1
|
Juda CE, Casaday CE, Teesdale JJ, Bartholomew AK, Lin B, Carsch KM, Musgrave RA, Zheng SL, Wang X, Hoffmann CM, Wang S, Chen YS, Betley TA. Composition Determination of Heterometallic Trinuclear Clusters via Anomalous X-ray and Neutron Diffraction. J Am Chem Soc 2024; 146:30320-30331. [PMID: 39460696 DOI: 10.1021/jacs.4c10226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
Anomalous X-ray diffraction (AXD) and neutron diffraction can be used to crystallographically distinguish between metals of similar electron density. Despite the use of AXD for structural characterization in mixed metal clusters, there are no benchmark studies evaluating the accuracy of AXD toward assessing elemental occupancy in molecules with comparisons with what is determined via neutron diffraction. We collected resonant diffraction data on several homo and heterometallic clusters and refined their anomalous scattering components to determine metal site occupancies. Theoretical resonant scattering terms for Fe0, Co0, and Zn0 were compared against experimental values, revealing theoretical values are ill-suited to serve as references for occupancy determination. The cluster featuring distinct cation and anion metal compositions [CoCp2*][(tbsL)Fe3(μ3-NAr)] was used to assess the accuracy of different f' references for occupancy determination (f'theoretical ± 15-17%; f'experimental ± 10%). This methodology was applied toward calculating the occupancy of three different clusters: (tbsL)Fe2Zn(py) (6), (tbsL)Fe2Zn(μ3-NAr)(py) (7), and [CoCp*2][(tbsL)Fe2Zn(μ3-NAr)] (8). The first two clusters maintain 100% Fe/Zn site isolation, whereas 8 showed metal mixing within the sites. The large crystal size of 8 enabled collection of neutron diffraction data which was compared against the results found with AXD. The ability of AXD to replicate the metal occupancies as determined by neutron diffraction supports the AXD occupancy methodology developed herein. Furthermore, the advantages innate to AXD (e.g., smaller crystal sizes, shorter collection times, and greater availability of synchrotron resources) versus neutron diffraction further support the need for its development as a standard technique.
Collapse
Affiliation(s)
- Cristin E Juda
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Claire E Casaday
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Justin J Teesdale
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Amymarie K Bartholomew
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Benjamin Lin
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Kurtis M Carsch
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Rebecca A Musgrave
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Shao-Liang Zheng
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Xiaoping Wang
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | | | - SuYin Wang
- NSF's ChemMatCARS, The University of Chicago, Advanced Photon Source, Lemont, Illinois 60429, United States
| | - Yu Sheng Chen
- NSF's ChemMatCARS, The University of Chicago, Advanced Photon Source, Lemont, Illinois 60429, United States
| | - Theodore A Betley
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
2
|
de Crécy-Lagard V, Hutinet G, Cediel-Becerra JDD, Yuan Y, Zallot R, Chevrette MG, Ratnayake RMMN, Jaroch M, Quaiyum S, Bruner S. Biosynthesis and function of 7-deazaguanine derivatives in bacteria and phages. Microbiol Mol Biol Rev 2024; 88:e0019923. [PMID: 38421302 PMCID: PMC10966956 DOI: 10.1128/mmbr.00199-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024] Open
Abstract
SUMMARYDeazaguanine modifications play multifaceted roles in the molecular biology of DNA and tRNA, shaping diverse yet essential biological processes, including the nuanced fine-tuning of translation efficiency and the intricate modulation of codon-anticodon interactions. Beyond their roles in translation, deazaguanine modifications contribute to cellular stress resistance, self-nonself discrimination mechanisms, and host evasion defenses, directly modulating the adaptability of living organisms. Deazaguanine moieties extend beyond nucleic acid modifications, manifesting in the structural diversity of biologically active natural products. Their roles in fundamental cellular processes and their presence in biologically active natural products underscore their versatility and pivotal contributions to the intricate web of molecular interactions within living organisms. Here, we discuss the current understanding of the biosynthesis and multifaceted functions of deazaguanines, shedding light on their diverse and dynamic roles in the molecular landscape of life.
Collapse
Affiliation(s)
- Valérie de Crécy-Lagard
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
- University of Florida Genetics Institute, Gainesville, Florida, USA
| | - Geoffrey Hutinet
- Department of Biology, Haverford College, Haverford, Pennsylvania, USA
| | | | - Yifeng Yuan
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | - Rémi Zallot
- Department of Life Sciences, Manchester Metropolitan University, Manchester, United Kingdom
| | - Marc G. Chevrette
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | | | - Marshall Jaroch
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | - Samia Quaiyum
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | - Steven Bruner
- Department of Chemistry, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
3
|
Sievers K, Neumann P, Sušac L, Da Vela S, Graewert M, Trowitzsch S, Svergun D, Tampé R, Ficner R. Structural and functional insights into tRNA recognition by human tRNA guanine transglycosylase. Structure 2024; 32:316-327.e5. [PMID: 38181786 DOI: 10.1016/j.str.2023.12.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/06/2023] [Accepted: 12/08/2023] [Indexed: 01/07/2024]
Abstract
Eukaryotic tRNA guanine transglycosylase (TGT) is an RNA-modifying enzyme which catalyzes the base exchange of the genetically encoded guanine 34 of tRNAsAsp,Asn,His,Tyr for queuine, a hypermodified 7-deazaguanine derivative. Eukaryotic TGT is a heterodimer comprised of a catalytic and a non-catalytic subunit. While binding of the tRNA anticodon loop to the active site is structurally well understood, the contribution of the non-catalytic subunit to tRNA binding remained enigmatic, as no complex structure with a complete tRNA was available. Here, we report a cryo-EM structure of eukaryotic TGT in complex with a complete tRNA, revealing the crucial role of the non-catalytic subunit in tRNA binding. We decipher the functional significance of these additional tRNA-binding sites, analyze solution state conformation, flexibility, and disorder of apo TGT, and examine conformational transitions upon tRNA binding.
Collapse
Affiliation(s)
- Katharina Sievers
- Department of Molecular Structural Biology, GZMB, University of Göttingen, 37077 Göttingen, Germany
| | - Piotr Neumann
- Department of Molecular Structural Biology, GZMB, University of Göttingen, 37077 Göttingen, Germany
| | - Lukas Sušac
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, 60438 Frankfurt/Main, Germany
| | - Stefano Da Vela
- European Molecular Biology Laboratory, Hamburg Outstation, EMBL c/o DESY, 22607 Hamburg, Germany
| | - Melissa Graewert
- European Molecular Biology Laboratory, Hamburg Outstation, EMBL c/o DESY, 22607 Hamburg, Germany
| | - Simon Trowitzsch
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, 60438 Frankfurt/Main, Germany
| | - Dmitri Svergun
- European Molecular Biology Laboratory, Hamburg Outstation, EMBL c/o DESY, 22607 Hamburg, Germany
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, 60438 Frankfurt/Main, Germany
| | - Ralf Ficner
- Department of Molecular Structural Biology, GZMB, University of Göttingen, 37077 Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37075 Göttingen, Germany.
| |
Collapse
|
4
|
Kubiak X, Polsinelli I, Chavas LMG, Fyfe CD, Guillot A, Fradale L, Brewee C, Grimaldi S, Gerbaud G, Thureau A, Legrand P, Berteau O, Benjdia A. Structural and mechanistic basis for RiPP epimerization by a radical SAM enzyme. Nat Chem Biol 2024; 20:382-391. [PMID: 38158457 DOI: 10.1038/s41589-023-01493-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/30/2023] [Indexed: 01/03/2024]
Abstract
D-Amino acid residues, found in countless peptides and natural products including ribosomally synthesized and post-translationally modified peptides (RiPPs), are critical for the bioactivity of several antibiotics and toxins. Recently, radical S-adenosyl-L-methionine (SAM) enzymes have emerged as the only biocatalysts capable of installing direct and irreversible epimerization in RiPPs. However, the mechanism underpinning this biochemical process is ill-understood and the structural basis for this post-translational modification remains unknown. Here we report an atomic-resolution crystal structure of a RiPP-modifying radical SAM enzyme in complex with its substrate properly positioned in the active site. Crystallographic snapshots, size-exclusion chromatography-small-angle x-ray scattering, electron paramagnetic resonance spectroscopy and biochemical analyses reveal how epimerizations are installed in RiPPs and support an unprecedented enzyme mechanism for peptide epimerization. Collectively, our study brings unique perspectives on how radical SAM enzymes interact with RiPPs and catalyze post-translational modifications in natural products.
Collapse
Affiliation(s)
- Xavier Kubiak
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, ChemSyBio, Jouy-en-Josas, France
| | - Ivan Polsinelli
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, ChemSyBio, Jouy-en-Josas, France
| | | | - Cameron D Fyfe
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, ChemSyBio, Jouy-en-Josas, France
| | - Alain Guillot
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, ChemSyBio, Jouy-en-Josas, France
| | - Laura Fradale
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, ChemSyBio, Jouy-en-Josas, France
| | - Clémence Brewee
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, ChemSyBio, Jouy-en-Josas, France
| | | | | | - Aurélien Thureau
- Synchrotron SOLEIL, HelioBio Group, L'Orme des Merisiers, Saint-Aubin, France
| | - Pierre Legrand
- Synchrotron SOLEIL, HelioBio Group, L'Orme des Merisiers, Saint-Aubin, France
| | - Olivier Berteau
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, ChemSyBio, Jouy-en-Josas, France.
| | - Alhosna Benjdia
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, ChemSyBio, Jouy-en-Josas, France.
