1
|
Giese TJ, Zeng J, York DM. Transferability of MACE Graph Neural Network for Range Corrected Δ-Machine Learning Potential QM/MM Applications. J Phys Chem B 2025. [PMID: 40418048 DOI: 10.1021/acs.jpcb.5c02006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2025]
Abstract
We previously introduced a "range corrected" Δ-machine learning potential (ΔMLP) that used deep neural networks to improve the accuracy of combined quantum mechanical/molecular mechanical (QM/MM) simulations by correcting both the internal QM and QM/MM interaction energies and forces [J. Chem. Theory Comput. 2021, 17, 6993-7009]. The present work extends this approach to include graph neural networks. Specifically, the approach is applied to the MACE message passing neural network architecture, and a series of AM1/d + MACE models are trained to reproduce PBE0/6-31G* QM/MM energies and forces of model phosphoryl transesterification reactions. Several models are designed to test the transferability of AM1/d + MACE by varying the amount of training data and calculating free energy surfaces of reactions that were not included in the parameter refinement. The transferability is compared to AM1/d + DP models that use the DeepPot-SE (DP) deep neural network architecture. The AM1/d + MACE models are found to reproduce the target free energy surfaces even in instances where the AM1/d + DP models exhibit inaccuracies. We train "end-state" models that include data only from the reactant and product states of the 6 reactions. Unlike the uncorrected AM1/d profiles, the AM1/d + MACE method correctly reproduces a stable pentacoordinated phosphorus intermediate even though the training did not include structures with a similar bonding pattern. Furthermore, the message passing mechanism hyperparameters defining the MACE network are varied to explore their effect on the model's accuracy and performance. The AM1/d + MACE simulations are 28% slower than AM1/d QM/MM when the ΔMLP correction is performed on a graphics processing unit. Our results suggest that the MACE architecture may lead to ΔMLP models with improved transferability.
Collapse
Affiliation(s)
- Timothy J Giese
- Laboratory for Biomolecular Simulation Research, Institute for Quantitative Biomedicine, and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway 08854, New Jersey, United States
| | - Jinzhe Zeng
- School of Artificial Intelligence and Data Science, University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou Big Data & AI Research and Engineering Center, Suzhou 215123, China
| | - Darrin M York
- Laboratory for Biomolecular Simulation Research, Institute for Quantitative Biomedicine, and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway 08854, New Jersey, United States
| |
Collapse
|
2
|
Alperovich NY, Vasilyeva OB, Schaffter SW. Prevention of ribozyme catalysis through cDNA synthesis enables accurate RT-qPCR measurements of context-dependent ribozyme activity. RNA (NEW YORK, N.Y.) 2025; 31:633-645. [PMID: 40050070 PMCID: PMC12001966 DOI: 10.1261/rna.080243.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 02/19/2025] [Indexed: 03/28/2025]
Abstract
Self-cleaving ribozymes are important tools in synthetic biology, biomanufacturing, and nucleic acid therapeutics. These broad applications deploy ribozymes in many genetic and environmental contexts, which can influence activity. Thus, accurate measurements of ribozyme activity across diverse contexts are crucial for validating new ribozyme sequences and ribozyme-based biotechnologies. Ribozyme activity measurements that rely on RNA extraction, such as RNA sequencing or reverse transcription-quantitative polymerase chain reaction (RT-qPCR), are generalizable to most applications and have high sensitivity. However, the activity measurement is indirect, taking place after RNA is isolated from the environment of interest and copied to DNA. Thus, these measurements may not accurately reflect the activity in the original context. Here, we develop and validate an RT-qPCR method for measuring context-dependent ribozyme activity using a set of self-cleaving RNAs for which context-dependent ribozyme cleavage is known in vitro. We find that RNA extraction and reverse transcription conditions can induce substantial ribozyme cleavage, resulting in incorrect activity measurements with RT-qPCR. To restore the accuracy of the RT-qPCR measurements, we introduce an oligonucleotide into the sample preparation workflow that inhibits ribozyme activity. We then apply our method to measure ribozyme cleavage of RNAs produced in Escherichia coli These results have broad implications for many ribozyme measurements and technologies.
Collapse
Affiliation(s)
- Nina Y Alperovich
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Olga B Vasilyeva
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Samuel W Schaffter
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| |
Collapse
|
3
|
Higgs PG, Muller UF. Principles of in vitro selection of ribozymes from random sequence libraries. J R Soc Interface 2025; 22:20240878. [PMID: 40233799 PMCID: PMC11999736 DOI: 10.1098/rsif.2024.0878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/27/2025] [Accepted: 03/06/2025] [Indexed: 04/17/2025] Open
Abstract
In vitro selection methods are used to identify catalytic RNAs from pools of random sequences. We discuss the central concepts using experimental data and computational models. Experiments proceed in multiple rounds, each with a reaction step and a step in which reacted sequences are recovered. Sequences are enriched each round by a factor depending on combined reaction and recovery probability. In the first round, there are few functional sequences, and it is necessary to minimize the probability of losing these. In later rounds, the loss probability is negligible, and the procedure can be optimized to maximize the enrichment factor. Clusters of related sequences emerge which descend from separate sequences in the initial pool. The fitness of an RNA depends on how well it matches a structure with specified sequence and base-pair constraints. Sequences that exactly match the constraints may be rare, but sequences a few mutations away are much more common; hence it is likely that clusters descend from suboptimal sequences. There is a high probability that beneficial mutations arise during the experiment. This explains the experimental observation that there is little correlation between cluster frequencies and fitnesses, whereas correlation between enrichment factors and fitnesses is strong.
Collapse
Affiliation(s)
- Paul G. Higgs
- Department of Physics and Astronomy, Faculty of Science, McMaster University, Hamilton, Ontario, Canada
| | - Ulrich F. Muller
- Department of Chemistry, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
4
|
Lu M, Cao Z, Xiong L, Deng H, Ma K, Liu N, Qin Y, Chen SB, Chen JH, Li Y, Liu Y, Yu Z. A hammerhead ribozyme selects mechanically stable conformations for catalysis against viral RNA. Commun Biol 2025; 8:165. [PMID: 39900966 PMCID: PMC11791167 DOI: 10.1038/s42003-025-07600-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/24/2025] [Indexed: 02/05/2025] Open
Abstract
Ribozymes, widely found in prokaryotes and eukaryotes, target nucleic acids and can be engineered as biotechnical tools or for gene regulation or immune therapy. Among them, hammerhead is the smallest and best characterized ribozyme. However, the structure and biochemical data of ribozymes have been disagreed on, making the understanding of its catalysis mechanism a longstanding issue. Particularly, the role of conformational dynamics in ribozyme catalysis remains elusive. Here, we use single-molecule magnetic tweezers to reveal a concerted catalysis mechanism of mechanical conformational selection for a mini hammerhead ribozyme against a viral RNA sequence from the SARS-CoV-2. We identify a conformational set containing five mechanical conformers of the mini ribozyme, where magnesium ions select the active one. Our results are supported by molecular dynamics simulations. Our understanding of the RNA catalytic mechanism will be beneficial for ribozyme's biotechnological applications and as potential therapeutics against RNA viruses.
Collapse
Affiliation(s)
- Man Lu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Pharmacy, Nankai University, Tianjin, China
| | - Zhiqiang Cao
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Pharmacy, Nankai University, Tianjin, China
| | - Luoan Xiong
- School of Physics and Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Hongying Deng
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, and College of Pharmacy, Nankai University, Tianjin, China
| | - Kangkang Ma
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Pharmacy, Nankai University, Tianjin, China
| | - Ning Liu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Yanding Qin
- College of Artificial Intelligence, Nankai University, Tianjin, China
| | - Shen-Bo Chen
- National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention (Chinese Center for Tropical Diseases Research), National Health Commission of the People's Republic of China (NHC) Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, China
| | - Jun-Hu Chen
- National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention (Chinese Center for Tropical Diseases Research), National Health Commission of the People's Republic of China (NHC) Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, China
| | - Yao Li
- School of Physics and Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China.
| | - Yijin Liu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, and College of Pharmacy, Nankai University, Tianjin, China.
| | - Zhongbo Yu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Pharmacy, Nankai University, Tianjin, China.
| |
Collapse
|
5
|
McKinley LN, Bevilacqua PC. CHiTA: A scarless high-throughput pipeline for characterization of ribozymes. Methods 2025; 234:120-130. [PMID: 39662711 PMCID: PMC11805615 DOI: 10.1016/j.ymeth.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/07/2024] [Accepted: 12/08/2024] [Indexed: 12/13/2024] Open
Abstract
Small self-cleaving ribozymes are catalytic RNAs that cleave their phosphodiester backbone rapidly and site-specifically, without the assistance of proteins. Their catalytic properties make them ideal targets for applications in RNA pharmaceuticals and bioengineering. Consequently, computational pipelines that predict or design thousands of self-cleaving ribozyme candidates have been developed. Traditional experimental techniques for verifying the activity of these putative ribozymes, however, are low-throughput and time intensive. High-throughput (HT) pipelines that employ next-generation sequencing (NGS) analyze the activity of these thousands of ribozymes simultaneously. Until recently, the application of these HT pipelines has been limited to studying all single and double mutants of a select representative ribozyme. Unfortunately, this prevents the exploration of candidates having different lengths, circular permutations, and auxiliary stem-loops. Moreover, pipelines that analyze ribozymes en masse often include transcription of non-native flanking sequences that preclude accurate assessment of the intrinsic rate of ribozyme self-cleavage. To overcome these limitations, we developed a HT pipeline, "Cleavage High-Throughput Assay (CHiTA)", which employs NGS and massively parallel oligonucleotide synthesis (MPOS) to characterize ribozyme activity for thousands of candidates in a scarless fashion. Herein, we describe detailed strategies and protocols to implement CHiTA to measure the activity of putative ribozymes from a wide range of ribozyme classes.
Collapse
Affiliation(s)
- Lauren N McKinley
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA; Center for RNA and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA.
| | - Philip C Bevilacqua
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA; Center for RNA and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA; Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
6
|
Wang L, Xie J, Zhang C, Zou J, Huang Z, Shang S, Chen X, Yang Y, Liu J, Dong H, Huang D, Su Z. Structural basis of circularly permuted group II intron self-splicing. Nat Struct Mol Biol 2025:10.1038/s41594-025-01484-x. [PMID: 39890981 DOI: 10.1038/s41594-025-01484-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 01/03/2025] [Indexed: 02/03/2025]
Abstract
Circularly permuted group II introns (CP introns) consist of rearranged structural domains separated by two tethered exons, generating branched introns and circular exons via back-splicing. Structural and mechanistic understanding of circular RNA (circRNA) generation by CP introns remains elusive. We resolve cryo-electron microscopy structures of a natural CP intron in different states during back-splicing at a resolution of 2.5-2.9 Å. Domain 6 (D6) undergoes a conformational change of 65° after branching, to facilitate 3'-exon recognition and circularization. Previously unseen tertiary interactions compact the catalytic triad and D6 for splicing without protein, whereas a metal ion, M35, is observed to stabilize the 5'-exon during splicing. While these unique features were not observed in canonical group II introns and spliceosomes, they are common in CP introns, as demonstrated by the cryo-EM structure of another CP intron discovered by comparative genomics analysis. Our results elucidate the mechanism of CP intron back-splicing dynamics, with potential applications in circRNA research and therapeutics.
Collapse
Affiliation(s)
- Liu Wang
- The State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital; The State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiahao Xie
- The State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital; The State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Mingle Scope (Chengdu), Chengdu, China
| | - Chong Zhang
- The State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital; The State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jian Zou
- The State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital; The State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zirui Huang
- The State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital; The State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Sitong Shang
- The Key Laboratory for Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xingyu Chen
- The State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital; The State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yang Yang
- The State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital; The State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jianquan Liu
- The Key Laboratory for Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Haohao Dong
- The State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital; The State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dingming Huang
- The State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital; The State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Zhaoming Su
- The State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital; The State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
7
|
McKinley LN, Meyer MO, Sebastian A, Chang BK, Messina KJ, Albert I, Bevilacqua PC. Direct testing of natural twister ribozymes from over a thousand organisms reveals a broad tolerance for structural imperfections. Nucleic Acids Res 2024; 52:14133-14153. [PMID: 39498486 DOI: 10.1093/nar/gkae908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/25/2024] [Accepted: 10/02/2024] [Indexed: 11/13/2024] Open
Abstract
Twister ribozymes are an extensively studied class of nucleolytic RNAs. Thousands of natural twisters have been proposed using sequence homology and structural descriptors. Yet, most of these candidates have not been validated experimentally. To address this gap, we developed Cleavage High-Throughput Assay (CHiTA), a high-throughput pipeline utilizing massively parallel oligonucleotide synthesis and next-generation sequencing to test putative ribozymes en masse in a scarless fashion. As proof of principle, we applied CHiTA to a small set of known active and mutant ribozymes. We then used CHiTA to test two large sets of naturally occurring twister ribozymes: over 1600 previously reported putative twisters and ∼1000 new candidate twisters. The new candidates were identified computationally in ∼1000 organisms, representing a massive increase in the number of ribozyme-harboring organisms. Approximately 94% of the twisters we tested were active and cleaved site-specifically. Analysis of their structural features revealed that many substitutions and helical imperfections can be tolerated. We repeated our computational search with structural descriptors updated from this analysis, whereupon we identified and confirmed the first intrinsically active twister ribozyme in mammals. CHiTA broadly expands the number of active twister ribozymes found in nature and provides a powerful method for functional analyses of other RNAs.
