1
|
Mikicic I, Beli P. When RNA damage induces DNA breaks. Trends Cell Biol 2025; 35:359-360. [PMID: 40210534 DOI: 10.1016/j.tcb.2025.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/21/2025] [Accepted: 03/24/2025] [Indexed: 04/12/2025]
Abstract
While alkylated mRNAs are known to activate ribosome quality control in the cytoplasm, how do cells deal with damaged RNAs in the nucleus? In their current work, Tsao et al. discover a new pathway of RNA damage repair and unexpectedly find that RNA alkylation can induce R-loops and DNA breaks.
Collapse
Affiliation(s)
- Ivan Mikicic
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Petra Beli
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany; Institute of Developmental Biology and Neurobiology (IDN), Johannes Gutenberg-Universität, 55128 Mainz, Germany.
| |
Collapse
|
2
|
Zhang X, Brody JA, Graff M, Highland HM, Chami N, Xu H, Wang Z, Ferrier KR, Chittoor G, Josyula NS, Meyer M, Gupta S, Li X, Li Z, Allison MA, Becker DM, Bielak LF, Bis JC, Boorgula MP, Bowden DW, Broome JG, Buth EJ, Carlson CS, Chang KM, Chavan S, Chiu YF, Chuang LM, Conomos MP, DeMeo DL, Du M, Duggirala R, Eng C, Fohner AE, Freedman BI, Garrett ME, Guo X, Haiman C, Heavner BD, Hidalgo B, Hixson JE, Ho YL, Hobbs BD, Hu D, Hui Q, Hwu CM, Jackson RD, Jain D, Kalyani RR, Kardia SLR, Kelly TN, Lange EM, LeNoir M, Li C, Le Marchand L, McDonald MLN, McHugh CP, Morrison AC, Naseri T, O'Connell J, O'Donnell CJ, Palmer ND, Pankow JS, Perry JA, Peters U, Preuss MH, Rao DC, Regan EA, Reupena SM, Roden DM, Rodriguez-Santana J, Sitlani CM, Smith JA, Tiwari HK, Vasan RS, Wang Z, Weeks DE, Wessel J, Wiggins KL, Wilkens LR, Wilson PWF, Yanek LR, Yoneda ZT, Zhao W, Zöllner S, Arnett DK, Ashley-Koch AE, Barnes KC, Blangero J, Boerwinkle E, Burchard EG, Carson AP, Chasman DI, Ida Chen YD, Curran JE, Fornage M, Gordeuk VR, He J, Heckbert SR, Hou L, Irvin MR, et alZhang X, Brody JA, Graff M, Highland HM, Chami N, Xu H, Wang Z, Ferrier KR, Chittoor G, Josyula NS, Meyer M, Gupta S, Li X, Li Z, Allison MA, Becker DM, Bielak LF, Bis JC, Boorgula MP, Bowden DW, Broome JG, Buth EJ, Carlson CS, Chang KM, Chavan S, Chiu YF, Chuang LM, Conomos MP, DeMeo DL, Du M, Duggirala R, Eng C, Fohner AE, Freedman BI, Garrett ME, Guo X, Haiman C, Heavner BD, Hidalgo B, Hixson JE, Ho YL, Hobbs BD, Hu D, Hui Q, Hwu CM, Jackson RD, Jain D, Kalyani RR, Kardia SLR, Kelly TN, Lange EM, LeNoir M, Li C, Le Marchand L, McDonald MLN, McHugh CP, Morrison AC, Naseri T, O'Connell J, O'Donnell CJ, Palmer ND, Pankow JS, Perry JA, Peters U, Preuss MH, Rao DC, Regan EA, Reupena SM, Roden DM, Rodriguez-Santana J, Sitlani CM, Smith JA, Tiwari HK, Vasan RS, Wang Z, Weeks DE, Wessel J, Wiggins KL, Wilkens LR, Wilson PWF, Yanek LR, Yoneda ZT, Zhao W, Zöllner S, Arnett DK, Ashley-Koch AE, Barnes KC, Blangero J, Boerwinkle E, Burchard EG, Carson AP, Chasman DI, Ida Chen YD, Curran JE, Fornage M, Gordeuk VR, He J, Heckbert SR, Hou L, Irvin MR, Kooperberg C, Minster RL, Mitchell BD, Nouraie M, Psaty BM, Raffield LM, Reiner AP, Rich SS, Rotter JI, Benjamin Shoemaker M, Smith NL, Taylor KD, Telen MJ, Weiss ST, Zhang Y, Heard-Costa N, Sun YV, Lin X, Cupples LA, Lange LA, Liu CT, Loos RJF, North KE, Justice AE. Whole genome sequencing analysis of body mass index identifies novel African ancestry-specific risk allele. Nat Commun 2025; 16:3470. [PMID: 40216759 PMCID: PMC11992084 DOI: 10.1038/s41467-025-58420-2] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 03/19/2025] [Indexed: 04/14/2025] Open
Abstract
Obesity is a major public health crisis associated with high mortality rates. Previous genome-wide association studies (GWAS) investigating body mass index (BMI) have largely relied on imputed data from European individuals. This study leveraged whole-genome sequencing (WGS) data from 88,873 participants from the Trans-Omics for Precision Medicine (TOPMed) Program, of which 51% were of non-European population groups. We discovered 18 BMI-associated signals (P < 5 × 10-9), including two secondary signals. Notably, we identified and replicated a novel low-frequency single nucleotide polymorphism (SNP) in MTMR3 that was common in individuals of African descent. Using a diverse study population, we further identified two novel secondary signals in known BMI loci and pinpointed two likely causal variants in the POC5 and DMD loci. Our work demonstrates the benefits of combining WGS and diverse cohorts in expanding current catalog of variants and genes confer risk for obesity, bringing us one step closer to personalized medicine.
Collapse
Affiliation(s)
- Xinruo Zhang
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Mariaelisa Graff
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Heather M Highland
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nathalie Chami
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hanfei Xu
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, USA
| | - Zhe Wang
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kendra R Ferrier
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | | | | | - Mariah Meyer
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Shreyash Gupta
- Population Health Sciences, Geisinger, Danville, PA, USA
| | - Xihao Li
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Zilin Li
- Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN, USA
- School of Mathematics and Statistics and KLAS, Northeast Normal University, Changchun, Jilin, China
| | - Matthew A Allison
- Department of Family Medicine, Division of Preventive Medicine, The University of California San Diego, La Jolla, CA, USA
| | - Diane M Becker
- Department of Medicine, General Internal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lawrence F Bielak
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | | | - Donald W Bowden
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Jai G Broome
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, WA, USA
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA, USA
| | - Erin J Buth
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, WA, USA
| | | | - Kyong-Mi Chang
- The Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sameer Chavan
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Yen-Feng Chiu
- Institute of Population Health Sciences, National Health Research Institutes, Taipei, Taiwan
| | - Lee-Ming Chuang
- Department of Internal Medicine, Division of Metabolism/Endocrinology, National Taiwan University Hospital, Taipei, Taiwan
| | - Matthew P Conomos
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, WA, USA
| | - Dawn L DeMeo
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mengmeng Du
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ravindranath Duggirala
- Life Sciences, College of Arts and Sciences, Texas A&M University-San Antonio, San Antonio, TX, USA
- Department of Health and Behavioral Sciences, College of Arts and Sciences, Texas A&M University-San Antonio, San Antonio, TX, USA
| | - Celeste Eng
- Department of Medicine, Lung Biology Center, University of California, San Francisco, San Francisco, CA, USA
| | - Alison E Fohner
- Epidemiology, Institute of Public Health Genetics, School of Public Health, University of Washington, Seattle, WA, USA
| | - Barry I Freedman
- Internal Medicine, Section on Nephrology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Melanie E Garrett
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
| | - Xiuqing Guo
- Department of Pediatrics, Genomic Outcomes, The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Chris Haiman
- Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Benjamin D Heavner
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, WA, USA
| | - Bertha Hidalgo
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham School of Public Health, Birmingham, AL, USA
| | - James E Hixson
- Department of Epidemiology, School of Public Health, UTHealth Houston, Houston, TX, USA
| | - Yuk-Lam Ho
- Veterans Affairs Boston Healthcare System, Boston, MA, USA
| | - Brian D Hobbs
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Donglei Hu
- Department of Medicine, Lung Biology Center, University of California, San Francisco, San Francisco, CA, USA
| | - Qin Hui
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA, USA
- Atlanta VA Health Care System, Decatur, GA, USA
| | - Chii-Min Hwu
- Department of Medicine, Division of Endocrinology and Metabolism, Taipei Veterans General Hospital, Taipei, Taiwan, Taiwan
| | | | - Deepti Jain
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, WA, USA
| | - Rita R Kalyani
- Department of Medicine, Endocrinology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sharon L R Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Tanika N Kelly
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - Ethan M Lange
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Michael LeNoir
- Department of Pediatrics, Bay Area Pediatrics, Oakland, CA, USA
| | - Changwei Li
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - Loic Le Marchand
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Merry-Lynn N McDonald
- Department of Medicine, Pulmonary, Allergy and Critical Care, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Caitlin P McHugh
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, WA, USA
| | - Alanna C Morrison
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Take Naseri
- Naseri & Associates Public Health Consultancy Firm and Family Health Clinic, Apia, Samoa
- International Health Institute, Brown University, Providence, RI, USA
| | - Jeffrey O'Connell
- Department of Medicine, Program for Personalized and Genomic Medicine, University of Maryland, Baltimore, MD, USA
| | - Christopher J O'Donnell
- Veterans Affairs Boston Healthcare System, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Nicholette D Palmer
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - James S Pankow
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - James A Perry
- Department of Medicine, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Ulrike Peters
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Michael H Preuss
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - D C Rao
- Center for Biostatistics and Data Science, Washington University in St. Louis, St. Louis, MO, USA
| | - Elizabeth A Regan
- Department of Medicine, Rheumatology, National Jewish Health, Denver, CO, USA
| | | | - Dan M Roden
- Medicine, Pharmacology, and Biomedical Informatics, Clinical Pharmacology and Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Colleen M Sitlani
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Jennifer A Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Hemant K Tiwari
- Department of Biostatistics, University of Alabama at Birmingham School of Public Health, Birmingham, AL, USA
| | | | - Zeyuan Wang
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | - Daniel E Weeks
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Biostatistics and Health Data Science, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jennifer Wessel
- Department of Epidemiology, Indiana University, Indianapolis, IN, USA
- Department of Medicine, Indiana University, Indianapolis, IN, USA
- Diabaetes Translational Research Center, Indiana University, Indianapolis, IN, USA
| | - Kerri L Wiggins
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Lynne R Wilkens
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Peter W F Wilson
- Atlanta VA Health Care System, Decatur, GA, USA
- Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Lisa R Yanek
- Department of Medicine, General Internal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zachary T Yoneda
- Department of Medicine, Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Sebastian Zöllner
- Department of Biostatistics, Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Donna K Arnett
- Department of Epidemiology, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - Allison E Ashley-Koch
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
| | - Kathleen C Barnes
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - John Blangero
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, School of Medicine, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Eric Boerwinkle
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Esteban G Burchard
- Bioengineering and Therapeutic Sciences and Medicine, Lung Biology Center, University of California, San Francisco, San Francisco, CA, USA
| | - April P Carson
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Daniel I Chasman
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Yii-Der Ida Chen
- Department of Medical Genetics, Genomic Outcomes, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Joanne E Curran
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, School of Medicine, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Myriam Fornage
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Victor R Gordeuk
- Department of Medicine, School of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Jiang He
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - Susan R Heckbert
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Lifang Hou
- Northwestern University, Chicago, IL, USA
| | - Marguerite R Irvin
- Department of Epidemiology, University of Alabama at Birmingham School of Public Health, Birmingham, AL, USA
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Ryan L Minster
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Braxton D Mitchell
- Department of Medicine, Division of Endocrinology, Diabetes and Nutrition, University of Maryland, Baltimore, MD, USA
| | - Mehdi Nouraie
- Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Department of Health Systems and Population Health, University of Washington, Seattle, WA, USA
| | - Laura M Raffield
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Jerome I Rotter
- Department of Pediatrics, Genomic Outcomes, The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - M Benjamin Shoemaker
- Department of Medicine, Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nicholas L Smith
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA
- Kaiser Permanente Washington Health Research Institute, Kaiser Permanente Washington, Seattle, WA, USA
- Seattle Epidemiologic Research and Information Center, Office of Research and Development, Department of Veterans Affairs, Seattle, WA, USA
| | - Kent D Taylor
- Department of Pediatrics, Genomic Outcomes, The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Marilyn J Telen
- Department of Medicine, Division of Hematology, Duke University School of Medical, Durham, NC, USA
| | - Scott T Weiss
- Department of Medicine, Channing Division of Network Medicine, Harvard Medical School, Boston, MA, USA
| | - Yingze Zhang
- Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nancy Heard-Costa
- Framingham Heart Study, School of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Yan V Sun
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA, USA
- Atlanta VA Health Care System, Decatur, GA, USA
| | - Xihong Lin
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Statistics, Harvard University, Cambridge, MA, USA
| | - L Adrienne Cupples
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, USA
| | - Leslie A Lange
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Ching-Ti Liu
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, USA
| | - Ruth J F Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kari E North
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Anne E Justice
- Population Health Sciences, Geisinger, Danville, PA, USA.
| |
Collapse
|
3
|
Tsao N, Lombardi PM, Park A, Olabode J, Rodell R, Sun H, Padmanaban S, Brickner JR, Tsai MS, Pollina EA, Chen CK, Mosammaparast N. YTHDC1 cooperates with the THO complex to prevent RNA-damage-induced DNA breaks. Mol Cell 2025; 85:1085-1100.e9. [PMID: 40037355 PMCID: PMC12009005 DOI: 10.1016/j.molcel.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 12/05/2024] [Accepted: 02/05/2025] [Indexed: 03/06/2025]
Abstract
Certain environmental toxins and chemotherapeutics are nucleic acid-damaging agents, causing adducts in DNA and RNA. While most of these adducts occur in RNA, the consequences of RNA damage are largely unexplored. Here, we demonstrate that nuclear RNA damage can result in loss of genome integrity in human cells. Specifically, we show that YTHDC1 regulates alkylation damage responses with the THO complex (THOC). In addition to its established binding to N6-methyladenosine (m6A), YTHDC1 binds to chemically induced N1-methyladenosine (m1A). Without YTHDC1, cells have greater alkylation damage sensitivity and increased DNA breaks, which are rescued by an RNA-specific dealkylase. These RNA-damage-induced DNA breaks (RDIBs) depend on R-loop formation, which is converted to DNA breaks by the XPG nuclease. Strikingly, in the absence of YTHDC1 or THOC, a nuclear RNA m1A methyltransferase is sufficient to induce DNA breaks. Our results provide mechanistic insight into how damaged RNAs can impact genomic integrity.
