1
|
Ji L, Xu S, Zhang Y, Cheng H. Screening of broad-host expression promoters for shuttle expression vectors in non-conventional yeasts and bacteria. Microb Cell Fact 2024; 23:230. [PMID: 39152436 PMCID: PMC11330142 DOI: 10.1186/s12934-024-02506-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024] Open
Abstract
BACKGROUND Non-conventional yeasts and bacteria gain significance in synthetic biology for their unique metabolic capabilities in converting low-cost renewable feedstocks into valuable products. Improving metabolic pathways and increasing bioproduct yields remain dependent on the strategically use of various promoters in these microbes. The development of broad-spectrum promoter libraries with varying strengths for different hosts is attractive for biosynthetic engineers. RESULTS In this study, five Yarrowia lipolytica constitutive promoters (yl.hp4d, yl.FBA1in, yl.TEF1, yl.TDH1, yl.EXP1) and five Kluyveromyces marxianus constitutive promoters (km.PDC1, km.FBA1, km.TEF1, km.TDH3, km.ENO1) were selected to construct promoter-reporter vectors, utilizing α-amylase and red fluorescent protein (RFP) as reporter genes. The promoters' strengths were systematically characterized across Y. lipolytica, K. marxianus, Pichia pastoris, Escherichia coli, and Corynebacterium glutamicum. We discovered that five K. marxianus promoters can all express genes in Y. lipolytica and that five Y. lipolytica promoters can all express genes in K. marxianus with variable expression strengths. Significantly, the yl.TEF1 and km.TEF1 yeast promoters exhibited their adaptability in P. pastoris, E. coli, and C. glutamicum. In yeast P. pastoris, the yl.TEF1 promoter exhibited substantial expression of both amylase and RFP. In bacteria E. coli and C. glutamicum, the eukaryotic km.TEF1 promoter demonstrated robust expression of RFP. Significantly, in E. coli, The RFP expression strength of the km.TEF1 promoter reached ∼20% of the T7 promoter. CONCLUSION Non-conventional yeast promoters with diverse and cross-domain applicability have great potential for developing innovative and dynamic regulated systems that can effectively manage carbon flux and enhance target bioproduct synthesis across diverse microbial hosts.
Collapse
Affiliation(s)
- Liyun Ji
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Shuo Xu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yue Zhang
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hairong Cheng
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
2
|
Faran M, Ray D, Nag S, Raucci U, Parrinello M, Bisker G. A Stochastic Landscape Approach for Protein Folding State Classification. J Chem Theory Comput 2024; 20:5428-5438. [PMID: 38924770 PMCID: PMC11238538 DOI: 10.1021/acs.jctc.4c00464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Abstract
Protein folding is a critical process that determines the functional state of proteins. Proper folding is essential for proteins to acquire their functional three-dimensional structures and execute their biological role, whereas misfolded proteins can lead to various diseases, including neurodegenerative disorders like Alzheimer's and Parkinson's. Therefore, a deeper understanding of protein folding is vital for understanding disease mechanisms and developing therapeutic strategies. This study introduces the Stochastic Landscape Classification (SLC), an innovative, automated, nonlearning algorithm that quantitatively analyzes protein folding dynamics. Focusing on collective variables (CVs) - low-dimensional representations of complex dynamical systems like molecular dynamics (MD) of macromolecules - the SLC approach segments the CVs into distinct macrostates, revealing the protein folding pathway explored by MD simulations. The segmentation is achieved by analyzing changes in CV trends and clustering these segments using a standard density-based spatial clustering of applications with noise (DBSCAN) scheme. Applied to the MD-based CV trajectories of Chignolin and Trp-Cage proteins, the SLC demonstrates apposite accuracy, validated by comparing standard classification metrics against ground-truth data. These metrics affirm the efficacy of the SLC in capturing intricate protein dynamics and offer a method to evaluate and select the most informative CVs. The practical application of this technique lies in its ability to provide a detailed, quantitative description of protein folding processes, with significant implications for understanding and manipulating protein behavior in industrial and pharmaceutical contexts.
Collapse
Affiliation(s)
- Michael Faran
- Department
of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
| | - Dhiman Ray
- Atomistic
Simulations, Italian Institute of Technology, Via Enrico Melen 83, 16152 Genova, Italy
| | - Shubhadeep Nag
- Department
of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
| | - Umberto Raucci
- Atomistic
Simulations, Italian Institute of Technology, Via Enrico Melen 83, 16152 Genova, Italy
| | - Michele Parrinello
- Atomistic
Simulations, Italian Institute of Technology, Via Enrico Melen 83, 16152 Genova, Italy
| | - Gili Bisker
- Department
of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
- The
Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel
- The
Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
- The
Center for Light-Matter Interaction, Tel
Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
3
|
Olavarria K, Becker MV, Sousa DZ, van Loosdrecht MC, Wahl SA. Design and thermodynamic analysis of a pathway enabling anaerobic production of poly-3-hydroxybutyrate in Escherichia coli. Synth Syst Biotechnol 2023; 8:629-639. [PMID: 37823039 PMCID: PMC10562921 DOI: 10.1016/j.synbio.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 10/13/2023] Open
Abstract
Utilizing anaerobic metabolisms for the production of biotechnologically relevant products presents potential advantages, such as increased yields and reduced energy dissipation. However, lower energy dissipation may indicate that certain reactions are operating closer to their thermodynamic equilibrium. While stoichiometric analyses and genetic modifications are frequently employed in metabolic engineering, the use of thermodynamic tools to evaluate the feasibility of planned interventions is less documented. In this study, we propose a novel metabolic engineering strategy to achieve an efficient anaerobic production of poly-(R)-3-hydroxybutyrate (PHB) in the model organism Escherichia coli. Our approach involves re-routing of two-thirds of the glycolytic flux through non-oxidative glycolysis and coupling PHB synthesis with NADH re-oxidation. We complemented our stoichiometric analysis with various thermodynamic approaches to assess the feasibility and the bottlenecks in the proposed engineered pathway. According to our calculations, the main thermodynamic bottleneck are the reactions catalyzed by the acetoacetyl-CoA β-ketothiolase (EC 2.3.1.9) and the acetoacetyl-CoA reductase (EC 1.1.1.36). Furthermore, we calculated thermodynamically consistent sets of kinetic parameters to determine the enzyme amounts required for sustaining the conversion fluxes. In the case of the engineered conversion route, the protein pool necessary to sustain the desired fluxes could account for 20% of the whole cell dry weight.
Collapse
Affiliation(s)
- Karel Olavarria
- Laboratory of Microbiology, Wageningen University and Research, Stippenenweg 4, 6708 WE, Wageningen, The Netherlands
- Centre for Living Technologies, Eindhoven-Wageningen-Utrecht Alliance, Princetonlaan 6, 3584 CB, Utrecht, The Netherlands
| | - Marco V. Becker
- Department of Biotechnology, Applied Sciences Faculty, Delft University of Technology, van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Diana Z. Sousa
- Laboratory of Microbiology, Wageningen University and Research, Stippenenweg 4, 6708 WE, Wageningen, The Netherlands
- Centre for Living Technologies, Eindhoven-Wageningen-Utrecht Alliance, Princetonlaan 6, 3584 CB, Utrecht, The Netherlands
| | - Mark C.M. van Loosdrecht
- Department of Biotechnology, Applied Sciences Faculty, Delft University of Technology, van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - S. Aljoscha Wahl
- Lehrstuhl für Bioverfahrenstechnik, Friedrich-Alexander-Universität, Paul-Gordan-Strasse 3, 91052, Erlangen, Germany
| |
Collapse
|
4
|
Davis MA, Yu VY, Fu B, Wen M, Koleski EJ, Silverman J, Berdan CA, Nomura DK, Chang MCY. A cellular platform for production of C 4 monomers. Chem Sci 2023; 14:11718-11726. [PMID: 37920356 PMCID: PMC10619544 DOI: 10.1039/d3sc02773b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/21/2023] [Indexed: 11/04/2023] Open
Abstract
Living organisms carry out a wide range of remarkable functions, including the synthesis of thousands of simple and complex chemical structures for cellular growth and maintenance. The manipulation of this reaction network has allowed for the genetic engineering of cells for targeted chemical synthesis, but it remains challenging to alter the program underlying their fundamental chemical behavior. By taking advantage of the unique ability of living systems to use evolution to find solutions to complex problems, we have achieved yields of up to ∼95% for three C4 commodity chemicals, n-butanol, 1,3-butanediol, and 4-hydroxy-2-butanone. Genomic sequencing of the evolved strains identified pcnB and rpoBC as two gene loci that are able to alter carbon flow by remodeling the transcriptional landscape of the cell, highlighting the potential of synthetic pathways as a tool to identify metabolic control points.
Collapse
Affiliation(s)
- Matthew A Davis
- Department of Molecular & Cellular Biology, University of California Berkeley CA 94720-3200 USA
| | - Vivian Yaci Yu
- Department of Molecular & Cellular Biology, University of California Berkeley CA 94720-3200 USA
| | - Beverly Fu
- Department of Chemistry, University of California Berkeley CA 94720-1460 USA
| | - Miao Wen
- Department of Chemistry, University of California Berkeley CA 94720-1460 USA
| | - Edward J Koleski
- Department of Chemistry, University of California Berkeley CA 94720-1460 USA
| | - Joshua Silverman
- Calysta 1900 Alameda de las Pulgas Suite 200 San Mateo CA 94404 USA
| | - Charles A Berdan
- Department of Chemistry, University of California Berkeley CA 94720-1460 USA
| | - Daniel K Nomura
- Department of Molecular & Cellular Biology, University of California Berkeley CA 94720-3200 USA
- Department of Chemistry, University of California Berkeley CA 94720-1460 USA
- Department of Nutritional Sciences & Toxicology, University of California Berkeley CA 94720-3104 USA
| | - Michelle C Y Chang
- Department of Molecular & Cellular Biology, University of California Berkeley CA 94720-3200 USA
- Department of Chemistry, University of California Berkeley CA 94720-1460 USA
- Department of Chemical & Biomolecular Engineering, University of California Berkeley CA 94720-1462 USA
| |
Collapse
|
5
|
Zhang S, Sun J, Feng D, Sun H, Cui J, Zeng X, Wu Y, Luan G, Lu X. Unlocking the potentials of cyanobacterial photosynthesis for directly converting carbon dioxide into glucose. Nat Commun 2023; 14:3425. [PMID: 37296173 PMCID: PMC10256809 DOI: 10.1038/s41467-023-39222-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023] Open
Abstract
Glucose is the most abundant monosaccharide, serving as an essential energy source for cells in all domains of life and as an important feedstock for the biorefinery industry. The plant-biomass-sugar route dominates the current glucose supply, while the direct conversion of carbon dioxide into glucose through photosynthesis is not well studied. Here, we show that the potential of Synechococcus elongatus PCC 7942 for photosynthetic glucose production can be unlocked by preventing native glucokinase activity. Knocking out two glucokinase genes causes intracellular accumulation of glucose and promotes the formation of a spontaneous mutation in the genome, which eventually leads to glucose secretion. Without heterologous catalysis or transportation genes, glucokinase deficiency and spontaneous genomic mutation lead to a glucose secretion of 1.5 g/L, which is further increased to 5 g/L through metabolic and cultivation engineering. These findings underline the cyanobacterial metabolism plasticities and demonstrate their applications for supporting the direct photosynthetic production of glucose.
Collapse
Affiliation(s)
- Shanshan Zhang
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, Shandong, 266101, China
- Shandong Energy Institute, No. 189 Songling Road, Qingdao, Shandong, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, 266101, China
- College of Life Science, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jiahui Sun
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, Shandong, 266101, China
- Shandong Energy Institute, No. 189 Songling Road, Qingdao, Shandong, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, 266101, China
- College of Life Science, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Dandan Feng
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, Shandong, 266101, China
- Shandong Energy Institute, No. 189 Songling Road, Qingdao, Shandong, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, 266101, China
| | - Huili Sun
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, Shandong, 266101, China
- Shandong Energy Institute, No. 189 Songling Road, Qingdao, Shandong, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, 266101, China
- College of Life Science, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jinyu Cui
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, Shandong, 266101, China
- Shandong Energy Institute, No. 189 Songling Road, Qingdao, Shandong, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, 266101, China
| | - Xuexia Zeng
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, Shandong, 266101, China
- Shandong Energy Institute, No. 189 Songling Road, Qingdao, Shandong, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, 266101, China
| | - Yannan Wu
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, Shandong, 266101, China
- Shandong Energy Institute, No. 189 Songling Road, Qingdao, Shandong, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, 266101, China
| | - Guodong Luan
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, Shandong, 266101, China.
