1
|
Zubrytė R, Mavliutova L, García Y, Sullivan MV, Turner NW, Patitucci F, Polania LC, Jiménez VA, Porter R, Mattsson A, Sellergren B. Development of molecularly imprinted polymers for the detection of human chorionic gonadotropin. Sci Rep 2025; 15:10436. [PMID: 40140480 PMCID: PMC11947253 DOI: 10.1038/s41598-025-94289-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 03/12/2025] [Indexed: 03/28/2025] Open
Abstract
Diagnostic pregnancy tests are the most widely used immunoassays for home-based use. These tests employ the well-established lateral flow assay (LFA) technique, reminiscent of affinity chromatography relying on the dual action of two orthogonal anti-hCG antibodies. Immunoassays suffer from several drawbacks, including challenges in antibody manufacturing, suboptimal accuracy, and sensitivity to adverse storing conditions. Additionally, LFAs are typically designed for single use, as the LFA technique is non-reusable. An alternative to overcome these drawbacks is to leverage molecularly imprinted polymer (MIP) technology to generate polymer-based hCG-receptors and, subsequently, non-bioreceptor-based tests. Here, we report the development of MIP nanogels for hCG detection, exploiting epitopes and magnetic templates for high-yielding dispersed phase imprinting. The resulting nanogels were designed for orthogonal targeting of two immunogenic epitopes (SV and PQ) and were thoroughly characterized with respect to physical properties, binding affinity, specificity, and sensitivity. Molecular dynamics simulations indicated a pronounced conformational overlap between the templates and the epitopes in the native protein, supporting their suitability for templating cavities for hCG recognition. Quartz crystal microbalance (QCM)-based binding tests and kinetic interaction analysis by surface plasmon resonance (SPR) revealed nanomolar dissociation constants for the MIP nanogels and their corresponding template peptides and low uptake of lutenizing hormone (LH), structurally resembling to hCG. Receptor reusability was demonstrated in the multicycle SPR sensing mode using a low pH regeneration buffer. The results suggest the feasibility of using imprinted nanogels as a class of cost-effective, stable alternatives to natural antibodies for hCG detection. We foresee applications of these binders with respect to reusable pregnancy tests and other hCG-related disease diagnostics.
Collapse
Affiliation(s)
- Radvilė Zubrytė
- Pharmista Technologies AB, Scheelevägen 3, 223 63, Lund, Sweden
- Surecapture Technologies AB, Per Albin Hanssons Väg 35, 214 32, Malmö, Sweden
| | - Liliia Mavliutova
- Surecapture Technologies AB, Per Albin Hanssons Väg 35, 214 32, Malmö, Sweden
| | - Yadiris García
- Biofilms Research Center for Biointerfaces, Malmö University, Per Albin Hanssons Väg 35, 214 32, Malmö, Sweden
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Autopista Concepción-Talcahuano 7100, Talcahuano, Chile
| | - Mark V Sullivan
- University of Sheffield, Dainton Building, Brook Hill, Sheffield, S3 7HF, Great Britain
| | - Nicholas W Turner
- University of Sheffield, Dainton Building, Brook Hill, Sheffield, S3 7HF, Great Britain
| | - Francesco Patitucci
- Biofilms Research Center for Biointerfaces, Malmö University, Per Albin Hanssons Väg 35, 214 32, Malmö, Sweden
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata, 87036, Rende, (CS), Italy
| | - Laura C Polania
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Autopista Concepción-Talcahuano 7100, Talcahuano, Chile
| | - Verónica A Jiménez
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Autopista Concepción-Talcahuano 7100, Talcahuano, Chile
| | - Robert Porter
- Pharmista Technologies AB, Scheelevägen 3, 223 63, Lund, Sweden
| | - Alice Mattsson
- Pharmista Technologies AB, Scheelevägen 3, 223 63, Lund, Sweden
| | - Börje Sellergren
- Surecapture Technologies AB, Per Albin Hanssons Väg 35, 214 32, Malmö, Sweden.
- Biofilms Research Center for Biointerfaces, Malmö University, Per Albin Hanssons Väg 35, 214 32, Malmö, Sweden.
| |
Collapse
|
2
|
Guan P, Jin F, Zhang A, Gao S, Liu Z. Rationally Engineered Bispecific Nanoimmunoblocker Restores Anticancer Immunity via Dual Immune Checkpoint Blockade. ACS NANO 2025; 19:5392-5405. [PMID: 39887132 DOI: 10.1021/acsnano.4c13463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Immune checkpoint blockade (ICB) therapy has revolutionized cancer treatment. However, the outcomes of mainstay antibody inhibitors against solid tumors remain poor, facing tremendous challenges including manufacturing complexities, serious toxicities, and crosstalk among multiple checkpoints. Herein, we present a bispecific molecularly imprinted nanoimmunoblocker (bsMINIB) designed to boost potent antitumor immunity via synchronously blocking innate and adaptive immune checkpoints. Two epitopes for PD-L1 and SIRPα are selected as templates through structural analysis, and thereafter, bsMINIB capable of bridging tumor cells and macrophages is rationally engineered via an advanced imprinting approach. The bsMINIB exhibits high affinity and specificity toward PD-L1 on solid tumor cells and SIRPα on macrophages, allowing effective disruption of both PD-L1/PD-1 and CD47/SIRPα signaling. These signal disruptions restore macrophage-mediated tumor phagocytosis, promote tumor-associated antigen presentation, and reinvigorate T cell-mediated tumor killing. Using refractory triple-negative breast cancer as a solid tumor model, the bsMINIB demonstrates extended retention at the tumor site, amplified infiltration of active T cells, and reactivated antitumor macrophages, thereby effectively inhibiting tumor growth. This biomimetic nanoimmunoblocker not only presents an effective multipronged ICB therapeutic against solid tumors but also showcases a compelling paradigm for the rational engineering of bispecific nanoplatforms for synergistic immunotherapy through molecular imprinting.
Collapse
Affiliation(s)
- Peixin Guan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Fang Jin
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Anqi Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Song Gao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Zhen Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| |
Collapse
|
3
|
Cheng Q, Yu Y, Wan Z, Zhou M, Tang W, Tan W, Liu M. Structure-based design and screening of hydrogel copolymer/Fe 3O 4 composite microspheres for magnetic solid phase extraction of bisphenol A from aqueous samples. Talanta 2025; 283:127178. [PMID: 39520927 DOI: 10.1016/j.talanta.2024.127178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
It is of great significance to monitor bisphenol A (BPA) in the environment because of its potential environmental and health risks. However, the detection of trace or ultratrace BPA in complicated environmental samples is challenging due to the relatively low affinity and poor selectivity of existing adsorbents used in sample pretreatment. Herein, we report a high-affinity, low environment-dependent and strong interference-resistant abiotic affinity ligand, a N-methacryloyl-l-lysine-NH2 (MLys)-based hydrogel copolymer (HP 17) screened from a small focused polymer library engineered by incorporating various combinations and ratios of candidate functional monomers. The selection of these monomers was guided by molecular mechanism between BPA and the ligand-binding pocket of its estrogen receptors. The BPA-HP17 binding is mainly a synergistic effect of π-cation and hydrophobic interactions. The screened HP 17 has high adsorption capacity (349.4 mg/g) for BPA under wide pH (3.0-10.0) and ionic strength (0-150 mM) range. To improve its practicability, a hydrogel copolymer/Fe3O4 composite microspheres (Fe3O4@HP 17) was synthesized and applied for magnetic solid phase extraction-high-performance liquid chromatography (MSPE-HPLC) analysis of BPA in tap water, lake water and industrial effluents. The method shows wide linear range (2.5⁓100 ng/mL), high sensitivity (detection limit of 0.22 ng/mL even without further concentration after desorption), high accuracies (92.6⁓103.0 %) and good precisions (0.57⁓4.53 %), indicating a great potential of this material and method in the detection of trace or ultratrace BPA in complex environmental water samples.
Collapse
Affiliation(s)
- Qiaolian Cheng
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Yunli Yu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Zihao Wan
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Meng Zhou
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Weicheng Tang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Wenfeng Tan
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Mingming Liu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China.
| |
Collapse
|
4
|
Zhang T, Berghaus M, Li Y, Song Q, Stollenwerk MM, Persson J, Shea KJ, Sellergren B, Lv Y. PSMA-Targeting Imprinted Nanogels for Prostate Tumor Localization and Imaging. Adv Healthc Mater 2025; 14:e2401929. [PMID: 39690809 DOI: 10.1002/adhm.202401929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 11/28/2024] [Indexed: 12/19/2024]
Abstract
Prostate-specific membrane antigen (PSMA) is overexpressed in prostate cancer cells and tumor vasculature, making it an important biomarker. However, conventional PSMA-targeting agents like antibodies and small molecules have limitations. Antibodies exhibit instability and complex production, while small molecules show lower specificity and higher toxicity. Herein, this work develops a novel PSMA-targeting synthetic antibody to address prior limitations. This work synthesizes fluorescently labelled, N-isopropylacrylamide-based epitope imprinted nanogels (MIP-M) using a dispersion of magnetic nanoparticles as template carriers with a linear epitope from PSMA's extracellular apical domain as the template. MIP-M demonstrates high binding affinities for both the epitope template (apparent KD = 6 × 10-10 м) and PSMA (apparent KD = 2.5 × 10-9 м). Compared to reference peptides and human serum albumin, MIP-M indicates high specificity. Flow cytometry and confocal laser scanning microscopy comparing cell lines displaying normal (PC3) and enhanced (LNCaP) PSMA expression levels, revealed that MIP-M and a PSMA antibody exhibits comparable binding preferences for the latter cell line. Moreover, MIP-M demonstrates selectivity on par with the PSMA antibody for targeting PSMA-positive prostate tumor over normal tissue, enabling discrimination. This MIP-M addresses stability, production, specificity and toxicity limitations of prior targeting agents and offer a promising alternative for PSMA-directed cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Tong Zhang
- State Key Laboratory of Organic-Inorganic Composites, International Joint Bioenergy Laboratory of Ministry of Education, National Energy Research and Development Center for Biorefinery, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
- Department of Biomedical Sciences, Faculty of Health and Society, Malmö University, Malmö, 20506, Sweden
| | - Melanie Berghaus
- Department of Chemistry and Chemical Biology, TU Dortmund University, 44227, Dortmund, Germany
| | - Yuan Li
- State Key Laboratory of Organic-Inorganic Composites, International Joint Bioenergy Laboratory of Ministry of Education, National Energy Research and Development Center for Biorefinery, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Qingmei Song
- State Key Laboratory of Organic-Inorganic Composites, International Joint Bioenergy Laboratory of Ministry of Education, National Energy Research and Development Center for Biorefinery, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Maria M Stollenwerk
- Department of Biomedical Sciences, Faculty of Health and Society, Malmö University, Malmö, 20506, Sweden
| | - Jenny Persson
- Department of Biomedical Sciences, Faculty of Health and Society, Malmö University, Malmö, 20506, Sweden
| | - Kenneth J Shea
- Department of Chemistry, University of California Irvine, California, 92697, USA
| | - Börje Sellergren
- Department of Biomedical Sciences, Faculty of Health and Society, Malmö University, Malmö, 20506, Sweden
- Department of Chemistry and Chemical Biology, TU Dortmund University, 44227, Dortmund, Germany
| | - Yongqin Lv
- State Key Laboratory of Organic-Inorganic Composites, International Joint Bioenergy Laboratory of Ministry of Education, National Energy Research and Development Center for Biorefinery, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
5
|
Rath G, Mazzali D, Zarbakhsh A, Resmini M. NIPAm Microgels Synthesised in Water: Tailored Control of Particles' Size and Thermoresponsive Properties. Polymers (Basel) 2024; 16:3532. [PMID: 39771384 PMCID: PMC11679721 DOI: 10.3390/polym16243532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Microgels, combining the properties of hydrogels and microparticles, are emerging as versatile materials for varied applications such as drug delivery and sensing, although the precise control of particle size remains a challenge. Advances in synthetic methodologies have provided new tools for tailoring of properties, however costs and scalability of the processes remains a limitation. We report here the water-based synthesis of a library of N-isopropylacrylamide-based microgels covalently crosslinked with varying contents of N,N'-methylenebisacrylamide. The results highlight the versatility of water as a synthetic medium, which yields large and monodisperse microgels, with excellent control over size. Dynamic light scattering data demonstrate that by increasing the total monomer concentration from 1 to 3 wt%, the particle size is increased by up to 4.9-fold. Crosslinker content allows fine-tuning of microgel size, with greater relevance for functionalised microgels. Functional co-monomers such as N-(3-aminopropyl)methacrylamide hydrochloride and N-(hydroxymethyl)acrylamide are shown to influence size and thermoresponsive behaviour, with hydrogen-bonding monomers reducing particle size and increasing the volume phase transition temperature by 2 °C. Positively charged monomers show a size reduction upon heating but provide colloidal stability at temperatures up to 60 °C. These findings emphasize the importance of tailoring synthetic conditions and formulations to optimize microgel properties for specific applications.
