1
|
Yan W, Shi X, Zhao Y, Liu X, Jia X, Gao L, Yuan J, Liao A, Yasui H, Wang X, Wang X, Zhang R, Wang H. Microbiota-reprogrammed phosphatidylcholine inactivates cytotoxic CD8 T cells through UFMylation via exosomal SerpinB9 in multiple myeloma. Nat Commun 2025; 16:2863. [PMID: 40128181 PMCID: PMC11933704 DOI: 10.1038/s41467-025-57966-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 03/09/2025] [Indexed: 03/26/2025] Open
Abstract
Gut microbiome influences tumorigenesis and tumor progression through regulating the tumor microenvironment (TME) and modifying blood metabolites. However, the mechanisms by which gut microbiome and blood metabolites regulate the TME in multiple myeloma (MM) remain unclear. By employing16S rRNA gene sequencing coupled with metagenomics and ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry, we find that Lachnospiraceae are high and phosphatidylcholine (PC) are low in MM patients. We further show that Lachnospiraceae inhibits PC production from MM cells and enhances cytotoxic CD8 T cell function. Mechanistically, PC promotes Sb9 mRNA maturation in MM cells by LIN28A/B via lysophosphatidic acid, thus enhances exosamal Sb9 production. Exosamal Sb9 then reduces GZMB expression by suppressing tumor protein p53 (TP53) UFMylation via the competitive binding of TP53 with the ubiquitin-fold modifier conjugating enzyme 1 in CD8 T cells. We thus show that Lachnospiraceae and PC may be potential therapeutic targets for MM treatment.
Collapse
Affiliation(s)
- Wei Yan
- Department of Hematology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Xue Shi
- Department of Hematology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Yun Zhao
- Department of Radiology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Xiaoyu Liu
- Department of Hematology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Xueming Jia
- Department of Hematology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Le Gao
- Department of Hematology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Jiahe Yuan
- Department of Hematology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Aijun Liao
- Department of Hematology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Hiroshi Yasui
- Department of Hematology and Oncology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Xiaobin Wang
- Center for Reproductive Medicine, Shengjing Hospital, China Medical University, Shenyang, China.
| | - Xiaotian Wang
- Department of Urology, Shengjing Hospital, China Medical University, Shenyang, China.
| | - Rui Zhang
- Department of Hematology, The First Affiliated Hospital, China Medical University, Shenyang, China.
| | - Huihan Wang
- Department of Hematology, Shengjing Hospital, China Medical University, Shenyang, China.
| |
Collapse
|
2
|
Duan X, Zhang Q, Gao L, Ling B, Du X, Chen L. ERK phosphorylates ESRRB to regulate the self-renewal and differentiation of mouse embryonic stem cells. Stem Cell Reports 2025; 20:102397. [PMID: 39919750 PMCID: PMC11960530 DOI: 10.1016/j.stemcr.2025.102397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 01/06/2025] [Accepted: 01/06/2025] [Indexed: 02/09/2025] Open
Abstract
MEK (mitogen-activated protein kinase) inhibitor is widely used for culturing pluripotent stem cells, while prolonged MEK inhibition compromises the developmental potential of mouse embryonic stem cells (ESCs), implying a dual role of MEK/ERK (extracellular signal-regulated kinase) signaling in pluripotency maintenance. To better understand the mechanism of MEK/ERK in pluripotency maintenance, we performed quantitative phosphoproteomic analysis and identified 169 ERK substrates, which are enriched for proteins involved in stem cell population maintenance, embryonic development, and mitotic cell cycle. Next, we demonstrated that ERK phosphorylates a well-known pluripotency factor ESRRB on Serine 42 and 43. Dephosphorylation of ESRRB facilitates its binding to pluripotency genes, thus enhancing its activity to maintain pluripotency. In contrast, phosphorylation of ESRRB increases its binding to extraembryonic endoderm (XEN) genes, consequently promoting XEN differentiation of ESCs. Altogether, our study reveals that ERK may regulate ESC self-renewal and differentiation by phosphorylating multiple substrates, including ESRRB, which affects both ESC self-renewal and XEN differentiation.
Collapse
Affiliation(s)
- Xiaowei Duan
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Qingye Zhang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Lulu Gao
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Bin Ling
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xiaoling Du
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Lingyi Chen
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|
3
|
Cotino-Nájera S, García-Villa E, Cruz-Rosales S, Gariglio P, Díaz-Chávez J. Resveratrol inhibits Lin28A expression and induces its degradation via the proteasomal pathway in NCCIT cells. Oncol Lett 2024; 28:577. [PMID: 39397804 PMCID: PMC11467847 DOI: 10.3892/ol.2024.14710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/14/2024] [Indexed: 10/15/2024] Open
Abstract
Lin28A is an oncoprotein overexpressed in several cancer types such as testicular, ovarian, colon, breast and lung cancers. As a pluripotency factor that promotes tumorigenesis, Lin28A is associated with more undifferentiated and aggressive tumors phenotypes. Moreover, Lin28A is a highly stable protein that is difficult to downregulate. The compound resveratrol (RSV) has anticancer effects. The present study aimed to elucidate the mechanisms underlying the downregulation of Lin28A protein expression by RSV in the NCCIT cell line. NCCIT cells were treated with different concentrations of RSV to investigate its effects on Lin28A expression. The mRNA expression levels of Lin28A and ubiquitin-specific protease 28 (USP28) were assessed using reverse transcription-quantitative PCR. Western blot analysis was employed to evaluate the protein levels of Lin28A, USP28 and phosphorylated Lin28A. In addition, in some experiments, cells were treated with a MAPK/ERK pathway inhibitor, and other experiments involved transfecting cells with small interfering RNAs targeting USP28. The results demonstrated that RSV significantly reduced Lin28A expression by destabilizing the protein; this effect was mediated by the ability of RSV to suppress the expression of USP28, a deubiquitinase that normally protects Lin28A from ubiquitination and degradation. Additionally, RSV inhibited phosphorylation of Lin28A via the MAPK/ERK pathway; this phosphorylation event has previously been shown to enhance the stability of Lin28A by increasing its half-life. This resulted in Lin28A degradation through the proteasomal pathway in NCCIT cells. The results provide further evidence of the anticancer activity of RSV, and identified Lin28A and USP28 as promising therapeutic targets. As a stable oncoprotein, downregulating Lin28A expression is challenging. However, the present study demonstrated that RSV can overcome this hurdle by inhibiting USP28 expression and MAPK/ERK signaling to promote Lin28A degradation. Furthermore, elucidating these mechanisms provides avenues for developing targeted cancer therapies.
Collapse
Affiliation(s)
- Sandra Cotino-Nájera
- Department of Genetics and Molecular Biology, Center for Research and Advanced Studies of The National Polytechnic Institute, Mexico City 07360, Mexico
| | - Enrique García-Villa
- Department of Genetics and Molecular Biology, Center for Research and Advanced Studies of The National Polytechnic Institute, Mexico City 07360, Mexico
| | - Samantha Cruz-Rosales
- Department of Genetics and Molecular Biology, Center for Research and Advanced Studies of The National Polytechnic Institute, Mexico City 07360, Mexico
| | - Patricio Gariglio
- Department of Genetics and Molecular Biology, Center for Research and Advanced Studies of The National Polytechnic Institute, Mexico City 07360, Mexico
| | - José Díaz-Chávez
- Biomedical Cancer Research Unit, Biomedical Research Institute, National Autonomous University of Mexico/National Cancer Institute, Mexico City 14080, Mexico
- Department of Cellular Biology, Faculty of Sciences, National Autonomous University of Mexico, Mexico City 04510, Mexico
- School of Medicine and Health Sciences, Monterrey Institute of Technology, Mexico City 14380, Mexico
| |
Collapse
|
4
|
Cotino‐Nájera S, García‐Villa E, Cruz‐Rosales S, Gariglio P, Díaz‐Chávez J. The role of Lin28A and Lin28B in cancer beyond Let-7. FEBS Lett 2024; 598:2963-2979. [PMID: 39152528 PMCID: PMC11665955 DOI: 10.1002/1873-3468.15004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/02/2024] [Accepted: 07/21/2024] [Indexed: 08/19/2024]
Abstract
Lin28A and Lin28B are paralogous RNA-binding proteins that play fundamental roles in development and cancer by regulating the microRNA family of tumor suppressor Let-7. Although Lin28A and Lin28B share some functional similarities with Let-7 inhibitors, they also have distinct expression patterns and biological functions. Increasing evidence indicates that Lin28A and Lin28B differentially impact cancer stem cell properties, epithelial-mesenchymal transition, metabolic reprogramming, and other hallmarks of cancer. Therefore, it is important to understand the overexpression of Lin28A and Lin28B paralogs in specific cancer contexts. In this review, we summarize the main similarities and differences between Lin28A and Lin28B, their implications in different cellular processes, and their role in different types of cancer. In addition, we provide evidence of other specific targets of each lin28 paralog, as well as the lncRNAs and miRNAs that promote or inhibit its expression, and how this impacts cancer development and progression.
Collapse
Affiliation(s)
- Sandra Cotino‐Nájera
- Departamento de Genética y Biología MolecularCentro de Investigación y de Estudios Avanzados (CINVESTAV)Mexico CityMexico
| | - Enrique García‐Villa
- Departamento de Genética y Biología MolecularCentro de Investigación y de Estudios Avanzados (CINVESTAV)Mexico CityMexico
| | - Samantha Cruz‐Rosales
- Departamento de Genética y Biología MolecularCentro de Investigación y de Estudios Avanzados (CINVESTAV)Mexico CityMexico
| | - Patricio Gariglio
- Departamento de Genética y Biología MolecularCentro de Investigación y de Estudios Avanzados (CINVESTAV)Mexico CityMexico
| | - José Díaz‐Chávez
- Departamento de Biología Celular, Facultad de CienciasUNAMMexico CityMexico
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones BiomédicasUNAM/Instituto Nacional de CancerologíaMexico CityMexico
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la SaludMexico
| |
Collapse
|
5
|
Hassan A, Hassanein SE, Elabsawy EA. In silico exploration of phytochemicals as inhibitors for acute myeloid leukemia by targeting LIN28A gene: A cheminformatics study. Comput Biol Med 2024; 183:109286. [PMID: 39504779 DOI: 10.1016/j.compbiomed.2024.109286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/06/2024] [Accepted: 10/14/2024] [Indexed: 11/08/2024]
Abstract
BACKGROUND Recent discoveries have illustrated that Lin28A is an oncogene in various cancers, particularly acute myeloid leukemia (AML). The upregulation of Lin28A can actively contribute to tumorigenesis and migration processes in multiple organs. Hence, the inhibition of Lin28A can be achieved by applying phytochemical herbals and targeting Lin28A protein using a computer-aided drug design (CAAD) approach. METHODS In this study, we comprehensively applied several bioinformatics tools, including gene ontologies, gene enrichment analysis, and protein-protein interactions (PPI), to determine the biological pathways, functional gene ontology, and biological pathway. Furthermore, we investigated a list of phytochemical herbs as a candidate drug by applying a computation technique involving molecular docking, density functional theory (DFT), molecular dynamics simulation (MDs), and pharmacokinetic and physiochemical properties by applying the SwissADME, pkCSM, and Molsoft LLC web-servers. RESULTS The Lin28A gene is related to two significant enrichment pathways, including proteoglycans in cancer and the pluripotency of stem cells through interactions with different genes such as MAPK12, MYC, MTOR, and PIK3CA. Interestingly, limonin, 18β Glycyrrhetic Acid, and baicalein have the highest binding energy scores of -8.4, -8.2, and -7.3 kcal/mol, respectively. The DFT study revealed that baicalein has a higher reactivity than limonin and 18β-Glycyrrhetic due to a small energy gap between LUMO and HUMO. Molecular dynamics simulation exhibited that baicalein complex with Lin28A protein is more stable than other complexes during simulation time due to low fluctuation with simulation periods as compared with other complexes, which indicated that baicalein was more fitting to docking and combining in the protein cave because of the largest number of H-bonds available for the docking simulation process. Furthermore, the drug-likeness and ADMET profiles revealed the activity of limonin, baicalein, and 18β-glycyrrhizic Acid, which possess significant inhibiting Lin28A proteins. CONCLUSION This study elucidated that baicalein, 18β-glycyrrhizic, and limonin may be applied as potential candidates for targeting Lin28A as an active oncogene for acute myeloid leukemia.
Collapse
Affiliation(s)
- Amr Hassan
- Department of Bioinformatics, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City, Sadat, 32897, Egypt.
| | - Sameh E Hassanein
- Agricultural Genetic Engineering Research Institute (AGERI), Agriculture Research Center (ARC), Giza, Egypt; Bioinformatics Program, School of Biotechnology, Nile University, Giza, Egypt
| | - Elsayed A Elabsawy
- Department of Bioinformatics, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City, Sadat, 32897, Egypt
| |
Collapse
|
6
|
Yang Y, He R, Li D, Mu T, Kuang Z, Wang M. The pivotal role of ZNF384: driving the malignant behavior of serous ovarian cancer cells via the LIN28B/UBD axis. Cell Biol Toxicol 2024; 40:100. [PMID: 39562372 PMCID: PMC11576860 DOI: 10.1007/s10565-024-09938-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 10/16/2024] [Indexed: 11/21/2024]
Abstract
Zinc finger protein 384 (ZNF384) is a highly conserved transcribed gene associated with the development of multiple tumors, however, its role and mechanism in serous ovarian cancer (SOC) are unknown. We first confirmed that ZNF384 was abnormally highly expressed in SOC tissues by bioinformatics analysis and immunohistochemistry. We further used lentivirus packaging and transfection techniques to construct ZNF384 overexpression or knockdown cell lines, and through a series of cell function experiments, gradually verified that ZNF384 promoted a series of malignant behaviors of SOC cell proliferation, migration, and invasion. By establishing a xenotransplantation model in nude mice, it was confirmed that ZNF384 promoted the progress of SOC in vivo. Mechanistically, Overexpression of ZNF384 enhanced the transcriptional activity of Lin-28 homolog B (LIN28B), which promoted the malignant behavior of SOC cells. In addition, LIN28B could regulate the expression of the downstream factor ubiquitin D (UBD) in SOC cells, further promoting the development of SOC. This study shows that ZNF384 aggravates the malignant behavior of SOC cells through the LIN28B/UBD axis, which may be used as a diagnostic biomarker for patients with SOC.
