1
|
Sun C, Liu S, Lau JW, Yang H, Chen Y, Xing B. Enzyme-Activated Orthogonal Proteolysis Chimeras for Tumor Microenvironment-Responsive Immunomodulation. Angew Chem Int Ed Engl 2025; 64:e202423057. [PMID: 39932237 DOI: 10.1002/anie.202423057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Indexed: 02/20/2025]
Abstract
Precise modulation of dynamic and complex tumor microenvironment (TME) to disrupt tumorigenesis and reshape intratumoral immune infiltration has emerged as promising approaches for enhanced cancer therapy. Among recent innovations, proteolysis-targeting chimeras (PROTACs) represent a burgeoning chemical knockdown technology capable of degrading oncogenic protein homeostasis and inducing dynamic alternations within carcinoma settings, offering potential for antitumor manipulation. However, achieving selectivity in PROTACs that respond to disease environmental stimulation and precisely perturb on-target proteins remains challenging. The multi-step synthesis and limited permeability, attributed to high-molecular-weight and heterobifunctional structures, further hinder their in vivo efficacy. Herein, we present a unique TME-responsive enzyme-activated clickable PROTACs, which features a short peptide-tagged pomalidomide derivative to undergo tumor-specific cleavage by cathepsin protease to induce orthogonal crosslinking of the exposed cysteine with 2-cyanobenzothiazole-labeled epigenetic protein-ligand JQ1, facilitating in situ degrader formation within tumor regions only. Systematic protein profiling and proteomic analysis revealed that such TME-specific clickable-PROTACs not only selectively eliminate epigenetic proteins without tedious pre-synthesis to bridge disparate small-molecule bi-warhead fragments, but also demonstrated superior tumor penetration compared to conventional high-molecular-weight PROTACs. Importantly, these clickable-PROTACs efficiently downregulated immune checkpoint programmed death-ligand 1 (PD-L1) both in vitro and in vivo, remodeling TME for enhanced therapeutics, especially in anti-tumoral immunomodulation.
Collapse
Affiliation(s)
- Caixia Sun
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Songhan Liu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Jun Wei Lau
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Hanyu Yang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Yun Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Bengang Xing
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, 11 Yuk Choi Rd, Hung Hom, Kowloon, Hong Kong SAR, China
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| |
Collapse
|
2
|
Luo J, Shen J, Cheng X, Liu Y, Yin X, Hu T, Fan G, Zhang J, Zheng W, Chen X. Boosting near-infrared-triggered photon upconversion in optical nanomaterials via lanthanide-doped nanoparticle sensitization. Chem Sci 2025; 16:8820-8826. [PMID: 40242844 PMCID: PMC11998938 DOI: 10.1039/d5sc00937e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 04/09/2025] [Indexed: 04/18/2025] Open
Abstract
A broad spectrum of optical nanomaterials, including organic molecules, quantum dots, and metallic nanoparticles, has attracted great attention in fields such as biological imaging, data storage, solid-state lasers and solar energy conversion owing to their nonlinear optical properties facilitated by the two-photon absorption process. However, their nonlinear optical properties, particularly photon upconversion triggered using near-infrared light, are constrained by a limited multiphoton absorption cross-section, requiring a costly pulsed laser with high-density excitation. Herein, we present a straightforward and versatile strategy to enhance upconversion luminescence in various optical nanomaterials via sensitization with lanthanide-doped nanoparticles. This approach not only broadens the near-infrared responsivity of these luminescent nanomaterials but also introduces novel emission profiles to lanthanide-doped nanoparticles, enabling multidimensional tunability in terms of wavelength, lifetime, and polarization under low-density excitation. Concentration-dependent photoluminescence spectra and decay curves reveal a radiative energy transfer upconversion mechanism. These findings provide a general strategy for controlling photon upconversion in a wide range of luminescent nanomaterials, paving the way for innovative and versatile applications in diverse fields.
Collapse
Affiliation(s)
- Jiangshan Luo
- Institute of Quantum and Sustainable Technology (IQST), School of Chemistry and Chemical Engineering, Jiangsu University Zhenjiang Jiangsu 212013 China
| | - Junjian Shen
- School of the Environment and Safety Engineering, Jiangsu University Zhenjiang Jiangsu 212013 China
| | - Xingwen Cheng
- Institute of Quantum and Sustainable Technology (IQST), School of Chemistry and Chemical Engineering, Jiangsu University Zhenjiang Jiangsu 212013 China
- Yongkang Hardware Technician College Yongkang Zhejiang 321300 China
| | - Yan Liu
- State Key Laboratory of Structural Chemistry and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Xiulian Yin
- Institute of Quantum and Sustainable Technology (IQST), School of Chemistry and Chemical Engineering, Jiangsu University Zhenjiang Jiangsu 212013 China
| | - Tianxi Hu
- Yongkang Hardware Technician College Yongkang Zhejiang 321300 China
| | - Guangxin Fan
- Yongkang Hardware Technician College Yongkang Zhejiang 321300 China
| | - Jianming Zhang
- Institute of Quantum and Sustainable Technology (IQST), School of Chemistry and Chemical Engineering, Jiangsu University Zhenjiang Jiangsu 212013 China
| | - Wei Zheng
- State Key Laboratory of Structural Chemistry and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Xueyuan Chen
- State Key Laboratory of Structural Chemistry and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 China
| |
Collapse
|
3
|
Zhou X, Zhang D, Han M, Ma Y, Li W, Yu N. Carbohydrate polymer-functionalized metal nanoparticles in cancer therapy: A review. Int J Biol Macromol 2025; 306:141235. [PMID: 39986501 DOI: 10.1016/j.ijbiomac.2025.141235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/31/2025] [Accepted: 02/16/2025] [Indexed: 02/24/2025]
Abstract
Metal nanoparticles have been emerged as promising candidates in cancer therapy because of their large surface area, optical properties and ROS generation. Therefore, these nanoparticles are able to mediate cell death through hyperthermia, photothermal therapy and ROS-triggered apoptosis. The various metal nanoparticles including gold, silver and iron oxide nanostructures have been exploited for the theranostic application. Moreover, precision oncology and off-targeting features can be improved by metal nanoparticles. The modification of metal nanoparticles with carbohydrate polymers including chitosan, hyaluronic acid, cellulose, agarose, starch and pectin, among others can significantly improve their anti-cancer activities. Carbohydrate polymers have been idea for the purpose of drug delivery due to their biocompatibility, biodegradability and increasing nanoparticle stability. In addition, carbohydrate polymers are able to improve drug delivery, cellular uptake and sustained release of cargo. Such nanoparticles are capable of responding to the specific stimuli in the tumor microenvironment including pH and light. Furthermore, the carbohydrate polymer-modified metal nanoparticles can be utilized for the combination of chemotherapy, phototherapy and immunotherapy. Since the biocompatibility and long-term safety are critical factors for the clinical translation of nanoparticles, the modification of metal nanoparticles with carbohydrate polymers can improve this way to the application in clinic.
