1
|
Jangir J, Jagirdar BR. Unveiling the Potential of Heterogeneous Systems for Reversible Hydrogen Storage in Liquid Organic Hydrogen Carriers. CHEMSUSCHEM 2025; 18:e202402018. [PMID: 39417356 DOI: 10.1002/cssc.202402018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/14/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
Transitioning towards a carbon-free economy is the current global need of the hour. The transportation sector is one of the major contributors of CO2 emissions in the atmosphere disturbing the delicate balance on the Earth, leading to global warming. Hydrogen has emerged as a promising alternative energy carrier capable of replacing fossil fuels, with advancements in systems facilitating its storage and long-distance transport. In this context, the concept of liquid organic hydrogen carriers (LOHCs) is taking the lead, offering a plausible solution because of its compatibility with the existing gasoline infrastructure, while eliminating the challenges associated with the conventional hydrogen storage methods. Key LOHC systems, such as methylcyclohexane/toluene and H-18-dibenzyltoluene/dibenzyltoluene (H-18-DBT/DBT), have been extensively researched for large-scale applications. However, challenges persist, particularly concerning the endothermic nature of the reactions involved. In this regard, of particular interest are the multifunctional heterogeneous catalysts supported on a single support, offering cost-effective and energy-efficient solutions to circumvent issues related to the endothermicity of the reactions. In this review, solid heterogeneous catalysts that have been developed and investigated for reversible dehydrogenation and hydrogenation reactions have been presented. These catalysts include monometallic, bimetallic, and pincer complexes supported on materials designed for efficient hydrogen uptake and release.
Collapse
Affiliation(s)
- Jyothi Jangir
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560 012, India
| | - Balaji R Jagirdar
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560 012, India
| |
Collapse
|
2
|
Grady MM. Constraining the history of water and climate on Mars through light element stable isotope analysis of volatiles in returned martian samples. Proc Natl Acad Sci U S A 2025; 122:e2404260121. [PMID: 39761390 PMCID: PMC11745331 DOI: 10.1073/pnas.2404260121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 11/12/2024] [Indexed: 01/23/2025] Open
Abstract
Much has been learned about Mars through data returned from space missions and analyses of martian meteorites. There are, however, many questions still outstanding which cannot currently be answered-including the issue of whether there is, or was, life on Mars. The return of a cache of samples-including of the atmosphere-from separate locations in Jezero Crater and with differing petrogeneses will provide the international community with the opportunity to explore part of the evolutionary history of Mars in great detail. Specifically, measurements of the isotopic compositions of the light elements H, C, N, O, Cl, and S can be used to follow how volatile species cycle through the different martian volatile reservoirs (atmosphere, lithosphere, cryosphere, and hydrosphere). Measurement of isotopic fractionation enables inference of the environmental conditions (e.g., temperature, water/rock ratio) under which fractionation occurred. Knowing the contextual relationship of the materials to their geological settings, coupled with precise compositional measurements will enable a more thorough understanding of martian volatile history and allow a picture to be constructed of water and climate on Mars as represented at Jezero Crater.
Collapse
Affiliation(s)
- Monica M. Grady
- School of Physical Sciences, The Open University, Milton KeynesMK7 6AA, United Kingdom
| |
Collapse
|
3
|
Burtt DG, Stern JC, Webster CR, Hofmann AE, Franz HB, Sutter B, Thorpe MT, Kite ES, Eigenbrode JL, Pavlov AA, House CH, Tutolo BM, Des Marais DJ, Rampe EB, McAdam AC, Malespin CA. Highly enriched carbon and oxygen isotopes in carbonate-derived CO 2 at Gale crater, Mars. Proc Natl Acad Sci U S A 2024; 121:e2321342121. [PMID: 39374395 PMCID: PMC11494307 DOI: 10.1073/pnas.2321342121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 08/07/2024] [Indexed: 10/09/2024] Open
Abstract
Carbonate minerals are of particular interest in paleoenvironmental research as they are an integral part of the carbon and water cycles, both of which are relevant to habitability. Given that these cycles are less constrained on Mars than they are on Earth, the identification of carbonates has been a point of emphasis for rover missions. Here, we present carbon (δ13C) and oxygen (δ18O) isotope data from four carbonates encountered by the Curiosity rover within the Gale crater. The carbon isotope values range from 72 ± 2‰ to 110 ± 3‰ Vienna Pee Dee Belemnite while the oxygen isotope values span from 59 ± 4‰ to 91 ± 4‰ Vienna Standard Mean Ocean Water (1 SE uncertainties). Notably, these values are isotopically heavy (13C- and 18O-enriched) relative to nearly every other Martian material. The extreme isotopic difference between the carbonates and other carbon- and oxygen-rich reservoirs on Mars cannot be reconciled by standard equilibrium carbonate-CO2 fractionation, thus requiring an alternative process during or prior to carbonate formation. This paper explores two processes capable of contributing to the isotopic enrichments: 1) evaporative-driven Rayleigh distillation and 2) kinetic isotope effects related to cryogenic precipitation. In isolation, each process cannot reproduce the observed carbonate isotope values; however, a combination of these processes represents the most likely source for the extreme isotopic enrichments.
Collapse
Affiliation(s)
- David G. Burtt
- NASA Postdoctoral Fellow, Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD20771
| | - Jennifer C. Stern
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD20771
| | | | - Amy E. Hofmann
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA91109
| | - Heather B. Franz
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD20771
| | - Brad Sutter
- Jacobs Technology, Houston, TX77058
- NASA Johnson Space Center, Houston, TX77058
| | - Michael T. Thorpe
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD20771
- University of Maryland/Goddard Space Flight/Center for Research and Exploration in Space and Science Technology (CRESST II), Greenbelt, MD20771
| | - Edwin S. Kite
- Department of Geophysical Sciences, University of Chicago, Chicago, IL60637
| | | | - Alexander A. Pavlov
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD20771
| | - Christopher H. House
- Department of Geosciences, Pennsylvania State University, University Park, PA16802
| | - Benjamin M. Tutolo
- Department of Geoscience, University of Calgary, Calgary, ABT2N 1N4, Canada
| | | | | | - Amy C. McAdam
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD20771
| | - Charles A. Malespin
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD20771
| |
Collapse
|
4
|
Paulchamy C, Vakkattuthundi Premji S, Shanmugam S. Methanogens and what they tell us about how life might survive on Mars. Crit Rev Biochem Mol Biol 2024; 59:337-362. [PMID: 39488737 DOI: 10.1080/10409238.2024.2418639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 10/08/2024] [Accepted: 10/15/2024] [Indexed: 11/04/2024]
Abstract
Space exploration and research are uncovering the potential for terrestrial life to survive in outer space, as well as the environmental factors that affect life during interplanetary transfer. The presence of methane in the Martian atmosphere suggests the possibility of methanogens, either extant or extinct, on Mars. Understanding how methanogens survive and adapt under space-exposed conditions is crucial for understanding the implications of extraterrestrial life. In this article, we discuss methanogens as model organisms for obtaining energy transducers and producing methane in a simulated Martian environment. We also explore the chemical evolution of cellular composition and growth maintenance to support survival in extraterrestrial environments. Neutral selective pressure is imposed on the chemical composition of cellular components to increase cell survival and reduce growth under physiological conditions. Energy limitation is an evolutionary driver of macromolecular polymerization, growth maintenance, and survival fitness of methanogens. Methanogens grown in a Martian environment may exhibit global alterations in their metabolic function and gene expression at the system scale. A space systems biology approach would further elucidate molecular survival mechanisms and adaptation to a drastic outer space environment. Therefore, identifying a genetically stable methanogenic community is essential for biomethane production from waste recycling to achieve sustainable space-life support functions.
Collapse
Affiliation(s)
- Chellapandi Paulchamy
- Industrial Systems Biology Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
| | - Sreekutty Vakkattuthundi Premji
- Industrial Systems Biology Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
| | - Saranya Shanmugam
- Industrial Systems Biology Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
| |
Collapse
|
5
|
Murray J, Jagoutz O. Olivine alteration and the loss of Mars' early atmospheric carbon. SCIENCE ADVANCES 2024; 10:eadm8443. [PMID: 39321300 PMCID: PMC11423889 DOI: 10.1126/sciadv.adm8443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 08/21/2024] [Indexed: 09/27/2024]
Abstract
The early Martian atmosphere had 0.25 to 4 bar of CO2 but thinned rapidly around 3.5 billion years ago. The fate of that carbon remains poorly constrained. The hydrothermal alteration of ultramafic rocks, rich in Fe(II) and Mg, forms both abiotic methane, serpentine, and high-surface-area smectite clays. Given the abundance of ultramafic rocks and smectite in the Martian upper crust and the growing evidence of organic carbon in Martian sedimentary rocks, we quantify the effects of ultramafic alteration on the carbon cycle of early Mars. We calculate the capacity of Noachian-age clays to store organic carbon. Up to 1.7 bar of CO2 can plausibly be adsorbed on clay surfaces. Coupling abiotic methanogenesis with best estimates of Mars' δ13C history predicts a reservoir of 0.6 to 1.3 bar of CO2 equivalent. Such a reservoir could be used as an energy source for long-term missions. Our results further illustrate the control of water-rock reactions on the atmospheric evolution of planets.