Collapse
Affiliation(s)
- Ning Tsao
- Department of Pathology & Immunology, Center for Genome Integrity, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Patrick M Lombardi
- Department of Science, Mount St. Mary's University, Emmitsburg, MD 21727, USA
| | - Ajin Park
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jennifer Olabode
- Department of Pathology & Immunology, Center for Genome Integrity, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Rebecca Rodell
- Department of Pathology & Immunology, Center for Genome Integrity, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hua Sun
- Department of Pathology & Immunology, Center for Genome Integrity, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Shilpa Padmanaban
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Joshua R Brickner
- Department of Pathology & Immunology, Center for Genome Integrity, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Miaw-Sheue Tsai
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Elizabeth A Pollina
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chun-Kan Chen
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nima Mosammaparast
- Department of Pathology & Immunology, Center for Genome Integrity, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
4
|
Cordes J, Zhao S, Engel CM, Stingele J. Cellular responses to RNA damage. Cell 2025; 188:885-900. [PMID: 39983673 DOI: 10.1016/j.cell.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/26/2024] [Accepted: 01/02/2025] [Indexed: 02/23/2025]
Abstract
RNA plays a central role in protein biosynthesis and performs diverse regulatory and catalytic functions, making it essential for all processes of life. Like DNA, RNA is constantly subjected to damage from endogenous and environmental sources. However, while the DNA damage response has been extensively studied, it was long assumed that RNA lesions are relatively inconsequential due to the transient nature of most RNA molecules. Here, we review recent studies that challenge this view by revealing complex RNA damage responses that determine survival when cells are exposed to nucleic acid-damaging agents and promote the resolution of RNA lesions.
Collapse
Affiliation(s)
- Jacqueline Cordes
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Shubo Zhao
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany; College of Basic Medical Sciences, Medical Basic Research Innovation Center of Airway Disease in North China, Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Carla M Engel
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Julian Stingele
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany.
| |
Collapse
|
5
|
Zaher HS, Mosammaparast N. RNA Damage Responses in Cellular Homeostasis, Genome Stability, and Disease. ANNUAL REVIEW OF PATHOLOGY 2025; 20:433-457. [PMID: 39476409 DOI: 10.1146/annurev-pathmechdis-111523-023516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
All cells are exposed to chemicals that can damage their nucleic acids. Cells must protect these polymers because they code for key factors or complexes essential for life. Much of the work on nucleic acid damage has naturally focused on DNA, partly due to the connection between mutagenesis and human disease, especially cancer. Recent work has shed light on the importance of RNA damage, which triggers a host of conserved RNA quality control mechanisms. Because many RNA species are transient, and because of their ability to be retranscribed, RNA damage has largely been ignored. Yet, because of the connection between damaged RNA and DNA during transcription, and the association between essential complexes that process or decode RNAs, notably spliceosomes and ribosomes, the appropriate handling of damaged RNAs is critical for maintaining cellular homeostasis. This notion is bolstered by disease states, including neurodevelopmental and neurodegenerative diseases, that may arise upon loss or misregulation of RNA quality control mechanisms.
Collapse
Affiliation(s)
- Hani S Zaher
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA;
| | - Nima Mosammaparast
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA;
| |
Collapse
|
6
|
Chen B, Chen X, Hu R, Li H, Wang M, Zhou L, Chen H, Wang J, Zhang H, Zhou X, Zhang H. Alternative polyadenylation regulates the translation of metabolic and inflammation-related proteins in adipose tissue of gestational diabetes mellitus. Comput Struct Biotechnol J 2024; 23:1298-1310. [PMID: 38560280 PMCID: PMC10978812 DOI: 10.1016/j.csbj.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/25/2024] [Accepted: 03/14/2024] [Indexed: 04/04/2024] Open
Abstract
In gestational diabetes mellitus (GDM), adipose tissue undergoes metabolic disturbances and chronic low-grade inflammation. Alternative polyadenylation (APA) is a post-transcriptional modification mechanism that generates mRNA with variable lengths of 3' untranslated regions (3'UTR), and it is associated with inflammation and metabolism. However, the role of APA in GDM adipose tissue has not been well characterized. In this study, we conducted transcriptomic and proteomic sequencing on subcutaneous and omental adipose tissues from both control and GDM patients. Using Dapars, a novel APA quantitative algorithm, we delineated the APA landscape of adipose tissue, revealing significant 3'UTR elongation of mRNAs in the GDM group. Omental adipose tissue exhibited a significant correlation between elongated 3'UTRs and reduced translation levels of genes related to metabolism and inflammation. Validation experiments in THP-1 derived macrophages (TDMs) demonstrated the impact of APA on translation levels by overexpressing long and short 3'UTR isoforms of a representative gene LRRC25. Additionally, LRRC25 was validated to suppress proinflammatory polarization in TDMs. Further exploration revealed two underexpressed APA trans-acting factors, CSTF3 and PPP1CB, in GDM omental adipose tissue. In conclusion, this study provides preliminary insights into the APA landscape of GDM adipose tissue. Reduced APA regulation in GDM omental adipose tissue may contribute to metabolic disorders and inflammation by downregulating gene translation levels. These findings advance our understanding of the molecular mechanisms underlying GDM-associated adipose tissue changes.
Collapse
Affiliation(s)
- Bingnan Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing Medical University, Chongqing, China
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xuyang Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing Medical University, Chongqing, China
| | - Ruohan Hu
- Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Hongli Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing Medical University, Chongqing, China
| | - Min Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing Medical University, Chongqing, China
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Linwei Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing Medical University, Chongqing, China
| | - Hao Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing Medical University, Chongqing, China
| | - Jianqi Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing Medical University, Chongqing, China
| | - Hanwen Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing Medical University, Chongqing, China
| | - Xiaobo Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing Medical University, Chongqing, China
| | - Hua Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing Medical University, Chongqing, China
| |
Collapse
|
7
|
Xhemalçe B, Miller KM, Gromak N. Epitranscriptome in action: RNA modifications in the DNA damage response. Mol Cell 2024; 84:3610-3626. [PMID: 39366350 PMCID: PMC12044609 DOI: 10.1016/j.molcel.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/20/2024] [Accepted: 09/05/2024] [Indexed: 10/06/2024]
Abstract
Complex pathways involving the DNA damage response (DDR) contend with cell-intrinsic and -extrinsic sources of DNA damage. DDR mis-regulation results in genome instability that can contribute to aging and diseases including cancer and neurodegeneration. Recent studies have highlighted key roles for several RNA species in the DDR, including short RNAs and RNA/DNA hybrids (R-loops) at DNA break sites, all contributing to efficient DNA repair. RNAs can undergo more than 170 distinct chemical modifications. These RNA modifications have emerged as key orchestrators of the DDR. Here, we highlight the function of enzyme- and non-enzyme-induced RNA modifications in the DDR, with particular emphasis on m6A, m5C, and RNA editing. We also discuss stress-induced RNA damage, including RNA alkylation/oxidation, RNA-protein crosslinks, and UV-induced RNA damage. Uncovering molecular mechanisms that underpin the contribution of RNA modifications to DDR and genome stability will have direct application to disease and approaches for therapeutic intervention.
Collapse
Affiliation(s)
- Blerta Xhemalçe
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Kyle M Miller
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Natalia Gromak
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road OX1 3RE, UK.
| |
Collapse
|
8
|
Hu C, Chen Z, Wang G, Yang H, Ding J. Biochemical and structural characterization of the DNA-binding properties of human TRIP4 ASCH domain reveals insights into its functional role. Structure 2024; 32:1208-1221.e4. [PMID: 38870938 DOI: 10.1016/j.str.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/10/2024] [Accepted: 05/17/2024] [Indexed: 06/15/2024]
Abstract
TRIP4 is a conserved transcriptional coactivator that is involved in the regulation of the expression of multiple genes. It consists of a classical N-terminal C2HC5-like zinc-finger domain and a conserved C-terminal ASCH domain. Here, we characterized the DNA-binding properties of the human TRIP4 ASCH domain. Our biochemical data show that TRIP4-ASCH has comparable binding affinities toward ssDNA and dsDNA of different lengths, sequences, and structures. The crystal structures reveal that TRIP4-ASCH binds to DNA substrates in a sequence-independent manner through two adjacent positively charged surface patches: one binds to the 5'-end of DNA, and the other binds to the 3'-end of DNA. Further mutagenesis experiments and binding assays confirm the functional roles of key residues involved in DNA binding. In summary, our data demonstrate that TRIP4-ASCH binds to the 5' and 3'-ends of DNA in a sequence-independent manner, which will facilitate further studies of the biological function of TRIP4.
Collapse
Affiliation(s)
- Chengtao Hu
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Ziyue Chen
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Guanchao Wang
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Hui Yang
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China.
| | - Jianping Ding
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China.
| |
Collapse
|
9
|
Ying Q, Fan R, Shen Y, Chen B, Zhang J, Li Q, Shi X. Small Cell Lung Cancer-An Update on Chemotherapy Resistance. Curr Treat Options Oncol 2024; 25:1112-1123. [PMID: 39066852 DOI: 10.1007/s11864-024-01245-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2024] [Indexed: 07/30/2024]
Abstract
OPINION STATEMENT Compared to other types of lung cancer, small cell lung cancer (SCLC) exhibits aggressive characteristics that promote drug resistance. Despite platinum-etoposide chemotherapy combined with immunotherapy being the current standard treatment, the rapid development of drug resistance has led to unsatisfactory clinical outcomes. This review focuses on the mechanisms contributing to the chemotherapy resistance phenotype in SCLC, such as increased intra-tumoral heterogeneity, alterations in the tumor microenvironment, changes in cellular metabolism, and dysregulation of apoptotic pathways. A comprehensive understanding of these drug resistance mechanisms in SCLC is imperative for ushering in a new era in cancer research, which will promise revolutionary advancements in cancer diagnosis and treatment methodologies.
Collapse
Affiliation(s)
- Qian Ying
- Department of Respiratory Medicine, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, People's Republic of China
| | - Ruiyun Fan
- Department of Respiratory Medicine, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, People's Republic of China
- Department of Respiratory Medicine, Fifth School of Clinical Medicine of Zhejiang, Huzhou Central Hospital, Chinese Medical University, Huzhou, People's Republic of China
| | - Yili Shen
- Department of Respiratory Medicine, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, People's Republic of China
- Department of Respiratory Medicine, Fifth School of Clinical Medicine of Zhejiang, Huzhou Central Hospital, Chinese Medical University, Huzhou, People's Republic of China
| | - Boyi Chen
- Department of Respiratory Medicine, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, People's Republic of China
| | - Jianhui Zhang
- Department of Respiratory Medicine, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, People's Republic of China
| | - Qiuhui Li
- Department of Respiratory Medicine, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, People's Republic of China.
- Department of Respiratory Medicine, Fifth School of Clinical Medicine of Zhejiang, Huzhou Central Hospital, Chinese Medical University, Huzhou, People's Republic of China.
| | - Xuefei Shi
- Department of Respiratory Medicine, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, People's Republic of China.
- Department of Respiratory Medicine, Fifth School of Clinical Medicine of Zhejiang, Huzhou Central Hospital, Chinese Medical University, Huzhou, People's Republic of China.
| |
Collapse
|
10
|
Pascolini G, Lipari M, Gaudioso F, Fania L, Di Zenzo G, Didona B. The face of Non-photosensitive trichothiodystrophy phenotypic spectrum: A subsequent study on paediatric population. Mol Genet Genomic Med 2024; 12:e2501. [PMID: 39118464 PMCID: PMC11310551 DOI: 10.1002/mgg3.2501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/18/2024] [Accepted: 07/18/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Non-photosensitive trichothiodystrophies (TTDs) are a diverse group of genodermatoses within the subset of conditions known as "sulphur-deficient brittle hair" syndromes. A part of them has only recently been identified, revealing novel causative genes and very rare phenotypes of these genetic skin disorders. At the same time, the molecular basis of previously published and unresolved cases has been revealed through the introduction of innovative genetic techniques. We have previously described the facial phenotype of patients with the Photosensitive form of TTD during childhood. This study marks the beginning of an effort to expand the analysis to include individuals of the same age who do not have photosensitivity. METHODS A total of 26 facial portraits of TTD paediatric patients with Non-photosensitivity from the literature were analysed using computer-aided technologies, and their facial features were examined through a detailed clinical review. RESULTS Distinct facial features were identified in both Photosensitive and Non-photosensitive TTDs. CONCLUSION The present study has comprehensively elucidated the facial features in TTDs, encompassing the Non-photosensitive clinical spectrum.
Collapse
Affiliation(s)
- Giulia Pascolini
- Genetic Counselling ServiceIstituto Dermopatico dell'Immacolata, IDI‐IRCCSRomeItaly
- Rare Skin Diseases CenterIstituto Dermopatico dell'Immacolata, IDI‐IRCCSRomeItaly
| | - Martina Lipari
- Precision Medicine and Pharmacogenomics UnitSandro Pertini HospitalRomeItaly
| | - Federica Gaudioso
- Medical Genetics DivisionFoundation IRCCS Cà Granda Ospedale Maggiore PoliclinicoMilanItaly
| | - Luca Fania
- Dermatology ClinicIstituto Dermopatico dell'Immacolata, IDI‐IRCCSRomeItaly
| | - Giovanni Di Zenzo
- Molecular and Cell Biology LaboratoryIstituto Dermopatico dell'Immacolata, IDI‐IRCCSRomeItaly
| | - Biagio Didona
- Genetic Counselling ServiceIstituto Dermopatico dell'Immacolata, IDI‐IRCCSRomeItaly
| |
Collapse
|
11
|
Chinnam NB, Thapar R, Arvai AS, Sarker AH, Soll JM, Paul T, Syed A, Rosenberg DJ, Hammel M, Bacolla A, Katsonis P, Asthana A, Tsai MS, Ivanov I, Lichtarge O, Silverman RH, Mosammaparast N, Tsutakawa SE, Tainer JA. ASCC1 structures and bioinformatics reveal a novel helix-clasp-helix RNA-binding motif linked to a two-histidine phosphodiesterase. J Biol Chem 2024; 300:107368. [PMID: 38750793 PMCID: PMC11214414 DOI: 10.1016/j.jbc.2024.107368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 06/06/2024] Open
Abstract
Activating signal co-integrator complex 1 (ASCC1) acts with ASCC-ALKBH3 complex in alkylation damage responses. ASCC1 uniquely combines two evolutionarily ancient domains: nucleotide-binding K-Homology (KH) (associated with regulating splicing, transcriptional, and translation) and two-histidine phosphodiesterase (PDE; associated with hydrolysis of cyclic nucleotide phosphate bonds). Germline mutations link loss of ASCC1 function to spinal muscular atrophy with congenital bone fractures 2 (SMABF2). Herein analysis of The Cancer Genome Atlas (TCGA) suggests ASCC1 RNA overexpression in certain tumors correlates with poor survival, Signatures 29 and 3 mutations, and genetic instability markers. We determined crystal structures of Alvinella pompejana (Ap) ASCC1 and Human (Hs) PDE domain revealing high-resolution details and features conserved over 500 million years of evolution. Extending our understanding of the KH domain Gly-X-X-Gly sequence motif, we define a novel structural Helix-Clasp-Helix (HCH) nucleotide binding motif and show ASCC1 sequence-specific binding to CGCG-containing RNA. The V-shaped PDE nucleotide binding channel has two His-Φ-Ser/Thr-Φ (HXT) motifs (Φ being hydrophobic) positioned to initiate cyclic phosphate bond hydrolysis. A conserved atypical active-site histidine torsion angle implies a novel PDE substrate. Flexible active site loop and arginine-rich domain linker appear regulatory. Small-angle X-ray scattering (SAXS) revealed aligned KH-PDE RNA binding sites with limited flexibility in solution. Quantitative evolutionary bioinformatic analyses of disease and cancer-associated mutations support implied functional roles for RNA binding, phosphodiesterase activity, and regulation. Collective results inform ASCC1's roles in transactivation and alkylation damage responses, its targeting by structure-based inhibitors, and how ASCC1 mutations may impact inherited disease and cancer.