Collapse
Affiliation(s)
- Lauren N McKinley
- Department of Chemistry, Pennsylvania State University, 104 Benkovic Building, 376 Science Drive, University Park, PA 16802, USA
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - McCauley O Meyer
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
- Department of Biochemistry and Molecular Biology, Althouse Room 107, 363 Science Drive, Pennsylvania State University, University Park, PA 16802, USA
| | - Aswathy Sebastian
- Huck Institutes of Life Sciences, 401 Huck Life Sciences Building, 432 Science Drive, Pennsylvania State University, University Park, PA 16802, USA
| | - Benjamin K Chang
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
- Department of Biochemistry and Molecular Biology, Althouse Room 107, 363 Science Drive, Pennsylvania State University, University Park, PA 16802, USA
| | - Kyle J Messina
- Department of Chemistry, Pennsylvania State University, 104 Benkovic Building, 376 Science Drive, University Park, PA 16802, USA
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Istvan Albert
- Department of Biochemistry and Molecular Biology, Althouse Room 107, 363 Science Drive, Pennsylvania State University, University Park, PA 16802, USA
- Huck Institutes of Life Sciences, 401 Huck Life Sciences Building, 432 Science Drive, Pennsylvania State University, University Park, PA 16802, USA
| | - Philip C Bevilacqua
- Department of Chemistry, Pennsylvania State University, 104 Benkovic Building, 376 Science Drive, University Park, PA 16802, USA
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
- Department of Biochemistry and Molecular Biology, Althouse Room 107, 363 Science Drive, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
8
|
Zhang Z, Hong X, Xiong P, Wang J, Zhou Y, Zhan J. Minimal twister sister-like self-cleaving ribozymes in the human genome revealed by deep mutational scanning. eLife 2024; 12:RP90254. [PMID: 39636683 PMCID: PMC11620745 DOI: 10.7554/elife.90254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
Despite their importance in a wide range of living organisms, self-cleaving ribozymes in the human genome are few and poorly studied. Here, we performed deep mutational scanning and covariance analysis of two previously proposed self-cleaving ribozymes (LINE-1 and OR4K15). We found that the regions essential for ribozyme activities are made of two short segments, with a total of 35 and 31 nucleotides only. The discovery makes them the simplest known self-cleaving ribozymes. Moreover, the essential regions are circular permutated with two nearly identical catalytic internal loops, supported by two stems of different lengths. These two self-cleaving ribozymes, which are shaped like lanterns, are similar to the catalytic regions of the twister sister ribozymes in terms of sequence and secondary structure. However, the nucleotides at the cleavage site have shown that mutational effects on two twister sister-like (TS-like) ribozymes are different from the twister sister ribozyme. The discovery of TS-like ribozymes reveals a ribozyme class with the simplest and, perhaps, the most primitive structure needed for self-cleavage.
Collapse
Affiliation(s)
- Zhe Zhang
- Institute for Systems and Physical Biology, Shenzhen Bay LaboratoryShenzhenChina
- University of Science and Technology of ChinaHefeiChina
- Institute for Biomedicine and Glycomics, Griffith UniversitySouthportAustralia
| | - Xu Hong
- Institute for Systems and Physical Biology, Shenzhen Bay LaboratoryShenzhenChina
- University of Science and Technology of ChinaHefeiChina
| | - Peng Xiong
- University of Science and Technology of ChinaHefeiChina
- Institute for Biomedicine and Glycomics, Griffith UniversitySouthportAustralia
- Suzhou Institute for Advanced Research, University of Science and Technology of ChinaSuzhouChina
| | - Junfeng Wang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of SciencesHefeiChina
- Institute of Physical Science and Information Technology, Anhui UniversityHefeiChina
| | - Yaoqi Zhou
- Institute for Systems and Physical Biology, Shenzhen Bay LaboratoryShenzhenChina
- Institute for Biomedicine and Glycomics, Griffith UniversitySouthportAustralia
- School of Information and Communication Technology, Griffith UniversitySouthportAustralia
| | - Jian Zhan
- Institute for Systems and Physical Biology, Shenzhen Bay LaboratoryShenzhenChina
- Institute for Biomedicine and Glycomics, Griffith UniversitySouthportAustralia
- Ribopeutic Inc, Guangzhou International Bio IslandGuangzhouChina
| |
Collapse
|
9
|
Esposito C, Buzoianu A, Cristodero M, Polacek N. Ribozyme-mediated expression of tRNA-derived small RNAs in bacteria. Methods Enzymol 2024; 711:65-83. [PMID: 39952718 DOI: 10.1016/bs.mie.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2025]
Abstract
Transfer RNA-derived RNAs (tDRs) have emerged as important regulatory molecules found across all three domains of life. Despite their discovery over four decades ago, their biological significance has only recently begun to be elucidated. However, studying bacterial tDRs poses challenges due to technical limitations in assessing their in vivo functionality. To address this, we established a novel approach utilizing a self-cleaving Twister ribozyme to express tDRs in Escherichia coli. Specifically, we employed the type P1 Sva1-1 Twister ribozyme, to generate tDRs with genuine 3' ends. Our method involves the inducible expression of tDRs by incorporating the desired tDR sequence into a plasmid construct downstream of two lac operators and upstream of the Twister ribozyme. Upon induction with IPTG and transcription of the construct, the Twister ribozyme undergoes self-cleavage, thus producing tDRs with defined 3' ends. As a proof of principle, we demonstrated the in vivo application of our novel method by expressing and analyzing two stress-induced tRNA halves in E. coli. Overall, our method offers a valuable tool for studying tDRs in bacteria to shed light on their regulatory roles in cellular processes.
Collapse
Affiliation(s)
- Carmela Esposito
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Anamaria Buzoianu
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Marina Cristodero
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Norbert Polacek
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland.
| |
Collapse
|
10
|
Shin JH, Cuevas LM, Roy R, Bonilla SL, Al-Hashimi H, Greenleaf WJ, Herschlag D. Exploring the energetic and conformational properties of the sequence space connecting naturally occurring RNA tetraloop receptor motifs. RNA (NEW YORK, N.Y.) 2024; 30:1646-1659. [PMID: 39362695 PMCID: PMC11571812 DOI: 10.1261/rna.080039.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/18/2024] [Indexed: 10/05/2024]
Abstract
Folded RNAs contain tertiary contact motifs whose structures and energetics are conserved across different RNAs. The transferable properties of RNA motifs simplify the RNA folding problem, but measuring energetic and conformational properties of many motifs remains a challenge. Here, we use a high-throughput thermodynamic approach to investigate how sequence changes alter the binding properties of naturally occurring motifs, the GAAA tetraloop • tetraloop receptor (TLR) interactions. We measured the binding energies and conformational preferences of TLR sequences that span mutational pathways from the canonical 11ntR to two other natural TLRs, the IC3R and Vc2R. While the IC3R and Vc2R share highly similar energetic and conformational properties, the landscapes that map the sequence changes for their conversion from the 11ntR to changes in these properties differ dramatically. Differences in the energetic landscapes stem from the mutations needed to convert the 11ntR to the IC3R and Vc2R rather than a difference in the intrinsic energetic architectures of these TLRs. The conformational landscapes feature several nonnative TLR variants with conformational preferences that differ from both the initial and final TLRs; these species represent potential branching points along the multidimensional sequence space to sequences with greater fitness in other RNA contexts with alternative conformational preferences. Our high-throughput, quantitative approach reveals the complex nature of sequence-fitness landscapes and leads to models for their molecular origins. Systematic and quantitative molecular approaches provide critical insights into understanding the evolution of natural RNAs as they traverse complex landscapes in response to selective pressures.
Collapse
Affiliation(s)
- John H Shin
- Department of Biochemistry, Stanford University, Stanford, California 94305, USA
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, USA
| | - Lena M Cuevas
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14850, USA
| | - Rohit Roy
- Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, North Carolina 27710, USA
| | - Steve L Bonilla
- Laboratory of RNA Structural Biology and Biophysics, The Rockefeller University, New York, New York 10065, USA
| | - Hashim Al-Hashimi
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA
| | - William J Greenleaf
- Department of Genetics, Stanford University, Stanford, California 94305, USA
- Department of Applied Physics, Stanford University, Stanford, California 94305, USA
- Chan Zuckerberg Biohub, San Francisco, California 94158, USA
| | - Daniel Herschlag
- Department of Biochemistry, Stanford University, Stanford, California 94305, USA
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, USA
- Chem-H Institute, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
11
|
Lindley SR, Subbaiah KCV, Priyanka F, Poosala P, Ma Y, Jalinous L, West JA, Richardson WA, Thomas TN, Anderson DM. Ribozyme-activated mRNA trans-ligation enables large gene delivery to treat muscular dystrophies. Science 2024; 386:762-767. [PMID: 39541470 DOI: 10.1126/science.adp8179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/31/2024] [Accepted: 09/20/2024] [Indexed: 11/16/2024]
Abstract
Ribozymes are small catalytic RNA sequences capable of nucleotide-specific self-cleavage found widespread in nature. Ribozyme cleavage generates distinct 2',3'-phosphate and 5'-hydroxyl termini that resemble substrates for recently characterized RNA repair pathways in cells. We report that ribozyme cleavage of two separate mRNAs activated their scarless trans-ligation and translation into full-length protein in eukaryotic cells, a process that we named StitchR (for Stitch RNA). Optimization of StitchR activity in mammalian cells resulted in a ~900-fold increase in protein expression that approached levels observed for genes expressed from single vectors. We demonstrate that StitchR can be harnessed for effective dual adeno-associated virus gene therapies to correct muscular dystrophies by restoring large functional muscle proteins to endogenous levels in vivo.
Collapse
Affiliation(s)
- Sean R Lindley
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
- Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
- Center for RNA Biology: From Genome to Therapeutics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Kadiam C Venkata Subbaiah
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
- Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
- Center for RNA Biology: From Genome to Therapeutics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Fnu Priyanka
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
- Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
- Center for RNA Biology: From Genome to Therapeutics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Pornthida Poosala
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
- Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
- Center for RNA Biology: From Genome to Therapeutics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Yijie Ma
- CANbridge Pharmaceuticals, Burlington, MA 01803, USA
| | | | - Jason A West
- CANbridge Pharmaceuticals, Burlington, MA 01803, USA
| | - William A Richardson
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
- Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
- Center for RNA Biology: From Genome to Therapeutics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Tamlyn N Thomas
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
- Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
- Center for RNA Biology: From Genome to Therapeutics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Douglas M Anderson
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
- Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
- Center for RNA Biology: From Genome to Therapeutics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| |
Collapse
|
12
|
Miyazaki Y, Nakane R, Tanishi S, Matsumura S, Ikawa Y. Catalytic cleave of an RNA substrate that bypasses the reorganization of its secondary structure during substrate recognition by a trans-acting VS ribozyme. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024:1-16. [PMID: 39470222 DOI: 10.1080/15257770.2024.2421307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/22/2024] [Accepted: 10/18/2024] [Indexed: 10/30/2024]
Abstract
Varkud satellite ribozyme (VS ribozyme) is a class of catalytic RNA with self-cleavage activity. The wild-type VS ribozyme has structural modularity with a relatively large catalytic module (H2-H6 elements) and a small substrate module (H1 element). The two modules can be dissected physically, and the substrate H1 RNA is recognized and then cleaved by the rest of the parent ribozyme serving as catalytic RNA. We characterized the catalytic properties of a bimolecular VS ribozyme developed and employed for an in-droplet evolution experiment of the VS ribozyme. We examined the effects of polyamines and several divalent metal ions. The results obtained in this study would be useful for the optimization of laboratory evolution of the VS ribozyme.