Collapse
Affiliation(s)
- Xi Zhou
- Department of Occupational Pulmonology, Shandong Academy of Occupational Health and Occupational Medicine, Occupational Disease Hospital of Shandong First Medical University (Shandong Province Hospital Occupational Disease Hospital), Jinan, Shandong, China
| | - Dongbin Zhang
- Department of Anesthesiology, Affiliated Hospital Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Mingming Han
- Department of Pharmacy and Medical Devices, Shandong Academy of Occupational Health and Occupational Medicine, Occupational Disease Hospital of Shandong First Medical University (Shandong Province Hospital Occupational Disease Hospital), Jinan, Shandong, China
| | - Yanhong Ma
- Department of Rehabilitation, Shandong Academy of Occupational Health and Occupational Medicine, Occupational Disease Hospital of Shandong First Medical University (Shandong Province Hospital Occupational Disease Hospital), Jinan, Shandong, China.
| | - Wentao Li
- Department of Traditional Chinese Medicine, Shandong Academy of Occupational Health and Occupational Medicine, Occupational Disease Hospital of Shandong First Medical University (Shandong Province Hospital Occupational Disease Hospital), Jinan, Shandong, China.
| | - Ning Yu
- Department of Occupational Pulmonology, Shandong Academy of Occupational Health and Occupational Medicine, Occupational Disease Hospital of Shandong First Medical University (Shandong Province Hospital Occupational Disease Hospital), Jinan, Shandong, China.
| |
Collapse
|
4
|
Alexander C, Guo Z, Glover PB, Faulkner S, Pikramenou Z. Luminescent Lanthanides in Biorelated Applications: From Molecules to Nanoparticles and Diagnostic Probes to Therapeutics. Chem Rev 2025; 125:2269-2370. [PMID: 39960048 PMCID: PMC11869165 DOI: 10.1021/acs.chemrev.4c00615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 01/03/2025] [Accepted: 01/10/2025] [Indexed: 02/27/2025]
Abstract
Lanthanides are particularly effective in their clinical applications in magnetic resonance imaging and diagnostic assays. They have open-shell 4f electrons that give rise to characteristic narrow, line-like emission which is unique from other fluorescent probes in biological systems. Lanthanide luminescence signal offers selection of detection pathways based on the choice of the ion from the visible to the near-infrared with long luminescence lifetimes that lend themselves to time-resolved measurements for optical multiplexing detection schemes and novel bioimaging applications. The delivery of lanthanide agents in cells allows localized bioresponsive activity for novel therapies. Detection in the near-infrared region of the spectrum coupled with technological advances in microscopies opens new avenues for deep-tissue imaging and surgical interventions. This review focuses on the different ways in which lanthanide luminescence can be exploited in nucleic acid and enzyme detection, anion recognition, cellular imaging, tissue imaging, and photoinduced therapeutic applications. We have focused on the hierarchy of designs that include luminescent lanthanides as probes in biology considering coordination complexes, multimetallic lanthanide systems to metal-organic frameworks and nanoparticles highlighting the different strategies in downshifting, and upconversion revealing some of the opportunities and challenges that offer potential for further development in the field.
Collapse
Affiliation(s)
- Carlson Alexander
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
- Department
of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Zhilin Guo
- Department
of Materials Science and Engineering, Southern
University of Science and Technology, Shenzhen 518055, China
| | - Peter B. Glover
- Defence
Science and Technology Laboratory (DSTL), Porton Down, Salisbury SP4 0JQ, United
Kingdom
| | - Stephen Faulkner
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Zoe Pikramenou
- School
of Chemistry, University of Birmingham, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
5
|
Yang B, Liang H, Xu J, Liu Y, Ma S, Li Y, Wang C. Multi-drug sequential release systems: Construction and application for synergistic tumor treatment. Int J Pharm 2025; 670:125156. [PMID: 39746586 DOI: 10.1016/j.ijpharm.2024.125156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/25/2024] [Accepted: 12/30/2024] [Indexed: 01/04/2025]
Abstract
In tumor treatment, the sequence and timing of drug action have a large influence on therapeutic efficacy. Multi-drug sequential release systems (MDSRS) enable the sequential and/or on-demand release of multiple drugs following the single administration of a therapeutic agent. Several researchers have explored MDSRS, providing fresh strategies for synergistic cancer therapy. This review article first introduces the main characteristics of MDSRS. It then elaborates on the design principles of MDSRS. Subsequently, it summarizes the various structures of carriers used for constructing MDSRS, including core-shell structure, Layer-by-layer structure, Janus structure and hydrogel. Next, through specific examples, the article emphasizes the application of MDSRS in cancer treatment, focusing on their role in remodeling the tumor microenvironment (TME) and enhancing therapeutic effects through multiple mechanisms. Finally, the article discusses the current limitations and challenges of these systems and proposes potential future solutions. Overall, this review underscores the importance of the sequence and timing of drug therapy in cancer treatment, providing valuable theoretical and technical guidance for pharmaceutical research.