Collapse
Affiliation(s)
| | | | | | - Marina Resmini
- School of Physical & Chemical Sciences, Queen Mary University of London, Joseph Priestley Building, Mile End Road, London E1 4NS, UK; (G.R.); (D.M.); (A.Z.)
| |
Collapse
|
6
|
Koba Y, Nakamoto M, Nagao M, Miura Y, Matsusaki M. Intrinsic Synergy and Selectivity for the Inhibition of Cancer Cell Growth Generated by a Polymer Ligand of Proximal Enzymes. NANO LETTERS 2024; 24:14206-14214. [PMID: 39388612 DOI: 10.1021/acs.nanolett.4c03334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
A fundamental understanding of the design of polymer ligands of proximal enzymes is essential for the precise targeting of cancer cells, but it is still in its infancy. In this study, we systematically investigated the contribution of the chain length, ligand density, and ligand ratio of proximal enzyme-targeted polymers to the efficacy, synergy, and selectivity for the inhibition of cancer cell proliferation. The results revealed that employing a moderate chain length as a scaffold allowed for an intrinsically high efficacy and synergy of proximal enzyme-targeted polymers, in contrast to single enzyme-targeted polymers that prefer longer chain length for efficacy. The synergy obtained in proximal enzyme targeting was not provided by the combination of the corresponding small molecules. Moreover, the maturation of the synergistic efficacy of the proximal enzyme-targeted polymers also improved selectivity. This study proposes a rational design for polymer inhibitors and/or ligands for cancer cells with a high efficacy and selectivity.
Collapse
Affiliation(s)
- Yuki Koba
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masahiko Nakamoto
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masanori Nagao
- Department of Chemical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yoshiko Miura
- Department of Chemical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Michiya Matsusaki
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
7
|
Luo T, Zheng Q, Liu J, Yao R, Wang M. Polyphenol-Assisted Biomineralization of Metal-Organic Framework Nanoparticles for Precision Delivery of Therapeutic Proteins to Cancer Cells. Bioconjug Chem 2024; 35:682-692. [PMID: 38648296 DOI: 10.1021/acs.bioconjchem.4c00154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
The delivery of proteins into the cytosol holds great promise for cell signaling manipulation and the development of precision medicine. However, this potency is challenged by achieving targeted and controlled delivery, specifically within diseased cells. In this study, we introduce a versatile and effective method for the precision delivery of therapeutic proteins to cancer cells by designing polyphenol-assisted biomineralization of zeolite imidazole framework-8 (ZIF-8). We demonstrate that by leveraging the strong noncovalent binding affinity of epigallocatechin gallate (EGCG) with both proteins and ZIF-8, our approach significantly enhances the biomineralization of ZIF-8, which in turn improves the efficiency of protein encapsulation and intracellular delivery. Moreover, the incorporation of EGCG within ZIF-8 enables controlled degradation of the nanoparticles and the selective release of the encapsulated proteins in cancer cells. This selective release is triggered by the oxidation of EGCG in response to the high levels of reactive oxygen species (ROS) found within cancer cells that destabilize the EGCG/ZIF-8 nanoparticles. We have further demonstrated the ability of EGCG/ZIF-8 to deliver a wide range of proteins into cancer cells, including bacterial virulence protein, to rewire cell signaling and prohibit tumor cell growth in a mouse xenograft model. Our strategy and findings underscore the potential of designing the EGCG/ZIF-8 interface for specific and controlled protein delivery for targeted cancer therapy.
Collapse
Affiliation(s)
- Tianli Luo
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qizhen Zheng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ji Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Rui Yao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Ghosh A, Sharma M, Zhao Y. Cell-penetrating protein-recognizing polymeric nanoparticles through dynamic covalent chemistry and double imprinting. Nat Commun 2024; 15:3731. [PMID: 38702306 PMCID: PMC11068882 DOI: 10.1038/s41467-024-48131-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 04/22/2024] [Indexed: 05/06/2024] Open
Abstract
Molecular recognition of proteins is key to their biological functions and processes such as protein-protein interactions (PPIs). The large binding interface involved and an often relatively flat binding surface make the development of selective protein-binding materials extremely challenging. A general method is reported in this work to construct protein-binding polymeric nanoparticles from cross-linked surfactant micelles. Preparation involves first dynamic covalent chemistry that encodes signature surface lysines on a protein template. A double molecular imprinting procedure fixes the binding groups on the nanoparticle for these lysine groups, meanwhile creating a binding interface complementary to the protein in size, shape, and distribution of acidic groups on the surface. These water-soluble nanoparticles possess excellent specificities for target proteins and sufficient affinities to inhibit natural PPIs such as those between cytochrome c (Cytc) and cytochrome c oxidase (CcO). With the ability to enter cells through a combination of energy-dependent and -independent pathways, they intervene apoptosis by inhibiting the PPI between Cytc and the apoptotic protease activating factor-1 (APAF1). Generality of the preparation and the excellent molecular recognition of the materials have the potential to make them powerful tools to probe protein functions in vitro and in cellulo.
Collapse
Affiliation(s)
- Avijit Ghosh
- Department of Chemistry, Iowa State University, Ames, IA, 50011-3111, USA
| | - Mansi Sharma
- Department of Chemistry, Iowa State University, Ames, IA, 50011-3111, USA
| | - Yan Zhao
- Department of Chemistry, Iowa State University, Ames, IA, 50011-3111, USA.
| |
Collapse
|
9
|
Zhao Y, Huang Q, Li Q, Chen Z, Liu Y. Bidirectional Regulation of Intracellular Enzyme Activity Using Light-Driven Nano-Inhibitors. Angew Chem Int Ed Engl 2024; 63:e202318533. [PMID: 38196066 DOI: 10.1002/anie.202318533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/24/2023] [Accepted: 01/09/2024] [Indexed: 01/11/2024]
Abstract
Photochemical regulation provides precise control over enzyme activities with high spatiotemporal resolution. A promising approach involves anchoring "photoswitches" at enzyme active sites to modulate substrate recognition. However, current methods often require genetic mutations and irreversible enzyme modifications for the site-specific anchoring of "photoswitches", potentially compromising the enzyme activities. Herein, we present a pioneering reversible nano-inhibitor based on molecular imprinting technique for bidirectional regulation of intracellular enzyme activity. The nano-inhibitor employs a molecularly imprinted polymer nanoparticle as its body and azobenzene-modified inhibitors ("photoswitches") as the arms. By using a target enzyme as the molecular template, the nano-inhibitor acquires oriented binding sites on its surface, resulting in a high affinity for the target enzyme and non-covalently firm anchoring of the azobenzene-modified inhibitor to the enzyme active site. Harnessing the reversible isomerization of azobenzene units upon exposure to ultraviolet and visible light, the nano-inhibitor achieves bidirectional enzyme activity regulation by precisely docking and undocking inhibitor at the active site. Notably, this innovative approach enables the facile in situ regulation of intracellular endogenous enzymes, such as carbonic anhydrase. Our results represent a practical and versatile tool for precise enzyme activity regulation in complex intracellular environments.
Collapse
Affiliation(s)
- Yu Zhao
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Qingqing Huang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Qiushi Li
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Zihan Chen
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yang Liu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
10
|
Xie M, Jia X, Xu X. Control of polymer-protein interactions by tuning the composition and length of polymer chains. Phys Chem Chem Phys 2024; 26:4052-4061. [PMID: 38224136 DOI: 10.1039/d3cp05017c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Nanomoduling the 3D shape and chemical functionalities in a synthetic polymer may create recognition cavities for biomacromolecule binding, which serves as an attractive alternative to natural antibodies with much less cost. To obtain fundamental understanding and predict molecular design rules of the polymer antibody, we analyze the complex structure between the biomarker protein epithelial cell adhesion molecule (EpCAM) and a series of polymer ligands via molecular dynamics (MD) simulations. For monomeric ligands, strong enrichment of aromatic residues in protein binding sites is revealed, in line with the reported observations for natural antibodies. Yet, for linear polymers with a growing degree of polymerization, for the first time, a drastic change is revealed on the type of enriched protein residues and the location of protein binding sites, driven by the increasing steric hindrance effect that makes the adsorption of the polymer in the protein exterior feasible. Varying the polymer length and monomeric composition also significantly affects the ligand binding affinity. Here, we have captured three distinct dependences of the ligand binding free energy on the degree of polymerization: for NIPAm based hydrophilic polymers, TBAm dominated hydrophobic polymers and AAc dominated charged polymers. These results can be rationalized by the complex structure and the composition of protein residues at the binding interface. The entire analysis demonstrates unique binding features for polymer ligands and the possibility to modulate their binding sites and affinity by engineering the polymer structure.
Collapse
Affiliation(s)
- Menghan Xie
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, P. R. China.
| | - Xu Jia
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, P. R. China.
| | - Xiao Xu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, P. R. China.
- The State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| |
Collapse
|
11
|
Xu X, Xie M, Luo S, Jia X. Revisiting Protein-Copolymer Binding Mechanisms: Insights beyond the "Lock-and-Key" Model. J Phys Chem Lett 2024; 15:773-781. [PMID: 38227953 DOI: 10.1021/acs.jpclett.3c03200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
The "lock-and-key" model that emphasizes the concept of chemical-structural complementary is the key mechanism for explaining the selectivity between small ligands and a larger adsorbent molecule. In this work, concerning the copolymer chain using only the combination of N-isopropylacrylamide (NIPAm) and hydrophobic N-tert-butylacrylamide (TBAm) monomers and by large-scale atomistic molecular dynamics simulations, our results show that the flexible copolymer chain may exhibit strong binding affinity for the biomarker protein epithelial cell adhesion molecule, in the absence of hydrophobic matching and strong structural complementarity. This surprising binding behavior, which cannot be anticipated by the "lock-and-key" model, can be attributed to the preferential interactions established by the copolymer with the protein's hydrophilic exterior. We observe that increasing the fraction of incorporated TBAm monomers leads to a prevalence of interactions with asparagine and glutamine amino acids due to the emerging hydrogen bonding with both NIPAm and TBAm monomers. Our findings suggest the appearance of highly specific and high-affinity binding sites on the protein created by engineering the copolymer composition, which motivates the applications of copolymers as protein affinity reagents.
Collapse
Affiliation(s)
- Xiao Xu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, P. R. China
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Menghan Xie
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, P. R. China
| | - Shejia Luo
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, P. R. China
| | - Xu Jia
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, P. R. China
| |
Collapse
|
12
|
Koide H, Yamaguchi K, Sato K, Aoshima M, Kanata S, Yonezawa S, Asai T. Engineering Temperature-Responsive Polymer Nanoparticles that Load and Release Paclitaxel, a Low-Molecular-Weight Anticancer Drug. ACS OMEGA 2024; 9:1011-1019. [PMID: 38222561 PMCID: PMC10785788 DOI: 10.1021/acsomega.3c07226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 01/16/2024]
Abstract
Poly(N-isopropylacrylamide) (pNIPAm) undergoes a hydrophilicity/hydrophobicity change around its lower critical solution temperature (LCST). Therefore, pNIPAm-based polymer nanoparticles (NPs) shrink above their LCST and swell below their LCST. Although temperature responsiveness is an important characteristic of synthetic polymers in drug and gene delivery, few studies have investigated the temperature-responsive catch and release of low-molecular-weight drugs (LMWDs) as their affinity to the target changes. Since LMWDs have only a few functional groups, preparation of NPs with high affinity for LMWDs is hard compared with that for peptides and proteins. However, LMWDs such as anticancer drugs often have a stronger effect than peptides and proteins. Therefore, the development of NPs that can load and release LMWDs is needed for drug delivery. Here, we engineered pNIPAm-based NPs that capture paclitaxel (PTX), an anticancer LMWD that inhibits microtubules, above their LCST and release it below their LCST. The swelling transition of the NPs depended on their hydrophobic monomer structure. NPs with swelling ratios (=NP size at 25 °C/NP size at 37 °C) exceeding 1.90 released captured PTX when cooled to below their LCST by changing the affinity for PTX. On the other hand, NPs with a swelling ratio of only 1.14 released melittin. Therefore, optimizing the functional monomers of temperature-responsive NPs is essential for the catch and release of the target in a temperature-dependent manner. These results can guide the design of stimuli-responsive polymers that catch and release their target molecules.