Collapse
Affiliation(s)
- Yuki Miyazaki
- Graduate School of Pharma-Medical Sciences, University of Toyama, Toyama, Japan
| | - Ryu Nakane
- Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
| | - Shogo Tanishi
- Graduate School of Pharma-Medical Sciences, University of Toyama, Toyama, Japan
| | - Shigeyoshi Matsumura
- Graduate School of Pharma-Medical Sciences, University of Toyama, Toyama, Japan
- Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
| | - Yoshiya Ikawa
- Graduate School of Pharma-Medical Sciences, University of Toyama, Toyama, Japan
- Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
| |
Collapse
|
13
|
Qi F, Chen J, Chen Y, Sun J, Lin Y, Chen Z, Kapranov P. Evaluating Performance of Different RNA Secondary Structure Prediction Programs Using Self-cleaving Ribozymes. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzae043. [PMID: 39317944 PMCID: PMC12016570 DOI: 10.1093/gpbjnl/qzae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 03/02/2024] [Accepted: 06/05/2024] [Indexed: 09/26/2024]
Abstract
Accurate identification of the correct, biologically relevant RNA structures is critical to understanding various aspects of RNA biology since proper folding represents the key to the functionality of all types of RNA molecules and plays pivotal roles in many essential biological processes. Thus, a plethora of approaches have been developed to predict, identify, or solve RNA structures based on various computational, molecular, genetic, chemical, or physicochemical strategies. Purely computational approaches hold distinct advantages over all other strategies in terms of the ease of implementation, time, speed, cost, and throughput, but they strongly underperform in terms of accuracy that significantly limits their broader application. Nonetheless, the advantages of these methods led to a steady development of multiple in silico RNA secondary structure prediction approaches including recent deep learning-based programs. Here, we compared the accuracy of predictions of biologically relevant secondary structures of dozens of self-cleaving ribozyme sequences using seven in silico RNA folding prediction tools with tasks of varying complexity. We found that while many programs performed well in relatively simple tasks, their performance varied significantly in more complex RNA folding problems. However, in general, a modern deep learning method outperformed the other programs in the complex tasks in predicting the RNA secondary structures, at least based on the specific class of sequences tested, suggesting that it may represent the future of RNA structure prediction algorithms.
Collapse
Affiliation(s)
- Fei Qi
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
- Institute of Genomics, School of Medicine, Huaqiao University, Xiamen 361021, China
| | - Junjie Chen
- Institute of Genomics, School of Medicine, Huaqiao University, Xiamen 361021, China
| | - Yue Chen
- Institute of Genomics, School of Medicine, Huaqiao University, Xiamen 361021, China
| | - Jianfeng Sun
- Botnar Research Centre, University of Oxford, Oxford, OX3 7LD, United Kingdom
| | - Yiting Lin
- Institute of Genomics, School of Medicine, Huaqiao University, Xiamen 361021, China
| | - Zipeng Chen
- Institute of Genomics, School of Medicine, Huaqiao University, Xiamen 361021, China
| | - Philipp Kapranov
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| |
Collapse
|
14
|
Muñoz-Velasco I, Cruz-González A, Hernández-Morales R, Campillo-Balderas JA, Cottom-Salas W, Jácome R, Vázquez-Salazar A. Pioneering role of RNA in the early evolution of life. Genet Mol Biol 2024; 47Suppl 1:e20240028. [PMID: 39437147 PMCID: PMC11445735 DOI: 10.1590/1678-4685-gmb-2024-0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 06/26/2024] [Indexed: 10/25/2024] Open
Abstract
The catalytic, regulatory and structural properties of RNA, combined with their extraordinary ubiquity in cellular processes, are consistent with the proposal that this molecule played a much more conspicuous role in heredity and metabolism during the early stages of biological evolution. This review explores the pivotal role of RNA in the earliest life forms and its relevance in modern biological systems. It examines current models that study the early evolution of life, providing insights into the primordial RNA world and its legacy in contemporary biology.
Collapse
Affiliation(s)
- Israel Muñoz-Velasco
- Universidad Nacional Autónoma de México, Facultad de Ciencias, Departamento de Biología Celular, Mexico City, Mexico
| | - Adrián Cruz-González
- Universidad Nacional Autónoma de México, Facultad de Ciencias, Departamento de Biología Evolutiva, Mexico City, Mexico
| | - Ricardo Hernández-Morales
- Universidad Nacional Autónoma de México, Facultad de Ciencias, Departamento de Biología Evolutiva, Mexico City, Mexico
| | | | - Wolfgang Cottom-Salas
- Universidad Nacional Autónoma de México, Facultad de Ciencias, Departamento de Biología Evolutiva, Mexico City, Mexico
| | - Rodrigo Jácome
- Universidad Nacional Autónoma de México, Facultad de Ciencias, Departamento de Biología Evolutiva, Mexico City, Mexico
| | - Alberto Vázquez-Salazar
- University of California Los Angeles, Department of Chemical and Biomolecular Engineering, California, USA
| |
Collapse
|
15
|
McKinley LN, Meyer MO, Sebastian A, Chang BK, Messina KJ, Albert I, Bevilacqua PC. Direct testing of natural twister ribozymes from over a thousand organisms reveals a broad tolerance for structural imperfections. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.11.603121. [PMID: 39026743 PMCID: PMC11257566 DOI: 10.1101/2024.07.11.603121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Twister ribozymes are an extensively studied class of nucleolytic RNAs. Thousands of natural twisters have been proposed using sequence homology and structural descriptors. Yet, most of these candidates have not been validated experimentally. To address this gap, we developed CHiTA (Cleavage High-Throughput Assay), a high-throughput pipeline utilizing massively parallel oligonucleotide synthesis and next-generation sequencing to test putative ribozymes en masse in a scarless fashion. As proof of principle, we applied CHiTA to a small set of known active and mutant ribozymes. We then used CHiTA to test two large sets of naturally occurring twister ribozymes: over 1, 600 previously reported putative twisters and ∼1, 000 new candidate twisters. The new candidates were identified computationally in ∼1, 000 organisms, representing a massive increase in the number of ribozyme-harboring organisms. Approximately 94% of the twisters we tested were active and cleaved site-specifically. Analysis of their structural features revealed that many substitutions and helical imperfections can be tolerated. We repeated our computational search with structural descriptors updated from this analysis, whereupon we identified and confirmed the first intrinsically active twister ribozyme in mammals. CHiTA broadly expands the number of active twister ribozymes found in nature and provides a powerful method for functional analyses of other RNAs. GRAPHICAL ABSTRACT
Collapse
|
16
|
Joshi SHN, Jenkins C, Ulaeto D, Gorochowski TE. Accelerating Genetic Sensor Development, Scale-up, and Deployment Using Synthetic Biology. BIODESIGN RESEARCH 2024; 6:0037. [PMID: 38919711 PMCID: PMC11197468 DOI: 10.34133/bdr.0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/23/2024] [Indexed: 06/27/2024] Open
Abstract
Living cells are exquisitely tuned to sense and respond to changes in their environment. Repurposing these systems to create engineered biosensors has seen growing interest in the field of synthetic biology and provides a foundation for many innovative applications spanning environmental monitoring to improved biobased production. In this review, we present a detailed overview of currently available biosensors and the methods that have supported their development, scale-up, and deployment. We focus on genetic sensors in living cells whose outputs affect gene expression. We find that emerging high-throughput experimental assays and evolutionary approaches combined with advanced bioinformatics and machine learning are establishing pipelines to produce genetic sensors for virtually any small molecule, protein, or nucleic acid. However, more complex sensing tasks based on classifying compositions of many stimuli and the reliable deployment of these systems into real-world settings remain challenges. We suggest that recent advances in our ability to precisely modify nonmodel organisms and the integration of proven control engineering principles (e.g., feedback) into the broader design of genetic sensing systems will be necessary to overcome these hurdles and realize the immense potential of the field.
Collapse
Affiliation(s)
| | - Christopher Jenkins
- CBR Division, Defence Science and Technology Laboratory, Porton Down, Wiltshire SP4 0JQ, UK
| | - David Ulaeto
- CBR Division, Defence Science and Technology Laboratory, Porton Down, Wiltshire SP4 0JQ, UK
| | - Thomas E. Gorochowski
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
- BrisEngBio,
School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| |
Collapse
|
17
|
Choi SW, Nam JW. Optimal design of synthetic circular RNAs. Exp Mol Med 2024; 56:1281-1292. [PMID: 38871815 PMCID: PMC11263348 DOI: 10.1038/s12276-024-01251-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/20/2024] [Accepted: 04/03/2024] [Indexed: 06/15/2024] Open
Abstract
Circular RNAs are an unusual class of single-stranded RNAs whose ends are covalently linked via back-splicing. Due to their versatility, the need to express circular RNAs in vivo and in vitro has increased. Efforts have been made to efficiently and precisely synthesize circular RNAs. However, a review on the optimization of the processes of circular RNA design, synthesis, and delivery is lacking. Our review highlights the multifaceted aspects considered when producing optimal circular RNAs and summarizes the available options for each step of exogenous circular RNA design and synthesis, including circularization strategies. Additionally, this review describes several potential applications of circular RNAs.
Collapse
Affiliation(s)
- Seo-Won Choi
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - Jin-Wu Nam
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea.
- Bio-BigData Center, Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, 04763, Republic of Korea.
- Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul, 04763, Republic of Korea.
- Hanyang Institute of Advanced BioConvergence, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
18
|
McKinley LN, Kern RG, Assmann SM, Bevilacqua PC. Flanking Sequence Cotranscriptionally Regulates Twister Ribozyme Activity. Biochemistry 2024; 63:53-68. [PMID: 38134329 DOI: 10.1021/acs.biochem.3c00506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Small nucleolytic ribozymes are RNAs that cleave their own phosphodiester backbone. While proteinaceous enzymes are regulated by a variety of known mechanisms, methods of regulation for ribozymes remain unclear. Twister is one ribozyme class for which many structural and catalytic properties have been elucidated. However, few studies have analyzed the activity of twister ribozymes in the context of a native flanking sequence, even though ribozymes as transcribed in nature do not exist in isolation. Interactions between the ribozyme and its neighboring sequences can induce conformational changes that inhibit self-cleavage, providing a regulatory mechanism that could naturally determine ribozyme activity in vivo and in synthetic applications. To date, eight twister ribozymes have been identified within the staple crop rice (Oryza sativa). Herein, we select several twister ribozymes from rice and show that they are differentially regulated by their flanking sequence using published RNA-seq data sets, structure probing, and cotranscriptional cleavage assays. We found that the Osa 1-2 ribozyme does not interact with its flanking sequences. However, sequences flanking the Osa 1-3 and Osa 1-8 ribozymes form inactive conformations, referred to here as "ribozymogens", that attenuate ribozyme self-cleavage activity. For the Osa 1-3 ribozyme, we show that activity can be rescued upon addition of a complementary antisense oligonucleotide, suggesting ribozymogens can be controlled via external signals. In all, our data provide a plausible mechanism wherein flanking sequence differentially regulates ribozyme activity in vivo. More broadly, the ability to regulate ribozyme behavior locally has potential applications in control of gene expression and synthetic biology.
Collapse
Affiliation(s)
- Lauren N McKinley
- Depatment of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Reuben G Kern
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Sarah M Assmann
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Philip C Bevilacqua
- Depatment of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
19
|
Backofen R, Gorodkin J, Hofacker IL, Stadler PF. Comparative RNA Genomics. Methods Mol Biol 2024; 2802:347-393. [PMID: 38819565 DOI: 10.1007/978-1-0716-3838-5_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Over the last quarter of a century it has become clear that RNA is much more than just a boring intermediate in protein expression. Ancient RNAs still appear in the core information metabolism and comprise a surprisingly large component in bacterial gene regulation. A common theme with these types of mostly small RNAs is their reliance of conserved secondary structures. Large-scale sequencing projects, on the other hand, have profoundly changed our understanding of eukaryotic genomes. Pervasively transcribed, they give rise to a plethora of large and evolutionarily extremely flexible non-coding RNAs that exert a vastly diverse array of molecule functions. In this chapter we provide a-necessarily incomplete-overview of the current state of comparative analysis of non-coding RNAs, emphasizing computational approaches as a means to gain a global picture of the modern RNA world.
Collapse
Affiliation(s)
- Rolf Backofen
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Freiburg, Germany
- Center for Non-coding RNA in Technology and Health, University of Copenhagen, Frederiksberg, Denmark
| | - Jan Gorodkin
- Center for Non-coding RNA in Technology and Health, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Ivo L Hofacker
- Institute for Theoretical Chemistry, University of Vienna, Wien, Austria
- Bioinformatics and Computational Biology research group, University of Vienna, Vienna, Austria
- Center for Non-coding RNA in Technology and Health, University of Copenhagen, Frederiksberg, Denmark
| | - Peter F Stadler
- Bioinformatics Group, Department of Computer Science, University of Leipzig, Leipzig, Germany.
- Interdisciplinary Center for Bioinformatics, University of Leipzig, Leipzig, Germany.
- Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany.
- Universidad National de Colombia, Bogotá, Colombia.
- Institute for Theoretical Chemistry, University of Vienna, Wien, Austria.
- Center for Non-coding RNA in Technology and Health, University of Copenhagen, Frederiksberg, Denmark.
- Santa Fe Institute, Santa Fe, NM, USA.
| |
Collapse
|
20
|
Kläge D, Müller E, Hartig JS. A comparative survey of the influence of small self-cleaving ribozymes on gene expression in human cell culture. RNA Biol 2024; 21:1-11. [PMID: 38146121 PMCID: PMC10761166 DOI: 10.1080/15476286.2023.2296203] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 12/27/2023] Open
Abstract
Self-cleaving ribozymes are versatile tools for synthetic biologists when it comes to controlling gene expression. Up to date, 12 different classes are known, and over the past decades more and more details about their structure, cleavage mechanisms and natural environments have been uncovered. However, when these motifs are applied to mammalian gene expression constructs, the outcome can often be unexpected. A variety of factors, such as surrounding sequences and positioning of the ribozyme influences the activity and hence performance of catalytic RNAs. While some information about the efficiency of individual ribozymes (each tested in specific contexts) is known, general trends obtained from standardized, comparable experiments are lacking, complicating decisions such as which ribozyme to choose and where to insert it into the target mRNA. In many cases, application-specific optimization is required, which can be very laborious. Here, we systematically compared different classes of ribozymes within the 3'-UTR of a given reporter gene. We then examined position-dependent effects of the best-performing ribozymes. Moreover, we tested additional variants of already widely used hammerhead ribozymes originating from various organisms. We were able to identify functional structures suited for aptazyme design and generated highly efficient hammerhead ribozyme variants originating from the human genome. The present dataset will aide decisions about how to apply ribozymes for affecting gene expression as well as for developing ribozyme-based switches for controlling gene expression in human cells.
Collapse
Affiliation(s)
- Dennis Kläge
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Konstanz, Germany
| | - Elisabeth Müller
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Konstanz, Germany
| | - Jörg S. Hartig
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Konstanz, Germany
| |
Collapse
|
21
|
Niu D, Wu Y, Lian J. Circular RNA vaccine in disease prevention and treatment. Signal Transduct Target Ther 2023; 8:341. [PMID: 37691066 PMCID: PMC10493228 DOI: 10.1038/s41392-023-01561-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 06/02/2023] [Accepted: 07/09/2023] [Indexed: 09/12/2023] Open
Abstract
CircRNAs are a class of single-stranded RNAs with covalently linked head-to-tail topology. In the decades since its initial discovery, their biogenesis, regulation, and function have rapidly disclosed, permitting a better understanding and adoption of them as new tools for medical applications. With the development of biotechnology and molecular medicine, artificial circRNAs have been engineered as a novel class of vaccines for disease treatment and prevention. Unlike the linear mRNA vaccine which applications were limited by its instability, inefficiency, and innate immunogenicity, circRNA vaccine which incorporate internal ribosome entry sites (IRESs) and open reading frame (ORF) provides an improved approach to RNA-based vaccination with safety, stability, simplicity of manufacture, and scalability. However, circRNA vaccines are at an early stage, and their optimization, delivery and applications require further development and evaluation. In this review, we comprehensively describe circRNA vaccine, including their history and superiority. We also summarize and discuss the current methodological research for circRNA vaccine preparation, including their design, synthesis, and purification. Finally, we highlight the delivery options of circRNA vaccine and its potential applications in diseases treatment and prevention. Considering their unique high stability, low immunogenicity, protein/peptide-coding capacity and special closed-loop construction, circRNA vaccine, and circRNA-based therapeutic platforms may have superior application prospects in a broad range of diseases.
Collapse
Affiliation(s)
- Dun Niu
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), 400038, Chongqing, China
- Department of Clinical Biochemistry, Army Medical University (Third Military Medical University), 400038, Chongqing, China
| | - Yaran Wu
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), 400038, Chongqing, China
- Department of Clinical Biochemistry, Army Medical University (Third Military Medical University), 400038, Chongqing, China
| | - Jiqin Lian
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), 400038, Chongqing, China.
- Department of Clinical Biochemistry, Army Medical University (Third Military Medical University), 400038, Chongqing, China.
| |
Collapse
|
22
|
Muntoni AP, Pagnani A. DCAlign v1.0: aligning biological sequences using co-evolution models and informed priors. Bioinformatics 2023; 39:btad537. [PMID: 37647658 PMCID: PMC10491954 DOI: 10.1093/bioinformatics/btad537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/14/2023] [Accepted: 08/29/2023] [Indexed: 09/01/2023] Open
Abstract
SUMMARY DCAlign is a new alignment method able to cope with the conservation and the co-evolution signals that characterize the columns of multiple sequence alignments of homologous sequences. However, the pre-processing steps required to align a candidate sequence are computationally demanding. We show in v1.0 how to dramatically reduce the overall computing time by including an empirical prior over an informative set of variables mirroring the presence of insertions and deletions. AVAILABILITY AND IMPLEMENTATION DCAlign v1.0 is implemented in Julia and it is fully available at https://github.com/infernet-h2020/DCAlign.
Collapse
Affiliation(s)
- Anna Paola Muntoni
- Italian Institute for Genomic Medicine, IRCCS Candiolo, I-10060 Candiolo (TO), Italy
- Politecnico di Torino, I-10129 Torino, Italy
| | - Andrea Pagnani
- Italian Institute for Genomic Medicine, IRCCS Candiolo, I-10060 Candiolo (TO), Italy
- Politecnico di Torino, I-10129 Torino, Italy
- INFN, Sezione di Torino, Torino, Via Pietro Giuria 1, I-10125 Torino, Italy
| |
Collapse
|
23
|
Liu T, Patel S, Pyle AM. Making RNA: Using T7 RNA polymerase to produce high yields of RNA from DNA templates. Methods Enzymol 2023; 691:185-207. [PMID: 37914446 DOI: 10.1016/bs.mie.2023.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
RNA is playing an ever-growing role in molecular biology and biomedicine due to the many ways it influences gene expression and its increasing use in modern therapeutics. Hence, production of RNA molecules in large quantity and high purity has become essential for advancing basic scientific research and for developing next-generation therapeutics. T7 RNA polymerase (RNAP) is a DNA-dependent RNA polymerase of bacteriophage origin and it is the most widely-utilized tool enzyme for producing RNA. Here we describe a set of robust methods for in vitro transcribing RNA molecules from DNA templates using T7 RNAP, along with a set of subsequent RNA purification schemes. In the first part of this chapter, we provide the general method for T7 RNAP-based in vitro transcription and technical notes for troubleshooting failed or inefficient transcription. We also provide modified protocols for preparing specialized RNA transcripts. In the second part, we provide two purification methods using either gel-based denaturing purification or size exclusion column-based non-denaturing purification for isolating high-purity RNA products from transcription reaction mixtures and preparing them for downstream applications. This chapter is designed to provide researchers with versatile ways to efficiently generate RNA molecules of interest and a troubleshooting guide should they encounter problems while working with in vitro transcription using T7 RNAP.
Collapse
Affiliation(s)
- Tianshuo Liu
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, United States
| | - Shivali Patel
- Department of Molecular Biophysics and Biochemistry, New Haven, CT, United States
| | - Anna Marie Pyle
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, United States; Howard Hughes Medical Institute, Yale University, New Haven, CT, United States.
| |
Collapse
|
24
|
Sengul MY, MacKerell AD. Influence of Mg 2+ Distribution on the Stability of Folded States of the Twister Ribozyme Revealed Using Grand Canonical Monte Carlo and Generative Deep Learning Enhanced Sampling. ACS OMEGA 2023; 8:19532-19546. [PMID: 37305323 PMCID: PMC10249389 DOI: 10.1021/acsomega.3c00931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/11/2023] [Indexed: 06/13/2023]
Abstract
Metal ions, particularly magnesium ions (Mg2+), play a role in stabilizing the tertiary structures of RNA molecules. Theoretical models and experimental techniques show that metal ions can change RNA dynamics and how it transitions through different stages of folding. However, the specific ways in which metal ions contribute to the formation and stabilization of RNA's tertiary structure are not fully understood at the atomic level. Here, we combined oscillating excess chemical potential Grand Canonical Monte Carlo (GCMC) and metadynamics to bias toward the sampling of unfolded states using reaction coordinates generated by machine learning allowing for examination of Mg2+-RNA interactions that contribute to stabilizing folded states of the pseudoknot found in the Twister ribozyme. GCMC is used to sample diverse ion distributions around the RNA with deep learning applied to iteratively generate system-specific reaction coordinates to maximize conformational sampling during metadynamics simulations. Results from 6 μs simulations performed on 9 individual systems indicate that Mg2+ ions play a crucial role in stabilizing the three-dimensional (3D) structure of the RNA by stabilizing specific interactions of phosphate groups or phosphate groups and bases of neighboring nucleotides. While many phosphates are accessible to interactions with Mg2+, it is observed that multiple, specific interactions are required to sample conformations close to the folded state; coordination of Mg2+ at individual specific sites facilitates sampling of folded conformations though unfolding ultimately occurs. It is only when multiple specific interactions occur, including the presence of specific inner-shell cation interactions linking two nucleotides, that conformations close to the folded state are stable. While many of the identified Mg2+ interactions are observed in the X-ray crystal structure of Twister, the present study suggests two new Mg2+ ion sites in the Twister ribozyme that contribute to stabilization. In addition, specific interactions with Mg2+ are observed that destabilize the local RNA structure, a process that may facilitate the folding of RNA into its correct structure.
Collapse
Affiliation(s)
- Mert Y. Sengul
- Department of Pharmaceutical
Sciences, School of Pharmacy, University
of Maryland, Baltimore, Maryland 21201, United States
| | - Alexander D. MacKerell
- Department of Pharmaceutical
Sciences, School of Pharmacy, University
of Maryland, Baltimore, Maryland 21201, United States
| |
Collapse
|
25
|
Assmann SM, Chou HL, Bevilacqua PC. Rock, scissors, paper: How RNA structure informs function. THE PLANT CELL 2023; 35:1671-1707. [PMID: 36747354 PMCID: PMC10226581 DOI: 10.1093/plcell/koad026] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/05/2023] [Accepted: 01/30/2023] [Indexed: 05/30/2023]
Abstract
RNA can fold back on itself to adopt a wide range of structures. These range from relatively simple hairpins to intricate 3D folds and can be accompanied by regulatory interactions with both metabolites and macromolecules. The last 50 yr have witnessed elucidation of an astonishing array of RNA structures including transfer RNAs, ribozymes, riboswitches, the ribosome, the spliceosome, and most recently entire RNA structuromes. These advances in RNA structural biology have deepened insight into fundamental biological processes including gene editing, transcription, translation, and structure-based detection and response to temperature and other environmental signals. These discoveries reveal that RNA can be relatively static, like a rock; that it can have catalytic functions of cutting bonds, like scissors; and that it can adopt myriad functional shapes, like paper. We relate these extraordinary discoveries in the biology of RNA structure to the plant way of life. We trace plant-specific discovery of ribozymes and riboswitches, alternative splicing, organellar ribosomes, thermometers, whole-transcriptome structuromes and pan-structuromes, and conclude that plants have a special set of RNA structures that confer unique types of gene regulation. We finish with a consideration of future directions for the RNA structure-function field.
Collapse
Affiliation(s)
- Sarah M Assmann
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Hong-Li Chou
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Philip C Bevilacqua
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
26
|
Chen X, Zhang S. CircularSTAR3D: a stack-based RNA 3D structural alignment tool for circular matching. Nucleic Acids Res 2023; 51:e53. [PMID: 36987885 PMCID: PMC10201423 DOI: 10.1093/nar/gkad222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 03/04/2023] [Accepted: 03/28/2023] [Indexed: 03/30/2023] Open
Abstract
The functions of non-coding RNAs usually depend on their 3D structures. Therefore, comparing RNA 3D structures is critical in analyzing their functions. We noticed an interesting phenomenon that two non-coding RNAs may share similar substructures when rotating their sequence order. To the best of our knowledge, no existing RNA 3D structural alignment tools can detect this type of matching. In this article, we defined the RNA 3D structure circular matching problem and developed a software tool named CircularSTAR3D to solve this problem. CircularSTAR3D first uses the conserved stacks (consecutive base pairs with similar 3D structures) in the input RNAs to identify the circular matched internal loops and multiloops. Then it performs a local extension iteratively to obtain the whole circular matched substructures. The computational experiments conducted on a non-redundant RNA structure dataset show that circular matching is ubiquitous. Furthermore, we demonstrated the utility of CircularSTAR3D by detecting the conserved substructures missed by regular alignment tools, including structural motifs and conserved structures between riboswitches and ribozymes from different classes. We anticipate CircularSTAR3D to be a valuable supplement to the existing RNA 3D structural analysis techniques.
