1
|
Slack JMW. "Pattern regulation in epimorphic fields", aka the polar coordinate model. Dev Biol 2025; 520:82-90. [PMID: 39798645 DOI: 10.1016/j.ydbio.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/06/2025] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
The Polar Coordinate Model (PCM) was a model, published in 1976, to account for the properties of distal regeneration in the appendages of insects and vertebrates. It had considerable impact at the time and has continued to be cited ever since. This article describes the work that led up to the model, the genesis of the model itself, its strengths and weaknesses, and its long term impact.
Collapse
Affiliation(s)
- Jonathan M W Slack
- Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| |
Collapse
|
2
|
Matakatsu H, Fehon RG. Dachsous and Fat coordinately repress the Dachs-Dlish-Approximated complex to control growth. J Cell Biol 2024; 223:e202406119. [PMID: 39373700 PMCID: PMC11461286 DOI: 10.1083/jcb.202406119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/28/2024] [Accepted: 09/11/2024] [Indexed: 10/08/2024] Open
Abstract
Two protocadherins, Dachsous and Fat, regulate organ growth in Drosophila via the Hippo pathway. Dachsous and Fat bind heterotypically to regulate the abundance and subcellular localization of a "core complex" consisting of Dachs, Dlish, and Approximated. This complex localizes to the junctional cortex where it represses Warts. Dachsous is believed to promote growth by recruiting and stabilizing this complex, while Fat represses growth by promoting its degradation. Here, we examine the functional relationships between the intracellular domains of Dachsous and Fat and the core complex. While Dachsous promotes the accumulation of core complex proteins in puncta, it is not required for their assembly. Indeed, the core complex accumulates maximally in the absence of both Dachsous and Fat. Furthermore, Dachsous represses growth in the absence of Fat by removing the core complex from the junctional cortex. Fat similarly recruits core complex components but promotes their degradation. Our findings reveal that Dachsous and Fat coordinately constrain tissue growth by repressing the core complex.
Collapse
Affiliation(s)
- Hitoshi Matakatsu
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, USA
| | - Richard G. Fehon
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, USA
| |
Collapse
|
3
|
Singh D, Ramaswamy S, Jolly MK, Rizvi MS. Emergence of planar cell polarity from the interplay of local interactions and global gradients. eLife 2024; 13:e84053. [PMID: 39450855 PMCID: PMC11602187 DOI: 10.7554/elife.84053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 10/18/2024] [Indexed: 10/26/2024] Open
Abstract
Planar cell polarity (PCP) - tissue-scale alignment of the direction of asymmetric localization of proteins at the cell-cell interface - is essential for embryonic development and physiological functions. Abnormalities in PCP can result in developmental imperfections, including neural tube closure defects and misaligned hair follicles. Decoding the mechanisms responsible for PCP establishment and maintenance remains a fundamental open question. While the roles of various molecules - broadly classified into 'global' and 'local' modules - have been well-studied, their necessity and sufficiency in explaining PCP and connecting their perturbations to experimentally observed patterns have not been examined. Here, we develop a minimal model that captures the proposed features of PCP establishment - a global tissue-level gradient and local asymmetric distribution of protein complexes. The proposed model suggests that while polarity can emerge without a gradient, the gradient not only acts as a global cue but also increases the robustness of PCP against stochastic perturbations. We also recapitulated and quantified the experimentally observed features of swirling patterns and domineering non-autonomy, using only three free model parameters - rate of protein binding to membrane, the concentration of PCP proteins, and the gradient steepness. We explain how self-stabilizing asymmetric protein localizations in the presence of tissue-level gradient can lead to robust PCP patterns and reveal minimal design principles for a polarized system.
Collapse
Affiliation(s)
- Divyoj Singh
- Department of Bioengineering, Indian Institute of ScienceBangaloreIndia
| | - Sriram Ramaswamy
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of ScienceBengaloreIndia
| | - Mohit Kumar Jolly
- Department of Bioengineering, Indian Institute of ScienceBangaloreIndia
| | - Mohd Suhail Rizvi
- Department of Biomedical Engineering, Indian Institute of TechnologyHyderabadIndia
| |
Collapse
|
4
|
Fu M, Hu Y, Lan T, Guan KL, Luo T, Luo M. The Hippo signalling pathway and its implications in human health and diseases. Signal Transduct Target Ther 2022; 7:376. [PMID: 36347846 PMCID: PMC9643504 DOI: 10.1038/s41392-022-01191-9] [Citation(s) in RCA: 261] [Impact Index Per Article: 87.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/09/2022] [Accepted: 09/09/2022] [Indexed: 11/11/2022] Open
Abstract
As an evolutionarily conserved signalling network, the Hippo pathway plays a crucial role in the regulation of numerous biological processes. Thus, substantial efforts have been made to understand the upstream signals that influence the activity of the Hippo pathway, as well as its physiological functions, such as cell proliferation and differentiation, organ growth, embryogenesis, and tissue regeneration/wound healing. However, dysregulation of the Hippo pathway can cause a variety of diseases, including cancer, eye diseases, cardiac diseases, pulmonary diseases, renal diseases, hepatic diseases, and immune dysfunction. Therefore, therapeutic strategies that target dysregulated Hippo components might be promising approaches for the treatment of a wide spectrum of diseases. Here, we review the key components and upstream signals of the Hippo pathway, as well as the critical physiological functions controlled by the Hippo pathway. Additionally, diseases associated with alterations in the Hippo pathway and potential therapies targeting Hippo components will be discussed.
Collapse
Affiliation(s)
- Minyang Fu
- Breast Disease Center, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, South of Renmin Road, 610041, Chengdu, China
| | - Yuan Hu
- Department of Pediatric Nephrology Nursing, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, 610041, Chengdu, China
| | - Tianxia Lan
- Breast Disease Center, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, South of Renmin Road, 610041, Chengdu, China
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Ting Luo
- Breast Disease Center, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, South of Renmin Road, 610041, Chengdu, China.
| | - Min Luo
- Breast Disease Center, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, South of Renmin Road, 610041, Chengdu, China.
| |
Collapse
|
5
|
Chorro A, Verma B, Homfeldt M, Ibáñez B, Lawrence PA, Casal J. Planar cell polarity: intracellular asymmetry and supracellular gradients of Dachsous. Open Biol 2022; 12:220195. [PMID: 36476047 PMCID: PMC9554717 DOI: 10.1098/rsob.220195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The slope of a supracellular molecular gradient has long been thought to orient and coordinate planar cell polarity (PCP). Here we demonstrate and measure that gradient. Dachsous (Ds) is a conserved and elemental molecule of PCP; Ds forms intercellular bridges with another cadherin molecule, Fat (Ft), an interaction modulated by the Golgi protein Four-jointed (Fj). Using genetic mosaics and tagged Ds, we measure Ds in vivo in membranes of individual cells over a whole metamere of the Drosophila abdomen. We find as follows. (i) A supracellular gradient rises from head to tail in the anterior compartment (A) and then falls in the posterior compartment (P). (ii) There is more Ds in the front than the rear membranes of all cells in the A compartment, except that compartment's most anterior and most posterior cells. There is more Ds in the rear than in the front membranes of all cells of the P compartment. (iii) The loss of Fj removes intracellular asymmetry anteriorly in the segment and reduces it elsewhere. Additional experiments show that Fj makes PCP more robust. Using Dachs (D) as a molecular indicator of polarity, we confirm that opposing gradients of PCP meet slightly out of register with compartment boundaries.
Collapse
Affiliation(s)
- Adrià Chorro
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Bhavna Verma
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Maylin Homfeldt
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Beatríz Ibáñez
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Peter A. Lawrence
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - José Casal
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| |
Collapse
|
6
|
Brittle A, Warrington SJ, Strutt H, Manning E, Tan SE, Strutt D. Distinct mechanisms of planar polarization by the core and Fat-Dachsous planar polarity pathways in the Drosophila wing. Cell Rep 2022; 40:111419. [PMID: 36170824 PMCID: PMC9631118 DOI: 10.1016/j.celrep.2022.111419] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 11/29/2022] Open
Abstract
Planar polarity describes the coordinated polarization of cells within a tissue plane, and in animals can be determined by the “core” or Fat-Dachsous pathways. Current models for planar polarity establishment involve two components: tissue-level “global” cues that determine the overall axis of polarity and cell-level feedback-mediated cellular polarity amplification. Here, we investigate the contributions of global cues versus cellular feedback amplification in the core and Fat-Dachsous pathways during Drosophila pupal wing development. We present evidence that these pathways generate planar polarity via distinct mechanisms. Core pathway function is consistent with strong feedback capable of self-organizing cell polarity, which can then be aligned with the tissue axis via weak or transient global cues. Conversely, generation of cell polarity by the Ft-Ds pathway depends on strong global cues in the form of graded patterns of gene expression, which can then be amplified by weak feedback mechanisms. The core and Fat-Dachsous planar polarity pathways function via distinct mechanisms The core can self-organize planar polarity and be oriented by weak upstream cues Fat-Dachsous are oriented by strong gradient cues but show poor self-organization
Collapse
Affiliation(s)
- Amy Brittle
- School of Biosciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | | | - Helen Strutt
- School of Biosciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Elizabeth Manning
- School of Biosciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Su Ee Tan
- School of Biosciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - David Strutt
- School of Biosciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK.
| |
Collapse
|
7
|
Mito T, Ishimaru Y, Watanabe T, Nakamura T, Ylla G, Noji S, Extavour CG. Cricket: The third domesticated insect. Curr Top Dev Biol 2022; 147:291-306. [PMID: 35337452 DOI: 10.1016/bs.ctdb.2022.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Many researchers are using crickets to conduct research on various topics related to development and regeneration in addition to brain function, behavior, and biological clocks, using advanced functional and perturbational technologies such as genome editing. Recently, crickets have also been attracting attention as a food source for the next generation of humans. In addition, crickets are increasingly being used as disease models and biological factories for pharmaceuticals. Cricket research has thus evolved over the last century from use primarily in highly important basic research, to use in a variety of applications and practical uses. These insects are now a state-of-the-art model animal that can be obtained and maintained in large quantities at low cost. We therefore suggest that crickets are useful as a third domesticated insect for scientific research, after honeybees and silkworms, contributing to the achievement of global sustainable development goals.