- Shandong Energy Institute, No. 189 Songling Road, Qingdao, Shandong, 266101, China.
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, 266101, China.
- College of Life Science, University of Chinese Academy of Sciences, 100049, Beijing, China.
- Dalian National Laboratory for Clean Energy, Dalian, Liaoning, 116023, China.
| | - Xuefeng Lu
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, Shandong, 266101, China.
- Shandong Energy Institute, No. 189 Songling Road, Qingdao, Shandong, 266101, China.
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, 266101, China.
- College of Life Science, University of Chinese Academy of Sciences, 100049, Beijing, China.
- Dalian National Laboratory for Clean Energy, Dalian, Liaoning, 116023, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, 266237, China.
| |
Collapse
|
6
|
Madhavan A, Arun KB, Sindhu R, Nair BG, Pandey A, Awasthi MK, Szakacs G, Binod P. Design and genome engineering of microbial cell factories for efficient conversion of lignocellulose to fuel. BIORESOURCE TECHNOLOGY 2023; 370:128555. [PMID: 36586428 DOI: 10.1016/j.biortech.2022.128555] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
The gradually increasing need for fossil fuels demands renewable biofuel substitutes. This has fascinated an increasing investigation to design innovative energy fuels that have comparable Physico-chemical and combustion characteristics with fossil-derived fuels. The efficient microbes for bioenergy synthesis desire the proficiency to consume a large quantity of carbon substrate, transfer various carbohydrates through efficient metabolic pathways, capability to withstand inhibitory components and other degradation compounds, and improve metabolic fluxes to synthesize target compounds. Metabolically engineered microbes could be an efficient methodology for synthesizing biofuel from cellulosic biomass by cautiously manipulating enzymes and metabolic pathways. This review offers a comprehensive perspective on the trends and advances in metabolic and genetic engineering technologies for advanced biofuel synthesis by applying various heterologous hosts. Probable technologies include enzyme engineering, heterologous expression of multiple genes, CRISPR-Cas technologies for genome editing, and cell surface display.
Collapse
Affiliation(s)
- Aravind Madhavan
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam 690525 Kerala, India.
| | - K B Arun
- Department of Life Sciences, CHRIST (Deemed to be University), Bengaluru 560029, Karnataka, India
| | - Raveendran Sindhu
- Department of Food Technology, TKM Institute of Technology, Kollam 689 122, India
| | - Bipin G Nair
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam 690525 Kerala, India
| | - Ashok Pandey
- Center for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow 226 001, India; Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun 248007, Uttarkhand, India; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi 712 100, China
| | - George Szakacs
- Budapest University of Technology and Economics, Department of Applied Biotechnology and Food Science, 1111 Budapest, Szent Gellert ter 4, Hungary
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum 695 019, India
| |
Collapse
|
7
|
Microbial pathways for advanced biofuel production. Biochem Soc Trans 2022; 50:987-1001. [PMID: 35411379 PMCID: PMC9162456 DOI: 10.1042/bst20210764] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/14/2022] [Accepted: 03/25/2022] [Indexed: 01/16/2023]
Abstract
Decarbonisation of the transport sector is essential to mitigate anthropogenic climate change. Microbial metabolisms are already integral to the production of renewable, sustainable fuels and, building on that foundation, are being re-engineered to generate the advanced biofuels that will maintain mobility of people and goods during the energy transition. This review surveys the range of natural and engineered microbial systems for advanced biofuels production and summarises some of the techno-economic challenges associated with their implementation at industrial scales.
Collapse
|
8
|
Engineering E. coli to synthesize butanol. Biochem Soc Trans 2022; 50:867-876. [PMID: 35356968 DOI: 10.1042/bst20211009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/22/2022] [Accepted: 03/15/2022] [Indexed: 11/17/2022]
Abstract
Biobutanol is gaining much attention as a potential biofuel due to its superior properties over ethanol. Butanol has been naturally produced via acetone-butanol-ethanol (ABE) fermentation by many Clostridium species, which are not very user-friendly bacteria. Therefore, to improve butanol titers and yield, various butanol synthesis pathways have been engineered in Escherichia coli, a much more robust and convenient host than Clostridium species. This review mainly focuses on the biosynthesis of n-butanol in engineered E. coli with an emphasis on efficient enzymes for butanol production in E. coli, butanol competing pathways, and genome engineering of E. coli for butanol production. In addition, the use of alternate strategies for butanol biosynthesis/enhancement, alternate substrates for the low cost of butanol production, and genetic improvement for butanol tolerance in E. coli have also been discussed.
Collapse
|
9
|
Study of the production of poly(hydroxybutyrate- co-hydroxyhexanoate) and poly(hydroxybutyrate- co-hydroxyvalerate- co-hydroxyhexanoate) in Rhodospirillum rubrum. Appl Environ Microbiol 2022; 88:e0158621. [PMID: 35080906 DOI: 10.1128/aem.01586-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Poly(hydroxybutyrate-co-hydroxyhexanoate) (P(HB-co-HHx)) and poly(hydroxybutyrate-co-hydroxyvalerate-co-hydroxyhexanoate) P(HB-co-HV-co-HHx) demonstrate interesting mechanical and thermal properties as well as excellent biocompatibility making them suitable for multiple applications and notably biomedical purposes. The production of such polymer was described in Rhodospirillum rubrum (Rs. rubrum), a purple non-sulfur bacteria in a nutrient-lacking environment where the HHx synthesis is triggered by the presence of hexanoate in the medium. However, the production of P(HB-co-HHx) under nutrient-balanced growth conditions has not been described so far in Rs. rubrum and the assimilation of hexanoate is poorly documented. In this study, we demonstrate using proteomic analysis and mutant fitness assay, that hexanoate assimilation involve β-oxidation and the ethylmalonyl-CoA (EMC) and methylbutanoyl-CoA (MBC) pathways, both being anaplerotic pathways already described in Rs. rubrum. Polyhydroxyalkanoate (PHA) production is likely to involve the de novo fatty acid synthesis pathway. Concerning the polymer composition, HB is the main component of the polymer, probably as acetyl-CoA and butyryl-CoA are intermediates of hexanoate assimilation pathways. When no essential nutrient is lacking in the medium, the synthesis of PHA seems to help maintain the redox balance of the cell. In this framework, we showed that the fixation of CO2 is required to sustain the growth. An increase in the proportion of HHx in the polymer was observed when redox stress was engendered in the cell under bicarbonate limiting growth conditions. The addition of isoleucine or valerate in the medium also increased the HHx content of the polymer and allowed the production of a terpolymer of P(HB-co-HV-co-HHx). Importance The use of purple bacteria, which can assimilate volatile fatty acids for biotechnological applications has risen since they reduce the production costs of added-value compounds such as PHA. P(HB-co-HHx) and P(HB-co-HV-co-HHx) have demonstrated interesting properties notably for biomedical application. In a nutrient-lacking environment, Rs. rubrum is known to synthesize such polymer when hexanoate is used as carbon source. However, their production in non-nutrient lacking growth conditions has not been described so far in Rs. rubrum and the assimilation of hexanoate is poorly documented. As the carbon source and its assimilation directly impact the polymer composition, we studied under non-nutrient lacking growth conditions, the assimilation path of hexanoate and PHA production in Rs. rubrum. Proteomic analysis and mutant fitness assay allowed to explain PHA production and composition. Increase in HHx content of the polymer and production of P(HB-co-HV-co-HHx) was possible using the knowledge gained on metabolism under hexanoate growth conditions.
Collapse
|
10
|
Controlling selectivity of modular microbial biosynthesis of butyryl-CoA-derived designer esters. Metab Eng 2021; 69:262-274. [PMID: 34883244 DOI: 10.1016/j.ymben.2021.12.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/21/2021] [Accepted: 12/01/2021] [Indexed: 02/02/2023]
Abstract
Short-chain esters have broad utility as flavors, fragrances, solvents, and biofuels. Controlling selectivity of ester microbial biosynthesis has been an outstanding metabolic engineering problem. In this study, we enabled the de novo fermentative microbial biosynthesis of butyryl-CoA-derived designer esters (e.g., butyl acetate, ethyl butyrate, butyl butyrate) in Escherichia coli with controllable selectivity. Using the modular design principles, we generated the butyryl-CoA-derived ester pathways as exchangeable production modules compatible with an engineered chassis cell for anaerobic production of designer esters. We designed these modules derived from an acyl-CoA submodule (e.g., acetyl-CoA, butyryl-CoA), an alcohol submodule (e.g., ethanol, butanol), a cofactor regeneration submodule (e.g., NADH), and an alcohol acetyltransferase (AAT) submodule (e.g., ATF1, SAAT) for rapid module construction and optimization by manipulating replication (e.g., plasmid copy number), transcription (e.g., promoters), translation (e.g., codon optimization), pathway enzymes, and pathway induction conditions. To further enhance production of designer esters with high selectivity, we systematically screened various strategies of protein solubilization using protein fusion tags and chaperones to improve the soluble expression of multiple pathway enzymes. Finally, our engineered ester-producing strains could achieve 19-fold increase in butyl acetate production (0.64 g/L, 96% selectivity), 6-fold increase in ethyl butyrate production (0.41 g/L, 86% selectivity), and 13-fold increase in butyl butyrate production (0.45 g/L, 54% selectivity) as compared to the initial strains. Overall, this study presented a generalizable framework to engineer modular microbial platforms for anaerobic production of butyryl-CoA-derived designer esters from renewable feedstocks.
Collapse
|
11
|
Wang ZQ, Song H, Koleski EJ, Hara N, Park DS, Kumar G, Min Y, Dauenhauer PJ, Chang MCY. A dual cellular-heterogeneous catalyst strategy for the production of olefins from glucose. Nat Chem 2021; 13:1178-1185. [PMID: 34811478 DOI: 10.1038/s41557-021-00820-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 09/23/2021] [Indexed: 11/09/2022]
Abstract
Living systems provide a promising approach to chemical synthesis, having been optimized by evolution to convert renewable carbon sources, such as glucose, into an enormous range of small molecules. However, a large number of synthetic structures can still be difficult to obtain solely from cells, such as unsubstituted hydrocarbons. In this work, we demonstrate the use of a dual cellular-heterogeneous catalytic strategy to produce olefins from glucose using a selective hydrolase to generate an activated intermediate that is readily deoxygenated. Using a new family of iterative thiolase enzymes, we genetically engineered a microbial strain that produces 4.3 ± 0.4 g l-1 of fatty acid from glucose with 86% captured as 3-hydroxyoctanoic and 3-hydroxydecanoic acids. This 3-hydroxy substituent serves as a leaving group that enables heterogeneous tandem decarboxylation-dehydration routes to olefinic products on Lewis acidic catalysts without the additional redox input required for enzymatic or chemical deoxygenation of simple fatty acids.
