1
|
Liao J, Ke W, Wang B, Du M, Lu Q, Zhang Y, Zhang G. Transcriptomics and non-targeted metabolomics provide mechanistic insights into the improvement of the growth performance and meat quality of lambs supplemented with fermented Lycium barbarum residues. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2025; 21:11-24. [PMID: 40135170 PMCID: PMC11931312 DOI: 10.1016/j.aninu.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 11/02/2024] [Accepted: 11/13/2024] [Indexed: 03/27/2025]
Abstract
This study investigated the effects of Lycium barbarum residues (LBR) and fermented L. barbarum residues (FLBR) on the growth performance and meat quality of lambs. Eighteen lambs were randomly assigned into three groups and fed either a basal diet (CON) or the same diet supplemented with 5.0% LBR or FLBR for a period of 90 days. The underlying mechanisms responsible for the beneficial effect of LBR and FLBR on the longissimus thoracis (LT) and intramuscular fat (IMF) tissues of lambs were examined using multiomics techniques. Our findings showed that FLBR supplementation significantly enhanced the average daily gain, feed efficiency, and nutrient digestibility (P < 0.05 or P < 0.01). Serum total protein (P = 0.007) and glucose (P = 0.002) levels were higher in the FLBR-fed lambs, while urea nitrogen level was lower (P = 0.001). Additionally, the levels of rumen acetate (P = 0.002) and propionate (P = 0.011) were significantly elevated, while ammonia-nitrogen (NH3-N), isobutyrate and isovalerate decreased (P < 0.05 or P < 0.01) following FLBR supplementation. Post-mortem meat quality was also improved by FLBR, as evidenced by enhanced total antioxidant capacity, superoxide dismutase activity, pH, redness (a∗), tenderness and water holding capacity (P < 0.05 or P < 0.01), alongside a reduction in the malonaldehyde content (P < 0.001). Transcriptomic analysis identified 962 differentially expressed genes (DEGs, FLBR vs CON) and 782 DEGs (FLBR vs LBR) in LT, and 1313 DEGs (FLBR vs CON) and 1221 DEGs (FLBR vs LBR) in IMF. The ribosome signaling pathway related genes in LT tissue were activated by the FLBR diet (P < 0.05), showing a higher anabolism of protein. The genes involved in fatty acid biosynthesis in IMF tissue were upregulated by the FLBR diet (P < 0.05), showing a higher anabolism of lipids. Metabolomics analysis identified the 1732 differential metabolites in LT tissue following FLBR supplementation, with significant alterations in metabolites such as carnosine, L-arginine and L-proline, which may serve as potential biomarkers for meat quality betterment. In conclusion, FLBR supplementation might have modified anabolism of proteins and fatty acid, as well as muscle metabolomic profiles, leading to improvements in both growth performance and meat quality in fattening lambs.
Collapse
Affiliation(s)
- Jiale Liao
- College of Forestry and Prataculture, Ningxia University, Yinchuan 750021, China
| | - Wencan Ke
- College of Forestry and Prataculture, Ningxia University, Yinchuan 750021, China
| | - Bing Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Min Du
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA 99164, United States
| | - Qiang Lu
- College of Forestry and Prataculture, Ningxia University, Yinchuan 750021, China
| | - Yajun Zhang
- College of Forestry and Prataculture, Ningxia University, Yinchuan 750021, China
| | - Guijie Zhang
- College of Forestry and Prataculture, Ningxia University, Yinchuan 750021, China
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| |
Collapse
|
2
|
Monteil VM, Wright SC, Dyczynski M, Kellner MJ, Appelberg S, Platzer SW, Ibrahim A, Kwon H, Pittarokoilis I, Mirandola M, Michlits G, Devignot S, Elder E, Abdurahman S, Bereczky S, Bagci B, Youhanna S, Aastrup T, Lauschke VM, Salata C, Elaldi N, Weber F, Monserrat N, Hawman DW, Feldmann H, Horn M, Penninger JM, Mirazimi A. Crimean-Congo haemorrhagic fever virus uses LDLR to bind and enter host cells. Nat Microbiol 2024; 9:1499-1512. [PMID: 38548922 PMCID: PMC11153131 DOI: 10.1038/s41564-024-01672-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 03/11/2024] [Indexed: 06/07/2024]
Abstract
Climate change and population densities accelerated transmission of highly pathogenic viruses to humans, including the Crimean-Congo haemorrhagic fever virus (CCHFV). Here we report that the Low Density Lipoprotein Receptor (LDLR) is a critical receptor for CCHFV cell entry, playing a vital role in CCHFV infection in cell culture and blood vessel organoids. The interaction between CCHFV and LDLR is highly specific, with other members of the LDLR protein family failing to bind to or neutralize the virus. Biosensor experiments demonstrate that LDLR specifically binds the surface glycoproteins of CCHFV. Importantly, mice lacking LDLR exhibit a delay in CCHFV-induced disease. Furthermore, we identified the presence of Apolipoprotein E (ApoE) on CCHFV particles. Our findings highlight the essential role of LDLR in CCHFV infection, irrespective of ApoE presence, when the virus is produced in tick cells. This discovery holds profound implications for the development of future therapies against CCHFV.
Collapse
Affiliation(s)
- Vanessa M Monteil
- Unit of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
- Public Health Agency of Sweden, Solna, Sweden
| | - Shane C Wright
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Matheus Dyczynski
- Acus Laboratories GmbH, Cologne, Germany
- JLP Health GmbH, Vienna, Austria
| | - Max J Kellner
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna, Austria
- Vienna Biocenter PhD Program, a Doctoral School of the University of Vienna and the Medical University of Vienna, Vienna, Austria
| | | | - Sebastian W Platzer
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna, Austria
- Vienna Biocenter PhD Program, a Doctoral School of the University of Vienna and the Medical University of Vienna, Vienna, Austria
| | | | - Hyesoo Kwon
- National Veterinary Institute, Uppsala, Sweden
| | | | - Mattia Mirandola
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | | | - Stephanie Devignot
- Unit of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
- Public Health Agency of Sweden, Solna, Sweden
| | | | | | | | - Binnur Bagci
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Sivas Cumhuriyet University, Sivas, Turkey
| | - Sonia Youhanna
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | - Volker M Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- University Tübingen, Tübingen, Germany
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
| | - Cristiano Salata
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Nazif Elaldi
- Department of Infectious Diseases and Clinical Microbiology, Medical Faculty, Cumhuriyet University, Sivas, Turkey
| | - Friedemann Weber
- Institute for Virology, FB10-Veterinary Medicine, Justus-Liebig University, Gießen, Germany
| | - Nuria Monserrat
- University of Barcelona, Barcelona, Spain
- Pluripotency for Organ Regeneration, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - David W Hawman
- Rocky Mountain Laboratories, NIAID/NIH, Hamilton, MT, USA
| | - Heinz Feldmann
- Rocky Mountain Laboratories, NIAID/NIH, Hamilton, MT, USA
| | - Moritz Horn
- Acus Laboratories GmbH, Cologne, Germany
- JLP Health GmbH, Vienna, Austria
| | - Josef M Penninger
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna, Austria.
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria.
- Helmholtz Centre for Infection Research, Braunschweig, Germany.
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Ali Mirazimi
- Unit of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden.
- Public Health Agency of Sweden, Solna, Sweden.
- National Veterinary Institute, Uppsala, Sweden.
| |
Collapse
|
3
|
Wang HS, Ma XR, Guo YH. Development and application of haploid embryonic stem cells. Stem Cell Res Ther 2024; 15:116. [PMID: 38654389 PMCID: PMC11040874 DOI: 10.1186/s13287-024-03727-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/10/2024] [Indexed: 04/25/2024] Open
Abstract
Haploid cells are a kind of cells with only one set of chromosomes. Compared with traditional diploid cells, haploid cells have unique advantages in gene screening and drug-targeted therapy, due to their phenotype being equal to the genotype. Embryonic stem cells are a kind of cells with strong differentiation potential that can differentiate into various types of cells under specific conditions in vitro. Therefore, haploid embryonic stem cells have the characteristics of both haploid cells and embryonic stem cells, which makes them have significant advantages in many aspects, such as reproductive developmental mechanism research, genetic screening, and drug-targeted therapy. Consequently, establishing haploid embryonic stem cell lines is of great significance. This paper reviews the progress of haploid embryonic stem cell research and briefly discusses the applications of haploid embryonic stem cells.
