1
|
English LA, Taylor RJ, Cameron CJ, Broker EA, Dent EW. F-BAR proteins CIP4 and FBP17 function in cortical neuron radial migration and process outgrowth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.25.620310. [PMID: 39484544 PMCID: PMC11527352 DOI: 10.1101/2024.10.25.620310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Neurite initiation from newly born neurons is a critical step in neuronal differentiation and migration. Neuronal migration in the developing cortex is accompanied by dynamic extension and retraction of neurites as neurons progress through bipolar and multipolar states. However, there is a relative lack of understanding regarding how the dynamic extension and retraction of neurites is regulated during neuronal migration. In recent work we have shown that CIP4, a member of the F-BAR family of membrane bending proteins, inhibits cortical neurite formation in culture, while family member FBP17 induces premature neurite outgrowth. These results beg the question of how CIP4 and FBP17 function in radial neuron migration and differentiation in vivo, including the timing and manner of neurite extension and retraction. Indeed, the regulation of neurite outgrowth is essential for the transitions between bipolar and multipolar states during radial migration. To examine the effects of modulating expression of CIP4 and FBP17 in vivo, we used in utero electroporation, in combination with our published Double UP technique, to compare knockdown or overexpression cells with control cells within the same mouse tissue of either sex. We show that either knockdown or overexpression of CIP4 and FBP17 results in the marked disruption of radial neuron migration by modulating neuronal morphology and neurite outgrowth, consistent with our findings in culture. Our results demonstrate that the F-BAR proteins CIP4 and FBP17 are essential for proper radial migration in the developing cortex and thus play a key role in cortical development.
Collapse
Affiliation(s)
- Lauren A English
- Neuroscience Training Program, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705
| | - Russell J Taylor
- Neuroscience Department, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705
| | - Connor J Cameron
- Neuroscience Department, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705
| | - Emily A Broker
- Neuroscience Department, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705
| | - Erik W Dent
- Neuroscience Department, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705
| |
Collapse
|
2
|
Cossard A, Stam K, Smets A, Jossin Y. MKL/SRF and Bcl6 mutual transcriptional repression safeguards the fate and positioning of neocortical progenitor cells mediated by RhoA. SCIENCE ADVANCES 2023; 9:eadd0676. [PMID: 37967194 PMCID: PMC10651131 DOI: 10.1126/sciadv.add0676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 10/16/2023] [Indexed: 11/17/2023]
Abstract
During embryogenesis, multiple intricate and intertwined cellular signaling pathways coordinate cell behavior. Their slightest alterations can have dramatic consequences for the cells and the organs they form. The transcriptional repressor Bcl6 was recently found as important for brain development. However, its regulation and integration with other signals is unknown. Using in vivo functional approaches combined with molecular mechanistic analysis, we identified a reciprocal regulatory loop between B cell lymphoma 6 (Bcl6) and the RhoA-regulated transcriptional complex megakaryoblastic leukemia/serum response factor (MKL/SRF). We show that Bcl6 physically interacts with MKL/SRF, resulting in a down-regulation of the transcriptional activity of both Bcl6 and MKL/SRF. This molecular cross-talk is essential for the control of proliferation, neurogenesis, and spatial positioning of neural progenitors. Overall, our data highlight a regulatory mechanism that controls neuronal production and neocortical development and reveal an MKL/SRF and Bcl6 interaction that may have broader implications in other physiological functions and in diseases.
Collapse
Affiliation(s)
- Alexia Cossard
- Laboratory of Mammalian Development and Cell Biology, Institute of Neuroscience, Université Catholique de Louvain, Brussels 1200, Belgium
| | | | | | | |
Collapse
|
3
|
Yoshinaga S, Shin M, Kitazawa A, Ishii K, Tanuma M, Kasai A, Hashimoto H, Kubo KI, Nakajima K. Comprehensive characterization of migration profiles of murine cerebral cortical neurons during development using FlashTag labeling. iScience 2021; 24:102277. [PMID: 33851097 PMCID: PMC8022222 DOI: 10.1016/j.isci.2021.102277] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/30/2020] [Accepted: 03/01/2021] [Indexed: 11/26/2022] Open
Abstract
In the mammalian cerebral neocortex, different regions have different cytoarchitecture, neuronal birthdates, and functions. In most regions, neuronal migratory profiles are speculated similar based on observations using thymidine analogs. Few reports have investigated regional migratory differences from mitosis at the ventricular surface. In this study, we applied FlashTag technology, in which dyes are injected intraventricularly, to describe migratory profiles. We revealed a mediolateral regional difference in the migratory profiles of neurons that is dependent on developmental stage; for example, neurons labeled at embryonic day 12.5–15.5 reached their destination earlier dorsomedially than dorsolaterally, even where there were underlying ventricular surfaces, reflecting sojourning below the subplate. This difference was hardly recapitulated by thymidine analogs, which visualize neurogenic gradients, suggesting a biological significance different from the neurogenic gradient. These observations advance our understanding of cortical development and the power of FlashTag in studying migration and are thus resources for future neurodevelopmental studies. FlashTag visualized mediolateral regional differences of cortical migratory profiles Mediolateral differences were observed when neurons were labeled at E12.5–15.5 Late-born neurons transiently sojourned below the dorsolateral subplate (SP) cells The difference was unclear in reeler cortex, where SP cells position superficially
Collapse
Affiliation(s)
- Satoshi Yoshinaga
- Department of Anatomy, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
| | - Minkyung Shin
- Department of Anatomy, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
| | - Ayako Kitazawa
- Department of Anatomy, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
| | - Kazuhiro Ishii
- Department of Anatomy, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
| | - Masato Tanuma
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Atsushi Kasai
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hitoshi Hashimoto
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan.,Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Suita, Osaka 565-0871, Japan.,Division of Bioscience, Institute for Datability Science, Osaka University, Suita, Osaka 565-0871, Japan.,Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka 565-0871, Japan.,Department of Molecular Pharmaceutical Sciences, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Ken-Ichiro Kubo
- Department of Anatomy, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan.,Department of Anatomy, The Jikei University School of Medicine, Minato, Tokyo 105-8461, Japan
| | - Kazunori Nakajima
- Department of Anatomy, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
| |
Collapse
|
4
|
Prodromidou K, Vlachos IS, Gaitanou M, Kouroupi G, Hatzigeorgiou AG, Matsas R. MicroRNA-934 is a novel primate-specific small non-coding RNA with neurogenic function during early development. eLife 2020; 9:e50561. [PMID: 32459171 PMCID: PMC7295570 DOI: 10.7554/elife.50561] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 05/21/2020] [Indexed: 12/12/2022] Open
Abstract
Integrating differential RNA and miRNA expression during neuronal lineage induction of human embryonic stem cells we identified miR-934, a primate-specific miRNA that displays a stage-specific expression pattern during progenitor expansion and early neuron generation. We demonstrate the biological relevance of this finding by comparison with data from early to mid-gestation human cortical tissue. Further we find that miR-934 directly controls progenitor to neuroblast transition and impacts on neurite growth of newborn neurons. In agreement, miR-934 targets are involved in progenitor proliferation and neuronal differentiation whilst miR-934 inhibition results in profound global transcriptome changes associated with neurogenesis, axonogenesis, neuronal migration and neurotransmission. Interestingly, miR-934 inhibition affects the expression of genes associated with the subplate zone, a transient compartment most prominent in primates that emerges during early corticogenesis. Our data suggest that mir-934 is a novel regulator of early human neurogenesis with potential implications for a species-specific evolutionary role in brain function.
