1
|
Udayakumar TS, Betancourt DM, Ahmad A, Tao W, Totiger TM, Patel M, Marples B, Barber G, Pollack A. Radiation Attenuates Prostate Tumor Antiviral Responses to Vesicular Stomatitis Virus Containing IFNβ, Resulting in Pronounced Antitumor Systemic Immune Responses. Mol Cancer Res 2020; 18:1232-1243. [PMID: 32366674 DOI: 10.1158/1541-7786.mcr-19-0836] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/26/2019] [Accepted: 04/30/2020] [Indexed: 11/16/2022]
Abstract
Vesicular stomatitis virus (VSV) expressing IFNβ induces apoptosis in multiple tumor models while maintaining an excellent safety profile. VSV-IFNβ is oncoselective due to permissive replication in cells with an altered IFN pathway. The human VSV-IFNβ (hIFNβ) vector is currently used in clinical trials as a standalone therapy; however, we hypothesized that oncolytic virotherapy might be more effective when used in combination with radiotherapy (RT). We investigated the synergistic effects of RT and VSV-hIFNβ in the subcutaneous PC3 and orthotopic LNCaP prostate xenograft models and a syngeneic RM9 prostate tumor model. VSV-IFNβ combined with RT amplified tumor killing for PC3 and LNCaP xenografts, and RM9 tumors. This was attributed to the induction of proapoptotic genes leading to increased VSV-IFNβ infection and replication, VSV expression, and oncolysis. In the RM9 tumors, combination therapy resulted in a robust antitumor immune response. Treated RM9 tumor-bearing mice demonstrated an increase in CD8+ and CD4+ T-cell numbers, 100% resistance to tumor rechallenge, and reduced resistance to reimplantation challenge with CD8+ knockdown. RT enhanced the activity of VSV-mediated oncolysis via attenuation of the innate antiviral response, resulting in increased VSV replication and the generation of an adaptive immune response earmarked by an increase in CD8+ lymphocyte numbers and antitumor activity. Local tumor irradiation combined with VSV-IFNβ affects tumor cell death through direct and systemic activity in conjunction with pronounced antitumor immunity. IMPLICATIONS: Radiotherapy enhances VSV-mediated oncolysis and anti-tumor immunity, indicating that the ombination has promise for very high risk prostate cancer.
Collapse
Affiliation(s)
- Thirupandiyur S Udayakumar
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Dillon M Betancourt
- Department of Cell Biology, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Anis Ahmad
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Wensi Tao
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Tulasigeri M Totiger
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Mausam Patel
- Department of Radiology, Memorial Health, Savannah, Georgia
| | - Brian Marples
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Glen Barber
- Department of Cell Biology, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Alan Pollack
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida.
| |
Collapse
|
2
|
Osuna-Ramos JF, Reyes-Ruiz JM, Del Ángel RM. The Role of Host Cholesterol During Flavivirus Infection. Front Cell Infect Microbiol 2018; 8:388. [PMID: 30450339 PMCID: PMC6224431 DOI: 10.3389/fcimb.2018.00388] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 10/15/2018] [Indexed: 12/11/2022] Open
Abstract
In recent years the emergence and resurgence of arboviruses have generated a global health alert. Among arboviruses, Dengue (DENV), Zika (ZIKV), Yellow Fever (YFV), and West Nile (WNV) virus, belong to the genus Flavivirus, cause high viremia and occasionally fatal clinical disease in humans. Given the genetic austerity of the virus, they depend on cellular factors and organelles to complete its replication. One of the cellular components required for flavivirus infection is cholesterol. Cholesterol is an abundant lipid in biomembranes of eukaryotes cells and is necessary to maintain the cellular homeostasis. Recently, it has been reported, that cholesterol is fundamental during flavivirus infection in both mammal and insect vector models. During infection with DENV, ZIKV, YFV, and WNV the modulation of levels of host-cholesterol facilitates viral entry, replicative complexes formation, assembly, egress, and control of the interferon type I response. This modulation involves changes in cholesterol uptake with the concomitant regulation of cholesterol receptors as well as changes in cholesterol synthesis related to important modifications in cellular metabolism pathways. In view of the flavivirus dependence of cholesterol and the lack of an effective anti-flaviviral treatment, this cellular lipid has been proposed as a therapeutic target to treat infection using FDA-approved cholesterol-lowering drugs. This review aims to address the dependence of cholesterol by flaviviruses as well as the basis for anti flaviviral therapy using drugs which target is cholesterol synthesis or uptake.
