1
|
Hao Z, Zhang M, Du Y, Liu J, Zeng G, Li H, Peng X. Invadopodia in cancer metastasis: dynamics, regulation, and targeted therapies. J Transl Med 2025; 23:548. [PMID: 40380267 PMCID: PMC12083038 DOI: 10.1186/s12967-025-06526-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Accepted: 04/21/2025] [Indexed: 05/19/2025] Open
Abstract
Pseudopodia and invadopodia are dynamic, actin-rich membrane structures extending from the cell surface. While pseudopodia are found in various cell types, invadopodia are exclusive to tumor cells and play a key role in cancer progression. These specialized structures enable tumor cells to degrade the extracellular matrix, breach tissue barriers, and invade surrounding tissues and blood vessels, thus facilitating metastasis. Extensive research has elucidated the distinct structure of invadopodia, the signaling pathways driving their formation, and their interaction with the tumor microenvironment. Integrin- and Src kinase-mediated signaling pathways regulate invadopodia dynamics. This review explores the mechanisms underlying invadopodia stabilization and highlights recent insights into their regulation by the tumor microenvironment. Particular emphasis is placed on the role of cell surface signaling in modulating invadopodia activity and the intracellular targeting of matrix metalloproteinases (MMPs) in enhancing invasive potential. A deeper understanding of invadopodia-driven cancer cell migration and metastasis provides valuable implications for therapeutic development. These findings support the potential for receptor-mediated and molecularly targeted therapies to inhibit tumor metastasis, improve clinical outcomes, and enhance the efficacy of existing cancer treatments.
Collapse
Affiliation(s)
- Zhixiong Hao
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Manru Zhang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Yao Du
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Jiaxing Liu
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Guolong Zeng
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Hangyu Li
- The First Affiliated Hospital, Jinzhou Medical University, Jinzhou, 121001, China.
| | - Xueqiang Peng
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China.
- Group of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
2
|
Tanaka M, Nakamura T. Role of the RAB27/SYTL Axis in Tumor Microenvironment Construction. Cancer Sci 2025. [PMID: 40319893 DOI: 10.1111/cas.70096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/12/2025] [Accepted: 04/28/2025] [Indexed: 05/07/2025] Open
Abstract
Crosstalk between cancer cells and the tumor microenvironment (TME) is a key event in malignant progression and metastasis. The secretion of bioactive substances by cancer cells remodels the TME, affecting the activities of its components, including blood vessels, mesenchymal cells, and immune cells. These substances are effectively delivered through intracellular trafficking and exocytosis of cytoplasmic vesicles. The small guanosine triphosphatase (GTPase) RAB27 and its effectors, synaptotagmin-like (SYTL) family proteins, play essential roles in vesicle trafficking. Our recent research demonstrates the upregulation of RAB27A/B and SYTL1/2 in alveolar soft part sarcoma and acute myeloid leukemia. This enhanced trafficking promotes angiogenesis and the occupation of leukemia cells in the bone marrow niche. This review focuses on the role of the RAB27/SYTL axis in various cancer types associated with TME modifications, with a discussion on its importance as a therapeutic target.
Collapse
Affiliation(s)
- Miwa Tanaka
- Division of Cancer Epigenomics, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
- Department of Experimental Pathology, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Takuro Nakamura
- Department of Experimental Pathology, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
3
|
Medlyn MJ, Maeder E, Bradley C, Phatarpekar P, Ham H, Billadeau DD. MADD regulates natural killer cell degranulation through Rab27a activation. J Cell Sci 2024; 137:jcs261582. [PMID: 38506245 PMCID: PMC11058345 DOI: 10.1242/jcs.261582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 03/07/2024] [Indexed: 03/21/2024] Open
Abstract
Natural killer (NK) cells have the ability to lyse other cells through the release of lytic granules (LGs). This is in part mediated by the small GTPase Rab27a, which was first identified to play a crucial role in degranulation through the study of individuals harboring mutations in the gene encoding Rab27a. However, the guanine nucleotide exchange factor (GEF) regulating the activation of Rab27a in cytotoxic lymphocytes was unknown. Here, we show that knockout of MADD significantly decreased the levels of GTP-bound Rab27a in both resting and stimulated NK cells, and MADD-deficient NK cells and CD8+ T cells displayed severely reduced degranulation and cytolytic ability, similar to that seen with Rab27a deficiency. Although MADD colocalized with Rab27a on LGs and was enriched at the cytolytic synapse, the loss of MADD did not impact Rab27a association with LGs nor their recruitment to the cytolytic synapse. Together, our results demonstrate an important role for MADD in cytotoxic lymphocyte killing.
Collapse
Affiliation(s)
- Michael J. Medlyn
- Department of Immunology College of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Easton Maeder
- Division of Oncology Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Claire Bradley
- Department of Immunology College of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Hyoungjun Ham
- Division of Oncology Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Daniel D. Billadeau
- Department of Immunology College of Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Division of Oncology Research, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
4
|
Li X, Liu B, Wen Y, Wang J, Guo YR, Shi A, Lin L. Coordination of RAB-8 and RAB-11 during unconventional protein secretion. J Cell Biol 2024; 223:e202306107. [PMID: 38019180 PMCID: PMC10686230 DOI: 10.1083/jcb.202306107] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/17/2023] [Accepted: 11/16/2023] [Indexed: 11/30/2023] Open
Abstract
Multiple physiology-pertinent transmembrane proteins reach the cell surface via the Golgi-bypassing unconventional protein secretion (UcPS) pathway. By employing C. elegans-polarized intestine epithelia, we recently have revealed that the small GTPase RAB-8/Rab8 serves as an important player in the process. Nonetheless, its function and the relevant UcPS itinerary remain poorly understood. Here, we show that deregulated RAB-8 activity resulted in impaired apical UcPS, which increased sensitivity to infection and environmental stress. We also identified the SNARE VTI-1/Vti1a/b as a new RAB-8-interacting factor involved in the apical UcPS. Besides, RAB-11/Rab11 was capable of recruiting RABI-8/Rabin8 to reduce the guanine nucleotide exchange activity of SMGL-1/GEF toward RAB-8, indicating the necessity of a finely tuned RAB-8/RAB-11 network. Populations of RAB-8- and RAB-11-positive endosomal structures containing the apical UcPS cargo moved toward the apical side. In the absence of RAB-11 or its effectors, the cargo was retained in RAB-8- and RAB-11-positive endosomes, respectively, suggesting that these endosomes are utilized as intermediate carriers for the UcPS.
Collapse
Affiliation(s)
- Xinxin Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bowen Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Wen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiabin Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yusong R. Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Anbing Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Long Lin
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Chon NL, Tran S, Miller CS, Lin H, Knight JD. A conserved electrostatic membrane-binding surface in synaptotagmin-like proteins revealed using molecular phylogenetic analysis and homology modeling. Protein Sci 2024; 33:e4850. [PMID: 38038838 PMCID: PMC10731544 DOI: 10.1002/pro.4850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/29/2023] [Accepted: 11/28/2023] [Indexed: 12/02/2023]
Abstract
Protein structure prediction has emerged as a core technology for understanding biomolecules and their interactions. Here, we combine homology-based structure prediction with molecular phylogenetic analysis to study the evolution of electrostatic membrane binding among the vertebrate synaptotagmin-like protein (Slp) family. Slp family proteins play key roles in the membrane trafficking of large dense-core secretory vesicles. Our previous experimental and computational study found that the C2A domain of Slp-4 (also called granuphilin) binds with high affinity to anionic phospholipids in the cytoplasmic leaflet of the plasma membrane through a large positively charged protein surface centered on a cluster of phosphoinositide-binding lysine residues. Because this surface contributes greatly to Slp-4 C2A domain membrane binding, we hypothesized that the net charge on the surface might be evolutionarily conserved. To test this hypothesis, the known C2A sequences of Slp-4 among vertebrates were organized by class (from mammalia to pisces) using molecular phylogenetic analysis. Consensus sequences for each class were then identified and used to generate homology structures, from which Poisson-Boltzmann electrostatic potentials were calculated. For comparison, homology structures and electrostatic potentials were also calculated for the five human Slp protein family members. The results demonstrate that the charge on the membrane-binding surface is highly conserved throughout the evolution of Slp-4, and more highly conserved than many individual residues among the human Slp family paralogs. Such molecular phylogenetic-driven computational analysis can help to describe the evolution of electrostatic interactions between proteins and membranes which are crucial for their function.
Collapse
Affiliation(s)
- Nara L. Chon
- Department of ChemistryUniversity of Colorado DenverDenverColoradoUSA
| | - Sherleen Tran
- Department of ChemistryUniversity of Colorado DenverDenverColoradoUSA
| | | | - Hai Lin
- Department of ChemistryUniversity of Colorado DenverDenverColoradoUSA
| | | |
Collapse
|
6
|
Chon NL, Tran S, Miller CS, Lin H, Knight JD. A Conserved Electrostatic Membrane-Binding Surface in Synaptotagmin-Like Proteins Revealed Using Molecular Phylogenetic Analysis and Homology Modeling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.13.548768. [PMID: 37502952 PMCID: PMC10369986 DOI: 10.1101/2023.07.13.548768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Protein structure prediction has emerged as a core technology for understanding biomolecules and their interactions. Here, we combine homology-based structure prediction with molecular phylogenetic analysis to study the evolution of electrostatic membrane binding among vertebrate synaptotagmin-like proteins (Slps). Slp family proteins play key roles in the membrane trafficking of large dense-core secretory vesicles. Our previous experimental and computational study found that the C2A domain of Slp-4 (also called granuphilin) binds with high affinity to anionic phospholipids in the cytoplasmic leaflet of the plasma membrane through a large positively charged protein surface centered on a cluster of phosphoinositide-binding lysine residues. Because this surface contributes greatly to Slp-4 C2A domain membrane binding, we hypothesized that the net charge on the surface might be evolutionarily conserved. To test this hypothesis, the known C2A sequences of Slp-4 among vertebrates were organized by class (from mammalia to pisces) using molecular phylogenetic analysis. Consensus sequences for each class were then identified and used to generate homology structures, from which Poisson-Boltzmann electrostatic potentials were calculated. For comparison, homology structures and electrostatic potentials were also calculated for the five human Slp protein family members. The results demonstrate that the charge on the membrane-binding surface is highly conserved throughout the evolution of Slp-4, and more highly conserved than many individual residues among the human Slp family paralogs. Such molecular phylogenetic-driven computational analysis can help to describe the evolution of electrostatic interactions between proteins and membranes which are crucial for their function.
Collapse
Affiliation(s)
- Nara L. Chon
- Department of Chemistry, University of Colorado Denver
| | - Sherleen Tran
- Department of Chemistry, University of Colorado Denver
| | | | - Hai Lin
- Department of Chemistry, University of Colorado Denver
| | | |
Collapse
|
7
|
Zhang N, Zhang H, Khan LA, Jafari G, Eun Y, Membreno E, Gobel V. The biosynthetic-secretory pathway, supplemented by recycling routes, determines epithelial membrane polarity. SCIENCE ADVANCES 2023; 9:eade4620. [PMID: 37379377 PMCID: PMC10306302 DOI: 10.1126/sciadv.ade4620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 05/24/2023] [Indexed: 06/30/2023]
Abstract
In prevailing epithelial polarity models, membrane-based polarity cues (e.g., the partitioning-defective PARs) position apicobasal cellular membrane domains. Intracellular vesicular trafficking expands these domains by sorting polarized cargo toward them. How the polarity cues themselves are polarized in epithelia and how sorting confers long-range apicobasal directionality to vesicles is still unclear. Here, a systems-based approach using two-tiered C. elegans genomics-genetics screens identifies trafficking molecules that are not implicated in apical sorting yet polarize apical membrane and PAR complex components. Live tracking of polarized membrane biogenesis indicates that the biosynthetic-secretory pathway, linked to recycling routes, is asymmetrically oriented toward the apical domain during this domain's biosynthesis, and that this directionality is regulated upstream of PARs and independent of polarized target membrane domains. This alternative mode of membrane polarization could offer solutions to open questions in current models of epithelial polarity and polarized trafficking.