Collapse
Affiliation(s)
- Hai-Song Wang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 40 Daxue Road, 450052, Zhengzhou, Henan Province, China.
| | - Xin-Rui Ma
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 40 Daxue Road, 450052, Zhengzhou, Henan Province, China
| | - Yi-Hong Guo
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 40 Daxue Road, 450052, Zhengzhou, Henan Province, China.
| |
Collapse
|
4
|
Awwad SW, Serrano-Benitez A, Thomas JC, Gupta V, Jackson SP. Revolutionizing DNA repair research and cancer therapy with CRISPR-Cas screens. Nat Rev Mol Cell Biol 2023; 24:477-494. [PMID: 36781955 DOI: 10.1038/s41580-022-00571-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2022] [Indexed: 02/15/2023]
Abstract
All organisms possess molecular mechanisms that govern DNA repair and associated DNA damage response (DDR) processes. Owing to their relevance to human disease, most notably cancer, these mechanisms have been studied extensively, yet new DNA repair and/or DDR factors and functional interactions between them are still being uncovered. The emergence of CRISPR technologies and CRISPR-based genetic screens has enabled genome-scale analyses of gene-gene and gene-drug interactions, thereby providing new insights into cellular processes in distinct DDR-deficiency genetic backgrounds and conditions. In this Review, we discuss the mechanistic basis of CRISPR-Cas genetic screening approaches and describe how they have contributed to our understanding of DNA repair and DDR pathways. We discuss how DNA repair pathways are regulated, and identify and characterize crosstalk between them. We also highlight the impacts of CRISPR-based studies in identifying novel strategies for cancer therapy, and in understanding, overcoming and even exploiting cancer-drug resistance, for example in the contexts of PARP inhibition, homologous recombination deficiencies and/or replication stress. Lastly, we present the DDR CRISPR screen (DDRcs) portal , in which we have collected and reanalysed data from CRISPR screen studies and provide a tool for systematically exploring them.
Collapse
Affiliation(s)
- Samah W Awwad
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Almudena Serrano-Benitez
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK.
| | - John C Thomas
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK.
| | - Vipul Gupta
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Stephen P Jackson
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK.
| |
Collapse
|
5
|
Hanzl A, Casement R, Imrichova H, Hughes SJ, Barone E, Testa A, Bauer S, Wright J, Brand M, Ciulli A, Winter GE. Functional E3 ligase hotspots and resistance mechanisms to small-molecule degraders. Nat Chem Biol 2023; 19:323-333. [PMID: 36329119 PMCID: PMC7614256 DOI: 10.1038/s41589-022-01177-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/20/2022] [Indexed: 11/06/2022]
Abstract
Targeted protein degradation is a novel pharmacology established by drugs that recruit target proteins to E3 ubiquitin ligases. Based on the structure of the degrader and the target, different E3 interfaces are critically involved, thus forming defined 'functional hotspots'. Understanding disruptive mutations in functional hotspots informs on the architecture of the assembly, and highlights residues susceptible to acquire resistance phenotypes. Here we employ haploid genetics to show that hotspot mutations cluster in substrate receptors of hijacked ligases, where mutation type and frequency correlate with gene essentiality. Intersection with deep mutational scanning revealed hotspots that are conserved or specific for chemically distinct degraders and targets. Biophysical and structural validation suggests that hotspot mutations frequently converge on altered ternary complex assembly. Moreover, we validated hotspots mutated in patients that relapse from degrader treatment. In sum, we present a fast and widely accessible methodology to characterize small-molecule degraders and associated resistance mechanisms.
Collapse
Affiliation(s)
- Alexander Hanzl
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Ryan Casement
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, James Black Centre, Dundee, UK
| | - Hana Imrichova
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Scott J Hughes
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, James Black Centre, Dundee, UK
- Amphista Therapeutics Ltd., Newhouse, UK
| | - Eleonora Barone
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Andrea Testa
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, James Black Centre, Dundee, UK
- Amphista Therapeutics Ltd., Newhouse, UK
| | - Sophie Bauer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Proxygen GmbH, Vienna, Austria
| | - Jane Wright
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, James Black Centre, Dundee, UK
| | - Matthias Brand
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Proxygen GmbH, Vienna, Austria
| | - Alessio Ciulli
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, James Black Centre, Dundee, UK.
| | - Georg E Winter
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.
| |
Collapse
|
6
|
Demange P, Joly E, Marcoux J, Zanon PRA, Listunov D, Rullière P, Barthes C, Noirot C, Izquierdo JB, Rozié A, Pradines K, Hee R, de Brito MV, Marcellin M, Serre RF, Bouchez O, Burlet-Schiltz O, Oliveira MCF, Ballereau S, Bernardes-Génisson V, Maraval V, Calsou P, Hacker SM, Génisson Y, Chauvin R, Britton S. SDR enzymes oxidize specific lipidic alkynylcarbinols into cytotoxic protein-reactive species. eLife 2022; 11:73913. [PMID: 35535493 PMCID: PMC9090334 DOI: 10.7554/elife.73913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 04/19/2022] [Indexed: 11/21/2022] Open
Abstract
Hundreds of cytotoxic natural or synthetic lipidic compounds contain chiral alkynylcarbinol motifs, but the mechanism of action of those potential therapeutic agents remains unknown. Using a genetic screen in haploid human cells, we discovered that the enantiospecific cytotoxicity of numerous terminal alkynylcarbinols, including the highly cytotoxic dialkynylcarbinols, involves a bioactivation by HSD17B11, a short-chain dehydrogenase/reductase (SDR) known to oxidize the C-17 carbinol center of androstan-3-alpha,17-beta-diol to the corresponding ketone. A similar oxidation of dialkynylcarbinols generates dialkynylketones, that we characterize as highly protein-reactive electrophiles. We established that, once bioactivated in cells, the dialkynylcarbinols covalently modify several proteins involved in protein-quality control mechanisms, resulting in their lipoxidation on cysteines and lysines through Michael addition. For some proteins, this triggers their association to cellular membranes and results in endoplasmic reticulum stress, unfolded protein response activation, ubiquitin-proteasome system inhibition and cell death by apoptosis. Finally, as a proof-of-concept, we show that generic lipidic alkynylcarbinols can be devised to be bioactivated by other SDRs, including human RDH11 and HPGD/15-PGDH. Given that the SDR superfamily is one of the largest and most ubiquitous, this unique cytotoxic mechanism-of-action could be widely exploited to treat diseases, in particular cancer, through the design of tailored prodrugs.