Collapse
Affiliation(s)
- Ye Yang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Runze He
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Dongxiao Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Tianli Mu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Ziteng Kuang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Min Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China.
| |
Collapse
|
7
|
Modic M, Kuret K, Steinhauser S, Faraway R, van Genderen E, Ruiz de Los Mozos I, Novljan J, Vičič Ž, Lee FCY, Ten Berge D, Luscombe NM, Ule J. Poised PABP-RNA hubs implement signal-dependent mRNA decay in development. Nat Struct Mol Biol 2024; 31:1439-1447. [PMID: 39054355 PMCID: PMC11402784 DOI: 10.1038/s41594-024-01363-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 06/28/2024] [Indexed: 07/27/2024]
Abstract
Signaling pathways drive cell fate transitions largely by changing gene expression. However, the mechanisms for rapid and selective transcriptome rewiring in response to signaling cues remain elusive. Here we use deep learning to deconvolve both the sequence determinants and the trans-acting regulators that trigger extracellular signal-regulated kinase (ERK)-mitogen-activated protein kinase kinase (MEK)-induced decay of the naive pluripotency mRNAs. Timing of decay is coupled to embryo implantation through ERK-MEK phosphorylation of LIN28A, which repositions pLIN28A to the highly A+U-rich 3' untranslated region (3'UTR) termini of naive pluripotency mRNAs. Interestingly, these A+U-rich 3'UTR termini serve as poly(A)-binding protein (PABP)-binding hubs, poised for signal-induced convergence with LIN28A. The multivalency of AUU motifs determines the efficacy of pLIN28A-PABP convergence, which enhances PABP 3'UTR binding, decreases the protection of poly(A) tails and activates mRNA decay to enable progression toward primed pluripotency. Thus, the signal-induced convergence of LIN28A with PABP-RNA hubs drives the rapid selection of naive mRNAs for decay, enabling the transcriptome remodeling that ensures swift developmental progression.
Collapse
Affiliation(s)
- Miha Modic
- The Francis Crick Institute, London, UK.
- UK Dementia Research Institute at King's College London, London, UK.
- National Institute of Chemistry, Ljubljana, Slovenia.
| | - Klara Kuret
- The Francis Crick Institute, London, UK
- National Institute of Chemistry, Ljubljana, Slovenia
- Jozef Stefan International Postgraduate School, Ljubljana, Slovenia
| | | | - Rupert Faraway
- The Francis Crick Institute, London, UK
- UK Dementia Research Institute at King's College London, London, UK
| | - Emiel van Genderen
- Department of Cell Biology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Igor Ruiz de Los Mozos
- The Francis Crick Institute, London, UK
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Jona Novljan
- National Institute of Chemistry, Ljubljana, Slovenia
| | - Žiga Vičič
- National Institute of Chemistry, Ljubljana, Slovenia
| | - Flora C Y Lee
- The Francis Crick Institute, London, UK
- UK Dementia Research Institute at King's College London, London, UK
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Derk Ten Berge
- Department of Cell Biology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Nicholas M Luscombe
- The Francis Crick Institute, London, UK
- Okinawa Institute of Science and Technology, Okinawa, Japan
| | - Jernej Ule
- The Francis Crick Institute, London, UK.
- UK Dementia Research Institute at King's College London, London, UK.
- National Institute of Chemistry, Ljubljana, Slovenia.
| |
Collapse
|
8
|
Rosenblum SL, Soueid DM, Giambasu G, Vander Roest S, Pasternak A, DiMauro EF, Simov V, Garner AL. Live cell screening to identify RNA-binding small molecule inhibitors of the pre-let-7-Lin28 RNA-protein interaction. RSC Med Chem 2024; 15:1539-1546. [PMID: 38784453 PMCID: PMC11110735 DOI: 10.1039/d4md00123k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 03/16/2024] [Indexed: 05/25/2024] Open
Abstract
Dysregulation of the networking of RNA-binding proteins (RBPs) and RNAs drives many human diseases, including cancers, and the targeting of RNA-protein interactions (RPIs) has emerged as an exciting area of RNA-targeted drug discovery. Accordingly, methods that enable the discovery of cell-active small molecule modulators of RPIs are needed to propel this emerging field forward. Herein, we describe the application of live-cell assay technology, RNA interaction with protein-mediated complementation assay (RiPCA), for high-throughput screening to identify small molecule inhibitors of the pre-let-7d-Lin28A RPI. Utilizing a combination of RNA-biased small molecules and virtual screening hits, we discovered an RNA-binding small molecule that can disrupt the pre-let-7-Lin28 interaction demonstrating the potential of RiPCA for advancing RPI-targeted drug discovery.
Collapse
Affiliation(s)
- Sydney L Rosenblum
- Program in Chemical Biology, University of Michigan 210 Washtenaw Avenue Ann Arbor MI 48109 USA
| | - Dalia M Soueid
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan 1600 Huron Parkway, NCRC B520 Ann Arbor MI 48109 USA
| | - George Giambasu
- Computational Chemistry, Merck & Co., Inc. Boston MA 02115 USA
| | - Steve Vander Roest
- Center for Chemical Genomics, Life Sciences Institute, University of Michigan 210 Washtenaw Avenue Ann Arbor MI 48109 USA
| | | | - Erin F DiMauro
- Discovery Chemistry, Merck & Co., Inc. Boston MA 02115 USA
| | - Vladimir Simov
- Discovery Chemistry, Merck & Co., Inc. Boston MA 02115 USA
| | - Amanda L Garner
- Program in Chemical Biology, University of Michigan 210 Washtenaw Avenue Ann Arbor MI 48109 USA
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan 1600 Huron Parkway, NCRC B520 Ann Arbor MI 48109 USA
| |
Collapse
|
9
|
Tan T, Gao B, Yu H, Pan H, Sun Z, Lei A, Zhang L, Lu H, Wu H, Daley GQ, Feng Y, Zhang J. Dynamic nucleolar phase separation influenced by non-canonical function of LIN28A instructs pluripotent stem cell fate decisions. Nat Commun 2024; 15:1256. [PMID: 38341436 PMCID: PMC10858886 DOI: 10.1038/s41467-024-45451-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
LIN28A is important in somatic reprogramming and pluripotency regulation. Although previous studies addressed that LIN28A can repress let-7 microRNA maturation in the cytoplasm, few focused on its role within the nucleus. Here, we show that the nucleolus-localized LIN28A protein undergoes liquid-liquid phase separation (LLPS) in mouse embryonic stem cells (mESCs) and in vitro. The RNA binding domains (RBD) and intrinsically disordered regions (IDR) of LIN28A contribute to LIN28A and the other nucleolar proteins' phase-separated condensate establishment. S120A, S200A and R192G mutations in the IDR result in subcellular mislocalization of LIN28A and abnormal nucleolar phase separation. Moreover, we find that the naive-to-primed pluripotency state conversion and the reprogramming are associated with dynamic nucleolar remodeling, which depends on LIN28A's phase separation capacity, because the LIN28A IDR point mutations abolish its role in regulating nucleolus and in these cell fate decision processes, and an exogenous IDR rescues it. These findings shed light on the nucleolar function in pluripotent stem cell states and on a non-canonical RNA-independent role of LIN28A in phase separation and cell fate decisions.
Collapse
Affiliation(s)
- Tianyu Tan
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 310000, China
| | - Bo Gao
- Department of Biophysics, and Department of Infectious Disease of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Hua Yu
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Hongru Pan
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Zhen Sun
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Anhua Lei
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Li Zhang
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Hengxing Lu
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 310000, China
| | - Hao Wu
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - George Q Daley
- Stem Cell Transplantation Program, Division of Pediatric Hematology Oncology, Boston Children's Hospital, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Yu Feng
- Department of Biophysics, and Department of Infectious Disease of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Jin Zhang
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 310000, China.
- Institute of Hematology, Zhejiang University, Hangzhou, 310058, China.
- Center of Gene/Cell Engineering and Genome Medicine, Hangzhou, 310058, China.
| |
Collapse
|
10
|
Subramanian M, Mills WT, Paranjpe MD, Onuchukwu US, Inamdar M, Maytin AR, Li X, Pomerantz JL, Meffert MK. Growth-suppressor microRNAs mediate synaptic overgrowth and behavioral deficits in Fragile X mental retardation protein deficiency. iScience 2024; 27:108676. [PMID: 38235335 PMCID: PMC10792201 DOI: 10.1016/j.isci.2023.108676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/20/2023] [Accepted: 12/05/2023] [Indexed: 01/19/2024] Open
Abstract
Abnormal neuronal and synapse growth is a core pathology resulting from deficiency of the Fragile X mental retardation protein (FMRP), but molecular links underlying the excessive synthesis of key synaptic proteins remain incompletely defined. We find that basal brain levels of the growth suppressor let-7 microRNA (miRNA) family are selectively lowered in FMRP-deficient mice and activity-dependent let-7 downregulation is abrogated. Primary let-7 miRNA transcripts are not altered in FMRP-deficiency and posttranscriptional misregulation occurs downstream of MAPK pathway induction and elevation of Lin28a, a let-7 biogenesis inhibitor. Neonatal restoration of brain let-7 miRNAs corrects hallmarks of FMRP-deficiency, including dendritic spine overgrowth and social and cognitive behavioral deficits, in adult mice. Blockade of MAPK hyperactivation normalizes let-7 miRNA levels in both brain and peripheral blood plasma from Fmr1 KO mice. These results implicate dysregulated let-7 miRNA biogenesis in the pathogenesis of FMRP-deficiency, and highlight let-7 miRNA-based strategies for future biomarker and therapeutic development.
Collapse
Affiliation(s)
- Megha Subramanian
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - William T. Mills
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Manish D. Paranjpe
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Uche S. Onuchukwu
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Manasi Inamdar
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Amanda R. Maytin
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Xinbei Li
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Joel L. Pomerantz
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mollie K. Meffert
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
11
|
Stepler KE, Hannah SC, Taneyhill LA, Nemes P. Deep Proteome of the Developing Chick Midbrain. J Proteome Res 2023; 22:3264-3274. [PMID: 37616547 DOI: 10.1021/acs.jproteome.3c00291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
The epithelial-to-mesenchymal transition (EMT) and migration of cranial neural crest cells within the midbrain are critical processes that permit proper craniofacial patterning in the early embryo. Disruptions in these processes not only impair development but also lead to various diseases, underscoring the need for their detailed understanding at the molecular level. The chick embryo has served historically as an excellent model for human embryonic development, including cranial neural crest cell EMT and migration. While these developmental events have been characterized transcriptionally, studies at the protein level have not been undertaken to date. Here, we applied mass spectrometry (MS)-based proteomics to establish a deep proteomics profile of the chick midbrain region during early embryonic development. Our proteomics method combines optimal lysis conditions, offline fractionation, separation on a nanopatterned stationary phase (μPAC) using nanoflow liquid chromatography, and detection using quadrupole-ion trap-Orbitrap tribrid high-resolution tandem MS. Identification of >5900 proteins and >450 phosphoproteins in this study marks the deepest coverage of the chick midbrain proteome to date. These proteins have known roles in pathways related to neural crest cell EMT and migration such as signaling, proteolysis/extracellular matrix remodeling, and transcriptional regulation. This study offers valuable insight into important developmental processes occurring in the midbrain region and demonstrates the utility of proteomics for characterization of tissue microenvironments during chick embryogenesis.
Collapse
Affiliation(s)
- Kaitlyn E Stepler
- Department of Chemistry & Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Seth C Hannah
- Department of Chemistry & Biochemistry, University of Maryland, College Park, Maryland 20742, United States
- Department of Animal & Avian Sciences, University of Maryland, College Park, Maryland 20742, United States
| | - Lisa A Taneyhill
- Department of Animal & Avian Sciences, University of Maryland, College Park, Maryland 20742, United States
| | - Peter Nemes
- Department of Chemistry & Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
12
|
Wang P, Liu X, Yao Z, Chen Y, Luo L, Liang K, Tan JHE, Chua MWJ, Chua YJB, Ma S, Zhang L, Ma W, Liu S, Cao W, Guo L, Guang L, Wang Y, Zhao H, Ai N, Li Y, Li C, Wang RR, Teh BT, Jiang L, Yu K, Shyh-Chang N. Lin28a maintains a subset of adult muscle stem cells in an embryonic-like state. Cell Res 2023; 33:712-726. [PMID: 37188880 PMCID: PMC10474071 DOI: 10.1038/s41422-023-00818-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 04/23/2023] [Indexed: 05/17/2023] Open
Abstract
During homeostasis and after injury, adult muscle stem cells (MuSCs) activate to mediate muscle regeneration. However, much remains unclear regarding the heterogeneous capacity of MuSCs for self-renewal and regeneration. Here, we show that Lin28a is expressed in embryonic limb bud muscle progenitors, and that a rare reserve subset of Lin28a+Pax7- skeletal MuSCs can respond to injury at adult stage by replenishing the Pax7+ MuSC pool to drive muscle regeneration. Compared with adult Pax7+ MuSCs, Lin28a+ MuSCs displayed enhanced myogenic potency in vitro and in vivo upon transplantation. The epigenome of adult Lin28a+ MuSCs showed resemblance to embryonic muscle progenitors. In addition, RNA-sequencing revealed that Lin28a+ MuSCs co-expressed higher levels of certain embryonic limb bud transcription factors, telomerase components and the p53 inhibitor Mdm4, and lower levels of myogenic differentiation markers compared to adult Pax7+ MuSCs, resulting in enhanced self-renewal and stress-response signatures. Functionally, conditional ablation and induction of Lin28a+ MuSCs in adult mice revealed that these cells are necessary and sufficient for efficient muscle regeneration. Together, our findings connect the embryonic factor Lin28a to adult stem cell self-renewal and juvenile regeneration.