Collapse
Affiliation(s)
- Nan Zhang
- Mucosal Immunology and Biology Research Center, Developmental Biology and Genetics Core, Massachusetts General Hospital for Children, Harvard Medical School, Boston, MA, USA
- Key Laboratory of Zoonosis Research by the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Hongjie Zhang
- Mucosal Immunology and Biology Research Center, Developmental Biology and Genetics Core, Massachusetts General Hospital for Children, Harvard Medical School, Boston, MA, USA
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Liakot A. Khan
- Mucosal Immunology and Biology Research Center, Developmental Biology and Genetics Core, Massachusetts General Hospital for Children, Harvard Medical School, Boston, MA, USA
| | - Gholamali Jafari
- Mucosal Immunology and Biology Research Center, Developmental Biology and Genetics Core, Massachusetts General Hospital for Children, Harvard Medical School, Boston, MA, USA
| | - Yong Eun
- Mucosal Immunology and Biology Research Center, Developmental Biology and Genetics Core, Massachusetts General Hospital for Children, Harvard Medical School, Boston, MA, USA
- Department of Medicine, NYC Health & Hospitals/Harlem, Columbia University, New York, NY, USA
| | - Edward Membreno
- Mucosal Immunology and Biology Research Center, Developmental Biology and Genetics Core, Massachusetts General Hospital for Children, Harvard Medical School, Boston, MA, USA
| | - Verena Gobel
- Mucosal Immunology and Biology Research Center, Developmental Biology and Genetics Core, Massachusetts General Hospital for Children, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
8
|
Yeh AR, Hoeprich GJ, Goode BL, Martin AC. Bitesize bundles F-actin and influences actin remodeling in syncytial Drosophila embryo development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.17.537198. [PMID: 37131807 PMCID: PMC10153138 DOI: 10.1101/2023.04.17.537198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Actin networks undergo rearrangements that influence cell and tissue shape. Actin network assembly and organization is regulated in space and time by a host of actin binding proteins. The Drosophila Synaptotagmin-like protein, Bitesize (Btsz), is known to organize actin at epithelial cell apical junctions in a manner that depends on its interaction with the actin-binding protein, Moesin. Here, we showed that Btsz functions in actin reorganization at earlier, syncytial stages of Drosophila embryo development. Btsz was required for the formation of stable metaphase pseudocleavage furrows that prevented spindle collisions and nuclear fallout prior to cellularization. While previous studies focused on Btsz isoforms containing the Moesin Binding Domain (MBD), we found that isoforms lacking the MBD also function in actin remodeling. Consistent with this, we found that the C-terminal half of BtszB cooperatively binds to and bundles F-actin, suggesting a direct mechanism for Synaptotagmin-like proteins regulating actin organization during animal development.
Collapse
|
9
|
Diaz-Rohrer B, Castello-Serrano I, Chan SH, Wang HY, Shurer CR, Levental KR, Levental I. Rab3 mediates a pathway for endocytic sorting and plasma membrane recycling of ordered microdomains. Proc Natl Acad Sci U S A 2023; 120:e2207461120. [PMID: 36848577 PMCID: PMC10013782 DOI: 10.1073/pnas.2207461120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 01/31/2023] [Indexed: 03/01/2023] Open
Abstract
The composition of the plasma membrane (PM) must be tightly controlled despite constant, rapid endocytosis, which requires active, selective recycling of endocytosed membrane components. For many proteins, the mechanisms, pathways, and determinants of this PM recycling remain unknown. We report that association with ordered, lipid-driven membrane microdomains (known as rafts) is sufficient for PM localization of a subset of transmembrane proteins and that abrogation of raft association disrupts their trafficking and leads to degradation in lysosomes. Using orthogonal, genetically encoded probes with tunable raft partitioning, we screened for the trafficking machinery required for efficient recycling of engineered microdomain-associated cargo from endosomes to the PM. Using this screen, we identified the Rab3 family as an important mediator of PM localization of microdomain-associated proteins. Disruption of Rab3 reduced PM localization of raft probes and led to their accumulation in Rab7-positive endosomes, suggesting inefficient recycling. Abrogation of Rab3 function also mislocalized the endogenous raft-associated protein Linker for Activation of T cells (LAT), leading to its intracellular accumulation and reduced T cell activation. These findings reveal a key role for lipid-driven microdomains in endocytic traffic and suggest Rab3 as a mediator of microdomain recycling and PM composition.
Collapse
Affiliation(s)
- Barbara Diaz-Rohrer
- Department of Molecular Physiology and Biological Physics, Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA22904
| | - Ivan Castello-Serrano
- Department of Molecular Physiology and Biological Physics, Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA22904
| | - Sze Ham Chan
- Department of Molecular Physiology and Biological Physics, Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA22904
| | - Hong-Yin Wang
- Department of Molecular Physiology and Biological Physics, Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA22904
| | - Carolyn R. Shurer
- Department of Molecular Physiology and Biological Physics, Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA22904
| | - Kandice R. Levental
- Department of Molecular Physiology and Biological Physics, Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA22904
| | - Ilya Levental
- Department of Molecular Physiology and Biological Physics, Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA22904
| |
Collapse
|
10
|
Levic DS, Bagnat M. Polarized transport of membrane and secreted proteins during lumen morphogenesis. Semin Cell Dev Biol 2023; 133:65-73. [PMID: 35307284 PMCID: PMC9481742 DOI: 10.1016/j.semcdb.2022.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/09/2022] [Accepted: 03/12/2022] [Indexed: 10/18/2022]
Abstract
A ubiquitous feature of animal development is the formation of fluid-filled cavities or lumina, which transport gases and fluids across tissues and organs. Among different species, lumina vary drastically in size, scale, and complexity. However, all lumen formation processes share key morphogenetic principles that underly their development. Fundamentally, a lumen simply consists of epithelial cells that encapsulate a continuous internal space, and a common way of building a lumen is via opening and enlarging by filling it with fluid and/or macromolecules. Here, we discuss how polarized targeting of membrane and secreted proteins regulates lumen formation, mainly focusing on ion transporters in vertebrate model systems. We also discuss mechanistic differences observed among invertebrates and vertebrates and describe how the unique properties of the Na+/K+-ATPase and junctional proteins can promote polarization of immature epithelia to build lumina de novo in developing organs.
Collapse
Affiliation(s)
- Daniel S Levic
- Department of Cell Biology, Duke University, Durham, NC 27710, USA.
| | - Michel Bagnat
- Department of Cell Biology, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
11
|
Chen X, Li J, Zhang R, Zhang Y, Wang X, Leung EL, Ma L, Wong VKW, Liu L, Neher E, Yu H. Suppression of PD-L1 release from small extracellular vesicles promotes systemic anti-tumor immunity by targeting ORAI1 calcium channels. J Extracell Vesicles 2022; 11:e12279. [PMID: 36482876 PMCID: PMC9732629 DOI: 10.1002/jev2.12279] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/28/2022] [Accepted: 06/01/2022] [Indexed: 12/13/2022] Open
Abstract
Blockade of immune checkpoints as a strategy of cancer cells to overcome the immune response has received ample attention in cancer research recently. In particular, expression of PD-L1 by various cancer cells has become a paradigm in this respect. Delivery of PD-L1 to its site of action occurs either by local diffusion, or else by transport via small extracellular vesicles (sEVs, commonly referred to as exosomes). Many steps of sEVs formation, their packaging with PD-L1 and their release into the extracellular space have been studied in detail. The likely dependence of release on Ca2+ -signaling, however, has received little attention. This is surprising, since the intracellular Ca2+ -concentration is known as a prominent regulator of many secretory processes. Here, we report on the roles of three Ca2+ -dependent proteins in regulating release of PD-L1-containing sEVs, as well as on the growth of tumors in mouse models. We show that sEVs release in cancer cell lines is Ca2+ -dependent and the knockdown of the gene coding the Ca2+ -channel protein ORAI1 reduces Ca2+ -signals and release of sEVs. Consequently, the T cell response is reinvigorated and tumor progression in mouse models is retarded. Furthermore, analysis of protein expression patterns in samples from human cancer tissue shows that the ORAI1 gene is significantly upregulated. Such upregulation is identified as an unfavorable prognostic factor for survival of patients with non-small-cell lung cancer. We show that reduced Ca2+ -signaling after knockdown of ORAI1 gene also compromises the activity of melanophilin and Synaptotagmin-like protein 2, two proteins, which are important for correct localization of secretory organelles within cancer cells and their transport to sites of exocytosis. Thus, the Ca2+ -channel ORAI1 and Ca2+ -dependent proteins of the secretion pathway emerge as important targets for understanding and manipulating immune checkpoint blockade by PD-L1.
Collapse
Affiliation(s)
- Xi Chen
- Dr. Neher's Biophysics Laboratory for Innovative Drug DiscoveryState Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyTaipaMacauChina
| | - Jiaqi Li
- Dr. Neher's Biophysics Laboratory for Innovative Drug DiscoveryState Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyTaipaMacauChina
| | - Ren Zhang
- Dr. Neher's Biophysics Laboratory for Innovative Drug DiscoveryState Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyTaipaMacauChina
| | - Yao Zhang
- Dr. Neher's Biophysics Laboratory for Innovative Drug DiscoveryState Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyTaipaMacauChina
| | - Xiaoxuan Wang
- Dr. Neher's Biophysics Laboratory for Innovative Drug DiscoveryState Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyTaipaMacauChina
| | - Elaine Lai‐Han Leung
- Dr. Neher's Biophysics Laboratory for Innovative Drug DiscoveryState Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyTaipaMacauChina
| | - Lijuan Ma
- Dr. Neher's Biophysics Laboratory for Innovative Drug DiscoveryState Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyTaipaMacauChina
| | - Vincent Kam Wai Wong
- Dr. Neher's Biophysics Laboratory for Innovative Drug DiscoveryState Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyTaipaMacauChina
| | - Liang Liu
- Dr. Neher's Biophysics Laboratory for Innovative Drug DiscoveryState Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyTaipaMacauChina
| | - Erwin Neher
- Dr. Neher's Biophysics Laboratory for Innovative Drug DiscoveryState Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyTaipaMacauChina,Emeritus Laboratory of Membrane BiophysicsMax Planck Institute for Multidisciplinary SciencesGöttingenGermany
| | - Haijie Yu
- Dr. Neher's Biophysics Laboratory for Innovative Drug DiscoveryState Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyTaipaMacauChina
| |
Collapse
|
12
|
Alfonso-Pérez T, Baonza G, Herranz G, Martín-Belmonte F. Deciphering the interplay between autophagy and polarity in epithelial tubulogenesis. Semin Cell Dev Biol 2022; 131:160-172. [PMID: 35641407 DOI: 10.1016/j.semcdb.2022.05.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 12/14/2022]
Abstract
The Metazoan complexity arises from a primary building block, the epithelium, which comprises a layer of polarized cells that divide the organism into compartments. Most of these body compartments are organs formed by epithelial tubes that enclose an internal hollow space or lumen. Over the last decades, multiple studies have unmasked the paramount events required to form this lumen de novo. In epithelial cells, these events mainly involve recognizing external clues, establishing and maintaining apicobasal polarity, endo-lysosomal trafficking, and expanding the created lumen. Although canonical autophagy has been classically considered a catabolic process needed for cell survival, multiple studies have also emphasized its crucial role in epithelial polarity, morphogenesis and cellular homeostasis. Furthermore, non-canonical autophagy pathways have been recently discovered as atypical secretory routes. Both canonical and non-canonical pathways play essential roles in epithelial polarity and lumen formation. This review addresses how the molecular machinery for epithelial polarity and autophagy interplay in different processes and how autophagy functions influence lumenogenesis, emphasizing its role in the lumen formation key events.