Collapse
Affiliation(s)
- Naga Babu Chinnam
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Roopa Thapar
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Andrew S Arvai
- Integrative Structural & Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Altaf H Sarker
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Jennifer M Soll
- Division of Laboratory and Genomic Medicine, Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Tanmoy Paul
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Aleem Syed
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Daniel J Rosenberg
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Michal Hammel
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Albino Bacolla
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Panagiotis Katsonis
- Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Abhishek Asthana
- Department Cancer Biology, Cleveland Clinic Foundation, Lerner Research Institute, Cleveland, Ohio, USA
| | - Miaw-Sheue Tsai
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Ivaylo Ivanov
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Olivier Lichtarge
- Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Robert H Silverman
- Department Cancer Biology, Cleveland Clinic Foundation, Lerner Research Institute, Cleveland, Ohio, USA
| | - Nima Mosammaparast
- Division of Laboratory and Genomic Medicine, Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Susan E Tsutakawa
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California, USA.
| | - John A Tainer
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California, USA; Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
| |
Collapse
|
12
|
Cho N, Kim YE, Lee Y, Choi DW, Park C, Kim JH, Kim KI, Kim KK. Effect of RNF113A deficiency on oxidative stress-induced NRF2 pathway. Anim Cells Syst (Seoul) 2024; 28:261-271. [PMID: 38741949 PMCID: PMC11089925 DOI: 10.1080/19768354.2024.2349758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/24/2024] [Indexed: 05/16/2024] Open
Abstract
The ring finger protein 113A (RNF113A) serves as an E3 ubiquitin ligase and a subunit of the spliceosome. Mutations in the RNF113A gene are associated with X-linked trichothiodystrophy (TTD). However, the cellular roles of RNF113A remain largely unknown. In this study, we performed transcriptome profiling of RNF113A knockout (KO) HeLa cells using RNA sequencing and revealed the upregulation of NRF2 pathway-associated genes. Further analysis confirmed that the KO of RNF113A promotes nuclear localization of the NRF2 protein and elevates the mRNA levels of NRF2 target genes. RNF113A KO cells showed high levels of intracellular reactive oxygen species (ROS) and decreased resistance to cell death following H2O2 treatment. Additionally, RNF113A KO cells more sensitively formed stress granules (SGs) under arsenite-induced oxidative stress. Moreover, RNF113A KO cells exhibited a decrease in glutathione levels, which could be attributed to a reduction in GLUT1 expression levels, leading to decreased glucose uptake reactions and lower intracellular glucose levels. These alterations potentially caused a reduction in ROS scavenging activity. Taken together, our findings suggest that the loss of RNF113A promotes oxidative stress-mediated activation of the NRF2 pathway, providing novel insights into RNF113A-associated human diseases.
Collapse
Affiliation(s)
- Namjoon Cho
- Department of Biochemistry, Chungnam National University, Daejeon, Republic of Korea
| | - Yong-Eun Kim
- Department of Biochemistry, Chungnam National University, Daejeon, Republic of Korea
| | - Yunkyeong Lee
- Department of Biological Sciences, Sookmyung Women’s University, Seoul, Republic of Korea
| | - Dong Wook Choi
- Division of Biotechnology, Korea University, Seoul, Republic of Korea
| | - Chungoo Park
- School of Biological Science and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Jung-Hwan Kim
- Department of Pharmacology, School of Medicine, Institute of Medical Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Keun Il Kim
- Department of Biological Sciences, Sookmyung Women’s University, Seoul, Republic of Korea
| | - Kee K. Kim
- Department of Biochemistry, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
13
|
Inada T, Beckmann R. Mechanisms of Translation-coupled Quality Control. J Mol Biol 2024; 436:168496. [PMID: 38365086 DOI: 10.1016/j.jmb.2024.168496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/05/2024] [Accepted: 02/12/2024] [Indexed: 02/18/2024]
Abstract
Stalling of ribosomes engaged in protein synthesis can lead to significant defects in the function of newly synthesized proteins and thereby impair protein homeostasis. Consequently, partially synthesized polypeptides resulting from translation stalling are recognized and eliminated by several quality control mechanisms. First, if translation elongation reactions are halted prematurely, a quality control mechanism called ribosome-associated quality control (RQC) initiates the ubiquitination of the nascent polypeptide chain and subsequent proteasomal degradation. Additionally, when ribosomes with defective codon recognition or peptide-bond formation stall during translation, a quality control mechanism known as non-functional ribosomal RNA decay (NRD) leads to the degradation of malfunctioning ribosomes. In both of these quality control mechanisms, E3 ubiquitin ligases selectively recognize ribosomes in distinct translation-stalling states and ubiquitinate specific ribosomal proteins. Significant efforts have been devoted to characterize E3 ubiquitin ligase sensing of ribosome 'collision' or 'stalling' and subsequent ribosome is rescued. This article provides an overview of our current understanding of the molecular mechanisms and physiological functions of ribosome dynamics control and quality control of abnormal translation.
Collapse
Affiliation(s)
- Toshifumi Inada
- Division of RNA and Gene Regulation, Institute of Medical Science, The University of Tokyo, Minato-Ku, Tokyo 108-8639, Japan.
| | - Roland Beckmann
- Gene Center and Department of Biochemistry, Feodor-Lynen-Str. 25, University of Munich, 81377 Munich, Germany.
| |
Collapse
|
14
|
Tsao N, Olabode J, Rodell R, Sun H, Brickner JR, Tsai MS, Pollina EA, Chen CK, Mosammaparast N. YTHDC1 cooperates with the THO complex to prevent RNA damage-induced DNA breaks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.14.585107. [PMID: 38559256 PMCID: PMC10979943 DOI: 10.1101/2024.03.14.585107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Certain environmental toxins are nucleic acid damaging agents, as are many chemotherapeutics used for cancer therapy. These agents induce various adducts in DNA as well as RNA. Indeed, most of the nucleic acid adducts (>90%) formed due to these chemicals, such as alkylating agents, occur in RNA 1 . However, compared to the well-studied mechanisms for DNA alkylation repair, the biological consequences of RNA damage are largely unexplored. Here, we demonstrate that RNA damage can directly result in loss of genome integrity. Specifically, we show that a human YTH domain-containing protein, YTHDC1, regulates alkylation damage responses in association with the THO complex (THOC) 2 . In addition to its established binding to N 6-methyladenosine (m6A)-containing RNAs, YTHDC1 binds to N 1-methyladenosine (m1A)-containing RNAs upon alkylation. In the absence of YTHDC1, alkylation damage results in increased alkylation damage sensitivity and DNA breaks. Such phenotypes are fully attributable to RNA damage, since an RNA-specific dealkylase can rescue these phenotypes. These R NA d amage-induced DNA b reaks (RDIBs) depend on R-loop formation, which in turn are processed by factors involved in transcription-coupled nucleotide excision repair. Strikingly, in the absence of YTHDC1 or THOC, an RNA m1A methyltransferase targeted to the nucleus is sufficient to induce DNA breaks. Our results uncover a unique role for YTHDC1-THOC in base damage responses by preventing RDIBs, providing definitive evidence for how damaged RNAs can impact genomic integrity.
Collapse
|
15
|
Monem PC, Arribere JA. A ubiquitin language communicates ribosomal distress. Semin Cell Dev Biol 2024; 154:131-137. [PMID: 36963992 PMCID: PMC10878831 DOI: 10.1016/j.semcdb.2023.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 02/10/2023] [Accepted: 03/16/2023] [Indexed: 03/26/2023]
Abstract
Cells entrust ribosomes with the critical task of identifying problematic mRNAs and facilitating their degradation. Ribosomes must communicate when they encounter and stall on an aberrant mRNA, lest they expose the cell to toxic and disease-causing proteins, or they jeopardize ribosome homeostasis and cellular translation. In recent years, ribosomal ubiquitination has emerged as a central signaling step in this process, and proteomic studies across labs and experimental systems show a myriad of ubiquitination sites throughout the ribosome. Work from many labs zeroed in on ubiquitination in one region of the small ribosomal subunit as being functionally significant, with the balance and exact ubiquitination sites determined by stall type, E3 ubiquitin ligases, and deubiquitinases. This review discusses the current literature surrounding ribosomal ubiquitination during translational stress and considers its role in committing translational complexes to decay.
Collapse
Affiliation(s)
- Parissa C Monem
- Department of Molecular, Cell, and Developmental Biology, University of California at Santa Cruz, Santa Cruz, CA, USA
| | - Joshua A Arribere
- Department of Molecular, Cell, and Developmental Biology, University of California at Santa Cruz, Santa Cruz, CA, USA.
| |
Collapse
|
16
|
Ao YQ, Gao J, Jin C, Wang S, Zhang LC, Deng J, Chen ZW, Wang HK, Jiang JH, Ding JY. ASCC3 promotes the immunosuppression and progression of non-small cell lung cancer by impairing the type I interferon response via CAND1-mediated ubiquitination inhibition of STAT3. J Immunother Cancer 2023; 11:e007766. [PMID: 38148115 PMCID: PMC10753855 DOI: 10.1136/jitc-2023-007766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2023] [Indexed: 12/28/2023] Open
Abstract
BACKGROUND Activating signal cointegrator 3 (ASCC3) has been identified as an oncogenic factor that impairs host immune defense. However, the underlying mechanisms of carcinogenesis and its impact on the antitumor immune response remain unclear. In this study, we aimed to investigate the molecular mechanisms of ASCC3 in the progression of non-small cell lung cancer (NSCLC). METHODS Single-cell sequencing data from the Gene Expression Omnibus and gene expression profiles from The Cancer Genome Atlas database were analyzed. The expression, clinical relevance and biological functions of ASCC3 in NSCLC were explored. Then, RNA sequencing, immunoprecipitation, mass spectrometry, immunofluorescence, and flow cytometry analyses were conducted to explore the underlying molecular mechanisms. In addition, in vivo experiments in mouse models were conducted to explore the probability of ASCC3 knockdown to improve the efficacy of anti-Programmed Death-1 (PD-1) therapy in NSCLC. RESULTS ASCC3 was significantly upregulated in NSCLC and correlated with poor pathological characteristics and prognosis in patients with NSCLC. Overexpression of ASCC3 promoted malignant phenotypes of NSCLC cells and induced an immunosuppressive tumor microenvironment, which was characterized by a decrease in CD8+ T cells, natural killer cells and dendritic cells but an increase in regulatory T(Treg) cells. Mechanistically, ASCC3 stabilized signal transducer and activator of transcription (STAT)3 signaling by recruiting Cullin-associated and neddylation dissociated 1 (CAND1), which inhibited ubiquitin-mediated degradation of STAT3, thereby impairing the type I interferon response of tumor cells and promoting the immunosuppression and progression of NSCLC. Furthermore, high expression of ASCC3 impaired the efficacy of anti-PD-1 therapy, and an anti-PD-1 antibody combined with ASCC3 knockdown exerted promising synergistic efficacy in a preclinical mouse model. CONCLUSION ASCC3 could stabilize the STAT3 pathway via CAND1, reshaping the tumor microenvironment and inducing resistance to anti-PD-1 therapy, which promotes the progression of NSCLC. It is a reliable prognostic indicator and can be a target in combination therapy for NSCLC.
Collapse
Affiliation(s)
- Yong-Qiang Ao
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, Shanghai, China
| | - Jian Gao
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, Shanghai, China
| | - Chun Jin
- Department of Thoracic Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Shuai Wang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, Shanghai, China
| | - Li-Cheng Zhang
- School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jie Deng
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zong-Wei Chen
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, Shanghai, China
| | - Hai-Kun Wang
- CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Beijing, China
| | - Jia-Hao Jiang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, Shanghai, China
| | - Jian-Yong Ding
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, Shanghai, China
| |
Collapse
|
17
|
Tsao N, Ashour ME, Mosammaparast N. How RNA impacts DNA repair. DNA Repair (Amst) 2023; 131:103564. [PMID: 37776841 PMCID: PMC11232704 DOI: 10.1016/j.dnarep.2023.103564] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 10/02/2023]
Abstract
The central dogma of molecular biology posits that genetic information flows unidirectionally, from DNA, to RNA, and finally to protein. However, this directionality is broken in some cases, such as reverse transcription where RNA is converted to DNA by retroviruses and certain transposable elements. Our genomes have evolved and adapted to the presence of reverse transcription. Similarly, our genome is continuously maintained by several repair pathways to reverse damage due to various endogenous and exogenous sources. More recently, evidence has revealed that RNA, while in certain contexts may be detrimental for genome stability, is involved in promoting certain types of DNA repair. Depending on the pathway in question, the size of these DNA repair-associated RNAs range from one or a few ribonucleotides to long fragments of RNA. Moreover, RNA is highly modified, and RNA modifications have been revealed to be functionally associated with specific DNA repair pathways. In this review, we highlight aspects of this unexpected layer of genomic maintenance, demonstrating how RNA may influence DNA integrity.
Collapse
Affiliation(s)
- Ning Tsao
- Department of Pathology & Immunology, Division of Laboratory and Genomic Medicine, Center for Genome Integrity, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Mohamed E Ashour
- Department of Pathology & Immunology, Division of Laboratory and Genomic Medicine, Center for Genome Integrity, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nima Mosammaparast
- Department of Pathology & Immunology, Division of Laboratory and Genomic Medicine, Center for Genome Integrity, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
18
|
Iyer KV, Müller M, Tittel LS, Winz ML. Molecular Highway Patrol for Ribosome Collisions. Chembiochem 2023; 24:e202300264. [PMID: 37382189 DOI: 10.1002/cbic.202300264] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/25/2023] [Accepted: 06/28/2023] [Indexed: 06/30/2023]
Abstract
During translation, messenger RNAs (mRNAs) are decoded by ribosomes which can stall for various reasons. These include chemical damage, codon composition, starvation, or translation inhibition. Trailing ribosomes can collide with stalled ribosomes, potentially leading to dysfunctional or toxic proteins. Such aberrant proteins can form aggregates and favor diseases, especially neurodegeneration. To prevent this, both eukaryotes and bacteria have evolved different pathways to remove faulty nascent peptides, mRNAs and defective ribosomes from the collided complex. In eukaryotes, ubiquitin ligases play central roles in triggering downstream responses and several complexes have been characterized that split affected ribosomes and facilitate degradation of the various components. As collided ribosomes signal translation stress to affected cells, in eukaryotes additional stress response pathways are triggered when collisions are sensed. These pathways inhibit translation and modulate cell survival and immune responses. Here, we summarize the current state of knowledge about rescue and stress response pathways triggered by ribosome collisions.
Collapse
Affiliation(s)
- Kaushik Viswanathan Iyer
- Institute for Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128, Mainz, Germany
| | - Max Müller
- Institute for Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128, Mainz, Germany
| | - Lena Sophie Tittel
- Institute for Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128, Mainz, Germany
| | - Marie-Luise Winz
- Institute for Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128, Mainz, Germany
| |
Collapse
|
19
|
Zhu G, Khalid F, Zhang D, Cao Z, Maity P, Kestler HA, Orioli D, Scharffetter-Kochanek K, Iben S. Ribosomal Dysfunction Is a Common Pathomechanism in Different Forms of Trichothiodystrophy. Cells 2023; 12:1877. [PMID: 37508541 PMCID: PMC10377840 DOI: 10.3390/cells12141877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/07/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Mutations in a broad variety of genes can provoke the severe childhood disorder trichothiodystrophy (TTD) that is classified as a DNA repair disease or a transcription syndrome of RNA polymerase II. In an attempt to identify the common underlying pathomechanism of TTD we performed a knockout/knockdown of the two unrelated TTD factors TTDN1 and RNF113A and investigated the consequences on ribosomal biogenesis and performance. Interestingly, interference with these TTD factors created a nearly uniform impact on RNA polymerase I transcription with downregulation of UBF, disturbed rRNA processing and reduction of the backbone of the small ribosomal subunit rRNA 18S. This was accompanied by a reduced quality of decoding in protein translation and the accumulation of misfolded and carbonylated proteins, indicating a loss of protein homeostasis (proteostasis). As the loss of proteostasis by the ribosome has been identified in the other forms of TTD, here we postulate that ribosomal dysfunction is a common underlying pathomechanism of TTD.