Collapse
Affiliation(s)
- Xiaoli Chen
- Department of Computer Science, University of Central Florida, Orlando, FL 32816, USA
| | - Shaojie Zhang
- Department of Computer Science, University of Central Florida, Orlando, FL 32816, USA
| |
Collapse
|
27
|
Forgia M, Navarro B, Daghino S, Cervera A, Gisel A, Perotto S, Aghayeva DN, Akinyuwa MF, Gobbi E, Zheludev IN, Edgar RC, Chikhi R, Turina M, Babaian A, Di Serio F, de la Peña M. Hybrids of RNA viruses and viroid-like elements replicate in fungi. Nat Commun 2023; 14:2591. [PMID: 37147358 PMCID: PMC10162972 DOI: 10.1038/s41467-023-38301-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/25/2023] [Indexed: 05/07/2023] Open
Abstract
Earth's life may have originated as self-replicating RNA, and it has been argued that RNA viruses and viroid-like elements are remnants of such pre-cellular RNA world. RNA viruses are defined by linear RNA genomes encoding an RNA-dependent RNA polymerase (RdRp), whereas viroid-like elements consist of small, single-stranded, circular RNA genomes that, in some cases, encode paired self-cleaving ribozymes. Here we show that the number of candidate viroid-like elements occurring in geographically and ecologically diverse niches is much higher than previously thought. We report that, amongst these circular genomes, fungal ambiviruses are viroid-like elements that undergo rolling circle replication and encode their own viral RdRp. Thus, ambiviruses are distinct infectious RNAs showing hybrid features of viroid-like RNAs and viruses. We also detected similar circular RNAs, containing active ribozymes and encoding RdRps, related to mitochondrial-like fungal viruses, highlighting fungi as an evolutionary hub for RNA viruses and viroid-like elements. Our findings point to a deep co-evolutionary history between RNA viruses and subviral elements and offer new perspectives in the origin and evolution of primordial infectious agents, and RNA life.
Collapse
Affiliation(s)
- Marco Forgia
- Institute for Sustainable Plant Protection, National Research Council of Italy, Torino, Italy
| | - Beatriz Navarro
- Institute for Sustainable Plant Protection, National Research Council of Italy, Bari, Italy
| | - Stefania Daghino
- Institute for Sustainable Plant Protection, National Research Council of Italy, Torino, Italy
| | - Amelia Cervera
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-CSIC, Valencia, Spain
| | - Andreas Gisel
- Institute of Biomedical Technologies, National Research Council of Italy, Bari, Italy
- International Institute of Tropical Agriculture, Ibadan, Nigeria
| | - Silvia Perotto
- Department of Life Science and Systems Biology, University of Torino, Torino, Italy
| | - Dilzara N Aghayeva
- Institute of Botany, Ministry of Science and Education of the Republic of Azerbaijan, Baku, Azerbaijan
| | - Mary F Akinyuwa
- Department of Agroforestry Ecosystems, Universidad Politécnica de Valencia, Valencia, Spain
- Department of Land, Environment Agriculture and Forestry, Università Degli Studi di Padova, Padova, Italy
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, USA
| | - Emanuela Gobbi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Ivan N Zheludev
- Department of Biochemistry, Stanford University, Stanford, CA, USA
| | | | - Rayan Chikhi
- G5 Sequence Bioinformatics, Department of Computational Biology, Institut Pasteur, Paris, France
| | - Massimo Turina
- Institute for Sustainable Plant Protection, National Research Council of Italy, Brescia, Italy.
| | - Artem Babaian
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, ON, Canada.
| | - Francesco Di Serio
- Institute for Sustainable Plant Protection, National Research Council of Italy, Bari, Italy.
| | - Marcos de la Peña
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-CSIC, Valencia, Spain.
| |
Collapse
|
28
|
Roberts JM, Beck JD, Pollock TB, Bendixsen DP, Hayden EJ. RNA sequence to structure analysis from comprehensive pairwise mutagenesis of multiple self-cleaving ribozymes. eLife 2023; 12:80360. [PMID: 36655987 PMCID: PMC9901934 DOI: 10.7554/elife.80360] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 12/28/2022] [Indexed: 01/20/2023] Open
Abstract
Self-cleaving ribozymes are RNA molecules that catalyze the cleavage of their own phosphodiester backbones. These ribozymes are found in all domains of life and are also a tool for biotechnical and synthetic biology applications. Self-cleaving ribozymes are also an important model of sequence-to-function relationships for RNA because their small size simplifies synthesis of genetic variants and self-cleaving activity is an accessible readout of the functional consequence of the mutation. Here, we used a high-throughput experimental approach to determine the relative activity for every possible single and double mutant of five self-cleaving ribozymes. From this data, we comprehensively identified non-additive effects between pairs of mutations (epistasis) for all five ribozymes. We analyzed how changes in activity and trends in epistasis map to the ribozyme structures. The variety of structures studied provided opportunities to observe several examples of common structural elements, and the data was collected under identical experimental conditions to enable direct comparison. Heatmap-based visualization of the data revealed patterns indicating structural features of the ribozymes including paired regions, unpaired loops, non-canonical structures, and tertiary structural contacts. The data also revealed signatures of functionally critical nucleotides involved in catalysis. The results demonstrate that the data sets provide structural information similar to chemical or enzymatic probing experiments, but with additional quantitative functional information. The large-scale data sets can be used for models predicting structure and function and for efforts to engineer self-cleaving ribozymes.
Collapse
Affiliation(s)
- Jessica M Roberts
- Biomolecular Sciences Graduate Programs, Boise State UniversityBoiseUnited States
| | - James D Beck
- Computing PhD Program, Boise State UniversityBoiseUnited States
| | - Tanner B Pollock
- Department of Biological Science, Boise State UniversityBoiseUnited States
| | - Devin P Bendixsen
- Biomolecular Sciences Graduate Programs, Boise State UniversityBoiseUnited States
| | - Eric J Hayden
- Biomolecular Sciences Graduate Programs, Boise State UniversityBoiseUnited States
- Computing PhD Program, Boise State UniversityBoiseUnited States
- Department of Biological Science, Boise State UniversityBoiseUnited States
| |
Collapse
|
29
|
Deng J, Shi Y, Peng X, He Y, Chen X, Li M, Lin X, Liao W, Huang Y, Jiang T, Lilley DJ, Miao Z, Huang L. Ribocentre: a database of ribozymes. Nucleic Acids Res 2023; 51:D262-D268. [PMID: 36177882 PMCID: PMC9825448 DOI: 10.1093/nar/gkac840] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/14/2022] [Accepted: 09/21/2022] [Indexed: 01/29/2023] Open
Abstract
Ribozymes are excellent systems in which to study 'sequence - structure - function' relationships in RNA molecules. Understanding these relationships may greatly help structural modeling and design of functional RNA structures and some functional structural modules could be repurposed in molecular design. At present, there is no comprehensive database summarising all the natural ribozyme families. We have therefore created Ribocentre, a database that collects together sequence, structure and mechanistic data on 21 ribozyme families. This includes available information on timelines, sequence families, secondary and tertiary structures, catalytic mechanisms, applications of the ribozymes together with key publications. The database is publicly available at https://www.ribocentre.org.
Collapse
Affiliation(s)
- Jie Deng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Yaohuang Shi
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou 510005, China
| | - Xuemei Peng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Yuanlin He
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Xiaoxue Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Department of pharmacy, Sun-Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Mengxiao Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Xiaowei Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Wenjian Liao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Yuanyin Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Taijiao Jiang
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou 510005, China
| | - David M J Lilley
- Cancer Research UK Nucleic Acid Structure Research Group, MSI/WTB Complex, The University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Zhichao Miao
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou 510005, China
- Translational Research Institute of Brain and Brain-Like Intelligence and Department of Anesthesiology, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai 200434, China
| | - Lin Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| |
Collapse
|
30
|
Li Y, Arce A, Lucci T, Rasmussen RA, Lucks JB. Dynamic RNA synthetic biology: new principles, practices and potential. RNA Biol 2023; 20:817-829. [PMID: 38044595 PMCID: PMC10730207 DOI: 10.1080/15476286.2023.2269508] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 08/23/2023] [Indexed: 12/05/2023] Open
Abstract
An increased appreciation of the role of RNA dynamics in governing RNA function is ushering in a new wave of dynamic RNA synthetic biology. Here, we review recent advances in engineering dynamic RNA systems across the molecular, circuit and cellular scales for important societal-scale applications in environmental and human health, and bioproduction. For each scale, we introduce the core concepts of dynamic RNA folding and function at that scale, and then discuss technologies incorporating these concepts, covering new approaches to engineering riboswitches, ribozymes, RNA origami, RNA strand displacement circuits, biomaterials, biomolecular condensates, extracellular vesicles and synthetic cells. Considering the dynamic nature of RNA within the engineering design process promises to spark the next wave of innovation that will expand the scope and impact of RNA biotechnologies.
Collapse
Affiliation(s)
- Yueyi Li
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
| | - Anibal Arce
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
| | - Tyler Lucci
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
| | - Rebecca A. Rasmussen
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, IL, USA
| | - Julius B. Lucks
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, IL, USA
- Center for Water Research, Northwestern University, Evanston, IL, USA
- Center for Engineering Sustainability and Resilience, Northwestern University, Evanston, IL, USA
| |
Collapse
|
31
|
Egger M, Bereiter R, Mair S, Micura R. Scaling Catalytic Contributions of Small Self-Cleaving Ribozymes. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 134:e202207590. [PMID: 38505292 PMCID: PMC10946891 DOI: 10.1002/ange.202207590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Indexed: 11/08/2022]
Abstract
Nucleolytic ribozymes utilize general acid-base catalysis to perform phosphodiester cleavage. In most ribozyme classes, a conserved active site guanosine is positioned to act as general base, thereby activating the 2'-OH group to attack the scissile phosphate (γ-catalysis). Here, we present an atomic mutagenesis study for the pistol ribozyme class. Strikingly, "general base knockout" by replacement of the guanine N1 atom by carbon results in only 2.7-fold decreased rate. Therefore, the common view that γ-catalysis critically depends on the N1 moiety becomes challenged. For pistol ribozymes we found that γ-catalysis is subordinate in overall catalysis, made up by two other catalytic factors (α and δ). Our approach allows scaling of the different catalytic contributions (α, β, γ, δ) with unprecedented precision and paves the way for a thorough mechanistic understanding of nucleolytic ribozymes with active site guanines.
Collapse
Affiliation(s)
- Michaela Egger
- Institute of Organic Chemistry and Center for Molecular BiosciencesUniversity of InnsbruckInnrain 80–826020InnsbruckAustria
| | - Raphael Bereiter
- Institute of Organic Chemistry and Center for Molecular BiosciencesUniversity of InnsbruckInnrain 80–826020InnsbruckAustria
| | - Stefan Mair
- Institute of Organic Chemistry and Center for Molecular BiosciencesUniversity of InnsbruckInnrain 80–826020InnsbruckAustria
| | - Ronald Micura
- Institute of Organic Chemistry and Center for Molecular BiosciencesUniversity of InnsbruckInnrain 80–826020InnsbruckAustria
| |
Collapse
|
32
|
Egger M, Bereiter R, Mair S, Micura R. Scaling Catalytic Contributions of Small Self-Cleaving Ribozymes. Angew Chem Int Ed Engl 2022; 61:e202207590. [PMID: 35982640 PMCID: PMC9826390 DOI: 10.1002/anie.202207590] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Indexed: 01/11/2023]
Abstract
Nucleolytic ribozymes utilize general acid-base catalysis to perform phosphodiester cleavage. In most ribozyme classes, a conserved active site guanosine is positioned to act as general base, thereby activating the 2'-OH group to attack the scissile phosphate (γ-catalysis). Here, we present an atomic mutagenesis study for the pistol ribozyme class. Strikingly, "general base knockout" by replacement of the guanine N1 atom by carbon results in only 2.7-fold decreased rate. Therefore, the common view that γ-catalysis critically depends on the N1 moiety becomes challenged. For pistol ribozymes we found that γ-catalysis is subordinate in overall catalysis, made up by two other catalytic factors (α and δ). Our approach allows scaling of the different catalytic contributions (α, β, γ, δ) with unprecedented precision and paves the way for a thorough mechanistic understanding of nucleolytic ribozymes with active site guanines.