Collapse
Affiliation(s)
- Hiroyuki Koide
- Department of Medical Biochemistry, University of Shizuoka School of Pharmaceutical Sciences, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka 422-8526, Japan
| | - Kazuma Yamaguchi
- Department of Medical Biochemistry, University of Shizuoka School of Pharmaceutical Sciences, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka 422-8526, Japan
| | - Keijiro Sato
- Department of Medical Biochemistry, University of Shizuoka School of Pharmaceutical Sciences, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka 422-8526, Japan
| | - Maki Aoshima
- Department of Medical Biochemistry, University of Shizuoka School of Pharmaceutical Sciences, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka 422-8526, Japan
| | - Shoko Kanata
- Department of Medical Biochemistry, University of Shizuoka School of Pharmaceutical Sciences, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka 422-8526, Japan
| | - Sei Yonezawa
- Department of Medical Biochemistry, University of Shizuoka School of Pharmaceutical Sciences, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka 422-8526, Japan
| | - Tomohiro Asai
- Department of Medical Biochemistry, University of Shizuoka School of Pharmaceutical Sciences, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka 422-8526, Japan
| |
Collapse
|
13
|
Koide H, Kiyokawa C, Okishima A, Saito K, Yoshimatsu K, Fukuta T, Hoshino Y, Asai T, Nishimura Y, Miura Y, Oku N, Shea KJ. Design of an Anti-HMGB1 Synthetic Antibody for In Vivo Ischemic/Reperfusion Injury Therapy. J Am Chem Soc 2023; 145:23143-23151. [PMID: 37844138 PMCID: PMC10603801 DOI: 10.1021/jacs.3c06799] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Indexed: 10/18/2023]
Abstract
High-mobility group box 1 (HMGB1) is a multifunctional protein. Upon injury or infection, HMGB1 is passively released from necrotic and activated dendritic cells and macrophages, where it functions as a cytokine, acting as a ligand for RAGE, a major receptor of innate immunity stimulating inflammation responses including the pathogenesis of cerebral ischemia/reperfusion (I/R) injury. Blocking the HMGB1/RAGE axis offers a therapeutic approach to treating these inflammatory conditions. Here, we describe a synthetic antibody (SA), a copolymer nanoparticle (NP) that binds HMGB1. A lightly cross-linked N-isopropylacrylamide (NIPAm) hydrogel copolymer with nanomolar affinity for HMGB1 was selected from a small library containing trisulfated 3,4,6S-GlcNAc and hydrophobic N-tert-butylacrylamide (TBAm) monomers. Competition binding experiments with heparin established that the dominant interaction between SA and HMGB1 occurs at the heparin-binding domain. In vitro studies established that anti-HMGB1-SA inhibits HMGB1-dependent ICAM-1 expression and ERK phosphorylation of HUVECs, confirming that SA binding to HMGB1 inhibits the proteins' interaction with the RAGE receptor. Using temporary middle cerebral artery occlusion (t-MCAO) model rats, anti-HMGB1-SA was found to accumulate in the ischemic brain by crossing the blood-brain barrier. Significantly, administration of anti-HMGB1-SA to t-MCAO rats dramatically reduced brain damage caused by cerebral ischemia/reperfusion. These results establish that a statistical copolymer, selected from a small library of candidates synthesized using an "informed" selection of functional monomers, can yield a functional synthetic antibody. The knowledge gained from these experiments can facilitate the discovery, design, and development of a new category of drug.
Collapse
Affiliation(s)
- Hiroyuki Koide
- Department
of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Chiaki Kiyokawa
- Department
of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Anna Okishima
- Department
of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Kaito Saito
- Department
of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Keiichi Yoshimatsu
- Department
of Chemistry, Missouri State University, 901 South National Avenue, Springfield, Missouri 65897, United States
| | - Tatsuya Fukuta
- Department
of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Yu Hoshino
- Department
of Chemical Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Tomohiro Asai
- Department
of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Yuri Nishimura
- Department
of Chemical Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Yoshiko Miura
- Department
of Chemical Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Naoto Oku
- Department
of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Kenneth J. Shea
- Department
of Chemistry, University of California Irvine, Irvine, California 92697, United States
| |
Collapse
|
14
|
Zhao M, Guan P, Xu S, Lu H, Liu Z. Molecularly Imprinted Nanomedicine for Anti-angiogenic Cancer Therapy via Blocking Vascular Endothelial Growth Factor Signaling. NANO LETTERS 2023; 23:8674-8682. [PMID: 37721331 DOI: 10.1021/acs.nanolett.3c02514] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
The VEGF-VEGFR2 (VEGF = vascular endothelial growth factor) signaling has been a promising target in cancer therapy. However, because conventional anti-angiogenic therapeutics suffer from drawbacks, particularly severe side effects, novel anti-angiogenic strategies are much needed. Herein, we report the rational engineering of VEGF-targeted molecularly imprinted polymer nanoparticles (nanoMIP) for anti-angiogenic cancer therapy. The anti-VEGF nanomedicine was prepared via a state-of-the-art molecular imprinting approach using the N-terminal epitope of VEGF as the template. The nanoMIP could target the two major pro-angiogenic isoforms (VEGF165 and VEGF121) with high affinity and thereby effectively block the VEGF-VEGFR2 signaling, yielding a potent anti-angiogenic effect of "killing two birds with one stone". In vivo experiments demonstrated that the anti-VEGF nanoMIP effectively suppressed tumor growth via anti-angiogenesis in a xenograft model of human colon carcinoma without apparent side effects. Thus, this study not only proposes an unprecedented anti-angiogenic strategy for cancer therapy but also provides a new paradigm for the rational development of MIPs-based "drug-free" nanomedicines.
Collapse
Affiliation(s)
- Menghuan Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Peixin Guan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Shuxin Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Haifeng Lu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Zhen Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| |
Collapse
|
15
|
Silva AT, Figueiredo R, Azenha M, Jorge PA, Pereira CM, Ribeiro JA. Imprinted Hydrogel Nanoparticles for Protein Biosensing: A Review. ACS Sens 2023; 8:2898-2920. [PMID: 37556357 PMCID: PMC10463276 DOI: 10.1021/acssensors.3c01010] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/31/2023] [Indexed: 08/11/2023]
Abstract
Over the past decade, molecular imprinting (MI) technology has made tremendous progress, and the advancements in nanotechnology have been the major driving force behind the improvement of MI technology. The preparation of nanoscale imprinted materials, i.e., molecularly imprinted polymer nanoparticles (MIP NPs, also commonly called nanoMIPs), opened new horizons in terms of practical applications, including in the field of sensors. Currently, hydrogels are very promising for applications in bioanalytical assays and sensors due to their high biocompatibility and possibility to tune chemical composition, size (microgels, nanogels, etc.), and format (nanostructures, MIP film, fibers, etc.) to prepare optimized analyte-responsive imprinted materials. This review aims to highlight the recent progress on the use of hydrogel MIP NPs for biosensing purposes over the past decade, mainly focusing on their incorporation on sensing devices for detection of a fundamental class of biomolecules, the peptides and proteins. The review begins by directing its focus on the ability of MIPs to replace biological antibodies in (bio)analytical assays and highlight their great potential to face the current demands of chemical sensing in several fields, such as disease diagnosis, food safety, environmental monitoring, among others. After that, we address the general advantages of nanosized MIPs over macro/micro-MIP materials, such as higher affinity toward target analytes and improved binding kinetics. Then, we provide a general overview on hydrogel properties and their great advantages for applications in the field of Sensors, followed by a brief description on current popular routes for synthesis of imprinted hydrogel nanospheres targeting large biomolecules, namely precipitation polymerization and solid-phase synthesis, along with fruitful combination with epitope imprinting as reliable approaches for developing optimized protein-imprinted materials. In the second part of the review, we have provided the state of the art on the application of MIP nanogels for screening macromolecules with sensors having different transduction modes (optical, electrochemical, thermal, etc.) and design formats for single use, reusable, continuous monitoring, and even multiple analyte detection in specialized laboratories or in situ using mobile technology. Finally, we explore aspects about the development of this technology and its applications and discuss areas of future growth.
Collapse
Affiliation(s)
- Ana T. Silva
- CIQUP/IMS,
Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre 687, s/n, Porto 4169-007, Portugal
| | - Rui Figueiredo
- CIQUP/IMS,
Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre 687, s/n, Porto 4169-007, Portugal
| | - Manuel Azenha
- CIQUP/IMS,
Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre 687, s/n, Porto 4169-007, Portugal
| | - Pedro A.S. Jorge
- INESC
TEC−Institute for Systems and Computer Engineering, Technology
and Science, Faculty of Sciences, University
of Porto, 4169-007 Porto, Portugal
- Department
of Physics and Astronomy, Faculty of Sciences, University of Porto, Rua do Campo Alegre 687, s/n, Porto 4169-007, Portugal
| | - Carlos M. Pereira
- CIQUP/IMS,
Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre 687, s/n, Porto 4169-007, Portugal
| | - José A. Ribeiro
- CIQUP/IMS,
Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre 687, s/n, Porto 4169-007, Portugal
| |
Collapse
|
16
|
Kou HS, Lo ST, Wang CC. One Single Tube Reaction of Aptasensor-Based Magnetic Sensing System for Selective Fluorescent Detection of VEGF in Plasma. BIOSENSORS 2023; 13:574. [PMID: 37366939 DOI: 10.3390/bios13060574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/16/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023]
Abstract
In this study, a simple, easy and convenient fluorescent sensing system for the detection of the vascular endothelial growth factor (VEGF) based on VEGF aptamers, aptamer-complementary fluorescence-labeled probe and streptavidin magnetic beads was developed in one single tube. The VEGF is the most important biomarker in cancer, and it is investigated that the serum VEGF level varied according to the different types and courses of cancers. Hence, efficient quantification of VEGF is able to improve the accuracy of cancer diagnoses and the precision of disease surveillance. In this research, the VEGF aptamer was designed to be able to bind with the VEGF by forming G-quadruplex secondary structures; then, the magnetic beads would capture the non-binding aptamers due to non-steric interference; and finally, the fluorescence-labeled probes were hybridized with the aptamers captured by the magnetic beads. Therefore, the fluorescent intensity in the supernatant would specifically reflect the present VEGF. After an overall optimization, the optimal conditions for the detection of VEGF were as followed, KCl, 50 μM; pH 7.0; aptamer, 0.1 μM; and magnetic beads, 10 μL (4 μg/μL). The VEGF could be well quantified within a range of 0.2-2.0 ng/mL in plasma, and the calibration curve possessed a good linearity (y = 1.0391x + 0.5471, r = 0.998). The detection limit (LOD) was calculated to be 0.0445 ng/mL according to the formula (LOD = 3.3 × σ/S). The specificity of this method was also investigated under the appearance of many other serum proteins, and the data showed good specificity in this aptasensor-based magnetic sensing system. This strategy provided a simple, sensitive and selective biosensing platform for the detection of serum VEGF. Finally, it was expected that this detection technique can be used to promote more clinical applications.