Collapse
Affiliation(s)
- Taro Mito
- Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima City, Tokushima, Japan
| | - Yoshiyasu Ishimaru
- Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima City, Tokushima, Japan
| | - Takahito Watanabe
- Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima City, Tokushima, Japan
| | - Taro Nakamura
- Division of Evolutionary Developmental Biology, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Guillem Ylla
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, United States; Laboratory of Bioinformatics and Genome Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Sumihare Noji
- Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima City, Tokushima, Japan
| | - Cassandra G Extavour
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, United States; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, United States; Howard Hughes Medical Institute, Chevy Chase, MD, United States.
| |
Collapse
|
8
|
Zecca M, Struhl G. A unified mechanism for the control of Drosophila wing growth by the morphogens Decapentaplegic and Wingless. PLoS Biol 2021; 19:e3001111. [PMID: 33657096 PMCID: PMC8148325 DOI: 10.1371/journal.pbio.3001111] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 05/25/2021] [Accepted: 01/22/2021] [Indexed: 12/31/2022] Open
Abstract
Development of the Drosophila wing-a paradigm of organ development-is governed by 2 morphogens, Decapentaplegic (Dpp, a BMP) and Wingless (Wg, a Wnt). Both proteins are produced by defined subpopulations of cells and spread outwards, forming gradients that control gene expression and cell pattern as a function of concentration. They also control growth, but how is unknown. Most studies have focused on Dpp and yielded disparate models in which cells throughout the wing grow at similar rates in response to the grade or temporal change in Dpp concentration or to the different amounts of Dpp "equalized" by molecular or mechanical feedbacks. In contrast, a model for Wg posits that growth is governed by a progressive expansion in morphogen range, via a mechanism in which a minimum threshold of Wg sustains the growth of cells within the wing and recruits surrounding "pre-wing" cells to grow and enter the wing. This mechanism depends on the capacity of Wg to fuel the autoregulation of vestigial (vg)-the selector gene that specifies the wing state-both to sustain vg expression in wing cells and by a feed-forward (FF) circuit of Fat (Ft)/Dachsous (Ds) protocadherin signaling to induce vg expression in neighboring pre-wing cells. Here, we have subjected Dpp to the same experimental tests used to elucidate the Wg model and find that it behaves indistinguishably. Hence, we posit that both morphogens act together, via a common mechanism, to control wing growth as a function of morphogen range.
Collapse
Affiliation(s)
- Myriam Zecca
- Department of Genetics and Development, Columbia University, New York, New York, United States of America
- The Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, New York, United States of America
| | - Gary Struhl
- Department of Genetics and Development, Columbia University, New York, New York, United States of America
- The Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, New York, United States of America
| |
Collapse
|
9
|
Control of Drosophila wing size by morphogen range and hormonal gating. Proc Natl Acad Sci U S A 2020; 117:31935-31944. [PMID: 33257577 DOI: 10.1073/pnas.2018196117] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The stereotyped dimensions of animal bodies and their component parts result from tight constraints on growth. Yet, the mechanisms that stop growth when organs reach the right size are unknown. Growth of the Drosophila wing-a classic paradigm-is governed by two morphogens, Decapentaplegic (Dpp, a BMP) and Wingless (Wg, a Wnt). Wing growth during larval life ceases when the primordium attains full size, concomitant with the larval-to-pupal molt orchestrated by the steroid hormone ecdysone. Here, we block the molt by genetically dampening ecdysone production, creating an experimental paradigm in which the wing stops growing at the correct size while the larva continues to feed and gain body mass. Under these conditions, we show that wing growth is limited by the ranges of Dpp and Wg, and by ecdysone, which regulates the cellular response to their signaling activities. Further, we present evidence that growth terminates because of the loss of two distinct modes of morphogen action: 1) maintenance of growth within the wing proper and 2) induced growth of surrounding "pre-wing" cells and their recruitment into the wing. Our results provide a precedent for the control of organ size by morphogen range and the hormonal gating of morphogen action.
Collapse
|
10
|
Held LI, Sessions SK. Reflections on Bateson's rule: Solving an old riddle about why extra legs are mirror‐symmetric. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2019; 332:219-237. [DOI: 10.1002/jez.b.22910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/18/2019] [Accepted: 09/26/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Lewis I. Held
- Department of Biological SciencesTexas Tech University Lubbock Texas
| | | |
Collapse
|
11
|
Gou J, Lin L, Othmer HG. A Model for the Hippo Pathway in the Drosophila Wing Disc. Biophys J 2018; 115:737-747. [PMID: 30041810 PMCID: PMC6103738 DOI: 10.1016/j.bpj.2018.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 06/21/2018] [Accepted: 07/02/2018] [Indexed: 01/18/2023] Open
Abstract
Although significant progress has been made toward understanding morphogen-mediated patterning in development, control of the size and shape of tissues via local and global signaling is poorly understood. In particular, little is known about how cell-cell interactions are involved in the control of tissue size. The Hippo pathway in the Drosophila wing disc involves cell-cell interactions via cadherins, which lead to modulation of Yorkie, a cotranscriptional factor that affects control of the cell cycle and growth, and studies involving over- and underexpression of components of this pathway reveal conditions that lead to tissue over- or undergrowth. Here, we develop a mathematical model of the Hippo pathway that can qualitatively explain these observations, made in both whole-disc mutants and mutant-clone experiments. We find that a number of nonintuitive experimental results can be explained by subtle changes in the balances between inputs to the Hippo pathway and suggest some predictions that can be tested experimentally. We also show that certain components of the pathway are polarized at the single-cell level, which replicates observations of planar cell polarity. Because the signal transduction and growth control pathways are highly conserved between Drosophila and mammalian systems, the model we formulate can be used as a framework to guide future experimental work on the Hippo pathway in both Drosophila and mammalian systems.
Collapse
Affiliation(s)
- Jia Gou
- School of Mathematics, University of Minnesota, Minneapolis, Minnesota
| | - Lin Lin
- School of Mathematics, University of Minnesota, Minneapolis, Minnesota
| | - Hans G Othmer
- School of Mathematics, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
12
|
Loza O, Heemskerk I, Gordon-Bar N, Amir-Zilberstein L, Jung Y, Sprinzak D. A synthetic planar cell polarity system reveals localized feedback on Fat4-Ds1 complexes. eLife 2017; 6:e24820. [PMID: 28826487 PMCID: PMC5576920 DOI: 10.7554/elife.24820] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 08/09/2017] [Indexed: 12/21/2022] Open
Abstract
The atypical cadherins Fat and Dachsous (Ds) have been found to underlie planar cell polarity (PCP) in many tissues. Theoretical models suggest that polarity can arise from localized feedbacks on Fat-Ds complexes at the cell boundary. However, there is currently no direct evidence for the existence or mechanism of such feedbacks. To directly test the localized feedback model, we developed a synthetic biology platform based on mammalian cells expressing the human Fat4 and Ds1. We show that Fat4-Ds1 complexes accumulate on cell boundaries in a threshold-like manner and exhibit dramatically slower dynamics than unbound Fat4 and Ds1. This suggests a localized feedback mechanism based on enhanced stability of Fat4-Ds1 complexes. We also show that co-expression of Fat4 and Ds1 in the same cells is sufficient to induce polarization of Fat4-Ds1 complexes. Together, these results provide direct evidence that localized feedbacks on Fat4-Ds1 complexes can give rise to PCP.
