr71, Val97) were identified.
Collapse
|
45
|
|
46
|
Kieninger C, Wurst K, Podewitz M, Stanley M, Deery E, Lawrence AD, Liedl KR, Warren MJ, Kräutler B. Replacement of the Cobalt Center of Vitamin B
12
by Nickel: Nibalamin and Nibyric Acid Prepared from Metal‐Free B
12
Ligands Hydrogenobalamin and Hydrogenobyric Acid. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Christoph Kieninger
- Institute of Organic Chemistry University of Innsbruck 6020 Innsbruck Austria
- Center for Molecular Biosciences (CMBI) University of Innsbruck 6020 Innsbruck Austria
| | - Klaus Wurst
- Institute of General Inorganic and Theoretical Chemistry University of Innsbruck 6020 Innsbruck Austria
| | - Maren Podewitz
- Center for Molecular Biosciences (CMBI) University of Innsbruck 6020 Innsbruck Austria
- Institute of General Inorganic and Theoretical Chemistry University of Innsbruck 6020 Innsbruck Austria
| | - Maria Stanley
- School of Biosciences University of Kent Canterbury CT2 7NJ UK
| | - Evelyne Deery
- School of Biosciences University of Kent Canterbury CT2 7NJ UK
| | | | - Klaus R. Liedl
- Center for Molecular Biosciences (CMBI) University of Innsbruck 6020 Innsbruck Austria
- Institute of General Inorganic and Theoretical Chemistry University of Innsbruck 6020 Innsbruck Austria
| | - Martin J. Warren
- School of Biosciences University of Kent Canterbury CT2 7NJ UK
- Quadram Institute Bioscience Norwich Science Park Norwich NR4 7UQ UK
| | - Bernhard Kräutler
- Institute of Organic Chemistry University of Innsbruck 6020 Innsbruck Austria
- Center for Molecular Biosciences (CMBI) University of Innsbruck 6020 Innsbruck Austria
| |
Collapse
|
47
|
Kieninger C, Wurst K, Podewitz M, Stanley M, Deery E, Lawrence AD, Liedl KR, Warren MJ, Kräutler B. Replacement of the Cobalt Center of Vitamin B 12 by Nickel: Nibalamin and Nibyric Acid Prepared from Metal-Free B 12 Ligands Hydrogenobalamin and Hydrogenobyric Acid. Angew Chem Int Ed Engl 2020; 59:20129-20136. [PMID: 32686888 PMCID: PMC7693184 DOI: 10.1002/anie.202008407] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Indexed: 12/18/2022]
Abstract
The (formal) replacement of Co in cobalamin (Cbl) by NiII generates nibalamin (Nibl), a new transition-metal analogue of vitamin B12 . Described here is Nibl, synthesized by incorporation of a NiII ion into the metal-free B12 ligand hydrogenobalamin (Hbl), itself prepared from hydrogenobyric acid (Hby). The related NiII corrin nibyric acid (Niby) was similarly synthesized from Hby, the metal-free cobyric acid ligand. The solution structures of Hbl, and Niby and Nibl, were characterized by spectroscopic studies. Hbl features two inner protons bound at N2 and N4 of the corrin ligand, as discovered in Hby. X-ray analysis of Niby shows the structural adaptation of the corrin ligand to NiII ions and the coordination behavior of NiII . The diamagnetic Niby and Nibl, and corresponding isoelectronic CoI corrins, were deduced to be isostructural. Nibl is a structural mimic of four-coordinate base-off Cbls, as verified by its ability to act as a strong inhibitor of bacterial adenosyltransferase.