Collapse
Affiliation(s)
- Joshua Murray
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Oliver Jagoutz
- Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
6
|
Koyama S, Yoshida T, Furukawa Y, Terada N, Ueno Y, Nakamura Y, Kamada A, Kuroda T, Vandaele AC. Stable carbon isotope evolution of formaldehyde on early Mars. Sci Rep 2024; 14:21214. [PMID: 39289470 PMCID: PMC11408639 DOI: 10.1038/s41598-024-71301-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/27/2024] [Indexed: 09/19/2024] Open
Abstract
Organic matter in the Martian sediments may provide a key to understanding the prebiotic chemistry and habitability of early Mars. The Curiosity rover has measured highly variable and 13C-depleted carbon isotopic values in early Martian organic matter whose origin is uncertain. One hypothesis suggests the deposition of simple organic molecules generated from 13C-depleted CO derived from CO2 photochemical reduction in the atmosphere. Here, we present a coupled photochemistry-climate evolution model incorporating carbon isotope fractionation processes induced by CO2 photolysis, carbon escape, and volcanic outgassing in an early Martian atmosphere of 0.5-2 bar, composed mainly of CO2, CO, and H2 to track the evolution of the carbon isotopic composition of C-bearing species. The calculated carbon isotopic ratio in formaldehyde (H2CO) can be highly depleted in 13C due to CO2-photolysis-induced fractionation and is variable with changes in atmospheric CO/CO2 ratio, surface pressure, albedo, and H2 outgassing rate. Conversely, CO2 becomes enriched in 13C, as estimated from the carbonates preserved in ALH84001 meteorite. Complex organic matter formed by the polymerization of such H2CO could explain the strong depletion in 13C observed in the Martian organic matter. Mixing with other sources of organic matter would account for its unique variable carbon isotopic values.
Collapse
Affiliation(s)
- Shungo Koyama
- Graduate School of Science, Tohoku University, Sendai, Miyagi, 980-8578, Japan.
- Royal Belgian Institute for Space Aeronomy, BIRA-IASB, Brussels, Belgium.
| | - Tatsuya Yoshida
- Graduate School of Science, Tohoku University, Sendai, Miyagi, 980-8578, Japan
| | - Yoshihiro Furukawa
- Graduate School of Science, Tohoku University, Sendai, Miyagi, 980-8578, Japan
| | - Naoki Terada
- Graduate School of Science, Tohoku University, Sendai, Miyagi, 980-8578, Japan
| | - Yuichiro Ueno
- Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Meguro, Tokyo, 152-8551, Japan
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro, Tokyo, 152-8550, Japan
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, 237-0061, Japan
| | - Yuki Nakamura
- Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Arihiro Kamada
- Graduate School of Science, Tohoku University, Sendai, Miyagi, 980-8578, Japan
| | - Takeshi Kuroda
- Graduate School of Science, Tohoku University, Sendai, Miyagi, 980-8578, Japan
- Division for the Establishment of Frontier Sciences of Organization for Advanced Studies, Tohoku University, Sendai, Japan
| | - Ann Carine Vandaele
- Graduate School of Science, Tohoku University, Sendai, Miyagi, 980-8578, Japan
- Royal Belgian Institute for Space Aeronomy, BIRA-IASB, Brussels, Belgium
| |
Collapse
|
7
|
Zhang ZT, Cao FH, Jiang S, Liu AW, Tan Y, Sun YR, Hu SM. Rovibrational Energies of 13C 16O 2 Determined with Kilohertz Accuracy. J Phys Chem A 2024. [PMID: 38489755 DOI: 10.1021/acs.jpca.4c00697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
Accurate spectroscopic data of carbon dioxide are widely used in many important applications, such as carbon monitoring missions. Here, we present comb-locked cavity ring-down saturation spectroscopy of the second most abundant isotopologue of CO2, 13C16O2. We determined the positions of 88 lines in three vibrational bands in the 1.6 μm region, 30011e/30012e/30013e-00001e, with an accuracy of a few kHz. Based on the analysis of combination differences, we obtained for the first time the ground-state rotational energies with kHz accuracy. We also provide a set of hybrid line positions for 150 13C16O2 transitions. The rotational energies (J < 50) in the 30013e vibrational state can be fitted by a set of rotational and centrifugal constants with deviations within a few kHz, indicating that the 30013e state is free of perturbations. These precise isotopic line positions will be utilized to improve the Hamiltonian model and quantitative remote sensing of carbon dioxide. Moreover, they will help to track changes in the carbon source and sink through isotopic analysis.
Collapse
Affiliation(s)
- Zi-Tan Zhang
- Hefei National Research Center for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Fang-Hui Cao
- State Key Laboratory of Molecular Reaction Dynamics, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Shan Jiang
- State Key Laboratory of Molecular Reaction Dynamics, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - An-Wen Liu
- State Key Laboratory of Molecular Reaction Dynamics, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Yan Tan
- Hefei National Research Center for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Y R Sun
- Institute of Advanced Science Facilities, Shenzhen 518107, China
| | - Shui-Ming Hu
- State Key Laboratory of Molecular Reaction Dynamics, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| |
Collapse
|
8
|
Glidden A, Seager S, Petkowski JJ, Ono S. Can Isotopologues Be Used as Biosignature Gases in Exoplanet Atmospheres? Life (Basel) 2023; 13:2325. [PMID: 38137926 PMCID: PMC10744769 DOI: 10.3390/life13122325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/25/2023] [Accepted: 11/15/2023] [Indexed: 12/24/2023] Open
Abstract
Isotopologue ratios are anticipated to be one of the most promising signs of life that can be observed remotely. On Earth, carbon isotopes have been used for decades as evidence of modern and early metabolic processes. In fact, carbon isotopes may be the oldest evidence for life on Earth, though there are alternative geological processes that can lead to the same magnitude of fractionation. However, using isotopologues as biosignature gases in exoplanet atmospheres presents several challenges. Most significantly, we will only have limited knowledge of the underlying abiotic carbon reservoir of an exoplanet. Atmospheric carbon isotope ratios will thus have to be compared against the local interstellar medium or, better yet, their host star. A further substantial complication is the limited precision of remote atmospheric measurements using spectroscopy. The various metabolic processes that cause isotope fractionation cause less fractionation than anticipated measurement precision (biological fractionation is typically 2 to 7%). While this level of precision is easily reachable in the laboratory or with special in situ instruments, it is out of reach of current telescope technology to measure isotope ratios for terrestrial exoplanet atmospheres. Thus, gas isotopologues are poor biosignatures for exoplanets given our current and foreseeable technological limitations.
Collapse
Affiliation(s)
- Ana Glidden
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sara Seager
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Janusz J. Petkowski
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- JJ Scientific, Mazowieckie, 02-792 Warsaw, Poland
- Faculty of Environmental Engineering, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| | - Shuhei Ono
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
9
|
Vance SD, Craft KL, Shock E, Schmidt BE, Lunine J, Hand KP, McKinnon WB, Spiers EM, Chivers C, Lawrence JD, Wolfenbarger N, Leonard EJ, Robinson KJ, Styczinski MJ, Persaud DM, Steinbrügge G, Zolotov MY, Quick LC, Scully JEC, Becker TM, Howell SM, Clark RN, Dombard AJ, Glein CR, Mousis O, Sephton MA, Castillo-Rogez J, Nimmo F, McEwen AS, Gudipati MS, Jun I, Jia X, Postberg F, Soderlund KM, Elder CM. Investigating Europa's Habitability with the Europa Clipper. SPACE SCIENCE REVIEWS 2023; 219:81. [PMID: 38046182 PMCID: PMC10687213 DOI: 10.1007/s11214-023-01025-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 11/03/2023] [Indexed: 12/05/2023]
Abstract
The habitability of Europa is a property within a system, which is driven by a multitude of physical and chemical processes and is defined by many interdependent parameters, so that its full characterization requires collaborative investigation. To explore Europa as an integrated system to yield a complete picture of its habitability, the Europa Clipper mission has three primary science objectives: (1) characterize the ice shell and ocean including their heterogeneity, properties, and the nature of surface-ice-ocean exchange; (2) characterize Europa's composition including any non-ice materials on the surface and in the atmosphere, and any carbon-containing compounds; and (3) characterize Europa's geology including surface features and localities of high science interest. The mission will also address several cross-cutting science topics including the search for any current or recent activity in the form of thermal anomalies and plumes, performing geodetic and radiation measurements, and assessing high-resolution, co-located observations at select sites to provide reconnaissance for a potential future landed mission. Synthesizing the mission's science measurements, as well as incorporating remote observations by Earth-based observatories, the James Webb Space Telescope, and other space-based resources, to constrain Europa's habitability, is a complex task and is guided by the mission's Habitability Assessment Board (HAB).