Collapse
Affiliation(s)
- Peng Wang
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xupeng Liu
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ziyue Yao
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yu Chen
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lanfang Luo
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kun Liang
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jun-Hao Elwin Tan
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
- Institute of Molecular and Cell Biology, Genome Institute of Singapore, Agency for Science Technology and Research, Singapore, Singapore
- Laboratory of Cancer Therapeutics, Program in Cancer and Stem Cell Biology, Duke-National University of Singapore Medical School, Singapore, Singapore
- Laboratory of Cancer Epigenome, Division of Medical Science, National Cancer Centre Singapore, Singapore, Singapore
| | - Min-Wen Jason Chua
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
- Institute of Molecular and Cell Biology, Genome Institute of Singapore, Agency for Science Technology and Research, Singapore, Singapore
- Laboratory of Cancer Therapeutics, Program in Cancer and Stem Cell Biology, Duke-National University of Singapore Medical School, Singapore, Singapore
- Laboratory of Cancer Epigenome, Division of Medical Science, National Cancer Centre Singapore, Singapore, Singapore
| | - Yan-Jiang Benjamin Chua
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
- Institute of Molecular and Cell Biology, Genome Institute of Singapore, Agency for Science Technology and Research, Singapore, Singapore
- Laboratory of Cancer Therapeutics, Program in Cancer and Stem Cell Biology, Duke-National University of Singapore Medical School, Singapore, Singapore
- Laboratory of Cancer Epigenome, Division of Medical Science, National Cancer Centre Singapore, Singapore, Singapore
| | - Shilin Ma
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Liping Zhang
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenwu Ma
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shuqing Liu
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenhua Cao
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Luyao Guo
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lu Guang
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuefan Wang
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - He Zhao
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Na Ai
- University of Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Yun Li
- University of Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Chunwei Li
- Department of Clinical Nutrition, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ruiqi Rachel Wang
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Bin Tean Teh
- Laboratory of Cancer Therapeutics, Program in Cancer and Stem Cell Biology, Duke-National University of Singapore Medical School, Singapore, Singapore
- Laboratory of Cancer Epigenome, Division of Medical Science, National Cancer Centre Singapore, Singapore, Singapore
| | - Lan Jiang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Kang Yu
- Department of Clinical Nutrition, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ng Shyh-Chang
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
13
|
Detraux D, Caruso M, Feller L, Fransolet M, Meurant S, Mathieu J, Arnould T, Renard P. A critical role for heme synthesis and succinate in the regulation of pluripotent states transitions. eLife 2023; 12:e78546. [PMID: 37428012 PMCID: PMC10425175 DOI: 10.7554/elife.78546] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 07/08/2023] [Indexed: 07/11/2023] Open
Abstract
Using embryonic stem cells (ESCs) in regenerative medicine or in disease modeling requires a complete understanding of these cells. Two main distinct developmental states of ESCs have been stabilized in vitro, a naïve pre-implantation stage and a primed post-implantation stage. Based on two recently published CRISPR-Cas9 knockout functional screens, we show here that the exit of the naïve state is impaired upon heme biosynthesis pathway blockade, linked in mESCs to the incapacity to activate MAPK- and TGFβ-dependent signaling pathways after succinate accumulation. In addition, heme synthesis inhibition promotes the acquisition of 2 cell-like cells in a heme-independent manner caused by a mitochondrial succinate accumulation and leakage out of the cell. We further demonstrate that extracellular succinate acts as a paracrine/autocrine signal, able to trigger the 2C-like reprogramming through the activation of its plasma membrane receptor, SUCNR1. Overall, this study unveils a new mechanism underlying the maintenance of pluripotency under the control of heme synthesis.
Collapse
Affiliation(s)
- Damien Detraux
- Laboratory of Biochemistry and Cell Biology (URBC), NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur (UNamur), Namur, BelgiumNamurBelgium
- Institute for Stem Cell and Regenerative Medicine, University of WashingtonSeattleUnited States
| | - Marino Caruso
- Laboratory of Biochemistry and Cell Biology (URBC), NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur (UNamur), Namur, BelgiumNamurBelgium
| | - Louise Feller
- Laboratory of Biochemistry and Cell Biology (URBC), NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur (UNamur), Namur, BelgiumNamurBelgium
| | - Maude Fransolet
- Laboratory of Biochemistry and Cell Biology (URBC), NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur (UNamur), Namur, BelgiumNamurBelgium
| | - Sébastien Meurant
- Laboratory of Biochemistry and Cell Biology (URBC), NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur (UNamur), Namur, BelgiumNamurBelgium
| | - Julie Mathieu
- Institute for Stem Cell and Regenerative Medicine, University of WashingtonSeattleUnited States
- Department of Comparative Medicine, University of WashingtonSeattleUnited States
| | - Thierry Arnould
- Laboratory of Biochemistry and Cell Biology (URBC), NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur (UNamur), Namur, BelgiumNamurBelgium
| | - Patricia Renard
- Laboratory of Biochemistry and Cell Biology (URBC), NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur (UNamur), Namur, BelgiumNamurBelgium
| |
Collapse
|
14
|
Krawczyk A, Strzałka-Mrozik B, Juszczyk K, Kimsa-Dudek M, Wcisło-Dziadecka D, Gola J. The MAP2K2 Gene as Potential Diagnostic Marker in Monitoring Adalimumab Therapy of Psoriatic Arthritis. Curr Pharm Biotechnol 2023; 24:330-340. [PMID: 35762548 DOI: 10.2174/1389201023666220628111644] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 03/10/2022] [Accepted: 03/24/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND MAP kinases are some of the cascades that are specialized in the cell's response to external stimuli. Their impaired functioning can be observed during the course of psoriatic arthritis. Currently, the best-known class of biological drugs is the inhibitors of the proinflammatory cytokine TNF-α, including adalimumab. OBJECTIVE The aim of this study was to assess changes in the expression of MAP kinase genes in patients with psoriatic arthritis treated with adalimumab, as well as to determine which of the analyzed transcripts could be used as a diagnostic or therapeutic target. METHODS An analysis was performed on the total RNA extracted from PBMCs of patients with psoriatic arthritis before and after three months of adalimumab therapy as well as from a control group. Changes in the expression of the mitogen-activated protein kinase genes were assessed using the HG-U133A 2.0 oligonucleotide microarray method, while the obtained results were validated using the real-time RT-qPCR method. RESULTS Using the oligonucleotide microarray method, 14 genes coded for proteins from the MAPK group were identified with at least a two-fold change of expression in the control group and during adalimumab therapy. Validation of the results confirmed a statistically significant decrease in the transcriptional activity of the MAP2K2 gene in the group of patients three months after the administration of adalimumab relative to the control group. CONCLUSION Adalimumab therapy alters the expression of MAPK-coding genes. The assessment of the number of MAP2K2 mRNA molecules can potentially be used in diagnostic analyses or in monitoring adalimumab therapy.
Collapse
Affiliation(s)
- Agata Krawczyk
- Department of Nutrigenomics and Bromatology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Sosnowiec, Poland
| | - Barbara Strzałka-Mrozik
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Sosnowiec, Poland
| | - Karol Juszczyk
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Sosnowiec, Poland
| | - Magdalena Kimsa-Dudek
- Department of Nutrigenomics and Bromatology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Sosnowiec, Poland
| | - Dominika Wcisło-Dziadecka
- Department of Cosmetology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Sosnowiec, Poland
| | - Joanna Gola
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Sosnowiec, Poland
| |
Collapse
|
15
|
Lekka E, Kokanovic A, Mosole S, Civenni G, Schmidli S, Laski A, Ghidini A, Iyer P, Berk C, Behera A, Catapano CV, Hall J. Pharmacological inhibition of Lin28 promotes ketogenesis and restores lipid homeostasis in models of non-alcoholic fatty liver disease. Nat Commun 2022; 13:7940. [PMID: 36572670 PMCID: PMC9792516 DOI: 10.1038/s41467-022-35481-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 12/06/2022] [Indexed: 12/27/2022] Open
Abstract
Lin28 RNA-binding proteins are stem-cell factors that play key roles in development. Lin28 suppresses the biogenesis of let-7 microRNAs and regulates mRNA translation. Notably, let-7 inhibits Lin28, establishing a double-negative feedback loop. The Lin28/let-7 axis resides at the interface of metabolic reprogramming and oncogenesis and is therefore a potential target for several diseases. In this study, we use compound-C1632, a drug-like Lin28 inhibitor, and show that the Lin28/let-7 axis regulates the balance between ketogenesis and lipogenesis in liver cells. Hence, Lin28 inhibition activates synthesis and secretion of ketone bodies whilst suppressing lipogenesis. This occurs at least partly via let-7-mediated inhibition of nuclear receptor co-repressor 1, which releases ketogenesis gene expression mediated by peroxisome proliferator-activated receptor-alpha. In this way, small-molecule Lin28 inhibition protects against lipid accumulation in multiple cellular and male mouse models of hepatic steatosis. Overall, this study highlights Lin28 inhibitors as candidates for the treatment of hepatic disorders of abnormal lipid deposition.
Collapse
Affiliation(s)
- Evangelia Lekka
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Aleksandra Kokanovic
- Tumor Biology and Experimental Therapeutics, Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), Bellinzona, Switzerland
| | - Simone Mosole
- Tumor Biology and Experimental Therapeutics, Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), Bellinzona, Switzerland
| | - Gianluca Civenni
- Tumor Biology and Experimental Therapeutics, Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), Bellinzona, Switzerland
| | - Sandro Schmidli
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Artur Laski
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Alice Ghidini
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Pavithra Iyer
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Christian Berk
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Alok Behera
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Carlo V Catapano
- Tumor Biology and Experimental Therapeutics, Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), Bellinzona, Switzerland.
| | - Jonathan Hall
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
16
|
Hasani Fard AH, Valizadeh M, Mazaheri Z, Hosseini SJ. MiR-106b-5p Regulates the Reprogramming of Spermatogonial Stem Cells into iPSC (Induced Pluripotent Stem Cell)-Like Cells. IRANIAN BIOMEDICAL JOURNAL 2022; 26:291-300. [PMID: 35791490 PMCID: PMC9432470 DOI: 10.52547/ibj.3594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 01/05/2022] [Indexed: 11/18/2022]
Abstract
Background Recent years have brought notable progress in raising the efficiency of the reprogramming technique so that approaches have evolved from known transgenic factors to only a few miRNAs. Nevertheless, there is a poor understanding of both the key factors and biological networks underlying this reprogramming. The present study aimed to investigate the potential of miR-106b-5p in regulating spermatogonial stem cells (SSCs) to induced pluripotent stem cell (iPSC)-like cells. Methods We used SSCs because pluripotency is inducible in SSCs under defined culture conditions, and they have a few issues compared to other adult stem cells. As both signaling and post-transcriptional gene controls are critical for pluripotency regulation, we traced the expression of Oct-4, Sox-2, Klf-4, c-Myc, and Nanog (OSKMN). Besides, we considered miR-106b-5p targets using bioinformatic methods. Results Our results showed that transfected SSCs with miR-106b-5p increased the expression of the OSKMN factors, which was significantly more than negative control groups. Moreover, using the functional miRNA enrichment analysis, online tools, and databases, we predicted that miR-106b-5p targeted a signaling pathway gene named MAPK1/ERK2, related to regulating stem cell pluripotency. Conclusion Together, our data suggest that miR-106b-5p regulates the reprogramming of SSCs into iPSC-like cells. Furthermore, noteworthy progress in the in vitro development of SSCs indicates promise reservoirs and opportunities for future clinical trials.
Collapse
Affiliation(s)
- Amir Hossein Hasani Fard
- Men’s Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahmoud Valizadeh
- Men’s Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zohreh Mazaheri
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyed Jalil Hosseini
- Men’s Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
LIN28 Family in Testis: Control of Cell Renewal, Maturation, Fertility and Aging. Int J Mol Sci 2022; 23:ijms23137245. [PMID: 35806250 PMCID: PMC9266904 DOI: 10.3390/ijms23137245] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/20/2022] [Accepted: 06/25/2022] [Indexed: 12/12/2022] Open
Abstract
Male reproductive development starts early in the embryogenesis with somatic and germ cell differentiation in the testis. The LIN28 family of RNA-binding proteins promoting pluripotency has two members—LIN28A and LIN28B. Their function in the testis has been investigated but many questions about their exact role based on the expression patterns remain unclear. LIN28 expression is detected in the gonocytes and the migrating, mitotically active germ cells of the fetal testis. Postnatal expression of LIN28 A and B showed differential expression, with LIN28A expressed in the undifferentiated spermatogonia and LIN28B in the elongating spermatids and Leydig cells. LIN28 interferes with many signaling pathways, leading to cell proliferation, and it is involved in important testicular physiological processes, such as cell renewal, maturation, fertility, and aging. In addition, aberrant LIN28 expression is associated with testicular cancer and testicular disorders, such as hypogonadotropic hypogonadism and Klinefelter’s syndrome. This comprehensive review encompasses current knowledge of the function of LIN28 paralogs in testis and other tissues and cells because many studies suggest LIN28AB as a promising target for developing novel therapeutic agents.
Collapse
|
18
|
Weissman R, Diamond EL, Haroche J, Durham BH, Cohen F, Buthorn J, Amoura Z, Emile JF, Mazor RD, Shomron N, Abdel-Wahab OI, Shpilberg O, Hershkovitz-Rokah O. MicroRNA-15a-5p acts as a tumor suppressor in histiocytosis by mediating CXCL10-ERK-LIN28a-let-7 axis. Leukemia 2022; 36:1139-1149. [PMID: 34785791 PMCID: PMC8979810 DOI: 10.1038/s41375-021-01472-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 10/29/2021] [Accepted: 11/04/2021] [Indexed: 01/18/2023]
Abstract
Erdheim-Chester disease (ECD) is characterized by excessive production and accumulation of histiocytes within multiple tissues and organs. ECD patients harbor recurrent mutations of genes associated with the RAS/RAF/MEK/ERK signaling pathway, particularly, the BRAFV600E mutation. Following our previous finding that miR-15a-5p is the most prominently downregulated microRNA in ECD patients compared to healthy individuals, we elucidated its role in ECD pathogenesis. Bioinformatics analysis followed by a luciferase assay showed that chemokine ligand 10 (CXCL10) is a target gene regulated by miRNA-15a-5p. This was confirmed in 24/34 ECD patients that had low expression of miR-15a-5p concurrent with upregulated CXCL10. Overexpression of miR-15a-5p in cell lines harboring BRAF or RAS mutations (Ba/F3, KG-1a and OCI-AML3) resulted in CXCL10 downregulation, followed by LIN28a and p-ERK signaling downregulation and let-7 family upregulation. Overexpression of miR-15a-5p inhibited cell growth and induced apoptosis by decreasing Bcl-2 and Bcl-xl levels. Analysis of sequential samples from 7 ECD patients treated with MAPK inhibitors (vemurafenib/cobimetinib) for 4 months showed miR-15a-5p upregulation and CXCL10 downregulation. Our findings suggest that miR-15a-5p is a tumor suppressor in ECD through the CXCL10-ERK-LIN28a-let7 axis, highlighting another layer of post-transcriptional regulation in this disease. Upregulation of miR-15a-5p in ECD patients may have a potential therapeutic role.