Collapse
Affiliation(s)
- Zhen Q Wang
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA. .,Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA.
| | - Heng Song
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA.,College of Chemistry & Molecular Science, Wuhan University, Wuhan, P. R. China
| | - Edward J Koleski
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| | - Noritaka Hara
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| | - Dae Sung Park
- Department of Chemical Engineering & Materials Science, University of Minnesota, Minneapolis, MN, USA.,Korea Research Institute of Chemical Technology, Daejeon, South Korea
| | - Gaurav Kumar
- Department of Chemical Engineering & Materials Science, University of Minnesota, Minneapolis, MN, USA
| | - Yejin Min
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| | - Paul J Dauenhauer
- Department of Chemical Engineering & Materials Science, University of Minnesota, Minneapolis, MN, USA
| | - Michelle C Y Chang
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA. .,Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA, USA. .,Department of Chemical & Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
12
|
Two steps to sustainable polymers. Nat Chem 2021; 13:1157-1158. [PMID: 34811471 DOI: 10.1038/s41557-021-00842-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
13
|
Neumann CN, Payne MT, Rozeveld SJ, Wu Z, Zhang G, Comito RJ, Miller JT, Dincă M. Structural Evolution of MOF-Derived RuCo, A General Catalyst for the Guerbet Reaction. ACS APPLIED MATERIALS & INTERFACES 2021; 13:52113-52124. [PMID: 34405986 DOI: 10.1021/acsami.1c09873] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Guerbet alcohols, a class of β-branched terminal alcohols, find widespread application because of their low melting points and excellent fluidity. Because of the limitations in the activity and selectivity of existing Guerbet catalysts, Guerbet alcohols are not currently produced via the Guerbet reaction but via hydroformylation of oil-derived alkenes followed by aldol condensation. In pursuit of a one-step synthesis of Guerbet alcohols from simple linear alcohol precursors, we show that MOF-derived RuCo alloys achieve over a million turnovers in the Guerbet reaction of 1-propanol, 1-butanol, and 1-pentanol. The active catalyst is formed in situ from ruthenium-impregnated metal-organic framework MFU-1. XPS and XAS studies indicate that the precatalyst is composed of Ru precursor trapped inside the MOF pores with no change in the oxidation state or coordination environment of Ru upon MOF incorporation. The significantly higher reactivity of Ru-impregnated MOF versus a physical mixture of Ru precursor and MOF suggests that the MOF plays an important role in templating the formation of the active catalyst and/or its stabilization. XPS reveals partial reduction of both ruthenium and MOF-derived cobalt under the Guerbet reaction conditions, and TEM/EDX imaging shows that Ru is decorated on the edges of dense nanoparticles, as well as thin nanoplates of CoOx. The use of ethanol rather than higher alcohols as a substrate results in lower turnover frequencies, and RuCo recovered from ethanol upgrading lacks nanostructures with plate-like morphology and does not exhibit Ru-enrichment on the surface and edge sites. Notably, 1H and 31P NMR studies show that through use of K3PO4 as a base promoter in the RuCo-catalyzed alcohol upgrading, the formation of carboxylate salts, a common side product in the Guerbet reaction, was effectively eliminated.
Collapse
Affiliation(s)
- Constanze N Neumann
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Michael T Payne
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Steven J Rozeveld
- Core R&D, The Dow Chemical Company, Midland, Michigan 48674, United States
| | - Zhenwei Wu
- Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Guanghui Zhang
- Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Robert J Comito
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jeffrey T Miller
- Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Mircea Dincă
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
14
|
Bai W, Ranaivoarisoa TO, Singh R, Rengasamy K, Bose A. n-Butanol production by Rhodopseudomonas palustris TIE-1. Commun Biol 2021; 4:1257. [PMID: 34732832 PMCID: PMC8566592 DOI: 10.1038/s42003-021-02781-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 10/06/2021] [Indexed: 11/09/2022] Open
Abstract
Anthropogenic carbon dioxide (CO2) release in the atmosphere from fossil fuel combustion has inspired scientists to study CO2 to biofuel conversion. Oxygenic phototrophs such as cyanobacteria have been used to produce biofuels using CO2. However, oxygen generation during oxygenic photosynthesis adversely affects biofuel production efficiency. To produce n-butanol (biofuel) from CO2, here we introduce an n-butanol biosynthesis pathway into an anoxygenic (non-oxygen evolving) photoautotroph, Rhodopseudomonas palustris TIE-1 (TIE-1). Using different carbon, nitrogen, and electron sources, we achieve n-butanol production in wild-type TIE-1 and mutants lacking electron-consuming (nitrogen-fixing) or acetyl-CoA-consuming (polyhydroxybutyrate and glycogen synthesis) pathways. The mutant lacking the nitrogen-fixing pathway produce the highest n-butanol. Coupled with novel hybrid bioelectrochemical platforms, this mutant produces n-butanol using CO2, solar panel-generated electricity, and light with high electrical energy conversion efficiency. Overall, this approach showcases TIE-1 as an attractive microbial chassis for carbon-neutral n-butanol bioproduction using sustainable, renewable, and abundant resources.
Collapse
Affiliation(s)
- Wei Bai
- grid.4367.60000 0001 2355 7002Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO USA
| | - Tahina Onina Ranaivoarisoa
- grid.4367.60000 0001 2355 7002Department of Biology, Washington University in St. Louis, St. Louis, MO USA
| | - Rajesh Singh
- grid.4367.60000 0001 2355 7002Department of Biology, Washington University in St. Louis, St. Louis, MO USA
| | - Karthikeyan Rengasamy
- grid.4367.60000 0001 2355 7002Department of Biology, Washington University in St. Louis, St. Louis, MO USA
| | - Arpita Bose
- grid.4367.60000 0001 2355 7002Department of Biology, Washington University in St. Louis, St. Louis, MO USA
| |
Collapse
|
15
|
Keasling J, Garcia Martin H, Lee TS, Mukhopadhyay A, Singer SW, Sundstrom E. Microbial production of advanced biofuels. Nat Rev Microbiol 2021; 19:701-715. [PMID: 34172951 DOI: 10.1038/s41579-021-00577-w] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2021] [Indexed: 02/06/2023]
Abstract
Concerns over climate change have necessitated a rethinking of our transportation infrastructure. One possible alternative to carbon-polluting fossil fuels is biofuels produced by engineered microorganisms that use a renewable carbon source. Two biofuels, ethanol and biodiesel, have made inroads in displacing petroleum-based fuels, but their uptake has been limited by the amounts that can be used in conventional engines and by their cost. Advanced biofuels that mimic petroleum-based fuels are not limited by the amounts that can be used in existing transportation infrastructure but have had limited uptake due to costs. In this Review, we discuss engineering metabolic pathways to produce advanced biofuels, challenges with substrate and product toxicity with regard to host microorganisms and methods to engineer tolerance, and the use of functional genomics and machine learning approaches to produce advanced biofuels and prospects for reducing their costs.
Collapse
Affiliation(s)
- Jay Keasling
- Joint BioEnergy Institute, Emeryville, CA, USA. .,Department of Chemical & Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA. .,Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA. .,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA. .,Center for Biosustainability, Danish Technical University, Lyngby, Denmark. .,Center for Synthetic Biochemistry, Institute for Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, China.
| | - Hector Garcia Martin
- Joint BioEnergy Institute, Emeryville, CA, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,DOE Agile BioFoundry, Emeryville, CA, USA.,BCAM,Basque Center for Applied Mathematics, Bilbao, Spain.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Taek Soon Lee
- Joint BioEnergy Institute, Emeryville, CA, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Aindrila Mukhopadhyay
- Joint BioEnergy Institute, Emeryville, CA, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Steven W Singer
- Joint BioEnergy Institute, Emeryville, CA, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Eric Sundstrom
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Advanced Biofuels and Bioproducts Process Development Unit, Emeryville, CA, USA
| |
Collapse
|
16
|
Li Q, Zhang J, Yang J, Jiang Y, Yang S. Recent progress on n-butanol production by lactic acid bacteria. World J Microbiol Biotechnol 2021; 37:205. [PMID: 34698975 DOI: 10.1007/s11274-021-03173-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 10/13/2021] [Indexed: 11/26/2022]
Abstract
n-Butanol is an essential chemical intermediate produced through microbial fermentation. However, its toxicity to microbial cells has limited its production to a great extent. The anaerobe lactic acid bacteria (LAB) are the most resistant to n-butanol, so it should be the first choice for improving n-butanol production. The present article aims to review the following aspects of n-butanol production by LAB: (1) the tolerance of LAB to n-butanol, including its tolerance level and potential tolerance mechanisms; (2) genome editing tools in the n-butanol-resistant LAB; (3) methods of LAB modification for n-butanol production and the production levels after modification. This review will provide a theoretical basis for further research on n-butanol production by LAB.
Collapse
Affiliation(s)
- Qi Li
- College of Life Sciences, Sichuan Normal University, Chengdu, 610101, China
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
| | - Jieze Zhang
- Department of Chemistry, University of Southern California, Los Angeles, CA, 90089, USA
| | - Junjie Yang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
| | - Yu Jiang
- Huzhou Center of Industrial Biotechnology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Huzhou, 313000, China
- Shanghai Taoyusheng Biotechnology Company Ltd, Shanghai, 200032, China
| | - Sheng Yang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China.
- Huzhou Center of Industrial Biotechnology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Huzhou, 313000, China.
| |
Collapse
|
17
|
Cabecas Segura P, De Meur Q, Tanghe A, Onderwater R, Dewasme L, Wattiez R, Leroy B. Effects of Mixing Volatile Fatty Acids as Carbon Sources on Rhodospirillum rubrum Carbon Metabolism and Redox Balance Mechanisms. Microorganisms 2021; 9:1996. [PMID: 34576891 PMCID: PMC8471276 DOI: 10.3390/microorganisms9091996] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 11/16/2022] Open
Abstract
Rhodospirillum rubrum has a versatile metabolism, and as such can assimilate a broad range of carbon sources, including volatile fatty acids. These carbon sources are gaining increasing interest for biotechnological processes, since they reduce the production costs for numerous value-added compounds and contribute to the development of a more circular economy. Usually, studies characterizing carbon metabolism are performed by supplying a single carbon source; however, in both environmental and engineered conditions, cells would rather grow on mixtures of volatile fatty acids (VFAs) generated via anaerobic fermentation. In this study, we show that the use of a mixture of VFAs as carbon source appears to have a synergy effect on growth phenotype. In addition, while propionate and butyrate assimilation in Rs. rubrum is known to require an excess of bicarbonate in the culture medium, mixing them reduces the requirement for bicarbonate supplementation. The fixation of CO2 is one of the main electron sinks in purple bacteria; therefore, this observation suggests an adaptation of both metabolic pathways used for the assimilation of these VFAs and redox homeostasis mechanism. Based on proteomic data, modification of the propionate assimilation pathway seems to occur with a switch from a methylmalonyl-CoA intermediate to the methylcitrate cycle. Moreover, it seems that the presence of a mixture of VFAs switches electron sinking from CO2 fixation to H2 and isoleucine production.
Collapse
Affiliation(s)
- Paloma Cabecas Segura
- Laboratory of Proteomics and Microbiology, University of Mons, 7000 Mons, Belgium; (P.C.S.); (Q.D.M.); (R.W.)
| | - Quentin De Meur
- Laboratory of Proteomics and Microbiology, University of Mons, 7000 Mons, Belgium; (P.C.S.); (Q.D.M.); (R.W.)
| | - Audrey Tanghe
- Materia Nova ASBL, Parc Initialis, Avenue Copernic 3, 7000 Mons, Belgium; (A.T.); (R.O.)
| | - Rob Onderwater
- Materia Nova ASBL, Parc Initialis, Avenue Copernic 3, 7000 Mons, Belgium; (A.T.); (R.O.)
| | - Laurent Dewasme
- Systems, Estimation, Control and Optimization Group, University of Mons, 7000 Mons, Belgium;
| | - Ruddy Wattiez
- Laboratory of Proteomics and Microbiology, University of Mons, 7000 Mons, Belgium; (P.C.S.); (Q.D.M.); (R.W.)
| | - Baptiste Leroy
- Laboratory of Proteomics and Microbiology, University of Mons, 7000 Mons, Belgium; (P.C.S.); (Q.D.M.); (R.W.)
| |
Collapse
|
18
|
Flores AD, Holland SC, Mhatre A, Sarnaik AP, Godar A, Onyeabor M, Varman AM, Wang X, Nielsen DR. A coculture-coproduction system designed for enhanced carbon conservation through inter-strain CO 2 recycling. Metab Eng 2021; 67:387-395. [PMID: 34365009 DOI: 10.1016/j.ymben.2021.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/08/2021] [Accepted: 08/04/2021] [Indexed: 11/30/2022]
Abstract
Carbon loss in the form of CO2 is an intrinsic and persistent challenge faced during conventional and advanced biofuel production from biomass feedstocks. Current mechanisms for increasing carbon conservation typically require the provision of reduced co-substrates as additional reducing equivalents. This need can be circumvented, however, by exploiting the natural heterogeneity of lignocellulosic sugars mixtures and strategically using specific fractions to drive complementary CO2 emitting vs. CO2 fixing pathways. As a demonstration of concept, a coculture-coproduction system was developed by pairing two catabolically orthogonal Escherichia coli strains; one converting glucose to ethanol (G2E) and the other xylose to succinate (X2S). 13C-labeling studies reveled that G2E + X2S cocultures were capable of recycling 24% of all evolved CO2 and achieved a carbon conservation efficiency of 77%; significantly higher than the 64% achieved when all sugars are instead converted to just ethanol. In addition to CO2 exchange, the latent exchange of pyruvate between strains was discovered, along with significant carbon rearrangement within X2S.