Collapse
Affiliation(s)
- Steven D. Vance
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - Kathleen L. Craft
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD USA
| | - Everett Shock
- School of Earth & Space Exploration and School of Molecular Sciences, Arizona State University, Tempe, AZ USA
| | - Britney E. Schmidt
- Department of Astronomy and Department of Earth & Atmospheric Sciences, Cornell University, Ithaca, NY USA
| | - Jonathan Lunine
- Department of Astronomy and Department of Earth & Atmospheric Sciences, Cornell University, Ithaca, NY USA
| | - Kevin P. Hand
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - William B. McKinnon
- Department of Earth and Planetary Sciences and McDonnell Center for the Space Sciences, Washington University in St. Louis, Saint Louis, MO USA
| | - Elizabeth M. Spiers
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA USA
| | - Chase Chivers
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA USA
- Applied Ocean Physics and Engineering, Woods Hole Oceanographic Institution, Woods Hole, MA USA
| | - Justin D. Lawrence
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA USA
- Honeybee Robotics, Altadena, CA USA
| | - Natalie Wolfenbarger
- Institute for Geophysics, John A. and Katherine G. Jackson School of Geosciences, University of Texas at Austin, Austin, TX USA
| | - Erin J. Leonard
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | | | | | - Divya M. Persaud
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - Gregor Steinbrügge
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - Mikhail Y. Zolotov
- School of Earth & Space Exploration and School of Molecular Sciences, Arizona State University, Tempe, AZ USA
| | | | | | | | - Samuel M. Howell
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | | | - Andrew J. Dombard
- Dept. of Earth and Environmental Sciences, University of Illinois Chicago, Chicago, USA
| | | | - Olivier Mousis
- Aix Marseille Université, CNRS, LAM (Laboratoire d’Astrophysique de Marseille), Marseille, France
| | - Mark A. Sephton
- Impacts and Astromaterials Research Centre, Department of Earth Science and Engineering, Imperial College London, London, United Kingdom
| | | | - Francis Nimmo
- Department of Earth and Planetary Sciences, University of California, Santa Cruz, CA USA
| | - Alfred S. McEwen
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ USA
| | - Murthy S. Gudipati
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - Insoo Jun
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - Xianzhe Jia
- Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, MI USA
| | - Frank Postberg
- Institut für Geologische Wissenschaften, Freie Universität Berlin, Berlin, Germany
| | - Krista M. Soderlund
- Institute for Geophysics, John A. and Katherine G. Jackson School of Geosciences, University of Texas at Austin, Austin, TX USA
| | - Catherine M. Elder
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| |
Collapse
|
10
|
Scheller EL, Razzell Hollis J, Cardarelli EL, Steele A, Beegle LW, Bhartia R, Conrad P, Uckert K, Sharma S, Ehlmann BL, Abbey WJ, Asher SA, Benison KC, Berger EL, Beyssac O, Bleefeld BL, Bosak T, Brown AJ, Burton AS, Bykov SV, Cloutis E, Fairén AG, DeFlores L, Farley KA, Fey DM, Fornaro T, Fox AC, Fries M, Hickman-Lewis K, Hug WF, Huggett JE, Imbeah S, Jakubek RS, Kah LC, Kelemen P, Kennedy MR, Kizovski T, Lee C, Liu Y, Mandon L, McCubbin FM, Moore KR, Nixon BE, Núñez JI, Rodriguez Sanchez-Vahamonde C, Roppel RD, Schulte M, Sephton MA, Sharma SK, Siljeström S, Shkolyar S, Shuster DL, Simon JI, Smith RJ, Stack KM, Steadman K, Weiss BP, Werynski A, Williams AJ, Wiens RC, Williford KH, Winchell K, Wogsland B, Yanchilina A, Yingling R, Zorzano MP. Aqueous alteration processes in Jezero crater, Mars-implications for organic geochemistry. Science 2022; 378:1105-1110. [PMID: 36417498 DOI: 10.1126/science.abo5204] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The Perseverance rover landed in Jezero crater, Mars, in February 2021. We used the Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals (SHERLOC) instrument to perform deep-ultraviolet Raman and fluorescence spectroscopy of three rocks within the crater. We identify evidence for two distinct ancient aqueous environments at different times. Reactions with liquid water formed carbonates in an olivine-rich igneous rock. A sulfate-perchlorate mixture is present in the rocks, which probably formed by later modifications of the rocks by brine. Fluorescence signatures consistent with aromatic organic compounds occur throughout these rocks and are preserved in minerals related to both aqueous environments.
Collapse
Affiliation(s)
- Eva L Scheller
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA.,Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Joseph Razzell Hollis
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA.,The Natural History Museum, London, UK
| | - Emily L Cardarelli
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Andrew Steele
- Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC, USA
| | - Luther W Beegle
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | | | - Pamela Conrad
- Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC, USA
| | - Kyle Uckert
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Sunanda Sharma
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Bethany L Ehlmann
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA.,NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - William J Abbey
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Sanford A Asher
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kathleen C Benison
- Department of Geology and Geography, West Virginia University, Morgantown, WV, USA
| | - Eve L Berger
- Texas State University, San Marcos, TX, USA.,Jacobs Johnson Space Center Engineering, Technology and Science Contract, Houston, TX, USA.,NASA Johnson Space Center, Houston, TX, USA
| | - Olivier Beyssac
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Centre National de la Recherche Scientifique, Sorbonne Université, Muséum National d'Histoire Naturelle, 75005 Paris, France
| | | | - Tanja Bosak
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | | | - Sergei V Bykov
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ed Cloutis
- Geography, The University of Winnipeg, Winnipeg, MB, Canada
| | - Alberto G Fairén
- Centro de Astrobiología, Consejo Superior de Investigaciones Cientificas-Instituto Nacional de Tecnica Aeroespacial, Madrid, Spain.,Department of Astronomy, Cornell University, Ithaca, NY, USA
| | - Lauren DeFlores
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Kenneth A Farley
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| | | | - Teresa Fornaro
- Astrophysical Observatory of Arcetri, Istituto Nazionale di Astrofisica, Florence, Italy
| | | | - Marc Fries
- NASA Johnson Space Center, Houston, TX, USA
| | - Keyron Hickman-Lewis
- Department of Earth Sciences, The Natural History Museum, London, UK.,Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Bologna, Bologna, Italy
| | | | | | | | | | - Linda C Kah
- Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN, USA
| | - Peter Kelemen
- Lamont Doherty Earth Observatory, Columbia University, Palisades, NY, USA
| | | | - Tanya Kizovski
- Department of Earth Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Carina Lee
- Lunar and Planetary Institute, Universities Space Research Association, Houston, TX, USA
| | - Yang Liu
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Lucia Mandon
- Laboratoire d'Etudes Spatiales et d'Instrumentation en Astrophysique, Observatoire de Paris, Centre National de la Recherche Scientifique, Sorbonne Université, Université Paris Diderot, 92195 Meudon, France
| | | | - Kelsey R Moore
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | | | - Jorge I Núñez
- Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA
| | | | - Ryan D Roppel
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mitchell Schulte
- Mars Exploration Program, NASA Headquarters, Washington, DC, USA
| | - Mark A Sephton
- Earth Science and Engineering, South Kensington Campus, Imperial College London, SW7 2AZ London, UK
| | - Shiv K Sharma
- Hawaii Institute of Geophysics and Planetology, University of Hawaii at Manoa, Honolulu, HI, USA
| | | | - Svetlana Shkolyar
- Department of Astronomy, University of Maryland, College Park, MD, USA.,NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | - David L Shuster
- Earth and Planetary Science, University of California Berkeley, Berkeley, CA, USA
| | | | - Rebecca J Smith
- Department of Geosciences, Stony Brook University, Stony Brook, NY, USA
| | - Kathryn M Stack
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Kim Steadman
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Benjamin P Weiss
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Amy J Williams
- Department of Geological Sciences, University of Florida, Gainesville, FL, USA
| | - Roger C Wiens
- Los Alamos National Laboratory, Los Alamos, NM, USA.,Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, IN, USA
| | - Kenneth H Williford
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA.,Blue Marble Space Institute of Science, Seattle, WA, USA
| | | | - Brittan Wogsland
- Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN, USA
| | | | | | - Maria-Paz Zorzano
- Centro de Astrobiología, Consejo Superior de Investigaciones Cientificas-Instituto Nacional de Tecnica Aeroespacial, Madrid, Spain
| |
Collapse
|
11
|
Goodwin A, Garwood RJ, Tartèse R. A Review of the "Black Beauty" Martian Regolith Breccia and Its Martian Habitability Record. ASTROBIOLOGY 2022; 22:755-767. [PMID: 35230137 DOI: 10.1089/ast.2021.0069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The regolith breccia Northwest Africa (NWA) 7034 and paired samples are unique meteorite representatives of the martian crust. They are water rich, lithologically varied, and preserve the oldest martian zircon grains yet discovered that formed ca. 4500-4300 Ma. The meteorite thus provides us with an invaluable record of the crustal and environmental conditions on early Mars. Resetting of some radioisotopic chronometers occurred in response to a major thermal disturbance event ca. 1500-1400 Ma, likely caused by an impactor that brecciated and redeposited NWA 7034 near the surface in an ejecta blanket. Lithologies comprising NWA 7034 were then aqueously altered by a long-lasting impact-induced hydrothermal system, before being excavated and ejected by a subsequent impact at ca. 5-15 Ma. This review compiles chronological and petrological information into an overarching geochronological summary for NWA 7034 and paired samples. We then provide a synopsis for the volatile (H2O, C) inventory and hydrothermal alteration history of NWA 7034. From this geochronological history and volatile inventory, we interpret and assess two potential periods of martian habitability: (1) an early window of pre-Noachian planetary habitability, and (2) impact-derived hydrothermal systems that allowed intermittent habitable crater environments well into the Amazonian.