Collapse
Affiliation(s)
- Michaela Egger
- Institute of Organic Chemistry and Center for Molecular BiosciencesUniversity of InnsbruckInnrain 80–826020InnsbruckAustria
| | - Raphael Bereiter
- Institute of Organic Chemistry and Center for Molecular BiosciencesUniversity of InnsbruckInnrain 80–826020InnsbruckAustria
| | - Stefan Mair
- Institute of Organic Chemistry and Center for Molecular BiosciencesUniversity of InnsbruckInnrain 80–826020InnsbruckAustria
| | - Ronald Micura
- Institute of Organic Chemistry and Center for Molecular BiosciencesUniversity of InnsbruckInnrain 80–826020InnsbruckAustria
| |
Collapse
|
33
|
Liu B, Dong X, Cheng H, Zheng C, Chen Z, Rodríguez TC, Liang SQ, Xue W, Sontheimer EJ. A split prime editor with untethered reverse transcriptase and circular RNA template. Nat Biotechnol 2022; 40:1388-1393. [PMID: 35379962 DOI: 10.1038/s41587-022-01255-9] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 02/08/2022] [Indexed: 12/19/2022]
Abstract
Delivery and optimization of prime editors (PEs) have been hampered by their large size and complexity. Although split versions of genome-editing tools can reduce construct size, they require special engineering to tether the binding and catalytic domains. Here we report a split PE (sPE) in which the Cas9 nickase (nCas9) remains untethered from the reverse transcriptase (RT). The sPE showed similar efficiencies in installing precise edits as the parental unsplit PE3 and no increase in insertion-deletion (indel) byproducts. Delivery of sPE to the mouse liver with hydrodynamic injection to modify β-catenin drove tumor formation with similar efficiency as PE3. Delivery with two adeno-associated virus (AAV) vectors corrected the disease-causing mutation in a mouse model of type I tyrosinemia. Similarly, prime editing guide RNAs (pegRNAs) can be split into a single guide RNA (sgRNA) and a circular RNA RT template to increase flexibility and stability. Compared to previous sPEs, ours lacks inteins, protein-protein affinity modules and nuclease-sensitive pegRNA extensions, which increase construct complexity and might reduce efficiency. Our modular system will facilitate the delivery and optimization of PEs.
Collapse
Affiliation(s)
- Bin Liu
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Xiaolong Dong
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Haoyang Cheng
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Chunwei Zheng
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Zexiang Chen
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Tomás C Rodríguez
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Shun-Qing Liang
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Wen Xue
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA.
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA, USA.
- Department of Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| | - Erik J Sontheimer
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA.
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA, USA.
- Department of Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
34
|
Bereiter R, Renard E, Breuker K, Kreutz C, Ennifar E, Micura R. 1-Deazaguanosine-Modified RNA: The Missing Piece for Functional RNA Atomic Mutagenesis. J Am Chem Soc 2022; 144:10344-10352. [PMID: 35666572 PMCID: PMC9204769 DOI: 10.1021/jacs.2c01877] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Indexed: 01/07/2023]
Abstract
Atomic mutagenesis is the key to advance our understanding of RNA recognition and RNA catalysis. To this end, deazanucleosides are utilized to evaluate the participation of specific atoms in these processes. One of the remaining challenges is access to RNA-containing 1-deazaguanosine (c1G). Here, we present the synthesis of this nucleoside and its phosphoramidite, allowing first time access to c1G-modified RNA. Thermodynamic analyses revealed the base pairing parameters for c1G-modified RNA. Furthermore, by NMR spectroscopy, a c1G-triggered switch of Watson-Crick into Hoogsteen pairing in HIV-2 TAR RNA was identified. Additionally, using X-ray structure analysis, a guanine-phosphate backbone interaction affecting RNA fold stability was characterized, and finally, the critical impact of an active-site guanine in twister ribozyme on the phosphodiester cleavage was revealed. Taken together, our study lays the synthetic basis for c1G-modified RNA and demonstrates the power of the completed deazanucleoside toolbox for RNA atomic mutagenesis needed to achieve in-depth understanding of RNA recognition and catalysis.
Collapse
Affiliation(s)
- Raphael Bereiter
- Institute
of Organic Chemistry and Center for Molecular Biosciences, University
of Innsbruck, Innrain 80-82, Innsbruck 6020, Austria
| | - Eva Renard
- Architecture
et Réactivité de l’ARN - CNRS UPR 9002, Université de Strasbourg, Institut de Biologie
Moléculaire et Cellulaire, 2 Allée Conrad Roentgen, Strasbourg 67084, France
| | - Kathrin Breuker
- Institute
of Organic Chemistry and Center for Molecular Biosciences, University
of Innsbruck, Innrain 80-82, Innsbruck 6020, Austria
| | - Christoph Kreutz
- Institute
of Organic Chemistry and Center for Molecular Biosciences, University
of Innsbruck, Innrain 80-82, Innsbruck 6020, Austria
| | - Eric Ennifar
- Architecture
et Réactivité de l’ARN - CNRS UPR 9002, Université de Strasbourg, Institut de Biologie
Moléculaire et Cellulaire, 2 Allée Conrad Roentgen, Strasbourg 67084, France
| | - Ronald Micura
- Institute
of Organic Chemistry and Center for Molecular Biosciences, University
of Innsbruck, Innrain 80-82, Innsbruck 6020, Austria
| |
Collapse
|
35
|
Ferrero-Serrano Á, Sylvia MM, Forstmeier PC, Olson AJ, Ware D, Bevilacqua PC, Assmann SM. Experimental demonstration and pan-structurome prediction of climate-associated riboSNitches in Arabidopsis. Genome Biol 2022; 23:101. [PMID: 35440059 PMCID: PMC9017077 DOI: 10.1186/s13059-022-02656-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 03/20/2022] [Indexed: 11/23/2022] Open
Abstract
Background Genome-wide association studies (GWAS) aim to correlate phenotypic changes with genotypic variation. Upon transcription, single nucleotide variants (SNVs) may alter mRNA structure, with potential impacts on transcript stability, macromolecular interactions, and translation. However, plant genomes have not been assessed for the presence of these structure-altering polymorphisms or “riboSNitches.” Results We experimentally demonstrate the presence of riboSNitches in transcripts of two Arabidopsis genes, ZINC RIBBON 3 (ZR3) and COTTON GOLGI-RELATED 3 (CGR3), which are associated with continentality and temperature variation in the natural environment. These riboSNitches are also associated with differences in the abundance of their respective transcripts, implying a role in regulating the gene's expression in adaptation to local climate conditions. We then computationally predict riboSNitches transcriptome-wide in mRNAs of 879 naturally inbred Arabidopsis accessions. We characterize correlations between SNPs/riboSNitches in these accessions and 434 climate descriptors of their local environments, suggesting a role of these variants in local adaptation. We integrate this information in CLIMtools V2.0 and provide a new web resource, T-CLIM, that reveals associations between transcript abundance variation and local environmental variation. Conclusion We functionally validate two plant riboSNitches and, for the first time, demonstrate riboSNitch conditionality dependent on temperature, coining the term “conditional riboSNitch.” We provide the first pan-genome-wide prediction of riboSNitches in plants. We expand our previous CLIMtools web resource with riboSNitch information and with 1868 additional Arabidopsis genomes and 269 additional climate conditions, which will greatly facilitate in silico studies of natural genetic variation, its phenotypic consequences, and its role in local adaptation. Supplementary Information The online version contains supplementary material available at 10.1186/s13059-022-02656-4.
Collapse
Affiliation(s)
- Ángel Ferrero-Serrano
- Department of Biology, Pennsylvania State University, University Park, State College, PA, 16802, USA.
| | - Megan M Sylvia
- Department of Biology, Pennsylvania State University, University Park, State College, PA, 16802, USA
| | - Peter C Forstmeier
- Department of Biochemistry, Microbiology, and Molecular Biology, Pennsylvania State University, University Park, State College, PA, 16802, USA
| | - Andrew J Olson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Doreen Ware
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA.,USDA ARS NAA Robert W. Holley Center for Agriculture and Health, Ithaca, NY, 14853, USA
| | - Philip C Bevilacqua
- Department of Biochemistry, Microbiology, and Molecular Biology, Pennsylvania State University, University Park, State College, PA, 16802, USA.,Department of Chemistry, Pennsylvania State University, University Park, State College, PA, 16802, USA.,Center for RNA Molecular Biology, Pennsylvania State University, University Park, State College, PA, 16802, USA
| | - Sarah M Assmann
- Department of Biology, Pennsylvania State University, University Park, State College, PA, 16802, USA. .,Center for RNA Molecular Biology, Pennsylvania State University, University Park, State College, PA, 16802, USA.
| |
Collapse
|
36
|
Winkler L, Jimenez M, Zimmer JT, Williams A, Simon MD, Dimitrova N. Functional elements of the cis-regulatory lincRNA-p21. Cell Rep 2022; 39:110687. [PMID: 35443176 PMCID: PMC9118141 DOI: 10.1016/j.celrep.2022.110687] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 02/10/2022] [Accepted: 03/24/2022] [Indexed: 12/13/2022] Open
Abstract
The p53-induced long noncoding RNA (lncRNA) lincRNA-p21 is proposed to act in cis to promote p53-dependent expression of the neighboring cell cycle gene, Cdkn1a/p21. The molecular mechanism through which the transcribed lincRNA-p21 regulatory locus activates p21 expression remains poorly understood. To elucidate the functional elements of cis-regulation, we generate a series of genetic models that disrupt DNA regulatory elements, the transcription of lincRNA-p21, or the accumulation of mature lincRNA-p21. Unexpectedly, we determine that full-length transcription, splicing, and accumulation of lincRNA-p21 are dispensable for the chromatin organization of the locus and for cis-regulation. Instead, we find that production of lincRNA-p21 through conserved regions in exon 1 of lincRNA-p21 promotes cis-activation. These findings demonstrate that the activation of nascent transcription from this lncRNA locus, but not the generation or accumulation of a mature lncRNA transcript, is necessary to enact local gene expression control.
Collapse
Affiliation(s)
- Lauren Winkler
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Maria Jimenez
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Joshua T Zimmer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA; Institute for Biomolecular Design and Discovery, Yale University, West Haven, CT 06516, USA
| | - Adam Williams
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Matthew D Simon
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA; Institute for Biomolecular Design and Discovery, Yale University, West Haven, CT 06516, USA
| | - Nadya Dimitrova
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
37
|
Climent-Catala A, Ouldridge TE, Stan GBV, Bae W. Building an RNA-Based Toggle Switch Using Inhibitory RNA Aptamers. ACS Synth Biol 2022; 11:562-569. [PMID: 35133150 PMCID: PMC9007568 DOI: 10.1021/acssynbio.1c00580] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Synthetic
RNA systems offer unique advantages such as faster response,
increased specificity, and programmability compared to conventional
protein-based networks. Here, we demonstrate an in vitro RNA-based toggle switch using RNA aptamers capable of inhibiting
the transcriptional activity of T7 or SP6 RNA polymerases. The activities
of both polymerases are monitored simultaneously by using Broccoli
and malachite green light-up aptamer systems. In our toggle switch,
a T7 promoter drives the expression of SP6 inhibitory aptamers, and
an SP6 promoter expresses T7 inhibitory aptamers. We show that the
two distinct states originating from the mutual inhibition of aptamers
can be toggled by adding DNA sequences to sequester the RNA inhibitory
aptamers. Finally, we assessed our RNA-based toggle switch in degrading
conditions by introducing controlled degradation of RNAs using a mix
of RNases. Our results demonstrate that the RNA-based toggle switch
could be used as a control element for nucleic acid networks in synthetic
biology applications.
Collapse
Affiliation(s)
- Alicia Climent-Catala
- Imperial College Centre for Synthetic Biology, London, SW7 2AZ, U.K
- Department of Chemistry, Imperial College London, London, SW7 2AZ, U.K
| | - Thomas E. Ouldridge
- Imperial College Centre for Synthetic Biology, London, SW7 2AZ, U.K
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, U.K
| | - Guy-Bart V. Stan
- Imperial College Centre for Synthetic Biology, London, SW7 2AZ, U.K
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, U.K
| | - Wooli Bae
- Imperial College Centre for Synthetic Biology, London, SW7 2AZ, U.K
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, U.K
| |
Collapse
|
38
|
Olzog VJ, Freist LI, Goldmann R, Fallmann J, Weinberg CE. Application of RtcB ligase to monitor self-cleaving ribozyme activity by RNA-seq. Biol Chem 2022; 403:705-715. [PMID: 35025187 DOI: 10.1515/hsz-2021-0408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/24/2021] [Indexed: 11/15/2022]
Abstract
Self-cleaving ribozymes are catalytic RNAs and can be found in all domains of life. They catalyze a site-specific cleavage that results in a 5' fragment with a 2',3' cyclic phosphate (2',3' cP) and a 3' fragment with a 5' hydroxyl (5' OH) end. Recently, several strategies to enrich self-cleaving ribozymes by targeted biochemical methods have been introduced by us and others. Here, we develop an alternative strategy in which 5' OH RNAs are specifically ligated by RtcB ligase, which first guanylates the 3' phosphate of the adapter and then ligates it directly to RNAs with 5' OH ends. Our results demonstrate that adapter ligation to highly structured ribozyme fragments is much more efficient using the thermostable RtcB ligase from Pyrococcus horikoshii than the broadly applied Escherichia coli enzyme. Moreover, we investigated DNA, RNA and modified RNA adapters for their suitability in RtcB ligation reactions. We used the optimized RtcB-mediated ligation to produce RNA-seq libraries and captured a spiked 3' twister ribozyme fragment from E. coli total RNA. This RNA-seq-based method is applicable to detect ribozyme fragments as well as other cellular RNAs with 5' OH termini from total RNA.