Collapse
Affiliation(s)
- Olga Loza
- Department of Biochemistry and Molecular Biology, Wise Faculty of Life ScienceTel Aviv UniversityTel AvivIsrael
| | - Idse Heemskerk
- Department of BiosciencesRice UniversityHoustonUnited States
| | - Nadav Gordon-Bar
- Department of Biochemistry and Molecular Biology, Wise Faculty of Life ScienceTel Aviv UniversityTel AvivIsrael
| | - Liat Amir-Zilberstein
- Department of Biochemistry and Molecular Biology, Wise Faculty of Life ScienceTel Aviv UniversityTel AvivIsrael
| | - Yunmin Jung
- Department of Biochemistry and Molecular Biology, Wise Faculty of Life ScienceTel Aviv UniversityTel AvivIsrael
| | - David Sprinzak
- Department of Biochemistry and Molecular Biology, Wise Faculty of Life ScienceTel Aviv UniversityTel AvivIsrael
| |
Collapse
|
13
|
Wortman JC, Nahmad M, Zhang PC, Lander AD, Yu CC. Expanding signaling-molecule wavefront model of cell polarization in the Drosophila wing primordium. PLoS Comput Biol 2017; 13:e1005610. [PMID: 28671940 PMCID: PMC5515495 DOI: 10.1371/journal.pcbi.1005610] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 07/18/2017] [Accepted: 05/26/2017] [Indexed: 01/08/2023] Open
Abstract
In developing tissues, cell polarization and proliferation are regulated by morphogens and signaling pathways. Cells throughout the Drosophila wing primordium typically show subcellular localization of the unconventional myosin Dachs on the distal side of cells (nearest the center of the disc). Dachs localization depends on the spatial distribution of bonds between the protocadherins Fat (Ft) and Dachsous (Ds), which form heterodimers between adjacent cells; and the Golgi kinase Four-jointed (Fj), which affects the binding affinities of Ft and Ds. The Fj concentration forms a linear gradient while the Ds concentration is roughly uniform throughout most of the wing pouch with a steep transition region that propagates from the center to the edge of the pouch during the third larval instar. Although the Fj gradient is an important cue for polarization, it is unclear how the polarization is affected by cell division and the expanding Ds transition region, both of which can alter the distribution of Ft-Ds heterodimers around the cell periphery. We have developed a computational model to address these questions. In our model, the binding affinity of Ft and Ds depends on phosphorylation by Fj. We assume that the asymmetry of the Ft-Ds bond distribution around the cell periphery defines the polarization, with greater asymmetry promoting cell proliferation. Our model predicts that this asymmetry is greatest in the radially-expanding transition region that leaves polarized cells in its wake. These cells naturally retain their bond distribution asymmetry after division by rapidly replenishing Ft-Ds bonds at new cell-cell interfaces. Thus we predict that the distal localization of Dachs in cells throughout the pouch requires the movement of the Ds transition region and the simple presence, rather than any specific spatial pattern, of Fj. In the tissues of a developing organism, specialized proteins can control cell growth and give cells a sense of direction, e.g., which way is the head or the tail, by having their concentration vary throughout the tissue. In cells of the developing fruit fly wing, a protein called Dachs localizes on the side of the cell closest to the center of the tissue, indicating a directionality. The localization of Dachs is determined by the spatial distribution, around the periphery of a cell, of intercellular bonds of the proteins Fat and Dachsous between adjacent cells. Here we asked how this cell directionality is affected when cells divide and when the concentration of Dachsous changes over time. We use a computational model to show that as the circular step-up region of the Dachsous concentration profile sweeps radially outward, like rings radiating outward from where a pebble was dropped in a pond, it leaves polarized cells in its wake. Our model also shows how cells can naturally recover their directionality after cell division.
Collapse
Affiliation(s)
- Juliana C. Wortman
- Department of Physics and Astronomy, University of California, Irvine, Irvine, California, United States of America
- Center for Complex Biological Systems, University of California, Irvine, Irvine, California, United States of America
| | - Marcos Nahmad
- Center for Complex Biological Systems, University of California, Irvine, Irvine, California, United States of America
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California, United States of America
| | - Peng Cheng Zhang
- Center for Complex Biological Systems, University of California, Irvine, Irvine, California, United States of America
- Department of Biomedical Engineering, University of California, Irvine, Irvine, California, United States of America
| | - Arthur D. Lander
- Center for Complex Biological Systems, University of California, Irvine, Irvine, California, United States of America
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California, United States of America
- Department of Biomedical Engineering, University of California, Irvine, Irvine, California, United States of America
| | - Clare C. Yu
- Department of Physics and Astronomy, University of California, Irvine, Irvine, California, United States of America
- Center for Complex Biological Systems, University of California, Irvine, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
14
|
Montes AJ, Morata G. Homeostatic response to blocking cell division in Drosophila imaginal discs: Role of the Fat/Dachsous (Ft/Ds) pathway. Dev Biol 2017; 424:113-123. [PMID: 28300568 DOI: 10.1016/j.ydbio.2017.03.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/08/2017] [Accepted: 03/10/2017] [Indexed: 12/28/2022]
Abstract
One major problem in developmental biology is the identification of the mechanisms that control the final size of tissues and organs. We are addressing this issue in the imaginal discs of Drosophila by analysing the response to blocking cell division in large domains in the wing and leg discs. The affected domains may be zones of restricted lineage like compartments, or zones of open lineage that may integrate cells from the surrounding territory. Our results reveal the existence of a powerful homeostatic mechanism that can compensate for gross differences in growth rates and builds structures of normal size. This mechanism functions at the level of whole discs, inducing additional cell proliferation to generate the cells that populate the cell division-arrested territory and generating an active recruitment process to integrate those cells. The activation of this response mechanism is mediated by alterations in the normal activity of PCP genes of the Fat/Ds system: in discs mutant for dachs, ds or four jointed the response mechanism is not activated.
Collapse
Affiliation(s)
| | - Ginés Morata
- Centro de Biología Molecular CSIC-UAM, Madrid, Spain.
| |
Collapse
|
15
|
Aw WY, Devenport D. Planar cell polarity: global inputs establishing cellular asymmetry. Curr Opin Cell Biol 2016; 44:110-116. [PMID: 27576155 DOI: 10.1016/j.ceb.2016.08.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 08/08/2016] [Indexed: 01/31/2023]
Abstract
Many tissues develop coordinated patterns of cell polarity that align with respect to the tissue axes. This phenomenon refers to planar cell polarity (PCP) and is controlled by multiple conserved PCP modules. A key feature of PCP proteins is their asymmetric localization within the tissue plane, whose orientation is guided by global directional cues. Here, we highlight current models and recent findings on the role of tissue-level gradients, local organizer signals, and mechanical forces in establishing the global patterns of PCP.
Collapse
Affiliation(s)
- Wen Yih Aw
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Danelle Devenport
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
16
|
Collu GM, Mlodzik M. Planar polarity: converting a morphogen gradient into cellular polarity. Curr Biol 2015; 25:R372-4. [PMID: 25942551 DOI: 10.1016/j.cub.2015.03.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Epithelial cells are polarized within the apico-basal and planar axes. The latter - planar cell polarity - requires long-range regulation of orientation as well as short-range, cell-to-cell realignment through feedback loops. New insights into the long-range, gradient-type regulation reveal how a kinase translates the morphogen gradient input into cellular orientation.
Collapse
Affiliation(s)
- Giovanna M Collu
- Department of Developmental & Regenerative Biology, and Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Marek Mlodzik
- Department of Developmental & Regenerative Biology, and Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
17
|
Gotoh H, Hust JA, Miura T, Niimi T, Emlen DJ, Lavine LC. The Fat/Hippo signaling pathway links within-disc morphogen patterning to whole-animal signals during phenotypically plastic growth in insects. Dev Dyn 2015; 244:1039-1045. [DOI: 10.1002/dvdy.24296] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 05/13/2015] [Accepted: 05/15/2015] [Indexed: 12/11/2022] Open
Affiliation(s)
- Hiroki Gotoh
- Graduate School of Bioagricultural Sciences, Nagoya University; Chikusa Nagoya Japan
| | - James A. Hust
- Department of Entomology; Washington State University; Pullman Washington
| | - Toru Miura
- Graduate School of Environmental Science, Hokkaido University; Sapporo Hokkaido Japan
| | - Teruyuki Niimi
- Graduate School of Bioagricultural Sciences, Nagoya University; Chikusa Nagoya Japan
| | - Douglas J. Emlen
- Division of Biological Sciences; University of Montana-Missoula; Montana
| | - Laura C. Lavine
- Department of Entomology; Washington State University; Pullman Washington
| |
Collapse
|
18
|
Balasov M, Akhmetova K, Chesnokov I. Drosophila model of Meier-Gorlin syndrome based on the mutation in a conserved C-Terminal domain of Orc6. Am J Med Genet A 2015; 167A:2533-40. [PMID: 26139588 DOI: 10.1002/ajmg.a.37214] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 06/05/2015] [Indexed: 11/09/2022]
Abstract
Meier-Gorlin syndrome (MGS) is an autosomal recessive disorder characterized by microtia, primordial dwarfism, small ears, and skeletal abnormalities. Patients with MGS often carry mutations in the genes encoding the components of the pre-replicative complex such as Origin Recognition Complex (ORC) subunits Orc1, Orc4, Orc6, and helicase loaders Cdt1 and Cdc6. Orc6 is an important component of ORC and has functions in both DNA replication and cytokinesis. Mutation in conserved C-terminal motif of Orc6 associated with MGS impedes the interaction of Orc6 with core ORC. In order to study the effects of MGS mutation in an animal model system we introduced MGS mutation in Orc6 and established Drosophila model of MGS. Mutant flies die at third instar larval stage with abnormal chromosomes and DNA replication defects. The lethality can be rescued by elevated expression of mutant Orc6 protein. Rescued MGS flies are unable to fly and display multiple planar cell polarity defects. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Maxim Balasov
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, School of Medicine, Birmingham, Alabama
| | - Katarina Akhmetova
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, School of Medicine, Birmingham, Alabama.,The Federal Research Center Institute of Cytology and Genetics, Prospekt Lavrentyeva 10, Novosibirsk, Russian Federation.,Novosibirsk State University, Novosibirsk, Russian Federation
| | - Igor Chesnokov
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, School of Medicine, Birmingham, Alabama
| |
Collapse
|
19
|
Lu Q, Adler PN. The diaphanous gene of Drosophila interacts antagonistically with multiple wing hairs and plays a key role in wing hair morphogenesis. PLoS One 2015; 10:e0115623. [PMID: 25730111 PMCID: PMC4346269 DOI: 10.1371/journal.pone.0115623] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 11/25/2014] [Indexed: 11/18/2022] Open
Abstract
The Drosophila wing is covered by an array of distally pointing hairs that has served as a key model system for studying planar cell polarity (PCP). The adult cuticular hairs are formed in the pupae from cell extensions that contain extensive actin filaments and microtubules. The importance of the actin cytoskeleton for hair growth and morphogenesis is clear from the wide range of phenotypes seen in mutations in well-known actin regulators. Formin proteins promote the formation of long actin filaments of the sort thought to be important for hair growth. We report here that the formin encoding diaphanous (dia) gene plays a key role in hair morphogenesis. Both loss of function mutations and the expression of a constitutively active Dia led to cells forming both morphologically abnormal hairs and multiple hairs. The conserved frizzled (fz)/starry night (stan) PCP pathway functions to restrict hair initiation and activation of the cytoskeleton to the distal most part of wing cells. It also ensures the formation of a single hair per cell. Our data suggest that the localized inhibition of Dia activity may be part of this mechanism. We found the expression of constitutively active Dia greatly expands the region for activation of the cytoskeleton and that dia functions antagonistically with multiple wing hairs (mwh), the most downstream member of the fz/stan pathway. Further we established that purified fragments of Dia and Mwh could be co-immunoprecipitated suggesting the genetic interaction could reflect a direct physical interaction.