Collapse
Affiliation(s)
- Arthur Goodwin
- Department of Earth and Environmental Sciences, The University of Manchester, Manchester, United Kingdom
| | - Russell J Garwood
- Department of Earth and Environmental Sciences, The University of Manchester, Manchester, United Kingdom
- Earth Sciences Department, Natural History Museum, London, United Kingdom
| | - Romain Tartèse
- Department of Earth and Environmental Sciences, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
12
|
Abstract
Priorities for the exploration of Mars involve the identification and observation of biosignatures that indicate the existence of life on the planet. The atmosphere and composition of the sediments on Mars suggest suitability for anaerobic chemolithotrophic metabolism. Carbonates are often considered as morphological biosignatures, such as stromatolites, but have not been considered as potential electron acceptors. Within the present study, hydrogenotrophic methanogen enrichments were generated from sediments that had received significant quantities of lime from industrial processes (lime kiln/steel production). These enrichments were then supplemented with calcium carbonate powder or marble chips as a sole source of carbon. These microcosms saw a release of inorganic carbon into the liquid phase, which was subsequently removed, resulting in the generation of methane, with 0.37 ± 0.09 mmoles of methane observed in the steel sediment enrichments supplemented with calcium carbonate powder. The steel sediment microcosms and lime sediments with carbonate powder enrichments were dominated by Methanobacterium sp., whilst the lime/marble enrichments were more diverse, containing varying proportions of Methanomassiliicoccus, Methanoculleus and Methanosarcina sp. In all microcosm experiments, acetic acid was detected in the liquid phase. Our results indicate that chemolithotrophic methanogenesis should be considered when determining biosignatures for life on Mars.
Collapse
|
13
|
Depleted carbon isotope compositions observed at Gale crater, Mars. Proc Natl Acad Sci U S A 2022; 119:2115651119. [PMID: 35042808 PMCID: PMC8795525 DOI: 10.1073/pnas.2115651119] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2021] [Indexed: 11/20/2022] Open
Abstract
Carbon isotopic analysis is among the most pervasive geochemical approaches because the fractionation of carbon isotopes produces a natural tracer of biological and chemical processes. Rover-based carbon isotopic analyses of sedimentary rocks on Mars have the potential to reveal modes of Martian carbon cycling. We report carbon isotopic values of the methane released during pyrolysis of samples obtained at Gale crater. The values show remarkable variation indicating different origins for the carbon evolved from different samples. Samples from multiple locations within Gale crater evolved methane with highly fractionated carbon isotopes. We suggest three routes by which highly fractionated carbon could be deposited on Mars, with each suggesting that Martian carbon cycling is quite distinct from that of the present Earth. Obtaining carbon isotopic information for organic carbon from Martian sediments has long been a goal of planetary science, as it has the potential to elucidate the origin of such carbon and aspects of Martian carbon cycling. Carbon isotopic values (δ13CVPDB) of the methane released during pyrolysis of 24 powder samples at Gale crater, Mars, show a high degree of variation (−137 ± 8‰ to +22 ± 10‰) when measured by the tunable laser spectrometer portion of the Sample Analysis at Mars instrument suite during evolved gas analysis. Included in these data are 10 measured δ13C values less than −70‰ found for six different sampling locations, all potentially associated with a possible paleosurface. There are multiple plausible explanations for the anomalously depleted 13C observed in evolved methane, but no single explanation can be accepted without further research. Three possible explanations are the photolysis of biological methane released from the subsurface, photoreduction of atmospheric CO2, and deposition of cosmic dust during passage through a galactic molecular cloud. All three of these scenarios are unconventional, unlike processes common on Earth.
Collapse
|
14
|
Pickett NB, McFadden JP, Fowler CM, Hanley KG, Benna M. Carbon Ion Fluxes at Mars: First Results of Tailward Flows From MAVEN-STATIC. JOURNAL OF GEOPHYSICAL RESEARCH. SPACE PHYSICS 2022; 127:e2021JA029635. [PMID: 35865028 PMCID: PMC9286460 DOI: 10.1029/2021ja029635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 11/29/2021] [Accepted: 12/06/2021] [Indexed: 06/15/2023]
Abstract
Characterizing C+ ions in the Martian ionosphere is important for understanding the history of the Martian atmosphere and surface due to its place in understanding carbon escape. Measuring minor ions, like C+, which are close in mass to major atmospheric ions, in this case O+, is difficult, requiring fitting algorithms and accurate background subtraction. Accurate measurement of these species is essential for understanding chemistry and transport in the ionosphere. In this paper, we use data from the Mars Atmospheric and Volatile EvolutioN SupraThermal And Thermal Ion Composition (MAVEN-STATIC) sensor to report the first C+ fluxes measured in the Martian magnetotail. We will describe a multistep method of background subtraction as well as fitting routines that are used to extract C+ fluxes from a 40-orbit subset of STATIC data. Our results show tailward fluxes in both optical shadow and the adjacent sunlit magnetotail at high altitudes ( > 3,000 km) and Mars-ward at low altitudes ( < 2,000 km) in shadow. These local flux values are similar to estimates of neutral carbon fluxes from photochemical escape. However, total carbon loss comparisons will require a more comprehensive study of integrated C+ loss over a larger data set from the Martian magnetotail.
Collapse
Affiliation(s)
| | | | | | | | - M. Benna
- Goddard Space Flight CenterGreenbeltMDUSA
| |
Collapse
|
15
|
Leask EK, Ehlmann BL, Greenberger RN, Pinet P, Daydou Y, Ceuleneer G, Kelemen P. Tracing Carbonate Formation, Serpentinization, and Biological Materials With Micro-/Meso-Scale Infrared Imaging Spectroscopy in a Mars Analog System, Samail Ophiolite, Oman. EARTH AND SPACE SCIENCE (HOBOKEN, N.J.) 2021; 8:e2021EA001637. [PMID: 34820479 PMCID: PMC8596454 DOI: 10.1029/2021ea001637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 09/14/2021] [Accepted: 09/20/2021] [Indexed: 05/25/2023]
Abstract
Visible-shortwave infrared (VSWIR) imaging spectrometers map composition remotely with spatial context, typically at many meters-scale from orbital and airborne data. Here, we evaluate VSWIR imaging spectroscopy capabilities at centimeters to sub-millimeter scale at the Samail Ophiolite, Oman, where mafic and ultramafic lithologies and their alteration products, including serpentine and carbonates, are exposed in a semi-arid environment, analogous to similar mineral associations observed from Mars orbit that will be explored by the Mars-2020 rover. At outcrop and hand specimen scales, VSWIR spectroscopy (a) identifies cross-cutting veins of calcite, dolomite, magnesite, serpentine, and chlorite that record pathways and time-order of multiple alteration events of changing fluid composition; (b) detects small-scale, partially altered remnant pyroxenes and localized epidote and prehnite that indicate protolith composition and temperatures and pressures of multiple generations of faulting and alteration, respectively; and (c) discriminates between spectrally similar carbonate and serpentine phases and carbonate solid solutions. In natural magnesite veins, minor amounts of ferrous iron can appear similar to olivine's strong 1-μm absorption, though no olivine is present. We also find that mineral identification for carbonate and serpentine in mixtures with each other is strongly scale- and texture-dependent; ∼40 area% dolomite in mm-scale veins at one serpentinite outcrop and ∼18 area% serpentine in a calcite-rich travertine outcrop are not discriminated until spatial scales of <∼1-2 cm/pixel. We found biological materials, for example bacterial mats versus vascular plants, are differentiated using wavelengths <1 μm while shortwave infrared wavelengths >1 μm are required to identify most organic materials and distinguish most mineral phases.