Collapse
Affiliation(s)
- Boyuan Yang
- School of Life Science and Technology, Kunming University of Science and Technology, China
| | - Huijuan Liang
- School of Life Science and Technology, Kunming University of Science and Technology, China
| | - Jiahao Xu
- School of Life Science and Technology, Kunming University of Science and Technology, China
| | - Yanchi Liu
- School of Life Science and Technology, Kunming University of Science and Technology, China
| | - Sha Ma
- School of Life Science and Technology, Kunming University of Science and Technology, China
| | - Yuqiu Li
- School of Life Science and Technology, Kunming University of Science and Technology, China
| | - Chengxiao Wang
- School of Life Science and Technology, Kunming University of Science and Technology, China.
| |
Collapse
|
6
|
Ma T, Tran TB, Lin E, Hunt S, Haveman R, Castro K, Lu J. Size-transformable nanotherapeutics for cancer therapy. Acta Pharm Sin B 2025; 15:834-851. [PMID: 40177555 PMCID: PMC11959941 DOI: 10.1016/j.apsb.2024.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/25/2024] [Accepted: 11/04/2024] [Indexed: 04/05/2025] Open
Abstract
The size of nanodrugs plays a crucial role in shaping their chemical and physical characteristics, consequently influencing their therapeutic and diagnostic interactions within biological systems. The optimal size of nanomedicines, whether small or large, offers distinct advantages in disease treatment, creating a dilemma in the selection process. Addressing this challenge, size-transformable nanodrugs have surfaced as a promising solution, as they can be tailored to entail the benefits associated with both small and large nanoparticles. In this review, various strategies are summarized for constructing size-transformable nanosystems with a focus on nanotherapeutic applications in the field of biomedicine. Particularly we highlight recent research developments in cancer therapy. This review aims to inspire researchers to further develop various toolboxes for fabricating size-transformable nanomedicines for improved intervention against diverse human diseases.
Collapse
Affiliation(s)
- Teng Ma
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, the University of Arizona, Tucson 85721, AZ, USA
| | - Tuyen Ba Tran
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, the University of Arizona, Tucson 85721, AZ, USA
| | - Ethan Lin
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, the University of Arizona, Tucson 85721, AZ, USA
| | - Stephanie Hunt
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, the University of Arizona, Tucson 85721, AZ, USA
| | - Riley Haveman
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, the University of Arizona, Tucson 85721, AZ, USA
| | - Kylie Castro
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, the University of Arizona, Tucson 85721, AZ, USA
| | - Jianqin Lu
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, the University of Arizona, Tucson 85721, AZ, USA
- Clinical and Translational Oncology Program, the University of Arizona Cancer Center, Tucson 85721, AZ, USA
- BIO5 Institute, the University of Arizona, Tucson 85721, AZ, USA
- Southwest Environmental Health Sciences Center, the University of Arizona, Tucson 85721, AZ, USA
| |
Collapse
|
7
|
Li X, Zhang R, Yang Y, Huang W. Finely Tailored Conjugated Small Molecular Nanoparticles for Near-Infrared Biomedical Applications. RESEARCH (WASHINGTON, D.C.) 2025; 8:0534. [PMID: 39801503 PMCID: PMC11717998 DOI: 10.34133/research.0534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/20/2024] [Accepted: 10/26/2024] [Indexed: 01/16/2025]
Abstract
Near-infrared (NIR) phototheranostics (PTs) show higher tissue penetration depth, signal-to-noise ratio, and better biosafety than PTs in the ultraviolet and visible regions. However, their further advancement is severely hindered by poor performances and short-wavelength absorptions/emissions of PT agents. Among reported PT agents, conjugated small molecular nanoparticles (CSMNs) prepared from D-A-typed photoactive conjugated small molecules (CSMs) have greatly mediated this deadlock by their high photostability, distinct chemical structure, tunable absorption, intrinsic multifunctionality, and favorable biocompatibility, which endows CSMNs with more possibilities in biological applications. This review aims to introduce the recent progress of CSMNs for NIR imaging, therapy, and synergistic PTs with a comprehensive summary of their molecular structures, structure types, and optical properties. Moreover, the working principles of CSMNs are illustrated from photophysical and photochemical mechanisms and light-tissue interactions. In addition, molecular engineering and nanomodulation approaches of CSMs are discussed, with an emphasis on strategies for improving performances and extending absorption and emission wavelengths to the NIR range. Furthermore, the in vivo investigation of CSMNs is illustrated with solid examples from imaging in different scenarios, therapy in 2 modes, and synergistic PTs in combinational functionalities. This review concludes with a brief conclusion, current challenges, and future outlook of CSMNs.