Collapse
Affiliation(s)
- Qiuheng Lu
- Biology Department, University of Virginia, Charlottesville, Virginia, United States of America
| | - Paul N. Adler
- Biology Department, University of Virginia, Charlottesville, Virginia, United States of America
- Cell Biology Department, University of Virginia, Charlottesville, Virginia, United States of America
- * E-mail:
| |
Collapse
|
20
|
Hale R, Brittle AL, Fisher KH, Monk NAM, Strutt D. Cellular interpretation of the long-range gradient of Four-jointed activity in the Drosophila wing. eLife 2015; 4. [PMID: 25707557 PMCID: PMC4338440 DOI: 10.7554/elife.05789] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 02/02/2015] [Indexed: 01/23/2023] Open
Abstract
To understand how long-range patterning gradients are interpreted at the cellular level, we investigate how a gradient of expression of the Four-jointed kinase specifies planar polarised distributions of the cadherins Fat and Dachsous in the Drosophila wing. We use computational modelling to test different scenarios for how Four-jointed might act and test the model predictions by employing fluorescence recovery after photobleaching as an in vivo assay to measure the influence of Four-jointed on Fat-Dachsous binding. We demonstrate that in vivo, Four-jointed acts both on Fat to promote its binding to Dachsous and on Dachsous to inhibit its binding to Fat, with a bias towards a stronger effect on Fat. Overall, we show that opposing gradients of Fat and Dachsous phosphorylation are sufficient to explain the observed pattern of Fat–Dachsous binding and planar polarisation across the wing, and thus demonstrate the mechanism by which a long-range gradient is interpreted. DOI:http://dx.doi.org/10.7554/eLife.05789.001 Epithelial cells form sheets that line the body surfaces and internal cavities of animals—such as the skin and the lining of the gut. Certain structures on the surface of epithelial cell sheets—for example scales, hair, and feathers—are often all orientated in a particular direction. Epithelial cells with structures organised like this are described as being ‘planar polarised’. Different proteins work together to set up planar polarity in a sheet of epithelial cells. Dachsous and Fat are two proteins that are found in the cell membranes of epithelial cells, including in the wings of the fruit fly Drosophila. These proteins bind to each other and link a cell to its neighbour. Dachsous and Fat accumulate on opposing sides of each cell: Fat accumulates on the side closest to the fly's body, and Dachsous builds up on the side closest to the wing tip. This pattern provides directional cues that help orientate surface structures, and the pattern is established, in part, by the activity of an enzyme called Four-jointed. Four-jointed adds phosphate groups onto Dachsous and Fat. The activity of the Four-jointed enzyme forms a gradient along a developing wing: levels are low near the fly's body, and high at the wing tip. Previous experiments performed on cells grown in the laboratory showed that when Four-jointed adds phosphate groups to Fat and Dachsous, it prevents Dachsous from binding to Fat. However, it also makes Fat more able to bind to Dachsous. These opposing effects are thought to cause the proteins to accumulate on opposing sides of each cell. However, this has yet to be demonstrated in real tissue, not least because of the technical difficulty of measuring whether Fat-Dachsous binding has occurred in living organisms. Here, Hale et al. overcome this challenge using a method called ‘fluorescence recovery after photobleaching’ (or FRAP) to measure Fat and Dachsous binding in the epithelial cells in the developing Drosophila wing. Combining these experimental results with a computational model confirmed the findings of previous laboratory studies: that Four-jointed makes it easier for Fat to bind to Dachsous, and makes it more difficult for Dachsous to bind to Fat. The opposing effects on the activity of Fat and Dachsous that result from the Four-jointed gradient in the developing wing are able to fully explain the observed patterns of Fat-Dachsous binding and of planar polarisation across the wing. Overall, Hale et al. demonstrate how a gradient of protein activity that spans many cells is sensed and interpreted by individual cells to establish planar polarity. However, exactly how the phosphate groups added to Dachsous and Fat by Four-jointed modifies how they bind to each other remains a question for future work. DOI:http://dx.doi.org/10.7554/eLife.05789.002
Collapse
Affiliation(s)
- Rosalind Hale
- Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - Amy L Brittle
- Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | | | - Nicholas A M Monk
- School of Mathematics and Statistics, University of Sheffield, Sheffield, United Kingdom
| | - David Strutt
- Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
21
|
Rodrigues-Campos M, Thompson BJ. The ubiquitin ligase FbxL7 regulates the Dachsous-Fat-Dachs system in Drosophila. Development 2014; 141:4098-103. [PMID: 25256343 PMCID: PMC4302899 DOI: 10.1242/dev.113498] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 08/22/2014] [Indexed: 11/20/2022]
Abstract
The atypical cadherins Dachsous (Ds) and Fat (Ft) are required to control the size and shape of tissues and organs in animals. In Drosophila, a key effector of Ds and Ft is the atypical myosin Dachs, which becomes planar polarised along the proximal-distal axis in developing epithelia to regulate tissue size via the Hippo pathway and tissue shape via modulating tension at junctions. How Ds and Ft control Dachs polarisation remains unclear. Here, we identify a ubiquitin ligase, FbxL7, as a novel component of the Ds-Ft-Dachs system that is required to control the level and localisation of Dachs. Loss of FbxL7 results in accumulation of Dachs, similar to loss of Ft. Overexpression of FbxL7 causes downregulation of Dachs, similar to overexpression of the Ft intracellular domain. In addition to regulating Dachs, FbxL7 also influences Ds in a similar manner. GFP-tagged FbxL7 localises to the plasma membrane in a Ft-dependent manner and is planar polarised. We propose that Ft recruits FbxL7 to the proximal side of the cell to help restrict Ds and Dachs to the distal side of the cell.
Collapse
Affiliation(s)
- Mariana Rodrigues-Campos
- Cancer Research UK - London Research Institute, Lincoln's Inn Fields, London WC2A 3LY, UK GABBA, ICBAS, Universidade do Porto, 4050-313 Porto, Portugal
| | - Barry J Thompson
- Cancer Research UK - London Research Institute, Lincoln's Inn Fields, London WC2A 3LY, UK
| |
Collapse
|
22
|
Le Pabic P, Ng C, Schilling TF. Fat-Dachsous signaling coordinates cartilage differentiation and polarity during craniofacial development. PLoS Genet 2014; 10:e1004726. [PMID: 25340762 PMCID: PMC4207671 DOI: 10.1371/journal.pgen.1004726] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 09/02/2014] [Indexed: 11/19/2022] Open
Abstract
Organogenesis requires coordinated regulation of cellular differentiation and morphogenesis. Cartilage cells in the vertebrate skeleton form polarized stacks, which drive the elongation and shaping of skeletal primordia. Here we show that an atypical cadherin, Fat3, and its partner Dachsous-2 (Dchs2), control polarized cell-cell intercalation of cartilage precursors during craniofacial development. In zebrafish embryos deficient in Fat3 or Dchs2, chondrocytes fail to stack and misregulate expression of sox9a. Similar morphogenetic defects occur in rerea/atr2a−/− mutants, and Fat3 binds REREa, consistent with a model in which Fat3, Dchs2 and REREa interact to control polarized cell-cell intercalation and simultaneously control differentiation through Sox9. Chimaeric analyses support such a model, and reveal long-range influences of all three factors, consistent with the activation of a secondary signal that regulates polarized cell-cell intercalation. This coordinates the spatial and temporal morphogenesis of chondrocytes to shape skeletal primordia and defects in these processes underlie human skeletal malformations. Similar links between cell polarity and differentiation mechanisms are also likely to control organ formation in other contexts. Little is known about the mechanisms of cell-cell communication necessary to assemble skeletal elements of appropriate size and shape. In this study, we investigate the roles of genetic factors belonging to a developmental pathway that affects skeletal progenitor behavior: the atypical cadherins Fat3 and Dachsous2 (Dchs2), and REREa/Atr2a. We show that cartilage precursors fail to rearrange into linear stacks and at the same time misregulate expression of sox9a, a key regulator of cartilage differentiation, in zebrafish embryos deficient in Fat3 or its partner Dchs2. Similar cartilage defects are observed in rerea−/− mutants, and Fat3 interacts physically and genetically with REREa. Our results suggest that Fat3, Dchs2 and REREa interact to control polarized cell-cell intercalation and simultaneously control skeletal differentiation through Sox9. By transplanting cartilage precursors between wild-type and Fat3, Dchs2 or REREa deficient embryos we demonstrate that all three factors exert long-range influences on neighboring cells, most likely mediated by another polarizing signal. We propose a model in which this coordinates the polarity and differentiation of chondrocytes to shape skeletal primordia, and that defects in these processes underlie human skeletal malformations.