Collapse
Affiliation(s)
- Pascal Demange
- Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS, Université de Toulouse, Toulouse, France
| | - Etienne Joly
- Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS, Université de Toulouse, Toulouse, France
| | - Julien Marcoux
- Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS, Université de Toulouse, Toulouse, France
| | - Patrick R A Zanon
- Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands.,Department of Chemistry, Technical University of Munich, Garching, Germany
| | - Dymytrii Listunov
- SPCMIB, UMR5068, CNRS, Université de Toulouse, UPS, Toulouse, France.,LCC-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Pauline Rullière
- SPCMIB, UMR5068, CNRS, Université de Toulouse, UPS, Toulouse, France
| | - Cécile Barthes
- LCC-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Céline Noirot
- INRAE, UR 875 Unité de Mathématique et Informatique Appliquées, Genotoul Bioinfo Auzeville, Castanet-Tolosan, France
| | - Jean-Baptiste Izquierdo
- Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS, Université de Toulouse, Toulouse, France
| | - Alexandrine Rozié
- Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS, Université de Toulouse, Toulouse, France.,Equipe labellisée la Ligue contre le Cancer 2018, Toulouse, France
| | - Karen Pradines
- Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS, Université de Toulouse, Toulouse, France.,Equipe labellisée la Ligue contre le Cancer 2018, Toulouse, France
| | - Romain Hee
- Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS, Université de Toulouse, Toulouse, France.,Equipe labellisée la Ligue contre le Cancer 2018, Toulouse, France
| | - Maria Vieira de Brito
- LCC-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France.,Department of Organic and Inorganic Chemistry, Science Center, Federal University of Ceará, Fortaleza, Brazil
| | - Marlène Marcellin
- Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS, Université de Toulouse, Toulouse, France
| | | | | | - Odile Burlet-Schiltz
- Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS, Université de Toulouse, Toulouse, France
| | | | | | | | - Valérie Maraval
- LCC-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Patrick Calsou
- Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS, Université de Toulouse, Toulouse, France.,Equipe labellisée la Ligue contre le Cancer 2018, Toulouse, France
| | - Stephan M Hacker
- Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands.,Department of Chemistry, Technical University of Munich, Garching, Germany
| | - Yves Génisson
- SPCMIB, UMR5068, CNRS, Université de Toulouse, UPS, Toulouse, France
| | - Remi Chauvin
- LCC-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Sébastien Britton
- Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS, Université de Toulouse, Toulouse, France.,Equipe labellisée la Ligue contre le Cancer 2018, Toulouse, France
| |
Collapse
|
7
|
Ali Khan A, Raess M, de Angelis MH. Moving forward with forward genetics: A summary of the INFRAFRONTIER Forward Genetics Panel Discussion. F1000Res 2021; 10:456. [PMID: 34900227 PMCID: PMC8634052 DOI: 10.12688/f1000research.25369.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/22/2020] [Indexed: 11/20/2022] Open
Abstract
In the last few decades, forward genetics approaches have been extensively used to identify gene function. Essentially, forward genetics is the elucidation of the genetic basis of a specific phenotype by screening a population containing random genomic modifications that alter gene function. These approaches have shed light on some essential gene functions in development and disease and have expanded the realm of understanding for genetic disorders. Due to the availability of efficient mutagenesis methods, phenotyping techniques, reliable validation, comprehensive sequence information and translational potential, mouse models are favored for forward genetics approaches. However, in this post-genomic CRISPR-Cas9 era, the relevance and future of forward genetics was brought into question. With more than 7300 mouse strains archived and close interactions with several leading mouse researchers around the world, INFRAFRONTIER - the European Research Infrastructure for mouse models organised a panel discussion on forward genetics at the International Mammalian Genome Conference 2018 to discuss the future of forward genetics as well as challenges faced by researchers using this approach in the current research environment. The commentary presents an overview of this discussion.
Collapse
Affiliation(s)
- Asrar Ali Khan
- INFRAFRONTIER GmbH, Neuherberg / Munich, Bavaria, 85764, Germany
| | - Michael Raess
- INFRAFRONTIER GmbH, Neuherberg / Munich, Bavaria, 85764, Germany
| | | |
Collapse
|
8
|
Applications of piggyBac Transposons for Genome Manipulation in Stem Cells. Stem Cells Int 2021; 2021:3829286. [PMID: 34567130 PMCID: PMC8460389 DOI: 10.1155/2021/3829286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/16/2021] [Indexed: 12/20/2022] Open
Abstract
Transposons are mobile genetic elements in the genome. The piggyBac (PB) transposon system is increasingly being used for stem cell research due to its high transposition efficiency and seamless excision capacity. Over the past few decades, forward genetic screens based on PB transposons have been successfully established to identify genes associated with drug resistance and stem cell-related characteristics. Moreover, PB transposon is regarded as a promising gene therapy vector and has been used in some clinically relevant stem cells. Here, we review the recent progress on the basic biology of PB, highlight its applications in current stem cell research, and discuss its advantages and challenges.
Collapse
|
9
|
Bossaert M, Pipier A, Riou JF, Noirot C, Nguyên LT, Serre RF, Bouchez O, Defrancq E, Calsou P, Britton S, Gomez D. Transcription-associated topoisomerase 2α (TOP2A) activity is a major effector of cytotoxicity induced by G-quadruplex ligands. eLife 2021; 10:65184. [PMID: 34180392 PMCID: PMC8279764 DOI: 10.7554/elife.65184] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 06/16/2021] [Indexed: 12/11/2022] Open
Abstract
G-quadruplexes (G4) are non-canonical DNA structures found in the genome of most species including human. Small molecules stabilizing these structures, called G4 ligands, have been identified and, for some of them, shown to induce cytotoxic DNA double-strand breaks. Through the use of an unbiased genetic approach, we identify here topoisomerase 2α (TOP2A) as a major effector of cytotoxicity induced by two clastogenic G4 ligands, pyridostatin and CX-5461, the latter molecule currently undergoing phase I/II clinical trials in oncology. We show that both TOP2 activity and transcription account for DNA break production following G4 ligand treatments. In contrast, clastogenic activity of these G4 ligands is countered by topoisomerase 1 (TOP1), which limits co-transcriptional G4 formation, and by factors promoting transcriptional elongation. Altogether our results support that clastogenic G4 ligands act as DNA structure-driven TOP2 poisons at transcribed regions bearing G4 structures.
Collapse
Affiliation(s)
- Madeleine Bossaert
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France.,Equipe Labellisée Ligue Contre le Cancer 2018, Toulouse, France
| | - Angélique Pipier
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France.,Equipe Labellisée Ligue Contre le Cancer 2018, Toulouse, France
| | - Jean-Francois Riou
- Structure et Instabilité des Génomes, Muséum National d'Histoire Naturelle, CNRS, INSERM, Paris, France
| | - Céline Noirot
- INRAE, UR 875, Unité de Mathématique et Informatique Appliquées, Genotoul Bioinfo, Castanet-Tolosan, France
| | - Linh-Trang Nguyên
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | | | - Olivier Bouchez
- INRAE, US 1426, GeT-PlaGe, Genotoul, Castanet-Tolosan, France
| | - Eric Defrancq
- Département de Chimie Moléculaire, UMR CNRS 5250, Université Grenoble Alpes, Grenoble, France
| | - Patrick Calsou
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France.,Equipe Labellisée Ligue Contre le Cancer 2018, Toulouse, France
| | - Sébastien Britton
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France.,Equipe Labellisée Ligue Contre le Cancer 2018, Toulouse, France
| | - Dennis Gomez
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France.,Equipe Labellisée Ligue Contre le Cancer 2018, Toulouse, France
| |
Collapse
|
10
|
Zhou P, Huang H, Lu J, Zhu Z, Xie J, Xia L, Luo S, Zhou K, Chen W, Ding X. The mutated Bacillus amyloliquefaciens strain shows high resistance to Aeromonas hydrophila and Aeromonas veronii in grass carp. Microbiol Res 2021; 250:126801. [PMID: 34139525 DOI: 10.1016/j.micres.2021.126801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 10/21/2022]
Abstract
Bacillus amyloliquefaciens X030 (BaX030) has broad-spectrum antibacterial activity against the fish pathogens Aeromonas hydrophila and Aeromonas veronii. To improve its antibacterial effect, BaX030 was subjected to compound mutagenesis of atmospheric and room temperature plasma (ARTP) and nitrosoguanidine (NTG). The results showed that, compared with the original strain, the production of macrolactin A and oxydifficidin in mutated strain N-11 increased to 39 % and 268 %, respectively. The re-sequencing analysis suggested that there were SNPs and InDels in the gene clusters focused on the sucrose utilization pathway, glycolysis pathway and fatty acid synthesis pathway. Scanning electron microscopy revealed that strain N-11 became thin and long. The qRT-PCR results indicated that the expression of immune factors in the liver or kidney tissue of grass carp increased after feeding with N-11. H&E staining and protection experiments also showed that the mortality and surface symptoms of grass carp infected by the two pathogens were significantly reduced. The study identified a probiotic strain with potential application value in aquaculture production and provided a new strategy for the discovery of new strains with higher antibacterial biological activity.