Collapse
Affiliation(s)
- Xiaozhen Li
- Frontiers Science Center for Flexible Electronics (FSCFE) & Institute of Flexible Electronics (IFE),
Northwestern Polytechnical University, Xi’an 710072, P. R. China
| | - Ruohan Zhang
- Frontiers Science Center for Flexible Electronics (FSCFE) & Institute of Flexible Electronics (IFE),
Northwestern Polytechnical University, Xi’an 710072, P. R. China
| | - Yanlong Yang
- Frontiers Science Center for Flexible Electronics (FSCFE) & Institute of Flexible Electronics (IFE),
Northwestern Polytechnical University, Xi’an 710072, P. R. China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE) & Institute of Flexible Electronics (IFE),
Northwestern Polytechnical University, Xi’an 710072, P. R. China
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM),
Nanjing Tech University (Nanjing Tech), Nanjing 211816, P. R. China
- State Key Laboratory of Organic Electronics and Information Displays and Jiangsu Key Laboratory of Biosensors, Institute of Advanced Materials (IAM),
Nanjing University of Posts and Telecommunications, Nanjing 210023, P. R. China
| |
Collapse
|
8
|
Fu Y, Zhang X, Wu L, Wu M, James TD, Zhang R. Bioorthogonally activated probes for precise fluorescence imaging. Chem Soc Rev 2025; 54:201-265. [PMID: 39555968 DOI: 10.1039/d3cs00883e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Over the past two decades, bioorthogonal chemistry has undergone a remarkable development, challenging traditional assumptions in biology and medicine. Recent advancements in the design of probes tailored for bioorthogonal applications have met the increasing demand for precise imaging, facilitating the exploration of complex biological systems. These state-of-the-art probes enable highly sensitive, low background, in situ imaging of biological species and events within live organisms, achieving resolutions comparable to the size of the biomolecule under investigation. This review provides a comprehensive examination of various categories of bioorthogonally activated in situ fluorescent labels. It highlights the intricate design and benefits of bioorthogonal chemistry for precise in situ imaging, while also discussing future prospects in this rapidly evolving field.
Collapse
Affiliation(s)
- Youxin Fu
- College of Science, Nanjing Forestry University, Nanjing, 210037, P. R. China
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia.
| | - Xing Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia.
- College of Ecology and Environment, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Luling Wu
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK.
| | - Miaomiao Wu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia.
| | - Tony D James
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK.
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia.
| |
Collapse
|
9
|
Huang Y, Yu Z, Peng J, Yu Q, Xu H, Yang M, Yuan S, Zhang Q, Yang Y, Gao J, Yuan Y. Amino-Acid-Encoded Supramolecular Nanostructures for Persistent Bioluminescence Imaging of Tumor. Adv Healthc Mater 2024; 13:e2401244. [PMID: 38934340 DOI: 10.1002/adhm.202401244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/16/2024] [Indexed: 06/28/2024]
Abstract
Bioluminescence imaging (BLI) is a powerful technique for noninvasive monitoring of biological processes and cell transplantation. Nonetheless, the application of D-luciferin, which is widely employed as a bioluminescent probe, is restricted in long-term in vivo tracking due to its short half-life. This study presents a novel approach using amino acid-encoded building blocks to accumulate and preserve luciferin within tumor cells, through a supramolecular self-assembly strategy. The building block platform called Cys(SEt)-X-CBT (CXCBT, with X representing any amino acid) utilizes a covalent-noncovalent hybrid self-assembly mechanism to generate diverse luciferin-containing nanostructures in tumor cells after glutathione reduction. These nanostructures exhibit efficient tumor-targeted delivery as well as sequence-dependent well-designed morphologies and prolonged bioluminescence performance. Among the selected amino acids (X = Glu, Lys, Leu, Phe), Cys(SEt)-Lys-CBT (CKCBT) exhibits the superior long-lasting bioluminescence signal (up to 72 h) and good biocompatibility. This study demonstrates the potential of amino-acid-encoded supramolecular self-assembly as a convenient and effective method for developing BLI probes for long-term biological tracking and disease imaging.
Collapse
Affiliation(s)
- Yifan Huang
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Zian Yu
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jiancheng Peng
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Qin Yu
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Hao Xu
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
| | - Miaomiao Yang
- Clinical Pathology Center, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Sijie Yuan
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Qianzijing Zhang
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yanyun Yang
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jin Gao
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Hefei Ion Medical Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230088, China
| | - Yue Yuan
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Hefei Ion Medical Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230088, China
| |
Collapse
|
10
|
Cao Z, Liu J, Yang X. Deformable nanocarriers for enhanced drug delivery and cancer therapy. EXPLORATION (BEIJING, CHINA) 2024; 4:20230037. [PMID: 39439489 PMCID: PMC11491306 DOI: 10.1002/exp.20230037] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 01/28/2024] [Indexed: 10/25/2024]
Abstract
Recently, the field of nanomedicine has witnessed substantial advancements in the development of nanocarriers for targeted drug delivery, emerges as promising platforms to enhance therapeutic efficacy and minimize adverse effects associated with conventional chemotherapy. Notably, deformable nanocarriers have garnered considerable attention due to their unique capabilities of size changeable, tumor-specific aggregation, stimuli-triggered disintegration, and morphological transformations. These deformable nanocarriers present significant opportunities for revolutionizing drug delivery strategies, by responding to specific stimuli or environmental cues, enabling achieved various functions at the tumor site, including size-shrinkage nanocarriers enhance drug penetration, aggregative nanocarriers enhance retention effect, disintegrating nanocarriers enable controlled drug release, and shape-changing nanocarriers improve cellular uptake, allowing for personalized treatment approaches and combination therapies. This review provides an overview of recent developments and applications of deformable nanocarriers for enhancing tumor therapy, underscores the diverse design strategies employed to create deformable nanocarriers and elucidates their remarkable potential in targeted tumor therapy.