Collapse
Affiliation(s)
- Pierre Le Pabic
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California, United States of America
| | - Carrie Ng
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California, United States of America
| | - Thomas F. Schilling
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
23
|
Barron DA, Kagey JD. The role of the Hippo pathway in human disease and tumorigenesis. Clin Transl Med 2014; 3:25. [PMID: 25097728 PMCID: PMC4112623 DOI: 10.1186/2001-1326-3-25] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 07/09/2014] [Indexed: 12/13/2022] Open
Abstract
Understanding the molecular nature of human cancer is essential to the development of effective and personalized therapies. Several different molecular signal transduction pathways drive tumorigenesis when deregulated and respond to different types of therapeutic interventions. The Hippo signaling pathway has been demonstrated to play a central role in the regulation of tissue and organ size during development. The deregulation of Hippo signaling leads to a concurrent combination of uncontrolled cellular proliferation and inhibition of apoptosis, two key hallmarks in cancer development. The molecular nature of this pathway was first uncovered in Drosophila melanogaster through genetic screens to identify regulators of cell growth and cell division. The pathway is strongly conserved in humans, rendering Drosophila a suitable and efficient model system to better understand the molecular nature of this pathway. In the present study, we review the current understanding of the molecular mechanism and clinical impact of the Hippo pathway. Current studies have demonstrated that a variety of deregulated molecules can alter Hippo signaling, leading to the constitutive activation of the transcriptional activator YAP or its paralog TAZ. Additionally, the Hippo pathway integrates inputs from a number of growth signaling pathways, positioning the Hippo pathway in a central role in the regulation of tissue size. Importantly, deregulated Hippo signaling is frequently observed in human cancers. YAP is commonly activated in a number of in vitro and in vivo models of tumorigenesis, as well as a number of human cancers. The common activation of YAP in many different tumor types provides an attractive target for potential therapeutic intervention.
Collapse
Affiliation(s)
- Daniel A Barron
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Jacob D Kagey
- Department of Biology, University of Detroit Mercy, 4001 West McNichols Road, Detroit, MI, USA
| |
Collapse
|
24
|
Nissimov JN, Das Chaudhuri AB. Hair curvature: a natural dialectic and review. Biol Rev Camb Philos Soc 2014; 89:723-66. [PMID: 24617997 DOI: 10.1111/brv.12081] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 12/18/2013] [Accepted: 01/01/2014] [Indexed: 12/19/2022]
Abstract
Although hair forms (straight, curly, wavy, etc.) are present in apparently infinite variations, each fibre can be reduced to a finite sequence of tandem segments of just three types: straight, bent/curly, or twisted. Hair forms can thus be regarded as resulting from genetic pathways that induce, reverse or modulate these basic curvature modes. However, physical interconversions between twists and curls demonstrate that strict one-to-one correspondences between them and their genetic causes do not exist. Current hair-curvature theories do not distinguish between bending and twisting mechanisms. We here introduce a multiple papillary centres (MPC) model which is particularly suitable to explain twisting. The model combines previously known features of hair cross-sectional morphology with partially/completely separated dermal papillae within single follicles, and requires such papillae to induce differential growth rates of hair cortical material in their immediate neighbourhoods. The MPC model can further help to explain other, poorly understood, aspects of hair growth and morphology. Separate bending and twisting mechanisms would be preferentially affected at the major or minor ellipsoidal sides of fibres, respectively, and together they exhaust the possibilities for influencing hair-form phenotypes. As such they suggest dialectic for hair-curvature development. We define a natural-dialectic (ND) which could take advantage of speculative aspects of dialectic, but would verify its input data and results by experimental methods. We use this as a top-down approach to first define routes by which hair bending or twisting may be brought about and then review evidence in support of such routes. In particular we consider the wingless (Wnt) and mammalian target of rapamycin (mTOR) pathways as paradigm pathways for molecular hair bending and twisting mechanisms, respectively. In addition to the Wnt canonical pathway, the Wnt/Ca(2+) and planar cell polarity (PCP) pathways, and others, can explain many alternatives and specific variations of hair bending phenotypes. Mechanisms for hair papilla budding or its division by bisection or fission can explain MPC formation. Epithelial-to-mesenchymal (EMT) and mesenchymal-to-epithelial (MET) transitions, acting in collaboration with epithelial-mesenchymal communications are also considered as mechanisms affecting hair growth and its bending and twisting. These may be treated as sub-mechanisms of an overall development from neural-crest stem cell (NCSC) lineages to differentiated hair follicle (HF) cell types, thus providing a unified framework for hair growth and development.
Collapse
|
25
|
Yoshida H, Bando T, Mito T, Ohuchi H, Noji S. An extended steepness model for leg-size determination based on Dachsous/Fat trans-dimer system. Sci Rep 2014; 4:4335. [PMID: 24613915 PMCID: PMC3949298 DOI: 10.1038/srep04335] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 02/18/2014] [Indexed: 11/21/2022] Open
Abstract
What determines organ size has been a long-standing biological question. Lawrence et al. (2008) proposed the steepness hypothesis suggesting that the protocadherin Dachsous/Fat (Ds/Ft) system may provide some measure of dimension to the cells in relation to the gradient. In this paper we extended the model as a means of interpreting experimental results in cricket leg regeneration. We assumed that (1) Ds/Ft trans-heterodimers or trans-homodimers are redistributed during cell division, and (2) growth would cease when a differential of the dimer across each cell decreases to a certain threshold. We applied our model to simulate the results obtained by leg regeneration experiments in a cricket model. The results were qualitatively consistent with the experimental data obtained for cricket legs by RNA interference methodology. Using our extended steepness model, we provided a molecular-based explanation for leg size determination even in intercalary regeneration and for organ size determination.
Collapse
Affiliation(s)
- Hiroshi Yoshida
- Faculty of Mathematics, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Tetsuya Bando
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama city, Okayama, 700-8530, Japan
| | - Taro Mito
- Department of Life Systems, Institute of Technology and Science, The University of Tokushima, Jyosanjima-cho, Tokushima City, 770-8506, Japan
| | - Hideyo Ohuchi
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama city, Okayama, 700-8530, Japan
| | - Sumihare Noji
- Department of Life Systems, Institute of Technology and Science, The University of Tokushima, Jyosanjima-cho, Tokushima City, 770-8506, Japan
| |
Collapse
|
26
|
Riquiqui and minibrain are regulators of the hippo pathway downstream of Dachsous. Nat Cell Biol 2013; 15:1176-85. [PMID: 23955303 DOI: 10.1038/ncb2829] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 07/17/2013] [Indexed: 12/12/2022]
Abstract
The atypical cadherins Fat (Ft) and Dachsous (Ds) control tissue growth through the Salvador-Warts-Hippo (SWH) pathway, and also regulate planar cell polarity and morphogenesis. Ft and Ds engage in reciprocal signalling as both proteins can serve as receptor and ligand for each other. The intracellular domains (ICDs) of Ft and Ds regulate the activity of the key SWH pathway transcriptional co-activator protein Yorkie (Yki). Signalling from the FtICD is well characterized and controls tissue growth by regulating the abundance of the Yki-repressive kinase Warts (Wts). Here we identify two regulators of the Drosophila melanogaster SWH pathway that function downstream of the DsICD: the WD40 repeat protein Riquiqui (Riq) and the DYRK-family kinase Minibrain (Mnb). Ds physically interacts with Riq, which binds to both Mnb and Wts. Riq and Mnb promote Yki-dependent tissue growth by stimulating phosphorylation-dependent inhibition of Wts. Thus, we describe a previously unknown branch of the SWH pathway that controls tissue growth downstream of Ds.