Collapse
Affiliation(s)
- Andrew D Flores
- Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, AZ 85287, ECG 301, 501 E. Tyler Mall, Arizona, 85287, United States
| | - Steven C Holland
- School of Life Sciences, Arizona State University, 427 E. Tyler Mall, Tempe, AZ, 85287, United States
| | - Apurv Mhatre
- Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, AZ 85287, ECG 301, 501 E. Tyler Mall, Arizona, 85287, United States
| | - Aditya P Sarnaik
- Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, AZ 85287, ECG 301, 501 E. Tyler Mall, Arizona, 85287, United States
| | - Amanda Godar
- School of Life Sciences, Arizona State University, 427 E. Tyler Mall, Tempe, AZ, 85287, United States
| | - Moses Onyeabor
- School of Life Sciences, Arizona State University, 427 E. Tyler Mall, Tempe, AZ, 85287, United States
| | - Arul M Varman
- Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, AZ 85287, ECG 301, 501 E. Tyler Mall, Arizona, 85287, United States
| | - Xuan Wang
- School of Life Sciences, Arizona State University, 427 E. Tyler Mall, Tempe, AZ, 85287, United States.
| | - David R Nielsen
- Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, AZ 85287, ECG 301, 501 E. Tyler Mall, Arizona, 85287, United States.
| |
Collapse
|
19
|
Li L, Xu Z, Huang X. Whole-Cell-Based Photosynthetic Biohybrid Systems for Energy and Environmental Applications. Chempluschem 2021; 86:1021-1036. [PMID: 34286914 DOI: 10.1002/cplu.202100171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/07/2021] [Indexed: 12/17/2022]
Abstract
With the increasing awareness of sustainable development, energy and environment are becoming two of the most important issues of concern to the world today. Whole-cell-based photosynthetic biohybrid systems (PBSs), an emerging interdisciplinary field, are considered as attractive biosynthetic platforms with great prospects in energy and environment, combining the superiorities of semiconductor materials with high energy conversion efficiency and living cells with distinguished biosynthetic capacity. This review presents a systematic discussion on the synthesis strategies of whole-cell-based PBSs that demonstrate a promising potential for applications in sustainable solar-to-chemical conversion, including light-facilitated carbon dioxide reduction and biohydrogen production. In the end, the explicit perspectives on the challenges and future directions in this burgeoning field are discussed.
Collapse
Affiliation(s)
- Luxuan Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology (HIT), Harbin, 150001, P. R. China
| | - Zhijun Xu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology (HIT), Harbin, 150001, P. R. China
| | - Xin Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology (HIT), Harbin, 150001, P. R. China
| |
Collapse
|
20
|
Noda S, Mori Y, Fujiwara R, Shirai T, Tanaka T, Kondo A. Reprogramming Escherichia coli pyruvate-forming reaction towards chorismate derivatives production. Metab Eng 2021; 67:1-10. [PMID: 34044138 DOI: 10.1016/j.ymben.2021.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/30/2021] [Accepted: 05/13/2021] [Indexed: 11/18/2022]
Abstract
Microbial metabolic pathway engineering is a potent strategy used worldwide to produce aromatic compounds. We drastically rewired the primary metabolic pathway of Escherichia coli to produce aromatics and their derivatives. The metabolic pathway of E. coli was compartmentalized into the production and energy modules. We focused on the pyruvate-forming reaction in the biosynthesis pathway of some compounds as the reaction connecting those modules. E. coli strains were engineered to show no growth unless pyruvate was synthesized along with the compounds of interest production. Production of salicylate and maleate was demonstrated to confirm our strategy's versatility. In maleate production, the production, yield against the theoretical yield, and production rate reached 12.0 g L-1, 67%, and up to fourfold compared to that in previous reports, respectively; these are the highest values of maleate production in microbes to our knowledge. The results reveal that our strategy strongly promotes the production of aromatics and their derivatives.
Collapse
Affiliation(s)
- Shuhei Noda
- Center for Sustainable Resource Science, RIKEN, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.
| | - Yutaro Mori
- Center for Sustainable Resource Science, RIKEN, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Ryosuke Fujiwara
- Center for Sustainable Resource Science, RIKEN, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Tomokazu Shirai
- Center for Sustainable Resource Science, RIKEN, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Tsutomu Tanaka
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Akihiko Kondo
- Center for Sustainable Resource Science, RIKEN, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan; Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| |
Collapse
|
21
|
Zhu L, Zhang J, Yang J, Jiang Y, Yang S. Strategies for optimizing acetyl-CoA formation from glucose in bacteria. Trends Biotechnol 2021; 40:149-165. [PMID: 33965247 DOI: 10.1016/j.tibtech.2021.04.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/02/2021] [Accepted: 04/02/2021] [Indexed: 12/17/2022]
Abstract
Acetyl CoA is an important precursor for various chemicals. We provide a metabolic engineering guideline for the production of acetyl-CoA and other end products from a bacterial chassis. Among 13 pathways that produce acetyl-CoA from glucose, 11 lose carbon in the process, and two do not. The first 11 use the Embden-Meyerhof-Parnas (EMP) pathway to produce redox cofactors and gain or lose ATP. The other two pathways function via phosphoketolase with net consumption of ATP, so they must therefore be combined with one of the 11 glycolytic pathways or auxiliary pathways. Optimization of these pathways can maximize the theoretical acetyl-CoA yield, thereby minimizing the overall cost of subsequent acetyl-CoA-derived molecules. Other strategies for generating hyper-producer strains are also addressed.
Collapse
Affiliation(s)
- Li Zhu
- Shanghai Laiyi Center for Biopharmaceutical R&D, Shanghai 200240, China
| | - Jieze Zhang
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Jiawei Yang
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yu Jiang
- Huzhou Center of Industrial Biotechnology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Huzhou 313000, China; Shanghai Taoyusheng Biotechnology Company Ltd, Shanghai 200032, China
| | - Sheng Yang
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; Huzhou Center of Industrial Biotechnology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Huzhou 313000, China.
| |
Collapse
|
22
|
Wang C, Crocoll C, Agerbirk N, Halkier BA. Engineering and optimization of the 2-phenylethylglucosinolate production in Nicotiana benthamiana by combining biosynthetic genes from Barbarea vulgaris and Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:978-992. [PMID: 33624307 DOI: 10.1111/tpj.15212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 02/07/2021] [Accepted: 02/13/2021] [Indexed: 06/12/2023]
Abstract
2-Phenylethylglucosinolate (2PE) derived from homophenylalanine is present in plants of the Brassicales order as a defense compound. It is associated with multiple biological properties, including deterrent effects on pests and antimicrobial and health-promoting functions, due to its hydrolysis product 2-phenylethyl isothiocyanate, which confers 2PE as a potential application in agriculture and industry. In this study, we characterized the putative key genes for 2PE biosynthesis from Barbarea vulgaris W.T. Aiton and demonstrated the feasibility of engineering 2PE production in Nicotiana benthamiana Domin. We used different combinations of genes from B. vulgaris and Arabidopsis thaliana (L.) Heynh. to demonstrate that: (i) BvBCAT4 performed more efficiently than AtBCAT4 in biosynthesis of both homophenylalanine and dihomomethionine; (ii) MAM1 enzymes were critical for the chain-elongated profile, while CYP79F enzymes accepted both chain-elongated methionine and homophenylalanine; (iii) aliphatic but not aromatic core structure pathway catalyzed the 2PE biosynthesis; (iv) a chimeric pathway containing BvBCAT4, BvMAM1, AtIPMI and AtIPMDH1 resulted in a two-fold increase in 2PE production compared with the B. vulgaris-specific chain elongation pathway; and (v) profiles of chain-elongated products and glucosinolates partially mirrored the profiles in the gene donor plant, but were wider in N. benthamiana than in the native plants. Our study provides a strategy to produce the important homophenylalanine and 2PE in a heterologous host. Furthermore, chimeric engineering of the complex 2PE biosynthetic pathway enabled detailed understanding of catalytic properties of individual enzymes - a prerequisite for understanding biochemical evolution. The new-to-nature gene combinations have the potential for application in biotechnological and plant breeding.
Collapse
Affiliation(s)
- Cuiwei Wang
- DynaMo Center, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871, Denmark
| | - Christoph Crocoll
- DynaMo Center, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871, Denmark
| | - Niels Agerbirk
- Plant Biochemistry Section, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Barbara Ann Halkier
- DynaMo Center, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871, Denmark
| |
Collapse
|
23
|
Kim DI, Chae TU, Kim HU, Jang WD, Lee SY. Microbial production of multiple short-chain primary amines via retrobiosynthesis. Nat Commun 2021; 12:173. [PMID: 33420084 PMCID: PMC7794544 DOI: 10.1038/s41467-020-20423-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 11/27/2020] [Indexed: 01/11/2023] Open
Abstract
Bio-based production of many chemicals is not yet possible due to the unknown biosynthetic pathways. Here, we report a strategy combining retrobiosynthesis and precursor selection step to design biosynthetic pathways for multiple short-chain primary amines (SCPAs) that have a wide range of applications in chemical industries. Using direct precursors of 15 target SCPAs determined by the above strategy, Streptomyces viridifaciens vlmD encoding valine decarboxylase is examined as a proof-of-concept promiscuous enzyme both in vitro and in vivo for generating SCPAs from their precursors. Escherichia coli expressing the heterologous vlmD produces 10 SCPAs by feeding their direct precursors. Furthermore, metabolically engineered E. coli strains are developed to produce representative SCPAs from glucose, including the one producing 10.67 g L-1 of iso-butylamine by fed-batch culture. This study presents the strategy of systematically designing biosynthetic pathways for the production of a group of related chemicals as demonstrated by multiple SCPAs as examples.
Collapse
Affiliation(s)
- Dong In Kim
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering, KAIST Institute for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon, 34141, Republic of Korea
| | - Tong Un Chae
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering, KAIST Institute for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon, 34141, Republic of Korea
| | - Hyun Uk Kim
- Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon, 34141, Republic of Korea
- Systems Biology and Medicine Laboratory, Department of Chemical and Biomolecular Engineering, KAIST, Daejeon, 34141, Republic of Korea
- KAIST Institute for Artificial Intelligence, BioProcess Engineering Research Center and BioInformatics Research Center, KAIST, Daejeon, 34141, Republic of Korea
| | - Woo Dae Jang
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering, KAIST Institute for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon, 34141, Republic of Korea
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering, KAIST Institute for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
- Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon, 34141, Republic of Korea.