Collapse
Affiliation(s)
- Ziyang Cao
- Department of General SurgeryGuangzhou First People's Hospitalthe Second Affiliated HospitalSouth China University of TechnologyGuangzhouPeople's Republic of China
- Center for Medical Research on Innovation and TranslationInstitute of Clinical MedicineSchool of MedicineGuangzhou First People's HospitalSouth China University of TechnologyGuangzhouPeople's Republic of China
| | - Jing Liu
- School of ChemistryChemical Engineering and Biotechnology Nanyang Technological UniversitySingaporeSingapore
| | - Xianzhu Yang
- School of Biomedical Sciences and EngineeringSouth China University of TechnologyGuangzhou International CampusGuangzhouGuangdongPeople's Republic of China
| |
Collapse
|
11
|
Di Y, Yang Z, Song G, Shen Q, Bai H, Huang Y, Lv F, Wang S. Biosynthesis of multifunctional transformable peptides for downregulation of PD-L1. Chem Commun (Camb) 2024; 60:10938-10941. [PMID: 39258452 DOI: 10.1039/d4cc03146f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Here, we present a biosynthesized material M1 for immune checkpoint blocking therapy. M1 could realize a morphological transformation from globular to fibrous in situ in the presence of cathepsin B (CtsB) after entering tumor cells. The GO203 peptides of M1 are exposed, which could bind to mucin 1 (MUC1) to suppress the homodimerization process of MUC1, thereby downregulating PD-L1 expression.
Collapse
Affiliation(s)
- Yufei Di
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiwen Yang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gang Song
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Shen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Haotian Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Yiming Huang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Fengting Lv
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
Manoharan D, Wang LC, Chen YC, Li WP, Yeh CS. Catalytic Nanoparticles in Biomedical Applications: Exploiting Advanced Nanozymes for Therapeutics and Diagnostics. Adv Healthc Mater 2024; 13:e2400746. [PMID: 38683107 DOI: 10.1002/adhm.202400746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/17/2024] [Indexed: 05/01/2024]
Abstract
Catalytic nanoparticles (CNPs) as heterogeneous catalyst reveals superior activity due to their physio-chemical features, such as high surface-to-volume ratio and unique optical, electric, and magnetic properties. The CNPs, based on their physio-chemical nature, can either increase the reactive oxygen species (ROS) level for tumor and antibacterial therapy or eliminate the ROS for cytoprotection, anti-inflammation, and anti-aging. In addition, the catalytic activity of nanozymes can specifically trigger a specific reaction accompanied by the optical feature change, presenting the feasibility of biosensor and bioimaging applications. Undoubtedly, CNPs play a pivotal role in pushing the evolution of technologies in medical and clinical fields, and advanced strategies and nanomaterials rely on the input of chemical experts to develop. Herein, a systematic and comprehensive review of the challenges and recent development of CNPs for biomedical applications is presented from the viewpoint of advanced nanomaterial with unique catalytic activity and additional functions. Furthermore, the biosafety issue of applying biodegradable and non-biodegradable nanozymes and future perspectives are critically discussed to guide a promising direction in developing span-new nanozymes and more intelligent strategies for overcoming the current clinical limitations.
Collapse
Affiliation(s)
- Divinah Manoharan
- Department of Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
- Interdisciplinary Research Center on Material and Medicinal Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
| | - Liu-Chun Wang
- Department of Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Ying-Chi Chen
- Department of Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
| | - Wei-Peng Li
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan, 701, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Chen-Sheng Yeh
- Department of Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
- Interdisciplinary Research Center on Material and Medicinal Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan, 701, Taiwan
| |
Collapse
|
13
|
Chen Z, Gezginer I, Zhou Q, Tang L, Deán-Ben XL, Razansky D. Multimodal optoacoustic imaging: methods and contrast materials. Chem Soc Rev 2024; 53:6068-6099. [PMID: 38738633 PMCID: PMC11181994 DOI: 10.1039/d3cs00565h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Indexed: 05/14/2024]
Abstract
Optoacoustic (OA) imaging offers powerful capabilities for interrogating biological tissues with rich optical absorption contrast while maintaining high spatial resolution for deep tissue observations. The spectrally distinct absorption of visible and near-infrared photons by endogenous tissue chromophores facilitates extraction of diverse anatomic, functional, molecular, and metabolic information from living tissues across various scales, from organelles and cells to whole organs and organisms. The primarily blood-related contrast and limited penetration depth of OA imaging have fostered the development of multimodal approaches to fully exploit the unique advantages and complementarity of the method. We review the recent hybridization efforts, including multimodal combinations of OA with ultrasound, fluorescence, optical coherence tomography, Raman scattering microscopy and magnetic resonance imaging as well as ionizing methods, such as X-ray computed tomography, single-photon-emission computed tomography and positron emission tomography. Considering that most molecules absorb light across a broad range of the electromagnetic spectrum, the OA interrogations can be extended to a large number of exogenously administered small molecules, particulate agents, and genetically encoded labels. This unique property further makes contrast moieties used in other imaging modalities amenable for OA sensing.
Collapse
Affiliation(s)
- Zhenyue Chen
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland.
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| | - Irmak Gezginer
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland.
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| | - Quanyu Zhou
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland.
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| | - Lin Tang
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland.
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| | - Xosé Luís Deán-Ben
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland.
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| | - Daniel Razansky
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland.
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| |
Collapse
|
14
|
Pandey P, Tripathi S, Singh MN, Sharma RK, Giri S. Behavior of Microstrain in Nd 3+-Sensitized Near-Infrared Upconverting Core-Shell Nanocrystals for Defect-Induced Tailoring of Luminescence Intensity. NANO LETTERS 2024; 24:6320-6329. [PMID: 38701381 DOI: 10.1021/acs.nanolett.4c01077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
In an attempt to optimize the upconversion luminescence (UCL) output of a Nd3+-sensitized near-infrared (808 nm) upconverting core-shell (CS) nanocrystal through deliberate incorporation of lattice defects, a comprehensive analysis of microstrain both at the CS interface and within the core layer was performed using integral breadth calculation of high-energy synchrotron X-ray (λ = 0.568551 Å) diffraction. An atomic level interpretation of such microstrain was performed using pair distribution function analysis of the high-energy total scattering. The core NC developed compressive microstrain, which gradually transformed into tensile microstrain with the growth of the epitaxial shell. Such a reversal was rationalized in terms of a consistent negative lattice mismatch. Upon introduction of lattice defects into the CS systems upon incorporation of Li+, the corresponding UCL intensity was maximized at some specific Li+ incorporation, where the tensile microstrain of CS, compressive microstrain of the core, and atomic level disorders exhibited their respective extreme values irrespective of the activator ions.