Collapse
Affiliation(s)
- Kanella Prodromidou
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Department of Neurobiology, Hellenic Pasteur InstituteAthensGreece
| | - Ioannis S Vlachos
- Department of Pathology, Beth Israel Deaconess Medical CenterBostonUnited States
- DIANA-Lab, Hellenic Pasteur InstituteAthensGreece
- Harvard Medical SchoolBostonUnited States
- Broad Institute of MIT and HarvardCambridgeUnited States
| | - Maria Gaitanou
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Department of Neurobiology, Hellenic Pasteur InstituteAthensGreece
| | - Georgia Kouroupi
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Department of Neurobiology, Hellenic Pasteur InstituteAthensGreece
| | | | - Rebecca Matsas
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Department of Neurobiology, Hellenic Pasteur InstituteAthensGreece
| |
Collapse
|
5
|
Zhang T, Hou C, Zhang S, Liu S, Li Z, Gao J. Lgl1 deficiency disrupts hippocampal development and impairs cognitive performance in mice. GENES BRAIN AND BEHAVIOR 2019; 18:e12605. [PMID: 31415124 DOI: 10.1111/gbb.12605] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 08/11/2019] [Accepted: 08/12/2019] [Indexed: 12/15/2022]
Abstract
Cellular polarity is crucial for brain development and morphogenesis. Lethal giant larvae 1 (Lgl1) plays a crucial role in the establishment of cell polarity from Drosophila to mammalian cells. Previous studies have found the importance of Lgl1 in the development of cerebellar, olfactory bulb, and cerebral cortex. However, the role of Lgl1 in hippocampal development during the embryonic stage and function in adult mice is still unknown. In our study, we created Lgl1-deficient hippocampus mice by using Emx1-Cre mice. Histological analysis showed that the Emx1-Lgl1-/- mice exhibited reduced size of the hippocampus with severe malformations of hippocampal cytoarchitecture. These defects mainly originated from the disrupted hippocampal neuroepithelium, including increased cell proliferation, abnormal interkinetic nuclear migration, reduced differentiation, increased apoptosis, gradual disruption of adherens junctions, and abnormal neuronal migration. The radial glial scaffold was disorganized in the Lgl1-deficient hippocampus. Thus, Lgl1 plays a distinct role in hippocampal neurogenesis. In addition, the Emx1-Lgl1-/- mice displayed impaired behavioral performance in the Morris water maze and fear conditioning test.
Collapse
Affiliation(s)
- Tingting Zhang
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, China
| | - Congzhe Hou
- Department of Reproductive medicine, Second Hospital of Shandong University, Jinan, Shandong, China
| | - Sen Zhang
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, China
| | - Shuoyang Liu
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, China
| | - Zhenzu Li
- Department of Bioengineering, Shandong Polytechnic, Jinan, China
| | - Jiangang Gao
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, China
| |
Collapse
|
6
|
Jonchère V, Alqadri N, Herbert J, Dodgson L, Mason D, Messina G, Falciani F, Bennett D. Transcriptional responses to hyperplastic MRL signalling in Drosophila. Open Biol 2017; 7:rsob.160306. [PMID: 28148822 PMCID: PMC5356444 DOI: 10.1098/rsob.160306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/04/2017] [Indexed: 12/19/2022] Open
Abstract
Recent work has implicated the actin cytoskeleton in tissue size control and tumourigenesis, but how changes in actin dynamics contribute to hyperplastic growth is still unclear. Overexpression of Pico, the only Drosophila Mig-10/RIAM/Lamellipodin adapter protein family member, has been linked to tissue overgrowth via its effect on the myocardin-related transcription factor (Mrtf), an F-actin sensor capable of activating serum response factor (SRF). Transcriptional changes induced by acute Mrtf/SRF signalling have been largely linked to actin biosynthesis and cytoskeletal regulation. However, by RNA profiling, we find that the common response to chronic mrtf and pico overexpression in wing discs was upregulation of ribosome protein and mitochondrial genes, which are conserved targets for Mrtf/SRF and are known growth drivers. Consistent with their ability to induce a common transcriptional response and activate SRF signalling in vitro, we found that both pico and mrtf stimulate expression of an SRF-responsive reporter gene in wing discs. In a functional genetic screen, we also identified deterin, which encodes Drosophila Survivin, as a putative Mrtf/SRF target that is necessary for pico-mediated tissue overgrowth by suppressing proliferation-associated cell death. Taken together, our findings raise the possibility that distinct targets of Mrtf/SRF may be transcriptionally induced depending on the duration of upstream signalling.