- KAIST Institute for Artificial Intelligence, BioProcess Engineering Research Center and BioInformatics Research Center, KAIST, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
24
|
Batrice RJ, Gordon JC. Powering the next industrial revolution: transitioning from nonrenewable energy to solar fuels via CO 2 reduction. RSC Adv 2020; 11:87-113. [PMID: 35423038 PMCID: PMC8691073 DOI: 10.1039/d0ra07790a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/18/2020] [Indexed: 12/30/2022] Open
Abstract
Solar energy has been used for decades for the direct production of electricity in various industries and devices; however, harnessing and storing this energy in the form of chemical bonds has emerged as a promising alternative to fossil fuel combustion. The common feedstocks for producing such solar fuels are carbon dioxide and water, yet only the photoconversion of carbon dioxide presents the opportunity to generate liquid fuels capable of integrating into our existing infrastructure, while simultaneously removing atmospheric greenhouse gas pollution. This review presents recent advances in photochemical solar fuel production technology. Although efforts in this field have created an incredible number of methods to convert carbon dioxide into gaseous and liquid fuels, these can generally be classified under one of four categories based on how incident sunlight is utilised: solar concentration for thermoconversion (Category 1), transformation toward electroconversion (Category 2), natural photosynthesis for bioconversion (Category 3), and artificial photosynthesis for direct photoconversion (Category 4). Select examples of developments within each of these categories is presented, showing the state-of-the-art in the use of carbon dioxide as a suitable feedstock for solar fuel production. Solar energy has been used for decades for the direct production of electricity in various industries and devices. However, harnessing and storing this energy in the form of chemical bonds has emerged as a promising alternative to fossil fuels.![]()
Collapse
Affiliation(s)
- Rami J Batrice
- Chemistry Division, Inorganic, Isotope, and Actinide Chemistry, Los Alamos National Laboratory Los Alamos New Mexico 87545 USA
| | - John C Gordon
- Chemistry Division, Inorganic, Isotope, and Actinide Chemistry, Los Alamos National Laboratory Los Alamos New Mexico 87545 USA
| |
Collapse
|
25
|
Li Q, Wu M, Wen Z, Jiang Y, Wang X, Zhao Y, Liu J, Yang J, Jiang Y, Yang S. Optimization of n-butanol synthesis in Lactobacillus brevis via the functional expression of thl, hbd, crt and ter. ACTA ACUST UNITED AC 2020; 47:1099-1108. [DOI: 10.1007/s10295-020-02331-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/02/2020] [Indexed: 12/15/2022]
Abstract
Abstract
N-butanol is an important chemical and can be naturally synthesized by Clostridium species; however, the poor n-butanol tolerance of Clostridium impedes the further improvement in titer. In this study, Lactobacillus brevis, which possesses a higher butanol tolerance, was selected as host for heterologous butanol production. The Clostridium acetobutylicum genes thl, hbd, and crt which encode thiolase, β-hydroxybutyryl-CoA dehydrogenase, and crotonase, and the Treponema denticola gene ter, which encodes trans-enoyl-CoA reductase were cloned into a single plasmid to express the butanol synthesis pathway in L. brevis. A titer of 40 mg/L n-butanol was initially achieved with plasmid pLY15-opt, in which all pathway genes are codon-optimized. A titer of 450 mg/L of n-butanol was then synthesized when ter was further overexpressed in this pathway. The role of metabolic flux was reinforced with pLY15, in which only the ter gene was codon-optimized, which greatly increased the n-butanol titer to 817 mg/L. Our strategy significantly improved n-butanol synthesis in L. brevis and the final titer is the highest achieved amongst butanol-tolerant lactic acid bacteria.
Graphic abstract
Collapse
Affiliation(s)
- Qi Li
- grid.412600.1 0000 0000 9479 9538 College of Life Sciences Sichuan Normal University 610101 Chengdu China
- grid.9227.e 0000000119573309 Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences Chinese Academy of Sciences 200032 Shanghai China
| | - Meixian Wu
- grid.9227.e 0000000119573309 Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences Chinese Academy of Sciences 200032 Shanghai China
| | - Zhiqiang Wen
- grid.9227.e 0000000119573309 Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences Chinese Academy of Sciences 200032 Shanghai China
| | - Yuan Jiang
- grid.9227.e 0000000119573309 Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences Chinese Academy of Sciences 200032 Shanghai China
| | - Xin Wang
- grid.9227.e 0000000119573309 Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences Chinese Academy of Sciences 200032 Shanghai China
| | - Yawei Zhao
- grid.9227.e 0000000119573309 Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences Chinese Academy of Sciences 200032 Shanghai China
| | - Jinle Liu
- grid.9227.e 0000000119573309 Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences Chinese Academy of Sciences 200032 Shanghai China
| | - Junjie Yang
- grid.9227.e 0000000119573309 Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences Chinese Academy of Sciences 200032 Shanghai China
| | - Yu Jiang
- grid.419092.7 0000 0004 0467 2285 Huzhou Center of Industrial Biotechnology Shanghai Institutes for Biological Sciences 313000 Huzhou China
| | - Sheng Yang
- grid.9227.e 0000000119573309 Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences Chinese Academy of Sciences 200032 Shanghai China
- grid.419092.7 0000 0004 0467 2285 Huzhou Center of Industrial Biotechnology Shanghai Institutes for Biological Sciences 313000 Huzhou China
| |
Collapse
|
26
|
How to outwit nature: Omics insight into butanol tolerance. Biotechnol Adv 2020; 46:107658. [PMID: 33220435 DOI: 10.1016/j.biotechadv.2020.107658] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/10/2020] [Accepted: 11/13/2020] [Indexed: 12/16/2022]
Abstract
The energy crisis, depletion of oil reserves, and global climate changes are pressing problems of developed societies. One possibility to counteract that is microbial production of butanol, a promising new fuel and alternative to many petrochemical reagents. However, the high butanol toxicity to all known microbial species is the main obstacle to its industrial implementation. The present state of the art review aims to expound the recent advances in modern omics approaches to resolving this insurmountable to date problem of low butanol tolerance. Genomics, transcriptomics, and proteomics show that butanol tolerance is a complex phenomenon affecting multiple genes and their expression. Efflux pumps, stress and multidrug response, membrane transport, and redox-related genes are indicated as being most important during butanol challenge, in addition to fine-tuning of global regulators of transcription (Spo0A, GntR), which may further improve tolerance. Lipidomics shows that the alterations in membrane composition (saturated lipids and plasmalogen increase) are very much species-specific and butanol-related. Glycomics discloses the pleiotropic effect of CcpA, the role of alternative sugar transport, and the production of exopolysaccharides as alternative routes to overcoming butanol stress. Unfortunately, the strain that simultaneously syntheses and tolerates butanol in concentrations that allow its commercialization has not yet been discovered or produced. Omics insight will allow the purposeful increase of butanol tolerance in natural and engineered producers and the effective heterologous expression of synthetic butanol pathways in strains hereditary butanol-resistant up to 3.2 - 4.9% (w/v). Future breakthrough can be achieved by a detailed study of the membrane proteome, of which 21% are proteins with unknown functions.
Collapse
|
27
|
Adeleye AT, Odoh CK, Enudi OC, Banjoko OO, Osiboye OO, Toluwalope Odediran E, Louis H. Sustainable synthesis and applications of polyhydroxyalkanoates (PHAs) from biomass. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.05.032] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
28
|
Naseri G, Mueller-Roeber B. A Step-by-Step Protocol for COMPASS, a Synthetic Biology Tool for Combinatorial Gene Assembly. Methods Mol Biol 2020; 2205:277-303. [PMID: 32809205 DOI: 10.1007/978-1-0716-0908-8_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
For industry-scale production of high-value chemicals in microbial cell factories, the elimination of metabolic flux imbalances is a critical aspect. However, a priori knowledge about the genetic design of optimal production pathways is typically not available. COMPASS, COMbinatorial Pathway ASSembly, is a rapid cloning method for the balanced expression of multiple genes in biochemical pathways. The method generates thousands of individual DNA constructs in modular, parallel, and high-throughput manner. COMPASS employs inducible artificial transcription factors derived from plant (Arabidopsis thaliana) regulators to control the expression of pathway genes in yeast (Saccharomyces cerevisiae). It utilizes homologous recombination for parts assembly and employs a positive selection scheme to identify correctly assembled pathway variants after both in vivo and in vitro recombination. Finally, COMPASS is equipped with a CRISPR/Cas9 genome modification system allowing for the one-step multilocus integration of genes. Although COMPASS was initially developed for pathway engineering, it can equally be employed for balancing gene expression in other synthetic biology projects.
Collapse
Affiliation(s)
- Gita Naseri
- Department of Molecular Biology, University of Potsdam, Potsdam, Germany
| | - Bernd Mueller-Roeber
- Department of Molecular Biology, University of Potsdam, Potsdam, Germany. .,Plant Signalling Group, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany. .,Department of Plant Development, Center of Plant Systems Biology and Biotechnology (CPSBB), Plovdiv, Bulgaria.
| |
Collapse
|
29
|
Zhou S, Hao T, Xu S, Deng Y. Coenzyme A thioester-mediated carbon chain elongation as a paintbrush to draw colorful chemical compounds. Biotechnol Adv 2020; 43:107575. [PMID: 32512221 DOI: 10.1016/j.biotechadv.2020.107575] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 05/31/2020] [Accepted: 06/01/2020] [Indexed: 12/23/2022]
Abstract
The biosynthesis of various useful chemicals from simple substrates using industrial microorganisms is becoming increasingly crucial to address the challenge of dwindling non-renewable resources. As the most common intermediate substrates in organisms, Coenzyme A (CoA) thioesters play a central role in the carbon chain elongation process of their products. As a result, numerous of chemicals can be synthesized by the iterative addition of various CoA thioester extender units at a given CoA thioester primer backbone. However, these elongation reactions and the product yields are still restricted due to the low enzymatic performance and supply of CoA thioesters. This review highlights the current protein and metabolic engineering strategies used to enhance the diversity and product yield by coupling different primers, extender units, enzymes, and termination pathways, in an attempt to provide a road map for producing a more diverse range of industrial chemicals.
Collapse
Affiliation(s)
- Shenghu Zhou
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Tingting Hao
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Shumin Xu
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yu Deng
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
30
|
Ferreira S, Pereira R, Wahl SA, Rocha I. Metabolic engineering strategies for butanol production in Escherichia coli. Biotechnol Bioeng 2020; 117:2571-2587. [PMID: 32374413 DOI: 10.1002/bit.27377] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 04/03/2020] [Accepted: 05/04/2020] [Indexed: 11/06/2022]
Abstract
The global market of butanol is increasing due to its growing applications as solvent, flavoring agent, and chemical precursor of several other compounds. Recently, the superior properties of n-butanol as a biofuel over ethanol have stimulated even more interest. (Bio)butanol is natively produced together with ethanol and acetone by Clostridium species through acetone-butanol-ethanol fermentation, at noncompetitive, low titers compared to petrochemical production. Different butanol production pathways have been expressed in Escherichia coli, a more accessible host compared to Clostridium species, to improve butanol titers and rates. The bioproduction of butanol is here reviewed from a historical and theoretical perspective. All tested rational metabolic engineering strategies in E. coli to increase butanol titers are reviewed: manipulation of central carbon metabolism, elimination of competing pathways, cofactor balancing, development of new pathways, expression of homologous enzymes, consumption of different substrates, and molecular biology strategies. The progress in the field of metabolic modeling and pathway generation algorithms and their potential application to butanol production are also summarized here. The main goals are to gather all the strategies, evaluate the respective progress obtained, identify, and exploit the outstanding challenges.
Collapse
Affiliation(s)
- Sofia Ferreira
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB-NOVA), Oeiras, Portugal
| | - Rui Pereira
- SilicoLife Lda, Braga, Portugal.,Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - S A Wahl
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Isabel Rocha
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB-NOVA), Oeiras, Portugal
| |
Collapse
|
31
|
Nawab S, Wang N, Ma X, Huo YX. Genetic engineering of non-native hosts for 1-butanol production and its challenges: a review. Microb Cell Fact 2020; 19:79. [PMID: 32220254 PMCID: PMC7099781 DOI: 10.1186/s12934-020-01337-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 03/18/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Owing to the increase in energy consumption, fossil fuel resources are gradually depleting which has led to the growing environmental concerns; therefore, scientists are being urged to produce sustainable and ecofriendly fuels. Thus, there is a growing interest in the generation of biofuels from renewable energy resources using microbial fermentation. MAIN TEXT Butanol is a promising biofuel that can substitute for gasoline; unfortunately, natural microorganisms pose challenges for the economical production of 1-butanol at an industrial scale. The availability of genetic and molecular tools to engineer existing native pathways or create synthetic pathways have made non-native hosts a good choice for the production of 1-butanol from renewable resources. Non-native hosts have several distinct advantages, including using of cost-efficient feedstock, solvent tolerant and reduction of contamination risk. Therefore, engineering non-native hosts to produce biofuels is a promising approach towards achieving sustainability. This paper reviews the currently employed strategies and synthetic biology approaches used to produce 1-butanol in non-native hosts over the past few years. In addition, current challenges faced in using non-native hosts and the possible solutions that can help improve 1-butanol production are also discussed. CONCLUSION Non-native organisms have the potential to realize commercial production of 1- butanol from renewable resources. Future research should focus on substrate utilization, cofactor imbalance, and promoter selection to boost 1-butanol production in non-native hosts. Moreover, the application of robust genetic engineering approaches is required for metabolic engineering of microorganisms to make them industrially feasible for 1-butanol production.