Collapse
Affiliation(s)
- Juan Fidel Osuna-Ramos
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Ciudad de Mexico, Mexico
| | - José Manuel Reyes-Ruiz
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Ciudad de Mexico, Mexico
| | - Rosa Maria Del Ángel
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Ciudad de Mexico, Mexico
| |
Collapse
|
3
|
Gabor KA, Fessler MB. Roles of the Mevalonate Pathway and Cholesterol Trafficking in Pulmonary Host Defense. Curr Mol Pharmacol 2017; 10:27-45. [PMID: 26758950 PMCID: PMC6026538 DOI: 10.2174/1874467209666160112123603] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 08/01/2015] [Accepted: 12/23/2015] [Indexed: 01/17/2023]
Abstract
The mevalonic acid synthesis pathway, cholesterol, and lipoproteins play fundamental roles in lung physiology and the innate immune response. Recent literature investigating roles for cholesterol synthesis and trafficking in host defense against respiratory infection was critically reviewed. The innate immune response and the cholesterol biosynthesis/trafficking network regulate one another, with important implications for pathogen invasion and host defense in the lung. The activation of pathogen recognition receptors and downstream cellular host defense functions are critically sensitive to cellular cholesterol. Conversely, microorganisms can co-opt the sterol/lipoprotein network in order to facilitate replication and evade immunity. Emerging literature suggests the potential for harnessing these insights towards therapeutic development. Given that >50% of adults in the U.S. have serum cholesterol abnormalities and pneumonia remains a leading cause of death, the potential impact of cholesterol on pulmonary host defense is of tremendous public health significance and warrants further mechanistic and translational investigation.
Collapse
Affiliation(s)
| | - Michael B Fessler
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, P.O. Box 12233, Maildrop D2-01, Research Triangle Park, NC 27709, United States
| |
Collapse
|
4
|
Menzel M, Akbarshahi H, Bjermer L, Uller L. Azithromycin induces anti-viral effects in cultured bronchial epithelial cells from COPD patients. Sci Rep 2016; 6:28698. [PMID: 27350308 PMCID: PMC4923851 DOI: 10.1038/srep28698] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 06/08/2016] [Indexed: 12/02/2022] Open
Abstract
Rhinovirus infection is a major cause of chronic obstructive pulmonary disease (COPD) exacerbations and may contribute to the development into severe stages of COPD. The macrolide antibiotic azithromycin may exert anti-viral actions and has been reported to reduce exacerbations in COPD. However, little is known about its anti-viral actions on bronchial epithelial cells at clinically relevant concentrations. Primary bronchial epithelial cells from COPD donors and healthy individuals were treated continuously with azithromycin starting 24 h before infection with rhinovirus RV16. Expression of interferons, RIG-I like helicases, pro-inflammatory cytokines and viral load were analysed. Azithromycin transiently increased expression of IFNβ and IFNλ1 and RIG-I like helicases in un-infected COPD cells. Further, azithromycin augmented RV16-induced expression of interferons and RIG-I like helicases in COPD cells but not in healthy epithelial cells. Azithromycin also decreased viral load. However, it only modestly altered RV16-induced pro-inflammatory cytokine expression. Adding budesonide did not reduce interferon-inducing effects of azithromycin. Possibly by inducing expression of RIG-I like helicases, azithromycin increased rhinovirus-induced expression of interferons in COPD but not in healthy bronchial epithelium. These effects would reduce bronchial viral load, supporting azithromycin’s emerging role in prevention of exacerbations of COPD.