Collapse
Affiliation(s)
- Tatiana Alfonso-Pérez
- Program of Tissue and Organ Homeostasis, Centro de Biología Molecular "Severo, Ochoa", CSIC-UAM, Madrid 28049, Spain; Ramon & Cajal Health Research Institute (IRYCIS), Hospital Universitario Ramón y Cajal, Madrid 28034, Spain
| | - Gabriel Baonza
- Program of Tissue and Organ Homeostasis, Centro de Biología Molecular "Severo, Ochoa", CSIC-UAM, Madrid 28049, Spain
| | - Gonzalo Herranz
- Program of Tissue and Organ Homeostasis, Centro de Biología Molecular "Severo, Ochoa", CSIC-UAM, Madrid 28049, Spain; Ramon & Cajal Health Research Institute (IRYCIS), Hospital Universitario Ramón y Cajal, Madrid 28034, Spain
| | - Fernando Martín-Belmonte
- Program of Tissue and Organ Homeostasis, Centro de Biología Molecular "Severo, Ochoa", CSIC-UAM, Madrid 28049, Spain; Ramon & Cajal Health Research Institute (IRYCIS), Hospital Universitario Ramón y Cajal, Madrid 28034, Spain.
| |
Collapse
|
13
|
Freckmann EC, Sandilands E, Cumming E, Neilson M, Román-Fernández A, Nikolatou K, Nacke M, Lannagan TRM, Hedley A, Strachan D, Salji M, Morton JP, McGarry L, Leung HY, Sansom OJ, Miller CJ, Bryant DM. Traject3d allows label-free identification of distinct co-occurring phenotypes within 3D culture by live imaging. Nat Commun 2022; 13:5317. [PMID: 36085324 PMCID: PMC9463449 DOI: 10.1038/s41467-022-32958-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 08/25/2022] [Indexed: 11/09/2022] Open
Abstract
Single cell profiling by genetic, proteomic and imaging methods has expanded the ability to identify programmes regulating distinct cell states. The 3-dimensional (3D) culture of cells or tissue fragments provides a system to study how such states contribute to multicellular morphogenesis. Whether cells plated into 3D cultures give rise to a singular phenotype or whether multiple biologically distinct phenotypes arise in parallel is largely unknown due to a lack of tools to detect such heterogeneity. Here we develop Traject3d (Trajectory identification in 3D), a method for identifying heterogeneous states in 3D culture and how these give rise to distinct phenotypes over time, from label-free multi-day time-lapse imaging. We use this to characterise the temporal landscape of morphological states of cancer cell lines, varying in metastatic potential and drug resistance, and use this information to identify drug combinations that inhibit such heterogeneity. Traject3d is therefore an important companion to other single-cell technologies by facilitating real-time identification via live imaging of how distinct states can lead to alternate phenotypes that occur in parallel in 3D culture.
Collapse
Affiliation(s)
- Eva C Freckmann
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1HQ, United Kingdom
- The CRUK Beatson Institute, Glasgow, G61 1BD, United Kingdom
| | - Emma Sandilands
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1HQ, United Kingdom
- The CRUK Beatson Institute, Glasgow, G61 1BD, United Kingdom
| | - Erin Cumming
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1HQ, United Kingdom
- The CRUK Beatson Institute, Glasgow, G61 1BD, United Kingdom
| | - Matthew Neilson
- The CRUK Beatson Institute, Glasgow, G61 1BD, United Kingdom
| | - Alvaro Román-Fernández
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1HQ, United Kingdom
- The CRUK Beatson Institute, Glasgow, G61 1BD, United Kingdom
| | - Konstantina Nikolatou
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1HQ, United Kingdom
- The CRUK Beatson Institute, Glasgow, G61 1BD, United Kingdom
| | - Marisa Nacke
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1HQ, United Kingdom
- The CRUK Beatson Institute, Glasgow, G61 1BD, United Kingdom
| | | | - Ann Hedley
- The CRUK Beatson Institute, Glasgow, G61 1BD, United Kingdom
| | - David Strachan
- The CRUK Beatson Institute, Glasgow, G61 1BD, United Kingdom
| | - Mark Salji
- The CRUK Beatson Institute, Glasgow, G61 1BD, United Kingdom
| | - Jennifer P Morton
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1HQ, United Kingdom
- The CRUK Beatson Institute, Glasgow, G61 1BD, United Kingdom
| | - Lynn McGarry
- The CRUK Beatson Institute, Glasgow, G61 1BD, United Kingdom
| | - Hing Y Leung
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1HQ, United Kingdom
- The CRUK Beatson Institute, Glasgow, G61 1BD, United Kingdom
| | - Owen J Sansom
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1HQ, United Kingdom
- The CRUK Beatson Institute, Glasgow, G61 1BD, United Kingdom
| | - Crispin J Miller
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1HQ, United Kingdom
- The CRUK Beatson Institute, Glasgow, G61 1BD, United Kingdom
| | - David M Bryant
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1HQ, United Kingdom.
- The CRUK Beatson Institute, Glasgow, G61 1BD, United Kingdom.
| |
Collapse
|
14
|
Ebnet K, Gerke V. Rho and Rab Family Small GTPases in the Regulation of Membrane Polarity in Epithelial Cells. Front Cell Dev Biol 2022; 10:948013. [PMID: 35859901 PMCID: PMC9289151 DOI: 10.3389/fcell.2022.948013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/14/2022] [Indexed: 11/27/2022] Open
Abstract
Membrane polarity, defined as the asymmetric distribution of lipids and proteins in the plasma membrane, is a critical prerequisite for the development of multicellular tissues, such as epithelia and endothelia. Membrane polarity is regulated by polarized trafficking of membrane components to specific membrane domains and requires the presence of intramembrane diffusion barriers that prevent the intermixing of asymmetrically distributed membrane components. This intramembrane diffusion barrier is localized at the tight junctions (TJs) in these cells. Both the formation of cell-cell junctions and the polarized traffic of membrane proteins and lipids are regulated by Rho and Rab family small GTPases. In this review article, we will summarize the recent developments in the regulation of apico-basal membrane polarity by polarized membrane traffic and the formation of the intramembrane diffusion barrier in epithelial cells with a particular focus on the role of Rho and Rab family small GTPases.
Collapse
Affiliation(s)
- Klaus Ebnet
- Institute-Associated Research Group: Cell Adhesion and Cell Polarity, Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
- Interdisciplinary Clinical Research Center (IZKF), University of Münster, Münster, Germany
- Cells-In-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Münster, Germany
- *Correspondence: Klaus Ebnet, ; Volker Gerke,
| | - Volker Gerke
- Institute-Associated Research Group: Cell Adhesion and Cell Polarity, Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
- Interdisciplinary Clinical Research Center (IZKF), University of Münster, Münster, Germany
- Cells-In-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Münster, Germany
- *Correspondence: Klaus Ebnet, ; Volker Gerke,
| |
Collapse
|
15
|
Tip-end fusion of a rod-shaped secretory organelle. Cell Mol Life Sci 2022; 79:344. [PMID: 35660980 PMCID: PMC9167223 DOI: 10.1007/s00018-022-04367-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 05/05/2022] [Accepted: 05/11/2022] [Indexed: 11/03/2022]
Abstract
AbstractWeibel–Palade bodies (WPB) are elongated, rod-like secretory organelles unique to endothelial cells that store the pro-coagulant von-Willebrand factor (VWF) and undergo regulated exocytosis upon stimulation with Ca2+- or cAMP-raising agonists. We show here that WPB preferentially initiate fusion with the plasma membrane at their tips and identify synaptotagmin-like protein 2-a (Slp2-a) as a positive regulator of VWF secretion most likely mediating this topological selectivity. Following secretagogue stimulation, Slp2-a accumulates at one WPB tip before fusion occurs at this site. Depletion of Slp2-a reduces Ca2+-dependent secretion of highly multimeric VWF and interferes with the formation of actin rings at WPB–plasma membrane fusion sites that support the expulsion of the VWF multimers and most likely require a tip-end fusion topology. Phosphatidylinositol (4,5)-bisphosphate [PI(4,5)P2] binding via the C2A domain of Slp2-a is required for accumulation of Slp2-a at the tip ends of fusing WPB, suggesting that Slp2-a mediates polar exocytosis by initiating contacts between WPB tips and plasma membrane PI(4,5)P2.
Collapse
|
16
|
Plasma membrane phosphatidylinositol (4,5)-bisphosphate is critical for determination of epithelial characteristics. Nat Commun 2022; 13:2347. [PMID: 35534464 PMCID: PMC9085759 DOI: 10.1038/s41467-022-30061-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 04/13/2022] [Indexed: 11/20/2022] Open
Abstract
Epithelial cells provide cell-cell adhesion that is essential to maintain the integrity of multicellular organisms. Epithelial cell-characterizing proteins, such as epithelial junctional proteins and transcription factors are well defined. However, the role of lipids in epithelial characterization remains poorly understood. Here we show that the phospholipid phosphatidylinositol (4,5)-bisphosphate [PI(4,5)P2] is enriched in the plasma membrane (PM) of epithelial cells. Epithelial cells lose their characteristics upon depletion of PM PI(4,5)P2, and synthesis of PI(4,5)P2 in the PM results in the development of epithelial-like morphology in osteosarcoma cells. PM localization of PARD3 is impaired by depletion of PM PI(4,5)P2 in epithelial cells, whereas expression of the PM-targeting exocyst-docking region of PARD3 induces osteosarcoma cells to show epithelial-like morphological changes, suggesting that PI(4,5)P2 regulates epithelial characteristics by recruiting PARD3 to the PM. These results indicate that a high level of PM PI(4,5)P2 plays a crucial role in the maintenance of epithelial characteristics. Epithelial cells provide cell-cell adhesion to maintain the integrity of multicellular organisms. Here the authors show that phospholipid phosphatidylinositol (4,5)-bisphosphate is critical for the maintenance of epithelial characteristics.
Collapse
|
17
|
Francis CR, Kushner EJ. Trafficking in blood vessel development. Angiogenesis 2022; 25:291-305. [PMID: 35449244 PMCID: PMC9249721 DOI: 10.1007/s10456-022-09838-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/03/2022] [Indexed: 02/17/2023]
Abstract
Blood vessels demonstrate a multitude of complex signaling programs that work in concert to produce functional vasculature networks during development. A known, but less widely studied, area of endothelial cell regulation is vesicular trafficking, also termed sorting. After moving through the Golgi apparatus, proteins are shuttled to organelles, plugged into membranes, recycled, or degraded depending on the internal and extrinsic cues. A snapshot of these protein-sorting systems can be viewed as a trafficking signature that is not only unique to endothelial tissue, but critically important for blood vessel form and function. In this review, we will cover how vesicular trafficking impacts various aspects of angiogenesis, such as sprouting, lumen formation, vessel stabilization, and secretion, emphasizing the role of Rab GTPase family members and their various effectors.
Collapse
Affiliation(s)
- Caitlin R Francis
- Department of Biological Sciences, University of Denver, Denver, CO, 80210, USA
| | - Erich J Kushner
- Department of Biological Sciences, University of Denver, Denver, CO, 80210, USA.
| |
Collapse
|
18
|
Chen X, Li Q, Zhang Z, Yang M, Wang E. Identification of Potential Diagnostic Biomarkers From Circulating Cells During the Course of Sleep Deprivation-Related Myocardial Infarction Based on Bioinformatics Analyses. Front Cardiovasc Med 2022; 9:843426. [PMID: 35369343 PMCID: PMC8969017 DOI: 10.3389/fcvm.2022.843426] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 02/22/2022] [Indexed: 01/01/2023] Open
Abstract
Background Myocardial infarction (MI) is the leading cause of death from non-infectious diseases worldwide and results in rapid deterioration due to the sudden rupture of plaques associated with atherosclerosis, a chronic inflammatory disease. Sleep is a key factor that regulates immune homeostasis of the body. The imbalance in circulating immune cells caused by sleep deprivation (SD) may represent a risk factor leading to the rapid deterioration of plaques and MI. Therefore, it is of profound significance to identify diagnostic biomarkers for preventing SD-related MI. Methods In the present study, we identified coexpressed differentially expressed genes (co-DEGs) between peripheral blood mononuclear cells from MI and SD samples (compared to controls) from a public database. LASSO regression analysis was applied to identify significant diagnostic biomarkers from co-DEGs. Moreover, receiver operating characteristic (ROC) curve analysis was performed to test biomarker accuracy and diagnostic ability. We further analyzed immune cell enrichment in MI and SD samples using the CIBERSORT algorithm, and the correlation between biomarkers and immune cell composition was assessed. We also investigated whether diagnostic biomarkers are involved in immune cell signaling pathways in SD-related MI processes. Results A total of 10 downregulated co-DEGs from the sets of MI-DEGs and SD-DEGs were overlapped. After applying LASSO regression analysis, SYTL2, KLRD1, and C12orf75 were selected and validated as diagnostic biomarkers using ROC analysis. Next, we found that resting NK cells were downregulated in both the MI samples and SD samples, which is similar to the changes noted for SYTL2. Importantly, SYTL2 was strongly positively correlated not only with resting NK cells but also with most genes related to NK cell markers in the MI and SD datasets. Moreover, SYTL2 was highly associated with genes in NK cell signaling pathways, including the MAPK signaling pathway, cytotoxic granule movement and exocytosis, and NK cell activation. Furthermore, GSEA and KEGG analyses provided evidence that the DEGs identified from MI samples with low vs. high SYTL2 expression exhibited a strong association with the regulation of the immune response and NK cell-mediated cytotoxicity. Conclusion In conclusion, SYTL2, KLRD1, and C12orf75 represent potential diagnostic biomarkers of MI. The association between SYTL2 and resting NK cells may be critically involved in SD-related MI development and occurrence.