| |
Collapse
|
5
|
Eastman KS, Mifflin MC, Oblad PF, Roberts AG, Bandarian V. A Promiscuous rSAM Enzyme Enables Diverse Peptide Cross-linking. ACS BIO & MED CHEM AU 2023; 3:480-493. [PMID: 38144258 PMCID: PMC10739248 DOI: 10.1021/acsbiomedchemau.3c00043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 12/26/2023]
Abstract
Ribosomally produced and post-translationally modified polypeptides (RiPPs) are a diverse group of natural products that are processed by a variety of enzymes to their biologically relevant forms. PapB is a member of the radical S-adenosyl-l-methionine (rSAM) superfamily that introduces thioether cross-links between Cys and Asp residues in the PapA RiPP. We report that PapB has high tolerance for variations in the peptide substrate. Our results demonstrate that branched side chains in the thiol- and carboxylate-containing residues are processed and that lengthening of these groups to homocysteine and homoglutamate does not impair the ability of PapB to form thioether cross-links. Remarkably, the enzyme can even cross-link a peptide substrate where the native Asp carboxylate moiety is replaced with a tetrazole. We show that variations to residues embedded between the thiol- and carboxylate-containing residues are tolerated by PapB, as peptides containing both bulky (e.g., Phe) and charged (e.g., Lys) side chains in both natural L- and unnatural D-forms are efficiently cross-linked. Diastereomeric peptides bearing (2S,3R)- and (2S,3S)-methylaspartate are processed by PapB to form cyclic thioethers with markedly different rates, suggesting the enzymatic hydrogen atom abstraction event for the native Asp-containing substrate is diastereospecific. Finally, we synthesized two diastereomeric peptide substrates bearing E- and Z-configured γ,δ-dehydrohomoglutamate and show that PapB promotes addition of the deoxyadenosyl radical (dAdo•) instead of hydrogen atom abstraction. In the Z-configured γ,δ-dehydrohomoglutamate substrate, a fraction of the dAdo-adduct peptide is thioether cross-linked. In both cases, there is evidence for product inhibition of PapB, as the dAdo-adducts likely mimic the native transition state where dAdo• is poised to abstract a substrate hydrogen atom. Collectively, these findings provide critical insights into the arrangement of reacting species in the active site of the PapB, reveal unusual promiscuity, and highlight the potential of PapB as a tool in the development peptide therapeutics.
Collapse
Affiliation(s)
- Karsten
A. S. Eastman
- Department of Chemistry, University of Utah, 315 S. 1400 E, Salt Lake
City, Utah 84112, United States
| | - Marcus C. Mifflin
- Department of Chemistry, University of Utah, 315 S. 1400 E, Salt Lake
City, Utah 84112, United States
| | - Paul F. Oblad
- Department of Chemistry, University of Utah, 315 S. 1400 E, Salt Lake
City, Utah 84112, United States
| | - Andrew G. Roberts
- Department of Chemistry, University of Utah, 315 S. 1400 E, Salt Lake
City, Utah 84112, United States
| | - Vahe Bandarian
- Department of Chemistry, University of Utah, 315 S. 1400 E, Salt Lake
City, Utah 84112, United States
| |
Collapse
|
6
|
Lachowicz J, Lee J, Sagatova A, Jew K, Grove TL. The new epoch of structural insights into radical SAM enzymology. Curr Opin Struct Biol 2023; 83:102720. [PMID: 37862762 DOI: 10.1016/j.sbi.2023.102720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/22/2023]
Abstract
The Radical SAM (RS) superfamily of enzymes catalyzes a wide array of enzymatic reactions. The majority of these enzymes employ an electron from a reduced [4Fe-4S]+1 cluster to facilitate the reductive cleavage of S-adenosyl-l-methionine, thereby producing a highly reactive 5'-deoxyadenosyl radical (5'-dA⋅) and l-methionine. Typically, RS enzymes use this 5'-dA⋅ to extract a hydrogen atom from the target substrate, starting the cascade of an expansive and impressive variety of chemical transformations. While a great deal of understanding has been gleaned for 5'-dA⋅ formation, because of the chemical diversity within this superfamily, the subsequent chemical transformations have only been fully elucidated in a few examples. In addition, with the advent of new sequencing technology, the size of this family now surpasses 700,000 members, with the number of uncharacterized enzymes and domains also rapidly expanding. In this review, we outline the history of RS enzyme characterization in what we term "epochs" based on advances in technology designed for stably producing these enzymes in an active state. We propose that the state of the field has entered the fourth epoch, which we argue should commence with a protein structure initiative focused solely on RS enzymes to properly tackle this unique superfamily and uncover more novel chemical transformations that likely exist.
Collapse
Affiliation(s)
- Jake Lachowicz
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - James Lee
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Alia Sagatova
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Kristen Jew
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Tyler L Grove
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
7
|
Eastman KAS, Jochimsen AS, Bandarian V. Intermolecular electron transfer in radical SAM enzymes as a new paradigm for reductive activation. J Biol Chem 2023; 299:105058. [PMID: 37460016 PMCID: PMC10470005 DOI: 10.1016/j.jbc.2023.105058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/10/2023] [Accepted: 07/13/2023] [Indexed: 08/26/2023] Open
Abstract
Radical S-adenosyl-L-methionine (rSAM) enzymes bind one or more Fe-S clusters and catalyze transformations that produce complex and structurally diverse natural products. One of the clusters, a 4Fe-4S cluster, binds and reductively cleaves SAM to generate the 5'-deoxyadenosyl radical, which initiates the catalytic cycle by H-atom transfer from the substrate. The role(s) of the additional auxiliary Fe-S clusters (ACs) remains largely enigmatic. The rSAM enzyme PapB catalyzes the formation of thioether cross-links between the β-carbon of an Asp and a Cys thiolate found in the PapA peptide. One of the two ACs in the protein binds to the substrate thiol where, upon formation of a thioether bond, one reducing equivalent is returned to the protein. However, for the next catalytic cycle to occur, the protein must undergo an electronic state isomerization, returning the electron to the SAM-binding cluster. Using a series of iron-sulfur cluster deletion mutants, our data support a model whereby the isomerization is an obligatorily intermolecular electron transfer event that can be mediated by redox active proteins or small molecules, likely via the second AC in PapB. Surprisingly, a mixture of FMN and NADPH is sufficient to support both the reductive and the isomerization steps. These findings lead to a new paradigm involving intermolecular electron transfer steps in the activation of rSAM enzymes that require multiple iron-sulfur clusters for turnover. The implications of these results for the biological activation of rSAM enzymes are discussed.
Collapse
Affiliation(s)
| | | | - Vahe Bandarian
- University of Utah, Department of Chemistry, Salt Lake City, Utah, USA.
| |
Collapse
|
8
|
Moody JD, Hill S, Lundahl MN, Saxton AJ, Galambas A, Broderick WE, Lawrence CM, Broderick JB. Computational engineering of previously crystallized pyruvate formate-lyase activating enzyme reveals insights into SAM binding and reductive cleavage. J Biol Chem 2023; 299:104791. [PMID: 37156396 PMCID: PMC10267522 DOI: 10.1016/j.jbc.2023.104791] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/21/2023] [Accepted: 04/23/2023] [Indexed: 05/10/2023] Open
Abstract
Radical S-adenosyl-l-methionine (SAM) enzymes are ubiquitous in nature and carry out a broad variety of difficult chemical transformations initiated by hydrogen atom abstraction. Although numerous radical SAM (RS) enzymes have been structurally characterized, many prove recalcitrant to crystallization needed for atomic-level structure determination using X-ray crystallography, and even those that have been crystallized for an initial study can be difficult to recrystallize for further structural work. We present here a method for computationally engineering previously observed crystallographic contacts and employ it to obtain more reproducible crystallization of the RS enzyme pyruvate formate-lyase activating enzyme (PFL-AE). We show that the computationally engineered variant binds a typical RS [4Fe-4S]2+/+ cluster that binds SAM, with electron paramagnetic resonance properties indistinguishable from the native PFL-AE. The variant also retains the typical PFL-AE catalytic activity, as evidenced by the characteristic glycyl radical electron paramagnetic resonance signal observed upon incubation of the PFL-AE variant with reducing agent, SAM, and PFL. The PFL-AE variant was also crystallized in the [4Fe-4S]2+ state with SAM bound, providing a new high-resolution structure of the SAM complex in the absence of substrate. Finally, by incubating such a crystal in a solution of sodium dithionite, the reductive cleavage of SAM is triggered, providing us with a structure in which the SAM cleavage products 5'-deoxyadenosine and methionine are bound in the active site. We propose that the methods described herein may be useful in the structural characterization of other difficult-to-resolve proteins.
Collapse
Affiliation(s)
- James D Moody
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, USA; Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Sarah Hill
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Maike N Lundahl
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Aubrianna J Saxton
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, USA
| | - Amanda Galambas
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - William E Broderick
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - C Martin Lawrence
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Joan B Broderick
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA.
| |
Collapse
|
9
|
Yeung W, Zhou Z, Mathew L, Gravel N, Taujale R, O’Boyle B, Salcedo M, Venkat A, Lanzilotta W, Li S, Kannan N. Tree visualizations of protein sequence embedding space enable improved functional clustering of diverse protein superfamilies. Brief Bioinform 2023; 24:bbac619. [PMID: 36642409 PMCID: PMC9851311 DOI: 10.1093/bib/bbac619] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/09/2022] [Accepted: 12/17/2022] [Indexed: 01/17/2023] Open
Abstract
Protein language models, trained on millions of biologically observed sequences, generate feature-rich numerical representations of protein sequences. These representations, called sequence embeddings, can infer structure-functional properties, despite protein language models being trained on primary sequence alone. While sequence embeddings have been applied toward tasks such as structure and function prediction, applications toward alignment-free sequence classification have been hindered by the lack of studies to derive, quantify and evaluate relationships between protein sequence embeddings. Here, we develop workflows and visualization methods for the classification of protein families using sequence embedding derived from protein language models. A benchmark of manifold visualization methods reveals that Neighbor Joining (NJ) embedding trees are highly effective in capturing global structure while achieving similar performance in capturing local structure compared with popular dimensionality reduction techniques such as t-SNE and UMAP. The statistical significance of hierarchical clusters on a tree is evaluated by resampling embeddings using a variational autoencoder (VAE). We demonstrate the application of our methods in the classification of two well-studied enzyme superfamilies, phosphatases and protein kinases. Our embedding-based classifications remain consistent with and extend upon previously published sequence alignment-based classifications. We also propose a new hierarchical classification for the S-Adenosyl-L-Methionine (SAM) enzyme superfamily which has been difficult to classify using traditional alignment-based approaches. Beyond applications in sequence classification, our results further suggest NJ trees are a promising general method for visualizing high-dimensional data sets.