Collapse
Affiliation(s)
- Mandy Menzel
- Respiratory Immunopharmacology, Department of Experimental Medical Science, Lund University, Sweden
| | - Hamid Akbarshahi
- Respiratory Immunopharmacology, Department of Experimental Medical Science, Lund University, Sweden
| | - Leif Bjermer
- Lung medicine and Allergology, Department of Clinical Sciences, Lund University, Sweden
| | - Lena Uller
- Respiratory Immunopharmacology, Department of Experimental Medical Science, Lund University, Sweden
| |
Collapse
|
5
|
Xu C, Evensen Ø, Munang'andu HM. De novo assembly and transcriptome analysis of Atlantic salmon macrophage/dendritic-like TO cells following type I IFN treatment and Salmonid alphavirus subtype-3 infection. BMC Genomics 2015; 16:96. [PMID: 25765343 PMCID: PMC4337061 DOI: 10.1186/s12864-015-1302-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 01/29/2015] [Indexed: 12/23/2022] Open
Abstract
Background Interferons (IFN) are cytokines secreted by vertebrate cells involved in activation of signaling pathways that direct the synthesis of antiviral genes. To gain a global understanding of antiviral genes induced by type I IFNs in salmonids, we used RNA-seq to characterize the transcriptomic changes induced by type I IFN treatment and salmon alphavirus subtype 3 (SAV-3) infection in TO-cells, a macrophage/dendritic like cell-line derived from Atlantic salmon (Salmo salar L) head kidney leukocytes. Results More than 23 million reads generated by RNA-seq were de novo assembled into 58098 unigenes used to generate a total of 3149 and 23289 differentially expressed genes (DEGs) from TO-cells exposed to type I IFN treatment and SAV-3 infection, respectively. Although the DEGs were classified into genes associated with biological processes, cellular components and molecular function based on gene ontology classification, transcriptomic changes reported here show upregulation of genes belonging to the canonical type I IFN signaling pathways together with a broad spectrum of antiviral genes that block virus replication in host cells. In addition, the transcriptome shows a profile of genes associated with apoptosis as well as genes that activate adaptive immunity. Further, our findings show that the profile of genes expressed by TO-cells is comparable to orthologous genes expressed by mammalian macrophages and dendritic cells in response to type I IFNs. Twenty DEGs randomly selected for qRT-PCR confirmed the validity of the transcriptomic changes detected by RNA-seq by showing that the genes upregulated by RNA-seq were also upregulated by qRT-PCR and that genes downregulated by RNA-seq were also downregulated by qRT-PCR. Conclusions The de novo assembled transcriptome presented here provides a global description of genes induced by type I IFNs in TO-cells that could serve as a repository for future studies in fish cells. Transcriptome analysis shows that a large proportion of IFN genes expressed in this study are comparable to IFNs genes expressed in mammalia. In addition, the study shows that SAV-3 is a potent inducer of type I IFNs and that the responses it induces in TO-cells could serve as a model for studying IFN responses in salmonids.
Collapse
Affiliation(s)
- Cheng Xu
- Faculty of Veterinary Medicine and Biosciences, Department of Basic Sciences and Aquatic Medicine, Section of Aquatic Medicine and Nutrition, Norwegian University of Life Sciences, P.O. Box 8146, Dep. NO-0033, Oslo, Norway.
| | - Øystein Evensen
- Faculty of Veterinary Medicine and Biosciences, Department of Basic Sciences and Aquatic Medicine, Section of Aquatic Medicine and Nutrition, Norwegian University of Life Sciences, P.O. Box 8146, Dep. NO-0033, Oslo, Norway.
| | - Hetron Mweemba Munang'andu
- Faculty of Veterinary Medicine and Biosciences, Department of Basic Sciences and Aquatic Medicine, Section of Aquatic Medicine and Nutrition, Norwegian University of Life Sciences, P.O. Box 8146, Dep. NO-0033, Oslo, Norway.