Collapse
Affiliation(s)
- Ran Weissman
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ariel, Israel
- Translational Research Lab, Assuta Medical Centers, Tel-Aviv, Israel
| | - Eli L Diamond
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Julien Haroche
- Service de Médecine Interne, Hôpital Universitaire Pitié Salpêtrière - Charles Foix, Sorbonne Université, Faculté de Médecine, Paris, France
| | - Benjamin H Durham
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Fleur Cohen
- Service de Médecine Interne, Hôpital Universitaire Pitié Salpêtrière - Charles Foix, Sorbonne Université, Faculté de Médecine, Paris, France
| | - Justin Buthorn
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zahir Amoura
- Service de Médecine Interne, Hôpital Universitaire Pitié Salpêtrière - Charles Foix, Sorbonne Université, Faculté de Médecine, Paris, France
| | - Jean-François Emile
- Research Unit EA4340, Versailles University, Paris-Saclay University, Boulogne, France
- Pathology Department, Ambroise Paré Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Boulogne, France
| | - Roei D Mazor
- Institute of Hematology/Clinic of Histiocytic Neoplasms, Assuta Medical Centers, Tel-Aviv, Israel
| | - Noam Shomron
- Faculty of Medicine and Edmond J. Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv, Israel
| | - Omar I Abdel-Wahab
- Research Unit EA4340, Versailles University, Paris-Saclay University, Boulogne, France
| | - Ofer Shpilberg
- Translational Research Lab, Assuta Medical Centers, Tel-Aviv, Israel
- Institute of Hematology/Clinic of Histiocytic Neoplasms, Assuta Medical Centers, Tel-Aviv, Israel
- Adelson School of Medicine, Ariel University, Ariel, Israel
| | - Oshrat Hershkovitz-Rokah
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ariel, Israel.
- Translational Research Lab, Assuta Medical Centers, Tel-Aviv, Israel.
| |
Collapse
|
19
|
Sart S, Yuan X, Jeske R, Li Y. Engineering exosomal microRNAs in human pluripotent stem cells. MOLECULAR PLAYERS IN IPSC TECHNOLOGY 2022:1-27. [DOI: 10.1016/b978-0-323-90059-1.00014-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
20
|
Divisato G, Piscitelli S, Elia M, Cascone E, Parisi S. MicroRNAs and Stem-like Properties: The Complex Regulation Underlying Stemness Maintenance and Cancer Development. Biomolecules 2021; 11:biom11081074. [PMID: 34439740 PMCID: PMC8393604 DOI: 10.3390/biom11081074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/13/2021] [Accepted: 07/19/2021] [Indexed: 12/12/2022] Open
Abstract
Embryonic stem cells (ESCs) have the extraordinary properties to indefinitely proliferate and self-renew in culture to produce different cell progeny through differentiation. This latter process recapitulates embryonic development and requires rounds of the epithelial-mesenchymal transition (EMT). EMT is characterized by the loss of the epithelial features and the acquisition of the typical phenotype of the mesenchymal cells. In pathological conditions, EMT can confer stemness or stem-like phenotypes, playing a role in the tumorigenic process. Cancer stem cells (CSCs) represent a subpopulation, found in the tumor tissues, with stem-like properties such as uncontrolled proliferation, self-renewal, and ability to differentiate into different cell types. ESCs and CSCs share numerous features (pluripotency, self-renewal, expression of stemness genes, and acquisition of epithelial-mesenchymal features), and most of them are under the control of microRNAs (miRNAs). These small molecules have relevant roles during both embryogenesis and cancer development. The aim of this review was to recapitulate molecular mechanisms shared by ESCs and CSCs, with a special focus on the recently identified classes of microRNAs (noncanonical miRNAs, mirtrons, isomiRs, and competitive endogenous miRNAs) and their complex functions during embryogenesis and cancer development.
Collapse
|
21
|
Zhang R, Liu P, Zhang X, Ye Y, Yu J. Lin28A promotes the proliferation and stemness of lung cancer cells via the activation of mitogen-activated protein kinase pathway dependent on microRNA let-7c. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:982. [PMID: 34277782 PMCID: PMC8267304 DOI: 10.21037/atm-21-2124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 06/04/2021] [Indexed: 12/20/2022]
Abstract
Background Among patients with lung cancer, metastatic and relapsed cases account for the largest proportion of disease-associated deaths. Tumor metastasis and relapse are believed to originate from cancer stem cells (CSCs), which have the capacity to be highly proliferative and invasive. In our previous studies, we established a conditional basement membrane extract-based (BME-based) 3-dimensional (3D) culture system to mimic the tumor growth environment in vivo and further amplified lung cancer stem cells (LCSCs) in our system. However, the molecular mechanisms of LCSC amplification and development in our 3D culture system have not been fully uncovered. Method We established the conditional 3D culture system to amplify LCSCs in other lung cancer cell lines, followed by examining the expression of Lin28A and let-7 microRNAs in them. We also explored the expression of Lin28A and let-7 microRNAs in LCSCs from clinical lung cancer tissue samples and even analyzed the correlation of Lin28A/let-7c and patients’ survival outcomes. We further constructed A549 cells either knockdown of Lin28A or overexpression of let-7c, followed by investigating stemness marker gene expression, and stemness phenotypes including mammosphere culture, cell migration and invasion in vitro, as well as tumorigenicity in vivo. Results Here, we observed that Lin28A/let-7c was dysregulated in LCSCs in both the 3D culture system and lung cancer tissues. Further, the abnormal expression of Lin28A/let-7c was correlated with poor survival outcomes. Via the construction of A549 cells with let-7c over-expression, we found that let-7c inhibited the maintenance of LCSC properties, while the results of Lin28A knockdown showed that Lin28A played a critical role in the enrichment and proliferation of LCSCs via mitogen-activated protein kinase (MAPK) signaling pathway. Importantly, we found that LCSCs with knockdown of Lin28A or over-expression of let-7c exhibited inhibited carcinogenesis and disrupted expansion in vivo. Conclusions Our study uncovered the functions and mechanisms of the Lin28A/let-7c/MAPK signaling pathway in promoting the proliferation and cancer stemness of LCSCs, which might be a potential therapeutic target for reducing and even eliminating LCSCs in the future.
Collapse
Affiliation(s)
- Rui Zhang
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Pengpeng Liu
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Xiao Zhang
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yingnan Ye
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Jinpu Yu
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
22
|
Wu XL, Zhu ZS, Xiao X, Zhou Z, Yu S, Shen QY, Zhang JQ, Yue W, Zhang R, He X, Peng S, Zhang SQ, Li N, Liao MZ, Hua JL. LIN28A inhibits DUSP family phosphatases and activates MAPK signaling pathway to maintain pluripotency in porcine induced pluripotent stem cells. Zool Res 2021; 42:377-388. [PMID: 33998185 PMCID: PMC8175949 DOI: 10.24272/j.issn.2095-8137.2020.375] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/14/2021] [Indexed: 12/14/2022] Open
Abstract
LIN28A, an RNA-binding protein, plays an important role in porcine induced pluripotent stem cells (piPSCs). However, the molecular mechanism underlying the function of LIN28A in the maintenance of pluripotency in piPSCs remains unclear. Here, we explored the function of LIN28A in piPSCs based on its overexpression and knockdown. We performed total RNA sequencing (RNA-seq) of piPSCs and detected the expression levels of relevant genes by quantitative real-time polymerase chain reaction (qRT-PCR), western blot analysis, and immunofluorescence staining. Results indicated that piPSC proliferation ability decreased following LIN28A knockdown. Furthermore, when LIN28A expression in the shLIN28A2 group was lower (by 20%) than that in the negative control knockdown group ( shNC), the pluripotency of piPSCs disappeared and they differentiated into neuroectoderm cells. Results also showed that LIN28A overexpression inhibited the expression of DUSP (dual-specificity phosphatases) family phosphatases and activated the mitogen-activated protein kinase (MAPK) signaling pathway. Thus, LIN28A appears to activate the MAPK signaling pathway to maintain the pluripotency and proliferation ability of piPSCs. Our study provides a new resource for exploring the functions of LIN28A in piPSCs.
Collapse
Affiliation(s)
- Xiao-Long Wu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Zhen-Shuo Zhu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Xia Xiao
- College of Life Science, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Zhe Zhou
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Shuai Yu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Qiao-Yan Shen
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Ju-Qing Zhang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Wei Yue
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Rui Zhang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Xin He
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Sha Peng
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Shi-Qiang Zhang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Na Li
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A & F University, Yangling, Shaanxi 712100, China. E-mail:
| | - Ming-Zhi Liao
- College of Life Science, Northwest A & F University, Yangling, Shaanxi 712100, China. E-mail:
| | - Jin-Lian Hua
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A & F University, Yangling, Shaanxi 712100, China. E-mail:
| |
Collapse
|
23
|
Lv Y, Bu C, Meng J, Ward C, Volpe G, Hu J, Jiang M, Guo L, Chen J, Esteban MA, Bao X, Cheng Z. Global Profiling of the Lysine Crotonylome in Different Pluripotent States. GENOMICS PROTEOMICS & BIOINFORMATICS 2021; 19:80-93. [PMID: 33746086 PMCID: PMC8498919 DOI: 10.1016/j.gpb.2021.01.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 12/21/2020] [Accepted: 01/27/2021] [Indexed: 12/19/2022]
Abstract
Pluripotent stem cells (PSCs) can be expanded in vitro in different culture conditions, resulting in a spectrum of cell states with distinct properties. Understanding how PSCs transition from one state to another, ultimately leading to lineage-specific differentiation, is important for developmental biology and regenerative medicine. Although there is significant information regarding gene expression changes controlling these transitions, less is known about post-translational modifications of proteins. Protein crotonylation is a newly discovered post-translational modification where lysine residues are modified with a crotonyl group. Here, we employed affinity purification of crotonylated peptides and liquid chromatography–tandem mass spectrometry (LC–MS/MS) to systematically profile protein crotonylation in mouse PSCs in different states including ground, metastable, and primed states, as well as metastable PSCs undergoing early pluripotency exit. We successfully identified 3628 high-confidence crotonylated sites in 1426 proteins. These crotonylated proteins are enriched for factors involved in functions/processes related to pluripotency such as RNA biogenesis, central carbon metabolism, and proteasome function. Moreover, we found that increasing the cellular levels of crotonyl-coenzyme A (crotonyl-CoA) through crotonic acid treatment promotes proteasome activity in metastable PSCs and delays their differentiation, consistent with previous observations showing that enhanced proteasome activity helps to sustain pluripotency. Our atlas of protein crotonylation will be valuable for further studies of pluripotency regulation and may also provide insights into the role of metabolism in other cell fate transitions.
Collapse
Affiliation(s)
- Yuan Lv
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chen Bu
- Jingjie PTM BioLab (Hangzhou) Co. Ltd, Hangzhou 310018, China
| | - Jin Meng
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health and Guangzhou Medical University, Guangzhou 511436, China
| | - Carl Ward
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Giacomo Volpe
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Jieyi Hu
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengling Jiang
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Lin Guo
- CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Jiekai Chen
- CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China; Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health and Guangzhou Medical University, Guangzhou 511436, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
| | - Miguel A Esteban
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health and Guangzhou Medical University, Guangzhou 511436, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China; Institute of Stem Cells and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.
| | - Xichen Bao
- CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China; Laboratory of RNA Molecular Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.
| | - Zhongyi Cheng
- Jingjie PTM BioLab (Hangzhou) Co. Ltd, Hangzhou 310018, China.
| |
Collapse
|
24
|
Mills WT, Nassar NN, Ravindra D, Li X, Meffert MK. Multi-Level Regulatory Interactions between NF-κB and the Pluripotency Factor Lin28. Cells 2020; 9:E2710. [PMID: 33348917 PMCID: PMC7767241 DOI: 10.3390/cells9122710] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/22/2022] Open
Abstract
An appreciation for the complex interactions between the NF-κB transcription factor and the Lin28 RNA binding protein/let-7 microRNA pathways has grown substantially over the past decade. Both the NF-κB and Lin28/let-7 pathways are master regulators impacting cell survival, growth and proliferation, and an understanding of how interfaces between these pathways participate in governing pluripotency, progenitor differentiation, and neuroplastic responses remains an emerging area of research. In this review, we provide a concise summary of the respective pathways and focus on the function of signaling interactions at both the transcriptional and post-transcriptional levels. Regulatory loops capable of providing both reinforcing and extinguishing feedback have been described. We highlight convergent findings in disparate biological systems and indicate future directions for investigation.
Collapse
Affiliation(s)
- William T. Mills
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (W.T.M.IV); (N.N.N.); (D.R.); (X.L.)
| | - Noor N. Nassar
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (W.T.M.IV); (N.N.N.); (D.R.); (X.L.)
| | - Deepa Ravindra
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (W.T.M.IV); (N.N.N.); (D.R.); (X.L.)
| | - Xinbei Li
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (W.T.M.IV); (N.N.N.); (D.R.); (X.L.)
| | - Mollie K. Meffert
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (W.T.M.IV); (N.N.N.); (D.R.); (X.L.)
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
25
|
Weissman R, Diamond EL, Haroche J, Pillar N, Shapira G, Durham BH, Buthorn J, Cohen F, Ki M, Stemer G, Ulaner GA, Amoura Z, Emile JF, Mazor RD, Shomron N, Abdel-Wahab OI, Shpilberg O, Hershkovitz-Rokah O. The Contribution of MicroRNAs to the Inflammatory and Neoplastic Characteristics of Erdheim-Chester Disease. Cancers (Basel) 2020; 12:E3240. [PMID: 33153128 PMCID: PMC7693724 DOI: 10.3390/cancers12113240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/27/2020] [Accepted: 10/30/2020] [Indexed: 01/18/2023] Open
Abstract
The pathogenesis of histiocytic neoplasms is driven by mutations activating the MAPK/ERK pathway, but little is known about the transcriptional and post-transcriptional alterations involved in these neoplasms. We analyzed microRNA (miRNA) expression in plasma samples and tissue biopsies of Erdheim-Chester disease (ECD) and Langerhans cell histiocytosis (LCH) patients. In silico analysis revealed a potential role of miRNAs in regulating gene expression in these neoplasms as compared with healthy controls (HC). NanoString analysis revealed 101 differentially expressed plasma miRNAs in 16 ECD patients as compared with 11 HC, 95% of which were downregulated. MiRNAs-15a-5p, -15b-5p, -21-5p, -107, -221-3p, -320e, -630, and let-7 family miRNAs were further evaluated by qRT-PCR in an extended cohort of 32 ECD patients, seven LCH and 15 HC. Six miRNAs (let-7a, let-7c, miR-15a-5p, miR-15b-5p, miR-107 and miR-630) were highly expressed in LCH plasma and tissue samples as compared with ECD. Pathway enrichment analysis indicated the miRNA contribution to inflammatory and pro-survival signaling pathways. Moreover, the let-7 family members were downregulated in untreated ECD patients as compared with HC, while treatment with MAPK/ERK signaling inhibitors for 16 weeks resulted in their upregulation, which was in parallel with the radiologic response seen by PET-CT. The study highlights the potential contribution of miRNA to the inflammatory and neoplastic characteristics of ECD and LCH.