Collapse
Affiliation(s)
- Vincent Jonchère
- Department of Biochemistry, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - Nada Alqadri
- Department of Biochemistry, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - John Herbert
- Centre for Computational Biology and Modelling (CCBM), Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - Lauren Dodgson
- Department of Biochemistry, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - David Mason
- Centre for Cell Imaging, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - Giovanni Messina
- Department of Biochemistry, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - Francesco Falciani
- Centre for Computational Biology and Modelling (CCBM), Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - Daimark Bennett
- Department of Biochemistry, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK .,Centre for Cell Imaging, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| |
Collapse
|
7
|
Khalaf-Nazzal R, Stouffer MA, Olaso R, Muresan L, Roumegous A, Lavilla V, Carpentier W, Moutkine I, Dumont S, Albaud B, Cagnard N, Roest Crollius H, Francis F. Early born neurons are abnormally positioned in the doublecortin knockout hippocampus. Hum Mol Genet 2017; 26:90-108. [PMID: 28007902 DOI: 10.1093/hmg/ddw370] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 10/24/2016] [Indexed: 01/29/2023] Open
Abstract
Human doublecortin (DCX) mutations are associated with severe brain malformations leading to aberrant neuron positioning (heterotopia), intellectual disability and epilepsy. The Dcx protein plays a key role in neuronal migration, and hippocampal pyramidal neurons in Dcx knockout (KO) mice are disorganized. The single CA3 pyramidal cell layer observed in wild type (WT) is present as two abnormal layers in the KO, and CA3 KO pyramidal neurons are more excitable than WT. Dcx KO mice also exhibit spontaneous epileptic activity originating in the hippocampus. It is unknown, however, how hyperexcitability arises and why two CA3 layers are observed.Transcriptome analyses were performed to search for perturbed postnatal gene expression, comparing Dcx KO CA3 pyramidal cell layers with WT. Gene expression changes common to both KO layers indicated mitochondria and Golgi apparatus anomalies, as well as increased cell stress. Intriguingly, gene expression analyses also suggested that the KO layers differ significantly from each other, particularly in terms of maturity. Layer-specific molecular markers and BrdU birthdating to mark the final positions of neurons born at distinct timepoints revealed inverted layering of the CA3 region in Dcx KO animals. Notably, many early-born 'outer boundary' neurons are located in an inner position in the Dcx KO CA3, superficial to other pyramidal neurons. This abnormal positioning likely affects cell morphology and connectivity, influencing network function. Dissecting this Dcx KO phenotype sheds light on coordinated developmental mechanisms of neuronal subpopulations, as well as gene expression patterns contributing to a bi-layered malformation associated with epilepsy.
Collapse
Affiliation(s)
- Reham Khalaf-Nazzal
- INSERM UMR-S 839, Paris.,Sorbonne Universités, Université Pierre et Marie Curie, Paris.,Institut du Fer à Moulin, Paris, France
| | - Melissa A Stouffer
- INSERM UMR-S 839, Paris.,Sorbonne Universités, Université Pierre et Marie Curie, Paris.,Institut du Fer à Moulin, Paris, France
| | - Robert Olaso
- Plateforme de Transcriptomique, Laboratoire de Recherche Translationnelle, CEA/DSV/IG-Centre National de Genotypage, 2 rue Gaston Crémieux, Evry, France
| | - Leila Muresan
- Ecole Normale Supérieure, Institut de Biologie de l'ENS, IBENS, Paris, France.,INSERM, U1024, Paris, France.,CNRS, UMR 8197, Paris, France
| | - Audrey Roumegous
- INSERM UMR-S 839, Paris.,Sorbonne Universités, Université Pierre et Marie Curie, Paris.,Institut du Fer à Moulin, Paris, France
| | - Virginie Lavilla
- Plateforme de Transcriptomique, Laboratoire de Recherche Translationnelle, CEA/DSV/IG-Centre National de Genotypage, 2 rue Gaston Crémieux, Evry, France
| | - Wassila Carpentier
- Plateforme post-génomique de la Pitié-Salpêtrière, Faculty of Medicine, Paris
| | - Imane Moutkine
- INSERM UMR-S 839, Paris.,Sorbonne Universités, Université Pierre et Marie Curie, Paris.,Institut du Fer à Moulin, Paris, France
| | - Sylvie Dumont
- Sorbonne Universités, UPMC Paris 06, UMS30 LUMIC, plateforme d'histomorphologie, St Antoine, Paris
| | - Benoit Albaud
- Plateforme Affymetrix, Institut Curie, Hospital St Louis, Paris
| | - Nicolas Cagnard
- Plateforme Bio-informatique Paris Descartes, Faculté de Necker, 156 rue de Vaugirard, Paris
| | - Hugues Roest Crollius
- Ecole Normale Supérieure, Institut de Biologie de l'ENS, IBENS, Paris, France.,INSERM, U1024, Paris, France.,CNRS, UMR 8197, Paris, France
| | - Fiona Francis
- INSERM UMR-S 839, Paris.,Sorbonne Universités, Université Pierre et Marie Curie, Paris.,Institut du Fer à Moulin, Paris, France
| |
Collapse
|
8
|
Brain specific Lamellipodin knockout results in hyperactivity and increased anxiety of mice. Sci Rep 2017; 7:5365. [PMID: 28710397 PMCID: PMC5511208 DOI: 10.1038/s41598-017-05043-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 05/24/2017] [Indexed: 11/08/2022] Open
Abstract
Lamellipodin (Lpd) functions as an important signalling integrator downstream of growth factor and axon guidance receptors. Mechanistically, Lpd promotes actin polymerization by interacting with F-actin and the actin effectors Ena/VASP proteins and the SCAR/WAVE complex. Thereby, Lpd supports lamellipodia protrusion, cell migration and endocytosis. In the mammalian central nervous system, Lpd contributes to neuronal morphogenesis, neuronal migration during development and its C. elegans orthologue MIG-10 also supports synaptogenesis. However, the consequences of loss of Lpd in the CNS on behaviour are unknown. In our current study, we crossed our Lpd conditional knockout mice with a mouse line expressing Cre under the CNS specific Nestin promoter to restrict the genetic ablation of Lpd to the central nervous system. Detailed behavioural analysis of the resulting Nestin-Cre-Lpd knockout mouse line revealed a specific behavioural phenotype characterised by hyperactivity and increased anxiety.