Collapse
Affiliation(s)
- Pengji Zhou
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, China.
| | - Haiyan Huang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, China.
| | - Jiaoyang Lu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, China.
| | - Zirong Zhu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, China.
| | - Junyan Xie
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, China.
| | - Liqiu Xia
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, China.
| | - Sisi Luo
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, China.
| | - Kexuan Zhou
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, China.
| | - Wenhui Chen
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, China.
| | - Xuezhi Ding
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
11
|
Hendel SJ, Shoulders MD. Directed evolution in mammalian cells. Nat Methods 2021; 18:346-357. [PMID: 33828274 DOI: 10.1038/s41592-021-01090-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 02/01/2021] [Accepted: 02/09/2021] [Indexed: 02/06/2023]
Abstract
Directed evolution experiments are typically carried out using in vitro systems, bacteria, or yeast-even when the goal is to probe or modulate mammalian biology. Performing directed evolution in systems that do not match the intended mammalian environment severely constrains the scope and functionality of the targets that can be evolved. We review new platforms that are now making it possible to use the mammalian cell itself as the setting for directed evolution and present an overview of frontier challenges and high-impact targets for this approach.
Collapse
Affiliation(s)
- Samuel J Hendel
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Matthew D Shoulders
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
12
|
Roliński M, Montaldo NP, Aksu ME, Fordyce Martin S, Brambilla A, Kunath N, Johansen J, Erlandsen S, Liabbak NB, Rian K, Bjørås M, Sætrom P, van Loon B. Loss of Mediator complex subunit 13 (MED13) promotes resistance to alkylation through cyclin D1 upregulation. Nucleic Acids Res 2021; 49:1470-1484. [PMID: 33444446 PMCID: PMC7897519 DOI: 10.1093/nar/gkaa1289] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 12/22/2020] [Accepted: 12/30/2020] [Indexed: 12/19/2022] Open
Abstract
Alkylating drugs are among the most often used chemotherapeutics. While cancer cells frequently develop resistance to alkylation treatments, detailed understanding of mechanisms that lead to the resistance is limited. Here, by using genome-wide CRISPR-Cas9 based screen, we identify transcriptional Mediator complex subunit 13 (MED13) as a novel modulator of alkylation response. The alkylation exposure causes significant MED13 downregulation, while complete loss of MED13 results in reduced apoptosis and resistance to alkylating agents. Transcriptome analysis identified cyclin D1 (CCND1) as one of the highly overexpressed genes in MED13 knock-out (KO) cells, characterized by shorter G1 phase. MED13 is able to bind to CCND1 regulatory elements thus influencing the expression. The resistance of MED13 KO cells is directly dependent on the cyclin D1 overexpression, and its down-regulation is sufficient to re-sensitize the cells to alkylating agents. We further demonstrate the therapeutic potential of MED13-mediated response, by applying combinatory treatment with CDK8/19 inhibitor Senexin A. Importantly, the treatment with Senexin A stabilizes MED13, and in combination with alkylating agents significantly reduces viability of cancer cells. In summary, our findings identify novel alkylation stress response mechanism dependent on MED13 and cyclin D1 that can serve as basis for development of innovative therapeutic strategies.
Collapse
Affiliation(s)
- Miłosz Roliński
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7049 Trondheim, Norway
| | - Nicola Pietro Montaldo
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7049 Trondheim, Norway
| | - Merdane Ezgi Aksu
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7049 Trondheim, Norway
| | - Sarah L Fordyce Martin
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7049 Trondheim, Norway
| | - Alessandro Brambilla
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7049 Trondheim, Norway
| | - Nicolas Kunath
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7049 Trondheim, Norway
| | - Jostein Johansen
- Bioinformatics core facility - BioCore; Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Sten Even Erlandsen
- Genomics core facility, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Nina-Beate Liabbak
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7049 Trondheim, Norway
| | - Kristin Rian
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7049 Trondheim, Norway
| | - Magnar Bjørås
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7049 Trondheim, Norway
- Department of Microbiology, Oslo University Hospital, 0027 Oslo, Norway; Department of Medical Biochemistry, Oslo University Hospital and University of Oslo, 0372 Oslo, Norway
| | - Pål Sætrom
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7049 Trondheim, Norway
- Bioinformatics core facility - BioCore; Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
- K.G. Jebsen Center for Genetic Epidemiology, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
- Department of Computer Science, Faculty of Information Technology and Electrical Engineering, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Barbara van Loon
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7049 Trondheim, Norway
| |
Collapse
|
13
|
Sun S, Zhao Y, Shuai L. The milestone of genetic screening: Mammalian haploid cells. Comput Struct Biotechnol J 2020; 18:2471-2479. [PMID: 33005309 PMCID: PMC7509586 DOI: 10.1016/j.csbj.2020.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 09/04/2020] [Accepted: 09/05/2020] [Indexed: 12/30/2022] Open
Abstract
Mammalian haploid cells provide insights into multiple genetics approaches as have been proved by advances in homozygous phenotypes and function as gametes. Recent achievements make ploidy of mammalian haploid cells stable and improve the developmental efficiency of embryos derived from mammalian haploid cells intracytoplasmic microinjection, which promise great potentials for using mammalian haploid cells in forward and reverse genetic screening. In this review, we introduce breakthroughs of mammalian haploid cells involving in mechanisms of self-diploidization, forward genetics for various targeting genes and imprinted genes related development.
Collapse
Affiliation(s)
- Shengyi Sun
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Yiding Zhao
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Ling Shuai
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, China
- Tate Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Tianjin Central Hospital of Gynecology Obstetrics / Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin 300052, China
| |
Collapse
|
14
|
Coupling chemical mutagenesis to next generation sequencing for the identification of drug resistance mutations in Leishmania. Nat Commun 2019; 10:5627. [PMID: 31819054 PMCID: PMC6901541 DOI: 10.1038/s41467-019-13344-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 11/01/2019] [Indexed: 12/16/2022] Open
Abstract
Current genome-wide screens allow system-wide study of drug resistance but detecting small nucleotide variants (SNVs) is challenging. Here, we use chemical mutagenesis, drug selection and next generation sequencing to characterize miltefosine and paromomycin resistant clones of the parasite Leishmania. We highlight several genes involved in drug resistance by sequencing the genomes of 41 resistant clones and by concentrating on recurrent SNVs. We associate genes linked to lipid metabolism or to ribosome/translation functions with miltefosine or paromomycin resistance, respectively. We prove by allelic replacement and CRISPR-Cas9 gene-editing that the essential protein kinase CDPK1 is crucial for paromomycin resistance. We have linked CDPK1 in translation by functional interactome analysis, and provide evidence that CDPK1 contributes to antimonial resistance in the parasite. This screen is powerful in exploring networks of drug resistance in an organism with diploid to mosaic aneuploid genome, hence widening the scope of its applicability. Here, Bhattacharya et al. chemically mutagenize Leishmania and identify genes associated with resistance to miltefosine and paromomycin by next generation sequencing. The study shows that a protein kinase (CDPK1) can mediate resistance to paromomycin by affecting translation.
Collapse
|
15
|
Elling U, Woods M, Forment JV, Fu B, Yang F, Ng BL, Vicente JR, Adams DJ, Doe B, Jackson SP, Penninger JM, Balmus G. Derivation and maintenance of mouse haploid embryonic stem cells. Nat Protoc 2019; 14:1991-2014. [PMID: 31160788 PMCID: PMC6997032 DOI: 10.1038/s41596-019-0169-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 03/21/2019] [Indexed: 01/05/2023]
Abstract
Ploidy represents the number of chromosome sets in a cell. Although gametes have a haploid genome (n), most mammalian cells have diploid genomes (2n). The diploid status of most cells correlates with the number of probable alleles for each autosomal gene and makes it difficult to target these genes via mutagenesis techniques. Here, we describe a 7-week protocol for the derivation of mouse haploid embryonic stem cells (hESCs) from female gametes that also outlines how to maintain the cells once derived. We detail additional procedures that can be used with cell lines obtained from the mouse Haplobank, a biobank of >100,000 individual mouse hESC lines with targeted mutations in 16,970 genes. hESCs can spontaneously diploidize and can be maintained in both haploid and diploid states. Mouse hESCs are genomically and karyotypically stable, are innately immortal and isogenic, and can be derived in an array of differentiated cell types; they are thus highly amenable to genetic screens and to defining molecular connectivity pathways.