Collapse
Affiliation(s)
- Wayland Yeung
- Institute of Bioinformatics, University of Georgia, 30602, Georgia, USA
| | - Zhongliang Zhou
- School of Computing, University of Georgia, 30602, Georgia, USA
| | - Liju Mathew
- Department of Microbiology, University of Georgia, 30602, Georgia, USA
| | - Nathan Gravel
- Institute of Bioinformatics, University of Georgia, 30602, Georgia, USA
| | - Rahil Taujale
- Institute of Bioinformatics, University of Georgia, 30602, Georgia, USA
| | - Brady O’Boyle
- Department of Biochemistry and Molecular Biology, University of Georgia, 30602, Georgia, USA
| | - Mariah Salcedo
- Department of Biochemistry and Molecular Biology, University of Georgia, 30602, Georgia, USA
| | - Aarya Venkat
- Department of Biochemistry and Molecular Biology, University of Georgia, 30602, Georgia, USA
| | - William Lanzilotta
- Department of Biochemistry and Molecular Biology, University of Georgia, 30602, Georgia, USA
| | - Sheng Li
- School of Data Science, University of Virginia, 22903, Virginia, USA
| | - Natarajan Kannan
- Institute of Bioinformatics, University of Georgia, 30602, Georgia, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, 30602, Georgia, USA
| |
Collapse
|
10
|
Bridwell-Rabb J, Li B, Drennan CL. Cobalamin-Dependent Radical S-Adenosylmethionine Enzymes: Capitalizing on Old Motifs for New Functions. ACS BIO & MED CHEM AU 2022; 2:173-186. [PMID: 35726326 PMCID: PMC9204698 DOI: 10.1021/acsbiomedchemau.1c00051] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 01/21/2023]
Abstract
The members of the radical S-adenosylmethionine (SAM) enzyme superfamily are responsible for catalyzing a diverse set of reactions in a multitude of biosynthetic pathways. Many members of this superfamily accomplish their transformations using the catalytic power of a 5'-deoxyadenosyl radical (5'-dAdo•), but there are also enzymes within this superfamily that bind auxiliary cofactors and extend the catalytic repertoire of SAM. In particular, the cobalamin (Cbl)-dependent class synergistically uses Cbl to facilitate challenging methylation and radical rearrangement reactions. Despite identification of this class by Sofia et al. 20 years ago, the low sequence identity between members has led to difficulty in predicting function of uncharacterized members, pinpointing catalytic residues, and elucidating reaction mechanisms. Here, we capitalize on the three recent structures of Cbl-dependent radical SAM enzymes that use common cofactors to facilitate ring contraction as well as radical-based and non-radical-based methylation reactions. With these three structures as a framework, we describe how the Cbl-dependent radical SAM enzymes repurpose the traditional SAM- and Cbl-binding motifs to form an active site where both Cbl and SAM can participate in catalysis. In addition, we describe how, in some cases, the classic SAM- and Cbl-binding motifs support the diverse functionality of this enzyme class, and finally, we define new motifs that are characteristic of Cbl-dependent radical SAM enzymes.
Collapse
Affiliation(s)
- Jennifer Bridwell-Rabb
- Department
of Chemistry, University of Michigan, 930 N University Avenue, Ann Arbor, Michigan 48109, United States,
| | - Bin Li
- Department
of Chemistry, University of Michigan, 930 N University Avenue, Ann Arbor, Michigan 48109, United States
| | - Catherine L. Drennan
- Department
of Chemistry, Massachusetts Institute of
Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States,Department
of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States,Howard
Hughes Medical Institute, Massachusetts
Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
11
|
Bandarian V. Journey on the Radical SAM Road as an Accidental Pilgrim. ACS BIO & MED CHEM AU 2022; 2:187-195. [PMID: 35726327 PMCID: PMC9204691 DOI: 10.1021/acsbiomedchemau.1c00059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/13/2022] [Accepted: 01/19/2022] [Indexed: 11/30/2022]
Abstract
![]()
Radical S-adenosyl-l-methionine (SAM)
enzymes catalyze a diverse group of complex transformations in all
aspects of cellular physiology. These metalloenzymes bind SAM to a
4Fe–4S cluster and reductively cleave SAM to generate a 5′-deoxyadenosyl
radical, which generally initiates the catalytic cycle by catalyzing
a H atom to activate the substrate for subsequent chemistry. This
perspective will focus on our discovery of several members of this
superfamily of enzymes, with a particular emphasis on the current
state of the field, challenges, and outlook.
Collapse
Affiliation(s)
- Vahe Bandarian
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, Utah 84112, United States
| |
Collapse
|
12
|
Jeyachandran VR, Boal AK. Structural insights into auxiliary cofactor usage by radical S-adenosylmethionine enzymes. Curr Opin Chem Biol 2022; 68:102153. [PMID: 35512465 DOI: 10.1016/j.cbpa.2022.102153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/22/2022] [Accepted: 03/28/2022] [Indexed: 11/03/2022]
Abstract
Radical S-adenosylmethionine (SAM) enzymes use a common catalytic core for diverse transformations. While all radical SAM enzymes bind a Fe4S4 cluster via a characteristic tri-cysteine motif, many bind additional metal cofactors. Recently reported structures of radical SAM enzymes that use methylcobalamin or additional iron-sulfur clusters as cosubstrates show that these auxiliary units are anchored by N- and C-terminal domains that vary significantly in size and topology. Despite this architectural diversity, all use a common surface for auxiliary cofactor docking. In the sulfur insertion and metallocofactor assembly systems evaluated here, interaction with iron-sulfur cluster assembly proteins or downstream scaffold proteins is an important component of catalysis. Structures of these complexes represent important new frontiers in structural analysis of radical SAM enzymes.
Collapse
Affiliation(s)
- Vivian Robert Jeyachandran
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Amie K Boal
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA; Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
13
|
Crystallographic snapshots of a B 12-dependent radical SAM methyltransferase. Nature 2022; 602:336-342. [PMID: 35110733 PMCID: PMC8828468 DOI: 10.1038/s41586-021-04355-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 12/15/2021] [Indexed: 01/01/2023]
Abstract
By catalysing the microbial formation of methane, methyl-coenzyme M reductase has a central role in the global levels of this greenhouse gas1,2. The activity of methyl-coenzyme M reductase is profoundly affected by several unique post-translational modifications3–6, such as a unique C-methylation reaction catalysed by methanogenesis marker protein 10 (Mmp10), a radical S-adenosyl-l-methionine (SAM) enzyme7,8. Here we report the spectroscopic investigation and atomic resolution structure of Mmp10 from Methanosarcina acetivorans, a unique B12 (cobalamin)-dependent radical SAM enzyme9. The structure of Mmp10 reveals a unique enzyme architecture with four metallic centres and critical structural features involved in the control of catalysis. In addition, the structure of the enzyme–substrate complex offers a glimpse into a B12-dependent radical SAM enzyme in a precatalytic state. By combining electron paramagnetic resonance spectroscopy, structural biology and biochemistry, our study illuminates the mechanism by which the emerging superfamily of B12-dependent radical SAM enzymes catalyse chemically challenging alkylation reactions and identifies distinctive active site rearrangements to provide a structural rationale for the dual use of the SAM cofactor for radical and nucleophilic chemistry. Structural and spectroscopic studies show how a B12-dependent radical SAM enzyme catalyses unique and challenging alkylation chemistry, including protein post-translational modification required for methane biosynthesis.
Collapse
|
14
|
Zhou S, Wei WJ, Liao RZ. QM/MM Study of the Mechanism of the Noncanonical S-Cγ Bond Scission in S-Adenosylmethionine Catalyzed by the CmnDph2 Radical Enzyme. Top Catal 2022. [DOI: 10.1007/s11244-021-01420-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Feng JQ, Wang BJ. Super-exchange and exchange-enhanced reactivity in Fe4S4-mediated activation of SAM by radical SAM enzymes. CHINESE J CHEM PHYS 2021. [DOI: 10.1063/1674-0068/cjcp2108134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jian-qiang Feng
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Bin-ju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
16
|
Feng J, Shaik S, Wang B. Spin‐Regulated Electron Transfer and Exchange‐Enhanced Reactivity in Fe
4
S
4
‐Mediated Redox Reaction of the Dph2 Enzyme During the Biosynthesis of Diphthamide. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jianqiang Feng
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Sason Shaik
- Institute of Chemistry The Hebrew University of Jerusalem Jerusalem 9190401 Israel
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| |
Collapse
|
17
|
Feng J, Shaik S, Wang B. Spin-Regulated Electron Transfer and Exchange-Enhanced Reactivity in Fe 4 S 4 -Mediated Redox Reaction of the Dph2 Enzyme During the Biosynthesis of Diphthamide. Angew Chem Int Ed Engl 2021; 60:20430-20436. [PMID: 34302311 DOI: 10.1002/anie.202107008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Indexed: 11/06/2022]
Abstract
The [4Fe-4S]-dependent radical S-adenosylmethionine (SAM) proteins is one of large families of redox enzymes that are able to carry a panoply of challenging transformations. Despite the extensive studies of structure-function relationships of radical SAM (RS) enzymes, the electronic state-dependent reactivity of the [4Fe-4S] cluster in these enzymes remains elusive. Using combined MD simulations and QM/MM calculations, we deciphered the electronic state-dependent reactivity of the [4Fe-4S] cluster in Dph2, a key enzyme involved in the biosynthesis of diphthamide. Our calculations show that the reductive cleavage of the S-C(γ) bond is highly dependent on the electronic structure of [4Fe-4S]. Interestingly, the six electronic states can be classified into a low-energy and a high-energy groups, which are correlated with the net spin of Fe4 atom ligated to SAM. Due to the driving force of Fe4-C(γ) bonding, the net spin on the Fe4 moiety dictate the shift of the opposite spin electron from the Fe1-Fe2-Fe3 block to SAM. Such spin-regulated electron transfer results in the exchange-enhanced reactivity in the lower-energy group compared with those in the higher-energy group. This reactivity principle provides fundamental mechanistic insights into reactivities of [4Fe-4S] cluster in RS enzymes.