| |
Collapse
|
6
|
Ramírez-Martínez G, Cruz-Lagunas A, Jiménez-Alvarez L, Espinosa E, Ortíz-Quintero B, Santos-Mendoza T, Herrera MT, Canché-Pool E, Mendoza C, Bañales JL, García-Moreno SA, Morán J, Cabello C, Orozco L, Aguilar-Delfín I, Hidalgo-Miranda A, Romero S, Suratt BT, Selman M, Zúñiga J. Seasonal and pandemic influenza H1N1 viruses induce differential expression of SOCS-1 and RIG-I genes and cytokine/chemokine production in macrophages. Cytokine 2013; 62:151-9. [PMID: 23434273 PMCID: PMC4148900 DOI: 10.1016/j.cyto.2013.01.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 01/17/2013] [Accepted: 01/19/2013] [Indexed: 12/28/2022]
Abstract
BACKGROUND Infection with pandemic (pdm) A/H1N1 virus induces high levels of pro-inflammatory mediators in blood and lungs of experimental animals and humans. METHODS To compare the involvement of seasonal A/PR/8/34 and pdm A/H1N1 virus strains in the regulation of inflammatory responses, we analyzed the changes in the whole-genome expression induced by these strains in macrophages and A549 epithelial cells. We also focused on the functional implications (cytokine production) of the differential induction of suppressors of cytokine signaling (SOCS)-1, SOCS-3, retinoid-inducible gene (RIG)-I and interferon receptor 1 (IFNAR1) genes by these viral strains in early stages of the infection. RESULTS We identified 130 genes differentially expressed by pdm A/H1N1 and A/PR/8/34 infections in macrophages. mRNA levels of SOCS-1 and RIG-I were up-regulated in macrophages infected with the A/PR/8/34 but not with pdm A/H1N1 virus. mRNA levels of SOCS-3 and IFNAR1 induced by A/PR/8/34 and pdm A/H1N1 strains in macrophages, as well as in A549 cells were similar. We found higher levels of IL-6, TNF-α, IL-10, CCL3, CCL5, CCL4 and CXCL8 (p < 0.05) in supernatants from cultures of macrophages infected with the pdm A/H1N1 virus compared to those infected with the A/PR/8/34 strain, coincident with the lack of SOCS-1 and RIG-I expression. In contrast, levels of INF-α were higher in cultures of macrophages 48h after infection with the A/PR/8/34 strain than with the pdm A/H1N1 virus. CONCLUSIONS These findings suggest that factors inherent to the pdm A/H1N1 viral strain may increase the production of inflammatory mediators by inhibiting SOCS-1 and modifying the expression of antiviral immunity-related genes, including RIG-I, in human macrophages.
Collapse
Affiliation(s)
- Gustavo Ramírez-Martínez
- Department of Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Alfredo Cruz-Lagunas
- Department of Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Luis Jiménez-Alvarez
- Department of Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Enrique Espinosa
- Department of Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Blanca Ortíz-Quintero
- Department of Biochemistry, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Teresa Santos-Mendoza
- Department of Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - María Teresa Herrera
- Department of Microbiology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Elsy Canché-Pool
- Department of Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Criselda Mendoza
- Research Unit, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - José L. Bañales
- Research Unit, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Sara A. García-Moreno
- Department of Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Juan Morán
- Department of Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Carlos Cabello
- Department of Virology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
- Research Unit, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Lorena Orozco
- Laboratories of Multifactorial Diseases and Cancer Genomics, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Irma Aguilar-Delfín
- Laboratories of Multifactorial Diseases and Cancer Genomics, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Alfredo Hidalgo-Miranda
- Laboratories of Multifactorial Diseases and Cancer Genomics, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Sandra Romero
- Laboratories of Multifactorial Diseases and Cancer Genomics, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Benjamin T. Suratt
- Department of Medicine, University of Vermont College of Medicine, Burlington, VT, USA