Collapse
Affiliation(s)
- Panchanan Pandey
- Department of Chemistry, National Institute of Technology, Rourkela 769008, India
| | - Shilpa Tripathi
- Beamline Development and Application Section, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Manvendra Narayan Singh
- Hard X-ray Applications Lab, Synchrotrons Utilization Section, Raja Ramanna Centre for Advanced Technology, Indore 452013, India
| | - Rajendra Kumar Sharma
- Technical Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Supratim Giri
- Department of Chemistry, National Institute of Technology, Rourkela 769008, India
- Centre for Nanomaterials, National Institute of Technology, Rourkela 769008, India
| |
Collapse
|
15
|
Xu W, Qian Y, Qiao L, Li L, Xie Y, Sun Q, Quan Z, Li C. "Three Musketeers" Enhances Photodynamic Effects by Reducing Tumor Reactive Oxygen Species Resistance. ACS APPLIED MATERIALS & INTERFACES 2024; 16:26590-26603. [PMID: 38742307 DOI: 10.1021/acsami.4c04278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Photodynamic therapy (PDT) based on upconversion nanoparticles (UCNPs) has been widely used in the treatment of a variety of tumors. Compared with other therapeutic methods, this treatment has the advantages of high efficiency, strong penetration, and controllable treatment range. PDT kills tumors by generating a large amount of reactive oxygen species (ROS), which causes oxidative stress in the tumor. However, this killing effect is significantly inhibited by the tumor's own resistance to ROS. This is because tumors can either deplete ROS by high concentration of glutathione (GSH) or stimulate autophagy to eliminate ROS-generated damage. Furthermore, the tumor can also consume ROS through the lactic acid metabolic pathway, ultimately hindering therapeutic progress. To address this conundrum, we developed a UCNP-based nanocomposite for enhanced PDT by reducing tumor ROS resistance. First, Ce6-doped SiO2 encapsulated UCNPs to ensure the efficient energy transfer between UCNPs and Ce6. Then, the biodegradable tetrasulfide bond-bridged mesoporous organosilicon (MON) was coated on the outer layer to load chloroquine (CQ) and α-cyano4-hydroxycinnamic acid (CHCA). Finally, hyaluronic acid was utilized to modify the nanomaterials to realize an active-targeting ability. The obtained final product was abbreviated as UCNPs@MON@CQ/CHCA@HA. Under 980 nm laser irradiation, upconverted red light from UCNPs excited Ce6 to produce a large amount of singlet oxygen (1O2), thus achieving efficient PDT. The loaded CQ and CHCA in MON achieved multichannel enhancement of PDT. Specifically, CQ blocked the autophagy process of tumor cells, and CHCA inhibited the uptake of lactic acid by tumor cells. In addition, the coated MON consumed a high level of intracellular GSH. In this way, these three functions complemented each other, just as the "three musketeers" punctured ROS resistance in tumors from multiple angles, and both in vitro and in vivo experiments had demonstrated the elevated PDT efficacy of nanomaterials.
Collapse
Affiliation(s)
- Wencheng Xu
- Shenzhen Research Institute, Shandong University, Shenzhen, Guangdong 518057, P. R. China
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Yanrong Qian
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Luying Qiao
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Lei Li
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Yulin Xie
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Qianqian Sun
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Zewei Quan
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, P. R. China
| | - Chunxia Li
- Shenzhen Research Institute, Shandong University, Shenzhen, Guangdong 518057, P. R. China
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, Shandong 266237, P. R. China
| |
Collapse
|
16
|
Xu D, Li Y, Yin S, Huang F. Strategies to address key challenges of metallacycle/metallacage-based supramolecular coordination complexes in biomedical applications. Chem Soc Rev 2024; 53:3167-3204. [PMID: 38385584 DOI: 10.1039/d3cs00926b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Owing to their capacity for dynamically linking two or more functional molecules, supramolecular coordination complexes (SCCs), exemplified by two-dimensional (2D) metallacycles and three-dimensional (3D) metallacages, have gained increasing significance in biomedical applications. However, their inherent hydrophobicity and self-assembly driven by heavy metal ions present common challenges in their applications. These challenges can be overcome by enhancing the aqueous solubility and in vivo circulation stability of SCCs, alongside minimizing their side effects during treatment. Addressing these challenges is crucial for advancing the fundamental research of SCCs and their subsequent clinical translation. In this review, drawing on extensive contemporary research, we offer a thorough and systematic analysis of the strategies employed by SCCs to surmount these prevalent yet pivotal obstacles. Additionally, we explore further potential challenges and prospects for the broader application of SCCs in the biomedical field.
Collapse
Affiliation(s)
- Dongdong Xu
- Key Laboratory of Organosilicon Chemistry and Materials Technology of Ministry of Education, College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China.
| | - Yang Li
- Key Laboratory of Organosilicon Chemistry and Materials Technology of Ministry of Education, College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China.
| | - Shouchun Yin
- Key Laboratory of Organosilicon Chemistry and Materials Technology of Ministry of Education, College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China.
| | - Feihe Huang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China.