Collapse
Affiliation(s)
- Ellen K. Leask
- Division of Geological & Planetary SciencesCalifornia Institute of TechnologyPasadenaCAUSA
- Now at Johns Hopkins University/Applied Physics LaboratoryLaurelMDUSA
| | - Bethany L. Ehlmann
- Division of Geological & Planetary SciencesCalifornia Institute of TechnologyPasadenaCAUSA
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | - Rebecca N. Greenberger
- Division of Geological & Planetary SciencesCalifornia Institute of TechnologyPasadenaCAUSA
| | - Patrick Pinet
- Institut de Recherche en Astrophysique et Planétologie (IRAP)Université de ToulouseCNRSUPSCNESToulouseFrance
| | - Yves Daydou
- Institut de Recherche en Astrophysique et Planétologie (IRAP)Université de ToulouseCNRSUPSCNESToulouseFrance
| | - Georges Ceuleneer
- Geosciences Environnement Toulouse (GET)Université de ToulouseCNRSUPSToulouseFrance
| | - Peter Kelemen
- Department of Earth & Environmental SciencesColumbia UniversityLamont Doherty Earth ObservatoryPalisadesNYUSA
| |
Collapse
|
16
|
Adams D, Luo Y, Wong ML, Dunn P, Christensen M, Dong C, Hu R, Yung Y. Nitrogen Fixation at Early Mars. ASTROBIOLOGY 2021; 21:968-980. [PMID: 34339294 DOI: 10.1089/ast.2020.2273] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The Mars Science Laboratory (MSL) recently discovered nitrates in Gale Crater (e.g., Stern et al., 2015; Sutter et al., 2017). One possible mechanism for ancient nitrate deposition on Mars is through HNOx formation and rain out in the atmosphere, for which lightning-induced NO is likely the fundamental source. This study investigates nitrogen (N2) fixation in early Mars' atmosphere, with implications for early Mars' habitability. We consider a 1 bar atmosphere of background CO2, with abundance of N2, hydrogen, and methane varied from 1% to 10% to explore a swath of potential early Mars climates. We derive lightning-induced thermochemical equilibrium fluxes of NO and HCN by coupling the lightning-rate parametrization from the study of Romps et al. (2014) with chemical equilibrium with applications, and we use a Geant4 simulation platform to estimate the effect of solar energetic particle events. These fluxes are used as input into KINETICS, the Caltech/JPL coupled photochemistry and transport code, which models the chemistry of 50 species linked by 495 reactions to derive rain-out fluxes of HNOx and HCN. We compute equilibrium concentrations of cyanide and nitrate in a putative northern ocean at early Mars, assuming hydrothermal vent circulation and photoreduction act as the dominant loss mechanisms. We find average oceanic concentrations of ∼0.1-2 nM nitrate and ∼0.01-2 mM cyanide. HCN is critical for protein synthesis at concentrations >0.01 M (e.g., Holm and Neubeck, 2009), and our result is astrobiologically significant if secondary local concentration mechanisms occurred. Nitrates may act as high-potential electron acceptors for early metabolisms, although the minimum concentration required is unknown. Our study derives concentrations that will be useful for future laboratory studies to investigate the habitability at early Mars. The aqueous nitrate concentrations correspond to surface nitrate precipitates of ∼1-8 × 10-4 wt % that may have formed after the evaporation of surface waters, and these values roughly agree with recent MSL measurements.
Collapse
Affiliation(s)
- Danica Adams
- Department of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA
| | - Yangcheng Luo
- Department of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA
| | - Michael L Wong
- Department of Astronomy and Astrobiology Program, University of Washington, Seattle, Washington, USA
- Virtual Planet Laboratory, University of Washington, Seattle, Washington, USA
| | - Patrick Dunn
- Space Sciences Laboratory, University of California, Berkeley, Berkeley, California, USA
| | - Madeline Christensen
- Department of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA
- Bellarmine Preparatory, Tacoma, Washington, USA
| | - Chuanfei Dong
- Department of Astrophysical Sciences, Princeton University, Princeton, California, USA
| | - Renyu Hu
- Department of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Yuk Yung
- Department of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
17
|
Scheller EL, Swindle C, Grotzinger J, Barnhart H, Bhattacharjee S, Ehlmann BL, Farley K, Fischer WW, Greenberger R, Ingalls M, Martin PE, Osorio-Rodriguez D, Smith BP. Formation of Magnesium Carbonates on Earth and Implications for Mars. JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2021; 126:e2021JE006828. [PMID: 34422534 PMCID: PMC8378241 DOI: 10.1029/2021je006828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/29/2021] [Indexed: 05/20/2023]
Abstract
Magnesium carbonates have been identified within the landing site of the Perseverance rover mission. This study reviews terrestrial analog environments and textural, mineral assemblage, isotopic, and elemental analyses that have been applied to establish formation conditions of magnesium carbonates. Magnesium carbonates form in five distinct settings: ultramafic rock-hosted veins, the matrix of carbonated peridotite, nodules in soil, alkaline lake, and playa deposits, and as diagenetic replacements within lime-and dolostones. Dominant textures include fine-grained or microcrystalline veins, nodules, and crusts. Microbial influences on formation are recorded in thrombolites, stromatolites, crinkly, and pustular laminites, spheroids, and filamentous microstructures. Mineral assemblages, fluid inclusions, and carbon, oxygen, magnesium, and clumped isotopes of carbon and oxygen have been used to determine the sources of carbon, magnesium, and fluid for magnesium carbonates as well as their temperatures of formation. Isotopic signatures in ultramafic rock-hosted magnesium carbonates reveal that they form by either low-temperature meteoric water infiltration and alteration, hydrothermal alteration, or metamorphic processes. Isotopic compositions of lacustrine magnesium carbonate record precipitation from lake water, evaporation processes, and ambient formation temperatures. Assessment of these features with similar analytical techniques applied to returned Martian samples can establish whether carbonates on ancient Mars were formed at high or low temperature conditions in the surface or subsurface through abiotic or biotic processes. The timing of carbonate formation processes could be constrained by 147Sm-143Nd isochron, U-Pb concordia, 207Pb-206Pb isochron radiometric dating as well as 3He, 21Ne, 22Ne, or 36Ar surface exposure dating of returned Martian magnesium carbonate samples.
Collapse
Affiliation(s)
- Eva L Scheller
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Carl Swindle
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| | - John Grotzinger
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Holly Barnhart
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Surjyendu Bhattacharjee
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Bethany L Ehlmann
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Ken Farley
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Woodward W Fischer
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Rebecca Greenberger
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Miquela Ingalls
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
- Department of Geosciences, Pennsylvania State University, State College, PA, USA
| | - Peter E Martin
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
- Geological Sciences Department, University of Colorado Boulder, Boulder, CO, USA
| | - Daniela Osorio-Rodriguez
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Ben P Smith
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
18
|
Scheller EL, Ehlmann BL, Hu R, Adams DJ, Yung YL. Long-term drying of Mars by sequestration of ocean-scale volumes of water in the crust. Science 2021; 372:56-62. [PMID: 33727251 DOI: 10.1126/science.abc7717] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 03/04/2021] [Indexed: 11/02/2022]
Abstract
Geological evidence shows that ancient Mars had large volumes of liquid water. Models of past hydrogen escape to space, calibrated with observations of the current escape rate, cannot explain the present-day deuterium-to-hydrogen isotope ratio (D/H). We simulated volcanic degassing, atmospheric escape, and crustal hydration on Mars, incorporating observational constraints from spacecraft, rovers, and meteorites. We found that ancient water volumes equivalent to a 100 to 1500 meter global layer are simultaneously compatible with the geological evidence, loss rate estimates, and D/H measurements. In our model, the volume of water participating in the hydrological cycle decreased by 40 to 95% over the Noachian period (~3.7 billion to 4.1 billion years ago), reaching present-day values by ~3.0 billion years ago. Between 30 and 99% of martian water was sequestered through crustal hydration, demonstrating that irreversible chemical weathering can increase the aridity of terrestrial planets.
Collapse
Affiliation(s)
- E L Scheller
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA.
| | - B L Ehlmann
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA.,Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - Renyu Hu
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - D J Adams
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - Y L Yung
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA.,Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| |
Collapse
|
19
|
Russell MJ, Ponce A. Six 'Must-Have' Minerals for Life's Emergence: Olivine, Pyrrhotite, Bridgmanite, Serpentine, Fougerite and Mackinawite. Life (Basel) 2020; 10:E291. [PMID: 33228029 PMCID: PMC7699418 DOI: 10.3390/life10110291] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/13/2020] [Accepted: 11/14/2020] [Indexed: 12/25/2022] Open
Abstract
Life cannot emerge on a planet or moon without the appropriate electrochemical disequilibria and the minerals that mediate energy-dissipative processes. Here, it is argued that four minerals, olivine ([Mg>Fe]2SiO4), bridgmanite ([Mg,Fe]SiO3), serpentine ([Mg,Fe,]2-3Si2O5[OH)]4), and pyrrhotite (Fe(1-x)S), are an essential requirement in planetary bodies to produce such disequilibria and, thereby, life. Yet only two minerals, fougerite ([Fe2+6xFe3+6(x-1)O12H2(7-3x)]2+·[(CO2-)·3H2O]2-) and mackinawite (Fe[Ni]S), are vital-comprising precipitate membranes-as initial "free energy" conductors and converters of such disequilibria, i.e., as the initiators of a CO2-reducing metabolism. The fact that wet and rocky bodies in the solar system much smaller than Earth or Venus do not reach the internal pressure (≥23 GPa) requirements in their mantles sufficient for producing bridgmanite and, therefore, are too reduced to stabilize and emit CO2-the staple of life-may explain the apparent absence or negligible concentrations of that gas on these bodies, and thereby serves as a constraint in the search for extraterrestrial life. The astrobiological challenge then is to search for worlds that (i) are large enough to generate internal pressures such as to produce bridgmanite or (ii) boast electron acceptors, including imported CO2, from extraterrestrial sources in their hydrospheres.