Collapse
Affiliation(s)
- Said Nawab
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing, 100081, People's Republic of China
| | - Ning Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing, 100081, People's Republic of China.
| | - Xiaoyan Ma
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing, 100081, People's Republic of China.
| | - Yi-Xin Huo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing, 100081, People's Republic of China
- Biology Institute, Shandong Province Key Laboratory for Biosensors, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China
| |
Collapse
|
32
|
Eiben CB, Tian T, Thompson MG, Mendez-Perez D, Kaplan N, Goyal G, Chiniquy J, Hillson NJ, Lee TS, Keasling JD. Adenosine Triphosphate and Carbon Efficient Route to Second Generation Biofuel Isopentanol. ACS Synth Biol 2020; 9:468-474. [PMID: 32149502 DOI: 10.1021/acssynbio.9b00402] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Climate change necessitates the development of CO2 neutral or negative routes to chemicals currently produced from fossil carbon. In this paper we demonstrate a pathway from the renewable resource glucose to next generation biofuel isopentanol by pairing the isovaleryl-CoA biosynthesis pathway from Myxococcus xanthus and a butyryl-CoA reductase from Clostridium acetobutylicum. The best plasmid and Escherichia coli strain combination makes 80.50 ± 8.08 (SD) mg/L of isopentanol after 36 h under microaerobic conditions with an oleyl alcohol overlay. In addition, the system also shows a strong preference for isopentanol production over prenol in microaerobic conditions. Finally, the pathway requires zero adenosine triphosphate and can be paired theoretically with nonoxidative glycolysis, the combination being redox balanced from glucose thus avoiding unnecessary carbon loss as CO2. These pathway properties make the isovaleryl-CoA pathway an attractive isopentanol production route for further optimization.
Collapse
Affiliation(s)
- Christopher B. Eiben
- Department of Bioengineering, University of California, Berkeley, Berkeley, California 94270, United States
- Department of Bioengineering, University of California, San Francisco, California 94143, United States
| | - Tian Tian
- Joint BioEnergy Institute, Emeryville, California 94608, United States
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Mitchell G. Thompson
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California 94270, United States
- Joint BioEnergy Institute, Emeryville, California 94608, United States
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Daniel Mendez-Perez
- Joint BioEnergy Institute, Emeryville, California 94608, United States
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Nurgul Kaplan
- Joint BioEnergy Institute, Emeryville, California 94608, United States
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Agile BioFoundry, Emeryville, California 94608, United States
| | - Garima Goyal
- Joint BioEnergy Institute, Emeryville, California 94608, United States
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Agile BioFoundry, Emeryville, California 94608, United States
| | - Jennifer Chiniquy
- Joint BioEnergy Institute, Emeryville, California 94608, United States
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Agile BioFoundry, Emeryville, California 94608, United States
| | - Nathan J. Hillson
- Joint BioEnergy Institute, Emeryville, California 94608, United States
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Agile BioFoundry, Emeryville, California 94608, United States
| | - Taek Soon Lee
- Joint BioEnergy Institute, Emeryville, California 94608, United States
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jay D. Keasling
- Department of Bioengineering, University of California, Berkeley, Berkeley, California 94270, United States
- Department of Chemical & Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94270, United States
- Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, California 94270, United States
- Joint BioEnergy Institute, Emeryville, California 94608, United States
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
33
|
Distributed flux balance analysis simulations of serial biomass fermentation by two organisms. PLoS One 2020; 15:e0227363. [PMID: 31945096 PMCID: PMC6964848 DOI: 10.1371/journal.pone.0227363] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 12/17/2019] [Indexed: 12/16/2022] Open
Abstract
Intelligent biorefinery design that addresses both the composition of the biomass feedstock as well as fermentation microorganisms could benefit from dedicated tools for computational simulation and computer-assisted optimization. Here we present the BioLego Vn2.0 framework, based on Microsoft Azure Cloud, which supports large-scale simulations of biomass serial fermentation processes by two different organisms. BioLego enables the simultaneous analysis of multiple fermentation scenarios and the comparison of fermentation potential of multiple feedstock compositions. Thanks to the effective use of cloud computing it further allows resource intensive analysis and exploration of media and organism modifications. We use BioLego to obtain biological and validation results, including (1) exploratory search for the optimal utilization of corn biomasses-corn cobs, corn fiber and corn stover-in fermentation biorefineries; (2) analysis of the possible effects of changes in the composition of K. alvarezi biomass on the ethanol production yield in an anaerobic two-step process (S. cerevisiae followed by E. coli); (3) analysis of the impact, on the estimated ethanol production yield, of knocking out single organism reactions either in one or in both organisms in an anaerobic two-step fermentation process of Ulva sp. into ethanol (S. cerevisiae followed by E. coli); and (4) comparison of several experimentally measured ethanol fermentation rates with the predictions of BioLego.
Collapse
|
34
|
Chen W, Chen R, Wang H, Li Y, Zhang Y, Li S. Tuning chromosomal gene expression in Escherichia coli by combining single-stranded oligonucleotides mediated recombination and kil counter selection system. J Biotechnol 2019; 307:63-68. [PMID: 31678458 DOI: 10.1016/j.jbiotec.2019.10.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 10/03/2019] [Accepted: 10/21/2019] [Indexed: 10/25/2022]
Abstract
Extensively modulating gene expression to achieve optimal flux is a critical step in metabolic engineering. Gene expression is usually modulated at the transcriptional level by controlling the strength of a promoter. However, this type of modulation is often hampered by its inability to fully sample the complete continuum of transcriptional control. In Escherichia coli, this limitation can be solved by constructing promoters with a wide range of strengths. In this study, a highly efficient method was developed to modulate a particular chromosomal gene of E. coli at a wide range of expression levels. This was achieved by combining highly efficient single-stranded oligonucleotide-mediated recombination and a stringent counter selection system kil. Using this strategy, a chromosomal library, with a range from 0.3% to 388% relative to the wild lac promoter, was easily obtained. The strength of our chromosomal promoter library was approximately 5-60 times wider in range than those of libraries reported before.
Collapse
Affiliation(s)
- Wei Chen
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Ruyi Chen
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Hui Wang
- School of Biological Medicine, Beijing City University, Beijing, 10084, China
| | - Yujuan Li
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yunyi Zhang
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Shanhu Li
- Beijing Institute of Biotechnology, Beijing 100850, China.
| |
Collapse
|
35
|
Ferreira S, Pereira R, Liu F, Vilaça P, Rocha I. Discovery and implementation of a novel pathway for n-butanol production via 2-oxoglutarate. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:230. [PMID: 31583016 PMCID: PMC6767645 DOI: 10.1186/s13068-019-1565-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 09/07/2019] [Indexed: 05/12/2023]
Abstract
BACKGROUND One of the European Union directives indicates that 10% of all fuels must be bio-synthesized by 2020. In this regard, biobutanol-natively produced by clostridial strains-poses as a promising alternative biofuel. One possible approach to overcome the difficulties of the industrial exploration of the native producers is the expression of more suitable pathways in robust microorganisms such as Escherichia coli. The enumeration of novel pathways is a powerful tool, allowing to identify non-obvious combinations of enzymes to produce a target compound. RESULTS This work describes the in silico driven design of E. coli strains able to produce butanol via 2-oxoglutarate by a novel pathway. This butanol pathway was generated by a hypergraph algorithm and selected from an initial set of 105,954 different routes by successively applying different filters, such as stoichiometric feasibility, size and novelty. The implementation of this pathway involved seven catalytic steps and required the insertion of nine heterologous genes from various sources in E. coli distributed in three plasmids. Expressing butanol genes in E. coli K12 and cultivation in High-Density Medium formulation seem to favor butanol accumulation via the 2-oxoglutarate pathway. The maximum butanol titer obtained was 85 ± 1 mg L-1 by cultivating the cells in bioreactors. CONCLUSIONS In this work, we were able to successfully translate the computational analysis into in vivo applications, designing novel strains of E. coli able to produce n-butanol via an innovative pathway. Our results demonstrate that enumeration algorithms can broad the spectrum of butanol producing pathways. This validation encourages further research to other target compounds.
Collapse
Affiliation(s)
- Sofia Ferreira
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Rui Pereira
- SilicoLife Lda, Rua do Canastreiro 15, 4715-387 Braga, Portugal
- Present Address: Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Filipe Liu
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Present Address: Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL USA
| | - Paulo Vilaça
- SilicoLife Lda, Rua do Canastreiro 15, 4715-387 Braga, Portugal
| | - Isabel Rocha
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB-NOVA), Oeiras, Portugal
| |
Collapse
|
36
|
Tian L, Conway PM, Cervenka ND, Cui J, Maloney M, Olson DG, Lynd LR. Metabolic engineering of Clostridium thermocellum for n-butanol production from cellulose. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:186. [PMID: 31367231 PMCID: PMC6652007 DOI: 10.1186/s13068-019-1524-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/05/2019] [Indexed: 05/15/2023]
Abstract
BACKGROUND Biofuel production from plant cell walls offers the potential for sustainable and economically attractive alternatives to petroleum-based products. In particular, Clostridium thermocellum is a promising host for consolidated bioprocessing (CBP) because of its strong native ability to ferment cellulose. RESULTS We tested 12 different enzyme combinations to identify an n-butanol pathway with high titer and thermostability in C. thermocellum. The best producing strain contained the thiolase-hydroxybutyryl-CoA dehydrogenase-crotonase (Thl-Hbd-Crt) module from Thermoanaerobacter thermosaccharolyticum, the trans-enoyl-CoA reductase (Ter) enzyme from Spirochaeta thermophila and the butyraldehyde dehydrogenase and alcohol dehydrogenase (Bad-Bdh) module from Thermoanaerobacter sp. X514 and was able to produce 88 mg/L n-butanol. The key enzymes from this combination were further optimized by protein engineering. The Thl enzyme was engineered by introducing homologous mutations previously identified in Clostridium acetobutylicum. The Hbd and Ter enzymes were engineered for changes in cofactor specificity using the CSR-SALAD algorithm to guide the selection of mutations. The cofactor engineering of Hbd had the unexpected side effect of also increasing activity by 50-fold. CONCLUSIONS Here we report engineering C. thermocellum to produce n-butanol. Our initial pathway designs resulted in low levels (88 mg/L) of n-butanol production. By engineering the protein sequence of key enzymes in the pathway, we increased the n-butanol titer by 2.2-fold. We further increased n-butanol production by adding ethanol to the growth media. By combining all these improvements, the engineered strain was able to produce 357 mg/L of n-butanol from cellulose within 120 h.