Collapse
Affiliation(s)
- Gaojie Zhu
- Department of Dermatology and Allergic Diseases, Ulm University, 89081 Ulm, Germany
| | - Fatima Khalid
- Department of Dermatology and Allergic Diseases, Ulm University, 89081 Ulm, Germany
| | - Danhui Zhang
- Department of Dermatology and Allergic Diseases, Ulm University, 89081 Ulm, Germany
| | - Zhouli Cao
- Department of Dermatology and Allergic Diseases, Ulm University, 89081 Ulm, Germany
| | - Pallab Maity
- Department of Dermatology and Allergic Diseases, Ulm University, 89081 Ulm, Germany
| | - Hans A Kestler
- Medical Systems Biology, Ulm University, 89081 Ulm, Germany
| | - Donata Orioli
- Istituto di Genetica Molecolare L.L. Cavalli-Sforza CNR, 27100 Pavia, Italy
| | | | - Sebastian Iben
- Department of Dermatology and Allergic Diseases, Ulm University, 89081 Ulm, Germany
| |
Collapse
|
20
|
Townley BA, Buerer L, Tsao N, Bacolla A, Mansoori F, Rusanov T, Clark N, Goodarzi N, Schmidt N, Srivatsan SN, Sun H, Sample RA, Brickner JR, McDonald D, Tsai MS, Walter MJ, Wozniak DF, Holehouse AS, Pena V, Tainer JA, Fairbrother WG, Mosammaparast N. A functional link between lariat debranching enzyme and the intron-binding complex is defective in non-photosensitive trichothiodystrophy. Mol Cell 2023; 83:2258-2275.e11. [PMID: 37369199 PMCID: PMC10483886 DOI: 10.1016/j.molcel.2023.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 03/25/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023]
Abstract
The pre-mRNA life cycle requires intron processing; yet, how intron-processing defects influence splicing and gene expression is unclear. Here, we find that TTDN1/MPLKIP, which is encoded by a gene implicated in non-photosensitive trichothiodystrophy (NP-TTD), functionally links intron lariat processing to spliceosomal function. The conserved TTDN1 C-terminal region directly binds lariat debranching enzyme DBR1, whereas its N-terminal intrinsically disordered region (IDR) binds the intron-binding complex (IBC). TTDN1 loss, or a mutated IDR, causes significant intron lariat accumulation, as well as splicing and gene expression defects, mirroring phenotypes observed in NP-TTD patient cells. A Ttdn1-deficient mouse model recapitulates intron-processing defects and certain neurodevelopmental phenotypes seen in NP-TTD. Fusing DBR1 to the TTDN1 IDR is sufficient to recruit DBR1 to the IBC and circumvents the functional requirement for TTDN1. Collectively, our findings link RNA lariat processing with splicing outcomes by revealing the molecular function of TTDN1.
Collapse
Affiliation(s)
- Brittany A Townley
- Department of Pathology & Immunology, Center for Genome Integrity, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Luke Buerer
- Center for Computational Molecular Biology, Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI 02912, USA
| | - Ning Tsao
- Department of Pathology & Immunology, Center for Genome Integrity, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Albino Bacolla
- Department of Molecular and Cellular Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Fadhel Mansoori
- Department of Pathology & Immunology, Center for Genome Integrity, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Timur Rusanov
- Department of Pathology & Immunology, Center for Genome Integrity, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nathanial Clark
- Center for Computational Molecular Biology, Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI 02912, USA
| | - Negar Goodarzi
- Mechanisms and Regulation of Splicing Research Group, The Institute of Cancer Research, London, UK
| | - Nicolas Schmidt
- Department of Pathology & Immunology, Center for Genome Integrity, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - Hua Sun
- Department of Pathology & Immunology, Center for Genome Integrity, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Reilly A Sample
- Department of Pathology & Immunology, Center for Genome Integrity, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Joshua R Brickner
- Department of Pathology & Immunology, Center for Genome Integrity, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Drew McDonald
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Miaw-Sheue Tsai
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Matthew J Walter
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David F Wozniak
- Department of Psychiatry, Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO 63110-1093, USA
| | - Alex S Holehouse
- Department of Biochemistry & Molecular Biophysics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA; Center for Science and Engineering of Living Systems, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Vladimir Pena
- Mechanisms and Regulation of Splicing Research Group, The Institute of Cancer Research, London, UK
| | - John A Tainer
- Department of Molecular and Cellular Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA; Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - William G Fairbrother
- Center for Computational Molecular Biology, Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI 02912, USA; Hassenfeld Child Health Innovation Institute of Brown University, Providence, RI 02912, USA.
| | - Nima Mosammaparast
- Department of Pathology & Immunology, Center for Genome Integrity, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
21
|
Peng Z, Ma J, Christov CZ, Karabencheva-Christova T, Lehnert N, Li D. Kinetic Studies on the 2-Oxoglutarate/Fe(II)-Dependent Nucleic Acid Modifying Enzymes from the AlkB and TET Families. DNA 2023; 3:65-84. [PMID: 38698914 PMCID: PMC11065319 DOI: 10.3390/dna3020005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Nucleic acid methylations are important genetic and epigenetic biomarkers. The formation and removal of these markers is related to either methylation or demethylation. In this review, we focus on the demethylation or oxidative modification that is mediated by the 2-oxoglutarate (2-OG)/Fe(II)-dependent AlkB/TET family enzymes. In the catalytic process, most enzymes oxidize 2-OG to succinate, in the meantime oxidizing methyl to hydroxymethyl, leaving formaldehyde and generating demethylated base. The AlkB enzyme from Escherichia coli has nine human homologs (ALKBH1-8 and FTO) and the TET family includes three members, TET1 to 3. Among them, some enzymes have been carefully studied, but for certain enzymes, few studies have been carried out. This review focuses on the kinetic properties of those 2-OG/Fe(II)-dependent enzymes and their alkyl substrates. We also provide some discussions on the future directions of this field.
Collapse
Affiliation(s)
- Zhiyuan Peng
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Jian Ma
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Christo Z. Christov
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA
| | | | - Nicolai Lehnert
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Deyu Li
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| |
Collapse
|
22
|
Zhang Q, Song J, Cao L, Sun M, Xu T, Yang S, Li S, Wang H, Fu X. RNF113A targeted by miR-197 promotes proliferation and inhibits autophagy via CXCR4/CXCL12/AKT/ERK/Beclin1 axis in cervical cancer. Exp Cell Res 2023; 428:113632. [PMID: 37164050 DOI: 10.1016/j.yexcr.2023.113632] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 05/03/2023] [Accepted: 05/07/2023] [Indexed: 05/12/2023]
Abstract
Ring Finger Protein 113 (RNF113A), an ubiquitin E3 ligase, is genetically associated with many biological processes, including proliferation, differentiation, cell death, and neurogenesis. Recently, RNF113A has been found to be an abnormal expression in many diseases, such as X-linked trichothiodystrophy syndrome and esophageal cancer. Here, we explore the potential mechanism of RNF113A in the progression of cervical cancer (CC). In this study, we evaluated the expression level and biological function of RNF113A in CC both in vitro and in vivo by bioinformatic prediction, DIA proteomic analysis, compensation experiment, Co-IP, dual-luciferase reporter assay and nude mouse xenograft to identify the RNF113A-associated autophagy pathways involved with tumorigenesis. Consistent with the prediction from biological information analysis, we found that RNF113A was highly expressed in human CC tissues and cells. In addition, this study illustrated that the high expression of RNF113A dramatically promoted proliferation and suppressed autophagy both in vitro and in vivo. In contrast, low expression of RNF113A enhanced autophagy activities and inhibited tumor growth in CC. We also found that miRNA-197, the level of which (negative correlation with RNF113A) declined in human CC, directly restrained the expression of RNF113A. Mechanistically, proteomic and mechanistic assays uncovered that RNF113A confirmed as the direct downstream target of miR-197, promoted proliferation and restrained autophagy in CC not through direct ubiquitination degradation of autophagy marker Beclin1 but via CXCR4/CXCL12/AKT/ERK/Beclin1 signal transduction axis. In summary, we found a new miR-197/RNF113 A/CXCR4/CXCL12/AKT/ERK/Beclin1 regulation pathway that plays an important part in the survival and progression of CC.
Collapse
Affiliation(s)
- Qingwei Zhang
- Department of Obstetrics and Gynaecology, Luohe Central Hospital, Luohe, 462000, Henan, China; Henan Key Laboratory of Fertility Protection and Aristogenesis, Luohe, 462000, China
| | - Jiayu Song
- Department of Pharmacology, Luohe Medical College, Luohe, 462000, Henan, China; School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, 030001, China.
| | - Liejia Cao
- Department of Obstetrics and Gynaecology, Luohe Central Hospital, Luohe, 462000, Henan, China; Henan Key Laboratory of Fertility Protection and Aristogenesis, Luohe, 462000, China
| | - Mingzheng Sun
- Department of Pharmacology, Luohe Medical College, Luohe, 462000, Henan, China
| | - Tenghan Xu
- Department of Obstetrics and Gynaecology, Luohe Central Hospital, Luohe, 462000, Henan, China; Henan Key Laboratory of Fertility Protection and Aristogenesis, Luohe, 462000, China
| | - Shaozhe Yang
- Department of Obstetrics and Gynaecology, Luohe Central Hospital, Luohe, 462000, Henan, China; Henan Key Laboratory of Fertility Protection and Aristogenesis, Luohe, 462000, China
| | - Suhong Li
- Department of Obstetrics and Gynaecology, Luohe Central Hospital, Luohe, 462000, Henan, China; Henan Key Laboratory of Fertility Protection and Aristogenesis, Luohe, 462000, China
| | - Huifen Wang
- Department of Obstetrics and Gynaecology, Luohe Central Hospital, Luohe, 462000, Henan, China; Henan Key Laboratory of Fertility Protection and Aristogenesis, Luohe, 462000, China
| | - Xiuhong Fu
- Department of Obstetrics and Gynaecology, Luohe Central Hospital, Luohe, 462000, Henan, China; Henan Key Laboratory of Fertility Protection and Aristogenesis, Luohe, 462000, China.
| |
Collapse
|
23
|
Jia J, Hilal T, Bohnsack KE, Chernev A, Tsao N, Bethmann J, Arumugam A, Parmely L, Holton N, Loll B, Mosammaparast N, Bohnsack MT, Urlaub H, Wahl MC. Extended DNA threading through a dual-engine motor module of the activating signal co-integrator 1 complex. Nat Commun 2023; 14:1886. [PMID: 37019967 PMCID: PMC10076317 DOI: 10.1038/s41467-023-37528-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 03/21/2023] [Indexed: 04/07/2023] Open
Abstract
Activating signal co-integrator 1 complex (ASCC) subunit 3 (ASCC3) supports diverse genome maintenance and gene expression processes, and contains tandem Ski2-like NTPase/helicase cassettes crucial for these functions. Presently, the molecular mechanisms underlying ASCC3 helicase activity and regulation remain unresolved. We present cryogenic electron microscopy, DNA-protein cross-linking/mass spectrometry as well as in vitro and cellular functional analyses of the ASCC3-TRIP4 sub-module of ASCC. Unlike the related spliceosomal SNRNP200 RNA helicase, ASCC3 can thread substrates through both helicase cassettes. TRIP4 docks on ASCC3 via a zinc finger domain and stimulates the helicase by positioning an ASC-1 homology domain next to the C-terminal helicase cassette of ASCC3, likely supporting substrate engagement and assisting the DNA exit. TRIP4 binds ASCC3 mutually exclusively with the DNA/RNA dealkylase, ALKBH3, directing ASCC3 for specific processes. Our findings define ASCC3-TRIP4 as a tunable motor module of ASCC that encompasses two cooperating NTPase/helicase units functionally expanded by TRIP4.
Collapse
Affiliation(s)
- Junqiao Jia
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Takustr. 6, D-14195, Berlin, Germany
- Harvard Medical School, Department of Cell Biology, 240 Longwood Avenue, Boston, MA, 02115, USA
| | - Tarek Hilal
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Takustr. 6, D-14195, Berlin, Germany
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Research Center of Electron Microscopy, Fabeckstr. 36a, D-14195, Berlin, Germany
| | - Katherine E Bohnsack
- Universitätsmedizin Göttingen, Department of Molecular Biology, Humboldallee 23, D-37073, Göttingen, Germany
| | - Aleksandar Chernev
- Max-Planck-Institut für Multidisziplinäre Naturwissenschaften, Bioanalytical Mass Spectrometry, Am Fassberg 11, D-37077, Göttingen, Germany
| | - Ning Tsao
- Washington University School of Medicine, Department of Pathology & Immunology and Center for Genome Integrity, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
| | - Juliane Bethmann
- Max-Planck-Institut für Multidisziplinäre Naturwissenschaften, Bioanalytical Mass Spectrometry, Am Fassberg 11, D-37077, Göttingen, Germany
- Universitätsmedizin Göttingen, Institut für Klinische Chemie, Bioanalytik, Robert-Koch-Straße 40, D-35075, Göttingen, Germany
| | - Aruna Arumugam
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Takustr. 6, D-14195, Berlin, Germany
| | - Lane Parmely
- Washington University School of Medicine, Department of Pathology & Immunology and Center for Genome Integrity, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
| | - Nicole Holton
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Takustr. 6, D-14195, Berlin, Germany
| | - Bernhard Loll
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Takustr. 6, D-14195, Berlin, Germany
| | - Nima Mosammaparast
- Washington University School of Medicine, Department of Pathology & Immunology and Center for Genome Integrity, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
| | - Markus T Bohnsack
- Universitätsmedizin Göttingen, Department of Molecular Biology, Humboldallee 23, D-37073, Göttingen, Germany
- Georg-August-Universität, Göttingen Center for Molecular Biosciences, Justus-von-Liebig-Weg 11, D-37077, Göttingen, Germany
- Max-Planck-Institut für Multidisziplinäre Naturwissenschaften, Am Fassberg 11, D-37077, Göttingen, Germany
| | - Henning Urlaub
- Max-Planck-Institut für Multidisziplinäre Naturwissenschaften, Bioanalytical Mass Spectrometry, Am Fassberg 11, D-37077, Göttingen, Germany
- Universitätsmedizin Göttingen, Institut für Klinische Chemie, Bioanalytik, Robert-Koch-Straße 40, D-35075, Göttingen, Germany
| | - Markus C Wahl
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Takustr. 6, D-14195, Berlin, Germany.