Collapse
Affiliation(s)
- Jianqiang Feng
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Sason Shaik
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
18
|
Sievers K, Welp L, Urlaub H, Ficner R. Structural and functional insights into human tRNA guanine transgylcosylase. RNA Biol 2021; 18:382-396. [PMID: 34241577 DOI: 10.1080/15476286.2021.1950980] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The eukaryotic tRNA guanine transglycosylase (TGT) is an RNA modifying enzyme incorporating queuine, a hypermodified guanine derivative, into the tRNAsAsp,Asn,His,Tyr. While both subunits of the functional heterodimer have been crystallized individually, much of our understanding of its dimer interface or recognition of a target RNA has been inferred from its more thoroughly studied bacterial homolog. However, since bacterial TGT, by incorporating queuine precursor preQ1, deviates not only in function, but as a homodimer, also in its subunit architecture, any inferences regarding the subunit association of the eukaryotic heterodimer or the significance of its unique catalytically inactive subunit are based on unstable footing. Here, we report the crystal structure of human TGT in its heterodimeric form and in complex with a 25-mer stem loop RNA, enabling detailed analysis of its dimer interface and interaction with a minimal substrate RNA. Based on a model of bound tRNA, we addressed a potential functional role of the catalytically inactive subunit QTRT2 by UV-crosslinking and mutagenesis experiments, identifying the two-stranded βEβF-sheet of the QTRT2 subunit as an additional RNA-binding motif.
Collapse
Affiliation(s)
- Katharina Sievers
- Department of Molecular Structural Biology, University of Göttingen, Göttingen, Germany
| | - Luisa Welp
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Bioanalytics Group, Institute for Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Ralf Ficner
- Department of Molecular Structural Biology, University of Göttingen, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells" (Mbexc), University of Göttingen, Göttingen, Germany
| |
Collapse
|
19
|
Lachowicz JC, Gizzi AS, Almo SC, Grove TL. Structural Insight into the Substrate Scope of Viperin and Viperin-like Enzymes from Three Domains of Life. Biochemistry 2021; 60:2116-2129. [PMID: 34156827 PMCID: PMC8672371 DOI: 10.1021/acs.biochem.0c00958] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Viperin is a member of the radical S-adenosylmethionine superfamily and has been shown to restrict the replication of a wide range of RNA and DNA viruses. We recently demonstrated that human viperin (HsVip) catalyzes the conversion of CTP to 3'-deoxy-3',4'-didehydro-CTP (ddhCTP or ddh-synthase), which acts as a chain terminator for virally encoded RNA-dependent RNA polymerases from several flaviviruses. Viperin homologues also exist in non-chordate eukaryotes (e.g., Cnidaria and Mollusca), numerous fungi, and members of the archaeal and eubacterial domains. Recently, it was reported that non-chordate and non-eukaryotic viperin-like homologues are also ddh-synthases and generate a diverse range of ddhNTPs, including the newly discovered ddhUTP and ddhGTP. Herein, we expand on the catalytic mechanism of mammalian, fungal, bacterial, and archaeal viperin-like enzymes with a combination of X-ray crystallography and enzymology. We demonstrate that, like mammalian viperins, these recently discovered viperin-like enzymes operate through the same mechanism and can be classified as ddh-synthases. Furthermore, we define the unique chemical and physical determinants supporting ddh-synthase activity and nucleotide selectivity, including the crystallographic characterization of a fungal viperin-like enzyme that utilizes UTP as a substrate and a cnidaria viperin-like enzyme that utilizes CTP as a substrate. Together, these results support the evolutionary conservation of the ddh-synthase activity and its broad phylogenetic role in innate antiviral immunity.
Collapse
Affiliation(s)
- Jake C Lachowicz
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Anthony S Gizzi
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Steven C Almo
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
- Department of Biophysics, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Tyler L Grove
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| |
Collapse
|
20
|
Abstract
![]()
TYW1 is a radical S-adenosyl-l-methionine
(SAM) enzyme that catalyzes the condensation of pyruvate and N-methylguanosine-containing tRNAPhe, forming
4-demethylwyosine-containing tRNAPhe. Homologues of TYW1
are found in both archaea and eukarya; archaeal homologues consist
of a single domain, while eukaryal homologues contain a flavin binding
domain in addition to the radical SAM domain shared with archaeal
homologues. In this study, TYW1 from Saccharomyces cerevisiae (ScTYW1) was heterologously expressed in Escherichia coli and purified to homogeneity. ScTYW1 is purified with 0.54 ± 0.07 and 4.2 ± 1.9 equiv of
flavin mononucleotide (FMN) and iron, respectively, per mole of protein,
suggesting the protein is ∼50% replete with Fe–S clusters
and FMN. While both NADPH and NADH are sufficient for activity, significantly
more product is observed when used in combination with flavin nucleotides. ScTYW1 is the first example of a radical SAM flavoenzyme
that is active with NAD(P)H alone.
Collapse
Affiliation(s)
- Anthony P Young
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Vahe Bandarian
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
21
|
Ji S, Pan Y, Zhu L, Tan J, Tang S, Yang Q, Zhang Z, Lou D, Wang B. A novel 7α-hydroxysteroid dehydrogenase: Magnesium ion significantly enhances its activity and thermostability. Int J Biol Macromol 2021; 177:111-118. [PMID: 33592267 DOI: 10.1016/j.ijbiomac.2021.02.082] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 10/22/2022]
Abstract
7α-Hydroxysteroid dehydrogenase (7α-HSDH) plays an important role in the efficient biotransformation of taurochenodeoxycholic acid (TCDCA) to tauroursodeoxycholic acid (TUDCA). In this paper, a novel NADP(H)-dependent 7α-HSDH (named J-1-1) was discovered, heterologously expressed in Escherichia coli and biochemically characterized. J-1-1 exhibited high enzymatic activities. The specific activities of J-1-1 toward TCDCA, glycochenodeoxycholic acid (GCDCA) and ethyl benzoylacetate (EBA) were 188.3 ± 0.2, 217.6 ± 0.4, and 20.0 ± 0.2 U·mg-1, respectively, in 50 mM Glycine-NaOH, pH 10.5. Simultaneously, J-1-1 showed high thermostability; 73% of its activity maintained after heat treatment at 40 °C for 100 h. Particularly noteworthy is that magnesium ion could stabilize the structure of J-1-1, resulting in the enhancement of its enzymatic activity and thermostability. The enzymatic activity of J-1-1 increased 40-fold in the presence of 50 mM Mg2+, and T0.5 increased by approximately 6 °C. Furthermore, after heat treatment at 40 °C for 20 min, the control group only retained 52% of the residual enzyme activity, while the residual enzyme activity of the experimental group was still 77% of the J-1-1 enzyme activity with Mg2+ and without heat treatment. These properties of 7α-HSDH would be expected to contribute to more extensive applications in the biotransformation of related substrates.
Collapse
Affiliation(s)
- Shunlin Ji
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, PR China
| | - Yinping Pan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, PR China
| | - Liancai Zhu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, PR China; Modern Life Science Experiment Teaching Center, College of Bioengineering, Chongqing University, Chongqing 400030, PR China.
| | - Jun Tan
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological & Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China
| | - Shijin Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, PR China
| | - Qiong Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, PR China; Chongqing Key Laboratory of Inorganic Special Functional Materials, Collaborative Innovation Center for Green Development in Wuling Mountain Areas, Yangtze Normal University, Chongqing 408100, PR China
| | - Zhi Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, PR China
| | - Deshuai Lou
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological & Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, PR China.
| |
Collapse
|
22
|
Pagnier A, Yang H, Jodts RJ, James CD, Shepard EM, Impano S, Broderick WE, Hoffman BM, Broderick JB. Radical SAM Enzyme Spore Photoproduct Lyase: Properties of the Ω Organometallic Intermediate and Identification of Stable Protein Radicals Formed during Substrate-Free Turnover. J Am Chem Soc 2020; 142:18652-18660. [PMID: 32966073 DOI: 10.1021/jacs.0c08585] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Spore photoproduct lyase is a radical S-adenosyl-l-methionine (SAM) enzyme with the unusual property that addition of SAM to the [4Fe-4S]1+ enzyme absent substrate results in rapid electron transfer to SAM with accompanying homolytic S-C5' bond cleavage. Herein, we demonstrate that this unusual reaction forms the organometallic intermediate Ω in which the unique Fe atom of the [4Fe-4S] cluster is bound to C5' of the 5'-deoxyadenosyl radical (5'-dAdo•). During catalysis, homolytic cleavage of the Fe-C5' bond liberates 5'-dAdo• for reaction with substrate, but here, we use Ω formation without substrate to determine the thermal stability of Ω. The reaction of Geobacillus thermodenitrificans SPL (GtSPL) with SAM forms Ω within ∼15 ms after mixing. By monitoring the decay of Ω through rapid freeze-quench trapping at progressively longer times we find an ambient temperature decay time of the Ω Fe-C5' bond of τ ≈ 5-6 s, likely shortened by enzymatic activation as is the case with the Co-C5' bond of B12. We have further used hand quenching at times up to 10 min, and thus with multiple SAM turnovers, to probe the fate of the 5'-dAdo• radical liberated by Ω. In the absence of substrate, Ω undergoes low-probability conversion to a stable protein radical. The WT enzyme with valine at residue 172 accumulates a Val•; mutation of Val172 to isoleucine or cysteine results in accumulation of an Ile• or Cys• radical, respectively. The structures of the radical in WT, V172I, and V172C variants have been established by detailed EPR/DFT analyses.