Collapse
Affiliation(s)
- Ran Weissman
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ariel 40700, Israel;
- Translational Research Lab, Assuta Medical Centers, Tel-Aviv 6971028, Israel;
| | - Eli L. Diamond
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY 10016, USA; (E.L.D.); (J.B.)
| | - Julien Haroche
- Service de Médecine Interne, Hôpital Universitaire Pitié Salpêtrière-Charles Foix, Sorbonne Université, Faculté de Médecine, 75013 Paris, France; (J.H.); (F.C.); (Z.A.)
| | - Nir Pillar
- Department of Pathology, Hadassah Medical Center and Hebrew University, Jerusalem 91120, Israel;
| | - Guy Shapira
- Edmond J. Safra Center of Bioinformatics, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; (G.S.); (N.S.)
| | - Benjamin H. Durham
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10016, USA; (B.H.D.); (M.K.); (O.I.A.-W.)
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10016; USA
| | - Justin Buthorn
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY 10016, USA; (E.L.D.); (J.B.)
| | - Fleur Cohen
- Service de Médecine Interne, Hôpital Universitaire Pitié Salpêtrière-Charles Foix, Sorbonne Université, Faculté de Médecine, 75013 Paris, France; (J.H.); (F.C.); (Z.A.)
| | - Michelle Ki
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10016, USA; (B.H.D.); (M.K.); (O.I.A.-W.)
| | - Galia Stemer
- HaEmek Medical Center, Department of Hematology, Afula 1834111, Israel;
| | - Gary A. Ulaner
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10016, USA;
| | - Zahir Amoura
- Service de Médecine Interne, Hôpital Universitaire Pitié Salpêtrière-Charles Foix, Sorbonne Université, Faculté de Médecine, 75013 Paris, France; (J.H.); (F.C.); (Z.A.)
| | - Jean-François Emile
- Research Unit EA4340, Versailles University, Paris-Saclay University, 92104 Boulogne, France;
- Pathology Department, Ambroise Paré Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), 92104 Boulogne, France
| | - Roei D. Mazor
- Assuta Medical Centers, Institute of Hematology/Clinic of Histiocytic Neoplasms, Tel-Aviv 6971028, Israel;
| | - Noam Shomron
- Edmond J. Safra Center of Bioinformatics, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; (G.S.); (N.S.)
| | - Omar I. Abdel-Wahab
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10016, USA; (B.H.D.); (M.K.); (O.I.A.-W.)
| | - Ofer Shpilberg
- Translational Research Lab, Assuta Medical Centers, Tel-Aviv 6971028, Israel;
- Assuta Medical Centers, Institute of Hematology/Clinic of Histiocytic Neoplasms, Tel-Aviv 6971028, Israel;
- Department of Medicine, Adelson School of Medicine, Ariel University, Ariel 40700, Israel
| | - Oshrat Hershkovitz-Rokah
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ariel 40700, Israel;
- Translational Research Lab, Assuta Medical Centers, Tel-Aviv 6971028, Israel;
| |
Collapse
|
26
|
Abstract
Protein-RNA interactions have crucial roles in various cellular activities, which, when dysregulated, can lead to a range of human diseases. The identification of small molecules that target the interaction between RNA-binding proteins (RBPs) and RNA is progressing rapidly and represents a novel strategy for the discovery of chemical probes that facilitate understanding of the cellular functions of RBPs and of therapeutic agents with new mechanisms of action. In this Review, I present a current overview of targeting emerging RBPs using small-molecule inhibitors and recent progress in this burgeoning field. Small-molecule inhibitors that were reported for three representative emerging classes of RBPs, the microRNA-binding protein LIN28, the single-stranded or double-stranded RNA-binding Toll-like receptors and the CRISPR-associated (Cas) proteins, are highlighted from a medicinal-chemistry and chemical-biology perspective. However, although this field is burgeoning, challenges remain in the discovery and characterization of small-molecule inhibitors of RBPs.
Collapse
|
27
|
CAIX-Mediated Control of LIN28/ let-7 Axis Contributes to Metabolic Adaptation of Breast Cancer Cells to Hypoxia. Int J Mol Sci 2020; 21:ijms21124299. [PMID: 32560271 PMCID: PMC7352761 DOI: 10.3390/ijms21124299] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/05/2020] [Accepted: 06/12/2020] [Indexed: 12/11/2022] Open
Abstract
Solid tumors, including breast cancer, are characterized by the hypoxic microenvironment, extracellular acidosis, and chemoresistance. Hypoxia marker, carbonic anhydrase IX (CAIX), is a pH regulator providing a selective survival advantage to cancer cells through intracellular neutralization while facilitating tumor invasion by extracellular acidification. The expression of CAIX in breast cancer patients is associated with poor prognosis and metastases. Importantly, CAIX-positive hypoxic tumor regions are enriched in cancer stem cells (CSCs). Here we investigated the biological effects of CA9-silencing in breast cancer cell lines. We found that CAIX-downregulation in hypoxia led to increased levels of let-7 (lethal-7) family members. Simultaneously with the increase of let-7 miRNAs in CAIX-suppressed cells, LIN28 protein levels decreased, along with downstream metabolic pathways: pyruvate dehydrogenase kinase 1 (PDK1) and phosphorylation of its substrate, pyruvate dehydrogenase (PDH) at Ser-232, causing attenuation of glycolysis. In addition to perturbed glycolysis, CAIX-knockouts, in correlation with decreased LIN28 (as CSC reprogramming factor), also exhibit reduction of the further CSC-associated markers NANOG (Homeobox protein NANOG) and ALDH1 (Aldehyde dehydrogenase isoform 1). Oppositely, overexpression of CAIX leads to the enhancement of LIN28, ALDH1, and NANOG. In conclusion, CAIX-driven regulation of the LIN28/let-7 axis augments glycolytic metabolism and enhances stem cell markers expression during CAIX-mediated adaptation to hypoxia and acidosis in carcinogenesis.
Collapse
|
28
|
Wang M, Yu L, Wang S, Yang F, Wang M, Li L, Wu X. LIN28A binds to meiotic gene transcripts and modulates their translation in male germ cells. J Cell Sci 2020; 133:jcs242701. [PMID: 32376786 DOI: 10.1242/jcs.242701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/14/2020] [Indexed: 11/20/2022] Open
Abstract
The RNA-binding protein LIN28A is required for maintaining tissue homeostasis, including in the reproductive system, but the underlying mechanisms on how LIN28A regulates germline progenitors remain unclear. Here, we dissected LIN28A-binding targets using high-throughput sequencing of RNAs isolated by crosslinking immunoprecipitation (HITS-CLIP) in the mouse testes. LIN28A preferentially binds to mRNA coding sequence (CDS) or 3'UTR regions at sites enriched with GGAG(A) sequences. Further investigation of Lin28a-null mouse testes indicated that meiosis-associated mRNAs bound by LIN28A were differentially expressed. Next, ribosome profiling revealed that the mRNA levels of these targets were significantly reduced in the polysome fractions, and their protein expression levels decreased, in Lin28a-null mouse testes, even when meiotic arrest in the null mouse testes was not apparent. Collectively, these findings provide a set of LIN28A-regulated target mRNAs, and show that LIN28A binding might be a mechanism through which LIN28A acts to regulate undifferentiated spermatogonia fates and male fertility in mammals.
Collapse
Affiliation(s)
- Mei Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Centre for Reproductive Medicine, Lianyungang Maternal and Child Health Hospital, Lianyungang, Jiangsu 222000, China
| | - Luping Yu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Shu Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Fan Yang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Min Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Lufan Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xin Wu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
29
|
Nathan FM, Ohtake Y, Wang S, Jiang X, Sami A, Guo H, Zhou FQ, Li S. Upregulating Lin28a Promotes Axon Regeneration in Adult Mice with Optic Nerve and Spinal Cord Injury. Mol Ther 2020; 28:1902-1917. [PMID: 32353321 DOI: 10.1016/j.ymthe.2020.04.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/16/2020] [Accepted: 04/09/2020] [Indexed: 12/22/2022] Open
Abstract
Severed CNS axons fail to regenerate in adult mammals and there are no effective regenerative strategies to treat patients with CNS injuries. Several genes, including phosphatase and tensin homolog (PTEN) and Krüppel-like factors, regulate intrinsic growth capacity of mature neurons. The Lin28 gene is essential for cell development and pluripotency in worms and mammals. In this study, we evaluated the role of Lin28a in regulating regenerative capacity of diverse populations of CNS neurons in adult mammals. Using a neuron-specific Thy1 promoter, we generated transgenic mice that overexpress Lin28a protein in multiple populations of projection neurons, including corticospinal tracts and retinal ganglion cells. We demonstrate that upregulation of Lin28a in transgenic mice induces significant long distance regeneration of both corticospinal axons and the optic nerve in adult mice. Importantly, overexpression of Lin28a by post-injury treatment with adeno-associated virus type 2 (AAV2) vector stimulates dramatic regeneration of descending spinal tracts and optic nerve axons after lesions. Upregulation of Lin28a also enhances activity of the Akt signaling pathway in mature CNS neurons. Therefore, Lin28a is critical for regulating growth capacity of multiple CNS neurons and may become an important molecular target for treating CNS injuries.
Collapse
Affiliation(s)
- Fatima M Nathan
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Yosuke Ohtake
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Shuo Wang
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Xinpei Jiang
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Armin Sami
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Hua Guo
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Feng-Quan Zhou
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shuxin Li
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.
| |
Collapse
|
30
|
Isoimperatorin Induces Apoptosis of Nasopharyngeal Carcinoma Cells via the MAPK/ERK1/2 Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:2138186. [PMID: 32215033 PMCID: PMC7085394 DOI: 10.1155/2020/2138186] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/24/2019] [Accepted: 01/22/2020] [Indexed: 11/29/2022]
Abstract
Objective To investigate the effect of isoimperatorin on nasopharyngeal carcinoma CNE2 cell apoptosis and the role of the MAPK/ERK1/2 signaling pathway in inducing apoptosis. Methods Real-time cellular analysis technology (RTCA) and MTT were used to detect cell proliferation; Annexin V-FITC/PI dual-fluorescence flow cytometry analysis, Hoechst 33342 staining, and mitochondrial membrane potential detection kit were used to detect cell apoptosis; western blot was used to detect protein expression. Results Different concentrations of isoimperatorin (10 μM, 20 μM, 20 μM, 20 μM, 20 μM, 20 μM, 20 μM, 20 Conclusion Isoimperatorin can induce nasopharyngeal carcinoma CNE2 cell apoptosis through the MAPK/ERK1/2 signaling pathway.
Collapse
|
31
|
Yang Z, Deng Y, Zhang K, Bai Y, Zhu J, Zhang J, Xin Y, Li L, He J, Wang W. LIN28B gene polymorphisms modify hepatoblastoma susceptibility in Chinese children. J Cancer 2020; 11:3512-3518. [PMID: 32284747 PMCID: PMC7150445 DOI: 10.7150/jca.42798] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/02/2020] [Indexed: 02/07/2023] Open
Abstract
Hepatoblastoma is one of the malignant liver tumors in children. However, genetic mechanisms underpinning the initiation of hepatoblastoma remain largely unclear. The previous study showed that lin-28 homolog B (LIN28B) might play a role in the development of hepatoblastoma. To detect the association between LIN28B gene polymorphisms and hepatoblastoma risk in Chinese children, we conducted a five-center case-control study of 275 hepatoblastoma patients and 1018 cancer-free controls. Four potentially functional polymorphisms were genotyped using the Taqman method. Odds ratios (ORs) and 95% confidence intervals (CIs) were used to evaluate the strength of the associations. We found that the rs314276 C>A polymorphism (AA vs. CC: adjusted OR=2.05, 95% CI=1.36-3.10, P=0.0006; AA vs. CA/CC: adjusted OR=2.11, 95% CI=1.43-3.12, P=0.0002) and rs9404590 T>G (GG vs. TT: adjusted OR=1.89, 95% CI=1.20-3.00, P=0.007; GG vs. TT/TG: adjusted OR=1.87, 95% CI=1.20-2.92, P=0.006) were associated with increased hepatoblastoma risk. Combination analysis of risk genotypes showed that patients with four risk genotypes had a higher chance of developing hepatoblastoma than carriers of 1 to 3 risk genotypes. Stratification analysis showed the significant association between the rs314276 AA genotype and hepatoblastoma risk in both age and sex groups, as well as clinical stages III+IV cases. The rs9404590 GG genotype was associated with hepatoblastoma risk in participants' ≥17 months, in females, and for those with clinical stages III+IV disease. Furthermore, four risk genotypes confer higher hepatoblastoma susceptibility in both age and sex groups, as well as groups with clinical stages III+IV disease. Genotype-based gene expression analysis confirmed that the rs9404590 T>G polymorphism was significantly associated with altered LIN28B gene expression. We further validated our findings using false-positive probability analysis. This finding suggested that LIN28B gene polymorphisms may be associated with an increased predisposition to hepatoblastoma.