Collapse
Affiliation(s)
- Michael J. Russell
- Dipartimento di Chimica, Università degli Studi di Torino, via P. Giuria 7, 10125 Turin, Italy
| | - Adrian Ponce
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA;
| |
Collapse
|
20
|
Fukushi K, Sekine Y, Sakuma H, Morida K, Wordsworth R. Semiarid climate and hyposaline lake on early Mars inferred from reconstructed water chemistry at Gale. Nat Commun 2019; 10:4896. [PMID: 31653859 PMCID: PMC6814795 DOI: 10.1038/s41467-019-12871-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 10/01/2019] [Indexed: 12/02/2022] Open
Abstract
Salinity, pH, and redox states are fundamental properties that characterize natural waters. These properties of surface waters on early Mars reflect palaeoenvironments, and thus provide clues on the palaeoclimate and habitability. Here we constrain these properties of pore water within lacustrine sediments of Gale Crater, Mars, using smectite interlayer compositions. Regardless of formation conditions of smectite, the pore water that last interacted with the sediments was of Na-Cl type with mild salinity (~0.1-0.5 mol/kg) and circumneutral pH. To interpret this, multiple scenarios for post-depositional alterations are considered. The estimated Na-Cl concentrations would reflect hyposaline, early lakes developed in 104-106-year-long semiarid climates. Assuming that post-depositional sulfate-rich fluids interacted with the sediments, the redox disequilibria in secondary minerals suggest infiltration of oxidizing fluids into reducing sediments. Assuming no interactions, the redox disequilibria could have been generated by interactions of upwelling groundwater with oxidized sediments in early post-depositional stages.
Collapse
Affiliation(s)
- Keisuke Fukushi
- Institute of Nature and Environmental Technology, Kanazawa University, Kanazawa, Ishikawa, Japan.
| | - Yasuhito Sekine
- Institute of Nature and Environmental Technology, Kanazawa University, Kanazawa, Ishikawa, Japan
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan
| | - Hiroshi Sakuma
- National Institute for Materials Science, Tsukuba, Ibaraki, Japan
| | - Koki Morida
- Division of Natural System, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Robin Wordsworth
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA
| |
Collapse
|
21
|
Onstott T, Ehlmann B, Sapers H, Coleman M, Ivarsson M, Marlow J, Neubeck A, Niles P. Paleo-Rock-Hosted Life on Earth and the Search on Mars: A Review and Strategy for Exploration. ASTROBIOLOGY 2019; 19:1230-1262. [PMID: 31237436 PMCID: PMC6786346 DOI: 10.1089/ast.2018.1960] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 04/25/2019] [Indexed: 05/19/2023]
Abstract
Here we review published studies on the abundance and diversity of terrestrial rock-hosted life, the environments it inhabits, the evolution of its metabolisms, and its fossil biomarkers to provide guidance in the search for life on Mars. Key findings are (1) much terrestrial deep subsurface metabolic activity relies on abiotic energy-yielding fluxes and in situ abiotic and biotic recycling of metabolic waste products rather than on buried organic products of photosynthesis; (2) subsurface microbial cell concentrations are highest at interfaces with pronounced chemical redox gradients or permeability variations and do not correlate with bulk host rock organic carbon; (3) metabolic pathways for chemolithoautotrophic microorganisms evolved earlier in Earth's history than those of surface-dwelling phototrophic microorganisms; (4) the emergence of the former occurred at a time when Mars was habitable, whereas the emergence of the latter occurred at a time when the martian surface was not continually habitable; (5) the terrestrial rock record has biomarkers of subsurface life at least back hundreds of millions of years and likely to 3.45 Ga with several examples of excellent preservation in rock types that are quite different from those preserving the photosphere-supported biosphere. These findings suggest that rock-hosted life would have been more likely to emerge and be preserved in a martian context. Consequently, we outline a Mars exploration strategy that targets subsurface life and scales spatially, focusing initially on identifying rocks with evidence for groundwater flow and low-temperature mineralization, then identifying redox and permeability interfaces preserved within rock outcrops, and finally focusing on finding minerals associated with redox reactions and associated traces of carbon and diagnostic chemical and isotopic biosignatures. Using this strategy on Earth yields ancient rock-hosted life, preserved in the fossil record and confirmable via a suite of morphologic, organic, mineralogical, and isotopic fingerprints at micrometer scale. We expect an emphasis on rock-hosted life and this scale-dependent strategy to be crucial in the search for life on Mars.
Collapse
Affiliation(s)
- T.C. Onstott
- Department of Geosciences, Princeton University, Princeton, New Jersey, USA
- Address correspondence to: T.C. Onstott, Department of Geosciences, Princeton University,, Princeton, NJ 008544
| | - B.L. Ehlmann
- Division of Geological & Planetary Sciences, California Institute of Technology, Pasadena, California, USA
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
- B.L. Ehlmann, Division of Geological & Planetary Sciences, California Institute of Technology, Pasadena, CA 91125
| | - H. Sapers
- Division of Geological & Planetary Sciences, California Institute of Technology, Pasadena, California, USA
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
- Department of Earth Sciences, University of Southern California, Los Angeles, California, USA
| | - M. Coleman
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
- NASA Astrobiology Institute, Pasadena, California, USA
| | - M. Ivarsson
- Department of Biology, University of Southern Denmark, Odense, Denmark
| | - J.J. Marlow
- Department of Organismic & Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - A. Neubeck
- Department of Earth Sciences, Uppsala University, Uppsala, Sweden
| | - P. Niles
- Astromaterials Research and Exploration Science Division, NASA Johnson Space Center, Houston, Texas, USA
| |
Collapse
|
22
|
Yoshida H, Hasegawa H, Katsuta N, Maruyama I, Sirono S, Minami M, Asahara Y, Nishimoto S, Yamaguchi Y, Ichinnorov N, Metcalfe R. Fe-oxide concretions formed by interacting carbonate and acidic waters on Earth and Mars. SCIENCE ADVANCES 2018; 4:eaau0872. [PMID: 30525103 PMCID: PMC6281427 DOI: 10.1126/sciadv.aau0872] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 10/31/2018] [Indexed: 06/09/2023]
Abstract
Spherical Fe-oxide concretions on Earth, especially in Utah, USA, have been investigated as an analog of hematite spherules found in Meridiani Planum on Mars to support interpretations of water-rock interactions in early Mars. Although several formation mechanisms have been proposed for the Fe-oxide concretions on Earth, it is still unclear whether these mechanisms are viable because a precise formation process and precursor of the concretions are missing. This paper presents evidence that Fe-oxide concretions in Utah and newly found Fe-oxide concretions in Mongolia had spherical calcite concretions as precursors. Different formation stages of calcite and Fe-oxide concretions observed, both in Utah and Mongolia, indicate that calcite concretions initially formed within eolian sandstone strata and were dissolved by infiltrating Fe-rich acidic waters to form spherical FeO(OH) crusts due to pH buffering. The similarity between these Fe-oxide concretions on Earth and the hematite spherule occurrences in Meridiani Planum, combined with evidence of acid sulfate water influences on Mars, suggest that the hematite spherules also formed from dissolution of preexisting carbonate spherules possibly formed under a dense carbon dioxide early martian atmosphere.