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| |
Collapse
|
17
|
Lin P, Zhang B, Yang H, Yang S, Xue P, Chen Y, Yu S, Zhang J, Zhang Y, Chen L, Fan C, Li F, Ling D. An artificial protein modulator reprogramming neuronal protein functions. Nat Commun 2024; 15:2039. [PMID: 38448420 PMCID: PMC10917760 DOI: 10.1038/s41467-024-46308-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 02/14/2024] [Indexed: 03/08/2024] Open
Abstract
Reversible protein phosphorylation, regulated by protein phosphatases, fine-tunes target protein function and plays a vital role in biological processes. Dysregulation of this process leads to aberrant post-translational modifications (PTMs) and contributes to disease development. Despite the widespread use of artificial catalysts as enzyme mimetics, their direct modulation of proteins remains largely unexplored. To address this gap and enable the reversal of aberrant PTMs for disease therapy, we present the development of artificial protein modulators (APROMs). Through atomic-level engineering of heterogeneous catalysts with asymmetric catalytic centers, these modulators bear structural similarities to protein phosphatases and exhibit remarkable ability to destabilize the bridging μ3-hydroxide. This activation of catalytic centers enables spontaneous hydrolysis of phospho-substrates, providing precise control over PTMs. Notably, APROMs, with protein phosphatase-like characteristics, catalytically reprogram the biological function of α-synuclein by directly hydrolyzing hyperphosphorylated α-synuclein. Consequently, synaptic function is reinforced in Parkinson's disease. Our findings offer a promising avenue for reprogramming protein function through de novo PTMs strategy.
Collapse
Affiliation(s)
- Peihua Lin
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai, 200240, China
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Bo Zhang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai, 200240, China
- World Laureates Association (WLA) Laboratories, Shanghai, 201210, China
| | - Hongli Yang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shengfei Yang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Pengpeng Xue
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ying Chen
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shiyi Yu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jichao Zhang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Yixiao Zhang
- In-situ Center for Physical Sciences, School of Chemistry and Chemical Engineering, Shanghai Electrochemical Energy Device Research Center (SEED), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Liwei Chen
- In-situ Center for Physical Sciences, School of Chemistry and Chemical Engineering, Shanghai Electrochemical Energy Device Research Center (SEED), Shanghai Jiao Tong University, Shanghai, 200240, China
- Future Battery Research Center, Global Institute of Future Technology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chunhai Fan
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Fangyuan Li
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- Songjiang Research Institute, Songjiang Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China.
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, 310009, China.
| | - Daishun Ling
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai, 200240, China.
- World Laureates Association (WLA) Laboratories, Shanghai, 201210, China.
| |
Collapse
|
18
|
Wang X, Wei W, Guo Z, Liu X, Liu J, Bing T, Yu Y, Yang X, Cai Q. Organic-inorganic composite hydrogels: compositions, properties, and applications in regenerative medicine. Biomater Sci 2024; 12:1079-1114. [PMID: 38240177 DOI: 10.1039/d3bm01766d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Hydrogels, formed from crosslinked hydrophilic macromolecules, provide a three-dimensional microenvironment that mimics the extracellular matrix. They served as scaffold materials in regenerative medicine with an ever-growing demand. However, hydrogels composed of only organic components may not fully meet the performance and functionalization requirements for various tissue defects. Composite hydrogels, containing inorganic components, have attracted tremendous attention due to their unique compositions and properties. Rigid inorganic particles, rods, fibers, etc., can form organic-inorganic composite hydrogels through physical interaction and chemical bonding with polymer chains, which can not only adjust strength and modulus, but also act as carriers of bioactive components, enhancing the properties and biological functions of the composite hydrogels. Notably, incorporating environmental or stimulus-responsive inorganic particles imparts smartness to hydrogels, hence providing a flexible diagnostic platform for in vitro cell culture and in vivo tissue regeneration. In this review, we discuss and compare a set of materials currently used for developing organic-inorganic composite hydrogels, including the modification strategies for organic and inorganic components and their unique contributions to regenerative medicine. Specific emphasis is placed on the interactions between the organic or inorganic components and the biological functions introduced by the inorganic components. The advantages of these composite hydrogels indicate their potential to offer adaptable and intelligent therapeutic solutions for diverse tissue repair demands within the realm of regenerative medicine.
Collapse
Affiliation(s)
- Xinyu Wang
- State Key Laboratory of Organic-Inorganic Composites; Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Wei Wei
- State Key Laboratory of Organic-Inorganic Composites; Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Ziyi Guo
- State Key Laboratory of Organic-Inorganic Composites; Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xinru Liu
- State Key Laboratory of Organic-Inorganic Composites; Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Ju Liu
- State Key Laboratory of Organic-Inorganic Composites; Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Tiejun Bing
- Immunology and Oncology center, ICE Bioscience, Beijing 100176, China
| | - Yingjie Yu
- State Key Laboratory of Organic-Inorganic Composites; Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xiaoping Yang
- State Key Laboratory of Organic-Inorganic Composites; Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Qing Cai
- State Key Laboratory of Organic-Inorganic Composites; Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
19
|
Yang Y, Jiang Q, Zhang F. Nanocrystals for Deep-Tissue In Vivo Luminescence Imaging in the Near-Infrared Region. Chem Rev 2024; 124:554-628. [PMID: 37991799 DOI: 10.1021/acs.chemrev.3c00506] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
In vivo imaging technologies have emerged as a powerful tool for both fundamental research and clinical practice. In particular, luminescence imaging in the tissue-transparent near-infrared (NIR, 700-1700 nm) region offers tremendous potential for visualizing biological architectures and pathophysiological events in living subjects with deep tissue penetration and high imaging contrast owing to the reduced light-tissue interactions of absorption, scattering, and autofluorescence. The distinctive quantum effects of nanocrystals have been harnessed to achieve exceptional photophysical properties, establishing them as a promising category of luminescent probes. In this comprehensive review, the interactions between light and biological tissues, as well as the advantages of NIR light for in vivo luminescence imaging, are initially elaborated. Subsequently, we focus on achieving deep tissue penetration and improved imaging contrast by optimizing the performance of nanocrystal fluorophores. The ingenious design strategies of NIR nanocrystal probes are discussed, along with their respective biomedical applications in versatile in vivo luminescence imaging modalities. Finally, thought-provoking reflections on the challenges and prospects for future clinical translation of nanocrystal-based in vivo luminescence imaging in the NIR region are wisely provided.