Collapse
Affiliation(s)
- Xiang Chen
- Department of Anesthesiology, Xiangya Hospital Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Xiangya Hospital Central South University, Changsha, China
| | - Qian Li
- Department of Anesthesiology, Xiangya Hospital Central South University, Changsha, China
| | - Zhong Zhang
- Department of Anesthesiology, Xiangya Hospital Central South University, Changsha, China
| | - Minjing Yang
- Department of Anesthesiology, Xiangya Hospital Central South University, Changsha, China
| | - E. Wang
- Department of Anesthesiology, Xiangya Hospital Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Xiangya Hospital Central South University, Changsha, China
- *Correspondence: E. Wang
| |
Collapse
|
19
|
Levic DS, Bagnat M. Self-organization of apical membrane protein sorting in epithelial cells. FEBS J 2022; 289:659-670. [PMID: 33864720 PMCID: PMC8522177 DOI: 10.1111/febs.15882] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/25/2021] [Accepted: 04/14/2021] [Indexed: 02/03/2023]
Abstract
Polarized epithelial cells are characterized by the asymmetric distribution of proteins between apical and basolateral domains of the plasma membrane. This asymmetry is highly conserved and is fundamental to epithelial cell physiology, development, and homeostasis. How proteins are segregated for apical or basolateral delivery, a process known as sorting, has been the subject of considerable investigation for decades. Despite these efforts, the rules guiding apical sorting are poorly understood and remain controversial. Here, we consider mechanisms of apical membrane protein sorting and argue that they are largely driven by self-organization and biophysical principles. The preponderance of data to date is consistent with the idea that apical sorting is not ruled by a dedicated protein-based sorting machinery and relies instead on the concerted effects of oligomerization, phase separation of lipids and proteins in membranes, and pH-dependent glycan interactions.
Collapse
Affiliation(s)
- Daniel S. Levic
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
| | - Michel Bagnat
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
| |
Collapse
|
20
|
Chapuy-Regaud S, Allioux C, Capelli N, Migueres M, Lhomme S, Izopet J. Vectorial Release of Human RNA Viruses from Epithelial Cells. Viruses 2022; 14:231. [PMID: 35215825 PMCID: PMC8875463 DOI: 10.3390/v14020231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/07/2022] [Accepted: 01/21/2022] [Indexed: 02/04/2023] Open
Abstract
Epithelial cells are apico-basolateral polarized cells that line all tubular organs and are often targets for infectious agents. This review focuses on the release of human RNA virus particles from both sides of polarized human cells grown on transwells. Most viruses that infect the mucosa leave their host cells mainly via the apical side while basolateral release is linked to virus propagation within the host. Viruses do this by hijacking the cellular factors involved in polarization and trafficking. Thus, understanding epithelial polarization is essential for a clear understanding of virus pathophysiology.
Collapse
Affiliation(s)
- Sabine Chapuy-Regaud
- Department of Virology, CHU Purpan, F-31059 Toulouse, France; (N.C.); (M.M.); (S.L.); (J.I.)
- INFINITy (Toulouse Institute for Infectious and Inflammatory Diseases), INSERM UMR1291, CNRS UMR5051, Université Toulouse III, CHU Purpan, F-31024 Toulouse, France;
| | - Claire Allioux
- INFINITy (Toulouse Institute for Infectious and Inflammatory Diseases), INSERM UMR1291, CNRS UMR5051, Université Toulouse III, CHU Purpan, F-31024 Toulouse, France;
| | - Nicolas Capelli
- Department of Virology, CHU Purpan, F-31059 Toulouse, France; (N.C.); (M.M.); (S.L.); (J.I.)
- INFINITy (Toulouse Institute for Infectious and Inflammatory Diseases), INSERM UMR1291, CNRS UMR5051, Université Toulouse III, CHU Purpan, F-31024 Toulouse, France;
| | - Marion Migueres
- Department of Virology, CHU Purpan, F-31059 Toulouse, France; (N.C.); (M.M.); (S.L.); (J.I.)
- INFINITy (Toulouse Institute for Infectious and Inflammatory Diseases), INSERM UMR1291, CNRS UMR5051, Université Toulouse III, CHU Purpan, F-31024 Toulouse, France;
| | - Sébastien Lhomme
- Department of Virology, CHU Purpan, F-31059 Toulouse, France; (N.C.); (M.M.); (S.L.); (J.I.)
- INFINITy (Toulouse Institute for Infectious and Inflammatory Diseases), INSERM UMR1291, CNRS UMR5051, Université Toulouse III, CHU Purpan, F-31024 Toulouse, France;
| | - Jacques Izopet
- Department of Virology, CHU Purpan, F-31059 Toulouse, France; (N.C.); (M.M.); (S.L.); (J.I.)
- INFINITy (Toulouse Institute for Infectious and Inflammatory Diseases), INSERM UMR1291, CNRS UMR5051, Université Toulouse III, CHU Purpan, F-31024 Toulouse, France;
| |
Collapse
|
21
|
Román-Fernández Á, Sandilands E, Bryant DM. The Use of Three-Dimensional Cell Culture to Study Apicobasal Polarization and Lumen Formation. Methods Mol Biol 2022; 2438:439-454. [PMID: 35147956 DOI: 10.1007/978-1-0716-2035-9_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The three-dimensional culture of epithelial cells allows the characterization of processes required for collective epithelial polarization, such as formation of an epithelial lumen. Madin-Darby Canine Kidney (MDCK) cells have been instrumental in pioneering 3-Dimensional culture analysis methods. Here we describe methods for MDCK cell three-dimensional culture, generation of stable engineered cell lines, immunolabeling, and imaging approaches that allow for analysis of apical-basal polarity during lumen formation in this model.
Collapse
Affiliation(s)
- Álvaro Román-Fernández
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- The CRUK Beatson Institute, Glasgow, UK
| | - Emma Sandilands
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- The CRUK Beatson Institute, Glasgow, UK
| | - David M Bryant
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
- The CRUK Beatson Institute, Glasgow, UK.
| |
Collapse
|
22
|
Sukhadia SS, Tyagi A, Venkataraman V, Mukherjee P, Prasad P, Gevaert O, Nagaraj SH. ImaGene: a web-based software platform for tumor radiogenomic evaluation and reporting. BIOINFORMATICS ADVANCES 2022; 2:vbac079. [PMID: 36699376 PMCID: PMC9714320 DOI: 10.1093/bioadv/vbac079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 09/26/2022] [Accepted: 11/09/2022] [Indexed: 11/12/2022]
Abstract
Summary Radiographic imaging techniques provide insight into the imaging features of tumor regions of interest, while immunohistochemistry and sequencing techniques performed on biopsy samples yield omics data. Relationships between tumor genotype and phenotype can be identified from these data through traditional correlation analyses and artificial intelligence (AI) models. However, the radiogenomics community lacks a unified software platform with which to conduct such analyses in a reproducible manner. To address this gap, we developed ImaGene, a web-based platform that takes tumor omics and imaging datasets as inputs, performs correlation analysis between them, and constructs AI models. ImaGene has several modifiable configuration parameters and produces a report displaying model diagnostics. To demonstrate the utility of ImaGene, we utilized data for invasive breast carcinoma (IBC) and head and neck squamous cell carcinoma (HNSCC) and identified potential associations between imaging features and nine genes (WT1, LGI3, SP7, DSG1, ORM1, CLDN10, CST1, SMTNL2, and SLC22A31) for IBC and eight genes (NR0B1, PLA2G2A, MAL, CLDN16, PRDM14, VRTN, LRRN1, and MECOM) for HNSCC. ImaGene has the potential to become a standard platform for radiogenomic tumor analyses due to its ease of use, flexibility, and reproducibility, playing a central role in the establishment of an emerging radiogenomic knowledge base. Availability and implementation www.ImaGene.pgxguide.org, https://github.com/skr1/Imagene.git. Supplementary information Supplementary data are available at https://github.com/skr1/Imagene.git.
Collapse
Affiliation(s)
- Shrey S Sukhadia
- Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, QLD 4000, Australia.,Translational Research Institute, Brisbane, QLD 4000, Australia
| | - Aayush Tyagi
- Yardi School of Artificial Intelligence, Indian Institute of Technology, New Delhi 110016, India
| | - Vivek Venkataraman
- Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, QLD 4000, Australia.,Translational Research Institute, Brisbane, QLD 4000, Australia
| | - Pritam Mukherjee
- Stanford Center for Biomedical Informatics Research, Department of Medicine and Biomedical Data Science, Stanford University, Stanford, CA 94305-5101, USA
| | - Pratosh Prasad
- Department of Electrical Communication Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Olivier Gevaert
- Stanford Center for Biomedical Informatics Research, Department of Medicine and Biomedical Data Science, Stanford University, Stanford, CA 94305-5101, USA
| | - Shivashankar H Nagaraj
- Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, QLD 4000, Australia.,Translational Research Institute, Brisbane, QLD 4000, Australia
| |
Collapse
|
23
|
Bugda Gwilt K, Thiagarajah JR. Membrane Lipids in Epithelial Polarity: Sorting out the PIPs. Front Cell Dev Biol 2022; 10:893960. [PMID: 35712665 PMCID: PMC9197455 DOI: 10.3389/fcell.2022.893960] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
The development of cell polarity in epithelia, is critical for tissue morphogenesis and vectorial transport between the environment and the underlying tissue. Epithelial polarity is defined by the development of distinct plasma membrane domains: the apical membrane interfacing with the exterior lumen compartment, and the basolateral membrane directly contacting the underlying tissue. The de novo generation of polarity is a tightly regulated process, both spatially and temporally, involving changes in the distribution of plasma membrane lipids, localization of apical and basolateral membrane proteins, and vesicular trafficking. Historically, the process of epithelial polarity has been primarily described in relation to the localization and function of protein 'polarity complexes.' However, a critical and foundational role is emerging for plasma membrane lipids, and in particular phosphoinositide species. Here, we broadly review the evidence for a primary role for membrane lipids in the generation of epithelial polarity and highlight key areas requiring further research. We discuss the complex interchange that exists between lipid species and briefly examine how major membrane lipid constituents are generated and intersect with vesicular trafficking to be preferentially localized to different membrane domains with a focus on some of the key protein-enzyme complexes involved in these processes.