Collapse
Affiliation(s)
- Hwang-Shang Kou
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Shao-Tsung Lo
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chun-Chi Wang
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
17
|
Li B, Zhao Y, Wu X, Wu H, Tang W, Yu X, Mou J, Tan W, Jin M, Li W, Zhang Q, Liu M. Abiotic Synthetic Antibody Inhibitor with Broad-Spectrum Neutralization and Antiviral Efficacy against Escaping SARS-CoV-2 Variants. ACS NANO 2023; 17:7017-7034. [PMID: 36971310 PMCID: PMC10074723 DOI: 10.1021/acsnano.3c02050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 03/23/2023] [Indexed: 06/18/2023]
Abstract
The rapid emergence and spread of vaccine/antibody-escaping variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has posed serious challenges to our efforts in combating corona virus disease 2019 (COVID-19) pandemic. A potent and broad-spectrum neutralizing reagent against these escaping mutants is extremely important for the development of strategies for the prevention and treatment of SARS-CoV-2 infection. We herein report an abiotic synthetic antibody inhibitor as a potential anti-SARS-CoV-2 therapeutic agent. The inhibitor, Aphe-NP14, was selected from a synthetic hydrogel polymer nanoparticle library created by incorporating monomers with functionalities complementary to key residues of the SARS-CoV-2 spike glycoprotein receptor binding domain (RBD) involved in human angiotensin-converting enzyme 2 (ACE2) binding. It has high capacity, fast adsorption kinetics, strong affinity, and broad specificity in biologically relevant conditions to both the wild type and the current variants of concern, including Beta, Delta, and Omicron spike RBD. The Aphe-NP14 uptake of spike RBD results in strong blockage of spike RBD-ACE2 interaction and thus potent neutralization efficacy against these escaping spike protein variant pseudotyped viruses. It also inhibits live SARS-CoV-2 virus recognition, entry, replication, and infection in vitro and in vivo. The Aphe-NP14 intranasal administration is found to be safe due to its low in vitro and in vivo toxicity. These results establish a potential application of abiotic synthetic antibody inhibitors in the prevention and treatment of the infection of emerging or possibly future SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Bingxue Li
- Key Laboratory of Arable Land Conservation (Middle and
Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key
Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection
Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment,
Huazhong Agricultural University, Wuhan 430070,
China
| | - Ya Zhao
- National Key Laboratory of Agricultural Microbiology,
Huazhong Agricultural University, Wuhan 430070,
China
| | - Xuefan Wu
- State Key Laboratory of Virology, Wuhan
Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of
Sciences, Wuhan 430071, China
- University of Chinese Academy of
Sciences, Beijing 100049, China
| | - Haiyan Wu
- Key Laboratory of Arable Land Conservation (Middle and
Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key
Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection
Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment,
Huazhong Agricultural University, Wuhan 430070,
China
| | - Weicheng Tang
- Key Laboratory of Arable Land Conservation (Middle and
Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key
Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection
Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment,
Huazhong Agricultural University, Wuhan 430070,
China
| | - Xiaoyang Yu
- Key Laboratory of Arable Land Conservation (Middle and
Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key
Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection
Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment,
Huazhong Agricultural University, Wuhan 430070,
China
| | - Jianqiong Mou
- Key Laboratory of Arable Land Conservation (Middle and
Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key
Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection
Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment,
Huazhong Agricultural University, Wuhan 430070,
China
| | - Wenfeng Tan
- Key Laboratory of Arable Land Conservation (Middle and
Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key
Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection
Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment,
Huazhong Agricultural University, Wuhan 430070,
China
| | - Meilin Jin
- National Key Laboratory of Agricultural Microbiology,
Huazhong Agricultural University, Wuhan 430070,
China
- College of Veterinary Medicine, Huazhong
Agricultural University, Wuhan 430070, China
- Key Laboratory of Development of Veterinary Diagnostic
Products, Ministry of Agriculture, Wuhan 430070,
China
| | - Wei Li
- State Key Laboratory of Virology, Wuhan
Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of
Sciences, Wuhan 430071, China
| | - Qiang Zhang
- National Key Laboratory of Agricultural Microbiology,
Huazhong Agricultural University, Wuhan 430070,
China
- College of Biomedicine and Health,
Huazhong Agricultural University, Wuhan 430070,
China
- Hubei Jiangxia Laboratory,
Wuhan 430200, China
| | - Mingming Liu
- Key Laboratory of Arable Land Conservation (Middle and
Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key
Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection
Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment,
Huazhong Agricultural University, Wuhan 430070,
China
| |
Collapse
|
18
|
Xie H, Sun Y, Zhang R, Zhang Y, Zhao M. Surface imprinted bio-nanocomposites for affinity separation of a cellular DNA repair protein. Biopolymers 2023; 114:e23537. [PMID: 36972353 DOI: 10.1002/bip.23537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023]
Abstract
Apurinic/apyrimidinic endonuclease 1 (APE1) is a multifunctional DNA repair protein localized in different subcellular compartments. The mechanisms responsible for the highly regulated subcellular localization and "interactomes" of this protein are not fully understood but have been closely correlated to the posttranslational modifications in different biological context. In this work, we attempted to develop a bio-nanocomposite with antibody-like properties that could capture APE1 from cellular matrices to enable the comprehensive study of this protein. By fixing the template APE1 on the avidin-modified surface of silica-coated magnetic nanoparticles, we first added 3-aminophenylboronic acid to react with the glycosyl residues of avidin, followed by addition of 2-acrylamido-2-methylpropane sulfonic acid as the second functional monomer to perform the first step imprinting reaction. To further enhance the affinity and selectivity of the binding sites, we carried out the second step imprinting reaction with dopamine as the functional monomer. After the polymerization, we modified the nonimprinted sites with methoxypoly(ethylene glycol) amine (mPEG-NH2 ). The resulting molecularly imprinted polymer-based bio-nanocomposite showed high affinity, specificity, and capacity for template APE1. It allowed for the extraction of APE1 from the cell lysates with high recovery and purity. Moreover, the bound protein could be effectively released from the bio-nanocomposite with high activity. The bio-nanocomposite offers a very useful tool for the separation of APE1 from various complex biological samples.
Collapse
Affiliation(s)
- Huaisyuan Xie
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Ying Sun
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Ruilan Zhang
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yuxuan Zhang
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Meiping Zhao
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
19
|
Koide H, Saito K, Yoshimatsu K, Chou B, Hoshino Y, Yonezawa S, Oku N, Asai T, Shea KJ. Cooling-induced, localized release of cytotoxic peptides from engineered polymer nanoparticles in living mice for cancer therapy. J Control Release 2023; 355:745-759. [PMID: 36804558 DOI: 10.1016/j.jconrel.2023.02.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/31/2023] [Accepted: 02/13/2023] [Indexed: 02/23/2023]
Abstract
Temperature-responsive polymers are often characterized by an abrupt change in the degree of swelling brought about by small changes in temperature. Polymers with a lower critical solution temperature (LCST) in particular, are important as drug and gene delivery vehicles. Drug molecules are taken up by the polymer in their solvent swollen state below their LCST. Increasing the temperature above the LCST, typically physiological temperatures, results in desolvation of polymer chains and microstructure collapse. The trapped drug is released slowly by passive diffusion through the collapsed polymer network. Since diffusion is dependent on many variables, localizing and control of the drug delivery rate can be challenging. Here, we report a fundamentally different approach for the rapid (seconds) tumor-specific delivery of a biomacromolecular drug. A copolymer nanoparticle (NP) was engineered with affinity for melittin, a peptide with potent anti-cancer activity, at physiological temperature. Intravenous injection of the NP-melittin complex results in its accumulation in organs and at the tumor. We demonstrate that by local cooling of the tumor the melittin is rapidly released from the NP-melittin complex. The release occurs only at the cooled tumor site. Importantly, tumor growth was significantly suppressed using this technique demonstrating therapeutically useful quantities of the drug can be delivered. This work reports the first example of an in vivo site-specific release of a macromolecular drug by local cooling for cancer therapy. In view of the increasing number of cryotherapeutic devices for in vivo applications, this work has the potential to stimulate cryotherapy for in vivo drug delivery.
Collapse
Affiliation(s)
- Hiroyuki Koide
- Department of Medical Biochemistry, Graduate school of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka 422-8526, Japan.
| | - Kazuhiro Saito
- Department of Medical Biochemistry, Graduate school of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka 422-8526, Japan
| | - Keiichi Yoshimatsu
- Department of Chemistry, Missouri State University, 901 South National Avenue, Springfield, MO 65897, USA; Department of Chemistry, University of California Irvine, Irvine, CA 92697, USA.
| | - Beverly Chou
- Department of Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Yu Hoshino
- Department of Applied Chemistry, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Sei Yonezawa
- Department of Medical Biochemistry, Graduate school of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka 422-8526, Japan
| | - Naoto Oku
- Department of Medical Biochemistry, Graduate school of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka 422-8526, Japan; Laboratory of Biomedical and Analytical Sciences, Faculty of Pharma Sciences, Teikyo University, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan
| | - Tomohiro Asai
- Department of Medical Biochemistry, Graduate school of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka 422-8526, Japan
| | - Kenneth J Shea
- Department of Chemistry, University of California Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
20
|
Benghouzi P, Louadj L, Pagani A, Garnier M, Fresnais J, Gonzato C, Sabbah M, Griffete N. Synthesis of Fluorescent, Small, Stable and Non-Toxic Epitope-Imprinted Polymer Nanoparticles in Water. Polymers (Basel) 2023; 15:polym15051112. [PMID: 36904354 PMCID: PMC10007256 DOI: 10.3390/polym15051112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Molecularly imprinted polymers (MIPs) are really interesting for nanomedicine. To be suitable for such application, they need to be small, stable in aqueous media and sometimes fluorescent for bioimaging. We report herein, the facile synthesis of fluorescent, small (below 200 nm), water-soluble and water-stable MIP capable of specific and selective recognition of their target epitope (small part of a protein). To synthesize these materials, we used dithiocarbamate-based photoiniferter polymerization in water. The use of a rhodamine-based monomer makes the resulting polymers fluorescent. Isothermal titration calorimetry (ITC) is used to determine the affinity as well as the selectivity of the MIP for its imprinted epitope, according to the significant differences observed when comparing the binding enthalpy of the original epitope with that of other peptides. The toxicity of the nanoparticles is also tested in two breast cancer cell lines to show the possible use of these particle for future in vivo applications. The materials demonstrated a high specificity and selectivity for the imprinted epitope, with a Kd value comparable with the affinity values of antibodies. The synthesized MIP are not toxic, which makes them suitable for nanomedicine.
Collapse
Affiliation(s)
- Perla Benghouzi
- Physico-Chimie des Electrolytes et Nanosystèmes InterfaciauX (PHENIX), Sorbonne Université, CNRS, 4 Place Jussieu, 75005 Paris, France
| | - Lila Louadj
- Physico-Chimie des Electrolytes et Nanosystèmes InterfaciauX (PHENIX), Sorbonne Université, CNRS, 4 Place Jussieu, 75005 Paris, France
- Saint-Antoine Research Center (CRSA) INSERM, CNRS, Sorbonne Université, 75012 Paris, France
| | - Aurélia Pagani
- Physico-Chimie des Electrolytes et Nanosystèmes InterfaciauX (PHENIX), Sorbonne Université, CNRS, 4 Place Jussieu, 75005 Paris, France
- Saint-Antoine Research Center (CRSA) INSERM, CNRS, Sorbonne Université, 75012 Paris, France
| | - Maylis Garnier
- Physico-Chimie des Electrolytes et Nanosystèmes InterfaciauX (PHENIX), Sorbonne Université, CNRS, 4 Place Jussieu, 75005 Paris, France
- Saint-Antoine Research Center (CRSA) INSERM, CNRS, Sorbonne Université, 75012 Paris, France
| | - Jérôme Fresnais
- Physico-Chimie des Electrolytes et Nanosystèmes InterfaciauX (PHENIX), Sorbonne Université, CNRS, 4 Place Jussieu, 75005 Paris, France
| | - Carlo Gonzato
- Laboratory for Enzyme and Cell Engineering UMR 7025, CNRS, Université de Technologie de Compiègne, Rue du Docteur Schweitzer, 60203 Compiègne, France
| | - Michèle Sabbah
- Saint-Antoine Research Center (CRSA) INSERM, CNRS, Sorbonne Université, 75012 Paris, France
| | - Nébéwia Griffete
- Physico-Chimie des Electrolytes et Nanosystèmes InterfaciauX (PHENIX), Sorbonne Université, CNRS, 4 Place Jussieu, 75005 Paris, France
- Correspondence:
| |
Collapse
|
21
|
Liu Y, Yi Y, Zhong C, Ma Z, Wang H, Dong X, Yu F, Li J, Chen Q, Lin C, Li X. Advanced bioactive nanomaterials for diagnosis and treatment of major chronic diseases. Front Mol Biosci 2023; 10:1121429. [PMID: 36776741 PMCID: PMC9909026 DOI: 10.3389/fmolb.2023.1121429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 01/17/2023] [Indexed: 01/27/2023] Open
Abstract
With the rapid innovation of nanoscience and technology, nanomaterials have also been deeply applied in the medical and health industry and become one of the innovative methods to treat many diseases. In recent years, bioactive nanomaterials have attracted extensive attention and have made some progress in the treatment of some major chronic diseases, such as nervous system diseases and various malignant tumors. Bioactive nanomaterials depend on their physical and chemical properties (crystal structure, surface charge, surface functional groups, morphology, and size, etc.) and direct produce biological activity and play to the role of the treatment of diseases, compared with the traditional nanometer pharmaceutical preparations, biological active nano materials don't exert effects through drug release, way more directly, also is expected to be more effective for the treatment of diseases. However, further studies are needed in the evaluation of biological effects, fate in vivo, structure-activity relationship and clinical transformation of bionanomaterials. Based on the latest research reports, this paper reviews the application of bioactive nanomaterials in the diagnosis and treatment of major chronic diseases and analyzes the technical challenges and key scientific issues faced by bioactive nanomaterials in the diagnosis and treatment of diseases, to provide suggestions for the future development of this field.