Collapse
Affiliation(s)
- Ulrich Elling
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna Biocenter (VBC), Vienna, Austria
| | - Michael Woods
- UK Dementia Research Institute at University of Cambridge and Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Wellcome Trust Sanger Institute, Cambridge, UK
| | - Josep V Forment
- DNA Damage Response Biology, Oncology Innovative Medicines, AstraZeneca, Cambridge, UK
| | - Beiyuan Fu
- Wellcome Trust Sanger Institute, Cambridge, UK
| | | | - Bee Ling Ng
- Wellcome Trust Sanger Institute, Cambridge, UK
| | - Jose R Vicente
- UK Dementia Research Institute at University of Cambridge and Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | | | - Brendan Doe
- Wellcome Trust Sanger Institute, Cambridge, UK
| | - Stephen P Jackson
- The Wellcome Trust CRUK Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna Biocenter (VBC), Vienna, Austria.
- Department of Medical Genetics, Life Science Institute, University of British Columbia, Vancouver, BC, Canada.
| | - Gabriel Balmus
- UK Dementia Research Institute at University of Cambridge and Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
| |
Collapse
|
16
|
He W, Chen J, Gao S. Mammalian haploid stem cells: establishment, engineering and applications. Cell Mol Life Sci 2019; 76:2349-2367. [PMID: 30888429 PMCID: PMC11105600 DOI: 10.1007/s00018-019-03069-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 02/23/2019] [Accepted: 03/13/2019] [Indexed: 12/19/2022]
Abstract
Haploid embryonic stem cells (haESCs) contain only one set of genomes inherited from the sperm or egg and are termed AG- or PG-haESCs, respectively. Mammalian haESCs show genome-wide hypomethylation and dysregulated imprinting, whereas they can sustain genome integrity during derivation and long-term propagation. In addition, haESCs exhibit similar pluripotency to traditional diploid ESCs but are unique because they function as gametes and have been used to produce semi-cloned animals. More strikingly, unisexual reproduction has been achieved in mice by using haESCs. In combination with a gene editing or screening system, haESCs represent a powerful tool for studies of underlying gene functions and explorations of mechanisms of genetic and epigenetic regulation not only at the cellular level in vitro but also at the animal level in vivo. More importantly, genetically edited AG-haESC lines may further serve as an ideal candidate for the establishment of a sperm bank, which is a highly cost-effective approach, and a wide range of engineered semi-cloned mice have been produced. Here, we review the historical development, characteristics, advantages and disadvantages of haESCs. Additionally, we present an in-depth discussion of the recent advances in haESCs and their potential applications.
Collapse
Affiliation(s)
- Wenteng He
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200120, China
| | - Jiayu Chen
- Clinical and Translation Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Shaorong Gao
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200120, China.
- Clinical and Translation Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
17
|
Cui T, Li Z, Zhou Q, Li W. Current advances in haploid stem cells. Protein Cell 2019; 11:23-33. [PMID: 31004328 PMCID: PMC6949308 DOI: 10.1007/s13238-019-0625-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 03/29/2019] [Indexed: 12/14/2022] Open
Abstract
Diploidy is the typical genomic mode in all mammals. Haploid stem cells are artificial cell lines experimentally derived in vitro in the form of different types of stem cells, which combine the characteristics of haploidy with a broad developmental potential and open the possibility to uncover biological mysteries at a genomic scale. To date, a multitude of haploid stem cell types from mouse, rat, monkey and humans have been derived, as more are in development. They have been applied in high-throughput genetic screens and mammalian assisted reproduction. Here, we review the generation, unique properties and broad applications of these remarkable cells.
Collapse
Affiliation(s)
- Tongtong Cui
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhikun Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qi Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China. .,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
18
|
Hinterndorfer M, Zuber J. Functional-genetic approaches to understanding drug response and resistance. Curr Opin Genet Dev 2019; 54:41-47. [PMID: 30951975 DOI: 10.1016/j.gde.2019.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 03/03/2019] [Indexed: 12/13/2022]
Abstract
Drug development remains a slow and expensive process, while the effective use of established therapeutics is widely hampered by our limited understanding of response and resistance mechanisms. Functional-genetic tools such as CRISPR/Cas9, advanced RNAi methods, and targeted protein degradation, together with other emerging technologies such as time-resolved and single-cell transcriptomics, fundamentally change the way we can search for candidate therapeutic targets and evaluate them before drug development. In addition, for already available therapeutics these tools open vast opportunities for probing response mechanisms and predictive biomarkers, and thereby guide the development of personalized therapies. Here, we review promising applications and remaining limitations of recently established functional-genetic tools for high-throughput screening and the in-depth analysis of candidate targets and established drugs.
Collapse
Affiliation(s)
- Matthias Hinterndorfer
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Johannes Zuber
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria; Medical University of Vienna, Vienna BioCenter (VBC), 1030 Vienna, Austria.
| |
Collapse
|
19
|
Sahu AD, S Lee J, Wang Z, Zhang G, Iglesias-Bartolome R, Tian T, Wei Z, Miao B, Nair NU, Ponomarova O, Friedman AA, Amzallag A, Moll T, Kasumova G, Greninger P, Egan RK, Damon LJ, Frederick DT, Jerby-Arnon L, Wagner A, Cheng K, Park SG, Robinson W, Gardner K, Boland G, Hannenhalli S, Herlyn M, Benes C, Flaherty K, Luo J, Gutkind JS, Ruppin E. Genome-wide prediction of synthetic rescue mediators of resistance to targeted and immunotherapy. Mol Syst Biol 2019; 15:e8323. [PMID: 30858180 PMCID: PMC6413886 DOI: 10.15252/msb.20188323] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 12/31/2018] [Accepted: 01/21/2019] [Indexed: 01/09/2023] Open
Abstract
Most patients with advanced cancer eventually acquire resistance to targeted therapies, spurring extensive efforts to identify molecular events mediating therapy resistance. Many of these events involve synthetic rescue (SR) interactions, where the reduction in cancer cell viability caused by targeted gene inactivation is rescued by an adaptive alteration of another gene (the rescuer). Here, we perform a genome-wide in silico prediction of SR rescuer genes by analyzing tumor transcriptomics and survival data of 10,000 TCGA cancer patients. Predicted SR interactions are validated in new experimental screens. We show that SR interactions can successfully predict cancer patients' response and emerging resistance. Inhibiting predicted rescuer genes sensitizes resistant cancer cells to therapies synergistically, providing initial leads for developing combinatorial approaches to overcome resistance proactively. Finally, we show that the SR analysis of melanoma patients successfully identifies known mediators of resistance to immunotherapy and predicts novel rescuers.