Collapse
Affiliation(s)
- Adrien Pagnier
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, Montana. 59717, United States
| | - Hao Yang
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Richard J Jodts
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Christopher D James
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Eric M Shepard
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, Montana. 59717, United States
| | - Stella Impano
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, Montana. 59717, United States
| | - William E Broderick
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, Montana. 59717, United States
| | - Brian M Hoffman
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Joan B Broderick
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, Montana. 59717, United States
| |
Collapse
|
23
|
|
24
|
Adenosylation reactions catalyzed by the radical S-adenosylmethionine superfamily enzymes. Curr Opin Chem Biol 2020; 55:86-95. [DOI: 10.1016/j.cbpa.2020.01.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/22/2019] [Accepted: 01/15/2020] [Indexed: 01/23/2023]
|
25
|
Archaeosine Modification of Archaeal tRNA: Role in Structural Stabilization. J Bacteriol 2020; 202:JB.00748-19. [PMID: 32041795 DOI: 10.1128/jb.00748-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 01/29/2020] [Indexed: 12/20/2022] Open
Abstract
Archaeosine (G+) is a structurally complex modified nucleoside found quasi-universally in the tRNA of Archaea and located at position 15 in the dihydrouridine loop, a site not modified in any tRNA outside the Archaea G+ is characterized by an unusual 7-deazaguanosine core structure with a formamidine group at the 7-position. The location of G+ at position 15, coupled with its novel molecular structure, led to a hypothesis that G+ stabilizes tRNA tertiary structure through several distinct mechanisms. To test whether G+ contributes to tRNA stability and define the biological role of G+, we investigated the consequences of introducing targeted mutations that disrupt the biosynthesis of G+ into the genome of the hyperthermophilic archaeon Thermococcus kodakarensis and the mesophilic archaeon Methanosarcina mazei, resulting in modification of the tRNA with the G+ precursor 7-cyano-7-deazaguansine (preQ0) (deletion of arcS) or no modification at position 15 (deletion of tgtA). Assays of tRNA stability from in vitro-prepared and enzymatically modified tRNA transcripts, as well as tRNA isolated from the T. kodakarensis mutant strains, demonstrate that G+ at position 15 imparts stability to tRNAs that varies depending on the overall modification state of the tRNA and the concentration of magnesium chloride and that when absent results in profound deficiencies in the thermophily of T. kodakarensis IMPORTANCE Archaeosine is ubiquitous in archaeal tRNA, where it is located at position 15. Based on its molecular structure, it was proposed to stabilize tRNA, and we show that loss of archaeosine in Thermococcus kodakarensis results in a strong temperature-sensitive phenotype, while there is no detectable phenotype when it is lost in Methanosarcina mazei Measurements of tRNA stability show that archaeosine stabilizes the tRNA structure but that this effect is much greater when it is present in otherwise unmodified tRNA transcripts than in the context of fully modified tRNA, suggesting that it may be especially important during the early stages of tRNA processing and maturation in thermophiles. Our results demonstrate how small changes in the stability of structural RNAs can be manifested in significant biological-fitness changes.
Collapse
|
26
|
Suess CJ, Martins FL, Croft AK, Jäger CM. Radical Stabilization Energies for Enzyme Engineering: Tackling the Substrate Scope of the Radical Enzyme QueE. J Chem Inf Model 2019; 59:5111-5125. [PMID: 31730347 DOI: 10.1021/acs.jcim.9b00017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Experimental assessment of catalytic reaction mechanisms and profiles of radical enzymes can be severely challenging due to the reactive nature of the intermediates and sensitivity of cofactors such as iron-sulfur clusters. Here, we present an enzyme-directed computational methodology for the assessment of thermodynamic reaction profiles and screening for radical stabilization energies (RSEs) for the assessment of catalytic turnovers in radical enzymes. We have applied this new screening method to the radical S-adenosylmethione enzyme 7-carboxy-7-deazaguanine synthase (QueE), following a detailed molecular dynamics (MD) analysis that clarifies the role of both specific enzyme residues and bound Mg2+, Ca2+, or Na+. The MD simulations provided the basis for a statistical approach to sample different conformational outcomes. RSE calculation at the M06-2X/6-31+G* level of theory provided the most computationally cost-effective assessment of enzyme-based energies, facilitated by an initial triage using semiempirical methods. The impact of intermolecular interactions on RSE was clearly established, and application to the assessment of potential alternative substrates (focusing on radical clock type rearrangements) proposes a selection of carbon-substituted analogues that would react to afford cyclopropylcarbinyl radical intermediates as candidates for catalytic turnover by QueE.
Collapse
Affiliation(s)
- Christian J Suess
- Department of Chemical and Environmental Engineering , The University of Nottingham , University Park, Nottingham NG7 2RD , United Kingdom
| | - Floriane L Martins
- Department of Chemical and Environmental Engineering , The University of Nottingham , University Park, Nottingham NG7 2RD , United Kingdom
| | - Anna K Croft
- Department of Chemical and Environmental Engineering , The University of Nottingham , University Park, Nottingham NG7 2RD , United Kingdom
| | - Christof M Jäger
- Department of Chemical and Environmental Engineering , The University of Nottingham , University Park, Nottingham NG7 2RD , United Kingdom
| |
Collapse
|
27
|
Miller SA, Bandarian V. Analysis of Electrochemical Properties of S-Adenosyl-l-methionine and Implications for Its Role in Radical SAM Enzymes. J Am Chem Soc 2019; 141:11019-11026. [PMID: 31283208 PMCID: PMC7059804 DOI: 10.1021/jacs.9b00933] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
![]()
S-Adenosyl-l-methionine (SAM) is the
central cofactor in the radical SAM enzyme superfamily, responsible
for a vast number of transformations in primary and secondary metabolism.
In nearly all of these reactions, the reductive cleavage of SAM is
proposed to produce a reactive species, 5′-deoxyadenosyl radical,
which initiates catalysis. While the mechanistic details in many cases
are well-understood, the reductive cleavage of SAM remains elusive.
In this manuscript, we have measured the solution peak potential of
SAM to be ∼−1.4 V (v SHE) and show that under controlled
potential conditions, it undergoes irreversible fragmentation to the
5′-deoxyadenosyl radical. While the radical intermediate is
not directly observed, its presence as an initial intermediate is
inferred by the formation of 8,5′-cycloadenosine and by H atom
incorporation into 5′-deoxyadenosine from solvent exchangeable
site. Similarly, 2-aminobutyrate is also observed under electrolysis
conditions. The implications of these results in the context of the
reductive cleavage of SAM by radical SAM enzymes are discussed.
Collapse
Affiliation(s)
- Sven A Miller
- Department of Chemistry , University of Utah , 315 South 1400 East , Salt Lake City , Utah 84112 , United States
| | - Vahe Bandarian
- Department of Chemistry , University of Utah , 315 South 1400 East , Salt Lake City , Utah 84112 , United States
| |
Collapse
|
28
|
Bridwell-Rabb J, Grell TAJ, Drennan CL. A Rich Man, Poor Man Story of S-Adenosylmethionine and Cobalamin Revisited. Annu Rev Biochem 2019; 87:555-584. [PMID: 29925255 DOI: 10.1146/annurev-biochem-062917-012500] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
S-adenosylmethionine (AdoMet) has been referred to as both "a poor man's adenosylcobalamin (AdoCbl)" and "a rich man's AdoCbl," but today, with the ever-increasing number of functions attributed to each cofactor, both appear equally rich and surprising. The recent characterization of an organometallic species in an AdoMet radical enzyme suggests that the line that differentiates them in nature will be constantly challenged. Here, we compare and contrast AdoMet and cobalamin (Cbl) and consider why Cbl-dependent AdoMet radical enzymes require two cofactors that are so similar in their reactivity. We further carry out structural comparisons employing the recently determined crystal structure of oxetanocin-A biosynthetic enzyme OxsB, the first three-dimensional structural data on a Cbl-dependent AdoMet radical enzyme. We find that the structural motifs responsible for housing the AdoMet radical machinery are largely conserved, whereas the motifs responsible for binding additional cofactors are much more varied.
Collapse
Affiliation(s)
- Jennifer Bridwell-Rabb
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA; , .,Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.,Present address: Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Tsehai A J Grell
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Catherine L Drennan
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA; , .,Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
29
|
Ruszczycky MW, Zhong A, Liu HW. Following the electrons: peculiarities in the catalytic cycles of radical SAM enzymes. Nat Prod Rep 2019; 35:615-621. [PMID: 29485151 DOI: 10.1039/c7np00058h] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Radical SAM enzymes use S-adenosyl-l-methionine as an oxidant to initiate radical-mediated transformations that would otherwise not be possible with Lewis acid/base chemistry alone. These reactions are either redox neutral or oxidative leading to certain expectations regarding the role of SAM as either a reusable cofactor or the ultimate electron acceptor during each turnover. However, these expectations are frequently not realized resulting in fundamental questions regarding the redox handling and movement of electrons associated with these biological catalysts. Herein we provide a focused perspective on several of these questions and associated hypotheses with an emphasis on recently discovered radical SAM enzymes.
Collapse
Affiliation(s)
- Mark W Ruszczycky
- Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, USA.
| | | | | |
Collapse
|
30
|
Abstract
Covering: up to the end of 2017 The human body is composed of an equal number of human and microbial cells. While the microbial community inhabiting the human gastrointestinal tract plays an essential role in host health, these organisms have also been connected to various diseases. Yet, the gut microbial functions that modulate host biology are not well established. In this review, we describe metabolic functions of the human gut microbiota that involve metalloenzymes. These activities enable gut microbial colonization, mediate interactions with the host, and impact human health and disease. We highlight cases in which enzyme characterization has advanced our understanding of the gut microbiota and examples that illustrate the diverse ways in which metalloenzymes facilitate both essential and unique functions of this community. Finally, we analyze Human Microbiome Project sequencing datasets to assess the distribution of a prominent family of metalloenzymes in human-associated microbial communities, guiding future enzyme characterization efforts.