Collapse
Affiliation(s)
- Zhonghua Yang
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Yuyao Deng
- Department of Clinical Medicine, The Fourth Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, China
| | - Keren Zhang
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Yuzuo Bai
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Jinhong Zhu
- Department of Clinical Laboratory, Biobank, Harbin Medical University Cancer Hospital, Harbin 150040, Heilongjiang, China
| | - Jiao Zhang
- Department of Pediatric Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Yijuan Xin
- Clinical Laboratory Medicine Center of PLA, Xijing Hospital, Air Force Medical University, Xi'an 710032, Shaanxi, China
| | - Li Li
- Kunming Key Laboratory of Children Infection and Immunity, Yunnan Key Laboratory of Children's Major Disease Research, Yunnan Institute of Pediatrics Research, Yunnan Medical Center for Pediatric Diseases, Kunming Children's Hospital, Kunming 650228, Yunnan, China
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Weilin Wang
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| |
Collapse
|
32
|
Budkina KS, Zlobin NE, Kononova SV, Ovchinnikov LP, Babakov AV. Cold Shock Domain Proteins: Structure and Interaction with Nucleic Acids. BIOCHEMISTRY (MOSCOW) 2020; 85:S1-S19. [DOI: 10.1134/s0006297920140011] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
33
|
Wu B, Li L, Li B, Gao J, Chen Y, Wei M, Yang Z, Zhang B, Li S, Li K, Wang C, Surani MA, Li X, Tang F, Bao S. Activin A and BMP4 Signaling Expands Potency of Mouse Embryonic Stem Cells in Serum-Free Media. Stem Cell Reports 2020; 14:241-255. [PMID: 32032551 PMCID: PMC7013251 DOI: 10.1016/j.stemcr.2020.01.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 02/06/2023] Open
Abstract
Inhibitors of Mek1/2 and Gsk3β, known as 2i, and, together with leukemia inhibitory factor, enhance the derivation of embryonic stem cells (ESCs) and promote ground-state pluripotency (2i/L-ESCs). However, recent reports show that prolonged Mek1/2 suppression impairs developmental potential of ESCs, and is rescued by serum (S/L-ESCs). Here, we show that culturing ESCs in Activin A and BMP4, and in the absence of MEK1/2 inhibitor (ABC/L medium), establishes advanced stem cells derived from ESCs (esASCs). We demonstrate that esASCs contributed to germline lineages, full-term chimeras and generated esASC-derived mice by tetraploid complementation. We show that, in contrast to 2i/L-ESCs, esASCs display distinct molecular signatures and a stable hypermethylated epigenome, which is reversible and similar to serum-cultured ESCs. Importantly, we also derived novel ASCs (blASCs) from blastocysts in ABC/L medium. Our results provide insights into the derivation of novel ESCs with DNA hypermethylation from blastocysts in chemically defined medium. Activin A and BMP4 expand potency of mouse ESCs ASCs are hypermethylated and with stable genomic imprints ASCs developmentally closed to E4.5–E6.5 in vivo epiblast Hypermethylated ASCs directly derived from blastocyst by ABC/L medium
Collapse
Affiliation(s)
- Baojiang Wu
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010070, China; Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China; Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animal, Huhhot 011517, China
| | - Lin Li
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Beijing Advanced Innovation Center for Genomics and Biomedical Pioneering Innovation Center, College of Life Sciences, Peking University, Beijing 100871, China
| | - Bojiang Li
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Junpeng Gao
- Beijing Advanced Innovation Center for Genomics and Biomedical Pioneering Innovation Center, College of Life Sciences, Peking University, Beijing 100871, China
| | - Yanglin Chen
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010070, China; Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Mengyi Wei
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010070, China; Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Zhiqing Yang
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010070, China; Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Baojing Zhang
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010070, China; Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Shudong Li
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Kexin Li
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010070, China
| | - Changshan Wang
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010070, China
| | - M Azim Surani
- Wellcome Trust Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Xihe Li
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010070, China; Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China; Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animal, Huhhot 011517, China
| | - Fuchou Tang
- Beijing Advanced Innovation Center for Genomics and Biomedical Pioneering Innovation Center, College of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China; Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China.
| | - Siqin Bao
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010070, China; Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China.
| |
Collapse
|
34
|
Liao B, Wang Z, Zhu Y, Wang M, Liu Y. Long noncoding RNA DRAIC acts as a microRNA-122 sponge to facilitate nasopharyngeal carcinoma cell proliferation, migration and invasion via regulating SATB1. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 47:3585-3597. [PMID: 31497998 DOI: 10.1080/21691401.2019.1656638] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Increasing evidences have revealed that long noncoding RNAs (lncRNAs) are frequently involved in various cancers. However, the expression and function of lncRNA DRAIC in nasopharyngeal carcinoma (NPC) remain unknown. In this study, we found that DRAIC was significantly increased in NPC tissues. Increased expression of DRAIC was positively correlated with advanced clinical stages of NPC patients. Functional assays revealed that ectopic expression of DRAIC enhances NPC cell growth, migration and invasion. DRAIC knockdown represses NPC cell growth, migration and invasion. Mechanistically, we identified two miR-122 binding sites on DRAIC. RNA pull-down, RNA immunoprecipitation, and dual-luciferase reporter assays confirmed the binding of DRAIC to miR-122. Via binding of miR-122, DRAIC upregulated the expression of miR-122 target SATB1, which was abolished by the mutation of miR-122 binding sites on SATB1. Moreover, the oncogenic roles of DRAIC on NPC were reversed by the mutation of miR-122 binding sites on SATB1, simultaneous overexpression of miR-122, or depletion of SATB1. In addition, the expression of SATB1 was also increased and positively associated with that of DRAIC in NPC tissues. In conclusion, these findings revealed the important roles of DRAIC-miR-122-SATB1 axis in NPC and suggested that DRAIC may be a potential therapeutic target for NPC.
Collapse
Affiliation(s)
- Bing Liao
- Department of Otorhinolaryngology Head and Neck Surgery, Second Affiliated Hospital of Nanchang University , Nanchang , China
| | - Zhi Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Second Affiliated Hospital of Nanchang University , Nanchang , China
| | - Yaqiong Zhu
- Department of Otorhinolaryngology Head and Neck Surgery, Second Affiliated Hospital of Nanchang University , Nanchang , China
| | - Meiqun Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Second Affiliated Hospital of Nanchang University , Nanchang , China
| | - Yuehui Liu
- Department of Otorhinolaryngology Head and Neck Surgery, Second Affiliated Hospital of Nanchang University , Nanchang , China
| |
Collapse
|
35
|
Ma H, Yu S, Liu X, Zhang Y, Fakadej T, Liu Z, Yin C, Shen W, Locasale JW, Taylor JM, Qian L, Liu J. Lin28a Regulates Pathological Cardiac Hypertrophic Growth Through Pck2-Mediated Enhancement of Anabolic Synthesis. Circulation 2020; 139:1725-1740. [PMID: 30636447 DOI: 10.1161/circulationaha.118.037803] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Hypertrophic response to pathological stimuli is a complex biological process that involves transcriptional and epigenetic regulation of the cardiac transcriptome. Although previous studies have implicated transcriptional factors and signaling molecules in pathological hypertrophy, the role of RNA-binding protein in this process has received little attention. METHODS Here we used transverse aortic constriction and in vitro cardiac hypertrophy models to characterize the role of an evolutionary conserved RNA-binding protein Lin28a in pathological cardiac hypertrophy. Next-generation sequencing, RNA immunoprecipitation, and gene expression analyses were applied to identify the downstream targets of Lin28a. Epistatic analysis, metabolic assays, and flux analysis were further used to characterize the effects of Lin28a and its downstream mediator in cardiomyocyte hypertrophic growth and metabolic remodeling. RESULTS Cardiac-specific deletion of Lin28a attenuated pressure overload-induced hypertrophic growth, cardiac dysfunction, and alterations in cardiac transcriptome. Mechanistically, Lin28a directly bound to mitochondrial phosphoenolpyruvate carboxykinase 2 ( Pck2) mRNA and increased its transcript level. Increasing Pck2 was sufficient to promote hypertrophic growth similar to that caused by increasing Lin28a, whereas knocking down Pck2 attenuated norepinephrine-induced cardiac hypertrophy. Epistatic analysis demonstrated that Pck2 mediated, at least in part, the role of Lin28a in cardiac hypertrophic growth. Furthermore, metabolomic analyses highlighted the role for Lin28a and Pck2 in promoting cardiac biosynthesis required for cell growth. CONCLUSIONS Our study demonstrates that Lin28a promotes pathological cardiac hypertrophy and glycolytic reprograming, at least in part, by binding to and stabilizing Pck2 mRNA.
Collapse
Affiliation(s)
- Hong Ma
- Department of Pathology and Laboratory Medicine (H.M., S.Y., Y.Z., T.F., Z.L., C.Y., J.M.T., L.Q., J.L.), University of North Carolina at Chapel Hill.,McAllister Heart Institute (H.M., S.Y., Y.Z., T.F., Z.L., C.Y., J.M.T., L.Q., J.L.), University of North Carolina at Chapel Hill
| | - Shuo Yu
- Department of Pathology and Laboratory Medicine (H.M., S.Y., Y.Z., T.F., Z.L., C.Y., J.M.T., L.Q., J.L.), University of North Carolina at Chapel Hill.,McAllister Heart Institute (H.M., S.Y., Y.Z., T.F., Z.L., C.Y., J.M.T., L.Q., J.L.), University of North Carolina at Chapel Hill
| | - Xiaojing Liu
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Duke University, Durham, NC (X.L., J.W.L.)
| | - Yingao Zhang
- Department of Pathology and Laboratory Medicine (H.M., S.Y., Y.Z., T.F., Z.L., C.Y., J.M.T., L.Q., J.L.), University of North Carolina at Chapel Hill.,McAllister Heart Institute (H.M., S.Y., Y.Z., T.F., Z.L., C.Y., J.M.T., L.Q., J.L.), University of North Carolina at Chapel Hill
| | - Thomas Fakadej
- Department of Pathology and Laboratory Medicine (H.M., S.Y., Y.Z., T.F., Z.L., C.Y., J.M.T., L.Q., J.L.), University of North Carolina at Chapel Hill.,McAllister Heart Institute (H.M., S.Y., Y.Z., T.F., Z.L., C.Y., J.M.T., L.Q., J.L.), University of North Carolina at Chapel Hill
| | - Ziqing Liu
- Department of Pathology and Laboratory Medicine (H.M., S.Y., Y.Z., T.F., Z.L., C.Y., J.M.T., L.Q., J.L.), University of North Carolina at Chapel Hill.,McAllister Heart Institute (H.M., S.Y., Y.Z., T.F., Z.L., C.Y., J.M.T., L.Q., J.L.), University of North Carolina at Chapel Hill
| | - Chaoying Yin
- Department of Pathology and Laboratory Medicine (H.M., S.Y., Y.Z., T.F., Z.L., C.Y., J.M.T., L.Q., J.L.), University of North Carolina at Chapel Hill.,McAllister Heart Institute (H.M., S.Y., Y.Z., T.F., Z.L., C.Y., J.M.T., L.Q., J.L.), University of North Carolina at Chapel Hill
| | - Weining Shen
- Department of Statistics, University of California at Irvine (W.S.)
| | - Jason W Locasale
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Duke University, Durham, NC (X.L., J.W.L.)
| | - Joan M Taylor
- Department of Pathology and Laboratory Medicine (H.M., S.Y., Y.Z., T.F., Z.L., C.Y., J.M.T., L.Q., J.L.), University of North Carolina at Chapel Hill.,McAllister Heart Institute (H.M., S.Y., Y.Z., T.F., Z.L., C.Y., J.M.T., L.Q., J.L.), University of North Carolina at Chapel Hill
| | - Li Qian
- Department of Pathology and Laboratory Medicine (H.M., S.Y., Y.Z., T.F., Z.L., C.Y., J.M.T., L.Q., J.L.), University of North Carolina at Chapel Hill.,McAllister Heart Institute (H.M., S.Y., Y.Z., T.F., Z.L., C.Y., J.M.T., L.Q., J.L.), University of North Carolina at Chapel Hill
| | - Jiandong Liu
- Department of Pathology and Laboratory Medicine (H.M., S.Y., Y.Z., T.F., Z.L., C.Y., J.M.T., L.Q., J.L.), University of North Carolina at Chapel Hill.,McAllister Heart Institute (H.M., S.Y., Y.Z., T.F., Z.L., C.Y., J.M.T., L.Q., J.L.), University of North Carolina at Chapel Hill
| |
Collapse
|
36
|
Chang M, Oh B, Choi J, Sulistio YA, Woo H, Jo A, Kim J, Kim E, Kim SW, Hwang J, Park J, Song J, Kwon O, Henry Kim H, Kim Y, Ko JY, Heo JY, Lee MJ, Lee M, Choi M, Chung SJ, Lee H, Lee S. LIN28A loss of function is associated with Parkinson's disease pathogenesis. EMBO J 2019; 38:e101196. [PMID: 31750563 PMCID: PMC6912061 DOI: 10.15252/embj.2018101196] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 10/01/2019] [Accepted: 10/15/2019] [Indexed: 12/18/2022] Open
Abstract
Parkinson's disease (PD) is neurodegenerative movement disorder characterized by degeneration of midbrain-type dopamine (mDA) neurons in the substantia nigra (SN). The RNA-binding protein Lin28 plays a role in neuronal stem cell development and neuronal differentiation. In this study, we reveal that Lin28 conditional knockout (cKO) mice show degeneration of mDA neurons in the SN, as well as PD-related behavioral deficits. We identify a loss-of-function variant of LIN28A (R192G substitution) in two early-onset PD patients. Using an isogenic human embryonic stem cell (hESC)/human induced pluripotent stem cell (hiPSC)-based disease model, we find that the Lin28 R192G variant leads to developmental defects and PD-related phenotypes in mDA neuronal cells that can be rescued by expression of wild-type Lin28A. Cell transplantation experiments in PD model rats show that correction of the LIN28A variant in the donor patient (pt)-hiPSCs leads to improved behavioral phenotypes. Our data link LIN28A to PD pathogenesis and suggest future personalized medicine targeting this variant in patients.
Collapse
|
37
|
Wang L, Rowe RG, Jaimes A, Yu C, Nam Y, Pearson DS, Zhang J, Xie X, Marion W, Heffron GJ, Daley GQ, Sliz P. Small-Molecule Inhibitors Disrupt let-7 Oligouridylation and Release the Selective Blockade of let-7 Processing by LIN28. Cell Rep 2019; 23:3091-3101. [PMID: 29874593 PMCID: PMC6511231 DOI: 10.1016/j.celrep.2018.04.116] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 02/27/2018] [Accepted: 04/26/2018] [Indexed: 12/29/2022] Open
Abstract
LIN28 is an RNA-binding protein that regulates the maturation of the let-7 family of microRNAs by bipartite interactions with let-7 precursors through its two distinct cold shock and zinc-knuckle domains. Through inhibition of let-7 biogenesis, LIN28 functions as a pluripotency factor, as well as a driver of tumorigenesis. Here, we report a fluorescence polarization assay to identify small-molecule inhibitors for both domains of LIN28 involved in let-7 interactions. Of 101,017 compounds screened, six inhibit LIN28:let-7 binding and impair LIN28-mediated let-7 oligouridylation. Upon further characterization, we demonstrate that the LIN28 inhibitor TPEN destabilizes the zinc-knuckle domain of LIN28, while LI71 binds the cold shock domain to suppress LIN28's activity against let-7 in leukemia cells and embryonic stem cells. Our results demonstrate selective pharmacologic inhibition of individual domains of LIN28 and provide a foundation for therapeutic inhibition of the let-7 biogenesis pathway in LIN28-driven diseases.