- Helmholtz-Zentrum Berlin für Materialien und Energie, Macromolecular Crystallography, Albert-Einstein-Str. 15, D-12489, Berlin, Germany.
| |
Collapse
|
24
|
Li Q, Zhu Q. The role of demethylase AlkB homologs in cancer. Front Oncol 2023; 13:1153463. [PMID: 37007161 PMCID: PMC10060643 DOI: 10.3389/fonc.2023.1153463] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/03/2023] [Indexed: 03/18/2023] Open
Abstract
The AlkB family (ALKBH1-8 and FTO), a member of the Fe (II)- and α-ketoglutarate-dependent dioxygenase superfamily, has shown the ability to catalyze the demethylation of a variety of substrates, including DNA, RNA, and histones. Methylation is one of the natural organisms’ most prevalent forms of epigenetic modifications. Methylation and demethylation processes on genetic material regulate gene transcription and expression. A wide variety of enzymes are involved in these processes. The methylation levels of DNA, RNA, and histones are highly conserved. Stable methylation levels at different stages can coordinate the regulation of gene expression, DNA repair, and DNA replication. Dynamic methylation changes are essential for the abilities of cell growth, differentiation, and division. In some malignancies, the methylation of DNA, RNA, and histones is frequently altered. To date, nine AlkB homologs as demethylases have been identified in numerous cancers’ biological processes. In this review, we summarize the latest advances in the research of the structures, enzymatic activities, and substrates of the AlkB homologs and the role of these nine homologs as demethylases in cancer genesis, progression, metastasis, and invasion. We provide some new directions for the AlkB homologs in cancer research. In addition, the AlkB family is expected to be a new target for tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Qiao Li
- Department of Orthopedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Qingsan Zhu
- Department of Orthopedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
- *Correspondence: Qingsan Zhu,
| |
Collapse
|
25
|
Fahrer J, Christmann M. DNA Alkylation Damage by Nitrosamines and Relevant DNA Repair Pathways. Int J Mol Sci 2023; 24:ijms24054684. [PMID: 36902118 PMCID: PMC10003415 DOI: 10.3390/ijms24054684] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/17/2023] [Accepted: 02/24/2023] [Indexed: 03/04/2023] Open
Abstract
Nitrosamines occur widespread in food, drinking water, cosmetics, as well as tobacco smoke and can arise endogenously. More recently, nitrosamines have been detected as impurities in various drugs. This is of particular concern as nitrosamines are alkylating agents that are genotoxic and carcinogenic. We first summarize the current knowledge on the different sources and chemical nature of alkylating agents with a focus on relevant nitrosamines. Subsequently, we present the major DNA alkylation adducts induced by nitrosamines upon their metabolic activation by CYP450 monooxygenases. We then describe the DNA repair pathways engaged by the various DNA alkylation adducts, which include base excision repair, direct damage reversal by MGMT and ALKBH, as well as nucleotide excision repair. Their roles in the protection against the genotoxic and carcinogenic effects of nitrosamines are highlighted. Finally, we address DNA translesion synthesis as a DNA damage tolerance mechanism relevant to DNA alkylation adducts.
Collapse
Affiliation(s)
- Jörg Fahrer
- Division of Food Chemistry and Toxicology, Department of Chemistry, RPTU Kaiserslautern-Landau, Erwin-Schrödinger Strasse 52, D-67663 Kaiserslautern, Germany
- Correspondence: (J.F.); (M.C.); Tel.: +496312052974 (J.F.); Tel: +496131179066 (M.C.)
| | - Markus Christmann
- Department of Toxicology, University Medical Center Mainz, Obere Zahlbacher Strasse 67, D-55131 Mainz, Germany
- Correspondence: (J.F.); (M.C.); Tel.: +496312052974 (J.F.); Tel: +496131179066 (M.C.)
| |
Collapse
|
26
|
Best K, Ikeuchi K, Kater L, Best D, Musial J, Matsuo Y, Berninghausen O, Becker T, Inada T, Beckmann R. Structural basis for clearing of ribosome collisions by the RQT complex. Nat Commun 2023; 14:921. [PMID: 36801861 PMCID: PMC9938168 DOI: 10.1038/s41467-023-36230-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 01/18/2023] [Indexed: 02/19/2023] Open
Abstract
Translation of aberrant messenger RNAs can cause stalling of ribosomes resulting in ribosomal collisions. Collided ribosomes are specifically recognized to initiate stress responses and quality control pathways. Ribosome-associated quality control facilitates the degradation of incomplete translation products and requires dissociation of the stalled ribosomes. A central event is therefore the splitting of collided ribosomes by the ribosome quality control trigger complex, RQT, by an unknown mechanism. Here we show that RQT requires accessible mRNA and the presence of a neighboring ribosome. Cryogenic electron microscopy of RQT-ribosome complexes reveals that RQT engages the 40S subunit of the lead ribosome and can switch between two conformations. We propose that the Ski2-like helicase 1 (Slh1) subunit of RQT applies a pulling force on the mRNA, causing destabilizing conformational changes of the small ribosomal subunit, ultimately resulting in subunit dissociation. Our findings provide conceptual framework for a helicase-driven ribosomal splitting mechanism.
Collapse
Affiliation(s)
- Katharina Best
- Department of Biochemistry, Gene Center, Feodor-Lynen-Str. 25, University of Munich, 81377, Munich, Germany
| | - Ken Ikeuchi
- Department of Biochemistry, Gene Center, Feodor-Lynen-Str. 25, University of Munich, 81377, Munich, Germany
| | - Lukas Kater
- Department of Biochemistry, Gene Center, Feodor-Lynen-Str. 25, University of Munich, 81377, Munich, Germany
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058, Basel, Switzerland
| | - Daniel Best
- Department of Biochemistry, Gene Center, Feodor-Lynen-Str. 25, University of Munich, 81377, Munich, Germany
| | - Joanna Musial
- Department of Biochemistry, Gene Center, Feodor-Lynen-Str. 25, University of Munich, 81377, Munich, Germany
| | - Yoshitaka Matsuo
- Division of RNA and gene regulation, Institute of Medical Science, The University of Tokyo, Minato-Ku, 108-8639, Japan
| | - Otto Berninghausen
- Department of Biochemistry, Gene Center, Feodor-Lynen-Str. 25, University of Munich, 81377, Munich, Germany
| | - Thomas Becker
- Department of Biochemistry, Gene Center, Feodor-Lynen-Str. 25, University of Munich, 81377, Munich, Germany
| | - Toshifumi Inada
- Division of RNA and gene regulation, Institute of Medical Science, The University of Tokyo, Minato-Ku, 108-8639, Japan.
| | - Roland Beckmann
- Department of Biochemistry, Gene Center, Feodor-Lynen-Str. 25, University of Munich, 81377, Munich, Germany.
| |
Collapse
|
27
|
DNA Methylation as a Diagnostic, Prognostic, and Predictive Biomarker in Head and Neck Cancer. Int J Mol Sci 2023; 24:ijms24032996. [PMID: 36769317 PMCID: PMC9917637 DOI: 10.3390/ijms24032996] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a term collectively used to describe all cancers that develop in the oral and nasal cavities, the paranasal sinuses, the salivary glands, the pharynx, and the larynx. The majority (75%) of all newly diagnosed cases are observed in patients with locally advanced and aggressive disease, associated with significant relapse rates (30%) and poor prognostic outcomes, despite advances in multimodal treatment. Consequently, there is an unmet need for the identification and application of tools that would enable diagnosis at the earliest possible stage, accurately predict prognostic outcomes, contribute to the timely detection of relapses, and aid in the decision for therapy selection. Recent evidence suggests that DNA methylation can alter the expression of genes in a way that it favors tumorigenesis and tumor progression in HNSCC, and therefore represents a potential source for biomarker identification. This study summarizes the current knowledge on how abnormally methylated DNA profiles in HNSCC patients may contribute to the pathogenesis of HNSCC and designate the methylation patterns that have the potential to constitute clinically valuable biomarkers for achieving significant advances in the management of the disease and for improving survival outcomes in these patients.
Collapse
|
28
|
Johnston R, Mathias B, Crowley SJ, Schmidt HA, White LS, Mosammaparast N, Green AM, Bednarski JJ. Nuclease-independent functions of RAG1 direct distinct DNA damage responses in B cells. EMBO Rep 2023; 24:e55429. [PMID: 36382770 PMCID: PMC9827558 DOI: 10.15252/embr.202255429] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/23/2022] [Accepted: 10/26/2022] [Indexed: 11/18/2022] Open
Abstract
Developing B cells generate DNA double-stranded breaks (DSBs) to assemble immunoglobulin receptor (Ig) genes necessary for the expression of a mature B cell receptor. These physiologic DSBs are made by the RAG endonuclease, which is comprised of the RAG1 and RAG2 proteins. In pre-B cells, RAG-mediated DSBs activate the ATM kinase to coordinate canonical and non-canonical DNA damage responses (DDR) that trigger DSB repair and B cell developmental signals, respectively. Whether this broad cellular response is distinctive to RAG DSBs is poorly understood. To delineate the factors that direct DDR signaling in B cells, we express a tetracycline-inducible Cas9 nuclease in Rag1-deficient pre-B cells. Both RAG- and Cas9-mediated DSBs at Ig genes activate canonical DDR. In contrast, RAG DSBs, but not Cas9 DSBs, induce the non-canonical DDR-dependent developmental program. This unique response to RAG DSBs is, in part, regulated by non-core regions of RAG1. Thus, B cells trigger distinct cellular responses to RAG DSBs through unique properties of the RAG endonuclease that promotes activation of B cell developmental programs.
Collapse
Affiliation(s)
- Rachel Johnston
- Department of PediatricsWashington University School of MedicineSt. LouisMOUSA
| | - Brendan Mathias
- Department of PediatricsWashington University School of MedicineSt. LouisMOUSA
| | - Stephanie J Crowley
- Department of PediatricsWashington University School of MedicineSt. LouisMOUSA
| | - Haley A Schmidt
- Department of PediatricsWashington University School of MedicineSt. LouisMOUSA
| | - Lynn S White
- Department of PediatricsWashington University School of MedicineSt. LouisMOUSA
| | - Nima Mosammaparast
- Department of Pathology and ImmunologyWashington University School of MedicineSt. LouisMOUSA
| | - Abby M Green
- Department of PediatricsWashington University School of MedicineSt. LouisMOUSA
| | - Jeffrey J Bednarski
- Department of PediatricsWashington University School of MedicineSt. LouisMOUSA
| |
Collapse
|
29
|
Sensing of individual stalled 80S ribosomes by Fap1 for nonfunctional rRNA turnover. Mol Cell 2022; 82:3424-3437.e8. [PMID: 36113412 DOI: 10.1016/j.molcel.2022.08.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/29/2022] [Accepted: 08/16/2022] [Indexed: 11/23/2022]
Abstract
Cells can respond to stalled ribosomes by sensing ribosome collisions and employing quality control pathways. How ribosome stalling is resolved without collisions, however, has remained elusive. Here, focusing on noncolliding stalling exhibited by decoding-defective ribosomes, we identified Fap1 as a stalling sensor triggering 18S nonfunctional rRNA decay via polyubiquitination of uS3. Ribosome profiling revealed an enrichment of Fap1 at the translation initiation site but also an association with elongating individual ribosomes. Cryo-EM structures of Fap1-bound ribosomes elucidated Fap1 probing the mRNA simultaneously at both the entry and exit channels suggesting an mRNA stasis sensing activity, and Fap1 sterically hinders the formation of canonical collided di-ribosomes. Our findings indicate that individual stalled ribosomes are the potential signal for ribosome dysfunction, leading to accelerated turnover of the ribosome itself.
Collapse
|
30
|
Lukinović V, Hausmann S, Roth GS, Oyeniran C, Ahmad T, Tsao N, Brickner JR, Casanova AG, Chuffart F, Benitez AM, Vayr J, Rodell R, Tardif M, Jansen PW, Couté Y, Vermeulen M, Hainaut P, Mazur PK, Mosammaparast N, Reynoird N. SMYD3 Impedes Small Cell Lung Cancer Sensitivity to Alkylation Damage through RNF113A Methylation-Phosphorylation Cross-talk. Cancer Discov 2022; 12:2158-2179. [PMID: 35819319 PMCID: PMC9437563 DOI: 10.1158/2159-8290.cd-21-0205] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 02/16/2022] [Accepted: 07/07/2022] [Indexed: 01/07/2023]
Abstract
Small cell lung cancer (SCLC) is the most fatal form of lung cancer, with dismal survival, limited therapeutic options, and rapid development of chemoresistance. We identified the lysine methyltransferase SMYD3 as a major regulator of SCLC sensitivity to alkylation-based chemotherapy. RNF113A methylation by SMYD3 impairs its interaction with the phosphatase PP4, controlling its phosphorylation levels. This cross-talk between posttranslational modifications acts as a key switch in promoting and maintaining RNF113A E3 ligase activity, essential for its role in alkylation damage response. In turn, SMYD3 inhibition restores SCLC vulnerability to alkylating chemotherapy. Our study sheds light on a novel role of SMYD3 in cancer, uncovering this enzyme as a mediator of alkylation damage sensitivity and providing a rationale for small-molecule SMYD3 inhibition to improve responses to established chemotherapy. SIGNIFICANCE SCLC rapidly becomes resistant to conventional chemotherapy, leaving patients with no alternative treatment options. Our data demonstrate that SMYD3 upregulation and RNF113A methylation in SCLC are key mechanisms that control the alkylation damage response. Notably, SMYD3 inhibition sensitizes cells to alkylating agents and promotes sustained SCLC response to chemotherapy. This article is highlighted in the In This Issue feature, p. 2007.
Collapse
Affiliation(s)
- Valentina Lukinović
- Institute for Advanced Biosciences, Grenoble Alpes University, CNRS UMR5309, INSERM U1209, Grenoble, France
| | - Simone Hausmann
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Gael S. Roth
- Institute for Advanced Biosciences, Grenoble Alpes University, CNRS UMR5309, INSERM U1209, Grenoble, France
- Clinique universitaire d'Hépato-gastroentérologie et Oncologie digestive, CHU Grenoble Alpes, Grenoble, France
| | - Clement Oyeniran
- Department of Pathology and Immunology and Department of Medicine, Center for Genome Integrity, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Tanveer Ahmad
- Institute for Advanced Biosciences, Grenoble Alpes University, CNRS UMR5309, INSERM U1209, Grenoble, France
| | - Ning Tsao
- Department of Pathology and Immunology and Department of Medicine, Center for Genome Integrity, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Joshua R. Brickner
- Department of Pathology and Immunology and Department of Medicine, Center for Genome Integrity, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Alexandre G. Casanova
- Institute for Advanced Biosciences, Grenoble Alpes University, CNRS UMR5309, INSERM U1209, Grenoble, France
| | - Florent Chuffart
- Institute for Advanced Biosciences, Grenoble Alpes University, CNRS UMR5309, INSERM U1209, Grenoble, France
| | - Ana Morales Benitez
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jessica Vayr
- Institute for Advanced Biosciences, Grenoble Alpes University, CNRS UMR5309, INSERM U1209, Grenoble, France
| | - Rebecca Rodell
- Department of Pathology and Immunology and Department of Medicine, Center for Genome Integrity, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Marianne Tardif
- Univ. Grenoble Alpes, CEA, INSERM, IRIG, BGE, Grenoble, France
| | - Pascal W.T.C. Jansen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Yohann Couté
- Univ. Grenoble Alpes, CEA, INSERM, IRIG, BGE, Grenoble, France
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Pierre Hainaut
- Institute for Advanced Biosciences, Grenoble Alpes University, CNRS UMR5309, INSERM U1209, Grenoble, France
| | - Pawel K. Mazur
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Nima Mosammaparast
- Department of Pathology and Immunology and Department of Medicine, Center for Genome Integrity, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Nicolas Reynoird
- Institute for Advanced Biosciences, Grenoble Alpes University, CNRS UMR5309, INSERM U1209, Grenoble, France
| |
Collapse
|
31
|
ALKBH family members as novel biomarkers and prognostic factors in human breast cancer. Aging (Albany NY) 2022; 14:6579-6593. [PMID: 35980268 PMCID: PMC9467415 DOI: 10.18632/aging.204231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/27/2022] [Indexed: 12/11/2022]
Abstract
Breast cancer is the most common lethal carcinoma worldwide and better targeted therapies are still worthy of exploration, having had some great successes already. Abnormal expression of ALKBH members were found in various cancers, and the roles played by it were the focus of attention. The ALKBH gene family encodes nine homologous enzymes (ALKBH1-8 and FTO) to repair DNA or RNA depending on Fe2+ and α-ketoglutarate (α-KG), which is related to carcinogenesis. In this study, we applied several databases to explore the roles of ALKBHs in breast cancer. We found that ALKBH members were abnormal expression in breast cancer and associated with tumor stage and subclasses. Higher alteration rates of ALKBH family were found in breast cancer. Function enrichment revealed that several cancer-associated signal pathways were related to ALKBH family such as PI3K-Akt signaling pathway and axon guidance. Infiltration of immune cells (Eosinophiles, NK CD56bright cells, mast cells, T helper cells and so on) were strongly related to ALKBHs. Moreover, we further found that there was strong correlation between ALKBH7 and higher age, later T stage, ER/PR positive and post-menopause of breast cancer patients, and patients with higher ALKBH7 expression had shorter overall survival (OS) and post progression survival (PPS). In conclusion, our findings may provide novel insights into ALKBH-targeted therapy for breast cancer patients, and ALKBH7 may be a potential prognostic biomarker.