Collapse
|
9
|
MRL proteins cooperate with activated Ras in glia to drive distinct oncogenic outcomes. Oncogene 2017; 36:4311-4322. [PMID: 28346426 PMCID: PMC5537612 DOI: 10.1038/onc.2017.68] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 01/16/2017] [Accepted: 02/10/2017] [Indexed: 12/13/2022]
Abstract
The Mig10/RIAM/Lpd (MRL) adapter protein Lpd regulates actin dynamics through interactions with Scar/WAVE and Ena/VASP proteins to promote the formation of cellular protrusions and to stimulate invasive migration. However, the ability of MRL proteins to interact with multiple actin regulators and to promote serum response factor (SRF) signalling has raised the question of whether MRL proteins employ alternative downstream mechanisms to drive oncogenic processes in a context-dependent manner. Here, using a Drosophila model, we show that overexpression of either human Lpd or its Drosophila orthologue Pico can promote growth and invasion of RasV12-induced cell tumours in the brain. Notably, effects were restricted to two populations of Repo-positive glial cells: an invasive population, characterized by JNK-dependent elevation of Mmp1 expression, and a hyperproliferative population lacking elevated JNK signalling. JNK activation was not triggered by reactive immune cell signalling, implicating the involvement of an intrinsic stress response. The ability to promote dissemination of RasV12-induced tumours was shared by a subset of actin regulators, including, most prominently, Chicadee/Profilin, which directly interacts with Pico, and, Mal, a cofactor for serum response factor that responds to changes in G:F actin dynamics. Suppression of Mal activity partially abrogated the ability of pico to promote invasion of RasV12 tumours. Furthermore, we found that larval glia are enriched for serum response factor expression, explaining the apparent sensitivity of glial cells to Pico/RasV12 overexpression. Taken together, our findings indicate that MRL proteins cooperate with oncogenic Ras to promote formation of glial tumours, and that, in this context, Mal/serum response factor activation is rate-limiting for tumour dissemination.
Collapse
|
10
|
Miller CL, Muthupalani S, Shen Z, Drees F, Ge Z, Feng Y, Chen X, Gong G, Nagar KK, Wang TC, Gertler FB, Fox JG. Lamellipodin-Deficient Mice: A Model of Rectal Carcinoma. PLoS One 2016; 11:e0152940. [PMID: 27045955 PMCID: PMC4821566 DOI: 10.1371/journal.pone.0152940] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 03/20/2016] [Indexed: 01/27/2023] Open
Abstract
During a survey of clinical rectal prolapse (RP) cases in the mouse population at MIT animal research facilities, a high incidence of RP in the lamellipodin knock-out strain, C57BL/6-Raph1tm1Fbg (Lpd-/-) was documented. Upon further investigation, the Lpd-/- colony was found to be infected with multiple endemic enterohepatic Helicobacter species (EHS). Lpd-/- mice, a transgenic mouse strain produced at MIT, have not previously shown a distinct immune phenotype and are not highly susceptible to other opportunistic infections. Predominantly male Lpd-/- mice with RP exhibited lesions consistent with invasive rectal carcinoma concomitant to clinically evident RP. Multiple inflammatory cytokines, CD11b+Gr1+ myeloid-derived suppressor cell (MDSC) populations, and epithelial cells positive for a DNA damage biomarker, H2AX, were elevated in affected tissue, supporting their role in the neoplastic process. An evaluation of Lpd-/- mice with RP compared to EHS-infected, but clinically normal (CN) Lpd-/- animals indicated that all of these mice exhibit some degree of lower bowel inflammation; however, mice with prolapses had significantly higher degree of focal lesions at the colo-rectal junction. When Helicobacter spp. infections were eliminated in Lpd-/- mice by embryo transfer rederivation, the disease phenotype was abrogated, implicating EHS as a contributing factor in the development of rectal carcinoma. Here we describe lesions in Lpd-/- male mice consistent with a focal inflammation-induced neoplastic transformation and propose this strain as a mouse model of rectal carcinoma.
Collapse
Affiliation(s)
- Cassandra L. Miller
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Sureshkumar Muthupalani
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Zeli Shen
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Frauke Drees
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Zhongming Ge
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Yan Feng
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Xiaowei Chen
- Division of Digestive and Liver Diseases, Columbia University, New York, NY, United States of America
| | - Guanyu Gong
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Karan K. Nagar
- Division of Digestive and Liver Diseases, Columbia University, New York, NY, United States of America
| | - Timothy C. Wang
- Division of Digestive and Liver Diseases, Columbia University, New York, NY, United States of America
| | - Frank B. Gertler
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - James G. Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, United States of America
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States of America
- * E-mail:
| |
Collapse
|
11
|
Nature and nurture: environmental influences on a genetic rat model of depression. Transl Psychiatry 2016; 6:e770. [PMID: 27023176 PMCID: PMC4872452 DOI: 10.1038/tp.2016.28] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 01/12/2016] [Accepted: 01/24/2016] [Indexed: 12/20/2022] Open
Abstract
In this study, we sought to learn whether adverse events such as chronic restraint stress (CRS), or 'nurture' in the form of environmental enrichment (EE), could modify depression-like behavior and blood biomarker transcript levels in a genetic rat model of depression. The Wistar Kyoto More Immobile (WMI) is a genetic model of depression that aided in the identification of blood transcriptomic markers, which successfully distinguished adolescent and adult subjects with major depressive disorders from their matched no-disorder controls. Here, we followed the effects of CRS and EE in adult male WMIs and their genetically similar control strain, the Wistar Kyoto Less Immobile (WLI), that does not show depression-like behavior, by measuring the levels of these transcripts in the blood and hippocampus. In WLIs, increased depression-like behavior and transcriptomic changes were present in response to CRS, but in WMIs no behavioral or additive transcriptomic changes occurred. Environmental enrichment decreased both the inherent depression-like behavior in the WMIs and the behavioral difference between WMIs and WLIs, but did not reverse basal transcript level differences between the strains. The inverse behavioral change induced by CRS and EE in the WLIs did not result in parallel inverse expression changes of the transcriptomic markers, suggesting that these behavioral responses to the environment work via separate molecular pathways. In contrast, 'trait' transcriptomic markers with expression differences inherent and unchanging between the strains regardless of the environment suggest that in our model, environmental and genetic etiologies of depression work through independent molecular mechanisms.