Collapse
Affiliation(s)
- Avinash Das Sahu
- Department of Biostatistics and Computational Biology, Harvard School of Public Health, Boston, MA, USA
- Department of Medicine and Harvard Medical School, Massachusetts General Hospital Cancer Center, Boston, MA, USA
- University of Maryland Institute of Advanced Computer Science (UMIACS), University of Maryland, College Park, MD, USA
| | - Joo S Lee
- University of Maryland Institute of Advanced Computer Science (UMIACS), University of Maryland, College Park, MD, USA
- Cancer Data Science Lab, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Zhiyong Wang
- Department of Pharmacology & Moores Cancer Center, University of California, San Diego La Jolla, CA, USA
| | - Gao Zhang
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, PA, USA
- Department of Neurosurgery and The Preston Robert Tisch Brain Tumor Center, Duke University, Durham, NC, USA
| | | | - Tian Tian
- New Jersey Institute of Technology, Newark, NJ, USA
| | - Zhi Wei
- New Jersey Institute of Technology, Newark, NJ, USA
| | - Benchun Miao
- Department of Medicine and Harvard Medical School, Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Nishanth Ulhas Nair
- University of Maryland Institute of Advanced Computer Science (UMIACS), University of Maryland, College Park, MD, USA
- Cancer Data Science Lab, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Olga Ponomarova
- University of Massachusetts Medical School, Worcester, MA, USA
| | - Adam A Friedman
- Department of Medicine and Harvard Medical School, Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Arnaud Amzallag
- Department of Medicine and Harvard Medical School, Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Tabea Moll
- Department of Medicine and Harvard Medical School, Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Gyulnara Kasumova
- Department of Medicine and Harvard Medical School, Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Patricia Greninger
- Department of Medicine and Harvard Medical School, Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Regina K Egan
- Department of Medicine and Harvard Medical School, Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Leah J Damon
- Department of Medicine and Harvard Medical School, Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Dennie T Frederick
- Department of Medicine and Harvard Medical School, Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Livnat Jerby-Arnon
- Schools of Computer Science & Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Allon Wagner
- Department of Electrical Engineering and Computer Science, the Center for Computational Biology, University of California, Berkeley, CA, USA
| | - Kuoyuan Cheng
- University of Maryland Institute of Advanced Computer Science (UMIACS), University of Maryland, College Park, MD, USA
| | - Seung Gu Park
- Department of Biostatistics and Computational Biology, Harvard School of Public Health, Boston, MA, USA
| | - Welles Robinson
- University of Maryland Institute of Advanced Computer Science (UMIACS), University of Maryland, College Park, MD, USA
| | - Kevin Gardner
- Cancer Data Science Lab, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Genevieve Boland
- Department of Medicine and Harvard Medical School, Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Sridhar Hannenhalli
- University of Maryland Institute of Advanced Computer Science (UMIACS), University of Maryland, College Park, MD, USA
| | - Meenhard Herlyn
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, PA, USA
| | - Cyril Benes
- Department of Medicine and Harvard Medical School, Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Keith Flaherty
- Department of Medicine and Harvard Medical School, Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Ji Luo
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - J Silvio Gutkind
- Department of Pharmacology & Moores Cancer Center, University of California, San Diego La Jolla, CA, USA
| | - Eytan Ruppin
- University of Maryland Institute of Advanced Computer Science (UMIACS), University of Maryland, College Park, MD, USA
- Cancer Data Science Lab, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Schools of Computer Science & Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
20
|
Gain- and Loss-of-Function Screens Coupled to Next-Generation Sequencing for Antibiotic Mode of Action and Resistance Studies in Streptococcus pneumoniae. Antimicrob Agents Chemother 2019; 63:AAC.02381-18. [PMID: 30783004 DOI: 10.1128/aac.02381-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 02/08/2019] [Indexed: 12/23/2022] Open
Abstract
Two whole-genome screening approaches are described for studying the mode of action and the mechanisms of resistance to trimethoprim (TMP) in the Gram-positive Streptococcus pneumoniae The gain-of-function approach (Int-Seq) relies on a genomic library of DNA fragments integrated into a fucose-inducible cassette. The second approach, leading to both gain- and loss-of-function mutation, is based on chemical mutagenesis coupled to next-generation sequencing (Mut-Seq). Both approaches pointed at the drug target dihydrofolate reductase (DHFR) as a major resistance mechanism to TMP. Resistance was achieved by dhfr overexpression either through the addition of fucose (Int-Seq) or by mutations upstream of the gene (Mut-Seq). Three types of mutations increased expression by disrupting a predicted Rho-independent terminator upstream of dhfr Known and novel DHFR mutations were also detected by Mut-Seq, and these were functionally validated for TMP resistance. The two approaches also suggested that an increase in the metabolic flux from purine synthesis to GTP and then to folate can modulate the susceptibility to TMP. Finally, we provide evidence for a novel role of the ABC transporter PatAB in TMP susceptibility. Our genomic screens highlighted novel aspects on the mode of action and mechanisms of resistance to antibiotics.
Collapse
|
21
|
Synthetic lethality guiding selection of drug combinations in ovarian cancer. PLoS One 2019; 14:e0210859. [PMID: 30682083 PMCID: PMC6347359 DOI: 10.1371/journal.pone.0210859] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 01/03/2019] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Synthetic lethality describes a relationship between two genes where single loss of either gene does not trigger significant impact on cell viability, but simultaneous loss of both gene functions results in lethality. Targeting synthetic lethal interactions with drug combinations promises increased efficacy in tumor therapy. MATERIALS AND METHODS We established a set of synthetic lethal interactions using publicly available data from yeast screens which were mapped to their respective human orthologs using information from orthology databases. This set of experimental synthetic lethal interactions was complemented by a set of predicted synthetic lethal interactions based on a set of protein meta-data like e.g. molecular pathway assignment. Based on the combined set, we evaluated drug combinations used in late stage clinical development (clinical phase III and IV trials) or already in clinical use for ovarian cancer with respect to their effect on synthetic lethal interactions. We furthermore identified a set of drug combinations currently not being tested in late stage ovarian cancer clinical trials that however have impact on synthetic lethal interactions thus being worth of further investigations regarding their therapeutic potential in ovarian cancer. RESULTS Twelve of the tested drug combinations addressed a synthetic lethal interaction with the anti-VEGF inhibitor bevacizumab in combination with paclitaxel being the most studied drug combination addressing the synthetic lethal pair between VEGFA and BCL2. The set of 84 predicted drug combinations for example holds the combination of the PARP inhibitor olaparib and paclitaxel, which showed efficacy in phase II clinical studies. CONCLUSION A set of drug combinations currently not tested in late stage ovarian cancer clinical trials was identified having impact on synthetic lethal interactions thus being worth of further investigations regarding their therapeutic potential in ovarian cancer.
Collapse
|
22
|
Abstract
Forward genetics can provide insight into molecular pathways as has been demonstrated by advances in cell biology from comprehensive genetic studies in simple organisms. Recently, techniques have become available that promise a similar potential for understanding developmental pathways in mammals. Here we describe a genetic forward screening approach for identifying factors involved in X chromosome inactivation that is based on haploid mouse embryonic stem cells. Using a genetically encoded selection system screening of large mutant pools can identify candidate silencing factors with high confidence.
Collapse
|
23
|
He ZQ, Xia BL, Wang YK, Li J, Feng GH, Zhang LL, Li YH, Wan HF, Li TD, Xu K, Yuan XW, Li YF, Zhang XX, Zhang Y, Wang L, Li W, Zhou Q. Generation of Mouse Haploid Somatic Cells by Small Molecules for Genome-wide Genetic Screening. Cell Rep 2018; 20:2227-2237. [PMID: 28854370 DOI: 10.1016/j.celrep.2017.07.081] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 07/05/2017] [Accepted: 07/28/2017] [Indexed: 01/09/2023] Open
Abstract
The recent success of derivation of mammalian haploid embryonic stem cells (haESCs) has provided a powerful tool for large-scale functional analysis of the mammalian genome. However, haESCs rapidly become diploidized after differentiation, posing challenges for genetic analysis. Here, we show that the spontaneous diploidization of haESCs happens in metaphase due to mitotic slippage. Diploidization can be suppressed by small-molecule-mediated inhibition of CDK1 and ROCK. Through ROCK inhibition, we can generate haploid somatic cells of all three germ layers from haESCs, including terminally differentiated neurons. Using piggyBac transposon-based insertional mutagenesis, we generated a haploid neural cell library harboring genome-wide mutations for genetic screening. As a proof of concept, we screened for Mn2+-mediated toxicity and identified the Park2 gene. Our findings expand the applications of mouse haploid cell technology to somatic cell types and may also shed light on the mechanisms of ploidy maintenance.
Collapse
Affiliation(s)
- Zheng-Quan He
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bao-Long Xia
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yu-Kai Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jing Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Gui-Hai Feng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin-Lin Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu-Huan Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hai-Feng Wan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Tian-Da Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Kai Xu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xue-Wei Yuan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yu-Fei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin-Xin Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Ying Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Liu Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
24
|
Herzog M, Puddu F, Coates J, Geisler N, Forment JV, Jackson SP. Detection of functional protein domains by unbiased genome-wide forward genetic screening. Sci Rep 2018; 8:6161. [PMID: 29670134 PMCID: PMC5906580 DOI: 10.1038/s41598-018-24400-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/22/2018] [Indexed: 12/21/2022] Open
Abstract
Establishing genetic and chemo-genetic interactions has played key roles in elucidating mechanisms by which certain chemicals perturb cellular functions. In contrast to gene disruption/depletion strategies to identify mechanisms of drug resistance, searching for point-mutational genetic suppressors that can identify separation- or gain-of-function mutations has been limited. Here, by demonstrating its utility in identifying chemical-genetic suppressors of sensitivity to the DNA topoisomerase I poison camptothecin or the poly(ADP-ribose) polymerase inhibitor olaparib, we detail an approach allowing systematic, large-scale detection of spontaneous or chemically-induced suppressor mutations in yeast or haploid mammalian cells in a short timeframe, and with potential applications in other haploid systems. In addition to applications in molecular biology research, this protocol can be used to identify drug targets and predict drug-resistance mechanisms. Mapping suppressor mutations on the primary or tertiary structures of protein suppressor hits provides insights into functionally relevant protein domains. Importantly, we show that olaparib resistance is linked to missense mutations in the DNA binding regions of PARP1, but not in its catalytic domain. This provides experimental support to the concept of PARP1 trapping on DNA as the prime source of toxicity to PARP inhibitors, and points to a novel olaparib resistance mechanism with potential therapeutic implications.