Collapse
|
32
|
Yin X, Liu Q, Liu F, Tian X, Yan T, Han J, Jiang S. Emerging Roles of Non-proteolytic Ubiquitination in Tumorigenesis. Front Cell Dev Biol 2022; 10:944460. [PMID: 35874839 PMCID: PMC9298949 DOI: 10.3389/fcell.2022.944460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/15/2022] [Indexed: 12/13/2022] Open
Abstract
Ubiquitination is a critical type of protein post-translational modification playing an essential role in many cellular processes. To date, more than eight types of ubiquitination exist, all of which are involved in distinct cellular processes based on their structural differences. Studies have indicated that activation of the ubiquitination pathway is tightly connected with inflammation-related diseases as well as cancer, especially in the non-proteolytic canonical pathway, highlighting the vital roles of ubiquitination in metabolic programming. Studies relating degradable ubiquitination through lys48 or lys11-linked pathways to cellular signaling have been well-characterized. However, emerging evidence shows that non-degradable ubiquitination (linked to lys6, lys27, lys29, lys33, lys63, and Met1) remains to be defined. In this review, we summarize the non-proteolytic ubiquitination involved in tumorigenesis and related signaling pathways, with the aim of providing a reference for future exploration of ubiquitination and the potential targets for cancer therapies.
Collapse
Affiliation(s)
- Xiu Yin
- Clinical Medical Laboratory Center, Jining First People's Hospital, Jining Medical University, Jining, China
| | - Qingbin Liu
- Clinical Medical Laboratory Center, Jining First People's Hospital, Jining Medical University, Jining, China
| | - Fen Liu
- Clinical Medical Laboratory Center, Jining First People's Hospital, Jining Medical University, Jining, China
| | - Xinchen Tian
- Clinical Medical Laboratory Center, Jining First People's Hospital, Jining Medical University, Jining, China.,Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tinghao Yan
- Clinical Medical Laboratory Center, Jining First People's Hospital, Jining Medical University, Jining, China.,Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jie Han
- Department of Thyroid and Breast Surgery, Jining First People's Hospital, Jining Medical University, Jining, China
| | - Shulong Jiang
- Clinical Medical Laboratory Center, Jining First People's Hospital, Jining Medical University, Jining, China
| |
Collapse
|
33
|
Tsao N, Soll JM, Mosammaparast N. Protocol to analyze and quantify protein-methylated RNA interactions in mammalian cells with a combination of RNA immunoprecipitation and nucleoside mass spectrometry. STAR Protoc 2022; 3:101268. [PMID: 35391937 PMCID: PMC8980960 DOI: 10.1016/j.xpro.2022.101268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Cellular RNAs are modified by both physiological factors and exogenous agents, such as methyl methanesulfonate (MMS). However, techniques for analyzing how proteins may interact with these modified RNAs are limited. Here, we provide a protocol combining RNA immunoprecipitation (RIP) with mass spectrometry (MS) to analyze the methylation state of the RNAs bound by Flag-tagged proteins in mammalian cells. The approach is highly quantitative and can simultaneously detect several methylated nucleosides in a single experiment. For complete details on the use and execution of this protocol, please refer to Tsao et al. (2021).
Collapse
Affiliation(s)
- Ning Tsao
- Department of Pathology & Immunology, Washington University in Saint Louis School of Medicine, Saint Louis, MO 63110, USA
| | - Jennifer M. Soll
- Department of Pathology & Immunology, Washington University in Saint Louis School of Medicine, Saint Louis, MO 63110, USA
| | - Nima Mosammaparast
- Department of Pathology & Immunology, Washington University in Saint Louis School of Medicine, Saint Louis, MO 63110, USA
| |
Collapse
|
34
|
Tsampoula M, Tarampoulous I, Manolakou T, Ninou E, Politis PK. The neurodevelopmental disorders associated gene Rnf113a regulates survival and differentiation properties of neural stem cells. Stem Cells 2022; 40:678-690. [DOI: 10.1093/stmcls/sxac030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 03/23/2022] [Indexed: 11/15/2022]
Abstract
Abstract
RNF113A (Ring Finger Protein 113A) is genetically associated with autism spectrum disorders and X-linked trichothiodystrophy (TTD) syndrome. Loss-of-function mutations in human RNF113A are causally linked to TTD, which is characterized by abnormal development of central nervous system (CNS) and mental retardation. How loss of RNF113A activity affects brain development is not known. Here we identify Rnf113a1 as a critical regulator of cell death and neurogenesis during mouse brain development. Rnf113a1 gene exhibits widespread expression in the embryonic CNS. Knockdown studies in embryonic cortical neural stem/progenitor cells (NSCs) and the mouse cortex suggest that Rnf113a1 controls survival, proliferation and differentiation properties of progenitor cells. Importantly, Rnf113a1 deficiency triggers cell apoptosis via a combined action on essential regulators of cell survival, including p53, Nupr1 and Rad51. Collectively, these observations establish Rnf113a1 as a regulatory factor in CNS development and provide insights for its role in neurodevelopmental defects associated with TTD and autism.
Collapse
Affiliation(s)
- Matina Tsampoula
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Isaak Tarampoulous
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Theodora Manolakou
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Elpinickie Ninou
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Panagiotis K Politis
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- School of Medicine, European University Cyprus, Nicosia, Cyprus
| |
Collapse
|
35
|
Cao Y, Pan C, Wang YC, Zhou Z, Jedian V, Meng Y, Campbell G, Guardino K, Li C, Wang J, Lusis AJ. Identification of DNA Damage Repair Enzyme Ascc2 as Causal for Heart Failure With Preserved Ejection Fraction. Circulation 2022; 145:1102-1104. [PMID: 35377742 PMCID: PMC8988871 DOI: 10.1161/circulationaha.121.055857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Yang Cao
- Department of Medicine/Division of Cardiology, University of California, Los Angeles, CA, USA
| | - Calvin Pan
- Department of Medicine/Division of Cardiology, University of California, Los Angeles, CA, USA
| | - Yu-Chen Wang
- Department of Medicine/Division of Cardiology, University of California, Los Angeles, CA, USA
| | - Zhiqiang Zhou
- Department of Medicine/Division of Cardiology, University of California, Los Angeles, CA, USA
| | - Vida Jedian
- Department of Medicine/Division of Cardiology, University of California, Los Angeles, CA, USA
| | - Yonghong Meng
- Department of Medicine/Division of Cardiology, University of California, Los Angeles, CA, USA
| | - Gillian Campbell
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, USA
| | - Kristina Guardino
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, USA
| | - Christopher Li
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, USA
| | - Jessica Wang
- Department of Medicine/Division of Cardiology, University of California, Los Angeles, CA, USA
| | - Aldons Jake Lusis
- Department of Medicine/Division of Cardiology, University of California, Los Angeles, CA, USA
- Department of Human Genetics, University of California, Los Angeles, CA, USA
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, USA
| |
Collapse
|
36
|
Li L, Jiang Y, Wang JZ, Liu R, Wang X. Tau Ubiquitination in Alzheimer's Disease. Front Neurol 2022; 12:786353. [PMID: 35211074 PMCID: PMC8860969 DOI: 10.3389/fneur.2021.786353] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/29/2021] [Indexed: 12/03/2022] Open
Abstract
Paired helical filaments (PHFs) from the Alzheimer's disease (AD) brain are highly ubiquitinated and ubiquitination likely plays a vital role in tau filament formation. Whether tau ubiquitination is the causality or consequence of the disease in AD remains elusive. The following questions are worth considering: What does the extent of tau ubiquitination contribute to tau pathology in AD? Does tau ubiquitination influence aggregation or spreading during disease progression? In addition, tau is polyubiquitinated in nerve growth factor-induced PC12 cells and participates in mitogen-activated protein kinase signaling, in addition to its microtubule stabilization function. Therefore, ubiquitination possibly mediates tau signaling under physiological conditions, but tau aggregation in the pathobiology of AD. Here, we review the advancements in tau ubiquitination and the potential therapeutic effects of targeting tau ubiquitination to alleviate tau pathology in AD.
Collapse
Affiliation(s)
- Longfei Li
- Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanli Jiang
- Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian-Zhi Wang
- Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, China
| | - Rong Liu
- Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaochuan Wang
- Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, China
| |
Collapse
|
37
|
Lombardi PM, Haile S, Rusanov T, Rodell R, Anoh R, Baer JG, Burke KA, Gray LN, Hacker AR, Kebreau KR, Ngandu CK, Orland HA, Osei-Asante E, Schmelyun DP, Shorb DE, Syed SH, Veilleux JM, Majumdar A, Mosammaparast N, Wolberger C. The ASCC2 CUE domain in the ALKBH3-ASCC DNA repair complex recognizes adjacent ubiquitins in K63-linked polyubiquitin. J Biol Chem 2022; 298:101545. [PMID: 34971705 PMCID: PMC8800115 DOI: 10.1016/j.jbc.2021.101545] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 11/28/2022] Open
Abstract
Alkylation of DNA and RNA is a potentially toxic lesion that can result in mutations and even cell death. In response to alkylation damage, K63-linked polyubiquitin chains are assembled that localize the Alpha-ketoglutarate-dependent dioxygenase alkB homolog 3-Activating Signal Cointegrator 1 Complex Subunit (ASCC) repair complex to damage sites in the nucleus. The protein ASCC2, a subunit of the ASCC complex, selectively binds K63-linked polyubiquitin chains via its coupling of ubiquitin conjugation to ER degradation (CUE) domain. The basis for polyubiquitin-binding specificity was unclear, because CUE domains in other proteins typically bind a single ubiquitin and do not discriminate among different polyubiquitin linkage types. We report here that the ASCC2 CUE domain selectively binds K63-linked diubiquitin by contacting both the distal and proximal ubiquitin. The ASCC2 CUE domain binds the distal ubiquitin in a manner similar to that reported for other CUE domains bound to a single ubiquitin, whereas the contacts with the proximal ubiquitin are unique to ASCC2. Residues in the N-terminal portion of the ASCC2 α1 helix contribute to the binding interaction with the proximal ubiquitin of K63-linked diubiquitin. Mutation of residues within the N-terminal portion of the ASCC2 α1 helix decreases ASCC2 recruitment in response to DNA alkylation, supporting the functional significance of these interactions during the alkylation damage response. Our study reveals the versatility of CUE domains in ubiquitin recognition.
Collapse
Affiliation(s)
- Patrick M Lombardi
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Science, Mount St. Mary's University, Emmitsburg, Maryland, USA.
| | - Sara Haile
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Timur Rusanov
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Rebecca Rodell
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Rita Anoh
- Department of Science, Mount St. Mary's University, Emmitsburg, Maryland, USA
| | - Julia G Baer
- Department of Science, Mount St. Mary's University, Emmitsburg, Maryland, USA
| | - Kate A Burke
- Department of Science, Mount St. Mary's University, Emmitsburg, Maryland, USA
| | - Lauren N Gray
- Department of Science, Mount St. Mary's University, Emmitsburg, Maryland, USA
| | - Abigail R Hacker
- Department of Science, Mount St. Mary's University, Emmitsburg, Maryland, USA
| | - Kayla R Kebreau
- Department of Science, Mount St. Mary's University, Emmitsburg, Maryland, USA
| | - Christine K Ngandu
- Department of Science, Mount St. Mary's University, Emmitsburg, Maryland, USA
| | - Hannah A Orland
- Department of Science, Mount St. Mary's University, Emmitsburg, Maryland, USA
| | | | - Dhane P Schmelyun
- Department of Science, Mount St. Mary's University, Emmitsburg, Maryland, USA
| | - Devin E Shorb
- Department of Science, Mount St. Mary's University, Emmitsburg, Maryland, USA
| | - Shaheer H Syed
- Department of Science, Mount St. Mary's University, Emmitsburg, Maryland, USA
| | - Julianna M Veilleux
- Department of Science, Mount St. Mary's University, Emmitsburg, Maryland, USA
| | - Ananya Majumdar
- Biomolecular NMR Center, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Nima Mosammaparast
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Cynthia Wolberger
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
38
|
Fukunaga T, Iwasaki W. Inverse Potts model improves accuracy of phylogenetic profiling. Bioinformatics 2022; 38:1794-1800. [PMID: 35060594 PMCID: PMC8963296 DOI: 10.1093/bioinformatics/btac034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 02/03/2023] Open
Abstract
MOTIVATION Phylogenetic profiling is a powerful computational method for revealing the functions of function-unknown genes. Although conventional similarity metrics in phylogenetic profiling achieved high prediction accuracy, they have two estimation biases: an evolutionary bias and a spurious correlation bias. While previous studies reduced the evolutionary bias by considering a phylogenetic tree, few studies have analyzed the spurious correlation bias. RESULTS To reduce the spurious correlation bias, we developed metrics based on the inverse Potts model (IPM) for phylogenetic profiling. We also developed a metric based on both the IPM and a phylogenetic tree. In an empirical dataset analysis, we demonstrated that these IPM-based metrics improved the prediction performance of phylogenetic profiling. In addition, we found that the integration of several metrics, including the IPM-based metrics, had superior performance to a single metric. AVAILABILITY AND IMPLEMENTATION The source code is freely available at https://github.com/fukunagatsu/Ipm. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
| | - Wataru Iwasaki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 2770882, Japan,Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 1130032, Japan,Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 2770882, Japan,Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba 2770882, Japan,Institute for Quantitative Biosciences, The University of Tokyo, Tokyo 1130032, Japan,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo 1130032, Japan
| |
Collapse
|
39
|
Anoh R, Burke KA, Schmelyun DP, Lombardi PM. Generation of Monoubiquitin and K63-Linked Polyubiquitin Chains for Protein Interaction Studies. Methods Mol Biol 2022; 2444:271-282. [PMID: 35290643 DOI: 10.1007/978-1-0716-2063-2_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ubiquitylation is a posttranslational modification that utilizes protein-protein binding interactions to regulate cellular processes. In ubiquitin signaling, a vast array of mono- and polyubiquitin modifications to substrate proteins are recognized by a diverse group of ubiquitin-binding proteins. Identifying ubiquitin-binding proteins and characterizing their binding properties is necessary for understanding the structural basis of ubiquitin signaling. This chapter provides a means of studying ubiquitin-binding interactions in vitro by describing how to generate monoubiquitin and K63-linked polyubiquitin chains and perform pull-down assays with ubiquitin-binding proteins, which is of particular relevance for DNA damage and other signaling pathways.