Collapse
|
31
|
Grell TA, Bell BN, Nguyen C, Dowling DP, Bruender NA, Bandarian V, Drennan CL. Crystal structure of AdoMet radical enzyme 7-carboxy-7-deazaguanine synthase from Escherichia coli suggests how modifications near [4Fe-4S] cluster engender flavodoxin specificity. Protein Sci 2019; 28:202-215. [PMID: 30341796 PMCID: PMC6295903 DOI: 10.1002/pro.3529] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/12/2018] [Accepted: 10/15/2018] [Indexed: 11/10/2022]
Abstract
7-Carboxy-7-deazaguanine synthase, QueE, catalyzes the radical mediated ring contraction of 6-carboxy-5,6,7,8-tetrahydropterin, forming the characteristic pyrrolopyrimidine core of all 7-deazaguanine natural products. QueE is a member of the S-adenosyl-L-methionine (AdoMet) radical enzyme superfamily, which harnesses the reactivity of radical intermediates to perform challenging chemical reactions. Members of the AdoMet radical enzyme superfamily utilize a canonical binding motif, a CX3 CXϕC motif, to bind a [4Fe-4S] cluster, and a partial (β/α)6 TIM barrel fold for the arrangement of AdoMet and substrates for catalysis. Although variations to both the cluster-binding motif and the core fold have been observed, visualization of drastic variations in the structure of QueE from Burkholderia multivorans called into question whether a re-haul of the defining characteristics of this superfamily was in order. Surprisingly, the structure of QueE from Bacillus subtilis revealed an architecture more reminiscent of the classical AdoMet radical enzyme. With these two QueE structures revealing varying degrees of alterations to the classical AdoMet fold, a new question arises: what is the purpose of these alterations? Here, we present the structure of a third QueE enzyme from Escherichia coli, which establishes the middle range of the spectrum of variation observed in these homologs. With these three homologs, we compare and contrast the structural architecture and make hypotheses about the role of these structural variations in binding and recognizing the biological reductant, flavodoxin. Broader impact statement: We know more about how enzymes are tailored for catalytic activity than about how enzymes are tailored to react with a physiological reductant. Here, we consider structural differences between three 7-carboxy-7-deazaguanine synthases and how these differences may be related to the interaction between these enzymes and their biological reductant, flavodoxin.
Collapse
Affiliation(s)
- Tsehai A.J. Grell
- Department of ChemistryMassachusetts Institute of TechnologyCambridgeMassachusetts02139
| | - Benjamin N. Bell
- Department of BiologyMassachusetts Institute of TechnologyCambridgeMassachusetts02139
| | - Chi Nguyen
- Department of ChemistryMassachusetts Institute of TechnologyCambridgeMassachusetts02139
- Howard Hughes Medical Institute, Massachusetts Institute of TechnologyCambridgeMassachusetts02139
- Department of BiologyMassachusetts Institute of TechnologyCambridgeMassachusetts02139
| | - Daniel P. Dowling
- Howard Hughes Medical Institute, Massachusetts Institute of TechnologyCambridgeMassachusetts02139
- Department of BiologyMassachusetts Institute of TechnologyCambridgeMassachusetts02139
| | | | - Vahe Bandarian
- Department of ChemistryUniversity of Utah, Salt Lake CityUtah84112
| | - Catherine L. Drennan
- Department of ChemistryMassachusetts Institute of TechnologyCambridgeMassachusetts02139
- Howard Hughes Medical Institute, Massachusetts Institute of TechnologyCambridgeMassachusetts02139
- Department of BiologyMassachusetts Institute of TechnologyCambridgeMassachusetts02139
| |
Collapse
|
32
|
Liu Y, Gong R, Liu X, Zhang P, Zhang Q, Cai YS, Deng Z, Winkler M, Wu J, Chen W. Discovery and characterization of the tubercidin biosynthetic pathway from Streptomyces tubercidicus NBRC 13090. Microb Cell Fact 2018; 17:131. [PMID: 30153835 PMCID: PMC6112128 DOI: 10.1186/s12934-018-0978-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 08/14/2018] [Indexed: 11/30/2022] Open
Abstract
Background Tubercidin (TBN), an adenosine analog with potent antimycobacteria and antitumor bioactivities, highlights an intriguing structure, in which a 7-deazapurine core is linked to the ribose moiety by an N-glycosidic bond. However, the molecular logic underlying the biosynthesis of this antibiotic has remained poorly understood. Results Here, we report the discovery and characterization of the TBN biosynthetic pathway from Streptomyces tubercidicus NBRC 13090 via reconstitution of its production in a heterologous host. We demonstrated that TubE specifically utilizes phosphoribosylpyrophosphate and 7-carboxy-7-deazaguanine for the precise construction of the deazapurine nucleoside scaffold. Moreover, we provided biochemical evidence that TubD functions as an NADPH-dependent reductase, catalyzing irreversible reductive deamination. Finally, we verified that TubG acts as a Nudix hydrolase, preferring Co2+ for the maintenance of maximal activity, and is responsible for the tailoring hydrolysis step leading to TBN. Conclusions These findings lay a foundation for the rational generation of TBN analogs through synthetic biology strategy, and also open the way for the target-directed search of TBN-related antibiotics. Electronic supplementary material The online version of this article (10.1186/s12934-018-0978-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yan Liu
- State Key Laboratory of Virology, and College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Rong Gong
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Xiaoqin Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Peichao Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Qi Zhang
- State Key Laboratory of Virology, and College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - You-Sheng Cai
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Margit Winkler
- Austrian Centre of Industrial Biotechnology, Petersgasse 14, 8010, Graz, Austria
| | - Jianguo Wu
- State Key Laboratory of Virology, and College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| | - Wenqing Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
33
|
Crystal Structure of the Human tRNA Guanine Transglycosylase Catalytic Subunit QTRT1. Biomolecules 2018; 8:biom8030081. [PMID: 30149595 PMCID: PMC6165067 DOI: 10.3390/biom8030081] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/20/2018] [Accepted: 08/20/2018] [Indexed: 12/23/2022] Open
Abstract
RNA modifications have been implicated in diverse and important roles in all kingdoms of life with over 100 of them present on tRNAs. A prominent modification at the wobble base of four tRNAs is the 7-deaza-guanine derivative queuine which substitutes the guanine at position 34. This exchange is catalyzed by members of the enzyme class of tRNA guanine transglycosylases (TGTs). These enzymes incorporate guanine substituents into tRNAAsp, tRNAAsn tRNAHis, and tRNATyr in all kingdoms of life. In contrast to the homodimeric bacterial TGT, the active eukaryotic TGT is a heterodimer in solution, comprised of a catalytic QTRT1 subunit and a noncatalytic QTRT2 subunit. Bacterial TGT enzymes, that incorporate a queuine precursor, have been identified or proposed as virulence factors for infections by pathogens in humans and therefore are valuable targets for drug design. To date no structure of a eukaryotic catalytic subunit is reported, and differences to its bacterial counterpart have to be deducted from sequence analysis and models. Here we report the first crystal structure of a eukaryotic QTRT1 subunit and compare it to known structures of the bacterial TGT and murine QTRT2. Furthermore, we were able to determine the crystal structure of QTRT1 in complex with the queuine substrate.
Collapse
|
34
|
Lewis JK, Bruender NA, Bandarian V. QueE: A Radical SAM Enzyme Involved in the Biosynthesis of 7-Deazapurine Containing Natural Products. Methods Enzymol 2018; 606:95-118. [PMID: 30097106 PMCID: PMC6484087 DOI: 10.1016/bs.mie.2018.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
7-Carboxy-7-deazaguanine (CDG) is a common intermediate in the biosynthesis of 7-deazapurine-containing natural products. The biosynthesis of CDG from GTP requires three enzymes: GTP cyclohydrolase I, 6-carboxy-5,6,7,8-tetrahydropterin (CPH4) synthase, and CDG synthase (QueE). QueE is a member of the radical S-adenosyl-l-methionine (SAM) superfamily and catalyzes the SAM-dependent radical-mediated ring contraction of CPH4 to generate CDG. This chapter focuses on methods to reconstitute the activity of QueE in vitro.
Collapse
Affiliation(s)
- Julia K Lewis
- Department of Chemistry, University of Utah, Salt Lake City, UT, United States
| | - Nathan A Bruender
- Department of Chemistry and Biochemistry, St. Cloud State University, St. Cloud, MN, United States
| | - Vahe Bandarian
- Department of Chemistry, University of Utah, Salt Lake City, UT, United States.
| |
Collapse
|
35
|
Grell TJ, Young AP, Drennan CL, Bandarian V. Biochemical and Structural Characterization of a Schiff Base in the Radical-Mediated Biosynthesis of 4-Demethylwyosine by TYW1. J Am Chem Soc 2018; 140:6842-6852. [PMID: 29792696 PMCID: PMC5994729 DOI: 10.1021/jacs.8b01493] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Indexed: 12/03/2022]
Abstract
TYW1 is a radical S-adenosyl-l-methionine (SAM) enzyme that catalyzes the condensation of pyruvate and N-methylguanosine to form the posttranscriptional modification, 4-demethylwyosine, in situ on transfer RNA (tRNA). Two mechanisms have been proposed for this transformation, with one of the possible mechanisms invoking a Schiff base intermediate formed between a conserved lysine residue and pyruvate. Utilizing a combination of mass spectrometry and X-ray crystallography, we have obtained evidence to support the formation of a Schiff base lysine adduct in TYW1. When 13C labeled pyruvate is used, the mass shift of the adduct matches that of the labeled pyruvate, indicating that pyruvate is the source of the adduct. Furthermore, a crystal structure of TYW1 provides visualization of the Schiff base lysine-pyruvate adduct, which is positioned directly adjacent to the auxiliary [4Fe-4S] cluster. The adduct coordinates the unique iron of the auxiliary cluster through the lysine nitrogen and a carboxylate oxygen, reminiscent of how the radical SAM [4Fe-4S] cluster is coordinated by SAM. The structure provides insight into the binding site for tRNA and further suggests how radical SAM chemistry can be combined with Schiff base chemistry for RNA modification.