Collapse
Affiliation(s)
- Katlynn Bugda Gwilt
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Jay R Thiagarajah
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
24
|
Izumi T. In vivo Roles of Rab27 and Its Effectors in Exocytosis. Cell Struct Funct 2021; 46:79-94. [PMID: 34483204 PMCID: PMC10511049 DOI: 10.1247/csf.21043] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 08/31/2021] [Indexed: 11/11/2022] Open
Abstract
The monomeric GTPase Rab27 regulates exocytosis of a broad range of vesicles in multicellular organisms. Several effectors bind GTP-bound Rab27a and/or Rab27b on secretory vesicles to execute a series of exocytic steps, such as vesicle maturation, movement along microtubules, anchoring within the peripheral F-actin network, and tethering to the plasma membrane, via interactions with specific proteins and membrane lipids in a local milieu. Although Rab27 effectors generally promote exocytosis, they can also temporarily restrict it when they are involved in the rate-limiting step. Genetic alterations in Rab27-related molecules cause discrete diseases manifesting pigment dilution and immunodeficiency, and can also affect common diseases such as diabetes and cancer in complex ways. Although the function and mechanism of action of these effectors have been explored, it is unclear how multiple effectors act in coordination within a cell to regulate the secretory process as a whole. It seems that Rab27 and various effectors constitutively reside on individual vesicles to perform consecutive exocytic steps. The present review describes the unique properties and in vivo roles of the Rab27 system, and the functional relationship among different effectors coexpressed in single cells, with pancreatic beta cells used as an example.Key words: membrane trafficking, regulated exocytosis, insulin granules, pancreatic beta cells.
Collapse
Affiliation(s)
- Tetsuro Izumi
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan
| |
Collapse
|
25
|
Chandrakumar AA, Coyaud É, Marshall CB, Ikura M, Raught B, Rottapel R. Tankyrase regulates epithelial lumen formation via suppression of Rab11 GEFs. J Cell Biol 2021; 220:212384. [PMID: 34128958 PMCID: PMC8221736 DOI: 10.1083/jcb.202008037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 02/24/2021] [Accepted: 03/05/2021] [Indexed: 01/08/2023] Open
Abstract
Rab11 GTPase proteins are required for cytokinesis, ciliogenesis, and lumenogenesis. Rab11a is critical for apical delivery of podocalyxin (PODXL) during lumen formation in epithelial cells. SH3BP5 and SH3BP5L are guanine nucleotide exchange factors (GEFs) for Rab11. We show that SH3BP5 and SH3BP5L are required for activation of Rab11a and cyst lumen formation. Using proximity-dependent biotin identification (BioID) interaction proteomics, we have identified SH3BP5 and its paralogue SH3BP5L as new substrates of the poly-ADP-ribose polymerase Tankyrase and the E3 ligase RNF146. We provide data demonstrating that epithelial polarity via cyst lumen formation is governed by Tankyrase, which inhibits Rab11a activation through the suppression of SH3BP5 and SH3BP5L. RNF146 reduces Tankyrase protein abundance and restores Rab11a activation and lumen formation. Thus, Rab11a activation is controlled by a signaling pathway composed of the sequential inhibition of SH3BP5 paralogues by Tankyrase, which is itself suppressed by RNF146.
Collapse
Affiliation(s)
- Arun A Chandrakumar
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Étienne Coyaud
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | | | - Mitsuhiko Ikura
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Brian Raught
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Robert Rottapel
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada.,Division of Rheumatology, St. Michael's Hospital, Toronto, Ontario, Canada
| |
Collapse
|
26
|
Francis CR, Claflin S, Kushner EJ. Synaptotagmin-Like Protein 2a Regulates Angiogenic Lumen Formation via Weibel-Palade Body Apical Secretion of Angiopoietin-2. Arterioscler Thromb Vasc Biol 2021; 41:1972-1986. [PMID: 33853352 DOI: 10.1161/atvbaha.121.316113] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
| | - Shea Claflin
- Department of Biological Sciences, University of Denver, CO
| | | |
Collapse
|
27
|
Smoothelin-like 2 Inhibits Coronin-1B to Stabilize the Apical Actin Cortex during Epithelial Morphogenesis. Curr Biol 2021; 31:696-706.e9. [PMID: 33275893 DOI: 10.1016/j.cub.2020.11.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 09/24/2020] [Accepted: 11/03/2020] [Indexed: 11/22/2022]
Abstract
The actin cortex is involved in many biological processes and needs to be significantly remodeled during cell differentiation. Developing epithelial cells construct a dense apical actin cortex to carry out their barrier and exchange functions. The apical cortex assembles in response to three-dimensional (3D) extracellular cues, but the regulation of this process during epithelial morphogenesis remains unknown. Here, we describe the function of Smoothelin-like 2 (SMTNL2), a member of the smooth-muscle-related Smoothelin protein family, in apical cortex maturation. SMTNL2 is induced during development in multiple epithelial tissues and localizes to the apical and junctional actin cortex in intestinal and kidney epithelial cells. SMTNL2 deficiency leads to membrane herniations in the apical domain of epithelial cells, indicative of cortex abnormalities. We find that SMTNL2 binds to actin filaments and is required to slow down the turnover of apical actin. We also characterize the SMTNL2 proximal interactome and find that SMTNL2 executes its functions partly through inhibition of coronin-1B. Although coronin-1B-mediated actin dynamics are required for early morphogenesis, its sustained activity is detrimental for the mature apical shape. SMTNL2 binds to coronin-1B through its N-terminal coiled-coil region and negates its function to stabilize the apical cortex. In sum, our results unveil a mechanism for regulating actin dynamics during epithelial morphogenesis, providing critical insights on the developmental control of the cellular cortex.
Collapse
|
28
|
Levic DS, Ryan S, Marjoram L, Honeycutt J, Bagwell J, Bagnat M. Distinct roles for luminal acidification in apical protein sorting and trafficking in zebrafish. J Cell Biol 2020; 219:133852. [PMID: 32328632 PMCID: PMC7147097 DOI: 10.1083/jcb.201908225] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/20/2019] [Accepted: 01/27/2020] [Indexed: 02/06/2023] Open
Abstract
Epithelial cell physiology critically depends on the asymmetric distribution of channels and transporters. However, the mechanisms targeting membrane proteins to the apical surface are still poorly understood. Here, we performed a visual forward genetic screen in the zebrafish intestine and identified mutants with defective apical targeting of membrane proteins. One of these mutants, affecting the vacuolar H+-ATPase gene atp6ap1b, revealed specific requirements for luminal acidification in apical, but not basolateral, membrane protein sorting and transport. Using a low temperature block assay combined with genetic and pharmacologic perturbation of luminal pH, we monitored transport of newly synthesized membrane proteins from the TGN to apical membrane in live zebrafish. We show that vacuolar H+-ATPase activity regulates sorting of O-glycosylated proteins at the TGN, as well as Rab8-dependent post-Golgi trafficking of different classes of apical membrane proteins. Thus, luminal acidification plays distinct and specific roles in apical membrane biogenesis.
Collapse
Affiliation(s)
| | - Sean Ryan
- Department of Cell Biology, Duke University, Durham, NC
| | | | | | | | - Michel Bagnat
- Department of Cell Biology, Duke University, Durham, NC
| |
Collapse
|
29
|
Alnaas AA, Watson-Siriboe A, Tran S, Negussie M, Henderson JA, Osterberg JR, Chon NL, Harrott BM, Oviedo J, Lyakhova T, Michel C, Reisdorph N, Reisdorph R, Shearn CT, Lin H, Knight JD. Multivalent lipid targeting by the calcium-independent C2A domain of synaptotagmin-like protein 4/granuphilin. J Biol Chem 2020; 296:100159. [PMID: 33277360 PMCID: PMC7857503 DOI: 10.1074/jbc.ra120.014618] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 11/03/2020] [Accepted: 12/04/2020] [Indexed: 12/15/2022] Open
Abstract
Synaptotagmin-like protein 4 (Slp-4), also known as granuphilin, is a Rab effector responsible for docking secretory vesicles to the plasma membrane before exocytosis. Slp-4 binds vesicular Rab proteins via an N-terminal Slp homology domain, interacts with plasma membrane SNARE complex proteins via a central linker region, and contains tandem C-terminal C2 domains (C2A and C2B) with affinity for phosphatidylinositol-(4,5)-bisphosphate (PIP2). The Slp-4 C2A domain binds with low nanomolar apparent affinity to PIP2 in lipid vesicles that also contain background anionic lipids such as phosphatidylserine but much weaker when either the background anionic lipids or PIP2 is removed. Through computational and experimental approaches, we show that this high-affinity membrane binding arises from concerted interaction at multiple sites on the C2A domain. In addition to a conserved PIP2-selective lysine cluster, a larger cationic surface surrounding the cluster contributes substantially to the affinity for physiologically relevant lipid compositions. Although the K398A mutation in the lysine cluster blocks PIP2 binding, this mutated protein domain retains the ability to bind physiological membranes in both a liposome-binding assay and MIN6 cells. Molecular dynamics simulations indicate several conformationally flexible loops that contribute to the nonspecific cationic surface. We also identify and characterize a covalently modified variant that arises through reactivity of the PIP2-binding lysine cluster with endogenous bacterial compounds and binds weakly to membranes. Overall, multivalent lipid binding by the Slp-4 C2A domain provides selective recognition and high-affinity docking of large dense core secretory vesicles to the plasma membrane.
Collapse
Affiliation(s)
- Aml A Alnaas
- Department of Chemistry, University of Colorado Denver, Denver, Colorado, USA
| | | | - Sherleen Tran
- Department of Chemistry, University of Colorado Denver, Denver, Colorado, USA
| | - Mikias Negussie
- Department of Chemistry, University of Colorado Denver, Denver, Colorado, USA
| | - Jack A Henderson
- Department of Chemistry, University of Colorado Denver, Denver, Colorado, USA
| | - J Ryan Osterberg
- Department of Chemistry, University of Colorado Denver, Denver, Colorado, USA
| | - Nara L Chon
- Department of Chemistry, University of Colorado Denver, Denver, Colorado, USA
| | - Beckston M Harrott
- Department of Chemistry, University of Colorado Denver, Denver, Colorado, USA
| | - Julianna Oviedo
- Department of Chemistry, University of Colorado Denver, Denver, Colorado, USA
| | - Tatyana Lyakhova
- Department of Chemistry, University of Colorado Denver, Denver, Colorado, USA
| | - Cole Michel
- Department of Pharmaceutical Sciences, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Nichole Reisdorph
- Department of Pharmaceutical Sciences, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Richard Reisdorph
- Department of Pharmaceutical Sciences, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Colin T Shearn
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Hai Lin
- Department of Chemistry, University of Colorado Denver, Denver, Colorado, USA.
| | - Jefferson D Knight
- Department of Chemistry, University of Colorado Denver, Denver, Colorado, USA.