Collapse
|
27
|
Sharma P, McNeill H. Regulation of long-range planar cell polarity by Fat-Dachsous signaling. Development 2013; 140:3869-81. [PMID: 23946440 DOI: 10.1242/dev.094730] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Fat (Ft) and Dachsous (Ds) are large cadherins that bind each other and have conserved roles in regulating planar cell polarity (PCP). We quantitatively analyzed Ft-Ds pathway mutant clones for their effects on ommatidial polarity in the Drosophila eye. Our findings suggest that the Ft-Ds pathway regulates PCP propagation independently of asymmetric cellular accumulation of Ft or Ds. We find that the Ft effector Atrophin has a position-specific role in regulating polarity in the eye, and that asymmetric accumulation of the atypical myosin Dachs is not essential for production and propagation of a long-range PCP signal. Our observations suggest that Ft and Ds interact to modulate a secondary signal that regulates long-range polarity, that signaling by the Ds intracellular domain is dependent on Ft, and that ommatidial fate specification is genetically separable from long-range signaling.
Collapse
Affiliation(s)
- Praveer Sharma
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | | |
Collapse
|
28
|
Tissir F, Goffinet AM. Shaping the nervous system: role of the core planar cell polarity genes. Nat Rev Neurosci 2013; 14:525-35. [PMID: 23839596 DOI: 10.1038/nrn3525] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Planar cell polarity (PCP) is complementary to the intrinsic polarization of single cells and refers to the global coordination of cell behaviour in the plane of a tissue and, by extension, to the signalling pathways that control it. PCP is most evident in cell sheets, and research into PCP was for years confined to studies in Drosophila melanogaster. However, PCP has more recently emerged as an important phenomenon in vertebrates, in which it regulates various developmental processes and is associated with multiple disorders. In particular, core PCP genes are crucial for the development and function of the nervous system. They are involved in neural tube closure, ependymal polarity, neuronal migration, dendritic growth and axon guidance.
Collapse
Affiliation(s)
- Fadel Tissir
- University of Louvain, Institute of Neuroscience, Developmental Neurobiology Group, Avenue Mounier 73, Box B1.73.16, 1200 Brussels, Belgium
| | | |
Collapse
|
29
|
Lawrence PA, Casal J. The mechanisms of planar cell polarity, growth and the Hippo pathway: some known unknowns. Dev Biol 2013; 377:1-8. [PMID: 23592229 PMCID: PMC3677094 DOI: 10.1016/j.ydbio.2013.01.030] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 01/26/2013] [Accepted: 01/28/2013] [Indexed: 01/12/2023]
Abstract
Planar cell polarity (PCP) is a small but important area of research. In this review we discuss a limited number of topics within the PCP field, chosen because they are difficult, unsolved, controversial or just because we find them interesting. Because Drosophila is the best studied and technically most amenable system we have concentrated on it, but also consider some examples from work on vertebrates. Topics discussed include the number of genetic pathways involved in PCP, as well as the causal relationship between embryonic axes, gradients of morphogens and PCP itself. We consider the vexed question of the roles of the Wnt genes in PCP in both vertebrates and Drosophila. We discuss whether the proteins involved in PCP need to be localised asymmetrically in cells in order to function. We criticise the way the Hippo pathway is described in the literature and ask what its wildtype function is. We explore afresh how the Hippo pathway might be linked both to growth and to PCP through the gigantic cadherin molecule Fat. We offer some new ways of making sense of published results, particularly those relating to the Frizzled/Starry night and Dachsous/Fat systems of PCP.
Collapse
Affiliation(s)
- Peter A Lawrence
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3 EJ, United Kingdom.
| | | |
Collapse
|
30
|
Bernascone I, Martin-Belmonte F. Crossroads of Wnt and Hippo in epithelial tissues. Trends Cell Biol 2013; 23:380-9. [PMID: 23607968 DOI: 10.1016/j.tcb.2013.03.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 03/13/2013] [Accepted: 03/15/2013] [Indexed: 12/22/2022]
Abstract
Epithelial tissues undergo constant growth and differentiation during embryonic development and to replace damaged tissue in adult organs. These processes are governed by different signaling pathways that ultimately control the expression of genes associated with cell proliferation, patterning, and death. One essential pathway is Wnt, which controls tubulogenesis in several epithelial organs. Recently, Wnt has been closely linked to other signaling pathways, such as Hippo, that orchestrate proliferation and apoptosis to control organ size. There is evidence that epithelial cell junctions may sequester the transcription factors that act downstream of these signaling pathways, which would represent an important aspect of their functional regulation and their influence on cell behavior. Here, we review the transcriptional control exerted by the Wnt and Hippo signaling pathways during epithelial growth, patterning, and differentiation and recent advances in understanding of the regulation and crosstalk of these pathways in epithelial tissues.
Collapse
Affiliation(s)
- Ilenia Bernascone
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), C/Nicolás Cabrera 1, Madrid 28049, Spain
| | | |
Collapse
|
31
|
An evolutionary shift in the regulation of the Hippo pathway between mice and flies. Oncogene 2013; 33:1218-28. [PMID: 23563179 DOI: 10.1038/onc.2013.82] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 01/18/2013] [Accepted: 01/21/2013] [Indexed: 01/15/2023]
Abstract
The Hippo pathway plays a key role in controlling organ growth in many animal species and its deregulation is associated with different types of cancer. Understanding the regulation of the Hippo pathway and discovering upstream regulators is thus a major quest. Interestingly, while the core of the Hippo pathway contains a highly conserved kinase cascade, different components have been identified as upstream regulators in Drosophila and vertebrates. However, whether the regulation of the Hippo pathway is indeed different between Drosophila and vertebrates or whether these differences are due to our limited analysis of these components in different organisms is not known. Here we show that the mouse Fat4 cadherin, the ortholog of the Hippo pathway regulator Fat in Drosophila, does not apparently regulate the Hippo pathway in the murine liver. In fact, we uncovered an evolutionary shift in many of the known upstream regulators at the base of the arthropod lineage. In this evolutionary transition, Fat and the adaptor protein Expanded gained novel domains that connected them to the Hippo pathway, whereas the cell-adhesion receptor Echinoid evolved as a new protein. Subsequently, the junctional adaptor protein Angiomotin (Amot) was lost and the downstream effector Yap lost its PDZ-binding motif that interacts with cell junction proteins. We conclude that fundamental differences exist in the upstream regulatory mechanisms of Hippo signaling between Drosophila and vertebrates.
Collapse
|
32
|
Sharma P, McNeill H. Fat and Dachsous cadherins. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 116:215-35. [PMID: 23481197 DOI: 10.1016/b978-0-12-394311-8.00010-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Fat and Dachsous (Ds) are very large cell adhesion molecules. They bind each other and have important, highly conserved roles in planar cell polarity (PCP) and growth control. PCP is defined as the directionally coordinated development of cellular structures or behavior. Cellular and tissue growth needs to be modulated in terms of rate and final size, and the Hippo pathway regulates growth in a variety of developmental contexts. Fat and Ds are important upstream regulators of these pathways. There are two Fat proteins in Drosophila, Fat and Fat2, and four in vertebrates, Fat1-4. There is one Ds protein in Drosophila and two in vertebrates, Dachsous1-2. In this chapter, we discuss the roles of Fat and Ds family members, focusing on Drosophila and mouse development.
Collapse
|
33
|
Yoshida H. A pattern to regenerate through turnover. Biosystems 2012; 110:43-50. [PMID: 22917582 DOI: 10.1016/j.biosystems.2012.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 04/28/2012] [Accepted: 08/03/2012] [Indexed: 11/26/2022]
Abstract
Tissues of animals and plants are maintained through balanced cell growth, movement, and elimination. Although cells are exchanged perpetually, the whole structure of the tissue is maintained. This form of maintenance is called cell turnover. Here I propose a bio-inspired model of patterns that regenerate through turnover. This model is derived from the Dachsous-Fat system, which has recently attracted much attention because it is considered to facilitate regeneration in insect legs. In this model, I parameterized the manner of the redistribution of Dachsous and Fat during cell division, and then derived equations in the parameters that enable the patterns to regenerate and maintain themselves through turnover. I extended the equations derived in the one-dimensional model into a two-dimensional model. Finally, I discuss a possible relationship between regeneration and turnover.
Collapse
|
34
|
Abstract
Cadherins are Ca(2+)-dependent cell-cell adhesion molecules that play critical roles in animal morphogenesis. Various cadherin-related molecules have also been identified, which show diverse functions, not only for the regulation of cell adhesion but also for that of cell proliferation and planar cell polarity. During the past decade, understanding of the roles of these molecules in the nervous system has significantly progressed. They are important not only for the development of the nervous system but also for its functions and, in turn, for neural disorders. In this review, we discuss the roles of cadherins and related molecules in neural development and function in the vertebrate brain.