Collapse
Affiliation(s)
- Tsehai
A. J. Grell
- Department
of Chemistry, Department of Biology, and Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Anthony P. Young
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Catherine L. Drennan
- Department
of Chemistry, Department of Biology, and Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Vahe Bandarian
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
36
|
Young AP, Bandarian V. TYW1: A Radical SAM Enzyme Involved in the Biosynthesis of Wybutosine Bases. Methods Enzymol 2018; 606:119-153. [PMID: 30097090 DOI: 10.1016/bs.mie.2018.04.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
Transfer RNA is extensively modified by the actions of a variety of enzymes. The radical S-adenosyl-l-methionine enzyme TYW1 modifies tRNAPhe forming the characteristic tricyclic ring via the condensation of carbons 2 and 3 of pyruvate. This chapter details methods that are required for studies of TYW1.
Collapse
Affiliation(s)
- Anthony P Young
- Department of Chemistry, University of Utah, Salt Lake City, UT, United States
| | - Vahe Bandarian
- Department of Chemistry, University of Utah, Salt Lake City, UT, United States.
| |
Collapse
|
37
|
Behrens C, Biela I, Petiot-Bécard S, Botzanowski T, Cianférani S, Sager CP, Klebe G, Heine A, Reuter K. Homodimer Architecture of QTRT2, the Noncatalytic Subunit of the Eukaryotic tRNA-Guanine Transglycosylase. Biochemistry 2018; 57:3953-3965. [DOI: 10.1021/acs.biochem.8b00294] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Christina Behrens
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 6, D-35032 Marburg, Germany
| | - Inna Biela
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 6, D-35032 Marburg, Germany
| | - Stéphanie Petiot-Bécard
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France
| | - Thomas Botzanowski
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France
| | - Christoph P. Sager
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 6, D-35032 Marburg, Germany
| | - Gerhard Klebe
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 6, D-35032 Marburg, Germany
| | - Andreas Heine
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 6, D-35032 Marburg, Germany
| | - Klaus Reuter
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 6, D-35032 Marburg, Germany
| |
Collapse
|
38
|
Wilcoxen J, Bruender NA, Bandarian V, Britt RD. A Radical Intermediate in Bacillus subtilis QueE during Turnover with the Substrate Analogue 6-Carboxypterin. J Am Chem Soc 2018; 140:1753-1759. [PMID: 29303575 DOI: 10.1021/jacs.7b10860] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
7-Carboxy-7-deazaguanine (CDG) synthase (QueE), a member of the radical S-deoxyadenosyl-l-methionine (SAM) superfamily of enzymes, catalyzes a radical-mediated ring rearrangement required to convert 6-carboxy-5,6,7,8-tetrahydropterin (CPH4) into CDG, forming the 7-dezapurine precursor to all pyrrolopyrimidine metabolites. Members of the radical SAM superfamily bind SAM to a [4Fe-4S] cluster, leveraging the reductive cleavage of SAM by the cluster to produce a highly reactive 5'-deoxyadenosyl radical which initiates chemistry by H atom abstraction from the substrate. QueE has recently been shown to use 6-carboxypterin (6-CP) as an alternative substrate, forming 6-deoxyadenosylpterin as the product. This reaction has been proposed to occur by radical addition between 5'-dAdo· and 6-CP, which upon oxidative decarboxylation yields the modified pterin. Here, we present spectroscopic evidence for a 6-CP-dAdo radical. The structure of this intermediate is determined by characterizing its electronic structure by continuous wave and pulse electron paramagnetic resonance spectroscopy.
Collapse
Affiliation(s)
- Jarett Wilcoxen
- Department of Chemistry, University of California, Davis , Davis, California 95616, United States
| | - Nathan A Bruender
- Department of Chemistry and Biochemistry, St. Cloud State University , St. Cloud, Minnesota 56301, United States
| | - Vahe Bandarian
- Department of Chemistry, University of Utah , Salt Lake City, Utah 84112, United States
| | - R David Britt
- Department of Chemistry, University of California, Davis , Davis, California 95616, United States
| |
Collapse
|
39
|
Bame J, Hoeck C, Carrington MJ, Butts CP, Jäger CM, Croft AK. Improved NOE fitting for flexible molecules based on molecular mechanics data – a case study with S-adenosylmethionine. Phys Chem Chem Phys 2018; 20:7523-7531. [DOI: 10.1039/c7cp07265a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using the important biomolecule S-adenosyl methionine as an exemplar, we provide a new, enhanced approach for fitting MD data to high-accuracy NOE data, providing improvements in structure determination.
Collapse
Affiliation(s)
- Jessica Bame
- University of Bristol
- School of Chemistry
- Clifton
- Bristol BS8 1TS
- UK
| | - Casper Hoeck
- University of Bristol
- School of Chemistry
- Clifton
- Bristol BS8 1TS
- UK
| | - Matthew J. Carrington
- University of Nottingham
- Department of Chemical and Environmental Engineering
- University Park
- Nottingham
- UK
| | - Craig P. Butts
- University of Bristol
- School of Chemistry
- Clifton
- Bristol BS8 1TS
- UK
| | - Christof M. Jäger
- University of Nottingham
- Department of Chemical and Environmental Engineering
- University Park
- Nottingham
- UK
| | - Anna K. Croft
- University of Nottingham
- Department of Chemical and Environmental Engineering
- University Park
- Nottingham
- UK
| |
Collapse
|
40
|
Olczak A, Cianci M. The signal-to-noise ratio in SAD experiments. CRYSTALLOGR REV 2017. [DOI: 10.1080/0889311x.2017.1386182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Andrzej Olczak
- Institute of General and Ecological Chemistry, Lodz University of Technology, Lodz, Poland
| | - Michele Cianci
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
41
|
Davis KM, Boal AK. Mechanism-Based Strategies for Structural Characterization of Radical SAM Reaction Intermediates. Methods Enzymol 2017; 595:331-359. [PMID: 28882206 DOI: 10.1016/bs.mie.2017.07.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
X-ray crystallographic characterization of enzymes at different stages in their reaction cycles can provide unique insight into the reaction pathway, the number and type of intermediates formed, and their structural context. The known mechanistic diversity in the radical S-adenosylmethionine (SAM) superfamily of enzymes makes it an appealing target for such studies as more than 100,000 sequences have been identified to date with wide-ranging reactivities that share a pattern of complex radical-mediated chemistry. Here, we review selected examples of radical SAM enzyme crystal structures representative of reactant, product, and intermediate state complexes with a particular emphasis on the strategies employed to capture these states. Broader application of structural characterization techniques to analyze mechanism and substrate specificity is certain to play an important role as more members of this family become tractable for biochemical study.
Collapse
Affiliation(s)
- Katherine M Davis
- Princeton University, Princeton, NJ, United States; The Pennsylvania State University, University Park, PA, United States
| | - Amie K Boal
- The Pennsylvania State University, University Park, PA, United States.
| |
Collapse
|
42
|
Samara NL, Gao Y, Wu J, Yang W. Detection of Reaction Intermediates in Mg 2+-Dependent DNA Synthesis and RNA Degradation by Time-Resolved X-Ray Crystallography. Methods Enzymol 2017; 592:283-327. [PMID: 28668125 DOI: 10.1016/bs.mie.2017.03.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Structures of enzyme-substrate/product complexes have been studied for over four decades but have been limited to either before or after a chemical reaction. Recently using in crystallo catalysis combined with X-ray diffraction, we have discovered that many enzymatic reactions in nucleic acid metabolism require additional metal ion cofactors that are not present in the substrate or product state. By controlling metal ions essential for catalysis, the in crystallo approach has revealed unprecedented details of reaction intermediates. Here we present protocols used for successful studies of Mg2+-dependent DNA polymerases and ribonucleases that are applicable to analyses of a variety of metal ion-dependent reactions.
Collapse
Affiliation(s)
- Nadine L Samara
- Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD, United States; Section on Biological Chemistry, NIDCR, National Institutes of Health, Bethesda, MD, United States
| | - Yang Gao
- Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD, United States
| | - Jinjun Wu
- Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD, United States
| | - Wei Yang
- Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD, United States.
| |
Collapse
|
43
|
A B 12-dependent radical SAM enzyme involved in oxetanocin A biosynthesis. Nature 2017; 544:322-326. [PMID: 28346939 PMCID: PMC5398914 DOI: 10.1038/nature21689] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 02/03/2017] [Indexed: 11/22/2022]
Abstract
Oxetanocin-A (OXT-A, 1) is a potent antitumor, antiviral, and
antibacterial compound. Biosynthesis of OXT-A has been linked to a
plasmid-borne, Bacillus megaterium gene cluster that contains
four genes, oxsA, oxsB, oxrA,
and oxrB. Here, we show that the oxsA and
oxsB genes are both required for the production of OXT-A.
Biochemical analysis of the encoded proteins, a cobalamin (Cbl)-dependent
S-adenosylmethionine (AdoMet) radical enzyme, OxsB, and an
HD-domain phosphohydrolase, OxsA, revealed that OXT-A is derived from
2′-deoxyadenosine phosphate in an OxsB-catalyzed ring contraction
reaction initiated by H-atom abstraction from C2′. Hence, OxsB
represents the first biochemically characterized non-methylating Cbl-dependent
AdoMet radical enzyme. X-ray analysis of OxsB reveals the fold of a
Cbl-dependent AdoMet radical enzyme for which there are an estimated 7000
members. Overall, this work provides a framework for understanding the interplay
of AdoMet and Cbl cofactors and expands the catalytic repertoire of
Cbl-dependent AdoMet radical enzymes.