Collapse
Affiliation(s)
- Rita Anoh
- Department of Science, Mount St. Mary's University, Emmitsburg, MD, USA
| | - Kate A Burke
- Department of Science, Mount St. Mary's University, Emmitsburg, MD, USA
| | - Dhane P Schmelyun
- Department of Science, Mount St. Mary's University, Emmitsburg, MD, USA
| | - Patrick M Lombardi
- Department of Science, Mount St. Mary's University, Emmitsburg, MD, USA.
| |
Collapse
|
40
|
Townley BA, Soll JM, Mosammaparast N. Immunoaffinity Purification of Epitope-Tagged DNA Repair Complexes from Human Cells. Methods Mol Biol 2022; 2444:29-41. [PMID: 35290630 PMCID: PMC9396914 DOI: 10.1007/978-1-0716-2063-2_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Immunoaffinity purification allows for the purification of epitope-tagged proteins and their associated multisubunit complexes from mammalian cells. Subsequent identification of the proteins by proteomic analysis enables unbiased biochemical characterization of their associated partners, potentially revealing the physiological or functional context of any given protein. Here, we use immunoaffinity isolation of the Activating Signal Co-integrator Complex (ASCC) from human cells as an example, demonstrating the utility of the approach in revealing protein complexes involved in genotoxic stress responses.
Collapse
|
41
|
Alexander LT, Lepore R, Kryshtafovych A, Adamopoulos A, Alahuhta M, Arvin AM, Bomble YJ, Böttcher B, Breyton C, Chiarini V, Chinnam NB, Chiu W, Fidelis K, Grinter R, Gupta GD, Hartmann MD, Hayes CS, Heidebrecht T, Ilari A, Joachimiak A, Kim Y, Linares R, Lovering AL, Lunin VV, Lupas AN, Makbul C, Michalska K, Moult J, Mukherjee PK, Nutt W(S, Oliver SL, Perrakis A, Stols L, Tainer JA, Topf M, Tsutakawa SE, Valdivia‐Delgado M, Schwede T. Target highlights in CASP14: Analysis of models by structure providers. Proteins 2021; 89:1647-1672. [PMID: 34561912 PMCID: PMC8616854 DOI: 10.1002/prot.26247] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 12/11/2022]
Abstract
The biological and functional significance of selected Critical Assessment of Techniques for Protein Structure Prediction 14 (CASP14) targets are described by the authors of the structures. The authors highlight the most relevant features of the target proteins and discuss how well these features were reproduced in the respective submitted predictions. The overall ability to predict three-dimensional structures of proteins has improved remarkably in CASP14, and many difficult targets were modeled with impressive accuracy. For the first time in the history of CASP, the experimentalists not only highlighted that computational models can accurately reproduce the most critical structural features observed in their targets, but also envisaged that models could serve as a guidance for further studies of biologically-relevant properties of proteins.
Collapse
Affiliation(s)
- Leila T. Alexander
- Biozentrum, University of BaselBaselSwitzerland
- Computational Structural BiologySIB Swiss Institute of BioinformaticsBaselSwitzerland
| | | | | | - Athanassios Adamopoulos
- Oncode Institute and Division of BiochemistryNetherlands Cancer InstituteAmsterdamThe Netherlands
| | - Markus Alahuhta
- Bioscience Center, National Renewable Energy LaboratoryGoldenColoradoUSA
| | - Ann M. Arvin
- Department of PediatricsStanford University School of MedicineStanfordCaliforniaUSA
- Microbiology and ImmunologyStanford University School of MedicineStanfordCaliforniaUSA
| | - Yannick J. Bomble
- Bioscience Center, National Renewable Energy LaboratoryGoldenColoradoUSA
| | - Bettina Böttcher
- Biocenter and Rudolf Virchow Center, Julius‐Maximilians Universität WürzburgWürzburgGermany
| | - Cécile Breyton
- Univ. Grenoble Alpes, CNRS, CEA, Institute for Structural BiologyGrenobleFrance
| | - Valerio Chiarini
- Program in Structural Biology and BiophysicsInstitute of Biotechnology, University of HelsinkiHelsinkiFinland
| | - Naga babu Chinnam
- Department of Molecular and Cellular OncologyThe University of Texas M.D. Anderson Cancer CenterHoustonTexasUSA
| | - Wah Chiu
- Microbiology and ImmunologyStanford University School of MedicineStanfordCaliforniaUSA
- BioengineeringStanford University School of MedicineStanfordCaliforniaUSA
- Division of Cryo‐EM and Bioimaging SSRLSLAC National Accelerator LaboratoryMenlo ParkCaliforniaUSA
| | | | - Rhys Grinter
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of MicrobiologyMonash UniversityClaytonAustralia
| | - Gagan D. Gupta
- Radiation Biology & Health Sciences DivisionBhabha Atomic Research CentreMumbaiIndia
| | - Marcus D. Hartmann
- Department of Protein EvolutionMax Planck Institute for Developmental BiologyTübingenGermany
| | - Christopher S. Hayes
- Department of Molecular, Cellular and Developmental BiologyUniversity of California, Santa BarbaraSanta BarbaraCaliforniaUSA
- Biomolecular Science and Engineering ProgramUniversity of California, Santa BarbaraSanta BarbaraCaliforniaUSA
| | - Tatjana Heidebrecht
- Oncode Institute and Division of BiochemistryNetherlands Cancer InstituteAmsterdamThe Netherlands
| | - Andrea Ilari
- Institute of Molecular Biology and Pathology of the National Research Council of Italy (CNR)RomeItaly
| | - Andrzej Joachimiak
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of ChicagoChicagoIllinoisUSA
- X‐ray Science DivisionArgonne National Laboratory, Structural Biology CenterArgonneIllinoisUSA
- Department of Biochemistry and Molecular BiologyUniversity of ChicagoChicagoIllinoisUSA
| | - Youngchang Kim
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of ChicagoChicagoIllinoisUSA
- X‐ray Science DivisionArgonne National Laboratory, Structural Biology CenterArgonneIllinoisUSA
| | - Romain Linares
- Univ. Grenoble Alpes, CNRS, CEA, Institute for Structural BiologyGrenobleFrance
| | | | - Vladimir V. Lunin
- Bioscience Center, National Renewable Energy LaboratoryGoldenColoradoUSA
| | - Andrei N. Lupas
- Department of Protein EvolutionMax Planck Institute for Developmental BiologyTübingenGermany
| | - Cihan Makbul
- Biocenter and Rudolf Virchow Center, Julius‐Maximilians Universität WürzburgWürzburgGermany
| | - Karolina Michalska
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of ChicagoChicagoIllinoisUSA
- X‐ray Science DivisionArgonne National Laboratory, Structural Biology CenterArgonneIllinoisUSA
| | - John Moult
- Department of Cell Biology and Molecular GeneticsInstitute for Bioscience and Biotechnology Research, University of MarylandRockvilleMarylandUSA
| | - Prasun K. Mukherjee
- Nuclear Agriculture & Biotechnology DivisionBhabha Atomic Research CentreMumbaiIndia
| | - William (Sam) Nutt
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of ChicagoChicagoIllinoisUSA
- X‐ray Science DivisionArgonne National Laboratory, Structural Biology CenterArgonneIllinoisUSA
| | - Stefan L. Oliver
- Department of PediatricsStanford University School of MedicineStanfordCaliforniaUSA
| | - Anastassis Perrakis
- Oncode Institute and Division of BiochemistryNetherlands Cancer InstituteAmsterdamThe Netherlands
| | - Lucy Stols
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of ChicagoChicagoIllinoisUSA
- X‐ray Science DivisionArgonne National Laboratory, Structural Biology CenterArgonneIllinoisUSA
| | - John A. Tainer
- Department of Molecular and Cellular OncologyThe University of Texas M.D. Anderson Cancer CenterHoustonTexasUSA
- Department of Cancer BiologyUniversity of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Maya Topf
- Institute of Structural and Molecular Biology, Birkbeck, University College LondonLondonUK
- Centre for Structural Systems Biology, Leibniz‐Institut für Experimentelle VirologieHamburgGermany
| | - Susan E. Tsutakawa
- Molecular Biophysics and Integrated BioimagingLawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
| | | | - Torsten Schwede
- Biozentrum, University of BaselBaselSwitzerland
- Computational Structural BiologySIB Swiss Institute of BioinformaticsBaselSwitzerland
| |
Collapse
|
42
|
Wu S, Zhu C, Tang D, Dou QP, Shen J, Chen X. The role of ferroptosis in lung cancer. Biomark Res 2021; 9:82. [PMID: 34742351 PMCID: PMC8572460 DOI: 10.1186/s40364-021-00338-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/20/2021] [Indexed: 12/19/2022] Open
Abstract
Lung cancer is one of the most common cancers in the world. Although medical treatment has made impressive progress in recent years, it is still one of the leading causes of cancer-related deaths in men and women. Ferroptosis is a type of non-apoptotic cell death modality, usually characterized by iron-dependent lipid peroxidation, rather than caspase-induced protein cleavage. Excessive or lack of ferroptosis is associated with a variety of diseases, including cancer and ischaemia-reperfusion injury. Recent preclinical evidence suggests that targeting ferroptotic pathway is a potential strategy for the treatment of lung cancer. In this review, we summarize the core mechanism and regulatory network of ferroptosis in lung cancer cells, and highlight ferroptosis induction-related tumor therapies. The reviewed information may provide new insights for targeted lung cancer therapy.
Collapse
Affiliation(s)
- Sikai Wu
- Department of Thoracic Surgery, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, China
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Linhai, China
| | - Chengchu Zhu
- Department of Thoracic Surgery, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, China
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Linhai, China
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Q Ping Dou
- Department of Oncology, School of Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI, 48201, USA
- Departments of Pharmacology & Pathology, School of Medicine, Wayne State University, Detroit, MI, 48201, USA
| | - Jianfei Shen
- Department of Thoracic Surgery, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, China.
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Linhai, China.
| | - Xin Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
43
|
Tsao N, Brickner JR, Rodell R, Ganguly A, Wood M, Oyeniran C, Ahmad T, Sun H, Bacolla A, Zhang L, Lukinović V, Soll JM, Townley BA, Casanova AG, Tainer JA, He C, Vindigni A, Reynoird N, Mosammaparast N. Aberrant RNA methylation triggers recruitment of an alkylation repair complex. Mol Cell 2021; 81:4228-4242.e8. [PMID: 34686315 DOI: 10.1016/j.molcel.2021.09.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 07/18/2021] [Accepted: 09/21/2021] [Indexed: 12/13/2022]
Abstract
Central to genotoxic responses is their ability to sense highly specific signals to activate the appropriate repair response. We previously reported that the activation of the ASCC-ALKBH3 repair pathway is exquisitely specific to alkylation damage in human cells. Yet the mechanistic basis for the selectivity of this pathway was not immediately obvious. Here, we demonstrate that RNA but not DNA alkylation is the initiating signal for this process. Aberrantly methylated RNA is sufficient to recruit ASCC, while an RNA dealkylase suppresses ASCC recruitment during chemical alkylation. In turn, recruitment of ASCC during alkylation damage, which is mediated by the E3 ubiquitin ligase RNF113A, suppresses transcription and R-loop formation. We further show that alkylated pre-mRNA is sufficient to activate RNF113A E3 ligase in vitro in a manner dependent on its RNA binding Zn-finger domain. Together, our work identifies an unexpected role for RNA damage in eliciting a specific response to genotoxins.
Collapse
Affiliation(s)
- Ning Tsao
- Department of Pathology & Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Joshua R Brickner
- Department of Pathology & Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Rebecca Rodell
- Department of Pathology & Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Adit Ganguly
- Department of Pathology & Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Matthew Wood
- Division of Oncology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA; Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Clement Oyeniran
- Department of Pathology & Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Tanveer Ahmad
- Institute for Advanced Biosciences, Grenoble Alpes University, CNRS UMR5309, INSERM U1209, Grenoble, France
| | - Hua Sun
- Department of Pathology & Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Albino Bacolla
- Department of Molecular and Cellular Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Lisheng Zhang
- Department of Biochemistry and Molecular Biology, Department of Chemistry, and Institute for Biophysical Dynamics, University of Chicago, Chicago IL 60637, USA
| | - Valentina Lukinović
- Institute for Advanced Biosciences, Grenoble Alpes University, CNRS UMR5309, INSERM U1209, Grenoble, France
| | - Jennifer M Soll
- Department of Pathology & Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Brittany A Townley
- Department of Pathology & Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Alexandre G Casanova
- Institute for Advanced Biosciences, Grenoble Alpes University, CNRS UMR5309, INSERM U1209, Grenoble, France
| | - John A Tainer
- Department of Molecular and Cellular Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA; Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Chuan He
- Department of Biochemistry and Molecular Biology, Department of Chemistry, and Institute for Biophysical Dynamics, University of Chicago, Chicago IL 60637, USA; Howard Hughes Medical Institute, University of Chicago, Chicago IL 60637, USA
| | - Alessandro Vindigni
- Division of Oncology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Nicolas Reynoird
- Institute for Advanced Biosciences, Grenoble Alpes University, CNRS UMR5309, INSERM U1209, Grenoble, France
| | - Nima Mosammaparast
- Department of Pathology & Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
44
|
Höllmüller E, Greiner K, Kienle SM, Scheffner M, Marx A, Stengel F. Interactome of Site-Specifically Acetylated Linker Histone H1. J Proteome Res 2021; 20:4443-4451. [PMID: 34351766 DOI: 10.1021/acs.jproteome.1c00396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Linker histone H1 plays a key role in chromatin organization and maintenance, yet our knowledge of the regulation of H1 functions by post-translational modifications is rather limited. In this study, we report on the generation of site-specifically mono- and di-acetylated linker histone H1.2 by genetic code expansion. We used these modified histones to identify and characterize the acetylation-dependent cellular interactome of H1.2 by affinity purification mass spectrometry and show that site-specific acetylation results in overlapping but distinct groups of interacting partners. Among these, we find multiple translational initiation factors and transcriptional regulators such as the NAD+-dependent deacetylase SIRT1, which we demonstrate to act on acetylated H1.2. Taken together, our data suggest that site-specific acetylation of H1.2 plays a role in modulating protein-protein interactions.