Collapse
Affiliation(s)
- Longfei Wang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - R Grant Rowe
- Stem Cell Program, Boston Children's Hospital, Boston, MA, USA; Department of Pediatric Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Boston, MA, USA
| | - Adriana Jaimes
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Chunxiao Yu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Yunsun Nam
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | | | - Jin Zhang
- Stem Cell Program, Boston Children's Hospital, Boston, MA, USA
| | - Xiangyu Xie
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - William Marion
- Stem Cell Program, Boston Children's Hospital, Boston, MA, USA
| | - Gregory J Heffron
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - George Q Daley
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA; Stem Cell Program, Boston Children's Hospital, Boston, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA; Howard Hughes Medical Institute, Boston, MA, USA; Division of Hematology, Brigham and Women's Hospital, Boston, MA, USA; Manton Center for Orphan Disease Research, Boston, MA, USA
| | - Piotr Sliz
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA; Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
38
|
Chirshev E, Oberg KC, Ioffe YJ, Unternaehrer JJ. Let-7 as biomarker, prognostic indicator, and therapy for precision medicine in cancer. Clin Transl Med 2019; 8:24. [PMID: 31468250 PMCID: PMC6715759 DOI: 10.1186/s40169-019-0240-y] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 08/16/2019] [Indexed: 12/23/2022] Open
Abstract
Abnormal regulation and expression of microRNAs (miRNAs) has been documented in various diseases including cancer. The miRNA let-7 (MIRLET7) family controls developmental timing and differentiation. Let-7 loss contributes to carcinogenesis via an increase in its target oncogenes and stemness factors. Let-7 targets include genes regulating the cell cycle, cell signaling, and maintenance of differentiation. It is categorized as a tumor suppressor because it reduces cancer aggressiveness, chemoresistance, and radioresistance. However, in rare situations let-7 acts as an oncogene, increasing cancer migration, invasion, chemoresistance, and expression of genes associated with progression and metastasis. Here, we review let-7 function as tumor suppressor and oncogene, considering let-7 as a potential diagnostic and prognostic marker, and a therapeutic target for cancer treatment. We explain the complex regulation and function of different let-7 family members, pointing to abnormal processes involved in carcinogenesis. Let-7 is a promising option to complement conventional cancer therapy, but requires a tumor specific delivery method to avoid toxicity. While let-7 therapy is not yet established, we make the case that assessing its tumor presence is crucial when choosing therapy. Clinical data demonstrate that let-7 can be used as a biomarker for rational precision medicine decisions, resulting in improved patient survival.
Collapse
Affiliation(s)
- Evgeny Chirshev
- Division of Anatomy, Department of Basic Sciences, Loma Linda University, Loma Linda, CA, USA
| | - Kerby C Oberg
- Division of Anatomy and Pediatric Pathology, Loma Linda University, Loma Linda, CA, USA
| | - Yevgeniya J Ioffe
- Gynecology and Obstetrics, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Juli J Unternaehrer
- Division of Biochemistry, Department of Basic Sciences, Loma Linda University, 11085 Campus Street, Mortensen Hall 219, Loma Linda, CA, 92354, USA.
| |
Collapse
|
39
|
Sang H, Wang D, Zhao S, Zhang J, Zhang Y, Xu J, Chen X, Nie Y, Zhang K, Zhang S, Wang Y, Wang N, Ma F, Shuai L, Li Z, Liu N. Dppa3 is critical for Lin28a-regulated ES cells naïve-primed state conversion. J Mol Cell Biol 2019; 11:474-488. [PMID: 30481289 PMCID: PMC6734493 DOI: 10.1093/jmcb/mjy069] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 09/26/2018] [Accepted: 11/26/2018] [Indexed: 12/22/2022] Open
Abstract
Lin28a is a pluripotent factor that promotes somatic cell reprogramming. Unlike other pluripotent factors, Lin28a expression is transient and accumulated in primed embryonic stem (ES) cells, but its exact function and mechanism in the conversion of ES cells from naïve to primed state remain unclear. Here, we present evidence for Dppa3, a protein originally known for its role in germ cell development, as a downstream target of Lin28a in naïve-primed conversion. Using rescue experiment, we demonstrate that Dppa3 functions predominantly downstream of Lin28a during naïve-primed state conversion. Higher level of Lin28a prevents let-7 maturation and results in Dnmt3a/b (target of let-7) upregulation, which in turn induces hypermethylation of the Dppa3 promoter. Dppa3 demarcates naïve versus primed pluripotency states. These results emphasize that Lin28a plays an important role during the naïve-primed state conversion of ES cells, which is partially mediated by a Lin28a-let-7-Dnmt3a/b-Dppa3 axis.
Collapse
Affiliation(s)
- Hui Sang
- School of Medicine, Nankai University, Tianjin, China
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
- College of Life Sciences, Nankai University, Tianjin, China
| | - Dan Wang
- School of Medicine, Nankai University, Tianjin, China
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
- College of Life Sciences, Nankai University, Tianjin, China
| | - Shuang Zhao
- School of Medicine, Nankai University, Tianjin, China
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
- College of Life Sciences, Nankai University, Tianjin, China
| | - Jinxin Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, China
| | - Yan Zhang
- School of Medicine, Nankai University, Tianjin, China
| | - Jia Xu
- School of Medicine, Nankai University, Tianjin, China
| | - Xiaoniao Chen
- State Key Laboratory of Kidney Diseases, Beijing, China
| | - Yan Nie
- School of Medicine, Nankai University, Tianjin, China
| | - Kaiyue Zhang
- School of Medicine, Nankai University, Tianjin, China
| | | | - Yuebing Wang
- School of Medicine, Nankai University, Tianjin, China
| | - Na Wang
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital CCK, Stockholm, Sweden
| | - Fengxia Ma
- State Key Lab of Experimental Hematology, Institute of Hematology &Hospital of Blood Diseases, Chinese Academy of Medical Sciences, Tianjin, China
| | - Ling Shuai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, China
| | - Zongjin Li
- School of Medicine, Nankai University, Tianjin, China
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Na Liu
- School of Medicine, Nankai University, Tianjin, China
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
40
|
Yang P, Humphrey SJ, Cinghu S, Pathania R, Oldfield AJ, Kumar D, Perera D, Yang JYH, James DE, Mann M, Jothi R. Multi-omic Profiling Reveals Dynamics of the Phased Progression of Pluripotency. Cell Syst 2019; 8:427-445.e10. [PMID: 31078527 DOI: 10.1016/j.cels.2019.03.012] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 02/12/2019] [Accepted: 03/19/2019] [Indexed: 12/28/2022]
Abstract
Pluripotency is highly dynamic and progresses through a continuum of pluripotent stem cell states. The two states that bookend the pluripotency continuum, naive and primed, are well characterized, but our understanding of the intermediate states and transitions between them remains incomplete. Here, we dissect the dynamics of pluripotent state transitions underlying pre- to post-implantation epiblast differentiation. Through comprehensive mapping of the proteome, phosphoproteome, transcriptome, and epigenome of embryonic stem cells transitioning from naive to primed pluripotency, we find that rapid, acute, and widespread changes to the phosphoproteome precede ordered changes to the epigenome, transcriptome, and proteome. Reconstruction of the kinase-substrate networks reveals signaling cascades, dynamics, and crosstalk. Distinct waves of global proteomic changes mark discrete phases of pluripotency, with cell-state-specific surface markers tracking pluripotent state transitions. Our data provide new insights into multi-layered control of the phased progression of pluripotency and a foundation for modeling mechanisms regulating pluripotent state transitions (www.stemcellatlas.org).
Collapse
Affiliation(s)
- Pengyi Yang
- Epigenetics & Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA; Charles Perkins Centre, School of Mathematics and Statistics, University of Sydney, Sydney, NSW 2006, Australia.
| | - Sean J Humphrey
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany; Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia.
| | - Senthilkumar Cinghu
- Epigenetics & Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Rajneesh Pathania
- Epigenetics & Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Andrew J Oldfield
- Epigenetics & Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Dhirendra Kumar
- Epigenetics & Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Dinuka Perera
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Jean Y H Yang
- Charles Perkins Centre, School of Mathematics and Statistics, University of Sydney, Sydney, NSW 2006, Australia
| | - David E James
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Raja Jothi
- Epigenetics & Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
41
|
Sayago C, Martinez-Val A, Munoz J. Proteotyping pluripotency with mass spectrometry. Expert Rev Proteomics 2019; 16:391-400. [PMID: 30947573 DOI: 10.1080/14789450.2019.1604229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
INTRODUCTION Pluripotency emerges transiently during embryogenesis in two main forms with different developmental potential, termed naïve and primed states. Importantly, these pluripotent states can be recapitulated in vitro under specific culture conditions, representing a unique model to study the regulatory principles of development and cellular plasticity. Areas covered: A complex network of signaling pathways that senses intrinsic and extrinsic cues controls the fine balance between self-renewal and differentiation. Much of our knowledge on this tight regulation originates from epigenetic and transcriptomic approaches. However, the presence of post-transcriptional and post-translational mechanisms demands a direct assessment of the proteome in its multiple facets. Mass spectrometry-based proteomics is now a mature technique and has started to deliver new insights in the stem cell field. Expert opinion: Here, we review our current understanding on the mechanisms that dictate the spectrum of pluripotency levels. We put special emphasis on the emerging proteomic studies that focused on the molecular properties behind the naïve and primed states. In addition, we hypothesize on the impact that future developments in proteomic technologies can have to improve our view of pluripotency.
Collapse
Affiliation(s)
- Cristina Sayago
- a Proteomics Unit , Spanish National Cancer Research Centre (CNIO) , Madrid , Spain.,b ISCIII-ProteoRed , Spain
| | - Ana Martinez-Val
- a Proteomics Unit , Spanish National Cancer Research Centre (CNIO) , Madrid , Spain.,b ISCIII-ProteoRed , Spain
| | - Javier Munoz
- a Proteomics Unit , Spanish National Cancer Research Centre (CNIO) , Madrid , Spain.,b ISCIII-ProteoRed , Spain
| |
Collapse
|
42
|
Lin Z, Wei L, Cai W, Zhu Y, Tucholski T, Mitchell SD, Guo W, Ford SP, Diffee GM, Ge Y. Simultaneous Quantification of Protein Expression and Modifications by Top-down Targeted Proteomics: A Case of the Sarcomeric Subproteome. Mol Cell Proteomics 2019; 18:594-605. [PMID: 30591534 PMCID: PMC6398208 DOI: 10.1074/mcp.tir118.001086] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 12/08/2018] [Indexed: 12/14/2022] Open
Abstract
Determining changes in protein expression and post-translational modifications (PTMs) is crucial for elucidating cellular signal transduction and disease mechanisms. Conventional antibody-based approaches have inherent problems such as the limited availability of high-quality antibodies and batch-to-batch variation. Top-down mass spectrometry (MS)-based proteomics has emerged as the most powerful method for characterization and quantification of protein modifications. Nevertheless, robust methods to simultaneously determine changes in protein expression and PTMs remain lacking. Herein, we have developed a straightforward and robust top-down liquid chromatography (LC)/MS-based targeted proteomics platform for simultaneous quantification of protein expression and PTMs with high throughput and high reproducibility. We employed this method to analyze the sarcomeric subproteome from various muscle types of different species, which successfully revealed skeletal muscle heterogeneity and cardiac developmental changes in sarcomeric protein isoform expression and PTMs. As demonstrated, this targeted top-down proteomics platform offers an excellent 'antibody-independent' alternative for the accurate quantification of sarcomeric protein expression and PTMs concurrently in complex mixtures, which is generally applicable to different species and various tissue types.
Collapse
Affiliation(s)
- Ziqing Lin
- From the ‡Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53705
- §Human Proteomics Program, University of Wisconsin-Madison, Madison, WI 53705
| | - Liming Wei
- From the ‡Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53705
- ¶Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, P. R. China
| | - Wenxuan Cai
- From the ‡Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53705
- ‖Molecular & Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI 53705
| | - Yanlong Zhu
- From the ‡Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53705
- §Human Proteomics Program, University of Wisconsin-Madison, Madison, WI 53705
| | - Trisha Tucholski
- **Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - Stanford D Mitchell
- From the ‡Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53705
- ‖Molecular & Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI 53705
| | - Wei Guo
- ‡‡Department of Animal Science, Fetal Programming Center, University of Wyoming, Laramie, Wyoming 82071
| | - Stephen P Ford
- ‡‡Department of Animal Science, Fetal Programming Center, University of Wyoming, Laramie, Wyoming 82071
| | - Gary M Diffee
- §§Department of Kinesiology, University of Wisconsin-Madison, Madison, WI 53705
| | - Ying Ge
- From the ‡Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53705;
- §Human Proteomics Program, University of Wisconsin-Madison, Madison, WI 53705
- ‖Molecular & Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI 53705
- **Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
43
|
Han Y, Hu Z, Cui A, Liu Z, Ma F, Xue Y, Liu Y, Zhang F, Zhao Z, Yu Y, Gao J, Wei C, Li J, Fang J, Li J, Fan JG, Song BL, Li Y. Post-translational regulation of lipogenesis via AMPK-dependent phosphorylation of insulin-induced gene. Nat Commun 2019; 10:623. [PMID: 30733434 PMCID: PMC6367348 DOI: 10.1038/s41467-019-08585-4] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 01/07/2019] [Indexed: 12/20/2022] Open
Abstract
Insulin-induced gene (Insig) negatively regulates SREBP-mediated de novo fatty acid synthesis in the liver. However, the upstream regulation of Insig is incompletely understood. Here we report that AMPK interacts with and mediates phosphorylation of Insig. Thr222 phosphorylation following AMPK activation is required for protein stabilization of Insig-1, inhibition of cleavage and processing of SREBP-1, and lipogenic gene expression in response to metformin or A769662. AMPK-dependent phosphorylation ablates Insig's interaction with E3 ubiquitin ligase gp78 and represses its ubiquitination and degradation, whereas AMPK deficiency shows opposite effects. Interestingly, activation of AMPK by metformin causes an augmentation of Insig stability and reduction of lipogenic gene expression, and leads to the attenuation of hepatic steatosis in HFHS diet-fed mice. Moreover, hepatic overexpression of Insig-1 rescues hepatic steatosis in liver-specific AMPKα2 knockout mice fed with HFHS diet. These findings uncover a novel effector of AMPK. Targeting Insig may have the therapeutic potential for treating fatty liver disease and related disorders.
Collapse
Affiliation(s)
- Yamei Han
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Zhimin Hu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Aoyuan Cui
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Zhengshuai Liu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Fengguang Ma
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Yaqian Xue
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Yuxiao Liu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Feifei Zhang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Zehua Zhao
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 200092, Shanghai, China
| | - Yanyan Yu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Jing Gao
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Chun Wei
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, 310014, Hangzhou, China
| | - Jingya Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Jing Fang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Jia Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Jian-Gao Fan
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 200092, Shanghai, China
| | - Bao-Liang Song
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Institute for Advanced Studies, Wuhan University, 430072, Wuhan, China
| | - Yu Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China.
| |
Collapse
|
44
|
Evidence of Extracellular Vesicles Biogenesis and Release in Mouse Embryonic Stem Cells. Stem Cell Rev Rep 2018; 14:262-276. [PMID: 29032399 DOI: 10.1007/s12015-017-9776-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Extracellular vesicles (EVs) released by mouse embryonic stem cells (mESCs) are considered a source of bioactive molecules that modulate their microenvironment by acting on intercellular communication. Either intracellular endosomal machinery or their derived EVs have been considered a relevant system of signal circuits processing. Herein, we show that these features are found in mESCs. Ultrastructural analysis revealed structures and organelles of the endosomal system such as coated pits and endocytosis-related vesicles, prominent rough endoplasmic reticulum and Golgi apparatus, and multivesicular bodies (MVBs) containing either few or many intraluminal vesicles (ILVs) that could be released as exosomes to extracellular milieu. Besides, budding vesicles shed from the plasma membrane to the extracellular space is suggestive of microvesicle biogenesis in mESCs. mESCs and mouse blastocyst express specific markers of the Endosomal Sorting Complex Required for Transport (ESCRT) system. Ultrastructural analysis and Nanoparticle Tracking Analysis (NTA) of isolated EVs revealed a heterogeneous population of exosomes and microvesicles released by mESCs. These vesicles contain Wnt10b and the Notch ligand Delta-like 4 (DLL4) and also the co-chaperone stress inducible protein 1 (STI1) and its partner Hsp90. Wnt10b and Dll4 colocalize with EVs biogenesis markers in mESCs. Overall, the present study supports the function of the mESCs endocytic network and their EVs as players in stem cell biology.