Collapse
Affiliation(s)
- H. Yoshida
- Material Research Section, Nagoya University, University Museum, Nagoya, Japan
| | - H. Hasegawa
- Material Research Section, Nagoya University, University Museum, Nagoya, Japan
- Faculty of Science and Technology, Kochi University, Kochi, Japan
| | - N. Katsuta
- Faculty of Education, Gifu University, Gifu, Japan
| | - I. Maruyama
- Graduate School of Environmental Studies, Nagoya University, Nagoya, Japan
| | - S. Sirono
- Graduate School of Environmental Studies, Nagoya University, Nagoya, Japan
| | - M. Minami
- Institute for Space-Earth Environmental Research, Nagoya University, Nagoya, Japan
| | - Y. Asahara
- Graduate School of Environmental Studies, Nagoya University, Nagoya, Japan
| | | | - Y. Yamaguchi
- Graduate School of Environmental Studies, Nagoya University, Nagoya, Japan
| | - N. Ichinnorov
- Institute of Paleontology and Geology, Mongolian Academy of Science, Mongolia
| | - R. Metcalfe
- Quintessa Limited, The Hub, Henley-on-Thames, Oxfordshire, UK
| |
Collapse
|
23
|
Yung YL, Chen P, Nealson K, Atreya S, Beckett P, Blank JG, Ehlmann B, Eiler J, Etiope G, Ferry JG, Forget F, Gao P, Hu R, Kleinböhl A, Klusman R, Lefèvre F, Miller C, Mischna M, Mumma M, Newman S, Oehler D, Okumura M, Oremland R, Orphan V, Popa R, Russell M, Shen L, Sherwood Lollar B, Staehle R, Stamenković V, Stolper D, Templeton A, Vandaele AC, Viscardy S, Webster CR, Wennberg PO, Wong ML, Worden J. Methane on Mars and Habitability: Challenges and Responses. ASTROBIOLOGY 2018; 18:1221-1242. [PMID: 30234380 PMCID: PMC6205098 DOI: 10.1089/ast.2018.1917] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 06/12/2018] [Indexed: 05/05/2023]
Abstract
Recent measurements of methane (CH4) by the Mars Science Laboratory (MSL) now confront us with robust data that demand interpretation. Thus far, the MSL data have revealed a baseline level of CH4 (∼0.4 parts per billion by volume [ppbv]), with seasonal variations, as well as greatly enhanced spikes of CH4 with peak abundances of ∼7 ppbv. What do these CH4 revelations with drastically different abundances and temporal signatures represent in terms of interior geochemical processes, or is martian CH4 a biosignature? Discerning how CH4 generation occurs on Mars may shed light on the potential habitability of Mars. There is no evidence of life on the surface of Mars today, but microbes might reside beneath the surface. In this case, the carbon flux represented by CH4 would serve as a link between a putative subterranean biosphere on Mars and what we can measure above the surface. Alternatively, CH4 records modern geochemical activity. Here we ask the fundamental question: how active is Mars, geochemically and/or biologically? In this article, we examine geological, geochemical, and biogeochemical processes related to our overarching question. The martian atmosphere and surface are an overwhelmingly oxidizing environment, and life requires pairing of electron donors and electron acceptors, that is, redox gradients, as an essential source of energy. Therefore, a fundamental and critical question regarding the possibility of life on Mars is, "Where can we find redox gradients as energy sources for life on Mars?" Hence, regardless of the pathway that generates CH4 on Mars, the presence of CH4, a reduced species in an oxidant-rich environment, suggests the possibility of redox gradients supporting life and habitability on Mars. Recent missions such as ExoMars Trace Gas Orbiter may provide mapping of the global distribution of CH4. To discriminate between abiotic and biotic sources of CH4 on Mars, future studies should use a series of diagnostic geochemical analyses, preferably performed below the ground or at the ground/atmosphere interface, including measurements of CH4 isotopes, methane/ethane ratios, H2 gas concentration, and species such as acetic acid. Advances in the fields of Mars exploration and instrumentation will be driven, augmented, and supported by an improved understanding of atmospheric chemistry and dynamics, deep subsurface biogeochemistry, astrobiology, planetary geology, and geophysics. Future Mars exploration programs will have to expand the integration of complementary areas of expertise to generate synergistic and innovative ideas to realize breakthroughs in advancing our understanding of the potential of life and habitable conditions having existed on Mars. In this spirit, we conducted a set of interdisciplinary workshops. From this series has emerged a vision of technological, theoretical, and methodological innovations to explore the martian subsurface and to enhance spatial tracking of key volatiles, such as CH4.
Collapse
Affiliation(s)
- Yuk L. Yung
- California Institute of Technology, Pasadena, California
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | - Pin Chen
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | | | | | | | - Jennifer G. Blank
- NASA Ames Research Center, Blue Marble Space Institute of Science, Mountain View, California
| | - Bethany Ehlmann
- California Institute of Technology, Pasadena, California
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | - John Eiler
- California Institute of Technology, Pasadena, California
| | - Giuseppe Etiope
- Istituto Nazionale di Geofisica e Vulcanologia, Rome, Italy
- Faculty of Environmental Science and Engineering, Babes-Bolyai University, Cluj-Napoca, Romania
| | - James G. Ferry
- The Pennsylvania State University, University Park, Pennsylvania
| | - Francois Forget
- Laboratoire de Météorologie Dynamique, Institut Pierre Simon Laplace, CNRS, Paris, France
| | - Peter Gao
- University of California, Berkeley, California
| | - Renyu Hu
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | - Armin Kleinböhl
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | | | - Franck Lefèvre
- Laboratoire Atmospheres, Milieux, Observations Spatiales (LATMOS), IPSL, Paris, France
| | - Charles Miller
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | - Michael Mischna
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | - Michael Mumma
- NASA Goddard Space Flight Center, Greenbelt, Maryland
| | - Sally Newman
- California Institute of Technology, Pasadena, California
| | | | | | | | | | - Radu Popa
- University of Southern California, Los Angeles, California
| | - Michael Russell
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | - Linhan Shen
- California Institute of Technology, Pasadena, California
| | | | - Robert Staehle
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | - Vlada Stamenković
- California Institute of Technology, Pasadena, California
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | | | | | - Ann C. Vandaele
- The Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels, Belgium
| | - Sébastien Viscardy
- The Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels, Belgium
| | - Christopher R. Webster
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | | | | | - John Worden
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| |
Collapse
|
24
|
Abstract
The habitable zone (HZ) is the circular region around a star(s) where standing bodies of water could exist on the surface of a rocky planet. Space missions employ the HZ to select promising targets for follow-up habitability assessment. The classical HZ definition assumes that the most important greenhouse gases for habitable planets orbiting main-sequence stars are CO2 and H2O. Although the classical HZ is an effective navigational tool, recent HZ formulations demonstrate that it cannot thoroughly capture the diversity of habitable exoplanets. Here, I review the planetary and stellar processes considered in both classical and newer HZ formulations. Supplementing the classical HZ with additional considerations from these newer formulations improves our capability to filter out worlds that are unlikely to host life. Such improved HZ tools will be necessary for current and upcoming missions aiming to detect and characterize potentially habitable exoplanets.
Collapse
|
25
|
Cabrol NA. The Coevolution of Life and Environment on Mars: An Ecosystem Perspective on the Robotic Exploration of Biosignatures. ASTROBIOLOGY 2018; 18:1-27. [PMID: 29252008 PMCID: PMC5779243 DOI: 10.1089/ast.2017.1756] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/27/2017] [Indexed: 05/09/2023]
Abstract
Earth's biological and environmental evolution are intertwined and inseparable. This coevolution has become a fundamental concept in astrobiology and is key to the search for life beyond our planet. In the case of Mars, whether a coevolution took place is unknown, but analyzing the factors at play shows the uniqueness of each planetary experiment regardless of similarities. Early Earth and early Mars shared traits. However, biological processes on Mars, if any, would have had to proceed within the distinctive context of an irreversible atmospheric collapse, greater climate variability, and specific planetary characteristics. In that, Mars is an important test bed for comparing the effects of a unique set of spatiotemporal changes on an Earth-like, yet different, planet. Many questions remain unanswered about Mars' early environment. Nevertheless, existing data sets provide a foundation for an intellectual framework where notional coevolution models can be explored. In this framework, the focus is shifted from planetary-scale habitability to the prospect of habitats, microbial ecotones, pathways to biological dispersal, biomass repositories, and their meaning for exploration. Critically, as we search for biosignatures, this focus demonstrates the importance of starting to think of early Mars as a biosphere and vigorously integrating an ecosystem approach to landing site selection and exploration. Key Words: Astrobiology-Biosignatures-Coevolution of Earth and life-Mars. Astrobiology 18, 1-27.
Collapse
|
26
|
Jakosky BM, Slipski M, Benna M, Mahaffy P, Elrod M, Yelle R, Stone S, Alsaeed N. Mars' atmospheric history derived from upper-atmosphere measurements of 38Ar/ 36Ar. Science 2017; 355:1408-1410. [PMID: 28360326 DOI: 10.1126/science.aai7721] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 03/06/2017] [Indexed: 11/02/2022]
Abstract
The history of Mars' atmosphere is important for understanding the geological evolution and potential habitability of the planet. We determine the amount of gas lost to space through time using measurements of the upper-atmospheric structure made by the Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft. We derive the structure of 38Ar/36Ar between the homopause and exobase altitudes. Fractionation of argon occurs as a result of loss of gas to space by pickup-ion sputtering, which preferentially removes the lighter atom. The measurements require that 66% of the atmospheric argon has been lost to space. Thus, a large fraction of Mars' atmospheric gas has been lost to space, contributing to the transition in climate from an early, warm, wet environment to today's cold, dry atmosphere.