Collapse
Affiliation(s)
- Liang Tian
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755 USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37830 USA
| | | | | | - Jingxuan Cui
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37830 USA
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755 USA
| | - Marybeth Maloney
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755 USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37830 USA
| | - Daniel G. Olson
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755 USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37830 USA
| | - Lee R. Lynd
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755 USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37830 USA
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755 USA
| |
Collapse
|
37
|
Naseri G, Behrend J, Rieper L, Mueller-Roeber B. COMPASS for rapid combinatorial optimization of biochemical pathways based on artificial transcription factors. Nat Commun 2019; 10:2615. [PMID: 31197154 PMCID: PMC6565718 DOI: 10.1038/s41467-019-10224-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 04/26/2019] [Indexed: 02/08/2023] Open
Abstract
Balanced expression of multiple genes is central for establishing new biosynthetic pathways or multiprotein cellular complexes. Methods for efficient combinatorial assembly of regulatory sequences (promoters) and protein coding sequences are therefore highly wanted. Here, we report a high-throughput cloning method, called COMPASS for COMbinatorial Pathway ASSembly, for the balanced expression of multiple genes in Saccharomyces cerevisiae. COMPASS employs orthogonal, plant-derived artificial transcription factors (ATFs) and homologous recombination-based cloning for the generation of thousands of individual DNA constructs in parallel. The method relies on a positive selection of correctly assembled pathway variants from both, in vivo and in vitro cloning procedures. To decrease the turnaround time in genomic engineering, COMPASS is equipped with multi-locus CRISPR/Cas9-mediated modification capacity. We demonstrate the application of COMPASS by generating cell libraries producing β-carotene and co-producing β-ionone and biosensor-responsive naringenin. COMPASS will have many applications in synthetic biology projects that require gene expression balancing. Metabolic engineering requires the balancing of gene expression to obtain optimal output. Here the authors present COMPASS – COMbinatorial Pathway ASSembly – which uses plant-derived artificial transcription factors and cloning of thousands of DNA constructs in parallel to rapidly optimise pathways.
Collapse
Affiliation(s)
- Gita Naseri
- University of Potsdam, Cell2Fab Research Unit, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany.,University of Potsdam, Department Molecular Biology, Karl-Liebknecht-Str. 24-25, House 20, 14476, Potsdam, Germany
| | - Jessica Behrend
- University of Potsdam, Cell2Fab Research Unit, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany
| | - Lisa Rieper
- University of Potsdam, Cell2Fab Research Unit, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany
| | - Bernd Mueller-Roeber
- University of Potsdam, Department Molecular Biology, Karl-Liebknecht-Str. 24-25, House 20, 14476, Potsdam, Germany. .,Max-Planck Institute of Molecular Plant Physiology, Plant Signalling Group, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany. .,Center of Plant Systems Biology and Biotechnology (CPSBB), Department Plant Development, Ruski Blvd. 139, 4000, Plovdiv, Bulgaria.
| |
Collapse
|
38
|
Production of cellulosic butyrate and 3-hydroxybutyrate in engineered Escherichia coli. Appl Microbiol Biotechnol 2019; 103:5215-5230. [DOI: 10.1007/s00253-019-09815-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 03/20/2019] [Accepted: 03/31/2019] [Indexed: 01/17/2023]
|
39
|
Zheng Y, Vasileff A, Zhou X, Jiao Y, Jaroniec M, Qiao SZ. Understanding the Roadmap for Electrochemical Reduction of CO 2 to Multi-Carbon Oxygenates and Hydrocarbons on Copper-Based Catalysts. J Am Chem Soc 2019; 141:7646-7659. [PMID: 30986349 DOI: 10.1021/jacs.9b02124] [Citation(s) in RCA: 411] [Impact Index Per Article: 68.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Electrochemical reduction of CO2 to high-energy-density oxygenates and hydrocarbons beyond CO is important for long-term and large-scale renewable energy storage. However, the key step of the C-C bond formation needed for the generation of C2 products induces an additional barrier on the reaction. This inevitably creates larger overpotentials and greater variety of products as compared to the conversion of CO2 to C1 products. Therefore, an in-depth understanding of the catalytic mechanism is required for advancing the design of efficient electrocatalysts to control the reaction pathway to the desired products. Herein, we present a critical appraisal of reduction of CO2 to C2 products focusing on the connection between the fundamentals of reaction and efficient electrocatalysts. An in-depth discussion of the mechanistic aspects of various C2 reaction pathways on copper-based catalysts is presented together with consideration of practical factors under electrocatalytic operating conditions. By providing some typical examples illustrating the benefit of merging theoretical calculations, surface characterization, and electrochemical measurements, we try to address the key issues of the ongoing debate toward better understanding electrochemical reduction of CO2 at the atomic level and envisioning the roadmap for C2 products generation.
Collapse
Affiliation(s)
- Yao Zheng
- School of Chemical Engineering , The University of Adelaide , Adelaide , SA 5005 , Australia
| | - Anthony Vasileff
- School of Chemical Engineering , The University of Adelaide , Adelaide , SA 5005 , Australia
| | - Xianlong Zhou
- School of Chemical Engineering , The University of Adelaide , Adelaide , SA 5005 , Australia
| | - Yan Jiao
- School of Chemical Engineering , The University of Adelaide , Adelaide , SA 5005 , Australia
| | - Mietek Jaroniec
- Department of Chemistry and Biochemistry , Kent State University , Kent , Ohio 44242 , United States
| | - Shi-Zhang Qiao
- School of Chemical Engineering , The University of Adelaide , Adelaide , SA 5005 , Australia
| |
Collapse
|
40
|
Abdelaal AS, Jawed K, Yazdani SS. CRISPR/Cas9-mediated engineering of Escherichia coli for n-butanol production from xylose in defined medium. J Ind Microbiol Biotechnol 2019; 46:965-975. [PMID: 30982114 DOI: 10.1007/s10295-019-02180-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 04/09/2019] [Indexed: 01/14/2023]
Abstract
Butanol production from agricultural residues is the most promising alternative for fossil fuels. To reach the economic viability of biobutanol production, both glucose and xylose should be utilized and converted into butanol. Here, we engineered a dual-operon-based synthetic pathway in the genome of E. coli MG1655 to produce n-butanol using CRISPR/Cas9 technology. Further deletion of competing pathway followed by fed-batch cultivation of the engineered strain in a bioreactor with glucose-containing complex medium yielded 5.4 g/L n-butanol along with pyruvate as major co-product, indicating a redox imbalance. To ferment xylose into butanol in redox-balanced manner, we selected SSK42, an ethanologenic E. coli strain engineered and evolved in our laboratory to produce ethanol from xylose, for integrating synthetic butanol cassette in its genome via CRISPR/Cas9 after deleting the gene responsible for endogenous ethanol production. The engineered plasmid- and marker-free strain, ASA02, produced 4.32 g/L butanol in fed-batch fermentation in completely defined AM1-xylose medium.
Collapse
Affiliation(s)
- Ali Samy Abdelaal
- Microbial Engineering Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- Department of Genetics, Faculty of Agriculture, Damietta University, Damietta, Egypt
| | - Kamran Jawed
- Microbial Engineering Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Syed Shams Yazdani
- Microbial Engineering Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.
- DBT-ICGEB Centre for Advanced Bioenergy Research, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.
| |
Collapse
|
41
|
Guruge C, Rfaish SY, Byrd C, Yang S, Starrett AK, Guisbert E, Nesnas N. Caged Proline in Photoinitiated Organocatalysis. J Org Chem 2019; 84:5236-5244. [PMID: 30908906 DOI: 10.1021/acs.joc.9b00220] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Organocatalysis is an emerging field, in which small metal-free organic structures catalyze a diversity of reactions with a remarkable stereoselectivity. The ability to selectively switch on such pathways upon demand has proven to be a valuable tool in biological systems. Light as a trigger provides the ultimate spatial and temporal control of activation. However, there have been limited examples of phototriggered catalytic systems. Herein, we describe the synthesis and application of a caged proline system that can initiate organocatalysis upon irradiation. The caged proline was generated using the highly efficient 4-carboxy-5,7-dinitroindolinyl (CDNI) photocleavable protecting group in a four-step synthesis. Advantages of this system include water solubility, biocompatibility, high quantum yield for catalyst release, and responsiveness to two-photon excitation. We showed the light-triggered catalysis of a crossed aldol reaction, a Mannich reaction, and a self-aldol condensation reaction. We also demonstrated light-initiated catalysis, leading to the formation of a biocide in situ, which resulted in the growth inhibition of E. coli, with as little as 3 min of irradiation. This technique can be broadly applied to other systems, by which the formation of active forms of drugs can be catalytically assembled remotely via two-photon irradiation.
Collapse
Affiliation(s)
- Charitha Guruge
- Department of Biomedical and Chemical Engineering and Sciences , Florida Institute of Technology , Melbourne , Florida 32901 , United States
| | - Saad Y Rfaish
- Department of Biomedical and Chemical Engineering and Sciences , Florida Institute of Technology , Melbourne , Florida 32901 , United States
| | - Chanel Byrd
- Department of Biomedical and Chemical Engineering and Sciences , Florida Institute of Technology , Melbourne , Florida 32901 , United States
| | - Shukun Yang
- Department of Biomedical and Chemical Engineering and Sciences , Florida Institute of Technology , Melbourne , Florida 32901 , United States
| | - Anthony K Starrett
- Department of Biomedical and Chemical Engineering and Sciences , Florida Institute of Technology , Melbourne , Florida 32901 , United States
| | - Eric Guisbert
- Department of Biomedical and Chemical Engineering and Sciences , Florida Institute of Technology , Melbourne , Florida 32901 , United States
| | - Nasri Nesnas
- Department of Biomedical and Chemical Engineering and Sciences , Florida Institute of Technology , Melbourne , Florida 32901 , United States
| |
Collapse
|
42
|
Amin SA, Endalur Gopinarayanan V, Nair NU, Hassoun S. Establishing synthesis pathway-host compatibility via enzyme solubility. Biotechnol Bioeng 2019; 116:1405-1416. [PMID: 30802311 DOI: 10.1002/bit.26959] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 12/18/2018] [Accepted: 02/21/2019] [Indexed: 12/12/2022]
Abstract
Current pathway synthesis tools identify possible pathways that can be added to a host to produce the desired target molecule through the exploration of abstract metabolic and reaction network space. However, not many of these tools explore gene-level information required to physically realize the identified synthesis pathways, and none explore enzyme-host compatibility. Developing tools that address this disconnect between abstract reactions/metabolic design space and physical genetic sequence design space will enable expedited experimental efforts that avoid exploring unprofitable synthesis pathways. This work describes a workflow, termed Probabilistic Pathway Assembly with Solubility Confidence Scores (ProPASS), which links synthesis pathway construction with the exploration of the physical design space as imposed by the availability of enzymes with predicted characterized activities within the host. Predicted protein solubility propensity scores are used as a confidence level to quantify the compatibility of each pathway enzyme with the host Escherichia coli (E. coli). This study also presents a database, termed Protein Solubility Database (ProSol DB), which provides solubility confidence scores in E. coli for 240,016 characterized enzymes obtained from UniProtKB/Swiss-Prot. The utility of ProPASS is demonstrated by generating genetic implementations of heterologous synthesis pathways in E. coli that target several commercially useful biomolecules.
Collapse
Affiliation(s)
- Sara A Amin
- Department of Computer Science, Tufts University, Medford, Massachusetts
| | | | - Nikhil U Nair
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts
| | - Soha Hassoun
- Department of Computer Science, Tufts University, Medford, Massachusetts.,Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts
| |
Collapse
|
43
|
Cao Y, Song M, Li F, Li C, Lin X, Chen Y, Chen Y, Xu J, Ding Q, Song H. A Synthetic Plasmid Toolkit for Shewanella oneidensis MR-1. Front Microbiol 2019; 10:410. [PMID: 30906287 PMCID: PMC6418347 DOI: 10.3389/fmicb.2019.00410] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 02/18/2019] [Indexed: 11/25/2022] Open
Abstract
Shewanella oneidensis MR-1 is a platform microorganism for understanding extracellular electron transfer (EET) with a fully sequenced and annotated genome. In comparison to other model microorganisms such as Escherichia coli, the available plasmid parts (such as promoters and replicons) are not sufficient to conveniently and quickly fine-tune the expression of multiple genes in S. oneidensis MR-1. Here, we constructed and characterized a plasmid toolkit that contains a set of expression vectors with a combination of promoters, replicons, antibiotic resistance genes, and an RK2 origin of transfer (oriT) cassette, in which each element can be easily changed by fixed restriction enzyme sites. The expression cassette is also compatible with BioBrick synthetic biology standards. Using green fluorescent protein (GFP) as a reporter, we tested and quantified the strength of promoters. The copy number of different replicons was also measured by real-time quantitative PCR. We further transformed two compatible plasmids with different antibiotic resistance genes into the recombinant S. oneidensis MR-1, enabling control over the expression of two different fluorescent proteins. This plasmid toolkit was further used for overexpression of the MtrCAB porin-c-type cytochrome complex in the S. oneidensis ΔmtrA strain. Tungsten trioxide (WO3) reduction and microbial fuel cell (MFC) assays revealed that the EET efficiency was improved most significantly when MtrCAB was expressed at a moderate level, thus demonstrating the utility of the plasmid toolkit in the EET regulation in S. oneidensis. The plasmid toolkit developed in this study is useful for rapid and convenient fine-tuning of gene expression and enhances the ability to genetically manipulate S. oneidensis MR-1.