| |
Collapse
|
30
|
Díaz-Díaz C, Baonza G, Martín-Belmonte F. The vertebrate epithelial apical junctional complex: Dynamic interplay between Rho GTPase activity and cell polarization processes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183398. [DOI: 10.1016/j.bbamem.2020.183398] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/05/2020] [Accepted: 06/11/2020] [Indexed: 12/31/2022]
|
31
|
Wang T, Kwon SH, Peng X, Urdy S, Lu Z, Schmitz RJ, Dalton S, Mostov KE, Zhao S. A Qualitative Change in the Transcriptome Occurs after the First Cell Cycle and Coincides with Lumen Establishment during MDCKII Cystogenesis. iScience 2020; 23:101629. [PMID: 33089114 PMCID: PMC7567049 DOI: 10.1016/j.isci.2020.101629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 08/05/2020] [Accepted: 09/25/2020] [Indexed: 01/12/2023] Open
Abstract
Madin-Darby canine kidney II (MDCKII) cells are widely used to study epithelial morphogenesis. To better understand this process, we performed time course RNA-seq analysis of MDCKII 3D cystogenesis, along with polarized 2D cells for comparison. Our study reveals a biphasic change in the transcriptome that occurs after the first cell cycle and coincides with lumen establishment. This change appears to be linked to translocation of β-catenin, supported by analyses with AVL9- and DENND5A-knockdown clones, and regulation by HNF1B, supported by ATAC-seq study. These findings indicate a qualitative change model for transcriptome remodeling during epithelial morphogenesis, leading to cell proliferation decrease and cell polarity establishment. Furthermore, our study reveals that active mitochondria are retained and chromatin accessibility decreases in 3D cysts but not in 2D polarized cells. This indicates that 3D culture is a better model than 2D culture for studying epithelial morphogenesis. The transcriptome switches after the first cell cycle and during MDCKII lumenogenesis The transcriptome switch is linked to β-catenin translocation and HNF1B activation Chromatin accessibility decreases during MDCKII cystogenesis Active mitochondria are maintained in 3D, but not 2D, epithelial morphogenesis
Collapse
Affiliation(s)
- Tianfang Wang
- Department of Biochemistry and Molecular Biology, Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
| | - Sang-Ho Kwon
- Department of Anatomy, University of California, San Francisco, CA 94143-2140, USA.,Department of Cellular Biology and Anatomy, Augusta University, Medical College of Georgia, 1460 Laney Walker Boulevard, CB2820A, Augusta, GA 30912, USA
| | - Xiao Peng
- Department of Anatomy, University of California, San Francisco, CA 94143-2140, USA
| | - Severine Urdy
- Department of Anatomy, University of California, San Francisco, CA 94143-2140, USA
| | - Zefu Lu
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Robert J Schmitz
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Stephen Dalton
- Department of Biochemistry and Molecular Biology, Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
| | - Keith E Mostov
- Department of Anatomy, University of California, San Francisco, CA 94143-2140, USA
| | - Shaying Zhao
- Department of Biochemistry and Molecular Biology, Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
32
|
Liu XY, Jiang W, Ma D, Ge LP, Yang YS, Gou ZC, Xu XE, Shao ZM, Jiang YZ. SYTL4 downregulates microtubule stability and confers paclitaxel resistance in triple-negative breast cancer. Am J Cancer Res 2020; 10:10940-10956. [PMID: 33042263 PMCID: PMC7532662 DOI: 10.7150/thno.45207] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 08/09/2020] [Indexed: 12/24/2022] Open
Abstract
Background: Taxanes are frontline chemotherapeutic drugs for patients with triple-negative breast cancer (TNBC); however, chemoresistance reduces their effectiveness. We hypothesized that the molecular profiling of tumor samples before and after neoadjuvant chemotherapy (NAC) would help identify genes associated with drug resistance. Methods: We sequenced 10 samples by RNA-seq from 8 NAC patients with TNBC: 3 patients with a pathologic complete response (pCR) and the other 5 with non-pCR. Differentially expressed genes that predicted chemotherapy response were selected for in vitro functional screening via a small-scale siRNAs pool. The clinical and functional significance of the gene of interest in TNBC was further investigated in vitro and in vivo, and biochemical assays and imaging analysis were applied to study the mechanisms. Results: Synaptotagmin-like 4 (SYTL4), a Rab effector in vesicle transport, was identified as a leading functional candidate. High SYTL4 expression indicated a poor prognosis in multiple TNBC cohorts, specifically in taxane-treated TNBCs. SYTL4 was identified as a novel chemoresistant gene as validated in TNBC cells, a mouse model and patient-derived organoids. Mechanistically, downregulating SYTL4 stabilized the microtubule network and slowed down microtubule growth rate. Furthermore, SYTL4 colocalized with microtubules and interacted with microtubules through its middle region containing the linker and C2A domain. Finally, we found that SYTL4 was able to bind microtubules and inhibit the in vitro microtubule polymerization. Conclusion: SYTL4 is a novel chemoresistant gene in TNBC and its upregulation indicates poor prognosis in taxane-treated TNBC. Further, SYTL4 directly binds microtubules and decreases microtubule stability.
Collapse
|
33
|
Bittner T, Wittwer C, Hauke S, Wohlwend D, Mundinger S, Dutta AK, Bezold D, Dürr T, Friedrich T, Schultz C, Jessen HJ. Photolysis of Caged Inositol Pyrophosphate InsP 8 Directly Modulates Intracellular Ca 2+ Oscillations and Controls C2AB Domain Localization. J Am Chem Soc 2020; 142:10606-10611. [PMID: 32459478 DOI: 10.1021/jacs.0c01697] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Inositol pyrophosphates constitute a family of hyperphosphorylated signaling molecules involved in the regulation of glucose uptake and insulin sensitivity. While our understanding of the biological roles of inositol heptaphosphates (PP-InsP5) has greatly improved, the functions of the inositol octaphosphates ((PP)2-InsP4) have remained unclear. Here we present the synthesis of two enantiomeric cell-permeant and photocaged (PP)2-InsP4 derivatives and apply them to study the functions in living β-cells. Photorelease of the naturally occurring isomer 1,5-(PP)2-InsP4 led to an immediate and concentration-dependent reduction of intracellular calcium oscillations, while other caged inositol pyrophosphates (3,5-(PP)2-InsP4, 5-PP-InsP5, 1-PP-InsP5, 3-PP-InsP5) showed no immediate effect. Furthermore, uncaging of 1,5-(PP)2-InsP4 but not 3,5-(PP)2-InsP4 induced translocation of the C2AB domain of granuphilin from the plasma membrane to the cytosol. Granuphilin is involved in membrane docking of secretory vesicles. This suggests that 1,5-(PP)2-InsP4 impacts β-cell activity by regulating granule localization and/or priming and calcium signaling in concert.
Collapse
Affiliation(s)
- Tamara Bittner
- Department of Chemistry and Pharmacy, Albert-Ludwigs University Freiburg, Albertstrasse 21, 79104 Freiburg i.B., Germany
| | - Christopher Wittwer
- Department of Chemistry and Pharmacy, Albert-Ludwigs University Freiburg, Albertstrasse 21, 79104 Freiburg i.B., Germany
| | - Sebastian Hauke
- Cell Biology & Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Daniel Wohlwend
- Department of Chemistry and Pharmacy, Albert-Ludwigs University Freiburg, Albertstrasse 21, 79104 Freiburg i.B., Germany
| | - Stephan Mundinger
- Department of Chemistry and Pharmacy, Albert-Ludwigs University Freiburg, Albertstrasse 21, 79104 Freiburg i.B., Germany
| | - Amit K Dutta
- Department of Chemistry and Pharmacy, Albert-Ludwigs University Freiburg, Albertstrasse 21, 79104 Freiburg i.B., Germany
| | - Dominik Bezold
- Department of Chemistry and Pharmacy, Albert-Ludwigs University Freiburg, Albertstrasse 21, 79104 Freiburg i.B., Germany
| | - Tobias Dürr
- Department of Chemistry and Pharmacy, Albert-Ludwigs University Freiburg, Albertstrasse 21, 79104 Freiburg i.B., Germany
| | - Thorsten Friedrich
- Department of Chemistry and Pharmacy, Albert-Ludwigs University Freiburg, Albertstrasse 21, 79104 Freiburg i.B., Germany
| | - Carsten Schultz
- Cell Biology & Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany.,Department of Chemical Physiology and Biochemistry, Oregon Health & Science University (OHSU), Sam Jackson Park Road, Portland, Oregon 97239-3098, United States
| | - Henning J Jessen
- Department of Chemistry and Pharmacy, Albert-Ludwigs University Freiburg, Albertstrasse 21, 79104 Freiburg i.B., Germany.,CIBSS-Centre for Integrative Biological Signalling Studies, 79104 Freiburg i.B., Germany.,Freiburg Research Institute for Advanced Studies (FRIAS), Albert-Ludwigs University Freiburg, Albertstrasse 19, 79104 Freiburg i.B., Germany
| |
Collapse
|
34
|
Soetje B, Fuellekrug J, Haffner D, Ziegler WH. Application and Comparison of Supervised Learning Strategies to Classify Polarity of Epithelial Cell Spheroids in 3D Culture. Front Genet 2020; 11:248. [PMID: 32292417 PMCID: PMC7119422 DOI: 10.3389/fgene.2020.00248] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/02/2020] [Indexed: 12/16/2022] Open
Abstract
Three-dimensional culture systems that allow generation of monolayered epithelial cell spheroids are widely used to study epithelial function in vitro. Epithelial spheroid formation is applied to address cellular consequences of (mono)-genetic disorders, that is, ciliopathies, in toxicity testing, or to develop treatment options aimed to restore proper epithelial cell characteristics and function. With the potential of a high-throughput method, the main obstacle to efficient application of the spheroid formation assay so far is the laborious, time-consuming, and bias-prone analysis of spheroid images by individuals. Hundredths of multidimensional fluorescence images are blinded, rated by three persons, and subsequently, differences in ratings are compared and discussed. Here, we apply supervised learning and compare strategies based on machine learning versus deep learning. While deep learning approaches can directly process raw image data, machine learning requires transformed data of features extracted from fluorescence images. We verify the accuracy of both strategies on a validation data set, analyse an experimental data set, and observe that different strategies can be very accurate. Deep learning, however, is less sensitive to overfitting and experimental batch-to-batch variations, thus providing a rather powerful and easily adjustable classification tool.
Collapse
Affiliation(s)
- Birga Soetje
- Department of Paediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hanover, Germany
| | - Joachim Fuellekrug
- Molecular Cell Biology Laboratory, Internal Medicine IV, University Hospital Heidelberg, Heidelberg, Germany
| | - Dieter Haffner
- Department of Paediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hanover, Germany
| | - Wolfgang H. Ziegler
- Department of Paediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hanover, Germany
| |
Collapse
|
35
|
Kinoshita R, Homma Y, Fukuda M. Rab35-GEFs, DENND1A and folliculin differentially regulate podocalyxin trafficking in two- and three-dimensional epithelial cell cultures. J Biol Chem 2020; 295:3652-3663. [PMID: 31992598 PMCID: PMC7076212 DOI: 10.1074/jbc.ra119.011646] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/24/2020] [Indexed: 11/06/2022] Open
Abstract
Polarized epithelial cells have functionally distinct apical and basolateral membranes through which they communicate with external and internal bodily environments, respectively. The establishment and maintenance of this asymmetric structure depend on polarized trafficking of specific cargos, but the precise molecular mechanism is incompletely understood. We previously showed that Rab35, a member of the Rab family small GTPases, differentially regulates the trafficking of an apical cargo, podocalyxin (PODXL), in two-dimensional (2D) and three-dimensional (3D) Madin-Darby canine kidney (MDCK) II cell cultures through specific interactions with two distinct effectors, OCRL inositol polyphosphate-5-phosphatase (OCRL) and ArfGAP with coiled-coil, ankyrin repeat and pleckstrin homology domains 2 (ACAP2), respectively. However, whether the upstream regulators of Rab35 also differ depending on the culture conditions remains completely unknown. Here, we investigated four known guanine nucleotide exchange factors (GEFs) of Rab35, namely DENN domain-containing 1A (DENND1A), DENND1B, DENND1C, and folliculin (FLCN), and demonstrate that DENND1A and FLCN exhibit distinct requirements for Rab35-dependent PODXL trafficking under the two culture conditions. In 3D cell cultures, only DENDN1A-knockout cysts exhibited the inverted localization of PODXL similar to that of Rab35-knockout cysts. Moreover, the DENN domain, harboring GEF activity toward Rab35, was required for proper PODXL trafficking to the apical membrane. By contrast, FLCN-knockdown cells specifically accumulated PODXL in actin-rich structures similar to the Rab35-knockdown cells in 2D cell cultures. Our findings indicate that two distinct functional cascades of Rab35, the FLCN-Rab35-OCRL and the DENND1A-Rab35-ACAP2 axes, regulate PODXL trafficking in 2D and 3D MDCK II cell cultures, respectively.
Collapse
Affiliation(s)
- Riko Kinoshita
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Yuta Homma
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan.
| | - Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan.
| |
Collapse
|
36
|
Phatarpekar PV, Billadeau DD. Molecular regulation of the plasma membrane-proximal cellular steps involved in NK cell cytolytic function. J Cell Sci 2020; 133:133/5/jcs240424. [PMID: 32086255 DOI: 10.1242/jcs.240424] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Natural killer (NK) cells, cytolytic lymphocytes of the innate immune system, play a crucial role in the immune response against infection and cancer. NK cells kill target cells through exocytosis of lytic granules that contain cytotoxic proteins, such as perforin and granzymes. Formation of a functional immune synapse, i.e. the interface between the NK cell and its target cell enhances lysis through accumulation of polymerized F-actin at the NK cell synapse, leading to convergence of lytic granules to the microtubule organizing center (MTOC) and its subsequent polarization along microtubules to deliver the lytic granules to the synapse. In this review, we focus on the molecular mechanisms regulating the cellular processes that occur after the lytic granules are delivered to the cytotoxic synapse. We outline how - once near the synapse - the granules traverse the clearings created by F-actin remodeling to dock, tether and fuse with the plasma membrane in order to secrete their lytic content into the synaptic cleft through exocytosis. Further emphasis is given to the role of Ca2+ mobilization during degranulation and, whenever applicable, we compare these mechanisms in NK cells and cytotoxic T lymphocytes (CTLs) as adaptive immune system effectors.