Collapse
Affiliation(s)
- V Janett Olzog
- Faculty of Life Sciences, Institute for Biochemistry, Leipzig University, Brüderstraße 34, D-04103 Leipzig, Germany
| | - Lena I Freist
- Faculty of Life Sciences, Institute for Biochemistry, Leipzig University, Brüderstraße 34, D-04103 Leipzig, Germany
| | - Robin Goldmann
- Department of Computer Science, Bioinformatics Group, and Interdisciplinary Center for Bioinformatics, Leipzig University, Härtelstraße 16-18, D-04107 Leipzig, Germany
| | - Jörg Fallmann
- Department of Computer Science, Bioinformatics Group, and Interdisciplinary Center for Bioinformatics, Leipzig University, Härtelstraße 16-18, D-04107 Leipzig, Germany
| | - Christina E Weinberg
- Faculty of Life Sciences, Institute for Biochemistry, Leipzig University, Brüderstraße 34, D-04103 Leipzig, Germany
| |
Collapse
|
39
|
Sherlock ME, Higgs G, Yu D, Widner DL, White NA, Sudarsan N, Sadeeshkumar H, Perkins KR, Mirihana Arachchilage G, Malkowski SN, King CG, Harris KA, Gaffield G, Atilho RM, Breaker RR. Architectures and complex functions of tandem riboswitches. RNA Biol 2022; 19:1059-1076. [PMID: 36093908 PMCID: PMC9481103 DOI: 10.1080/15476286.2022.2119017] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Riboswitch architectures that involve the binding of a single ligand to a single RNA aptamer domain result in ordinary dose-response curves that require approximately a 100-fold change in ligand concentration to cover nearly the full dynamic range for gene regulation. However, by using multiple riboswitches or aptamer domains in tandem, these ligand-sensing structures can produce additional, complex gene control outcomes. In the current study, we have computationally searched for tandem riboswitch architectures in bacteria to provide a more complete understanding of the diverse biological and biochemical functions of gene control elements that are made exclusively of RNA. Numerous different arrangements of tandem homologous riboswitch architectures are exploited by bacteria to create more 'digital' gene control devices, which operate over a narrower ligand concentration range. Also, two heterologous riboswitch aptamers are sometimes employed to create two-input Boolean logic gates with various types of genetic outputs. These findings illustrate the sophisticated genetic decisions that can be made by using molecular sensors and switches based only on RNA.
Collapse
Affiliation(s)
- Madeline E. Sherlock
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Department of Biochemistry and Molecular Genetics, University of Colorado, Anschutz Medical Campus, Research-1S, Aurora, CO, USA
| | - Gadareth Higgs
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Diane Yu
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Danielle L. Widner
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Neil A. White
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | | | - Harini Sadeeshkumar
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Kevin R. Perkins
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Gayan Mirihana Arachchilage
- Howard Hughes Medical Institute, Yale University, New Haven, CT, USA
- PTC Therapeutics, Inc, South Plainfield, NJ, USA
| | | | - Christopher G. King
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | | | - Glenn Gaffield
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Ruben M. Atilho
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Ronald R. Breaker
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Howard Hughes Medical Institute, Yale University, New Haven, CT, USA
| |
Collapse
|
40
|
Chen Y, Cheng Y, Lin J. A scalable system for the fast production of RNA with homogeneous terminal ends. RNA Biol 2022; 19:1077-1084. [PMID: 36121187 PMCID: PMC9521606 DOI: 10.1080/15476286.2022.2123640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
In vitro transcription (IVT) using T7 RNA polymerase has become the most common method to synthesize RNAs for use in basic research and pharmaceutical applications. To solve the heterogeneity issue associated with the system, cis-acting ribozymes have been exploited to direct co-transcriptional processing to yield target RNAs with precisely defined ends. However, traditionally used ribozymes have many limitations, such as low efficiency and special sequence requirements of target RNAs. In addition, the introduction of ribozymes in IVT complicates the downstream purification of target RNAs. Here we describe a new cassette of engineered ribozymes (HHV-Kt and Twister-Kt) that can work in concert to produce RNA with defined 5' and 3' ends. The pair of ribozymes displayed reliably high activity when working with RNA of various lengths and structures. The engineered ribozymes also carry a K-turn RNA motif that enables fast post-IVT clearance of cleaved ribozymes and uncleaved precursors using K-turn affinity resins. Finally, we demonstrated the scalability of our system for the rapid production of large quantities of homogeneous RNA samples.
Collapse
Affiliation(s)
- Yuchen Chen
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yan Cheng
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jinzhong Lin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
41
|
Roth A, Weinberg Z, Vanderschuren K, Murdock MH, Breaker RR. Natural circularly permuted group II introns in bacteria produce RNA circles. iScience 2021; 24:103431. [PMID: 34901790 PMCID: PMC8637638 DOI: 10.1016/j.isci.2021.103431] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/20/2021] [Accepted: 11/09/2021] [Indexed: 11/25/2022] Open
Abstract
Group II self-splicing introns are large structured RNAs that remove themselves from transcripts while simultaneously sealing the resulting gaps. Some representatives can subsequently reverse splice into DNA, accounting for their pervasive distribution in bacteria. The catalytically active tertiary structure of each group II intron is assembled from six domains that are arranged in a conserved order. Here, we report structural isomers of group II introns, called CP group II ribozymes, wherein the characteristic order of domains has been altered. Domains five and six, which normally reside at the 3' end of group II introns, instead occupy the 5' end to form circularly permuted variants. These unusual group II intron derivatives are catalytically active and generate large linear branched and small circular RNAs, reaction products that are markedly different from those generated by canonical group II introns. The biological role of CP group II ribozymes is currently unknown.
Collapse
Affiliation(s)
- Adam Roth
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520-8103, USA
- Howard Hughes Medical Institute, Yale University, New Haven, CT 06520-8103, USA
| | - Zasha Weinberg
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520-8103, USA
- Howard Hughes Medical Institute, Yale University, New Haven, CT 06520-8103, USA
| | - Koen Vanderschuren
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520-8103, USA
| | - Mitchell H. Murdock
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520-8103, USA
| | - Ronald R. Breaker
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520-8103, USA
- Howard Hughes Medical Institute, Yale University, New Haven, CT 06520-8103, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8103, USA
| |
Collapse
|
42
|
Olzog VJ, Gärtner C, Stadler PF, Fallmann J, Weinberg CE. cyPhyRNA-seq: a genome-scale RNA-seq method to detect active self-cleaving ribozymes by capturing RNAs with 2',3' cyclic phosphates and 5' hydroxyl ends. RNA Biol 2021; 18:818-831. [PMID: 34906034 PMCID: PMC8782182 DOI: 10.1080/15476286.2021.1999105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Self-cleaving ribozymes are catalytically active RNAs that cleave themselves into a 5′-fragment with a 2′,3′-cyclic phosphate and a 3′-fragment with a 5′-hydroxyl. They are widely applied for the construction of synthetic RNA devices and RNA-based therapeutics. However, the targeted discovery of self-cleaving ribozymes remains a major challenge. We developed a transcriptome-wide method, called cyPhyRNA-seq, to screen for ribozyme cleavage fragments in total RNA extract. This approach employs the specific ligation-based capture of ribozyme 5′-fragments using a variant of the Arabidopsis thaliana tRNA ligase we engineered. To capture ribozyme 3′-fragments, they are enriched from total RNA by enzymatic treatments. We optimized and enhanced the individual steps of cyPhyRNA-seq in vitro and in spike-in experiments. Then, we applied cyPhyRNA-seq to total RNA isolated from the bacterium Desulfovibrio vulgaris and detected self-cleavage of the three predicted type II hammerhead ribozymes, whose activity had not been examined to date. cyPhyRNA-seq can be used for the global analysis of active self-cleaving ribozymes with the advantage to capture both ribozyme cleavage fragments from total RNA. Especially in organisms harbouring many self-cleaving RNAs, cyPhyRNA-seq facilitates the investigation of cleavage activity. Moreover, this method has the potential to be used to discover novel self-cleaving ribozymes in different organisms.
![]()
Collapse
Affiliation(s)
- V Janett Olzog
- Department of Life Science, Institute for Biochemistry, Leipzig, Germany
| | - Christiane Gärtner
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, Leipzig University, Leipzig, Germany
| | - Peter F Stadler
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, Leipzig University, Leipzig, Germany.,Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany.,Department of Theoretical Chemistry, Vienna, Austria.,Facultad de Ciencias, Universidad National de Colombia, Sede Bogotá, Colombia.,Santa Fe Institute, University of Vienna, Santa Fe, New Mexico, USA
| | - Jörg Fallmann
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, Leipzig University, Leipzig, Germany
| | | |
Collapse
|
43
|
Liu G, Jiang H, Sun W, Zhang J, Chen D, Murchie AIH. The function of twister ribozyme variants in non-LTR retrotransposition in Schistosoma mansoni. Nucleic Acids Res 2021; 49:10573-10588. [PMID: 34551436 PMCID: PMC8501958 DOI: 10.1093/nar/gkab818] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 08/23/2021] [Accepted: 09/08/2021] [Indexed: 12/13/2022] Open
Abstract
The twister ribozyme is widely distributed over numerous organisms and is especially abundant in Schistosoma mansoni, but has no confirmed biological function. Of the 17 non-LTR retrotransposons known in S. mansoni, none have thus far been associated with ribozymes. Here we report the identification of novel twister variant (T-variant) ribozymes and their function in S. mansoni non-LTR retrotransposition. We show that T-variant ribozymes are located at the 5′ end of Perere-3 non-LTR retrotransposons in the S. mansoni genome. T-variant ribozymes were demonstrated to be catalytically active in vitro. In reporter constructs, T-variants were shown to cleave in vivo, and cleavage of T-variants was sufficient for the translation of downstream reporter genes. Our analysis shows that the T-variants and Perere-3 are transcribed together. Target site duplications (TSDs); markers of target-primed reverse transcription (TPRT) and footmarks of retrotransposition, are located adjacent to the T-variant cleavage site and suggest that T-variant cleavage has taken place inS. mansoni. Sequence heterogeneity in the TSDs indicates that Perere-3 retrotransposition is not site-specific. The TSD sequences contribute to the 5′ end of the terminal ribozyme helix (P1 stem). Based on these results we conclude that T-variants have a functional role in Perere-3 retrotransposition.