Collapse
Affiliation(s)
| | - M Slipski
- University of Colorado, Boulder, CO, USA
| | - M Benna
- NASA/Goddard Spaceflight Center, Greenbelt, MD, USA
| | - P Mahaffy
- NASA/Goddard Spaceflight Center, Greenbelt, MD, USA
| | - M Elrod
- NASA/Goddard Spaceflight Center, Greenbelt, MD, USA
| | - R Yelle
- University of Arizona, Tucson, AZ, USA
| | - S Stone
- University of Arizona, Tucson, AZ, USA
| | - N Alsaeed
- University of Colorado, Boulder, CO, USA.,American University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
27
|
Russell MJ, Nitschke W. Methane: Fuel or Exhaust at the Emergence of Life? ASTROBIOLOGY 2017; 17:1053-1066. [PMID: 28949766 PMCID: PMC5655419 DOI: 10.1089/ast.2016.1599] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 03/20/2017] [Indexed: 05/28/2023]
Abstract
As many of the methanogens first encountered at hydrothermal vents were thermophilic to hyperthermophilic and comprised one of the lower roots of the evolutionary tree, it has been assumed that methanogenesis was one of the earliest, if not the earliest, pathway to life. It being well known that hydrothermal springs associated with serpentinization also bore abiotic methane, it had been further assumed that emergent biochemistry merely adopted and quickened this supposed serpentinization reaction. Yet, recent hydrothermal experiments simulating serpentinization have failed to generate methane so far, thus casting doubt on this assumption. The idea that the inverse view is worthy of debate, that is, that methanotrophy was the earlier, is stymied by the "fact" that methanotrophy itself has been termed "reverse methanogenesis," so allotting the methanogens the founding pedigree. Thus, attempting to suggest instead that methanogenesis might be termed reverse methanotrophy would require "unlearning"-a challenge to the subconscious! Here we re-examine the "impossibility" of methanotrophy predating methanogenesis as in what we have termed the "denitrifying methanotrophic acetogenic pathway." Advantages offered by such thinking are that methane would not only be a fuel but also a ready source of reduced carbon to combine with formate or carbon monoxide-available in hydrothermal fluids-to generate acetate, a target molecule of the first autotrophs. And the nitrate/nitrite required for the putative oxidation of methane with activated NO would also be a ready source of fixed nitrogen for amination reactions. Theoretical conditions for such a putative pathway would be met in a hydrothermal green rust-bearing exhalative pile and associated chimneys subject to proton and electron counter gradients. This hypothesis could be put to test in a high-pressure hydrothermal reaction chamber in which a cool carbonate/nitrate/nitrite-bearing early acidulous ocean simulant is juxtaposed across a precipitate membrane to an alkaline solution of hydrogen and methane. Key Words: Green rust-Methanotrophy-Nitrate reduction-Emergence of life. Astrobiology 17, 1053-1066.
Collapse
Affiliation(s)
- Michael J. Russell
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | - Wolfgang Nitschke
- CNRS/Aix-Marseille University, BIP UMR 7281, IMM FR 3479, Marseille, France
| |
Collapse
|
28
|
Low Hesperian PCO2 constrained from in situ mineralogical analysis at Gale Crater, Mars. Proc Natl Acad Sci U S A 2017; 114:2166-2170. [PMID: 28167765 DOI: 10.1073/pnas.1616649114] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Carbon dioxide is an essential atmospheric component in martian climate models that attempt to reconcile a faint young sun with planetwide evidence of liquid water in the Noachian and Early Hesperian. In this study, we use mineral and contextual sedimentary environmental data measured by the Mars Science Laboratory (MSL) Rover Curiosity to estimate the atmospheric partial pressure of CO2 (PCO2) coinciding with a long-lived lake system in Gale Crater at ∼3.5 Ga. A reaction-transport model that simulates mineralogy observed within the Sheepbed member at Yellowknife Bay (YKB), by coupling mineral equilibria with carbonate precipitation kinetics and rates of sedimentation, indicates atmospheric PCO2 levels in the 10s mbar range. At such low PCO2 levels, existing climate models are unable to warm Hesperian Mars anywhere near the freezing point of water, and other gases are required to raise atmospheric pressure to prevent lake waters from being lost to the atmosphere. Thus, either lacustrine features of Gale formed in a cold environment by a mechanism yet to be determined, or the climate models still lack an essential component that would serve to elevate surface temperatures, at least locally, on Hesperian Mars. Our results also impose restrictions on the potential role of atmospheric CO2 in inferred warmer conditions and valley network formation of the late Noachian.
Collapse
|
29
|
Hu R, Bloom AA, Gao P, Miller CE, Yung YL. Hypotheses for Near-Surface Exchange of Methane on Mars. ASTROBIOLOGY 2016; 16:539-550. [PMID: 27315136 DOI: 10.1089/ast.2015.1410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
UNLABELLED The Curiosity rover recently detected a background of 0.7 ppb and spikes of 7 ppb of methane on Mars. This in situ measurement reorients our understanding of the martian environment and its potential for life, as the current theories do not entail any geological source or sink of methane that varies sub-annually. In particular, the 10-fold elevation during the southern winter indicates episodic sources of methane that are yet to be discovered. Here we suggest a near-surface reservoir could explain this variability. Using the temperature and humidity measurements from the rover, we find that perchlorate salts in the regolith deliquesce to form liquid solutions, and deliquescence progresses to deeper subsurface in the season of the methane spikes. We therefore formulate the following three testable hypotheses. The first scenario is that the regolith in Gale Crater adsorbs methane when dry and releases this methane to the atmosphere upon deliquescence. The adsorption energy needs to be 36 kJ mol(-1) to explain the magnitude of the methane spikes, higher than existing laboratory measurements. The second scenario is that microorganisms convert organic matter in the soil to methane when they are in liquid solutions. This scenario does not require regolith adsorption but entails extant life on Mars. The third scenario is that deep subsurface aquifers produce the bursts of methane. Continued in situ measurements of methane and water, as well as laboratory studies of adsorption and deliquescence, will test these hypotheses and inform the existence of the near-surface reservoir and its exchange with the atmosphere. KEY WORDS Mars-Methane-Astrobiology-Regolith. Astrobiology 16, 539-550.
Collapse
Affiliation(s)
- Renyu Hu
- 1 Jet Propulsion Laboratory, California Institute of Technology , Pasadena, California
- 2 Division of Geological and Planetary Sciences, California Institute of Technology , Pasadena, California
| | - A Anthony Bloom
- 1 Jet Propulsion Laboratory, California Institute of Technology , Pasadena, California
| | - Peter Gao
- 2 Division of Geological and Planetary Sciences, California Institute of Technology , Pasadena, California
| | - Charles E Miller
- 1 Jet Propulsion Laboratory, California Institute of Technology , Pasadena, California
| | - Yuk L Yung
- 1 Jet Propulsion Laboratory, California Institute of Technology , Pasadena, California
- 2 Division of Geological and Planetary Sciences, California Institute of Technology , Pasadena, California
| |
Collapse
|
30
|
Lapotre MGA, Ewing RC, Lamb MP, Fischer WW, Grotzinger JP, Rubin DM, Lewis KW, Ballard MJ, Day M, Gupta S, Banham SG, Bridges NT, Des Marais DJ, Fraeman AA, Grant JA, Herkenhoff KE, Ming DW, Mischna MA, Rice MS, Sumner DY, Vasavada AR, Yingst RA. Large wind ripples on Mars: A record of atmospheric evolution. Science 2016; 353:55-8. [DOI: 10.1126/science.aaf3206] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 05/31/2016] [Indexed: 11/03/2022]
Affiliation(s)
- M. G. A. Lapotre
- Division of Geological and Planetary Science, California Institute of Technology, Pasadena, CA 91125, USA
| | - R. C. Ewing
- Department of Geology and Geophysics, Texas A&M University, College Station, TX 77843, USA
| | - M. P. Lamb
- Division of Geological and Planetary Science, California Institute of Technology, Pasadena, CA 91125, USA
| | - W. W. Fischer
- Division of Geological and Planetary Science, California Institute of Technology, Pasadena, CA 91125, USA
| | - J. P. Grotzinger
- Division of Geological and Planetary Science, California Institute of Technology, Pasadena, CA 91125, USA
| | - D. M. Rubin
- Department of Earth and Planetary Sciences, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - K. W. Lewis
- Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | - M. J. Ballard
- Department of Geology and Geophysics, Texas A&M University, College Station, TX 77843, USA
| | - M. Day
- Jackson School of Geosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - S. Gupta
- Department of Earth Science and Engineering, Imperial College London, London SW7 2AZ, UK
| | - S. G. Banham
- Department of Earth Science and Engineering, Imperial College London, London SW7 2AZ, UK
| | - N. T. Bridges
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD 20723, USA
| | | | - A. A. Fraeman
- Division of Geological and Planetary Science, California Institute of Technology, Pasadena, CA 91125, USA
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - J. A. Grant
- National Air and Space Museum, Smithsonian Institution, Washington, DC 20560, USA
| | - K. E. Herkenhoff
- Astrogeology Science Center, U.S. Geological Survey, Flagstaff, AZ 86001-1698, USA
| | - D. W. Ming
- NASA Johnson Space Center, Houston, TX 77058, USA
| | - M. A. Mischna
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - M. S. Rice
- Geology Department, Western Washington University, Bellingham, WA 98225-9080, USA
| | - D. Y. Sumner
- Department of Earth and Planetary Sciences, University of California, Davis, CA 95616, USA
| | - A. R. Vasavada
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - R. A. Yingst
- Planetary Science Institute, Tucson, AZ 85719, USA
| |
Collapse
|