Collapse
|
45
|
Haq S, Das S, Kim DH, Chandrasekaran AP, Hong SH, Kim KS, Ramakrishna S. The stability and oncogenic function of LIN28A are regulated by USP28. Biochim Biophys Acta Mol Basis Dis 2018; 1865:599-610. [PMID: 30543854 DOI: 10.1016/j.bbadis.2018.12.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 11/17/2018] [Accepted: 12/05/2018] [Indexed: 12/18/2022]
Abstract
RNA-binding protein LIN28A is often highly expressed in human malignant tumors and is involved in tumor metastasis and poor prognosis. Knowledge about post-translational regulatory mechanisms governing LIN28A protein stability and function is scarce. Here, we investigated the role of ubiquitination and deubiquitination on LIN28A protein stability and report that LIN28A protein undergoes ubiquitination. Ubiquitin-specific protease 28 (USP28), a deubiquitinating enzyme, interacts with and stabilizes LIN28A protein to extend its half-life. USP28, through its deubiquitinating activity, antagonizes LIN28A protein turnover by reversing its proteasomal degradation. Our study describes the consequential impacts of USP28-mediated stabilization of LIN28A protein on enhancing cancer cell viability, migration and ultimately augmenting LIN28A-mediated tumor progression. Overall, our data suggest that a synergistic, combinatorial approach of targeting LIN28A with USP28 would contribute to effective cancer therapeutics.
Collapse
Affiliation(s)
- Saba Haq
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, South Korea
| | - Soumyadip Das
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
| | - Dong-Ho Kim
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
| | | | - Seok-Ho Hong
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Kye-Seong Kim
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea; College of Medicine, Hanyang University, Seoul 04763, South Korea
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea; College of Medicine, Hanyang University, Seoul 04763, South Korea.
| |
Collapse
|
46
|
Canfield J, Arlier S, Mong EF, Lockhart J, VanWye J, Guzeloglu-Kayisli O, Schatz F, Magness RR, Lockwood CJ, Tsibris JCM, Kayisli UA, Totary-Jain H. Decreased LIN28B in preeclampsia impairs human trophoblast differentiation and migration. FASEB J 2018; 33:2759-2769. [PMID: 30307771 DOI: 10.1096/fj.201801163r] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Preeclampsia (PE) is a common cause of maternal morbidity, characterized by impaired trophoblast invasion and spiral artery transformation resulting in progressive uteroplacental hypoxia. Given the primary role of LIN28A and LIN28B in modulating cell metabolism, differentiation, and invasion, we hypothesized that LIN28A and/or LIN28B regulates trophoblast differentiation and invasion, and that its dysregulation may contribute to PE. Here we show that LIN28B is expressed ∼1300-fold higher than LIN28A in human term placenta and is the predominant paralog expressed in primary human trophoblast cultures. The expression of LIN28B mRNA and protein levels are significantly reduced in gestational age-matched preeclamptic vs. normal placentas, whereas LIN28A expression is not different. First trimester human placental sections displayed stronger LIN28B immunoreactivity in extravillous (invasive) cytotrophoblasts and syncytial sprouts vs. villous trophoblasts. LIN28B overexpression increased HTR8 cell proliferation, migration, and invasion, whereas LIN28B knockdown in JEG3 cells reduced cell proliferation. Moreover, LIN28B knockdown in JEG3 cells suppressed syncytin 1 (SYN-1), apelin receptor early endogenous ligand (ELABELA), and the chromosome 19 microRNA cluster, and increased mRNA expression of ITGβ4 and TNF-α. Incubation of BeWo and JEG3 cells under hypoxia significantly decreased expression of LIN28B and LIN28A, SYN-1, and ELABELA, whereas TNF-α is increased. These results provide the first evidence that LIN28B is the predominant paralog in human placenta and that decreased LIN28B may play a role in PE by reducing trophoblast invasion and syncytialization, and by promoting inflammation.-Canfield, J., Arlier, S., Mong, E. F., Lockhart, J., VanWye, J., Guzeloglu-Kayisli, O., Schatz, F., Magness, R. R., Lockwood, C. J., Tsibris, J. C. M., Kayisli, U. A., Totary-Jain, H. Decreased LIN28B in preeclampsia impairs human trophoblast differentiation and migration.
Collapse
Affiliation(s)
- John Canfield
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, Tampa, Florida, USA
| | - Sefa Arlier
- Department of Obstetrics and Gynecology, Morsani College of Medicine, Tampa, Florida, USA
| | - Ezinne F Mong
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, Tampa, Florida, USA
| | - John Lockhart
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, Tampa, Florida, USA
| | - Jeffrey VanWye
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, Tampa, Florida, USA
| | | | - Frederick Schatz
- Department of Obstetrics and Gynecology, Morsani College of Medicine, Tampa, Florida, USA
| | - Ronald R Magness
- Department of Obstetrics and Gynecology, Morsani College of Medicine, Tampa, Florida, USA
| | - Charles J Lockwood
- Department of Obstetrics and Gynecology, Morsani College of Medicine, Tampa, Florida, USA
| | - John C M Tsibris
- Department of Obstetrics and Gynecology, Morsani College of Medicine, Tampa, Florida, USA
| | - Umit A Kayisli
- Department of Obstetrics and Gynecology, Morsani College of Medicine, Tampa, Florida, USA
| | - Hana Totary-Jain
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, Tampa, Florida, USA
| |
Collapse
|
47
|
Chatterji P, Hamilton KE, Liang S, Andres SF, Wijeratne HRS, Mizuno R, Simon LA, Hicks PD, Foley SW, Pitarresi JR, Klein-Szanto AJ, Mah AT, Van Landeghem L, Gregory BD, Lengner CJ, Madison BB, Shah P, Rustgi AK. The LIN28B-IMP1 post-transcriptional regulon has opposing effects on oncogenic signaling in the intestine. Genes Dev 2018; 32:1020-1034. [PMID: 30068703 PMCID: PMC6075153 DOI: 10.1101/gad.314369.118] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/04/2018] [Indexed: 12/15/2022]
Abstract
RNA-binding proteins (RBPs) are expressed broadly during both development and malignant transformation, yet their mechanistic roles in epithelial homeostasis or as drivers of tumor initiation and progression are incompletely understood. Here we describe a novel interplay between RBPs LIN28B and IMP1 in intestinal epithelial cells. Ribosome profiling and RNA sequencing identified IMP1 as a principle node for gene expression regulation downstream from LIN28B In vitro and in vivo data demonstrate that epithelial IMP1 loss increases expression of WNT target genes and enhances LIN28B-mediated intestinal tumorigenesis, which was reversed when we overexpressed IMP1 independently in vivo. Furthermore, IMP1 loss in wild-type or LIN28B-overexpressing mice enhances the regenerative response to irradiation. Together, our data provide new evidence for the opposing effects of the LIN28B-IMP1 axis on post-transcriptional regulation of canonical WNT signaling, with implications in intestinal homeostasis, regeneration and tumorigenesis.
Collapse
Affiliation(s)
- Priya Chatterji
- Department of Medicine, Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19014, USA
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19014, USA
| | - Kathryn E Hamilton
- Department of Medicine, Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19014, USA
- Department of Pediatrics, Division of Gastroenterology, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19014, USA
| | - Shun Liang
- Department of Genetics, Rutgers University, New Brunswick, New Jersey 08901, USA
| | - Sarah F Andres
- Department of Medicine, Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19014, USA
| | - H R Sagara Wijeratne
- Department of Genetics, Rutgers University, New Brunswick, New Jersey 08901, USA
| | - Rei Mizuno
- Department of Medicine, Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19014, USA
| | - Lauren A Simon
- Department of Medicine, Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19014, USA
- Department of Pediatrics, Division of Gastroenterology, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19014, USA
| | - Philip D Hicks
- Department of Medicine, Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19014, USA
| | - Shawn W Foley
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19014, USA
| | - Jason R Pitarresi
- Department of Medicine, Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19014, USA
| | - Andres J Klein-Szanto
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | - Amanda T Mah
- Department of Medicine, Hematology Division, Stanford University, Stanford, California 94305, USA
| | - Laurianne Van Landeghem
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina 27607, USA
| | - Brian D Gregory
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19014, USA
| | - Christopher J Lengner
- Department of Biomedical Sciences, School of Veterinary Medicine, Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Blair B Madison
- Department of Medicine, Division of Gastroenterology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Premal Shah
- Department of Genetics, Rutgers University, New Brunswick, New Jersey 08901, USA
- Human Genetics Institute of New Jersey, Piscataway, New Jersey 08854 USA
| | - Anil K Rustgi
- Department of Medicine, Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19014, USA
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19014, USA
- Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19014, USA
| |
Collapse
|
48
|
Zhang Y, Zhao Y, Wu J, Liangpunsakul S, Niu J, Wang L. MicroRNA-26-5p functions as a new inhibitor of hepatoblastoma by repressing lin-28 homolog B and aurora kinase a expression. Hepatol Commun 2018; 2:861-871. [PMID: 30027143 PMCID: PMC6049067 DOI: 10.1002/hep4.1185] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/10/2018] [Accepted: 03/15/2018] [Indexed: 12/16/2022] Open
Abstract
Hepatoblastoma (HB) is the most common liver tumor in children. Despite recent improvements in treatment strategies, the survival of children with hepatoblastoma remains poor. In this study, we identified a novel role of microRNA‐26a‐5p (miR‐26a‐5p), lin‐28 homolog B (LIN28B), Ras‐related nuclear protein (RAN), and aurora kinase A (AURKA) in HB. The expression of LIN28B, RAN, and AURKA was significantly up‐regulated in human HB livers and cell lines. Knockdown of LIN28B and RAN by small interfering RNAs inhibited HB tumor cell proliferation and foci formation. We also elucidated miR‐26a‐5p‐mediated translational inhibition of LIN28B and AURKA in HB. Overexpression of miR‐26a‐5p markedly decreased LIN28B and AURKA 3′‐untranslated region activities and protein expression and repressed HB cell proliferation and colony formation. In contrast, re‐expression of LIN28B and AURKA rescued miR‐26a‐5p‐mediated suppression of HB cell growth and clonality. Importantly, a decreased miR‐26a‐5p expression correlated with the poor outcome of patients with HB. Conclusion: miR‐26a‐5p is a newly identified repressor of HB growth through its inhibition of the oncogenic LIN28B–RAN–AURKA pathway. (Hepatology Communications 2018;2:481‐491)
Collapse
Affiliation(s)
- Yutong Zhang
- Department of Physiology and Neurobiology and Institute for Systems Genomics University of Connecticut Storrs CT.,Department of Pediatric Oncology The First Hospital of Jilin University Changchun China
| | - Yulan Zhao
- Department of Physiology and Neurobiology and Institute for Systems Genomics University of Connecticut Storrs CT
| | - Jianguo Wu
- Department of Physiology and Neurobiology and Institute for Systems Genomics University of Connecticut Storrs CT
| | - Suthat Liangpunsakul
- Division of Gastroenterology and Hepatology, Department of Medicine Indiana University School of Medicine Indianapolis IN.,Department of Biochemistry and Molecular Biology Indiana University School of Medicine Indianapolis IN.,Roudebush Veterans Administration Medical Center Indianapolis IN
| | - Junqi Niu
- Department of Hepatology The First Hospital of Jilin University Changchun China
| | - Li Wang
- Department of Physiology and Neurobiology and Institute for Systems Genomics University of Connecticut Storrs CT.,Department of Internal Medicine Section of Digestive Diseases, Yale University New Haven CT.,Veterans Affairs Connecticut Healthcare System West Haven CT
| |
Collapse
|
49
|
Deconstructing the pluripotency gene regulatory network. Nat Cell Biol 2018; 20:382-392. [PMID: 29593328 DOI: 10.1038/s41556-018-0067-6] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 02/16/2018] [Indexed: 12/22/2022]
Abstract
Pluripotent stem cells can be isolated from embryos or derived by reprogramming. Pluripotency is stabilized by an interconnected network of pluripotency genes that cooperatively regulate gene expression. Here we describe the molecular principles of pluripotency gene function and highlight post-transcriptional controls, particularly those induced by RNA-binding proteins and alternative splicing, as an important regulatory layer of pluripotency. We also discuss heterogeneity in pluripotency regulation, alternative pluripotency states and future directions of pluripotent stem cell research.
Collapse
|
50
|
Abstract
Intracellular levels of the RNA-binding protein and pluripotency factor, Lin28a, are tightly controlled to govern cellular and organismal growth. Lin28a is extensively regulated at the posttranscriptional level, and can undergo mitogen-activated protein kinase (MAPK)-mediated elevation from low basal levels in differentiated cells by phosphorylation-dependent stabilizing interaction with the RNA-silencing factor HIV TAR RNA-binding protein (TRBP). However, molecular and spatiotemporal details of this critical control mechanism remained unknown. In this work, we dissect the interacting regions of Lin28a and TRBP proteins and develop biosensors to visualize this interaction. We identify truncated domains of Lin28a and of TRBP that are sufficient to support coassociation and mutual elevation of protein levels, and a requirement for MAPK-dependent phosphorylation of TRBP at putative Erk-target serine 152, as well as Lin28a serine 200 phosphorylation, in mediating the increase of Lin28a protein by TRBP. The phosphorylation-dependent association of Lin28a and TRBP truncated constructs is leveraged to develop fluorescence resonance energy transfer (FRET)-based sensors for dynamic monitoring of Lin28a and TRBP interaction. We demonstrate the response of bimolecular and unimolecular FRET sensors to growth factor stimulation in living cells, with coimaging of Erk activation to achieve further understanding of the role of MAPK signaling in Lin28a regulation.
Collapse
Affiliation(s)
- Laurel M Oldach
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Kirill Gorshkov
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205.,Therapeutics for Rare and Neglected Diseases Program, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850
| | - William T Mills
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Jin Zhang
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205.,Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093
| | - Mollie K Meffert
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205.,Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|