Collapse
Affiliation(s)
- Yongfei Liu
- Department of Urology, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, China
| | - Yi Yi
- Department of Urology, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, China,*Correspondence: Yi Yi,
| | - Chengqian Zhong
- Longyan First Hospital Affiliated to Fujian Medical University, Longyan, China
| | - Zecong Ma
- Department of Urology, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, China
| | - Haifeng Wang
- Department of Urology, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, China
| | - Xingmo Dong
- Department of Urology, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, China
| | - Feng Yu
- Department of Urology, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, China
| | - Jing Li
- Department of Urology, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, China
| | - Qinqi Chen
- Department of Urology, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, China
| | - Chaolu Lin
- Department of Urology, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, China
| | - Xiaohong Li
- Longyan First Hospital Affiliated to Fujian Medical University, Longyan, China
| |
Collapse
|
22
|
Koba Y, Nakamoto M, Matsusaki M. Fabrication of a Polymeric Inhibitor of Proximal Metabolic Enzymes in Hypoxia for Synergistic Inhibition of Cancer Cell Proliferation, Survival, and Migration. ACS APPLIED MATERIALS & INTERFACES 2022; 14:51790-51797. [PMID: 36375210 DOI: 10.1021/acsami.2c16454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Since conventional molecular targeted drugs often result in side effects, the development of novel molecular targeted drugs with both high efficacy and selectivity is desired. Simultaneous inhibition of metabolically and spatiotemporally related proteins/enzymes is a promising strategy for improving therapeutic interventions in cancer treatment. Herein, we report a poly-α-l-glutamate-based polymer inhibitor that simultaneously targets proximal transmembrane enzymes under hypoxia, namely, carbonic anhydrase IX (CAIX) and zinc-dependent metalloproteinases. A polymer incorporating two types of inhibitors more effectively inhibited the proliferation and migration of human breast cancer cells than a combination of two polymers functionalized exclusively with either inhibitor. Synergistic inhibition of cancer cells would occur owing to the hetero-multivalent interactions of the polymer with proximate enzymes on the cancer cell membrane. Our results highlight the potential of polymer-based cancer therapeutics.
Collapse
Affiliation(s)
- Yuki Koba
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka565-0871, Japan
| | - Masahiko Nakamoto
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka565-0871, Japan
| | - Michiya Matsusaki
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka565-0871, Japan
| |
Collapse
|
23
|
Chafran L, Carfagno A, Altalhi A, Bishop B. Green Hydrogel Synthesis: Emphasis on Proteomics and Polymer Particle-Protein Interaction. Polymers (Basel) 2022; 14:4755. [PMID: 36365747 PMCID: PMC9656617 DOI: 10.3390/polym14214755] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 08/26/2023] Open
Abstract
The field of drug discovery has seen significant progress in recent years. These advances drive the development of new technologies for testing compound's effectiveness, as well as their adverse effects on organs and tissues. As an auxiliary tool for drug discovery, smart biomaterials and biopolymers produced from biodegradable monomers allow the manufacture of multifunctional polymeric devices capable of acting as biosensors, of incorporating bioactives and biomolecules, or even mimicking organs and tissues through self-association and organization between cells and biopolymers. This review discusses in detail the use of natural monomers for the synthesis of hydrogels via green routes. The physical, chemical and morphological characteristics of these polymers are described, in addition to emphasizing polymer-particle-protein interactions and their application in proteomics studies. To highlight the diversity of green synthesis methodologies and the properties of the final hydrogels, applications in the areas of drug delivery, antibody interactions, cancer therapy, imaging and biomarker analysis are also discussed, as well as the use of hydrogels for the discovery of antimicrobial and antiviral peptides with therapeutic potential.
Collapse
Affiliation(s)
- Liana Chafran
- Department of Chemistry and Biochemistry, George Mason University, Manassas, VA 20110 , USA
| | | | | | - Barney Bishop
- Department of Chemistry and Biochemistry, George Mason University, Manassas, VA 20110 , USA
| |
Collapse
|
24
|
Xu X, Zhang T, Angioletti-Uberti S, Lv Y. Binding of Proteins to Copolymers of Varying Charges and Hydrophobicity: A Molecular Mechanism and Computational Strategies. Biomacromolecules 2022; 23:4118-4129. [PMID: 36166427 DOI: 10.1021/acs.biomac.2c00521] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Because of their ability to selectively bind to a target protein, copolymer nanoparticles (NPs) containing a selected combination of hydrophobic and charged groups have been frequently reported as potent antibody-like analogues. However, due to the intrinsic disorder of the copolymer NP in terms of its random monomer sequence and the cross-linked copolymer matrix, the copolymer NP is indeed strikingly different from a well-folded protein antibody and the complexation between the copolymer NP and a target protein is likely not due to a lock-key type of interaction but possibly due to a novel and unexplored molecular mechanism. Here, we study a key biomarker protein, vimentin, interacting with a set of random copolymer chains using implicit-water explicit-ion coarse-grained (CG) molecular dynamics (MD) simulations along with biolayer interferometry (BLI) analysis. Due to the charge and hydrophobicity anisotropy on the vimentin dimer (VD) surface, a set of bound copolymers are found inhomogenously adsorbed on the VD, with energetic heterogeneity for different binding sites and cooperative effect in the adsorption. Increasing the charge or hydrophobicity of the copolymer may have different consequences on the adsorption. In this study, we found that with more copolymer charges, the protein coverage increases for copolymers of low hydrophobicity and decreases of high hydrophobicity, which is explained by the distribution and size of various functional patches on the VD in loading those copolymers. Employing a coverage-dependent Langmuir model, we propose a simulation protocol to address the full profile of the copolymer binding free energy through the fit to the simulated binding isotherm. The obtained results correlate well with those from the BLI experiment, indicating the significance of this method for the rational design of the copolymer NP with engineered protein binding affinity.
Collapse
Affiliation(s)
- Xiao Xu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing210094, P. R. China
| | - Tong Zhang
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing100029, P. R. China
| | - Stefano Angioletti-Uberti
- Department of Materials, Imperial College London, LondonSW7 2AZ, U.K.,Thomas Young Centre for Theory and Simulation of Materials, Imperial College London, LondonSW7 2AZ, U.K
| | - Yongqin Lv
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing100029, P. R. China
| |
Collapse
|
25
|
Fabrication of self-healing magnetic nanoreceptors for glycoprotein via integrating boronate-affinity-oriented and sequential surface imprinting. Anal Chim Acta 2022; 1221:340108. [DOI: 10.1016/j.aca.2022.340108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/12/2022] [Accepted: 06/19/2022] [Indexed: 11/18/2022]
|
26
|
Thermoresponsive Polymer Assemblies: From Molecular Design to Theranostics Application. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Zhang B, Qin Y, Yang L, Wan H, Yuan L, Wang Y. An organic selenium and VEGF-conjugated bioinspired coating promotes vascular healing. Biomaterials 2022; 287:121654. [PMID: 35842980 DOI: 10.1016/j.biomaterials.2022.121654] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 06/24/2022] [Indexed: 11/02/2022]
Abstract
The introduction of drug-eluting stents (DESs) have yield a significant reduction in the incidence of re-stenosis, however, challenges remain including incomplete healing of the endothelium, inflammatory response and thrombogenesis at the site of vascular wall injury. Here, we developed a novel stent with polyphenol-polyamine surface combining the biological functions of nitric oxide gas and VEGF, selectively promoting the proliferation and migration of endothelial cells while suppressing smooth muscle cells. Compared with bare PLLA stents and traditional DESs, the functionalized stents enhanced vascular healing through remarkable inhibiting intimal hyperplasia and occurrence of thrombosis, accelerating the in-situ endothelium repair. Moreover, it showed a down-regulation of injury vascular inflammation response and reduction of the vessel wall injury in New Zealand Rabbits after 1- and 3-month implantation.
Collapse
Affiliation(s)
- Bo Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wang Jiang Road, Chengdu, 610065, China
| | - Yumei Qin
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wang Jiang Road, Chengdu, 610065, China
| | - Li Yang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wang Jiang Road, Chengdu, 610065, China
| | - Huining Wan
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wang Jiang Road, Chengdu, 610065, China
| | - Lu Yuan
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands; Oncode Institute, Utrecht, Netherlands
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wang Jiang Road, Chengdu, 610065, China.
| |
Collapse
|
28
|
Saito Y, Honda R, Akashi S, Takimoto H, Nagao M, Miura Y, Hoshino Y. Polymer Nanoparticles with Uniform Monomer Sequences for Sequence‐Specific Peptide Recognition. Angew Chem Int Ed Engl 2022; 61:e202206456. [DOI: 10.1002/anie.202206456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Yusuke Saito
- Department of Chemical Engineering Kyushu University 744 Motooka Fukuoka 819-0395 Japan
| | - Ryutaro Honda
- Department of Chemical Engineering Kyushu University 744 Motooka Fukuoka 819-0395 Japan
| | - Sotaro Akashi
- Department of Chemical Engineering Kyushu University 744 Motooka Fukuoka 819-0395 Japan
| | - Hinata Takimoto
- Department of Chemical Engineering Kyushu University 744 Motooka Fukuoka 819-0395 Japan
| | - Masanori Nagao
- Department of Chemical Engineering Kyushu University 744 Motooka Fukuoka 819-0395 Japan
| | - Yoshiko Miura
- Department of Chemical Engineering Kyushu University 744 Motooka Fukuoka 819-0395 Japan
| | - Yu Hoshino
- Department of Applied Chemistry Kyushu University 744 Motooka Fukuoka 819-0395 Japan
| |
Collapse
|
29
|
Chai J, Zhao Y, Xu L, Li Q, Hu X, Guo D, Liu Y. A Noncovalent Photoswitch for Photochemical Regulation of Enzymatic Activity. Angew Chem Int Ed Engl 2022; 61:e202116073. [DOI: 10.1002/anie.202116073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Indexed: 11/11/2022]
Affiliation(s)
- Jingshan Chai
- Key Laboratory of Functional Polymer Materials (Ministry of Education) State Key Laboratory of Medicinal Chemical Biology College of Chemistry Frontiers Science Center for New Organic Matter Nankai University Tianjin 300071 China
| | - Yu Zhao
- Key Laboratory of Functional Polymer Materials (Ministry of Education) State Key Laboratory of Medicinal Chemical Biology College of Chemistry Frontiers Science Center for New Organic Matter Nankai University Tianjin 300071 China
| | - Lina Xu
- Key Laboratory of Functional Polymer Materials (Ministry of Education) State Key Laboratory of Medicinal Chemical Biology College of Chemistry Frontiers Science Center for New Organic Matter Nankai University Tianjin 300071 China
| | - Qiushi Li
- Key Laboratory of Functional Polymer Materials (Ministry of Education) State Key Laboratory of Medicinal Chemical Biology College of Chemistry Frontiers Science Center for New Organic Matter Nankai University Tianjin 300071 China
| | - Xin‐Yue Hu
- Key Laboratory of Functional Polymer Materials (Ministry of Education) State Key Laboratory of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Dong‐Sheng Guo
- Key Laboratory of Functional Polymer Materials (Ministry of Education) State Key Laboratory of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Yang Liu
- Key Laboratory of Functional Polymer Materials (Ministry of Education) State Key Laboratory of Medicinal Chemical Biology College of Chemistry Frontiers Science Center for New Organic Matter Nankai University Tianjin 300071 China
| |
Collapse
|
30
|
Saito Y, Honda R, Akashi S, Takimoto H, Nagao M, Miura Y, Hoshino Y. Polymer Nanoparticles with Uniform Monomer Sequences for Sequence Specific Peptide Recognition. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yusuke Saito
- Kyushu University: Kyushu Daigaku Department of Chemical Engineering JAPAN
| | - Ryutaro Honda
- Kyushu University: Kyushu Daigaku Department of Chemical Engineering JAPAN
| | - Sotaro Akashi
- Kyushu University: Kyushu Daigaku Department of Chemical Engineering JAPAN
| | - Hinata Takimoto
- Kyushu University: Kyushu Daigaku Department of Chemical Engineering JAPAN
| | - Masanori Nagao
- Kyushu University: Kyushu Daigaku Department of Chemical Engineering JAPAN
| | - Yoshiko Miura
- Kyushu University: Kyushu Daigaku Department of Chemical Engineering 744 MotookaNishi-kuFukuoka 8190001 JAPAN
| | - Yu Hoshino
- Kyushu University Department of Chemical Engineering 744 Motooka 819-0395 Fukuoka JAPAN
| |
Collapse
|
31
|
Cheng Q, Yu X, Xiong Z, Wan Z, Li Y, Ma W, Tan W, Liu M, Shea KJ. Abiotic Synthetic Antibodies to Target a Specific Protein Domain and Inhibit Its Function. ACS APPLIED MATERIALS & INTERFACES 2022; 14:19178-19191. [PMID: 35442625 DOI: 10.1021/acsami.2c02287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The Bacillus thuringiensis (Bt) Cry proteins are widely used in insect pest control. Despite their economic benefits, remaining concerns over potential ecological and health risks warrant their ongoing surveillance. Affinity reagents, most often antibodies, protein scaffolds, and aptamers, are the traditional tools used for protein binding and detection. We report a synthetic antibody (SA) alternative to traditional biological affinity reagents for binding Bt Cry proteins. Analysis of hotspots of the Bt Cry protein-insect midgut cadherin-like receptor complexes was used for the design of the SA. The SA was selected from a small focused library of hydrogel copolymers containing functional monomers complementary to key exposed hotspots of Bt Cry proteins. A directed chemical evolution identified a SA, APhe-NP23, with affinity and selectivity for Bt Cry1Ab/Ac proteins. The putative intermolecular polymer-protein interfaces were identified by the SA's uptake of Bt Cry1Ac pepsin hydrolysates, binding epitope mutation studies, and protein-protein inhibition studies of the toxin binding to its native insect receptor binding domains. The SA inhibitor binds to the same protein domains as the insect's cadherin-like receptors, Bt-R1 and SeCad1b. The SA binds rapidly to Bt Cry1Ab/Ac with high capacity, is pH-responsive, and is synthesized reproducibly. We believe that a hotspot-directed approach is general for creation of abiotic protein affinity reagents that target functional protein domains. Affinity ligands are typically high-information content biologicals. Their structure and function are determined from their amino acid or oligo sequence. In contract, the SA described in this work is a statistical copolymer that lacks sequence specificity. These results are an important contribution to the concept that randomness and biospecificity are not mutually exclusive.