Collapse
Affiliation(s)
- Mareike Herzog
- The Wellcome/CRUK Gurdon Institute and Department of Biochemistry, University of Cambridge, Tennis Court Road, CB2 1QN, Cambridge, UK
| | - Fabio Puddu
- The Wellcome/CRUK Gurdon Institute and Department of Biochemistry, University of Cambridge, Tennis Court Road, CB2 1QN, Cambridge, UK
| | - Julia Coates
- The Wellcome/CRUK Gurdon Institute and Department of Biochemistry, University of Cambridge, Tennis Court Road, CB2 1QN, Cambridge, UK
| | - Nicola Geisler
- The Wellcome/CRUK Gurdon Institute and Department of Biochemistry, University of Cambridge, Tennis Court Road, CB2 1QN, Cambridge, UK
| | - Josep V Forment
- The Wellcome/CRUK Gurdon Institute and Department of Biochemistry, University of Cambridge, Tennis Court Road, CB2 1QN, Cambridge, UK.
- AstraZeneca, Oncology DNA damage response group, Hodgkin Building, 310 Cambridge Science Park, Milton Road, CB4 0WG, Cambridge, UK.
| | - Stephen P Jackson
- The Wellcome/CRUK Gurdon Institute and Department of Biochemistry, University of Cambridge, Tennis Court Road, CB2 1QN, Cambridge, UK.
| |
Collapse
|
25
|
Target identification of small molecules using large-scale CRISPR-Cas mutagenesis scanning of essential genes. Nat Commun 2018; 9:502. [PMID: 29402884 PMCID: PMC5799254 DOI: 10.1038/s41467-017-02349-8] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 11/22/2017] [Indexed: 12/22/2022] Open
Abstract
Unraveling the mechanism of action and molecular target of small molecules remains a major challenge in drug discovery. While many cancer drugs target genetic vulnerabilities, loss-of-function screens fail to identify essential genes in drug mechanism of action. Here, we report CRISPRres, a CRISPR-Cas-based genetic screening approach to rapidly derive and identify drug resistance mutations in essential genes. It exploits the local genetic variation created by CRISPR-Cas-induced non-homologous end-joining (NHEJ) repair to generate a wide variety of functional in-frame mutations. Using large sgRNA tiling libraries and known drug-target pairs, we validate it as a target identification approach. We apply CRISPRres to the anticancer agent KPT-9274 and identify nicotinamide phosphoribosyltransferase (NAMPT) as its main target. These results present a powerful and simple genetic approach to create many protein variants that, in combination with positive selection, can be applied to reveal the cellular target of small-molecule inhibitors.
Collapse
|
26
|
Horn M, Kroef V, Allmeroth K, Schuller N, Miethe S, Peifer M, Penninger JM, Elling U, Denzel MS. Unbiased compound-protein interface mapping and prediction of chemoresistance loci through forward genetics in haploid stem cells. Oncotarget 2018. [PMID: 29515774 PMCID: PMC5839405 DOI: 10.18632/oncotarget.24305] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Forward genetic screens in haploid mammalian cells have recently emerged as powerful tools for the discovery and investigation of recessive traits. Use of the haploid system provides unique genetic tractability and resolution. Upon positive selection, these screens typically employ analysis of loss-of-function (LOF) alleles and are thus limited to non-essential genes. Many relevant compounds, including anti-cancer therapeutics, however, target essential genes, precluding positive selection of LOF alleles. Here, we asked whether the use of random and saturating chemical mutagenesis might enable screens that identify essential biological targets of toxic compounds. We compare and contrast chemical mutagenesis with insertional mutagenesis. Selecting mutagenized cells with thapsigargin, an inhibitor of the essential Ca2+ pump SERCA2, insertional mutagenesis retrieved cell clones overexpressing SERCA2. With chemical mutagenesis, we identify six single amino acid substitutions in the known SERCA2-thapsigargin binding interface that confer drug resistance. In a second screen, we used the anti-cancer drug MG132/bortezomib (Velcade), which inhibits proteasome activity. Using chemical mutagenesis, we found 7 point mutations in the essential subunit Psmb5 that map to the bortezomib binding surface. Importantly, 4 of these had previously been identified in human tumors with acquired bortezomib resistance. Insertional mutagenesis did not identify Psmb5 in this screen, demonstrating the unique ability of chemical mutagenesis to identify relevant point mutations in essential genes. Thus, chemical mutagenesis in haploid embryonic stem cells can define the interaction of toxic small molecules with essential proteins at amino acid resolution, fully mapping small molecule-protein binding interfaces.
Collapse
Affiliation(s)
- Moritz Horn
- Max Planck Institute for Biology of Aging, Cologne D-50931, Germany
| | - Virginia Kroef
- Max Planck Institute for Biology of Aging, Cologne D-50931, Germany
| | - Kira Allmeroth
- Max Planck Institute for Biology of Aging, Cologne D-50931, Germany
| | - Nicole Schuller
- Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna Biocenter, Vienna A-1030, Austria
| | - Stephan Miethe
- Max Planck Institute for Biology of Aging, Cologne D-50931, Germany
| | - Martin Peifer
- Center for Molecular Medicine Cologne, University of Cologne, Cologne D-50931, Germany.,Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty University of Cologne, Cologne D-50931, Germany
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna Biocenter, Vienna A-1030, Austria
| | - Ulrich Elling
- Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna Biocenter, Vienna A-1030, Austria
| | - Martin S Denzel
- Max Planck Institute for Biology of Aging, Cologne D-50931, Germany.,CECAD-Cluster of Excellence University of Cologne, Cologne D-50931, Germany
| |
Collapse
|
27
|
Di Minin G, Postlmayr A, Wutz A. HaSAPPy: A tool for candidate identification in pooled forward genetic screens of haploid mammalian cells. PLoS Comput Biol 2018; 14:e1005950. [PMID: 29337991 PMCID: PMC5798846 DOI: 10.1371/journal.pcbi.1005950] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 02/05/2018] [Accepted: 01/03/2018] [Indexed: 12/28/2022] Open
Abstract
Haploid cells are increasingly used for screening of complex pathways in animal genomes. Hemizygous mutations introduced through viral insertional mutagenesis can be directly selected for phenotypic changes. Here we present HaSAPPy a tool for analysing sequencing datasets of screens using insertional mutations in large pools of haploid cells. Candidate gene prediction is implemented through identification of enrichment of insertional mutations after selection by simultaneously evaluating several parameters. We have developed HaSAPPy for analysis of genetic screens for silencing factors of X chromosome inactivation in haploid mouse embryonic stem cells. To benchmark the performance, we further analyse several datasets of genetic screens in human haploid cells for which candidates have been validated. Our results support the effective candidate prediction strategy of HaSAPPy. HaSAPPy is implemented in Python, licensed under the MIT license, and is available from https://github.com/gdiminin/HaSAPPy.
Collapse
Affiliation(s)
- Giulio Di Minin
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology ETH Hönggerberg, Zurich, Switzerland
- * E-mail: (AW); (GDM)
| | - Andreas Postlmayr
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology ETH Hönggerberg, Zurich, Switzerland
| | - Anton Wutz
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology ETH Hönggerberg, Zurich, Switzerland
- * E-mail: (AW); (GDM)
| |
Collapse
|
28
|
Repair of UV-Induced DNA Damage Independent of Nucleotide Excision Repair Is Masked by MUTYH. Mol Cell 2017; 68:797-807.e7. [PMID: 29149600 DOI: 10.1016/j.molcel.2017.10.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 09/05/2017] [Accepted: 10/17/2017] [Indexed: 02/05/2023]
Abstract
DNA lesions caused by UV damage are thought to be repaired solely by the nucleotide excision repair (NER) pathway in human cells. Patients carrying mutations within genes functioning in this pathway display a range of pathologies, including an increased susceptibility to cancer, premature aging, and neurological defects. There are currently no curative therapies available. Here we performed a high-throughput chemical screen for agents that could alleviate the cellular sensitivity of NER-deficient cells to UV-induced DNA damage. This led to the identification of the clinically approved anti-diabetic drug acetohexamide, which promoted clearance of UV-induced DNA damage without the accumulation of chromosomal aberrations, hence promoting cellular survival. Acetohexamide exerted this protective function by antagonizing expression of the DNA glycosylase, MUTYH. Together, our data reveal the existence of an NER-independent mechanism to remove UV-induced DNA damage and prevent cell death.