Collapse
|
12
|
Menon S, Gupton SL. Building Blocks of Functioning Brain: Cytoskeletal Dynamics in Neuronal Development. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 322:183-245. [PMID: 26940519 PMCID: PMC4809367 DOI: 10.1016/bs.ircmb.2015.10.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neural connectivity requires proper polarization of neurons, guidance to appropriate target locations, and establishment of synaptic connections. From when neurons are born to when they finally reach their synaptic partners, neurons undergo constant rearrangment of the cytoskeleton to achieve appropriate shape and polarity. Of particular importance to neuronal guidance to target locations is the growth cone at the tip of the axon. Growth-cone steering is also dictated by the underlying cytoskeleton. All these changes require spatiotemporal control of the cytoskeletal machinery. This review summarizes the proteins that are involved in modulating the actin and microtubule cytoskeleton during the various stages of neuronal development.
Collapse
Affiliation(s)
- Shalini Menon
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, United States of America
| | - Stephanie L Gupton
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, United States of America; Neuroscience Center and Curriculum in Neurobiology, University of North Carolina, Chapel Hill, NC, United States of America; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, United States of America.
| |
Collapse
|
13
|
Decoding the molecular mechanisms of neuronal migration using in utero electroporation. Med Mol Morphol 2015; 49:63-75. [DOI: 10.1007/s00795-015-0127-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 11/08/2015] [Indexed: 12/20/2022]
|
14
|
Joo JY, Schaukowitch K, Farbiak L, Kilaru G, Kim TK. Stimulus-specific combinatorial functionality of neuronal c-fos enhancers. Nat Neurosci 2015; 19:75-83. [PMID: 26595656 PMCID: PMC4696896 DOI: 10.1038/nn.4170] [Citation(s) in RCA: 189] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 10/09/2015] [Indexed: 12/16/2022]
Abstract
The c-fos gene is induced by a broad range of stimuli, and has been commonly used as a reliable marker for neural activity. Its induction mechanism and available reporter mouse lines are exclusively based on the c-fos promoter activity. Here, we demonstrate that multiple enhancers surrounding the c-fos gene are critical for ensuring robust c-fos response to various stimuli. Membrane depolarization, brain-derived neurotrophic factor (BDNF), and Forskolin activate distinct subsets of the enhancers to induce c-fos transcription in neurons, suggesting that stimulus-specific combinatorial activation of multiple enhancers underlies the broad inducibility of the c-fos gene. Accordingly, the functional requirement of key transcription factors varies depending on the type of stimulation. Combinatorial enhancer activation also occurs in the brain. Providing a comprehensive picture of the c-fos induction mechanism beyond the minimal promoter, our study should help in understanding the physiological nature of c-fos induction in relation to neural activity and plasticity.
Collapse
Affiliation(s)
- Jae-Yeol Joo
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Katie Schaukowitch
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Lukas Farbiak
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Gokhul Kilaru
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Tae-Kyung Kim
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
15
|
Phosphatidylinositol (3,4) bisphosphate-specific phosphatases and effector proteins: A distinct branch of PI3K signaling. Cell Signal 2015; 27:1789-98. [DOI: 10.1016/j.cellsig.2015.05.013] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/16/2015] [Accepted: 05/20/2015] [Indexed: 01/22/2023]
|
16
|
Hansen SD, Mullins RD. Lamellipodin promotes actin assembly by clustering Ena/VASP proteins and tethering them to actin filaments. eLife 2015; 4:e06585. [PMID: 26295568 PMCID: PMC4543927 DOI: 10.7554/elife.06585] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 07/27/2015] [Indexed: 11/16/2022] Open
Abstract
Enabled/Vasodilator (Ena/VASP) proteins promote actin filament assembly at multiple locations, including: leading edge membranes, focal adhesions, and the surface of intracellular pathogens. One important Ena/VASP regulator is the mig-10/Lamellipodin/RIAM family of adaptors that promote lamellipod formation in fibroblasts and drive neurite outgrowth and axon guidance in neurons. To better understand how MRL proteins promote actin network formation we studied the interactions between Lamellipodin (Lpd), actin, and VASP, both in vivo and in vitro. We find that Lpd binds directly to actin filaments and that this interaction regulates its subcellular localization and enhances its effect on VASP polymerase activity. We propose that Lpd delivers Ena/VASP proteins to growing barbed ends and increases their polymerase activity by tethering them to filaments. This interaction represents one more pathway by which growing actin filaments produce positive feedback to control localization and activity of proteins that regulate their assembly.
Collapse
Affiliation(s)
- Scott D Hansen
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco School of Medicine, San Francisco, United States
| | - R Dyche Mullins
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco School of Medicine, San Francisco, United States
- Howard Hughes Medical Institute, University of California, San Francisco, United States
| |
Collapse
|
17
|
Schmid MT, Weinandy F, Wilsch-Bräuninger M, Huttner WB, Cappello S, Götz M. The role of α-E-catenin in cerebral cortex development: radial glia specific effect on neuronal migration. Front Cell Neurosci 2014; 8:215. [PMID: 25147501 PMCID: PMC4124588 DOI: 10.3389/fncel.2014.00215] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 07/16/2014] [Indexed: 12/02/2022] Open
Abstract
During brain development, radial glial cells possess an apico-basal polarity and are coupled by adherens junctions (AJs) to an F-actin belt. To elucidate the role of the actin, we conditionally deleted the key component α-E-catenin in the developing cerebral cortex. Deletion at early stages resulted in severe disruption of tissue polarity due to uncoupling of AJs with the intracellular actin fibers leading to the formation of subcortical band heterotopia. Interestingly, this phenotype closely resembled the phenotype obtained by conditional RhoA deletion, both in regard to the macroscopic subcortical band heterotopia and the subcellular increase in G-actin/F-actin ratio. These data therefore together corroborate the role of the actin cytoskeleton and its anchoring to the AJs for neuronal migration disorders.