Collapse
Affiliation(s)
- Prasad V Phatarpekar
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Daniel D Billadeau
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| |
Collapse
|
37
|
Nguyen PM, Gandasi NR, Xie B, Sugahara S, Xu Y, Idevall-Hagren O. The PI(4)P phosphatase Sac2 controls insulin granule docking and release. J Cell Biol 2019; 218:3714-3729. [PMID: 31533953 PMCID: PMC6829663 DOI: 10.1083/jcb.201903121] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/20/2019] [Accepted: 08/08/2019] [Indexed: 12/12/2022] Open
Abstract
Insulin granule biogenesis involves transport to, and stable docking at, the plasma membrane before priming and fusion. Defects in this pathway result in impaired insulin secretion and are a hallmark of type 2 diabetes. We now show that the phosphatidylinositol 4-phosphate phosphatase Sac2 localizes to insulin granules in a substrate-dependent manner and that loss of Sac2 results in impaired insulin secretion. Sac2 operates upstream of granule docking, since loss of Sac2 prevented granule tethering to the plasma membrane and resulted in both reduced granule density and number of exocytic events. Sac2 levels correlated positively with the number of docked granules and exocytic events in clonal β cells and with insulin secretion in human pancreatic islets, and Sac2 expression was reduced in islets from type 2 diabetic subjects. Taken together, we identified a phosphoinositide switch on the surface on insulin granules that is required for stable granule docking at the plasma membrane and impaired in human type 2 diabetes.
Collapse
Affiliation(s)
- Phuoc My Nguyen
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Nikhil R Gandasi
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Beichen Xie
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Sari Sugahara
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden.,Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Yingke Xu
- Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, China
| | | |
Collapse
|
38
|
Sfrp3 modulates stromal-epithelial crosstalk during mammary gland development by regulating Wnt levels. Nat Commun 2019; 10:2481. [PMID: 31171792 PMCID: PMC6554275 DOI: 10.1038/s41467-019-10509-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 05/14/2019] [Indexed: 12/18/2022] Open
Abstract
Mammary stroma is essential for epithelial morphogenesis and development. Indeed, postnatal mammary gland (MG) development is controlled locally by the repetitive and bi-directional cross-talk between the epithelial and the stromal compartment. However, the signalling pathways involved in stromal–epithelial communication are not entirely understood. Here, we identify Sfrp3 as a mediator of the stromal–epithelial communication that is required for normal mouse MG development. Using Drosophila wing imaginal disc, we demonstrate that Sfrp3 functions as an extracellular transporter of Wnts that facilitates their diffusion, and thus, their levels in the boundaries of different compartments. Indeed, loss of Sfrp3 in mice leads to an increase of ductal invasion and branching mirroring an early pregnancy state. Finally, we observe that loss of Sfrp3 predisposes for invasive breast cancer. Altogether, our study shows that Sfrp3 controls MG morphogenesis by modulating the stromal-epithelial cross-talk during pubertal development. The signalling pathways regulating how the mammary gland stroma interacts with the epithelia to then regulate gland development are unclear. Here, the authors identify Sfrp3 as regulating stroma communication via Wnts, on deletion, this increases ductal invasion and initiates an early pregnancy state.
Collapse
|
39
|
Homma Y, Kinoshita R, Kuchitsu Y, Wawro PS, Marubashi S, Oguchi ME, Ishida M, Fujita N, Fukuda M. Comprehensive knockout analysis of the Rab family GTPases in epithelial cells. J Cell Biol 2019; 218:2035-2050. [PMID: 31072826 PMCID: PMC6548125 DOI: 10.1083/jcb.201810134] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 02/26/2019] [Accepted: 04/12/2019] [Indexed: 12/23/2022] Open
Abstract
Rab small GTPases (∼60 genes in mammals) are the master regulators of intracellular membrane trafficking. Homma et al. establish a comprehensive collection of knockout epithelial cell lines for all the mammalian Rabs, revealing that Rab6 is required for basement membrane formation and soluble cargo secretion. The Rab family of small GTPases comprises the largest number of proteins (∼60 in mammals) among the regulators of intracellular membrane trafficking, but the precise function of many Rabs and the functional redundancy and diversity of Rabs remain largely unknown. Here, we generated a comprehensive collection of knockout (KO) MDCK cells for the entire Rab family. We knocked out closely related paralogs simultaneously (Rab subfamily knockout) to circumvent functional compensation and found that Rab1A/B and Rab5A/B/C are critical for cell survival and/or growth. In addition, we demonstrated that Rab6-KO cells lack the basement membrane, likely because of the inability to secrete extracellular matrix components. Further analysis revealed the general requirement of Rab6 for secretion of soluble cargos. Transport of transmembrane cargos to the plasma membrane was also significantly delayed in Rab6-KO cells, but the phenotype was relatively mild. Our Rab-KO collection, which shares the same background, would be a valuable resource for analyzing a variety of membrane trafficking events.
Collapse
Affiliation(s)
- Yuta Homma
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Miyagi, Japan
| | - Riko Kinoshita
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Miyagi, Japan
| | - Yoshihiko Kuchitsu
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Miyagi, Japan
| | - Paulina S Wawro
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Miyagi, Japan
| | - Soujiro Marubashi
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Miyagi, Japan
| | - Mai E Oguchi
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Miyagi, Japan
| | - Morié Ishida
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Miyagi, Japan
| | - Naonobu Fujita
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Miyagi, Japan
| | - Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Miyagi, Japan
| |
Collapse
|
40
|
Ijuin T. Phosphoinositide phosphatases in cancer cell dynamics-Beyond PI3K and PTEN. Semin Cancer Biol 2019; 59:50-65. [PMID: 30922959 DOI: 10.1016/j.semcancer.2019.03.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 03/18/2019] [Accepted: 03/18/2019] [Indexed: 12/16/2022]
Abstract
Phosphoinositides are a group of lipids that regulate intracellular signaling and subcellular biological events. The signaling by phosphatidylinositol-3,4,5-trisphosphate and Akt mediates the action of growth factors that are essential for cell proliferation, gene transcription, cell migration, and polarity. The hyperactivation of this signaling has been identified in different cancer cells; and, it has been implicated in oncogenic transformation and cancer cell malignancy. Recent studies have argued the role of phosphoinositides in cancer cell dynamics, including actin cytoskeletal rearrangement at the plasma membrane and the organization of intracellular compartments. The focus of this review is to summarize the impact of the activities of phosphoinositide phosphatases on intracellular signaling related to cancer cell dynamics and to discuss how the abnormalities in the activities of the enzymes alter the levels of phosphoinositides in cancer cells.
Collapse
Affiliation(s)
- Takeshi Ijuin
- Division of Biochemistry, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki, Chu-o, Kobe 650-0017, Japan.
| |
Collapse
|
41
|
Román-Fernández Á, Roignot J, Sandilands E, Nacke M, Mansour MA, McGarry L, Shanks E, Mostov KE, Bryant DM. The phospholipid PI(3,4)P 2 is an apical identity determinant. Nat Commun 2018; 9:5041. [PMID: 30487552 PMCID: PMC6262019 DOI: 10.1038/s41467-018-07464-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/22/2018] [Indexed: 12/17/2022] Open
Abstract
Apical-basal polarization is essential for epithelial tissue formation, segregating cortical domains to perform distinct physiological functions. Cortical lipid asymmetry has emerged as a determinant of cell polarization. We report a network of phosphatidylinositol phosphate (PIP)-modifying enzymes, some of which are transcriptionally induced upon embedding epithelial cells in extracellular matrix, and that are essential for apical-basal polarization. Unexpectedly, we find that PI(3,4)P2 localization and function is distinct from the basolateral determinant PI(3,4,5)P3. PI(3,4)P2 localizes to the apical surface, and Rab11a-positive apical recycling endosomes. PI(3,4)P2 is produced by the 5-phosphatase SHIP1 and Class-II PI3-Kinases to recruit the endocytic regulatory protein SNX9 to basolateral domains that are being remodeled into apical surfaces. Perturbing PI(3,4)P2 levels results in defective polarization through subcortical retention of apically destined vesicles at apical membrane initiation sites. We conclude that PI(3,4)P2 is a determinant of apical membrane identity.
Collapse
Affiliation(s)
- Álvaro Román-Fernández
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1BD, UK
- The CRUK Beatson Institute, Glasgow, G61 1BD, UK
| | - Julie Roignot
- Department of Anatomy, University of California, San Francisco, CA, 94158-2140, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, 94158-2140, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Emma Sandilands
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1BD, UK
- The CRUK Beatson Institute, Glasgow, G61 1BD, UK
| | - Marisa Nacke
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1BD, UK
- The CRUK Beatson Institute, Glasgow, G61 1BD, UK
| | - Mohammed A Mansour
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1BD, UK
- Biochemistry Division, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Lynn McGarry
- The CRUK Beatson Institute, Glasgow, G61 1BD, UK
| | - Emma Shanks
- The CRUK Beatson Institute, Glasgow, G61 1BD, UK
| | - Keith E Mostov
- Department of Anatomy, University of California, San Francisco, CA, 94158-2140, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, 94158-2140, USA
| | - David M Bryant
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1BD, UK.
- The CRUK Beatson Institute, Glasgow, G61 1BD, UK.
| |
Collapse
|
42
|
Chin AR, Yan W, Cao M, Liu X, Wang SE. Polarized Secretion of Extracellular Vesicles by Mammary Epithelia. J Mammary Gland Biol Neoplasia 2018; 23:165-176. [PMID: 29968174 PMCID: PMC6103817 DOI: 10.1007/s10911-018-9402-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/29/2018] [Indexed: 01/03/2023] Open
Abstract
Extracellular vesicles (EVs) are secreted by many cell types and are increasingly investigated for their role in human diseases including cancer. Here we focus on the secretion and potential physiological function of non-pathological EVs secreted by polarized normal mammary epithelial cells. Using a transwell system to allow formation of epithelial polarity and EV collection from the apical versus basolateral compartments, we found that impaired secretion of EVs by knockdown of RAB27A or RAB27B suppressed the establishment of mammary epithelial polarity, and that addition of apical but not basolateral EVs suppressed epithelial polarity in a dose-dependent manner. This suggests that apical EV secretion contributes to epithelial polarity, and a possible mechanism is through removal of certain intracellular molecules. In contrast, basolateral but not apical EVs promoted migration of mammary epithelial cells in a motility assay. The protein contents of apical and basolateral EVs from MCF10A and primary human mammary epithelial cells were determined by mass spectrometry proteomic analysis, identifying apical-EV-enriched and basolateral-EV-enriched proteins that may contribute to different physiological functions. Most of these proteins differentially secreted by normal mammary epithelial cells through polarized EV release no longer showed polarized secretion in MCF10A-derived transformed epithelial cells. Our results suggest an essential role of EV secretion in normal mammary epithelial polarization and distinct protein contents and functions in apical versus basolateral EVs secreted by polarized mammary epithelia.