| | - Moisés Selman
- Research Unit, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Joaquín Zúñiga
- Department of Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| |
Collapse
|
7
|
Sabbah A, Bose S. Retinoic acid inducible gene I activates innate antiviral response against human parainfluenza virus type 3. Virol J 2009; 6:200. [PMID: 19922606 PMCID: PMC2783035 DOI: 10.1186/1743-422x-6-200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Accepted: 11/17/2009] [Indexed: 12/26/2022] Open
Abstract
Human parainfluenza virus type 3 (HPIV3) is a respiratory paramyxovirus that infects lung epithelial cells to cause high morbidity among infants and children. To date, no effective vaccine or antiviral therapy exists for HPIV3 and therefore, it is important to study innate immune antiviral response induced by this virus in infected cells. Type-I interferons (IFN, interferon-alpha/beta) and tumor necrosis factor-alpha (TNFalpha activated by NFkappaB) are potent antiviral cytokines that play an important role during innate immune antiviral response. A wide-spectrum of viruses utilizes pattern recognition receptors (PRRs) like toll-like receptors (TLRs) and RLH (RIG like helicases) receptors such as RIGI (retinoic acid inducible gene -I) and Mda5 to induce innate antiviral response. Previously it was shown that both TNFalpha and IFNbeta are produced from HPIV3 infected cells. However, the mechanism by which infected cells activated innate response following HPIV3 infection was not known. In the current study, we demonstrated that RIGI serves as a PRR in HPIV3 infected cells to induce innate antiviral response by expressing IFNbeta (via activation of interferon regulatory factor-3 or IRF3) and TNFalpha (via activation of NF-kappaB).
Collapse
Affiliation(s)
- Ahmed Sabbah
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Santanu Bose
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
8
|
Activation of innate immune antiviral responses by Nod2. Nat Immunol 2009; 10:1073-80. [PMID: 19701189 PMCID: PMC2752345 DOI: 10.1038/ni.1782] [Citation(s) in RCA: 589] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Accepted: 07/15/2009] [Indexed: 02/07/2023]
Abstract
Pattern recognition receptors (PRRs) including Toll-like receptors (TLRs) and RIG like helicase (RLH) receptors are involved in innate immune antiviral responses. Here we show that nucleotide-binding oligomerization domain 2 (NOD2) can also function as a cytoplasmic viral PRR by triggering activation of interferon regulatory factor-3 (IRF3) and production of interferon-β (IFN). Following recognition of viral ssRNA genome, NOD2 utilized the adaptor protein MAVS (mitochondrial antiviral signaling) to activate IRF3. NOD2-deficient mice failed to produce IFN efficiently and exhibited enhanced susceptibility to virus-induced pathogenesis. Thus, the function of NOD2 as a viral PRR highlights the important role of NOD2 in host antiviral defense mechanisms.
Collapse
|
9
|
Basler CF, Aguilar PV. Progress in identifying virulence determinants of the 1918 H1N1 and the Southeast Asian H5N1 influenza A viruses. Antiviral Res 2008; 79:166-78. [PMID: 18547656 PMCID: PMC2547130 DOI: 10.1016/j.antiviral.2008.04.006] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 04/26/2008] [Accepted: 04/30/2008] [Indexed: 12/25/2022]
Abstract
The 1918 pandemic H1N1 influenza virus and the recently emerged Southeast Asian H5N1 avian influenza virus are unique among influenza A virus isolates in their high virulence for humans and their lethality for a variety of animal species without prior adaptation. Reverse genetic studies have implicated several viral genes as virulence determinants. For both the 1918 and H5N1 viruses, the hemagglutinin and the polymerase complex contribute to high virulence. Non-structural proteins NS1 and PB1-F2, which block host antiviral responses, also influence pathogenesis. Additionally, recent studies correlate high levels of viral replication and induction of strong proinflammatory responses with the high virulence of these viruses. Defining how individual viral proteins promote enhanced replication, inflammation and severe disease will provide insight into the pathogenesis of severe influenza virus infections and suggest novel therapeutic approaches.