Collapse
|
44
|
Berteau O, Benjdia A. DNA Repair by the Radical SAM Enzyme Spore Photoproduct Lyase: From Biochemistry to Structural Investigations. Photochem Photobiol 2017; 93:67-77. [DOI: 10.1111/php.12702] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 12/19/2016] [Indexed: 10/20/2022]
Affiliation(s)
- Olivier Berteau
- Micalis Institute; INRA; ChemSyBio; AgroParisTech; Université Paris-Saclay; Jouy-en-Josas France
| | - Alhosna Benjdia
- Micalis Institute; INRA; ChemSyBio; AgroParisTech; Université Paris-Saclay; Jouy-en-Josas France
| |
Collapse
|
45
|
Bruender NA, Grell TAJ, Dowling DP, McCarty RM, Drennan CL, Bandarian V. 7-Carboxy-7-deazaguanine Synthase: A Radical S-Adenosyl-l-methionine Enzyme with Polar Tendencies. J Am Chem Soc 2017; 139:1912-1920. [PMID: 28045519 PMCID: PMC5301278 DOI: 10.1021/jacs.6b11381] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Radical S-adenosyl-l-methionine (SAM)
enzymes are widely distributed and catalyze diverse reactions. SAM
binds to the unique iron atom of a site-differentiated [4Fe-4S] cluster
and is reductively cleaved to generate a 5′-deoxyadenosyl radical,
which initiates turnover. 7-Carboxy-7-deazaguanine (CDG) synthase
(QueE) catalyzes a key step in the biosynthesis of 7-deazapurine containing
natural products. 6-Carboxypterin (6-CP), an oxidized analogue of
the natural substrate 6-carboxy-5,6,7,8-tetrahydropterin (CPH4), is shown to be an alternate substrate for CDG synthase.
Under reducing conditions that would promote the reductive cleavage
of SAM, 6-CP is turned over to 6-deoxyadenosylpterin (6-dAP), presumably
by radical addition of the 5′-deoxyadenosine followed by oxidative
decarboxylation to the product. By contrast, in the absence of the
strong reductant, dithionite, the carboxylate of 6-CP is esterified
to generate 6-carboxypterin-5′-deoxyadenosyl ester (6-CP-dAdo
ester). Structural studies with 6-CP and SAM also reveal electron
density consistent with the ester product being formed in crystallo.
The differential reactivity of 6-CP under reducing and nonreducing
conditions highlights the ability of radical SAM enzymes to carry
out both polar and radical transformations in the same active site.
Collapse
Affiliation(s)
- Nathan A Bruender
- Department of Chemistry, University of Utah , Salt Lake City, Utah 84112, United States
| | | | | | - Reid M McCarty
- Department of Chemistry and Biochemistry, University of Arizona , Tucson, Arizona 85721, United States
| | | | - Vahe Bandarian
- Department of Chemistry, University of Utah , Salt Lake City, Utah 84112, United States
| |
Collapse
|
46
|
Jäger CM, Croft AK. Radical Reaction Control in the AdoMet Radical Enzyme CDG Synthase (QueE): Consolidate, Destabilize, Accelerate. Chemistry 2017; 23:953-962. [PMID: 27859789 PMCID: PMC5347944 DOI: 10.1002/chem.201604719] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Indexed: 12/29/2022]
Abstract
Controlling radical intermediates and thus catalysing and directing complex radical reactions is a central feature of S-adensosylmethionine (SAM)-dependent radical enzymes. We report ab initio and DFT calculations highlighting the specific influence of ion complexation, including Mg2+ , identified as a key catalytic component on radical stability and reaction control in 7-carboxy-7-deazaguanine synthase (QueE). Radical stabilisation energies (RSEs) of key intermediates and radical clock-like model systems of the enzyme-catalysed rearrangement of 6-carboxytetrahydropterin (CPH4), reveals a directing role of Mg2+ in destabilising both the substrate-derived radical and corresponding side reactions, with the effect that the experimentally-observed rearrangement becomes dominant over possible alternatives. Importantly, this is achieved with minimal disruption of the thermodynamics of the substrate itself, affording a novel mechanism for an enzyme to both maintain binding potential and accelerate the rearrangement step. Other mono and divalent ions were probed with only dicationic species achieving the necessary radical conformation to facilitate the reaction.
Collapse
Affiliation(s)
- Christof M. Jäger
- The University of NottinghamDepartment of Chemical and Environmental EngineeringUniversity ParkNottinghamNG7 2RDUnited Kingdom
| | - Anna K. Croft
- The University of NottinghamDepartment of Chemical and Environmental EngineeringUniversity ParkNottinghamNG7 2RDUnited Kingdom
| |
Collapse
|
47
|
Hutinet G, Swarjo MA, de Crécy-Lagard V. Deazaguanine derivatives, examples of crosstalk between RNA and DNA modification pathways. RNA Biol 2016; 14:1175-1184. [PMID: 27937735 PMCID: PMC5699537 DOI: 10.1080/15476286.2016.1265200] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Seven-deazapurine modifications were thought to be highly specific of tRNAs, but have now been discovered in DNA of phages and of phylogenetically diverse bacteria, illustrating the plasticity of these modification pathways. The intermediate 7-cyano-7-deazaguanine (preQ0) is a shared precursor in the pathways leading to the insetion of 7-deazapurine derivatives in both tRNA and DNA. It is also used as an intermediate in the synthesis of secondary metabolites such as toyocamacin. The presence of 7-deazapurine in DNA is proposed to be a protection mechanism against endonucleases. This makes preQ0 a metabolite of underappreaciated but central importance.
Collapse
Affiliation(s)
- Geoffrey Hutinet
- a Department of Microbiology and Cell Science , University of Florida , Gainesville , FL , USA
| | - Manal A Swarjo
- b Department of Chemistry and Biochemistry , San Diego State University , San Diego , CA , USA
| | - Valérie de Crécy-Lagard
- a Department of Microbiology and Cell Science , University of Florida , Gainesville , FL , USA
| |
Collapse
|
48
|
Abstract
![]()
Metal ions and metallocofactors play important
roles in a broad
range of biochemical reactions. Accordingly, it has been estimated
that as much as 25–50% of the proteome uses transition metal
ions to carry out a variety of essential functions. The metal ions
incorporated within metalloproteins fulfill functional roles based
on chemical properties, the diversity of which arises as transition
metals can adopt different redox states and geometries, dictated by
the identity of the metal and the protein environment. The coupling
of a metal ion with an organic framework in metallocofactors, such
as heme and cobalamin, further expands the chemical functionality
of metals in biology. The three-dimensional visualization of metal
ions and complex metallocofactors within a protein scaffold is often
a starting point for enzymology, highlighting the importance of structural
characterization of metalloproteins. Metalloprotein crystallography,
however, presents a number of implicit challenges including correctly
incorporating the relevant metal or metallocofactor, maintaining the
proper environment for the protein to be purified and crystallized
(including providing anaerobic, cold, or aphotic environments), and
being mindful of the possibility of X-ray induced damage to the proteins
or incorporated metal ions. Nevertheless, the incorporated metals
or metallocofactors also present unique advantages in metalloprotein
crystallography. The significant resonance that metals undergo with
X-ray photons at wavelengths used for protein crystallography and
the rich electronic properties of metals, which provide intense and
spectroscopically unique signatures, allow a metalloprotein crystallographer
to use anomalous dispersion to determine phases for structure solution
and to use simultaneous or parallel spectroscopic techniques on single
crystals. These properties, coupled with the improved brightness of
beamlines, the ability to tune the wavelength of the X-ray beam, the
availability of advanced detectors, and the incorporation of spectroscopic
equipment at a number of synchrotron beamlines, have yielded exciting
developments in metalloprotein structure determination. Here we will
present results on the advantageous uses of metals in metalloprotein
crystallography, including using metallocofactors to obtain phasing
information, using K-edge X-ray absorption spectroscopy to identify
metals coordinated in metalloprotein crystals, and using UV–vis
spectroscopy on crystals to probe the enzymatic activity of the crystallized
protein.
Collapse
Affiliation(s)
- Sarah E. J. Bowman
- Department
of Chemistry, ‡Department of Biology, and §Howard Hughes Medical Institute, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jennifer Bridwell-Rabb
- Department
of Chemistry, ‡Department of Biology, and §Howard Hughes Medical Institute, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Catherine L. Drennan
- Department
of Chemistry, ‡Department of Biology, and §Howard Hughes Medical Institute, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
49
|
Rohac R, Amara P, Benjdia A, Martin L, Ruffié P, Favier A, Berteau O, Mouesca JM, Fontecilla-Camps JC, Nicolet Y. Carbon–sulfur bond-forming reaction catalysed by the radical SAM enzyme HydE. Nat Chem 2016; 8:491-500. [DOI: 10.1038/nchem.2490] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 02/25/2016] [Indexed: 11/09/2022]
|
50
|
Bruender NA, Wilcoxen J, Britt RD, Bandarian V. Biochemical and Spectroscopic Characterization of a Radical S-Adenosyl-L-methionine Enzyme Involved in the Formation of a Peptide Thioether Cross-Link. Biochemistry 2016; 55:2122-34. [PMID: 27007615 DOI: 10.1021/acs.biochem.6b00145] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Peptide-derived natural products are a class of metabolites that afford the producing organism a selective advantage over other organisms in their biological niche. While the polypeptide antibiotics produced by the nonribosomal polypeptide synthetases (NRPS) are the most widely recognized, the ribosomally synthesized and post-translationally modified peptides (RiPPs) are an emerging group of natural products with diverse structures and biological functions. Both the NRPS derived peptides and the RiPPs undergo extensive post-translational modifications to produce structural diversity. Here we report the first characterization of the six cysteines in forty-five (SCIFF) [Haft, D. H. and Basu M. K. (2011) J. Bacteriol. 193, 2745-2755] peptide maturase Tte1186, which is a member of the radical S-adenosyl-l-methionine (SAM) superfamily. Tte1186 catalyzes the formation of a thioether cross-link in the peptide Tte1186a encoded by an orf located upstream of the maturase, under reducing conditions in the presence of SAM. Tte1186 contains three [4Fe-4S] clusters that are indispensable for thioether cross-link formation; however, only one cluster catalyzes the reductive cleavage of SAM. Mechanistic imperatives for the reaction catalyzed by the thioether forming radical SAM maturases will be discussed.
Collapse
Affiliation(s)
- Nathan A Bruender
- Chemistry Department, University of Utah , Salt Lake City, Utah 84112, United States
| | - Jarett Wilcoxen
- Department of Chemistry, University of California , Davis, California 95616, United States
| | - R David Britt
- Department of Chemistry, University of California , Davis, California 95616, United States
| | - Vahe Bandarian
- Chemistry Department, University of Utah , Salt Lake City, Utah 84112, United States
| |
Collapse
|