Collapse
Affiliation(s)
- Andrew R Chin
- Department of Pathology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0612, USA
- City of Hope Irell & Manella Graduate School of Biological Sciences, Duarte, CA, 91010, USA
| | - Wei Yan
- Department of Pathology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0612, USA
| | - Minghui Cao
- Department of Pathology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0612, USA
| | - Xuxiang Liu
- City of Hope Irell & Manella Graduate School of Biological Sciences, Duarte, CA, 91010, USA
| | - Shizhen Emily Wang
- Department of Pathology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0612, USA.
| |
Collapse
|
43
|
Jewett CE, Prekeris R. Insane in the apical membrane: Trafficking events mediating apicobasal epithelial polarity during tube morphogenesis. Traffic 2018; 19:10.1111/tra.12579. [PMID: 29766620 PMCID: PMC6239989 DOI: 10.1111/tra.12579] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 12/13/2022]
Abstract
The creation of cellular tubes is one of the most vital developmental processes, resulting in the formation of most organ types. Cells have co-opted a number of different mechanisms for tube morphogenesis that vary among tissues and organisms; however, generation and maintenance of cell polarity is fundamental for successful lumenogenesis. Polarized membrane transport has emerged as a key driver not only for establishing individual epithelial cell polarity, but also for coordination of epithelial polarization during apical lumen formation and tissue morphogenesis. In recent years, much work has been dedicated to identifying membrane trafficking regulators required for lumenogenesis. In this review we will summarize the findings from the past couple of decades in defining the molecular machinery governing lumenogenesis both in 3D tissue culture models and during organ development in vivo.
Collapse
Affiliation(s)
- Cayla E. Jewett
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Rytis Prekeris
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
44
|
|
45
|
Christensen IB, Mogensen EN, Damkier HH, Praetorius J. Choroid plexus epithelial cells express the adhesion protein P-cadherin at cell-cell contacts and syntaxin-4 in the luminal membrane domain. Am J Physiol Cell Physiol 2018; 314:C519-C533. [PMID: 29351408 DOI: 10.1152/ajpcell.00305.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The choroid plexus epithelial cells (CPECs) belong to a small group of polarized cells, where the Na+-K+-ATPase is expressed in the luminal membrane. The basic polarity of the cells is, therefore, still debated. We investigated the subcellular distribution of an array of proteins known to play fundamental roles either in establishing and maintaining basic cell polarity or in the polarized delivery and recycling of plasma membrane proteins. Immunofluorescence histochemical analysis was applied to determine the subcellular localization of apical and basolateral membrane determinants. Mass spectrometry analysis of CPECs isolated by fluorescence-activated cell sorting was applied to determine the expression of specific forms of the proteins. CPECs mainly express the cell-adhesive P-cadherin, which is localized to the lateral membranes. Proteins belonging to the Crumbs and partitioning defective (Par) protein complexes were all localized to the luminal membrane domain. Par-1 and the Scribble complex were localized to the basolateral membrane domain. Lethal(2) giant larvae homolog 2 (Lgl2) labeling was preferentially observed in the luminal membrane domain. Phosphatidylinositol 3,4,5-trisphosphate (PIP3) was immunolocalized to the basolateral membrane domain, while phosphatidylinositol 4,5-bisphosphate (PIP2) staining was most prominent in the luminal membrane domain along with the PIP3 phosphatase, Pten. The apical target-SNARE syntaxin-3 and the basolateral target-SNARE syntaxin-4 were both localized to the apical membrane domain in CPECs, which lack cellular expression of the clathrin adaptor protein AP-1B for basolateral protein recycling. In conclusion, the CPECs are conventionally polarized, but express P-cadherin at cell-cell contacts, and Lgl2 and syntaxin-4 in the luminal plasma membrane domain.
Collapse
Affiliation(s)
| | | | | | - Jeppe Praetorius
- Department of Biomedicine, Health, Aarhus University , Aarhus, Denmark
| |
Collapse
|
46
|
Abstract
Epithelial tubes are crucial to the function of organ systems including the excretory, gastrointestinal, cardiovascular, and pulmonary. Studies in the last two decades using in vitro organotypic systems and a variety of animal models have substantiated a large number of the morphogenetic mechanisms required to form epithelial tubes in development and regeneration. Many of these mechanisms modulate the differentiation and proliferation events necessary for generating the cell movements and changes in cell shape to delineate the wide variety of epithelial tube sizes, lengths, and conformations. For instance, when coupled with oriented cell division, proliferation itself plays a role in changes in tube shape and their directed expansion. Most of these processes are regulated in response to signaling inputs from adjacent cells or soluble factors from the environment. Despite the great deal of recent investigation in this direction, the knowledge we have about the signaling pathways associated with all epithelial tubulogenesis in development and regeneration is still very limited.
Collapse
|
47
|
Gallo LI, Dalghi MG, Clayton DR, Ruiz WG, Khandelwal P, Apodaca G. RAB27B requirement for stretch-induced exocytosis in bladder umbrella cells. Am J Physiol Cell Physiol 2017; 314:C349-C365. [PMID: 29167152 DOI: 10.1152/ajpcell.00218.2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Umbrella cells, which must maintain a tight barrier, modulate their apical surface area during bladder filling by exocytosis of an abundant, subapical pool of discoidal- and/or fusiform-shaped vesicles (DFVs). Despite the importance of this trafficking event for bladder function, the pathways that promote DFV exocytosis remain to be identified. We previously showed that DFV exocytosis depends in part on a RAB11A-RAB8A-MYO5B network, but RAB27B is also reported to be associated with DFVs, and knockout mice lacking RAB27B have fewer DFVs. However, the RAB27B requirements for DFV exocytosis and the relationship between RAB27B and the other umbrella cell-expressed RABs remains unclear. Using a whole bladder preparation, we observed that filling-induced exocytosis of human growth hormone-loaded DFVs was significantly inhibited when RAB27B expression was downregulated using shRNA. RAB27A was also expressed in rat urothelium; however, RAB27A-specific shRNAs did not inhibit exocytosis, and the combination of RAB27A and RAB27B shRNAs did not significantly affect DFV exocytosis more than treatment with RAB27B shRNA alone. RAB27B and RAB11A showed a small degree of overlap when quantified using Squassh segmentation software, and expression of dominant-active or dominant-negative mutants of RAB11A or RAB8A, or expression of a RAB11A-specific shRNA, had no significant effect on the size, number, or intensity of RAB27B-positive DFVs. Likewise, treatment with RAB27B-specific shRNA had no effect on RAB11A-positive DFV parameters. We conclude that RAB27B, but not RAB27A, regulates DFV exocytosis in bladder umbrella cells in a manner that may be parallel to the previously described RAB11A-RAB8A-MYO5B pathway.
Collapse
Affiliation(s)
- Luciana I Gallo
- Department of Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Marianela G Dalghi
- Department of Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Dennis R Clayton
- Department of Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Wily G Ruiz
- Department of Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Puneet Khandelwal
- Department of Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Gerard Apodaca
- Department of Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania.,Department of Cell Biology, University of Pittsburgh , Pittsburgh, Pennsylvania
| |
Collapse
|
48
|
Jaing C, Rowland RRR, Allen JE, Certoma A, Thissen JB, Bingham J, Rowe B, White JR, Wynne JW, Johnson D, Gaudreault NN, Williams DT. Gene expression analysis of whole blood RNA from pigs infected with low and high pathogenic African swine fever viruses. Sci Rep 2017; 7:10115. [PMID: 28860602 PMCID: PMC5579198 DOI: 10.1038/s41598-017-10186-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 08/04/2017] [Indexed: 11/09/2022] Open
Abstract
African swine fever virus (ASFV) is a macrophage-tropic virus responsible for ASF, a transboundary disease that threatens swine production world-wide. Since there are no vaccines available to control ASF after an outbreak, obtaining an understanding of the virus-host interaction is important for developing new intervention strategies. In this study, a whole transcriptomic RNA-Seq method was used to characterize differentially expressed genes in pigs infected with a low pathogenic ASFV isolate, OUR T88/3 (OURT), or the highly pathogenic Georgia 2007/1 (GRG). After infection, pigs infected with OURT showed no or few clinical signs; whereas, GRG produced clinical signs consistent with acute ASF. RNA-Seq detected the expression of ASFV genes from the whole blood of the GRG, but not the OURT pigs, consistent with the pathotypes of these strains and the replication of GRG in circulating monocytes. Even though GRG and OURT possess different pathogenic properties, there was significant overlap in the most upregulated host genes. A small number of differentially expressed microRNAs were also detected in GRG and OURT pigs. These data confirm previous studies describing the response of macrophages and lymphocytes to ASFV infection, as well as reveal unique gene pathways upregulated in response to infection with GRG.
Collapse
Affiliation(s)
- Crystal Jaing
- Physical & Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, United States of America.
| | - Raymond R R Rowland
- Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, Kansas, United States of America
| | - Jonathan E Allen
- Computation Directorate, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - Andrea Certoma
- CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - James B Thissen
- Physical & Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - John Bingham
- CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Brenton Rowe
- CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - John R White
- CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - James W Wynne
- CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Dayna Johnson
- CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Natasha N Gaudreault
- Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, Kansas, United States of America
| | - David T Williams
- CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia
| |
Collapse
|
49
|
Yano T, Kanoh H, Tamura A, Tsukita S. Apical cytoskeletons and junctional complexes as a combined system in epithelial cell sheets. Ann N Y Acad Sci 2017; 1405:32-43. [DOI: 10.1111/nyas.13432] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 06/12/2017] [Accepted: 06/14/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Tomoki Yano
- Laboratory of Biological Science, Graduate School of Frontier Biosciences and Graduate School of Medicine; Osaka University; Osaka Japan
| | - Hatsuho Kanoh
- Laboratory of Biological Science, Graduate School of Frontier Biosciences and Graduate School of Medicine; Osaka University; Osaka Japan
- Graduate School of Biostudies; Kyoto University; Kyoto Japan
| | - Atsushi Tamura
- Laboratory of Biological Science, Graduate School of Frontier Biosciences and Graduate School of Medicine; Osaka University; Osaka Japan
| | - Sachiko Tsukita
- Laboratory of Biological Science, Graduate School of Frontier Biosciences and Graduate School of Medicine; Osaka University; Osaka Japan
| |
Collapse
|
50
|
Feng Q, Bonder EM, Engevik AC, Zhang L, Tyska MJ, Goldenring JR, Gao N. Disruption of Rab8a and Rab11a causes formation of basolateral microvilli in neonatal enteropathy. J Cell Sci 2017; 130:2491-2505. [PMID: 28596241 DOI: 10.1242/jcs.201897] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 06/01/2017] [Indexed: 12/15/2022] Open
Abstract
Misplaced formation of microvilli to basolateral domains and intracellular inclusions in enterocytes are pathognomonic features in congenital enteropathy associated with mutation of the apical plasma membrane receptor syntaxin 3 (STX3). Although the demonstrated binding of Myo5b to the Rab8a and Rab11a small GTPases in vitro implicates cytoskeleton-dependent membrane sorting, the mechanisms underlying the microvillar location defect remain unclear. By selective or combinatory disruption of Rab8a and Rab11a membrane traffic in vivo, we demonstrate that transport of distinct cargo to the apical brush border rely on either individual or both Rab regulators, whereas certain basolateral cargos are redundantly transported by both factors. Enterocyte-specific Rab8a and Rab11a double-knockout mouse neonates showed immediate postnatal lethality and more severe enteropathy than single knockouts, with extensive formation of microvilli along basolateral surfaces. Notably, following an inducible Rab11a deletion from neonatal enterocytes, basolateral microvilli were induced within 3 days. These data identify a potentially important and distinct mechanism for a characteristic microvillus defect exhibited by enterocytes of patients with neonatal enteropathy.
Collapse
Affiliation(s)
- Qiang Feng
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| | - Edward M Bonder
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| | - Amy C Engevik
- Department of Surgery, and Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Lanjing Zhang
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA.,Department of Pathology, University Medical Center of Princeton, Plainsboro, NJ 08536, USA.,Rutgers Cancer Institute of New Jersey, Rutgers University, Piscataway, NJ 08903, USA
| | - Matthew J Tyska
- Department of Cell & Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - James R Goldenring
- Department of Surgery, and Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.,Department of Cell & Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.,Nashville VA Medical Center, Vanderbilt University, Nashville, TN 37232, USA
| | - Nan Gao
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA .,Rutgers Cancer Institute of New Jersey, Rutgers University, Piscataway, NJ 08903, USA
| |
Collapse
|