Collapse
|
29
|
Moder M, Velimezi G, Owusu M, Mazouzi A, Wiedner M, Ferreira da Silva J, Robinson-Garcia L, Schischlik F, Slavkovsky R, Kralovics R, Schuster M, Bock C, Ideker T, Jackson SP, Menche J, Loizou JI. Parallel genome-wide screens identify synthetic viable interactions between the BLM helicase complex and Fanconi anemia. Nat Commun 2017; 8:1238. [PMID: 29089570 PMCID: PMC5663702 DOI: 10.1038/s41467-017-01439-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 09/15/2017] [Indexed: 02/08/2023] Open
Abstract
Maintenance of genome integrity via repair of DNA damage is a key biological process required to suppress diseases, including Fanconi anemia (FA). We generated loss-of-function human haploid cells for FA complementation group C (FANCC), a gene encoding a component of the FA core complex, and used genome-wide CRISPR libraries as well as insertional mutagenesis to identify synthetic viable (genetic suppressor) interactions for FA. Here we show that loss of the BLM helicase complex suppresses FANCC phenotypes and we confirm this interaction in cells deficient for FA complementation group I and D2 (FANCI and FANCD2) that function as part of the FA I-D2 complex, indicating that this interaction is not limited to the FA core complex, hence demonstrating that systematic genome-wide screening approaches can be used to reveal genetic viable interactions for DNA repair defects.
Collapse
Affiliation(s)
- Martin Moder
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090, Vienna, Austria
| | - Georgia Velimezi
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090, Vienna, Austria
| | - Michel Owusu
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090, Vienna, Austria
| | - Abdelghani Mazouzi
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090, Vienna, Austria
| | - Marc Wiedner
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090, Vienna, Austria
| | - Joana Ferreira da Silva
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090, Vienna, Austria
| | - Lydia Robinson-Garcia
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090, Vienna, Austria
| | - Fiorella Schischlik
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090, Vienna, Austria
| | - Rastislav Slavkovsky
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090, Vienna, Austria
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Robert Kralovics
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090, Vienna, Austria
| | - Michael Schuster
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090, Vienna, Austria
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090, Vienna, Austria
| | - Trey Ideker
- Department of Medicine, Division of Genetics, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
- The Cancer Cell Map Initiative, La Jolla, CA, 92093, USA
| | - Stephen P Jackson
- The Wellcome Trust and Cancer Research UK Gurdon Institute, and Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QN, UK
- The Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Jörg Menche
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090, Vienna, Austria
| | - Joanna I Loizou
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090, Vienna, Austria.
| |
Collapse
|
30
|
Simple Meets Single: The Application of CRISPR/Cas9 in Haploid Embryonic Stem Cells. Stem Cells Int 2017; 2017:2601746. [PMID: 29109740 PMCID: PMC5646320 DOI: 10.1155/2017/2601746] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/08/2017] [Accepted: 08/14/2017] [Indexed: 01/22/2023] Open
Abstract
The CRISPR/Cas9 system provides a powerful method for the genetic manipulation of the mammalian genome, allowing knockout of individual genes as well as the generation of genome-wide knockout cell libraries for genetic screening. However, the diploid status of most mammalian cells restricts the application of CRISPR/Cas9 in genetic screening. Mammalian haploid embryonic stem cells (haESCs) have only one set of chromosomes per cell, avoiding the issue of heterozygous recessive mutations in diploid cells. Thus, the combination of haESCs and CRISPR/Cas9 facilitates the generation of genome-wide knockout cell libraries for genetic screening. Here, we review recent progress in CRISPR/Cas9 and haPSCs and discuss their applications in genetic screening.
Collapse
|
31
|
Freimann R, Wutz A. A fast and efficient size separation method for haploid embryonic stem cells. BIOMICROFLUIDICS 2017; 11:054117. [PMID: 29152028 PMCID: PMC5663646 DOI: 10.1063/1.5006326] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 10/19/2017] [Indexed: 05/22/2023]
Abstract
Hemizygous mutations introduced in haploid genomes can directly expose a phenotype, thus facilitating gene function analysis and forward genetic screening. Recently, mammalian haploid cells could be derived from mouse, rat, monkey, and human embryos and have been applied to screens of cellular mechanisms including cell signaling, pathogen host factors, and developmental pathways. Notably, haploid cell cultures have an intrinsic tendency for diploidization and, thus, require periodic cell sorting. Here, we report a method for rapid purification of haploid mouse embryonic stem cells from mixed cell populations with high viability and yield. Our method uses membranes with micrometer pores for force-free separation and facilitates enrichment of haploid cells without flow cytometry. The separation method simplifies maintaining haploid cell cultures and has further applications in establishing haploid cell lines from embryos and isolating cell cycle phases of mammalian cells.
Collapse
Affiliation(s)
- Remo Freimann
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH Hönggerberg, Otto-Stern-Weg 7, 8093 Zurich, Switzerland
| | - Anton Wutz
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH Hönggerberg, Otto-Stern-Weg 7, 8093 Zurich, Switzerland
| |
Collapse
|
32
|
A p53-dependent response limits the viability of mammalian haploid cells. Proc Natl Acad Sci U S A 2017; 114:9367-9372. [PMID: 28808015 DOI: 10.1073/pnas.1705133114] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The recent development of haploid cell lines has facilitated forward genetic screenings in mammalian cells. These lines include near-haploid human cell lines isolated from a patient with chronic myelogenous leukemia (KBM7 and HAP1), as well as haploid embryonic stem cells derived from several organisms. In all cases, haploidy was shown to be an unstable state, so that cultures of mammalian haploid cells rapidly become enriched in diploids. Here we show that the observed diploidization is due to a proliferative disadvantage of haploid cells compared with diploid cells. Accordingly, single-cell-sorted haploid mammalian cells maintain the haploid state for prolonged periods, owing to the absence of competing diploids. Although the duration of interphase is similar in haploid and diploid cells, haploid cells spend longer in mitosis, indicative of problems in chromosome segregation. In agreement with this, a substantial proportion of the haploids die at or shortly after the last mitosis through activation of a p53-dependent cytotoxic response. Finally, we show that p53 deletion stabilizes haploidy in human HAP1 cells and haploid mouse embryonic stem cells. We propose that, similar to aneuploidy or tetraploidy, haploidy triggers a p53-dependent response that limits the fitness of mammalian cells.
Collapse
|
33
|
Abstract
An alarming number of papers from laboratories nominating new cancer drug targets contain findings that cannot be reproduced by others or are simply not robust enough to justify drug discovery efforts. This problem probably has many causes, including an underappreciation of the danger of being misled by off-target effects when using pharmacological or genetic perturbants in complex biological assays. This danger is particularly acute when, as is often the case in cancer pharmacology, the biological phenotype being measured is a 'down' readout (such as decreased proliferation, decreased viability or decreased tumour growth) that could simply reflect a nonspecific loss of cellular fitness. These problems are compounded by multiple hypothesis testing, such as when candidate targets emerge from high-throughput screens that interrogate multiple targets in parallel, and by a publication and promotion system that preferentially rewards positive findings. In this Perspective, I outline some of the common pitfalls in preclinical cancer target identification and some potential approaches to mitigate them.
Collapse
Affiliation(s)
- William G Kaelin
- Howard Hughes Medical Institute, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA
| |
Collapse
|
34
|
Affiliation(s)
- Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, China
- University of Chinese Academy of Sciences, China
| | - Qi Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, China
- University of Chinese Academy of Sciences, China
| |
Collapse
|