Collapse
Affiliation(s)
- Qiaolian Cheng
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Xiaoyang Yu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Zhouxuan Xiong
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Zihao Wan
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Yuxin Li
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Weihua Ma
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Wenfeng Tan
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Mingming Liu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Kenneth J Shea
- Department of Chemistry, University of California-Irvine, Irvine, California 92697, United States
| |
Collapse
|
32
|
Chai J, Zhao Y, Xu L, Li Q, Hu X, Guo D, Liu Y. A Noncovalent Photoswitch for Photochemical Regulation of Enzymatic Activity. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jingshan Chai
- Key Laboratory of Functional Polymer Materials (Ministry of Education) State Key Laboratory of Medicinal Chemical Biology College of Chemistry Frontiers Science Center for New Organic Matter Nankai University Tianjin 300071 China
| | - Yu Zhao
- Key Laboratory of Functional Polymer Materials (Ministry of Education) State Key Laboratory of Medicinal Chemical Biology College of Chemistry Frontiers Science Center for New Organic Matter Nankai University Tianjin 300071 China
| | - Lina Xu
- Key Laboratory of Functional Polymer Materials (Ministry of Education) State Key Laboratory of Medicinal Chemical Biology College of Chemistry Frontiers Science Center for New Organic Matter Nankai University Tianjin 300071 China
| | - Qiushi Li
- Key Laboratory of Functional Polymer Materials (Ministry of Education) State Key Laboratory of Medicinal Chemical Biology College of Chemistry Frontiers Science Center for New Organic Matter Nankai University Tianjin 300071 China
| | - Xin‐Yue Hu
- Key Laboratory of Functional Polymer Materials (Ministry of Education) State Key Laboratory of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Dong‐Sheng Guo
- Key Laboratory of Functional Polymer Materials (Ministry of Education) State Key Laboratory of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Yang Liu
- Key Laboratory of Functional Polymer Materials (Ministry of Education) State Key Laboratory of Medicinal Chemical Biology College of Chemistry Frontiers Science Center for New Organic Matter Nankai University Tianjin 300071 China
| |
Collapse
|
33
|
Strategies targeting tumor immune and stromal microenvironment and their clinical relevance. Adv Drug Deliv Rev 2022; 183:114137. [PMID: 35143893 DOI: 10.1016/j.addr.2022.114137] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/23/2022] [Accepted: 02/03/2022] [Indexed: 12/13/2022]
Abstract
The critical role of tumor microenvironment (TME) in tumor initiation and development has been well-recognized after more than a century of studies. Numerous therapeutic approaches targeting TME are rapidly developed including those leveraging nanotechnology, which have been further accelerated since the emergence of immune checkpoint blockade therapies in the past decade. While there are many reviews focusing on TME remodeling therapies via drug delivery and engineering strategies in animal models, state-of-the-art evaluation of clinical development states of TME-targeted therapeutics is rarely found. Here, we illustrate opportunities for integrating nano-delivery system for the development of TME-specific therapeutic regimen, followed by a comprehensive summary of the most up to date approved or clinically evaluated therapeutics targeting cellular and extracellular components within tumor immune and stromal microenvironment, including small molecule and monoclonal antibody drugs as well as nanomedicines. In the end, we also discuss challenges and possible solutions for clinical translation of TME-targeted nanomedicines.
Collapse
|
34
|
Xing R, Guo Z, Lu H, Zhang Q, Liu Z. Molecular imprinting and cladding produces antibody mimics with significantly improved affinity and specificity. Sci Bull (Beijing) 2022; 67:278-287. [PMID: 36546077 DOI: 10.1016/j.scib.2021.10.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/02/2021] [Accepted: 09/27/2021] [Indexed: 01/06/2023]
Abstract
Molecularly imprinted polymers (MIPs), as important mimics of antibodies, are chemically synthesized by polymerization in the presence of a target compound. MIPs have found wide applications in important fileds. However, the current molecular imprinting technology suffers from a dilemma; there is often a compromise between the best affinity and the best specificity for MIPs prepared under optimized conditions. Herein, we proposed a new strategy called molecular imprinting and cladding (MIC) to solve this issue. The principle is straightforward; after molecular imprinting, a chemically inert cladding thinlayer is generated to precisely cover non-imprinted area. We further proposed a special MIC approach for controllably engineering protein binders. The prepared cladded MIPs (cMIPs) exhibited significantly improved affinity and specificity. The general applicability of the proposed strategy and method was verified by engineering of cMIPs for the recognition of a variety of different proteins. The feasibility of cMIPs for real applications was demonstrated by fluorescence imaging of cancer cells against normal cells and immunoassay of C-peptide in human urine. This study opened up a new avenue for controllably engineering protein-specific antibody mimics with excellent recognition properties, holding great prospective in important applications such as disease diagnosis and nanomedicine.
Collapse
Affiliation(s)
- Rongrong Xing
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zhanchen Guo
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Haifeng Lu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Qi Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zhen Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
35
|
Liu S, Lv M, Li H, Wang S, Feng C, Wang X, Hu W, Wang W. Optical Imaging of the Molecular Mobility of Single Polystyrene Nanospheres. J Am Chem Soc 2022; 144:1267-1273. [PMID: 35014804 DOI: 10.1021/jacs.1c10575] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An ultrathin surface layer with extraordinary molecular mobility has been discovered and intensively investigated on thin-film polymer materials for decades. However, because of the lack of suitable characterization techniques, it remains largely unexplored whether such a surface mobile layer also exists on individual polymeric nanospheres. Here, we propose a thermal-optical imaging technique to determine the glass transition (Tg) and rubber-fluid transition (Tf) temperatures of single isolated polystyrene nanospheres (PSNS) in a high-throughput and nonintrusive manner for the first time. Two distinct steps, corresponding to the glass transition and rubber-fluid transition, respectively, were clearly observed in the optical trace of single PSNS during temperature ramping. Because the transition temperature and size of the same individuals were both determined, single nanoparticle measurements revealed the reduced apparent Tf and increased Tg of single PSNS on the gold substrate with a decreasing radius from 130 to 70 nm. Further experiments revealed that the substrate effect played an important role in the increased Tg. More importantly, a gradual decrease in the optical signal was detected prior to the glass transition, which was consistent with a surface layer with enhanced molecular mobility. Quantitative analysis further revealed the thickness of this layer to be ∼8 nm. This work not only uncovered the existence and thickness of a surface mobile layer in single isolated nanospheres but also demonstrated a general bottom-up strategy to investigate the structure-property relationship of polymeric nanomaterials by correlating the thermal property (Tg and Tf) and structural features (size) at single nanoparticle level.
Collapse
Affiliation(s)
- Shasha Liu
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Mengqi Lv
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Haoran Li
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Sa Wang
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Chengdong Feng
- State Key Lab of Coordination Chemistry, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xiaoliang Wang
- State Key Lab of Coordination Chemistry, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wenbing Hu
- State Key Lab of Coordination Chemistry, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wei Wang
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
36
|
Pandiyan R, Dharmaraj S, Ayyaru S, Sugumaran A, Somasundaram J, Kazi AS, Samiappan SC, Ashokkumar V, Ngamcharussrivichai C. Ameliorative photocatalytic dye degradation of hydrothermally synthesized bimetallic Ag-Sn hybrid nanocomposite treated upon domestic wastewater under visible light irradiation. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126734. [PMID: 34365234 DOI: 10.1016/j.jhazmat.2021.126734] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/11/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
Industrial and textile dyes are the major source of water pollutants in the Coimbatore Districts of Tamil Nadu, India. The highly stable organic dyes from these industries are being discharged untreated into neighboring rivers, lakes, and ponds. Thus, the present study mainly focused on the preparation of bimetallic nanocomposite (Ag-Sn) through Free-facile Teflon autoclave methodology and their subsequent stimulation has given to the photocatalyst by visible light irradiation. This visible light stimulates and irradiates the photocatalysts from steady state to the excited state and might help in absorption of the nanosized dye materials and organic matter. The nanocomposite was characterized using UV, FTIR, Zeta-sizer, XRD and FE-SEM. These parameters exhibited significant lattice structures with an average size of 127.6 nm. Further the nanocomposite treated samples were tested for water quality parameters like TDS, BOD, COD, heavy metals, sedimentation rate and bacterial population. Likewise, the samples irradiated with visible light for photocatalytic activity exhibited a significant intensity of C/C0 at 0.42 and 0.28. The treated water used for green gram seedling assay exhibited significant growth. Scavengers from Ag-Sn bimetallic nanocomposite plays the major role in dye degradation. The results clearly suggest that Ag-Sn bimetallic nanocomposite can be used for wastewater treatment and the subsequent treated water can be utilized for agriculture purposes.
Collapse
Affiliation(s)
- Rajesh Pandiyan
- Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Bharath University (Deemed to be University) Selaiyur, Chennai 600073, Tamil Nadu, India.
| | - Selvakumar Dharmaraj
- Department of Marine Biotechnology, AMET University, Chennai 603103, Tamil Nadu, India
| | - Sivasankaran Ayyaru
- Environmental Biology Laboratory, Department of Civil Engineering, Yeungnam University, Gyungsan 712-749, South Korea
| | - Abimanyu Sugumaran
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamil Nadu, India
| | - Jeevasree Somasundaram
- Department of Biochemistry, Karpagam Academy of Higher Education, Karpagam University, Coimbatore 641021, Tamil Nadu, India
| | - Amsa Samreen Kazi
- Department of Biochemistry, Karpagam Academy of Higher Education, Karpagam University, Coimbatore 641021, Tamil Nadu, India
| | - Sumathi C Samiappan
- Department of Chemistry and Biosciences, Srinivasa Ramanujan Centre, SASTRA University, Kumbakonam 612001, Tamil Nadu, India
| | - Veeramuthu Ashokkumar
- Center of Excellence in Catalysis for Bioenergy and Renewable Chemicals (CBRC), Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Chawalit Ngamcharussrivichai
- Center of Excellence in Catalysis for Bioenergy and Renewable Chemicals (CBRC), Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence on Petrochemical and Materials Technology (PETROMAT), Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| |
Collapse
|
37
|
An easy synthesis of small, stable and water-compatible superparamagnetic protein-specific molecularly imprinted nanoparticles. POLYMER 2022. [DOI: 10.1016/j.polymer.2021.124446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
38
|
Li Z, Li X, Xian W, Xie H, Sun Y, Zhang Y, Wang J, Li H, Jin C, Liu X, Zhu Z, Zhao M. Construction of nano receptors for ubiquitin and ubiquitinated proteins based on the region-specific interactions between ubiquitin and polydopamine. J Mater Chem B 2022; 10:6627-6633. [DOI: 10.1039/d2tb00255h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ubiquitination is a prevalent post-translational modification that controls a multitude of important biological processes. Due to the low abundance of ubiquitinated proteins, highly efficient separation and enrichment approaches are required...