Collapse
|
45
|
Wollen KL, Hagen L, Vågbø CB, Rabe R, Iveland TS, Aas PA, Sharma A, Sporsheim B, Erlandsen HO, Palibrk V, Bjørås M, Fonseca DM, Mosammaparast N, Slupphaug G. ALKBH3 partner ASCC3 mediates P-body formation and selective clearance of MMS-induced 1-methyladenosine and 3-methylcytosine from mRNA. J Transl Med 2021; 19:287. [PMID: 34217309 PMCID: PMC8254245 DOI: 10.1186/s12967-021-02948-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/17/2021] [Indexed: 02/07/2023] Open
Abstract
Background Reversible enzymatic methylation of mammalian mRNA is widespread and serves crucial regulatory functions, but little is known to what degree chemical alkylators mediate overlapping modifications and whether cells distinguish aberrant from canonical methylations. Methods Here we use quantitative mass spectrometry to determine the fate of chemically induced methylbases in the mRNA of human cells. Concomitant alteration in the mRNA binding proteome was analyzed by SILAC mass spectrometry. Results MMS induced prominent direct mRNA methylations that were chemically identical to endogenous methylbases. Transient loss of 40S ribosomal proteins from isolated mRNA suggests that aberrant methylbases mediate arrested translational initiation and potentially also no-go decay of the affected mRNA. Four proteins (ASCC3, YTHDC2, TRIM25 and GEMIN5) displayed increased mRNA binding after MMS treatment. ASCC3 is a binding partner of the DNA/RNA demethylase ALKBH3 and was recently shown to promote disassembly of collided ribosomes as part of the ribosome quality control (RQC) trigger complex. We find that ASCC3-deficient cells display delayed removal of MMS-induced 1-methyladenosine (m1A) and 3-methylcytosine (m3C) from mRNA and impaired formation of MMS-induced P-bodies. Conclusions Our findings conform to a model in which ASCC3-mediated disassembly of collided ribosomes allows demethylation of aberrant m1A and m3C by ALKBH3. Our findings constitute first evidence of selective sanitation of aberrant mRNA methylbases over their endogenous counterparts and warrant further studies on RNA-mediated effects of chemical alkylators commonly used in the clinic. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-02948-6.
Collapse
Affiliation(s)
- Kristian Lied Wollen
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, 7491, Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim, Norway
| | - Lars Hagen
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, 7491, Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim, Norway.,PROMEC Core Facility for Proteomics and Modomics, Norwegian University of Science and Technology, NTNU, and the Central Norway Regional Health Authority Norway, Trondheim, Norway
| | - Cathrine B Vågbø
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, 7491, Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim, Norway.,PROMEC Core Facility for Proteomics and Modomics, Norwegian University of Science and Technology, NTNU, and the Central Norway Regional Health Authority Norway, Trondheim, Norway
| | - Renana Rabe
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, 7491, Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim, Norway
| | - Tobias S Iveland
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, 7491, Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim, Norway
| | - Per Arne Aas
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, 7491, Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim, Norway
| | - Animesh Sharma
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, 7491, Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim, Norway.,PROMEC Core Facility for Proteomics and Modomics, Norwegian University of Science and Technology, NTNU, and the Central Norway Regional Health Authority Norway, Trondheim, Norway
| | - Bjørnar Sporsheim
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, 7491, Trondheim, Norway.,CMIC Cellular & Molecular Imaging Core Facility, Norwegian University of Science and Technology, NTNU, and the Central Norway Regional Health Authority Norway, Trondheim, Norway
| | - Hilde O Erlandsen
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, 7491, Trondheim, Norway
| | - Vuk Palibrk
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, 7491, Trondheim, Norway
| | - Magnar Bjørås
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, 7491, Trondheim, Norway
| | - Davi M Fonseca
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, 7491, Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim, Norway.,PROMEC Core Facility for Proteomics and Modomics, Norwegian University of Science and Technology, NTNU, and the Central Norway Regional Health Authority Norway, Trondheim, Norway
| | - Nima Mosammaparast
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Geir Slupphaug
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, 7491, Trondheim, Norway. .,Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim, Norway. .,PROMEC Core Facility for Proteomics and Modomics, Norwegian University of Science and Technology, NTNU, and the Central Norway Regional Health Authority Norway, Trondheim, Norway.
| |
Collapse
|
46
|
Wan L, Juszkiewicz S, Blears D, Bajpe PK, Han Z, Faull P, Mitter R, Stewart A, Snijders AP, Hegde RS, Svejstrup JQ. Translation stress and collided ribosomes are co-activators of cGAS. Mol Cell 2021; 81:2808-2822.e10. [PMID: 34111399 PMCID: PMC8260207 DOI: 10.1016/j.molcel.2021.05.018] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/23/2021] [Accepted: 05/13/2021] [Indexed: 12/25/2022]
Abstract
The cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway senses cytosolic DNA and induces interferon-stimulated genes (ISGs) to activate the innate immune system. Here, we report the unexpected discovery that cGAS also senses dysfunctional protein production. Purified ribosomes interact directly with cGAS and stimulate its DNA-dependent activity in vitro. Disruption of the ribosome-associated protein quality control (RQC) pathway, which detects and resolves ribosome collision during translation, results in cGAS-dependent ISG expression and causes re-localization of cGAS from the nucleus to the cytosol. Indeed, cGAS preferentially binds collided ribosomes in vitro, and orthogonal perturbations that result in elevated levels of collided ribosomes and RQC activation cause sub-cellular re-localization of cGAS and ribosome binding in vivo as well. Thus, translation stress potently increases DNA-dependent cGAS activation. These findings have implications for the inflammatory response to viral infection and tumorigenesis, both of which substantially reprogram cellular protein synthesis.
Collapse
Affiliation(s)
- Li Wan
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Szymon Juszkiewicz
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Daniel Blears
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Department of Cellular and Molecular Medicine, Panum Institute, Blegdamsvej 3B, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Prashanth Kumar Bajpe
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Zhong Han
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Department of Cellular and Molecular Medicine, Panum Institute, Blegdamsvej 3B, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Peter Faull
- Protein Analysis and Proteomics Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Richard Mitter
- Bioinformatics and Biostatistics, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Aengus Stewart
- Bioinformatics and Biostatistics, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Ambrosius P Snijders
- Protein Analysis and Proteomics Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Ramanujan S Hegde
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Jesper Q Svejstrup
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Department of Cellular and Molecular Medicine, Panum Institute, Blegdamsvej 3B, University of Copenhagen, 2200 Copenhagen, Denmark.
| |
Collapse
|
47
|
Ren C, Gao C, Li X, Xiong J, Shen H, Wang L, Zhu D, Wu P, Ding W, Wang H. The Antitumor Efficiency of Zinc Finger Nuclease Combined with Cisplatin and Trichostatin A in Cervical Cancer Cells. Anticancer Agents Med Chem 2021; 20:2125-2135. [PMID: 32753022 DOI: 10.2174/1871520620666200804102300] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 07/05/2020] [Accepted: 07/09/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Persistent infection with the high-risk of human papillomavirus (HR-HPVs) is the primary etiological factor of cervical cancer; HR-HPVs express oncoproteins E6 and E7, both of which play key roles in the progression of cervical carcinogenesis. Zinc Finger Nucleases (ZFNs) targeting HPV E7 induce specific shear of the E7 gene, weakening the malignant biological effects, hence showing great potential for clinical transformation. OBJECTIVE Our aim was to develop a new comprehensive therapy for better clinical application of ZFNs. We here explored the anti-cancer efficiency of HPV targeted ZFNs combined with a platinum-based antineoplastic drug Cisplatin (DDP) and an HDAC inhibitor Trichostatin A (TSA). METHODS SiHa and HeLa cells were exposed to different concentrations of DDP and TSA; the appropriate concentrations for the following experiments were screened according to cell apoptosis. Then cells were grouped for combined or separate treatments; apoptosis, cell viability and proliferation ability were measured by flow cytometry detection, CCK-8 assays and colony formation assays. The xenograft experiments were also performed to determine the anti-cancer effects of the combined therapy. In addition, the HPV E7 and RB1 expressions were measured by western blot analysis. RESULTS Results showed that the combined therapy induced about two times more apoptosis than that of ZFNs alone in SiHa and HeLa cells, and much more inhibition of cell viability than either of the separate treatment. The colony formation ability was inhibited more than 80% by the co-treatment, the protein expression of HPV16/18E7 was down regulated and that of RB1 was elevated. In addition, the xenografts experiment showed a synergistic effect between DDP and TSA together with ZFNs. CONCLUSION Our results demonstrated that ZFNs combined with DDP or TSA functioned effectively in cervical cancer cells, and it provided novel ideas for the prevention and treatment of HPV-related cervical malignancies.
Collapse
Affiliation(s)
- Ci Ren
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chun Gao
- Key Laboratory of Cancer Invasion and Metastasis of the Ministry of Education, Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaomin Li
- Key Laboratory of Cancer Invasion and Metastasis of the Ministry of Education, Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinfeng Xiong
- Key Laboratory of Cancer Invasion and Metastasis of the Ministry of Education, Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Shen
- Key Laboratory of Cancer Invasion and Metastasis of the Ministry of Education, Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liming Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Da Zhu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wencheng Ding
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
48
|
Meunier J, Villar-Quiles RN, Duband-Goulet I, Ferreiro A. Inherited Defects of the ASC-1 Complex in Congenital Neuromuscular Diseases. Int J Mol Sci 2021; 22:ijms22116039. [PMID: 34204919 PMCID: PMC8199739 DOI: 10.3390/ijms22116039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/19/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022] Open
Abstract
Defects in transcriptional and cell cycle regulation have emerged as novel pathophysiological mechanisms in congenital neuromuscular disease with the recent identification of mutations in the TRIP4 and ASCC1 genes, encoding, respectively, ASC-1 and ASCC1, two subunits of the ASC-1 (Activating Signal Cointegrator-1) complex. This complex is a poorly known transcriptional coregulator involved in transcriptional, post-transcriptional or translational activities. Inherited defects in components of the ASC-1 complex have been associated with several autosomal recessive phenotypes, including severe and mild forms of striated muscle disease (congenital myopathy with or without myocardial involvement), but also cases diagnosed of motor neuron disease (spinal muscular atrophy). Additionally, antenatal bone fractures were present in the reported patients with ASCC1 mutations. Functional studies revealed that the ASC-1 subunit is a novel regulator of cell cycle, proliferation and growth in muscle and non-muscular cells. In this review, we summarize and discuss the available data on the clinical and histopathological phenotypes associated with inherited defects of the ASC-1 complex proteins, the known genotype–phenotype correlations, the ASC-1 pathophysiological role, the puzzling question of motoneuron versus primary muscle involvement and potential future research avenues, illustrating the study of rare monogenic disorders as an interesting model paradigm to understand major physiological processes.
Collapse
Affiliation(s)
- Justine Meunier
- Basic and Translational Myology Laboratory, UMR8251, University of Paris/National Center for Scientific Research, 75013 Paris, France; (J.M.); (R.-N.V.-Q.)
| | - Rocio-Nur Villar-Quiles
- Basic and Translational Myology Laboratory, UMR8251, University of Paris/National Center for Scientific Research, 75013 Paris, France; (J.M.); (R.-N.V.-Q.)
- Reference Center for Neuromuscular Disorders, Pitié-Salpêtrière Hospital, APHP, Institute of Myology, 75013 Paris, France
| | - Isabelle Duband-Goulet
- Basic and Translational Myology Laboratory, UMR8251, University of Paris/National Center for Scientific Research, 75013 Paris, France; (J.M.); (R.-N.V.-Q.)
- Correspondence: (I.D.-G.); (A.F.); Tel.: +33-1-5727-7965 (I.D.-G.); +33-1-5727-7959 (A.F.)
| | - Ana Ferreiro
- Basic and Translational Myology Laboratory, UMR8251, University of Paris/National Center for Scientific Research, 75013 Paris, France; (J.M.); (R.-N.V.-Q.)
- Reference Center for Neuromuscular Disorders, Pitié-Salpêtrière Hospital, APHP, Institute of Myology, 75013 Paris, France
- Correspondence: (I.D.-G.); (A.F.); Tel.: +33-1-5727-7965 (I.D.-G.); +33-1-5727-7959 (A.F.)
| |
Collapse
|
49
|
Zhang Y, Wang C. Demethyltransferase AlkBH1 substrate diversity and relationship to human diseases. Mol Biol Rep 2021; 48:4747-4756. [PMID: 34046849 DOI: 10.1007/s11033-021-06421-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/17/2021] [Indexed: 12/22/2022]
Abstract
AlkBH1 is a member of the AlkB superfamily which are kinds of Fe (II) and α-ketoglutarate (α-KG)-dependent dioxygenases. At present, only demethyltransferases FTO and AlkBH5 have relatively clear substrate studies among these members, the types and mechanisms of substrates catalysis of other members are not clear, especially the demethyltransferase AlkBH1. AlkBH1, as a demethylase, has important functions of reversing DNA methylation and repairing DNA damage. And it has become a promising target for the treatment of many cancers, the regulation of neurological and genetic related diseases. Many scholars have made important discoveries in the diversity of AlkBH1 substrates, but there is no comprehensive summary, which affects the design inhibitor target of AlkBH1. Herein, We are absorbed in the latest progress in the study of AlkBH1 substrate diversity and its relationship with human diseases. Besides, we also discuss future research directions and suggest other studies to reveal the specific catalytic effect of AlkBH1 on cancer substrates.
Collapse
Affiliation(s)
- Ying Zhang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Caiyan Wang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China.
| |
Collapse
|
50
|
Wan C, Mahara S, Sun C, Doan A, Chua HK, Xu D, Bian J, Li Y, Zhu D, Sooraj D, Cierpicki T, Grembecka J, Firestein R. Genome-scale CRISPR-Cas9 screen of Wnt/β-catenin signaling identifies therapeutic targets for colorectal cancer. SCIENCE ADVANCES 2021; 7:eabf2567. [PMID: 34138730 PMCID: PMC8133758 DOI: 10.1126/sciadv.abf2567] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 03/29/2021] [Indexed: 05/03/2023]
Abstract
Aberrant activation of Wnt/β-catenin pathway is a key driver of colorectal cancer (CRC) growth and of great therapeutic importance. In this study, we performed comprehensive CRISPR screens to interrogate the regulatory network of Wnt/β-catenin signaling in CRC cells. We found marked discrepancies between the artificial TOP reporter activity and β-catenin-mediated endogenous transcription and redundant roles of T cell factor/lymphoid enhancer factor transcription factors in transducing β-catenin signaling. Compiled functional genomic screens and network analysis revealed unique epigenetic regulators of β-catenin transcriptional output, including the histone lysine methyltransferase 2A oncoprotein (KMT2A/Mll1). Using an integrative epigenomic and transcriptional profiling approach, we show that KMT2A loss diminishes the binding of β-catenin to consensus DNA motifs and the transcription of β-catenin targets in CRC. These results suggest that KMT2A may be a promising target for CRCs and highlight the broader potential for exploiting epigenetic modulation as a therapeutic strategy for β-catenin-driven malignancies.
Collapse
Affiliation(s)
- Chunhua Wan
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia
| | - Sylvia Mahara
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Claire Sun
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia
| | - Anh Doan
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia
| | - Hui Kheng Chua
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia
| | - Dakang Xu
- Department of Molecular and Translational Science, Monash University, Clayton, VIC 3168, Australia
- Faculty of Medical Laboratory Science, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, 200025 Shanghai, China
| | - Jia Bian
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia
| | - Yue Li
- Faculty of Medical Laboratory Science, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, 200025 Shanghai, China
| | - Danxi Zhu
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia
| | - Dhanya Sooraj
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia
| | - Tomasz Cierpicki
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jolanta Grembecka
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ron Firestein
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia.
- Department of Molecular and Translational Science, Monash University, Clayton, VIC 3168, Australia
| |
Collapse
|