Collapse
Affiliation(s)
- Marie-Theres Schmid
- Helmholtz Zentrum München, National Research Center for Environmental Health, Institute of Stem Cell Research Neuherberg/Munich, Germany
| | - Franziska Weinandy
- Helmholtz Zentrum München, National Research Center for Environmental Health, Institute of Stem Cell Research Neuherberg/Munich, Germany
| | | | - Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics Dresden, Germany
| | - Silvia Cappello
- Helmholtz Zentrum München, National Research Center for Environmental Health, Institute of Stem Cell Research Neuherberg/Munich, Germany ; Department of Physiological Genomics, Institute of Physiology, University of Munich Munich, Germany
| | - Magdalena Götz
- Helmholtz Zentrum München, National Research Center for Environmental Health, Institute of Stem Cell Research Neuherberg/Munich, Germany ; Department of Physiological Genomics, Institute of Physiology, University of Munich Munich, Germany
| |
Collapse
|
18
|
Salvany L, Muller J, Guccione E, Rørth P. The core and conserved role of MAL is homeostatic regulation of actin levels. Genes Dev 2014; 28:1048-53. [PMID: 24831700 PMCID: PMC4035534 DOI: 10.1101/gad.237743.114] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The transcription cofactor MAL is regulated by actin dynamics and, together with its DNA-binding partner, SRF, is required for invasive cell migration. Salvany et al. show in Drosophila and human cellular models that actin is the key target that must be regulated by MAL/SRF for invasive cell migration. By regulating MAL/SRF, actin feeds back on the production of actin mRNA to ensure sufficient actin supply. Actin and MAL thus form a homeostatic feedback system that provides the foundation for actin dynamics required for complex cell behavior. The transcription cofactor MAL is regulated by free actin levels and thus by actin dynamics. MAL, together with its DNA-binding partner, SRF, is required for invasive cell migration and in experimental metastasis. Although MAL/SRF has many targets, we provide genetic evidence in both Drosophila and human cellular models that actin is the key target that must be regulated by MAL/SRF for invasive cell migration. By regulating MAL/SRF activity, actin protein feeds back on production of actin mRNA to ensure sufficient supply of actin. This constitutes a dedicated homeostatic feedback system that provides a foundation for cellular actin dynamics.
Collapse
Affiliation(s)
- Lara Salvany
- Institute of Molecular and Cell Biology, Singapore 138673, Singapore
| | - Julius Muller
- Institute of Molecular and Cell Biology, Singapore 138673, Singapore
| | - Ernesto Guccione
- Institute of Molecular and Cell Biology, Singapore 138673, Singapore
| | - Pernille Rørth
- Institute of Molecular and Cell Biology, Singapore 138673, Singapore
| |
Collapse
|
19
|
Lim WL, Soga T, Parhar IS. Maternal Dexamethasone Exposure Inhibits the Gonadotropin-Releasing Hormone Neuronal Movement in the Preoptic Area of Rat Offspring. Dev Neurosci 2014; 36:95-107. [DOI: 10.1159/000360416] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 02/06/2014] [Indexed: 11/19/2022] Open
|
20
|
Cooper JA. Cell biology in neuroscience: mechanisms of cell migration in the nervous system. ACTA ACUST UNITED AC 2013; 202:725-34. [PMID: 23999166 PMCID: PMC3760606 DOI: 10.1083/jcb.201305021] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Many neurons resemble other cells in developing embryos in migrating long distances before they differentiate. However, despite shared basic machinery, neurons differ from other migrating cells. Most dramatically, migrating neurons have a long and dynamic leading process, and may extend an axon from the rear while they migrate. Neurons must coordinate the extension and branching of their leading processes, cell movement with axon specification and extension, switching between actin and microtubule motors, and attachment and recycling of diverse adhesion proteins. New research is needed to fully understand how migration of such morphologically complicated cells is coordinated over space and time.
Collapse
|
21
|
Abstract
Rho-GTPases have been found to be crucial for cytoskeleton remodelling and cell polarity, as well as key players in directed cell migration in various tissues and organs, therefore becoming good candidates for involvement in neuronal migration disorders. We recently found that genetic deletion of the small GTPase RhoA in the developing mouse cerebral cortex results in three distinct cortical malformations: a defect in the proliferation of progenitor cells during development that leads to a bigger cerebral cortex in the adult mouse, a change in the morphology of radial glial cells that results in the formation of a subcortical band heterotopia (SBH, also called Double Cortex) and an increase in the speed of migrating newborn neurons. The latter, together with the aberrant radial glial shape, is likely to be the cause of cobblestone lissencephaly, where neurons protrude beyond layer I at the pial surface of the brain.
Collapse
Affiliation(s)
- Silvia Cappello
- Helmholtz Center Munich, German Research Center for Environmental Health; Institute for Stem Cell Research, Neuherberg, Germany.