Collapse
Affiliation(s)
- Shinji Hirano
- Department of Neurobiology and Anatomy, Kochi Medical School, Okoh-cho Kohasu, Nankoku-City 783–8505, Japan.
| | | |
Collapse
|
35
|
Saburi S, Hester I, Goodrich L, McNeill H. Functional interactions between Fat family cadherins in tissue morphogenesis and planar polarity. Development 2012; 139:1806-20. [PMID: 22510986 DOI: 10.1242/dev.077461] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The atypical cadherin fat (ft) was originally discovered as a tumor suppressor in Drosophila and later shown to regulate a form of tissue patterning known as planar polarity. In mammals, four ft homologs have been identified (Fat1-4). Recently, we demonstrated that Fat4 plays a role in vertebrate planar polarity. Fat4 has the highest homology to ft, whereas other Fat family members are homologous to the second ft-like gene, ft2. Genetic studies in flies and mice imply significant functional differences between the two groups of Fat cadherins. Here, we demonstrate that Fat family proteins act both synergistically and antagonistically to influence multiple aspects of tissue morphogenesis. We find that Fat1 and Fat4 cooperate during mouse development to control renal tubular elongation, cochlear extension, cranial neural tube formation and patterning of outer hair cells in the cochlea. Similarly, Fat3 and Fat4 synergize to drive vertebral arch fusion at the dorsal midline during caudal vertebra morphogenesis. We provide evidence that these effects depend on conserved interactions with planar polarity signaling components. In flies, the transcriptional co-repressor Atrophin (Atro) physically interacts with Ft and acts as a component of Fat signaling for planar polarity. We find that the mammalian orthologs of atro, Atn1 and Atn2l, modulate Fat4 activity during vertebral arch fusion and renal tubular elongation, respectively. Moreover, Fat4 morphogenetic defects are enhanced by mutations in Vangl2, a 'core' planar cell polarity gene. These studies highlight the wide range and complexity of Fat activities and suggest that a Fat-Atrophin interaction is a conserved element of planar polarity signaling.
Collapse
Affiliation(s)
- Sakura Saburi
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada.
| | | | | | | |
Collapse
|
36
|
Abstract
Planar cell polarity is a fundamental concept to understanding the coordination of cell movements in the plane of a tissue. Since the planar cell polarity pathway was discovered in mesenchymal tissues involving cell interaction during vertebrate gastrulation, there is an emerging evidence that a variety of mesenchymal and epithelial cells utilize this genetic pathway to mediate the coordination of cells in directed movements. In this review, we focus on how the planar cell polarity pathway is mediated by migrating cells to communicate with one another in different developmental processes.
Collapse
|
37
|
Thomas C, Strutt D. The roles of the cadherins Fat and Dachsous in planar polarity specification in Drosophila. Dev Dyn 2011; 241:27-39. [PMID: 21919123 DOI: 10.1002/dvdy.22736] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2011] [Indexed: 11/06/2022] Open
Abstract
Planar polarity is generated through the activity of two groups of proteins, the "core" system and the Fat (Ft)/Dachsous (Ds) system. Although both are conserved from insects to mammals, vertebrate studies into planar polarity have primarily focussed on core planar polarity proteins and have only recently branched into the study of the Ft/Ds system. In Drosophila, however, years of detailed analysis have started to elucidate some of the mechanisms by which Ft/Ds signalling might set up polarity across a tissue, and how this may impact upon core protein-mediated planar polarity. In this review, we discuss the major findings, models, and controversies that have emerged from Drosophila research into the Ft/Ds system, and indicate some areas for further investigation.
Collapse
Affiliation(s)
- Chloe Thomas
- MRC Centre for Developmental and Biomedical Genetics and Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom.
| | | |
Collapse
|
38
|
Abstract
The regulation of organ size is a long-standing problem in animal development. Studies in this area have shown that organ-intrinsic patterning morphogens influence organ size, guiding growth in accordance with positional information. However, organ-extrinsic humoral factors such as insulin also affect organ size, synchronizing growth with nutrient levels. Proliferating cells must integrate instructions from morphogens with those from nutrition so that growth proceeds as a function of both inputs. Coordinating cell proliferation with morphogens and nutrients ensures organs scale appropriately with body size, but the basis of this coordination is unclear. Here, the problem is illustrated using the Drosophila wing--a paradigm for organ growth and size control--and a potential solution suggested.
Collapse
Affiliation(s)
- Joseph Parker
- Department of Genetics and Development, Columbia University College of Physicians and Surgeons, 701 West 168th Street, New York, NY 10032, USA.
| |
Collapse
|
39
|
Abstract
In all multicellular organisms, epithelial cells are not only polarized along the apical-basal axis, but also within the epithelial plane, giving cells a sense of direction. Planar cell polarity (PCP) signaling regulates establishment of polarity within the plane of an epithelium. The outcomes of PCP signaling are diverse and include the determination of cell fates, the generation of asymmetric but highly aligned structures, such as the stereocilia in the human inner ear or the hairs on a fly wing, or the directional migration of cells during convergence and extension during vertebrate gastrulation. In humans, aberrant PCP signaling can result in severe developmental defects, such as open neural tubes (spina bifida), and can cause cystic kidneys. In this review, we discuss the basic mechanism and more recent findings of PCP signaling focusing on Drosophila melanogaster, the model organism in which most key PCP components were initially identified.
Collapse
Affiliation(s)
- Saw Myat Thanda W Maung
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York, NY, USA
| | | |
Collapse
|
40
|
Happé H, de Heer E, Peters DJM. Polycystic kidney disease: the complexity of planar cell polarity and signaling during tissue regeneration and cyst formation. Biochim Biophys Acta Mol Basis Dis 2011; 1812:1249-55. [PMID: 21640821 DOI: 10.1016/j.bbadis.2011.05.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 05/13/2011] [Accepted: 05/19/2011] [Indexed: 12/30/2022]
Abstract
Autosomal Dominant Polycystic Kidney Disease (ADPKD) is an inherited systemic disease with intrarenal cystogenesis as its primary characteristic. A variety of mouse models provided information on the requirement of loss of balanced polycystin levels for initiation of cyst formation, the role of proliferation in cystogenesis and the signaling pathways involved in cyst growth and expansion. Here we will review the involvement of different signaling pathways during renal development, renal epithelial regeneration and cyst formation in ADPKD, focusing on planar cell polarity (PCP) and oriented cell division (OCD). This will be discussed in context of the hypothesis that aberrant PCP signaling causes cyst formation. In addition, the role of the Hippo pathway, which was recently found to be involved in cyst growth and tissue regeneration, and well-known for regulating organ size control, will be reviewed. The fact that Hippo signaling is linked to PCP signaling makes the Hippo pathway a novel cascade in cystogenesis. The newly gained understanding of the complex signaling network involved in cystogenesis and disease progression, not only necessitates refining of the current hypothesis regarding initiation of cystogenesis, but also has implications for therapeutic intervention strategies. This article is part of a Special Issue entitled: Polycystic Kidney Disease.
Collapse
Affiliation(s)
- Hester Happé
- Department of Human Genetics, Leiden University Medical Center, RC Leiden, The Netherlands
| | | | | |
Collapse
|
41
|
Abstract
The establishment and maintenance of apico–basal cell polarity is a pre-requisite for the formation of a functioning epithelial tissue. Many lines of evidence suggest that cell polarity perturbations favour cancer formation, even though the mechanistic basis for this link remains unclear. Studies in Drosophila have uncovered complex interactions between the conserved Hpo (Hippo) tumour suppressor pathway and apico–basal polarity determinants. The Hpo pathway is a crucial growth regulatory network whose inactivation in Drosophila epithelial tissues induces massive overproliferation. Its core consists of a phosphorylation cascade (comprising the kinases Hpo and Warts) that mediates the inactivation of the pro-growth transcriptional co-activator Yki [Yorkie; YAP (Yes-associated protein) in mammals]. Several apically located proteins, such as Merlin, Expanded or Kibra, have been identified as upstream regulators of the Hpo pathway, leading to the notion that an apical multi-molecular complex modulates core kinase activity and promotes Yki/YAP inactivation. In the present review, we explore the links between apico–basal polarity and Hpo signalling. We focus on the regulation of Yki/YAP by apical proteins, but also on how the Hpo pathway might in turn influence apical domain size as part of a regulatory feedback loop.
Collapse
|
42
|
Abstract
Planar polarity describes the coordinated polarisation of cells or structures in the plane of a tissue. The patterning mechanisms that underlie planar polarity are well characterised in Drosophila, where many events are regulated by two pathways: the 'core' planar polarity complex and the Fat/Dachsous system. Components of both pathways also function in vertebrates and are implicated in diverse morphogenetic processes, some of which self-evidently involve planar polarisation and some of which do not. Here, we review the molecular mechanisms and cellular consequences of planar polarisation in diverse contexts, seeking to identify the common principles across the animal kingdom.
Collapse
Affiliation(s)
- Lisa V. Goodrich
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - David Strutt
- MRC Centre for Developmental and Biomedical Genetics and Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
43
|
Bando T, Mito T, Nakamura T, Ohuchi H, Noji S. Regulation of leg size and shape: Involvement of the Dachsous-fat signaling pathway. Dev Dyn 2011; 240:1028-41. [DOI: 10.1002/dvdy.22590] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2011] [Indexed: 11/11/2022] Open
|
44
|
Abstract
The Hippo pathway has emerged as a conserved signaling pathway that is essential for the proper regulation of organ growth in Drosophila and vertebrates. Although the mechanisms of signal transduction of the core kinases Hippo/Mst and Warts/Lats are relatively well understood, less is known about the upstream inputs of the pathway and about the downstream cellular and developmental outputs. Here, we review recently discovered mechanisms that contribute to the dynamic regulation of Hippo signaling during Drosophila and vertebrate development. We also discuss the expanding diversity of Hippo signaling functions during development, discoveries that shed light on a complex regulatory system and provide exciting new insights into the elusive mechanisms that regulate organ growth and regeneration.