Collapse
|
39
|
Zhao Y, Zhang Z, Pan Z, Liu Y. Advanced bioactive nanomaterials for biomedical applications. EXPLORATION (BEIJING, CHINA) 2021; 1:20210089. [PMID: 37323697 PMCID: PMC10191050 DOI: 10.1002/exp.20210089] [Citation(s) in RCA: 164] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Bioactive materials are a kind of materials with unique bioactivities, which can change the cellular behaviors and elicit biological responses from living tissues. Bioactive materials came into the spotlight in the late 1960s when the researchers found that the materials such as bioglass could react with surrounding bone tissue for bone regeneration. In the following decades, advances in nanotechnology brought the new development opportunities to bioactive nanomaterials. Bioactive nanomaterials are not a simple miniaturization of macroscopic materials. They exhibit unique bioactivities due to their nanoscale size effect, high specific surface area, and precise nanostructure, which can significantly influence the interactions with biological systems. Nowadays, bioactive nanomaterials have represented an important and exciting area of research. Current and future applications ensure that bioactive nanomaterials have a high academic and clinical importance. This review summaries the recent advances in the field of bioactive nanomaterials, and evaluate the influence factors of bioactivities. Then, a range of bioactive nanomaterials and their potential biomedical applications are discussed. Furthermore, the limitations, challenges, and future opportunities of bioactive nanomaterials are also discussed.
Collapse
Affiliation(s)
- Yu Zhao
- Key Laboratory of Functional Polymer Materials of Ministry of EducationState Key Laboratory of Medicinal Chemical BiologyFrontiers Science Center for New Organic MatterCollege of ChemistryNankai UniversityTianjinP. R. China
| | - Zhanzhan Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of EducationState Key Laboratory of Medicinal Chemical BiologyFrontiers Science Center for New Organic MatterCollege of ChemistryNankai UniversityTianjinP. R. China
| | - Zheng Pan
- Key Laboratory of Functional Polymer Materials of Ministry of EducationState Key Laboratory of Medicinal Chemical BiologyFrontiers Science Center for New Organic MatterCollege of ChemistryNankai UniversityTianjinP. R. China
| | - Yang Liu
- Key Laboratory of Functional Polymer Materials of Ministry of EducationState Key Laboratory of Medicinal Chemical BiologyFrontiers Science Center for New Organic MatterCollege of ChemistryNankai UniversityTianjinP. R. China
| |
Collapse
|
40
|
Shanthamurthy CD, Gimeno A, Leviatan Ben-Arye S, Kumar NV, Jain P, Padler-Karavani V, Jiménez-Barbero J, Kikkeri R. Sulfation Code and Conformational Plasticity of l-Iduronic Acid Homo-Oligosaccharides Mimic the Biological Functions of Heparan Sulfate. ACS Chem Biol 2021; 16:2481-2489. [PMID: 34586794 DOI: 10.1021/acschembio.1c00582] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Recently, the activity of heparan sulfate (HS) has led to the discovery of many drug candidates that have the potential to impact both medical science and human health. However, structural diversity and synthetic challenges impede the progress of HS research. Here, we report a library of novel l-iduronic acid (IdoA)-based HS mimics that are highly tunable in conformation plasticity and sulfation patterns to produce many of the functions of native HS oligosaccharides. The NMR analysis of HS mimics confirmed that 4-O-sulfation enhances the population of the 1C4 geometry. Interestingly, the 1C4 conformer becomes exclusive upon additional 2-O-sulfation. HS mimic microarray binding studies with different growth factors showed that selectivity and avidity are greatly modulated by the oligosaccharide length, sulfation code, and IdoA conformation. Particularly, we have identified 4-O-sulfated IdoA disaccharide (I-21) as a potential ligand for vascular endothelial growth factor (VEGF165), which in a multivalent display modulated endothelial cell proliferation, migration, and angiogenesis. Overall, these results encourage the consideration of HS mimics for therapeutic applications.
Collapse
Affiliation(s)
| | - Ana Gimeno
- CIC bioGUNE, Basque Research Technology Alliance, BRTA, Bizkaia Technology park, 48160 Derio, Spain
| | - Shani Leviatan Ben-Arye
- Department of Cell Research and Immunology, The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Nanjundaswamy Vijendra Kumar
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune 411008, India
- Department of Chemistry, JSS College of Arts, Commerce & Science, Mysuru 570025, India
| | - Prashant Jain
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune 411008, India
| | - Vered Padler-Karavani
- Department of Cell Research and Immunology, The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Jesús Jiménez-Barbero
- CIC bioGUNE, Basque Research Technology Alliance, BRTA, Bizkaia Technology park, 48160 Derio, Spain
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
- Department Organic Chemistry II, Faculty of Science and Technology, UPV-EHU, 48940 Leioa, Spain
| | - Ragahvendra Kikkeri
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune 411008, India
| |
Collapse
|
41
|
Zhu Y, Liu R, Wu D, Yu Q, Shea KJ, Zhu Q. Engineered polymer nanoparticles incorporating l-amino acid groups as affinity reagents for fibrinogen. J Pharm Anal 2021; 11:596-602. [PMID: 34765272 PMCID: PMC8572708 DOI: 10.1016/j.jpha.2020.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 10/17/2020] [Accepted: 10/19/2020] [Indexed: 12/24/2022] Open
Abstract
Synthetic polymer hydrogel nanoparticles (NPs) were developed to function as abiotic affinity reagents for fibrinogen. These NPs were made using both temperature-sensitive N-isopropyl acrylamide (NIPAm) and l-amino acid monomers. Five kinds of l-amino acids were acryloylated to obtain functional monomers: l-phenylalanine (Phe) and l-leucine (Leu) with hydrophobic side chains, l-glutamic acid (Glu) with negative charges, and l-lysine (Lys) and l-arginine (Arg) with positive charges. After incubating the NPs with fibrinogen, γ-globulin, and human serum albumin (HSA) respectively, the NPs that incorporated N-acryloyl-Arg monomers (AArg@NPs) showed the strongest and most specific binding affinity to fibrinogen, when compared with γ-globulin and HSA. Additionally, the fibrinogen-AArg binding model had the best docking scores, and this may be due to the interaction of positively charged AArg@NPs and the negatively charged fibrinogen D domain and the hydrophobic interaction between them. The specific adsorption of AArg@NPs to fibrinogen was also confirmed by the immunoprecipitation assay, as the AArg@NPs selectively trapped the fibrinogen from a human plasma protein mixture. AArg@NPs had a strong selectivity for, and specificity to, fibrinogen and may be developed as a potential human fibrinogen-specific affinity reagent.
Collapse
Affiliation(s)
- Yongyan Zhu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou, 510515, China
- Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou, 510515, China
| | - Ruixuan Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Dengyu Wu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Qianqian Yu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Kenneth J. Shea
- Department of Chemistry, University of California, Irvine, CA, 92697, USA
- Corresponding author.
| | - Quanhong Zhu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou, 510515, China
- Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou, 510515, China
- Corresponding author. School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
42
|
Yu X, Su Q, Chang X, Chen K, Yuan P, Liu T, Tian R, Bai Y, Zhang Y, Chen X. Multimodal obstruction of tumorigenic energy supply via bionic nanocarriers for effective tumor therapy. Biomaterials 2021; 278:121181. [PMID: 34653932 DOI: 10.1016/j.biomaterials.2021.121181] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 09/05/2021] [Accepted: 10/07/2021] [Indexed: 12/11/2022]
Abstract
Sufficient energy generation based on effective transport of nutrient via abundant blood vessels in tumor tissue and subsequent oxidative metabolism in mitochondria is critical for growth, proliferation and migration of tumor. Thus the strategy to cut off this transport pathway (blood vessels) and simultaneously close the power house (mitochondria) is highly desired for tumor treatment. Herein, we fabricated a bionic nanocarrier with core-shell-corona structure to give selective and effective tumor therapy via stepwise destruction of existed tumor vessel, inhibition of tumor angiogenesis and dysfunction of tumor mitochondria. The core of this bionic nanocarrier consists of combretastatin A4 phosphate (CA4P) and vitamin K2 (VK2) co-loaded mesoporous silica nanoparticle (MSNs), which is in charge of the vasculature destruction and mitochondrial dysfunction after cargos release. The N-tert-butylacrylamide (TBAM) and tri-sulfated N-acetylglucosamine (TSAG) shell served as artificial affinity reagent against vascular endothelial growth factor (VEGF) for angiogenesis inhibition. As to guarantee that these actions only happened in tumor, the hyaluronic acid (HA) corona was introduced to endow the nanocarrier with tumor targeting property and stimuli-responsiveness for accurate therapy. Both in vitro and in vivo results indicated that the CA4P/VK2-MSNs-TBAM/TSAG-HA (CVMMGH for short) nanocarrier combined well-controllable manipulation of tumor vasculature and tumor mitochondria to effectivly cut off the tumorigenic energy supply, which performed significant inhibition of tumor growth, demonstrating the great candidate of our strategy for effective tumor therapy.
Collapse
Affiliation(s)
- Xiaoqian Yu
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Qi Su
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Xiaowei Chang
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Kun Chen
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Pingyun Yuan
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Tao Liu
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Ran Tian
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yongkang Bai
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yanmin Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, PR China.
| | - Xin Chen
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|
43
|
Abstract
Sepsis is a life-threatening condition caused by the extreme release of inflammatory mediators into the blood in response to infection (e.g., bacterial infection, COVID-19), resulting in the dysfunction of multiple organs. Currently, there is no direct treatment for sepsis. Here we report an abiotic hydrogel nanoparticle (HNP) as a potential therapeutic agent for late-stage sepsis. The HNP captures and neutralizes all variants of histones, a major inflammatory mediator released during sepsis. The highly optimized HNP has high capacity and long-term circulation capability for the selective sequestration and neutralization of histones. Intravenous injection of the HNP protects mice against a lethal dose of histones through the inhibition of platelet aggregation and migration into the lungs. In vivo administration in murine sepsis model mice results in near complete survival. These results establish the potential for synthetic, nonbiological polymer hydrogel sequestrants as a new intervention strategy for sepsis therapy and adds to our understanding of the importance of histones to this condition. Sepsis caused by the release of inflammatory mediators into the blood is a life threatening disease. Here, the authors report on the development of hydrogel nanoparticles for the capture and neutralisation of histones, major inflammatory mediators, and demonstrate sepsis treatment in a murine model.
Collapse
|
44
|
Lee S, Kang TW, Hwang IJ, Kim HI, Jeon SJ, Yim D, Choi C, Son W, Kim H, Yang CS, Lee H, Kim JH. Transition-Metal Dichalcogenide Artificial Antibodies with Multivalent Polymeric Recognition Phases for Rapid Detection and Inactivation of Pathogens. J Am Chem Soc 2021; 143:14635-14645. [PMID: 34410692 DOI: 10.1021/jacs.1c05458] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Antibodies are recognition molecules that can bind to diverse targets ranging from pathogens to small analytes with high binding affinity and specificity, making them widely employed for sensing and therapy. However, antibodies have limitations of low stability, long production time, short shelf life, and high cost. Here, we report a facile approach for the design of luminescent artificial antibodies with nonbiological polymeric recognition phases for the sensitive detection, rapid identification, and effective inactivation of pathogenic bacteria. Transition-metal dichalcogenide (TMD) nanosheets with a neutral dextran phase at the interfaces selectively recognized S. aureus, whereas the nanosheets bearing a carboxymethylated dextran phase selectively recognized E. coli O157:H7 with high binding affinity. The bacterial binding sites recognized by the artificial antibodies were thoroughly identified by experiments and molecular dynamics simulations, revealing the significance of their multivalent interactions with the bacterial membrane components for selective recognition. The luminescent WS2 artificial antibodies could rapidly detect the bacteria at a single copy from human serum without any purification and amplification. Moreover, the MoSe2 artificial antibodies selectively killed the pathogenic bacteria in the wounds of infected mice under light irradiation, leading to effective wound healing. This work demonstrates the potential of TMD artificial antibodies as an alternative to antibodies for sensing and therapy.