Collapse
Affiliation(s)
- Getong Liu
- Fudan University Pudong Medical Center, and Institutes of Biomedical Sciences, Shanghai Medical College, Key Laboratory of Medical Epigenetics and Metabolism, Fudan University, Shanghai 200032, China.,Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Hengyi Jiang
- Fudan University Pudong Medical Center, and Institutes of Biomedical Sciences, Shanghai Medical College, Key Laboratory of Medical Epigenetics and Metabolism, Fudan University, Shanghai 200032, China.,Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Wenxia Sun
- Fudan University Pudong Medical Center, and Institutes of Biomedical Sciences, Shanghai Medical College, Key Laboratory of Medical Epigenetics and Metabolism, Fudan University, Shanghai 200032, China.,Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Jun Zhang
- Fudan University Pudong Medical Center, and Institutes of Biomedical Sciences, Shanghai Medical College, Key Laboratory of Medical Epigenetics and Metabolism, Fudan University, Shanghai 200032, China.,Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Dongrong Chen
- Fudan University Pudong Medical Center, and Institutes of Biomedical Sciences, Shanghai Medical College, Key Laboratory of Medical Epigenetics and Metabolism, Fudan University, Shanghai 200032, China.,Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Alastair I H Murchie
- Fudan University Pudong Medical Center, and Institutes of Biomedical Sciences, Shanghai Medical College, Key Laboratory of Medical Epigenetics and Metabolism, Fudan University, Shanghai 200032, China.,Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
44
|
Peng H, Latifi B, Müller S, Lupták A, Chen IA. Self-cleaving ribozymes: substrate specificity and synthetic biology applications. RSC Chem Biol 2021; 2:1370-1383. [PMID: 34704043 PMCID: PMC8495972 DOI: 10.1039/d0cb00207k] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 06/14/2021] [Indexed: 12/22/2022] Open
Abstract
Various self-cleaving ribozymes appearing in nature catalyze the sequence-specific intramolecular cleavage of RNA and can be engineered to catalyze cleavage of appropriate substrates in an intermolecular fashion, thus acting as true catalysts. The mechanisms of the small, self-cleaving ribozymes have been extensively studied and reviewed previously. Self-cleaving ribozymes can possess high catalytic activity and high substrate specificity; however, substrate specificity is also engineerable within the constraints of the ribozyme structure. While these ribozymes share a common fundamental catalytic mechanism, each ribozyme family has a unique overall architecture and active site organization, indicating that several distinct structures yield this chemical activity. The multitude of catalytic structures, combined with some flexibility in substrate specificity within each family, suggests that such catalytic RNAs, taken together, could access a wide variety of substrates. Here, we give an overview of 10 classes of self-cleaving ribozymes and capture what is understood about their substrate specificity and synthetic applications. Evolution of these ribozymes in an RNA world might be characterized by the emergence of a new ribozyme family followed by rapid adaptation or diversification for specific substrates. Self-cleaving ribozymes have become important tools of synthetic biology. Here we summarize the substrate specificity and applications of the main classes of these ribozymes.![]()
Collapse
Affiliation(s)
- Huan Peng
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles CA 90095 USA
| | - Brandon Latifi
- Department of Pharmaceutical Sciences, University of California Irvine CA 92697 USA
| | - Sabine Müller
- Institute for Biochemistry, University Greifswald 17487 Greifswald Germany
| | - Andrej Lupták
- Department of Pharmaceutical Sciences, University of California Irvine CA 92697 USA
| | - Irene A Chen
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles CA 90095 USA
| |
Collapse
|
45
|
Wilson TJ, Lilley DMJ. The potential versatility of RNA catalysis. WILEY INTERDISCIPLINARY REVIEWS. RNA 2021; 12:e1651. [PMID: 33949113 DOI: 10.1002/wrna.1651] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 01/21/2023]
Abstract
It is commonly thought that in the early development of life on this planet RNA would have acted both as a store of genetic information and as a catalyst. While a number of RNA enzymes are known in contemporary cells, they are largely confined to phosphoryl transfer reactions, whereas an RNA based metabolism would have required a much greater chemical diversity of catalysis. Here we discuss how RNA might catalyze a wider variety of chemistries, and particularly how information gleaned from riboswitches could suggest how ribozymes might recruit coenzymes to expand their chemical range. We ask how we might seek such activities in modern biology. This article is categorized under: RNA-Based Catalysis > Miscellaneous RNA-Catalyzed Reactions Regulatory RNAs/RNAi/Riboswitches > Riboswitches RNA Structure and Dynamics > RNA Structure, Dynamics and Chemistry.
Collapse
Affiliation(s)
- Timothy J Wilson
- Cancer Research UK Nucleic Acid Structure Research Group, MSI/WTB Complex, The University of Dundee, Dundee, UK
| | - David M J Lilley
- Cancer Research UK Nucleic Acid Structure Research Group, MSI/WTB Complex, The University of Dundee, Dundee, UK
| |
Collapse
|
46
|
DasGupta S, Nykiel K, Piccirilli JA. The hammerhead self-cleaving motif as a precursor to complex endonucleolytic ribozymes. RNA (NEW YORK, N.Y.) 2021; 27:1017-1024. [PMID: 34131025 PMCID: PMC8370743 DOI: 10.1261/rna.078813.121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 06/07/2021] [Indexed: 06/12/2023]
Abstract
Connections between distinct catalytic RNA motifs through networks of mutations that retain catalytic function (neutral networks) were likely central to the evolution of biocatalysis. Despite suggestions that functional RNAs collectively form an interconnected web of neutral networks, little evidence has emerged to demonstrate the existence of such intersecting networks in naturally occurring RNAs. Here we show that neutral networks of two naturally occurring, seemingly unrelated endonucleolytic ribozymes, the hammerhead (HH) and hairpin (HP), intersect. Sequences at the intersection of these networks exhibit catalytic functions corresponding to both ribozymes by potentially populating both catalytic folds and enable a smooth crossover between the two. Small and structurally simple endonucleolytic motifs like the HH ribozyme could, through mutational walks along their neutral networks, encounter novel catalytic phenotypes, and structurally flexible, bifunctional sequences at the intersection of these networks could have acted as nodes for evolutionary diversification in an RNA world. Considering the simplicity and small size of the HH ribozyme, we propose that this self-cleaving motif could have been a precursor to other more complex endonucleolytic ribozymes. More generally, our results suggest that RNAs that possess distinct sequences, structures, and catalytic functions, can potentially share evolutionary history through mutational connections in sequence space.
Collapse
Affiliation(s)
- Saurja DasGupta
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, USA
| | - Kamila Nykiel
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637, USA
| | - Joseph A Piccirilli
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, USA
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
47
|
Abstract
AbstractRibozymes are huge complex biological catalysts composed of a combination of RNA and proteins. Nevertheless, there is a reduced number of small ribozymes, the self-cleavage ribozymes, that are formed just by RNA and, apparently, they existed in cells of primitive biological systems. Unveiling the details of these “fossils” enzymes can contribute not only to the understanding of the origins of life but also to the development of new simplified artificial enzymes. A computational study of the reactivity of the pistol ribozyme carried out by means of classical MD simulations and QM/MM hybrid calculations is herein presented to clarify its catalytic mechanism. Analysis of the geometries along independent MD simulations with different protonation states of the active site basic species reveals that only the canonical system, with no additional protonation changes, renders reactive conformations. A change in the coordination sphere of the Mg2+ ion has been observed during the simulations, which allows proposing a mechanism to explain the unique mode of action of the pistol ribozyme by comparison with other ribozymes. The present results are at the center of the debate originated from recent experimental and theoretical studies on pistol ribozyme.
Collapse
|
48
|
Mustafina K, Nomura Y, Rotrattanadumrong R, Yokobayashi Y. Circularly-Permuted Pistol Ribozyme: A Synthetic Ribozyme Scaffold for Mammalian Riboswitches. ACS Synth Biol 2021; 10:2040-2048. [PMID: 34374523 DOI: 10.1021/acssynbio.1c00213] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A small molecule-responsive self-cleaving ribozyme (aptazyme) embedded in the untranslated region of an mRNA functions as a riboswitch that allows chemical regulation of gene expression in mammalian cells. Aptazymes are engineered by fusing a self-cleaving ribozyme with an RNA aptamer that recognizes a small molecule so that the ribozyme is either activated or inhibited in the presence of the small molecule. However, the variety of aptamers, ribozymes, and aptazyme design strategies suitable for mammalian riboswitch applications is still limited. This work focuses on a new ribozyme scaffold for engineering aptazymes and riboswitches that function in mammalian cells. We investigated circularly permuted variants of the pistol ribozyme class (CPP) as a synthetic ribozyme scaffold for mammalian riboswitch applications. Through semirational design and high-throughput screening, we designed guanine and tetracycline activated riboswitches based on three distinct aptazyme architectures, resulting in riboswitches with ON/OFF ratios as high as 8.6. Our work adds CPP to the limited ribozyme scaffold toolbox for mammalian synthetic biology applications and highlights the opportunities in exploring ribozymes beyond natural motifs.
Collapse
Affiliation(s)
- Kamila Mustafina
- Nucleic Acid Chemistry and Engineering Unit Okinawa Institute of Science and Technology Graduate University Onna, Okinawa 904 0495, Japan
| | - Yoko Nomura
- Nucleic Acid Chemistry and Engineering Unit Okinawa Institute of Science and Technology Graduate University Onna, Okinawa 904 0495, Japan
| | - Rachapun Rotrattanadumrong
- Nucleic Acid Chemistry and Engineering Unit Okinawa Institute of Science and Technology Graduate University Onna, Okinawa 904 0495, Japan
| | - Yohei Yokobayashi
- Nucleic Acid Chemistry and Engineering Unit Okinawa Institute of Science and Technology Graduate University Onna, Okinawa 904 0495, Japan
| |
Collapse
|
49
|
Bendixsen DP, Pollock TB, Peri G, Hayden EJ. Experimental Resurrection of Ancestral Mammalian CPEB3 Ribozymes Reveals Deep Functional Conservation. Mol Biol Evol 2021; 38:2843-2853. [PMID: 33720319 PMCID: PMC8233481 DOI: 10.1093/molbev/msab074] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Self-cleaving ribozymes are genetic elements found in all domains of life, but their evolution remains poorly understood. A ribozyme located in the second intron of the cytoplasmic polyadenylation binding protein 3 gene (CPEB3) shows high sequence conservation in mammals, but little is known about the functional conservation of self-cleaving ribozyme activity across the mammalian tree of life or during the course of mammalian evolution. Here, we use a phylogenetic approach to design a mutational library and a deep sequencing assay to evaluate the in vitro self-cleavage activity of numerous extant and resurrected CPEB3 ribozymes that span over 100 My of mammalian evolution. We found that the predicted sequence at the divergence of placentals and marsupials is highly active, and this activity has been conserved in most lineages. A reduction in ribozyme activity appears to have occurred multiple different times throughout the mammalian tree of life. The in vitro activity data allow an evaluation of the predicted mutational pathways leading to extant ribozyme as well as the mutational landscape surrounding these ribozymes. The results demonstrate that in addition to sequence conservation, the self-cleavage activity of the CPEB3 ribozyme has persisted over millions of years of mammalian evolution.
Collapse
Affiliation(s)
- Devin P. Bendixsen
- Biomolecular Sciences Graduate Programs, Boise State University, Boise, ID, USA
| | - Tanner B. Pollock
- Department of Biological Science, Boise State University, Boise, ID, USA
| | - Gianluca Peri
- Biomolecular Sciences Graduate Programs, Boise State University, Boise, ID, USA
| | - Eric J. Hayden
- Biomolecular Sciences Graduate Programs, Boise State University, Boise, ID, USA
- Department of Biological Science, Boise State University, Boise, ID, USA
| |
Collapse
|
50
|
DasGupta S, Piccirilli JA. The Varkud Satellite Ribozyme: A Thirty-Year Journey through Biochemistry, Crystallography, and Computation. Acc Chem Res 2021; 54:2591-2602. [PMID: 33974386 DOI: 10.1021/acs.accounts.1c00052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The discovery of catalytic RNAs or ribozymes introduced a new class of enzymes to biology. In addition to their increasingly important roles in modern life, ribozymes are key players in the RNA World hypothesis, which posits that life started or flourished with RNA supporting both genetic and enzymatic functions. Therefore, investigations into the mechanisms of ribozyme function provide an exciting opportunity to examine the foundational principles of biological catalysis. Ribozymes are also attractive model systems to investigate the relationship between structure and function in RNA. Endonucleolytic ribozymes represent the largest class of catalytic RNA, of which the Varkud satellite (VS) ribozyme is structurally the most complex. The last ribozyme to be discovered by accident, the VS ribozyme had eluded structural determination for over two decades. When we solved the first crystal structures of the VS ribozyme, an extensive body of biochemical and biophysical data had accumulated over the years with which we could evaluate the functional relevance of the structure. Conversely, the structures provided a new perspective from which to reexamine the functional data and test new hypotheses. The VS ribozyme is organized in a modular fashion where independently folding domains assemble into the active conformation of the ribozyme via three-way junctions. Structures of the VS ribozyme in complex with its substrate at different stages of activation enabled us to map the structural reorganization of the substrate that must precede catalysis. In addition to defining the global architecture of the RNA, the essential interactions between the substrate and catalytic domains, and the rearrangements in the substrate prior to catalysis, these structures provided detailed snapshots of the ribozyme active site, revealing potential catalytic interactions. High resolution structures of the active site bolstered the view that the catalytic mechanism involved nucleobase-mediated general acid-base catalysis and uncovered additional catalytic interactions between the cleavage site and catalytic residues. Informed by the crystal structures of the VS ribozyme, an integrated experimental and computational approach identified the key players and essential interactions that define the active site of the ribozyme. This confluence of biochemical, structural, and computational studies revealed the catalytic mechanism of the ribozyme at unprecedented detail. Additionally, comparative analyses of the active site structures of the VS ribozyme and other nucleic acid-based endoribonucleases revealed common architectural motifs and strikingly similar catalytic strategies. In this Account, we document the progress of VS ribozyme research starting from its discovery and extending to the elucidation of its detailed catalytic mechanism 30 years later.
Collapse
Affiliation(s)
- Saurja DasGupta
- Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, United States
| | | |
Collapse
|