Collapse
MESH Headings
- Animals
- Asia, Southeastern/epidemiology
- Disease Outbreaks/statistics & numerical data
- Ferrets
- Humans
- Immunotherapy
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/metabolism
- Influenza A Virus, H1N1 Subtype/pathogenicity
- Influenza A Virus, H5N1 Subtype/genetics
- Influenza A Virus, H5N1 Subtype/metabolism
- Influenza A Virus, H5N1 Subtype/pathogenicity
- Influenza, Human/epidemiology
- Influenza, Human/therapy
- Influenza, Human/virology
- Mice
- Orthomyxoviridae Infections/epidemiology
- Orthomyxoviridae Infections/therapy
- Orthomyxoviridae Infections/virology
- Viral Proteins/genetics
- Viral Proteins/metabolism
- Virulence
- Virulence Factors/genetics
- Virulence Factors/metabolism
Collapse
Affiliation(s)
- Christopher F Basler
- Department of Microbiology, Box 1124, Mount Sinai School of Medicine, 1 Gustave L. Levy Place, New York, NY 10029, United States.
| | | |
Collapse
|
10
|
Mackenzie JM, Khromykh AA, Parton RG. Cholesterol manipulation by West Nile virus perturbs the cellular immune response. Cell Host Microbe 2007; 2:229-39. [PMID: 18005741 DOI: 10.1016/j.chom.2007.09.003] [Citation(s) in RCA: 241] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2007] [Revised: 07/10/2007] [Accepted: 09/05/2007] [Indexed: 02/08/2023]
Abstract
Complex membrane structures induced by West Nile virus (WNV), an enveloped RNA virus, are required for efficient viral replication. How these membranes are induced and how they facilitate the viral life cycle are unknown. We show that WNV modulates host cell cholesterol homeostasis by upregulating cholesterol biosynthesis and redistributing cholesterol to viral replication membranes. Manipulating cholesterol levels and altering concentrations of cellular geranylgeranylated proteins had a deleterious effect on virus replication. Depletion of the key cholesterol-synthesizing enzyme 3-hydroxy-methyglutaryl-CoA reductase drastically hampered virus replication. Significantly, virus-induced redistribution of cellular cholesterol downregulated the interferon-stimulated Jak-STAT antiviral signaling response to infection. This defect could be partially restored by exogenous addition of cholesterol, which increased the ability of infected cells to respond to interferon. We propose that, by manipulating cellular cholesterol, WNV utilizes the cellular response to cholesterol deficiency and dependence of antiviral signaling pathways on cholesterol-rich microdomains to facilitate viral replication and survival.
Collapse
Affiliation(s)
- Jason M Mackenzie
- School of Molecular and Microbial Sciences, University of Queensland, Brisbane, Queensland 4072, Australia.
| | | | | |
Collapse
|
11
|
Fernandez-Sesma A, Moran TM. Role of the influenza virus nonstructural 1 protein in evasion of immunity. Future Virol 2007. [DOI: 10.2217/17460794.2.4.389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The influenza virus nonstructural (NS)1 protein is a potent immune modulator that has multiple inhibitory functions in the infected cells. The NS1 protein blocks the production of interferon in infected cells by multiple actions, including the inhibition of transcription factors, such as nuclear factor-κB and interferon regulatory factor 3, and the cytoplasmic RNA sensor, retinoic acid-inducible gene-I. Additionally, our recent studies have demonstrated that the NS1 protein of influenza virus is able to inhibit both innate and adaptive immunity by targeting a very specific set of genes and proteins in dendritic cells (DCs). These genes are crucial for the activation of DCs and facilitate their interaction with T cells for the initiation of antiviral immune responses in the infected host. Thus, the NS1 protein is a dual-immune modulator that affects DC function profoundly.
Collapse
Affiliation(s)
- Ana Fernandez-Sesma
- Mount Sinai School of Medicine, Department of Microbiology, One Gustave L Levy Place, NY 10029, USA
| | - Thomas M Moran
- Mount Sinai School of Medicine, Department of Microbiology, One Gustave L Levy Place, NY 10029, USA
| |
Collapse
|