Collapse
Affiliation(s)
- Sin Lee
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan 15588, Republic of Korea
| | - Tae Woog Kang
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan 15588, Republic of Korea
| | - In-Jun Hwang
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan 15588, Republic of Korea
| | - Hye-In Kim
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan 15588, Republic of Korea
| | - Su-Ji Jeon
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan 15588, Republic of Korea
| | - DaBin Yim
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan 15588, Republic of Korea
| | - Chanhee Choi
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan 15588, Republic of Korea
| | - Wooic Son
- Department of Molecular and Life Science and Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Hyunsung Kim
- Department of Pathology, Hanyang University College of Medicine, Seoul 04763, Republic of Korea
| | - Chul-Su Yang
- Department of Molecular and Life Science and Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Hwankyu Lee
- Department of Chemical Engineering, Dankook University, Yongin 16890, Republic of Korea
| | - Jong-Ho Kim
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan 15588, Republic of Korea
| |
Collapse
|
45
|
Koide H. [Design of Synthetic Polymer Nanoparticles That Capture and Neutralize Target Molecules]. YAKUGAKU ZASSHI 2021; 141:1079-1086. [PMID: 34471009 DOI: 10.1248/yakushi.21-00125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Protein affinity reagents that specifically and strongly bind to target molecules are widely used in disease detection, diagnosis, and therapy. Although antibodies and their fragments are the gold standard in protein-protein inhibitors (PPIs), synthetic polymers such as linear polymers, dendrimers, and nanoparticles as cost-effective PPIs have attracted great attention as alternatives to antibodies. These polymers exhibit high affinity to the target by imitating natural protein-protein interactions. However, only a few in vivo applications have been reported. Here, our recent advances in the development of synthetic polymers for in vivo application are reviewed. Poly(N-isopropylacrylamide) (pNIPAm) was used as a model of synthetic affinity reagents. Incorporation of both sulfated carbohydrate and hydrophobic monomers into lightly crosslinked pNIPAm nanoparticles (NPs) captured and neutralized vascular endothelial growth factor (VEGF) and inhibited tumor growth upon intravenous injection into tumor-bearing mice. Modification of a liposome with the pNIPAm-based linear polymer increased the polymer circulation time after intravenous injection and improved the affinity for the target. The pNIPAm-based NPs delivered by oral administration captured the target small molecules and inhibited their absorption from the intestine. Our recent findings provide useful information for the design of synthetic polymers that capture target molecules in vivo.
Collapse
Affiliation(s)
- Hiroyuki Koide
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka
| |
Collapse
|
46
|
Yasuno G, Koide H, Oku N, Asai T. Influence of Purification Process on the Function of Synthetic Polymer Nanoparticles. Chem Pharm Bull (Tokyo) 2021; 69:773-780. [PMID: 34334521 DOI: 10.1248/cpb.c21-00273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Multifunctional synthetic polymers can bind to target molecules and are therefore widely investigated in diagnostics, drug delivery carriers, and separation carriers. Because these polymers are synthesized from nonbiological components, purification processes (e.g., chromatography, dialysis, extraction, and centrifugation) must be conducted after the synthesis. Although several purification methods are used for polymer purification, few reports have revealed the influence of purification process on the functions of polymer. In this study, we demonstrated that the characteristics, function, and stability of synthetic polymer depend on the purification process. N-Isopropylacrylamide-based polymer nanoparticles (NPs) and melittin (i.e., honey bee venom) were used as a model of synthetic polymer and target toxic peptide, respectively. Synthesized NPs were purified by dialysis in methanol, acetone precipitation, or centrifugation. NPs purified by dialysis in ultrapure water were used as control NPs. Then, NP size, surface charge, toxin neutralization effect, and stability were determined. NP size did not considerably change by purification with centrifugation; however, it decreased by purification using dialysis in methanol and acetone precipitation compared with that of control NPs. The ζ-potential of NPs changed after each purification process compared with that of control NPs. The melittin neutralization efficiency of NPs depended on the purification process; i.e., it decreased by acetone precipitation and increased by dialysis in methanol and centrifugation compared with that of control NPs. Of note, the addition of methanol and acetone decreased NP stability. These studies implied the importance of considering the effect of the purification method on synthetic polymer function.
Collapse
Affiliation(s)
- Go Yasuno
- Department of Medical Biochemistry, University of Shizuoka School of Pharmaceutical Sciences
| | - Hiroyuki Koide
- Department of Medical Biochemistry, University of Shizuoka School of Pharmaceutical Sciences
| | - Naoto Oku
- Department of Medical Biochemistry, University of Shizuoka School of Pharmaceutical Sciences.,Faculty of Pharma-Science, Teikyo University
| | - Tomohiro Asai
- Department of Medical Biochemistry, University of Shizuoka School of Pharmaceutical Sciences
| |
Collapse
|
47
|
Nakamoto M, Escalante T, Gutiérrez JM, Shea KJ. A Biomimetic of Endogenous Tissue Inhibitors of Metalloproteinases: Inhibition Mechanism and Contribution of Composition, Polymer Size, and Shape to the Inhibitory Effect. NANO LETTERS 2021; 21:5663-5670. [PMID: 34181420 DOI: 10.1021/acs.nanolett.1c01357] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A biomimetic of endogenous tissue inhibitors of metalloproteinases (TIMPs) was engineered by introducing three binding elements to a synthetic tetrapolymer. We evaluated the contribution of composition, size, and shape of the TIMP-mimicking polymers to the inhibition of BaP1, a P-I class snake venom metalloproteinase (SVMP). Inhibition was achieved when the size of the linear polymer (LP) was comparable to or greater than that of the enzyme, indicating the efficacy requires binding to a significant portion of the enzyme surface in the vicinity of the active site. The efficacy of a low cross-linked polymer hydrogel nanoparticle (NP) of substantially greater molecular weight was comparable to that of the LPs despite differences in size and shape, an important finding for in vivo applications. The abiotic TIMP was effective against two classes of SVMPs in whole snake venom. The results can serve as a design principle for biomimetic polymer inhibitors of enzymes.
Collapse
Affiliation(s)
- Masahiko Nakamoto
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Teresa Escalante
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501, Costa Rica
| | - José M Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501, Costa Rica
| | - Kenneth J Shea
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| |
Collapse
|
48
|
Arabi M, Ostovan A, Li J, Wang X, Zhang Z, Choo J, Chen L. Molecular Imprinting: Green Perspectives and Strategies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100543. [PMID: 34145950 DOI: 10.1002/adma.202100543] [Citation(s) in RCA: 338] [Impact Index Per Article: 84.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/25/2021] [Indexed: 05/04/2023]
Abstract
Advances in revolutionary technologies pose new challenges for human life; in response to them, global responsibility is pushing modern technologies toward greener pathways. Molecular imprinting technology (MIT) is a multidisciplinary mimic technology simulating the specific binding principle of enzymes to substrates or antigens to antibodies; along with its rapid progress and wide applications, MIT faces the challenge of complying with green sustainable development requirements. With the identification of environmental risks associated with unsustainable MIT, a new aspect of MIT, termed green MIT, has emerged and developed. However, so far, no clear definition has been provided to appraise green MIT. Herein, the implementation process of green chemistry in MIT is demonstrated and a mnemonic device in the form of an acronym, GREENIFICATION, is proposed to present the green MIT principles. The entire greenificated imprinting process is surveyed, including element choice, polymerization implementation, energy input, imprinting strategies, waste treatment, and recovery, as well as the impacts of these processes on operator health and the environment. Moreover, assistance of upgraded instrumentation in deploying greener goals is considered. Finally, future perspectives are presented to provide a more complete picture of the greenificated MIT road map and to pave the way for further development.
Collapse
Affiliation(s)
- Maryam Arabi
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Abbas Ostovan
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Jinhua Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Xiaoyan Wang
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Zhiyang Zhang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Jaebum Choo
- Department of Chemistry, Chung-Ang University, Seoul, 06974, South Korea
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, China
| |
Collapse
|
49
|
Xiong K, Mitomo H, Su X, Shi Y, Yonamine Y, Sato SI, Ijiro K. Molecular configuration-mediated thermo-responsiveness in oligo(ethylene glycol) derivatives attached on gold nanoparticles. NANOSCALE ADVANCES 2021; 3:3762-3769. [PMID: 36133023 PMCID: PMC9418479 DOI: 10.1039/d1na00187f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 03/25/2021] [Indexed: 05/24/2023]
Abstract
Biomolecular systems actively control their local environment on a sub-nm scale via changes in molecular configuration from their flexible structures and derive emergent functions. Although this functional emergence based on local environmental control is attracting a great deal of attention in chemistry, it remains challenging to realize this artificially. Herein, we report the tuning of the thermo-responsive properties of oligo(ethylene glycol) (OEG) derivatives attached on gold nanoparticles via local environmental control not only by the hydrophobic moiety at their terminus but also by their molecular configuration. OEG-attached alkane thiol-modified AuNPs showed thermo-responsive assembly/disassembly in water through the hydration/dehydration of the OEG portions in a manner dependent both on the hydrophobicity at their terminus and the surface curvature of the core nanoparticles. Further, the assembly temperature (T A) was also tuned by ligand mixing with a non-thermo-responsive ligand with a shorter OEG length. Molecular dynamics simulations show that the distribution of the hydrophobic terminus in the normal direction along the gold surface varied in accordance with the surface curvature, indicating variations in molecular configuration. It is expected that a bent configuration could accelerate the thermo-responsiveness of OEG by allowing them greater accessibility to the hydrophobic terminus. Experimental and simulation results support the notion that local OEG density tuning by surface curvature or ligand mixing with a different OEG length leads to different degrees of accessibility to the hydrophobic terminus via changes in molecular configuration, promoting local environmental control-directed assembly temperature tuning.
Collapse
Affiliation(s)
- Kun Xiong
- Graduate School of Life Sciences, Hokkaido University Kita 10, Nishi 8, Kita-Ku Sapporo 060-0810 Japan
| | - Hideyuki Mitomo
- Research Institute for Electronic Science, Hokkaido University Kita 21, Nishi 10, Kita-Ku Sapporo 001-0021 Japan
- Global Institution for Collaborative Research and Education, Hokkaido University Kita 21, Nishi 11, Kita-Ku Sapporo 001-0021 Japan
| | - Xueming Su
- Graduate School of Chemical Engineering and Sciences, Hokkaido University Kita 13, Nishi 8, Kita-ku Sapporo 060-8628 Japan
| | - Yier Shi
- Graduate School of Life Sciences, Hokkaido University Kita 10, Nishi 8, Kita-Ku Sapporo 060-0810 Japan
| | - Yusuke Yonamine
- Research Institute for Electronic Science, Hokkaido University Kita 21, Nishi 10, Kita-Ku Sapporo 001-0021 Japan
- Global Institution for Collaborative Research and Education, Hokkaido University Kita 21, Nishi 11, Kita-Ku Sapporo 001-0021 Japan
| | - Shin-Ichiro Sato
- Graduate School of Chemical Engineering and Sciences, Hokkaido University Kita 13, Nishi 8, Kita-ku Sapporo 060-8628 Japan
- Faculty of Engineering, Hokkaido University Kita 13, Nishi 8, Kita-ku Sapporo 060-8628 Japan
| | - Kuniharu Ijiro
- Research Institute for Electronic Science, Hokkaido University Kita 21, Nishi 10, Kita-Ku Sapporo 001-0021 Japan
- Global Institution for Collaborative Research and Education, Hokkaido University Kita 21, Nishi 11, Kita-Ku Sapporo 001-0021 Japan
| |
Collapse
|
50
|
Boitard C, Michel A, Ménager C, Griffete N. Protein Denaturation Through the Use of Magnetic Molecularly Imprinted Polymer Nanoparticles. Molecules 2021; 26:molecules26133980. [PMID: 34210027 PMCID: PMC8272029 DOI: 10.3390/molecules26133980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 11/16/2022] Open
Abstract
The inhibition of the protein function for therapeutic applications remains challenging despite progress these past years. While the targeting application of molecularly imprinted polymer are in their infancy, no use was ever made of their magnetic hyperthermia properties to damage proteins when they are coupled to magnetic nanoparticles. Therefore, we have developed a facile and effective method to synthesize magnetic molecularly imprinted polymer nanoparticles using the green fluorescent protein (GFP) as the template, a bulk imprinting of proteins combined with a grafting approach onto maghemite nanoparticles. The hybrid material exhibits very high adsorption capacities and very strong affinity constants towards GFP. We show that the heat generated locally upon alternative magnetic field is responsible of the decrease of fluorescence intensity.
Collapse
|