| |
Collapse
|
22
|
Dimidschstein J, Passante L, Dufour A, van den Ameele J, Tiberi L, Hrechdakian T, Adams R, Klein R, Lie D, Jossin Y, Vanderhaeghen P. Ephrin-B1 Controls the Columnar Distribution of Cortical Pyramidal Neurons by Restricting Their Tangential Migration. Neuron 2013; 79:1123-35. [DOI: 10.1016/j.neuron.2013.07.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2013] [Indexed: 10/26/2022]
|
23
|
Low level prenatal exposure to methylmercury disrupts neuronal migration in the developing rat cerebral cortex. Toxicology 2012; 304:57-68. [PMID: 23220560 DOI: 10.1016/j.tox.2012.11.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 11/11/2012] [Accepted: 11/15/2012] [Indexed: 11/22/2022]
Abstract
We determined the effects of low-level prenatal MeHg exposure on neuronal migration in the developing rat cerebral cortex using in utero electroporation. We used offspring rats born to dams that had been exposed to saline or various doses of MeHg (0.01 mg/kg/day, 0.1 mg/kg/day, and 1 mg/kg/day) from gestational day (GD) 11-21. Immunohistochemical examination of the brains of the offspring was conducted on postnatal day (PND) 0, PND3, and PND7. Our results showed that prenatal exposure to low levels of MeHg (0.1 mg/kg/day or 1 mg/kg/day) during the critical stage in neuronal migration resulted in migration defects of the cerebrocortical neurons in offspring rats. Importantly, our data revealed that the abnormal neuronal distribution induced by MeHg was not caused by altered proliferation of neural progenitor cells (NPCs), induction of apoptosis of NPCs and/or newborn neurons, abnormal differentiation of NPCs, and the morphological changes of radial glial scaffold, indicating that the defective neuronal positioning triggered by exposure to low-dose of MeHg is due to the impacts of MeHg on the process of neuronal migration itself. Moreover, we demonstrated that in utero exposure to low-level MeHg suppresses the expression of Rac1, Cdc42, and RhoA, which play key roles in the migration of cerebrocortical neurons during the early stage of brain development, suggesting that the MeHg-induced migratory disturbance of cerebrocortical neurons is likely associated with the Rho GTPases signal pathway. In conclusion, our results provide a novel perspective on clarifying the mechanisms underlying the impairment of neuronal migration induced by MeHg.
Collapse
|
24
|
Baudoin JP, Viou L, Launay PS, Luccardini C, Espeso Gil S, Kiyasova V, Irinopoulou T, Alvarez C, Rio JP, Boudier T, Lechaire JP, Kessaris N, Spassky N, Métin C. Tangentially Migrating Neurons Assemble a Primary Cilium that Promotes Their Reorientation to the Cortical Plate. Neuron 2012; 76:1108-22. [DOI: 10.1016/j.neuron.2012.10.027] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2012] [Indexed: 10/27/2022]
|
25
|
A phosphatidylinositol lipids system, lamellipodin, and Ena/VASP regulate dynamic morphology of multipolar migrating cells in the developing cerebral cortex. J Neurosci 2012; 32:11643-56. [PMID: 22915108 DOI: 10.1523/jneurosci.0738-12.2012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the developing mammalian cerebral cortex, excitatory neurons are generated in the ventricular zone (VZ) and subventricular zone; these neurons migrate toward the pial surface. The neurons generated in the VZ assume a multipolar morphology and remain in a narrow region called the multipolar cell accumulation zone (MAZ) for ∼24 h, in which they extend and retract multiple processes dynamically. They eventually extend an axon tangentially and begin radial migration using a migratory mode called locomotion. Despite the potential biological importance of the process movement of multipolar cells, the molecular mechanisms remain to be elucidated. Here, we observed that the processes of mouse multipolar cells were actin rich and morphologically resembled the filopodia and lamellipodia in growth cones; thus, we focused on the actin-remodeling proteins Lamellipodin (Lpd) and Ena/vasodilator-stimulated phosphoprotein (VASP). Lpd binds to phosphatidylinositol (3,4)-bisphosphate [PI(3,4)P₂] and recruits Ena/VASP, which promotes the assembly of actin filaments, to the plasma membranes. In situ hybridization and immunohistochemistry revealed that Lpd is expressed in multipolar cells in the MAZ. The functional silencing of either Lpd or Ena/VASP decreased the number of primary processes. Immunostaining and a Förster resonance energy transfer analysis revealed the subcellular localization of PI(3,4)P₂ at the tips of the processes. A knockdown experiment and treatment with an inhibitor for Src homology 2-containing inositol phosphatase-2, a 5-phosphatase that produces PI(3,4)P₂ from phosphatidylinositol (3,4,5)-triphosphate, decreased the number of primary processes. Our observations suggest that PI(3,4)P₂, Lpd, and Ena/VASP are involved in the process movement of multipolar migrating cells.
Collapse
|
26
|
Semaphorin 4D/Plexin-B1-mediated M-Ras GAP activity regulates actin-based dendrite remodeling through Lamellipodin. J Neurosci 2012; 32:8293-305. [PMID: 22699910 DOI: 10.1523/jneurosci.0799-12.2012] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Semaphorins have been identified as repulsive guidance molecules in the developing nervous system. We recently reported that the semaphorin 4D (Sema4D) receptor Plexin-B1 induces repulsion in axon and dendrites by functioning as a GTPase-activating protein (GAP) for R-Ras and M-Ras, respectively. In axons, Sema4D stimulation induces growth cone collapse, and downregulation of R-Ras activity by Plexin-B1-mediated GAP activity is required for the action. Axonal R-Ras GAP activity downregulates phosphatidylinositol 3-kinase signaling pathway, and thereby induces inactivation of a microtubule assembly promoter protein, CRMP-2. However, in contrast to the well studied roles of semaphorins and plexins in axonal guidance, signaling molecules linking M-Ras GAP to dendritic cytoskeleton remain obscure. Here we identified an Ena/VASP ligand, Lamellipodin (Lpd), as a novel effector of M-Ras in dendrites. Lpd was expressed in F-actin-rich distal dendritic processes and was required for both basal and M-Ras-mediated dendrite development. Subcellular fractionation showed M-Ras-dependent membrane translocation of Lpd, which was suppressed by Sema4D. Furthermore, the Ena/VASP-binding region within Lpd was required for dendrite development, and its membrane targeting was sufficient to overcome the Sema4D-mediated reduction of dendritic outgrowth and disappearance of F-actin from distal dendrites. Furthermore, in utero electroporation experiments also indicated that regulation of the M-Ras-Lpd system by the GAP activity of Plexin is involved in the normal development of cortical dendrites in vivo. Overall, our study sheds light on how repulsive guidance molecules regulate actin cytoskeleton in dendrites, revealing a novel mechanism that the M-Ras-Lpd system regulates actin-based dendrite remodeling by Sema/Plexin in rats or mice of either sex.