Collapse
Affiliation(s)
- Georg Halder
- Department of Biochemistry and Molecular Biology, MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA., Program in Genes and Development, MD Anderson Cancer Center, Houston, TX 77030, USA., Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA., Authors for correspondence (; )
| | - Randy L. Johnson
- Department of Biochemistry and Molecular Biology, MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA., Program in Genes and Development, MD Anderson Cancer Center, Houston, TX 77030, USA., Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA., Authors for correspondence (; )
| |
Collapse
|
45
|
Grusche FA, Richardson HE, Harvey KF. Upstream Regulation of the Hippo Size Control Pathway. Curr Biol 2010; 20:R574-82. [DOI: 10.1016/j.cub.2010.05.023] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
46
|
Sato K, Seki R, Noro M, Yokoyama H, Tamura K. Morphogenetic change of the limb bud in the hand plate formation. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2010; 314:539-51. [DOI: 10.1002/jez.b.21359] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Revised: 04/19/2010] [Accepted: 04/24/2010] [Indexed: 11/09/2022]
|
47
|
Zecca M, Struhl G. A feed-forward circuit linking wingless, fat-dachsous signaling, and the warts-hippo pathway to Drosophila wing growth. PLoS Biol 2010; 8:e1000386. [PMID: 20532238 PMCID: PMC2879410 DOI: 10.1371/journal.pbio.1000386] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Accepted: 04/22/2010] [Indexed: 01/15/2023] Open
Abstract
The secreted morphogen Wingless promotes Drosophila wing growth by fueling a wave front of Fat-Dachsous signaling that recruits new cells into the wing primordium. During development, the Drosophila wing primordium undergoes a dramatic increase in cell number and mass under the control of the long-range morphogens Wingless (Wg, a Wnt) and Decapentaplegic (Dpp, a BMP). This process depends in part on the capacity of wing cells to recruit neighboring, non-wing cells into the wing primordium. Wing cells are defined by activity of the selector gene vestigial (vg) and recruitment entails the production of a vg-dependent “feed-forward signal” that acts together with morphogen to induce vg expression in neighboring non-wing cells. Here, we identify the protocadherins Fat (Ft) and Dachsous (Ds), the Warts-Hippo tumor suppressor pathway, and the transcriptional co-activator Yorkie (Yki, a YES associated protein, or YAP) as components of the feed-forward signaling mechanism, and we show how this mechanism promotes wing growth in response to Wg. We find that vg generates the feed-forward signal by creating a steep differential in Ft-Ds signaling between wing and non-wing cells. This differential down-regulates Warts-Hippo pathway activity in non-wing cells, leading to a burst of Yki activity and the induction of vg in response to Wg. We posit that Wg propels wing growth at least in part by fueling a wave front of Ft-Ds signaling that propagates vg expression from one cell to the next. Under normal conditions, animals and their various body parts grow until they achieve a genetically predetermined size and shape—a process governed by secreted organizer proteins called morphogens. How morphogens control growth remains unknown. In Drosophila, wings develop at the larval stage from wing primordia. Recently, we discovered that the morphogen Wingless promotes growth of the Drosophila wing by inducing the recruitment of neighboring cells into the wing primordium. Wing cells are defined by the expression of the “selector” gene vestigial. Recruitment depends on the capacity of wing cells to send a short-range, feed-forward signal that allows Wingless to activate vestigial in adjacent non-wing cells. Here, we identify the molecular components and circuitry of the recruitment process. We define the protocadherins Fat and Dachsous as a bidirectional ligand-receptor system that is controlled by vestigial to generate the feed-forward signal. Further, we show that the signal is transduced by the conserved Warts-Hippo tumor suppressor pathway via activation of its transcriptional effector Yorkie. Finally, we propose that Wingless propels wing growth by fueling a wave front of Fat-Dachsous signaling and Yorkie activity that propagates vestigial expression from one cell to the next.
Collapse
Affiliation(s)
- Myriam Zecca
- Howard Hughes Medical Institute, Columbia University College of Physicians and Surgeons, New York, New York, United States of America
- Department of Genetics and Development, Columbia University College of Physicians and Surgeons, New York, New York, United States of America
| | - Gary Struhl
- Howard Hughes Medical Institute, Columbia University College of Physicians and Surgeons, New York, New York, United States of America
- Department of Genetics and Development, Columbia University College of Physicians and Surgeons, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
48
|
Brittle AL, Repiso A, Casal J, Lawrence PA, Strutt D. Four-jointed modulates growth and planar polarity by reducing the affinity of dachsous for fat. Curr Biol 2010; 20:803-10. [PMID: 20434337 PMCID: PMC2958304 DOI: 10.1016/j.cub.2010.03.056] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 02/19/2010] [Accepted: 03/02/2010] [Indexed: 12/31/2022]
Abstract
The Drosophila genes fat (ft) and dachsous (ds) encode large atypical cadherins that collaborate to coordinately polarize cells in the plane of the epithelium (planar cell polarity) and to affect growth via the Warts/Hippo pathway. Ft and Ds form heterodimeric bridges that convey polarity information from cell to cell. four-jointed (fj) is a modulator of Ft/Ds activity that acts in a graded fashion in the abdomen, eye, and wing. Genetic evidence indicates that Fj acts via Ds and/or Ft, and here we demonstrate that Fj can act independently on Ds and on Ft. It has been reported that Fj has kinase activity and can phosphorylate a subset of cadherin domains of both Ft and Ds in vitro. We have used both cell and in vitro assays to measure binding between Ft and Ds. We find that phosphorylation of Ds reduces its affinity for Ft in both of these assays. By expressing forms of Ds that lack the defined phosphorylation sites or have phosphomimetic amino acids at these positions, we demonstrate that effects of Fj on wing size and planar polarity can be explained by Fj phosphorylating these sites.
Collapse
Affiliation(s)
- Amy L. Brittle
- Medical Research Council (MRC) Centre for Developmental and Biomedical Genetics and Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK
| | - Ada Repiso
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - José Casal
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Peter A. Lawrence
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - David Strutt
- Medical Research Council (MRC) Centre for Developmental and Biomedical Genetics and Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
49
|
Hashimoto M, Hamada H. Translation of anterior-posterior polarity into left-right polarity in the mouse embryo. Curr Opin Genet Dev 2010; 20:433-7. [PMID: 20439159 DOI: 10.1016/j.gde.2010.04.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 03/31/2010] [Accepted: 04/04/2010] [Indexed: 01/19/2023]
Abstract
The breaking of left-right symmetry in the mouse involves unidirectional fluid flow. Rotational movement of the node cilia generates leftward flow because the cilia are posteriorly tilted. However, it is unknown how anterior-posterior (A-P) information is translated into the posterior tilt of the node cilia. The tilt is determined by the position of the basal body of node cilia. Some of the planar cell polarity (PCP) core proteins such as Dvl are asymmetrically distributed in the node cells, and positioning of the basal body is impaired in mutant mice lacking Dvl genes. Therefore, posterior positioning of the basal body is determined by planar polarization involving noncanonical Wnt signaling. However, the identity of initial A-P information remains unknown.
Collapse
Affiliation(s)
- Masakazu Hashimoto
- Developmental Genetics Group, Graduate School of Frontier Biosciences, Osaka University, and CREST, Japan Science and Technology Corporation (JST), Suita, Osaka, Japan
| | | |
Collapse
|
50
|
Burak Y, Shraiman BI. Order and stochastic dynamics in Drosophila planar cell polarity. PLoS Comput Biol 2009; 5:e1000628. [PMID: 20041171 PMCID: PMC2791803 DOI: 10.1371/journal.pcbi.1000628] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Accepted: 11/24/2009] [Indexed: 11/18/2022] Open
Abstract
Cells in the wing blade of Drosophila melanogaster exhibit an in-plane polarization causing distal orientation of hairs. Establishment of the Planar Cell Polarity (PCP) involves intercellular interactions as well as a global orienting signal. Many of the genetic and molecular components underlying this process have been experimentally identified and a recently advanced system-level model has suggested that the observed mutant phenotypes can be understood in terms of intercellular interactions involving asymmetric localization of membrane bound proteins. Among key open questions in understanding the emergence of ordered polarization is the effect of stochasticity and the role of the global orienting signal. These issues relate closely to our understanding of ferromagnetism in physical systems. Here we pursue this analogy to understand the emergence of PCP order. To this end we develop a semi-phenomenological representation of the underlying molecular processes and define a "phase diagram" of the model which provides a global view of the dependence of the phenotype on parameters. We show that the dynamics of PCP has two regimes: rapid growth in the amplitude of local polarization followed by a slower process of alignment which progresses from small to large scales. We discuss the response of the tissue to various types of orienting signals and show that global PCP order can be achieved with a weak orienting signal provided that it acts during the early phase of the process. Finally we define and discuss some of the experimental predictions of the model.
Collapse
Affiliation(s)
- Yoram Burak
- Center for Brain Science, Harvard University, Cambridge, Massachusetts, USA
| | | |
Collapse
|