Collapse
Affiliation(s)
- Yingxiu Cao
- Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Mengyuan Song
- Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Feng Li
- Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Congfa Li
- College of Food Science and Technology, Hainan University, Haikou, China
| | - Xue Lin
- College of Food Science and Technology, Hainan University, Haikou, China
| | - Yaru Chen
- Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Yuanyuan Chen
- Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Jing Xu
- Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Qian Ding
- Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Hao Song
- Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
44
|
Skorokhodova AY, Gulevich AY, Debabov VG. Engineering Escherichia coli for respiro-fermentative production of pyruvate from glucose under anoxic conditions. J Biotechnol 2019; 293:47-55. [DOI: 10.1016/j.jbiotec.2019.01.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/03/2019] [Accepted: 01/11/2019] [Indexed: 11/30/2022]
|
45
|
Abstract
Renewable biofuel represents one of the answers to solving the energy crisis and climate change problems. Butanol produced naturally by clostridia has superior liquid fuel characteristics and thus has the potential to replace gasoline. Due to the lack of efficient genetic manipulation tools, however, clostridial strain improvement has been slower than improvement of other microorganisms. Furthermore, fermentation coproducing various by-products requires costly downstream processing for butanol purification. Here, we report the results of enzyme engineering of aldehyde/alcohol dehydrogenase (AAD) to increase butanol selectivity. A metabolically engineered Clostridium acetobutylicum strain expressing the engineered aldehyde/alcohol dehydrogenase gene was capable of producing butanol at a high level of selectivity. Butanol production by Clostridium acetobutylicum is accompanied by coproduction of acetone and ethanol, which reduces the yield of butanol and increases the production cost. Here, we report development of several clostridial aldehyde/alcohol dehydrogenase (AAD) variants showing increased butanol selectivity by a series of design and analysis procedures, including random mutagenesis, substrate specificity feature analysis, and structure-based butanol selectivity design. The butanol/ethanol ratios (B/E ratios) were dramatically increased to 17.47 and 15.91 g butanol/g ethanol for AADF716L and AADN655H, respectively, which are 5.8-fold and 5.3-fold higher than the ratios obtained with the wild-type AAD. The much-increased B/E ratio obtained was due to the dramatic reduction in ethanol production (0.59 ± 0.01 g/liter) that resulted from engineering the substrate binding chamber and the active site of AAD. This protein design strategy can be applied generally for engineering enzymes to alter substrate selectivity.
Collapse
|
46
|
Yang J, Zhang CT, Yuan XJ, Zhang M, Mo XH, Tan LL, Zhu LP, Chen WJ, Yao MD, Hu B, Yang S. Metabolic engineering of Methylobacterium extorquens AM1 for the production of butadiene precursor. Microb Cell Fact 2018; 17:194. [PMID: 30572892 PMCID: PMC6300920 DOI: 10.1186/s12934-018-1042-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 12/10/2018] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Butadiene is a platform chemical used as an industrial feedstock for the manufacture of automobile tires, synthetic resins, latex and engineering plastics. Currently, butadiene is predominantly synthesized as a byproduct of ethylene production from non-renewable petroleum resources. Although the idea of biological synthesis of butadiene from sugars has been discussed in the literature, success for that goal has so far not been reported. As a model system for methanol assimilation, Methylobacterium extorquens AM1 can produce several unique metabolic intermediates for the production of value-added chemicals, including crotonyl-CoA as a potential precursor for butadiene synthesis. RESULTS In this work, we focused on constructing a metabolic pathway to convert crotonyl-CoA into crotyl diphosphate, a direct precursor of butadiene. The engineered pathway consists of three identified enzymes, a hydroxyethylthiazole kinase (THK) from Escherichia coli, an isopentenyl phosphate kinase (IPK) from Methanothermobacter thermautotrophicus and an aldehyde/alcohol dehydrogenase (ADHE2) from Clostridium acetobutylicum. The Km and kcat of THK, IPK and ADHE2 were determined as 8.35 mM and 1.24 s-1, 1.28 mM and 153.14 s-1, and 2.34 mM and 1.15 s-1 towards crotonol, crotyl monophosphate and crotonyl-CoA, respectively. Then, the activity of one of rate-limiting enzymes, THK, was optimized by random mutagenesis coupled with a developed high-throughput screening colorimetric assay. The resulting variant (THKM82V) isolated from over 3000 colonies showed 8.6-fold higher activity than wild-type, which helped increase the titer of crotyl diphosphate to 0.76 mM, corresponding to a 7.6% conversion from crotonol in the one-pot in vitro reaction. Overexpression of native ADHE2, IPK with THKM82V under a strong promoter mxaF in M. extorquens AM1 did not produce crotyl diphosphate from crotonyl-CoA, but the engineered strain did generate 0.60 μg/mL of intracellular crotyl diphosphate from exogenously supplied crotonol at mid-exponential phase. CONCLUSIONS These results represent the first step in producing a butadiene precursor in recombinant M. extorquens AM1. It not only demonstrates the feasibility of converting crotonol to key intermediates for butadiene biosynthesis, it also suggests future directions for improving catalytic efficiency of aldehyde/alcohol dehydrogenase to produce butadiene precursor from methanol.
Collapse
Affiliation(s)
- Jing Yang
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong China
| | - Chang-Tai Zhang
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong China
| | - Xiao-Jie Yuan
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong China
| | - Min Zhang
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong China
| | - Xu-Hua Mo
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong China
| | - Ling-Ling Tan
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong China
| | - Li-Ping Zhu
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong China
| | - Wen-Jing Chen
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong China
| | - Ming-Dong Yao
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, China
| | - Bo Hu
- Industrial Product Division, Intrexon Corporation, South San Francisco, CA 94080 USA
| | - Song Yang
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, China
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, Shandong China
| |
Collapse
|
47
|
Abstract
Synthetic biology has undergone dramatic advancements for over a decade, during which it has expanded our understanding on the systems of life and opened new avenues for microbial engineering. Many biotechnological and computational methods have been developed for the construction of synthetic systems. Achievements in synthetic biology have been widely adopted in metabolic engineering, a field aimed at engineering micro-organisms to produce substances of interest. However, the engineering of metabolic systems requires dynamic redistribution of cellular resources, the creation of novel metabolic pathways, and optimal regulation of the pathways to achieve higher production titers. Thus, the design principles and tools developed in synthetic biology have been employed to create novel and flexible metabolic pathways and to optimize metabolic fluxes to increase the cells’ capability to act as production factories. In this review, we introduce synthetic biology tools and their applications to microbial cell factory constructions.
Collapse
|
48
|
Escherichia coli as a host for metabolic engineering. Metab Eng 2018; 50:16-46. [DOI: 10.1016/j.ymben.2018.04.008] [Citation(s) in RCA: 181] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 04/11/2018] [Accepted: 04/12/2018] [Indexed: 12/21/2022]
|
49
|
Bonk BM, Tarasova Y, Hicks MA, Tidor B, Prather KL. Rational design of thiolase substrate specificity for metabolic engineering applications. Biotechnol Bioeng 2018; 115:2167-2182. [PMID: 29877597 PMCID: PMC6131064 DOI: 10.1002/bit.26737] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 05/14/2018] [Accepted: 05/31/2018] [Indexed: 12/29/2022]
Abstract
Metabolic engineering efforts require enzymes that are both highly active and specific toward the synthesis of a desired output product to be commercially feasible. The 3-hydroxyacid (3HA) pathway, also known as the reverse β-oxidation or coenzyme-A-dependent chain-elongation pathway, can allow for the synthesis of dozens of useful compounds of various chain lengths and functionalities. However, this pathway suffers from byproduct formation, which lowers the yields of the desired longer chain products, as well as increases downstream separation costs. The thiolase enzyme catalyzes the first reaction in this pathway, and its substrate specificity at each of its two catalytic steps sets the chain length and composition of the chemical scaffold upon which the other downstream enzymes act. However, there have been few attempts reported in the literature to rationally engineer thiolase substrate specificity. In this study, we present a model-guided, rational design study of ordered substrate binding applied to two biosynthetic thiolases, with the goal of increasing the ratio of C6/C4 products formed by the 3HA pathway, 3-hydroxy-hexanoic acid and 3-hydroxybutyric acid. We identify thiolase mutants that result in nearly 10-fold increases in C6/C4 selectivity. Our findings can extend to other pathways that employ the thiolase for chain elongation, as well as expand our knowledge of sequence-structure-function relationship for this important class of enzymes.
Collapse
Affiliation(s)
- Brian M. Bonk
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA
- Computer Science and Artificial Intelligence Laboratory (CSAIL), Massachusetts Institute of Technology, Cambridge, MA
| | - Yekaterina Tarasova
- Microbiology Graduate Program, Massachusetts Institute of Technology, Cambridge, MA
| | - Michael A. Hicks
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA
| | - Bruce Tidor
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA
- Computer Science and Artificial Intelligence Laboratory (CSAIL), Massachusetts Institute of Technology, Cambridge, MA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA
| | - Kristala L.J. Prather
- Microbiology Graduate Program, Massachusetts Institute of Technology, Cambridge, MA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA
| |
Collapse
|
50
|
Sarria S, Bartholow TG, Verga A, Burkart MD, Peralta-Yahya P. Matching Protein Interfaces for Improved Medium-Chain Fatty Acid Production. ACS Synth Biol 2018; 7:1179-1187. [PMID: 29722970 DOI: 10.1021/acssynbio.7b00334] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Medium-chain fatty acids (MCFAs) are key intermediates in the synthesis of medium-chain chemicals including α-olefins and dicarboxylic acids. In bacteria, microbial production of MCFAs is limited by the activity and product profile of fatty acyl-ACP thioesterases. Here, we engineer a heterologous bacterial medium-chain fatty acyl-ACP thioesterase for improved MCFA production in Escherichia coli. Electrostatically matching the interface between the heterologous medium-chain Acinetobacter baylyi fatty acyl-ACP thioesterase (AbTE) and the endogenous E. coli fatty acid ACP ( E. coli AcpP) by replacing small nonpolar amino acids on the AbTE surface for positively charged ones increased secreted MCFA titers more than 3-fold. Nuclear magnetic resonance titration of E. coli 15N-octanoyl-AcpP with a single AbTE point mutant and the best double mutant showed a progressive and significant increase in the number of interactions when compared to AbTE wildtype. The best AbTE mutant produced 131 mg/L of MCFAs, with MCFAs being 80% of all secreted fatty acid chain lengths after 72 h. To enable the future screening of larger numbers of AbTE variants to further improve MCFA titers, we show that a previously developed G-protein coupled receptor (GPCR)-based MCFA sensor differentially detects MCFAs secreted by E. coli expressing different AbTE variants. This work demonstrates that engineering the interface of heterologous enzymes to better couple with endogenous host proteins is a useful strategy to increase the titers of microbially produced chemicals. Further, this work shows that GPCR-based sensors are producer microbe agnostic and can detect chemicals directly in the producer microbe supernatant, setting the stage for the sensor-guided engineering of MCFA producing microbes.
Collapse
Affiliation(s)
- Stephen Sarria
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Thomas G. Bartholow
- Department of Chemistry and Biochemistry, University of California, San Diego, California 92093, United States
| | - Adam Verga
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Michael D. Burkart
- Department of Chemistry and Biochemistry, University of California, San Diego, California 92093, United States
| | - Pamela Peralta-Yahya
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|