Collapse
|
27
|
Tan X, Shi SH. Neocortical neurogenesis and neuronal migration. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 2:443-59. [PMID: 24014417 DOI: 10.1002/wdev.88] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The neocortex, the evolutionarily newest part of the cerebral cortex, controls nearly all aspects of behavior, including perception, language, and decision making. It contains an immense number of neurons that can be broadly divided into two groups, excitatory neurons and inhibitory interneurons. These neurons are predominantly produced through extensive progenitor cell divisions during the embryonic stages. Moreover, they are not randomly dispersed, but spatially organized into horizontal layers that are essential for neocortex function. The formation of this laminar structure requires exquisite control of neuronal migration from their birthplace to their final destination. Extensive research over the past decade has greatly advanced our understanding of the production and migration of both excitatory neurons and inhibitory interneurons in the developing neocortex. In this review, we aim to give an overview on the molecular and cellular processes of neocortical neurogenesis and neuronal migration.
Collapse
Affiliation(s)
- Xin Tan
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA; BCMB Graduate Program, Weill Cornell Medical College, New York, NY, USA
| | | |
Collapse
|
28
|
Yang T, Sun Y, Zhang F, Zhu Y, Shi L, Li H, Xu Z. POSH localizes activated Rac1 to control the formation of cytoplasmic dilation of the leading process and neuronal migration. Cell Rep 2012; 2:640-51. [PMID: 22959435 DOI: 10.1016/j.celrep.2012.08.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 07/02/2012] [Accepted: 08/13/2012] [Indexed: 11/15/2022] Open
Abstract
The formation of proximal cytoplasmic dilation in the leading process (PCDLP) of migratory neocortical neurons is crucial for somal translocation and neuronal migration, processes that require the elaborate coordination of F-actin dynamics, centrosomal movement, and nucleokinesis. However, the underlying molecular mechanisms remain poorly understood. Here, we show that the Rac1-interacting scaffold protein POSH is essential for neuronal migration in vivo. We demonstrate that POSH is concentrated in the PCDLP and that knockdown of POSH impairs PCDLP formation, centrosome translocation, and nucleokinesis. Furthermore, POSH colocalizes with F-actin and the activated form of Rac1. Knockdown of POSH impairs F-actin assembly and delocalizes activated Rac1. Interference of Rac1 activity also disrupts F-actin assembly and PCDLP formation and perturbs neuronal migration. Thus, we have uncovered a mechanism by which POSH regulates the localization of activated Rac1 and F-actin assembly to control PCDLP formation and subsequent somal translocation of migratory neurons.
Collapse
Affiliation(s)
- Tao Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
29
|
Coló GP, Lafuente EM, Teixidó J. The MRL proteins: adapting cell adhesion, migration and growth. Eur J Cell Biol 2012; 91:861-8. [PMID: 22555291 DOI: 10.1016/j.ejcb.2012.03.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 03/08/2012] [Accepted: 03/12/2012] [Indexed: 11/19/2022] Open
Abstract
MIG-10, RIAM and Lamellipodin (Lpd) are the founding members of the MRL family of multi-adaptor molecules. These proteins have common domain structures but display distinct functions in cell migration and adhesion, signaling, and in cell growth. The binding of RIAM with active Rap1 and with talin provides these MRL molecules with important regulatory roles on integrin-mediated cell adhesion and migration. Furthermore, RIAM and Lpd can regulate actin dynamics through their binding to actin regulatory Ena/VASP proteins. Recent data generated with the Drosophila MRL ortholog called Pico and with RIAM in melanoma cells indicate that these proteins can also regulate cell growth. As MRL proteins represent a relatively new family, many questions on their structure-function relationships remain unanswered, including regulation of their expression, post-translational modifications, new interactions, involvement in signaling and their knockout mice phenotype.
Collapse
Affiliation(s)
- Georgina P Coló
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas, Madrid, Spain
| | | | | |
Collapse
|
30
|
Pajer K, Andrus BM, Gardner W, Lourie A, Strange B, Campo J, Bridge J, Blizinsky K, Dennis K, Vedell P, Churchill GA, Redei EE. Discovery of blood transcriptomic markers for depression in animal models and pilot validation in subjects with early-onset major depression. Transl Psychiatry 2012; 2:e101. [PMID: 22832901 PMCID: PMC3337072 DOI: 10.1038/tp.2012.26] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Early-onset major depressive disorder (MDD) is a serious and prevalent psychiatric illness in adolescents and young adults. Current treatments are not optimally effective. Biological markers of early-onset MDD could increase diagnostic specificity, but no such biomarker exists. Our innovative approach to biomarker discovery for early-onset MDD combined results from genome-wide transcriptomic profiles in the blood of two animal models of depression, representing the genetic and the environmental, stress-related, etiology of MDD. We carried out unbiased analyses of this combined set of 26 candidate blood transcriptomic markers in a sample of 15-19-year-old subjects with MDD (N=14) and subjects with no disorder (ND, N=14). A panel of 11 blood markers differentiated participants with early-onset MDD from the ND group. Additionally, a separate but partially overlapping panel of 18 transcripts distinguished subjects with MDD with or without comorbid anxiety. Four transcripts, discovered from the chronic stress animal model, correlated with maltreatment scores in youths. These pilot data suggest that our approach can lead to clinically valid diagnostic panels of blood transcripts for early-onset MDD, which could reduce diagnostic heterogeneity in this population and has the potential to advance individualized treatment strategies.
Collapse
Affiliation(s)
- K Pajer
- Department of Psychiatry, Dalhousie University Faculty of Medicine
| | - B M Andrus
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - W Gardner
- Department of Psychiatry, Dalhousie University Faculty of Medicine,Department of Pediatrics, Ohio State University College of Medicine, Columbus, OH, USA
| | - A Lourie
- Department of Pediatrics, Ohio State University College of Medicine, Columbus, OH, USA
| | - B Strange
- Department of Pediatrics, Ohio State University College of Medicine, Columbus, OH, USA
| | - J Campo
- Department of Pediatrics, Ohio State University College of Medicine, Columbus, OH, USA
| | - J Bridge
- Department of Pediatrics, Ohio State University College of Medicine, Columbus, OH, USA
| | - K Blizinsky
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - K Dennis
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - P Vedell
- The Jackson Laboratory, Bar Harbor, ME, USA
| | | | - E E Redei
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA,Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA. E-mail:
| |
Collapse
|
31
|
|