Collapse
Affiliation(s)
- Christoph Kieninger
- Institute of Organic ChemistryUniversity of Innsbruck6020InnsbruckAustria
- Center for Molecular Biosciences (CMBI)University of Innsbruck6020InnsbruckAustria
| | - Klaus Wurst
- Institute of GeneralInorganic and Theoretical ChemistryUniversity of Innsbruck6020InnsbruckAustria
| | - Maren Podewitz
- Center for Molecular Biosciences (CMBI)University of Innsbruck6020InnsbruckAustria
- Institute of GeneralInorganic and Theoretical ChemistryUniversity of Innsbruck6020InnsbruckAustria
| | - Maria Stanley
- School of BiosciencesUniversity of KentCanterburyCT2 7NJUK
| | - Evelyne Deery
- School of BiosciencesUniversity of KentCanterburyCT2 7NJUK
| | | | - Klaus R. Liedl
- Center for Molecular Biosciences (CMBI)University of Innsbruck6020InnsbruckAustria
- Institute of GeneralInorganic and Theoretical ChemistryUniversity of Innsbruck6020InnsbruckAustria
| | - Martin J. Warren
- School of BiosciencesUniversity of KentCanterburyCT2 7NJUK
- Quadram Institute BioscienceNorwich Science ParkNorwichNR4 7UQUK
| | - Bernhard Kräutler
- Institute of Organic ChemistryUniversity of Innsbruck6020InnsbruckAustria
- Center for Molecular Biosciences (CMBI)University of Innsbruck6020InnsbruckAustria
| |
Collapse
|
48
|
Zhang P, MacTavish BS, Yang G, Chen M, Roh J, Newsome KR, Bruner SD, Ding Y. Cyanobacterial Dihydroxyacid Dehydratases Are a Promising Growth Inhibition Target. ACS Chem Biol 2020; 15:2281-2288. [PMID: 32786290 PMCID: PMC8162731 DOI: 10.1021/acschembio.0c00507] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Microbes are essential to the global ecosystem, but undesirable microbial growth causes issues ranging from food spoilage and infectious diseases to harmful cyanobacterial blooms. The use of chemicals to control microbial growth has achieved significant success, while specific roles for a majority of essential genes in growth control remain unexplored. Here, we show the growth inhibition of cyanobacterial species by targeting an essential enzyme for the biosynthesis of branched-chain amino acids. Specifically, we report the biochemical, genetic, and structural characterization of dihydroxyacid dehydratase from the model cyanobacterium Synechocystis sp. PCC 6803 (SnDHAD). Our studies suggest that SnDHAD is an oxygen-stable enzyme containing a [2Fe-2S] cluster. Furthermore, we demonstrate that SnDHAD is selectively inhibited in vitro and in vivo by the natural product aspterric acid, which also inhibits the growth of representative bloom-forming Microcystis and Anabaena strains but has minimal effects on microbial pathogens with [4Fe-4S] containing DHADs. This study suggests DHADs as a promising target for the precise growth control of microbes and highlights the exploration of other untargeted essential genes for microbial management.
Collapse
Affiliation(s)
- Peilan Zhang
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, Florida, 32610, United States
| | - Brian S. MacTavish
- Department of Chemistry, University of Florida, Gainesville, Florida, 32611, United States
| | - Guang Yang
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, Florida, 32610, United States
| | - Manyun Chen
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, Florida, 32610, United States
| | - Jaehyeok Roh
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, Florida, 32610, United States
| | - Kevin R. Newsome
- Department of Chemistry, University of Florida, Gainesville, Florida, 32611, United States
| | - Steven D. Bruner
- Department of Chemistry, University of Florida, Gainesville, Florida, 32611, United States
| | - Yousong Ding
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, Florida, 32610, United States
| |
Collapse
|
49
|
Sun SQ, Chen SL. An Unprecedented Ring-Contraction Mechanism in Cobalamin-Dependent Radical S-Adenosylmethionine Enzymes. J Phys Chem Lett 2020; 11:6812-6818. [PMID: 32787210 DOI: 10.1021/acs.jpclett.0c01725] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A unique member of the family of cobalamin (Cbl)-dependent radical S-adenosylmethionine (SAM) enzymes, OxsB, catalyzes the ring constriction of deoxyadenosine triphosphate (dATP) to the base oxetane aldehyde phosphate, a crucial precursor for oxetanocin A (OXT-A), which is an antitumor, antiviral, and antibacterial compound. This enzyme reveals a new catalytic function for this big family that is different from the common methylation. On the basis of density functional theory calculations, a mechanism has been proposed to mainly include that the generation of 5'-deoxyadenosine radical, a hydrogen transfer forming 2'-dATP radical, and a Cbl-catalyzed ring contraction of the deoxyribose in 2'-dATP radical. The ring contraction is a concerted rearrangement step accompanied by an electron transfer from the deoxyribose hydroxyl oxygen to CoIII without any ring-opening intermediate. CoIICbl has been ruled out as an active state. Other mechanistic characteristics are also revealed. This unprecedented non-methylation mechanism provides a new catalytic repertoire for the family of radical SAM enzymes, representing a new class of ring-contraction enzymes.
Collapse
Affiliation(s)
- Shuo-Qi Sun
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Shi-Lu Chen
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
50
|
|