Collapse
Affiliation(s)
- Yang Yang
- College of Energy Materials and Chemistry, State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010021, China
| | - Qunying Jiang
- College of Energy Materials and Chemistry, State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010021, China
| | - Fan Zhang
- College of Energy Materials and Chemistry, State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010021, China
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China
| |
Collapse
|
20
|
Wen X, Zeng W, Zhang J, Liu Y, Miao Y, Liu S, Yang Y, Xu JJ, Ye D. Cascade In Situ Self-Assembly and Bioorthogonal Reaction Enable the Enrichment of Photosensitizers and Carbonic Anhydrase Inhibitors for Pretargeted Cancer Theranostics. Angew Chem Int Ed Engl 2024; 63:e202314039. [PMID: 38055211 DOI: 10.1002/anie.202314039] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/07/2023]
Abstract
We report here a tumor-pretargted theranostic approach for multimodality imaging-guided synergistic cancer PDT by cascade alkaline phosphatase (ALP)-mediated in situ self-assembly and bioorthogonal inverse electron demand Diels-Alder (IEDDA) reaction. Using the enzymatic catalysis of ALP that continuously catalyses the dephosphorylation and self-assembly of trans-cyclooctene (TCO)-bearing P-FFGd-TCO, a high density of fluorescent and magnetic TCO-containing nanoparticles (FMNPs-TCO) can be synthesized and retained on the membrane of tumor cells. They can act as 'artificial antigens' amenable to concurrently capture lately administrated tetrazine (Tz)-decorated PS (775NP-Tz) and carbonic anhydrase (CA) inhibitor (SA-Tz) via the fast IEDDA reaction. This two-step pretargeting process can further induce FMNPs-TCO regrowth into microparticles (FMNPs-775/SA) directly on tumor cell membranes, which is analyzed by bio-SEM and fluorescence imaging. Thus, efficient enrichment of both SA-Tz and 775NP-Tz in tumors can be achieved, allowing to alleviate hypoxia by continuously inhibiting CA activity and improving PDT of tumors. Findings show that subcutaneous HeLa tumors could be completely eradicated and no tumor recurred after irradiation with an 808 nm laser (0.33 W cm-2 , 10 min). This pretargeted approach may be applied to enrich other therapeutic agents in tumors to improve targeted therapy.
Collapse
Affiliation(s)
- Xidan Wen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Wenhui Zeng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Junya Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Yili Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Yinxing Miao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Shaohai Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Yanling Yang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Deju Ye
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| |
Collapse
|
21
|
Xia M, Wang Q, Liu Y, Fang C, Zhang B, Yang S, Zhou F, Lin P, Gu M, Huang C, Zhang X, Li F, Liu H, Wang G, Ling D. Self-propelled assembly of nanoparticles with self-catalytic regulation for tumour-specific imaging and therapy. Nat Commun 2024; 15:460. [PMID: 38212655 PMCID: PMC10784296 DOI: 10.1038/s41467-024-44736-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/02/2024] [Indexed: 01/13/2024] Open
Abstract
Targeted assembly of nanoparticles in biological systems holds great promise for disease-specific imaging and therapy. However, the current manipulation of nanoparticle dynamics is primarily limited to organic pericyclic reactions, which necessitate the introduction of synthetic functional groups as bioorthogonal handles on the nanoparticles, leading to complex and laborious design processes. Here, we report the synthesis of tyrosine (Tyr)-modified peptides-capped iodine (I) doped CuS nanoparticles (CuS-I@P1 NPs) as self-catalytic building blocks that undergo self-propelled assembly inside tumour cells via Tyr-Tyr condensation reactions catalyzed by the nanoparticles themselves. Upon cellular internalization, the CuS-I@P1 NPs undergo furin-guided condensation reactions, leading to the formation of CuS-I nanoparticle assemblies through dityrosine bond. The tumour-specific furin-instructed intracellular assembly of CuS-I NPs exhibits activatable dual-modal imaging capability and enhanced photothermal effect, enabling highly efficient imaging and therapy of tumours. The robust nanoparticle self-catalysis-regulated in situ assembly, facilitated by natural handles, offers the advantages of convenient fabrication, high reaction specificity, and biocompatibility, representing a generalizable strategy for target-specific activatable biomedical imaging and therapy.
Collapse
Grants
- 21936001, 21675001, 21976004, 32071374 National Natural Science Foundation of China (National Science Foundation of China)
- National Key Research and Development Program of China (2022YFB3203801, 2022YFB3203804, 2022YFB3203800), Natural Science Foundation of Anhui Province (KJ2017A315), Leading Talent of “Ten Thousand Plan”-National High-Level Talents Special Support Plan, Program of Shanghai Academic Research Leader under the Science and Technology Innovation Action Plan (21XD1422100), Explorer Program of Science and Technology Commission of Shanghai Municipality (22TS1400700), start-up funds from Shanghai Jiao Tong University (22X010201631), Natural Science Foundation of Zhejiang Province (LR22C100001), Innovative Research Team of High-level Local Universities in Shanghai (SHSMU-ZDCX20210900), CAS Interdisciplinary lnnovation Team (JCTD-2020-08), Postdoctoral Innovative Talent Support Program (BX20230220), Postdoctoral Foundation of China (2023M732244), Outstanding Innovative Research Team for Molecular Enzymology and Detection in Anhui Provincial Universities (2022AH010012), Anhui Province Outstanding Youth Fund (2008085J10), Anhui Provincial Education Department Natural Sciences Key Fund (KJ2021A0113), and Shanghai Municipal Science and Technology Commission (21dz2210100).
Collapse
Affiliation(s)
- Mengmeng Xia
- School of Chemistry and Materials Science, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, Center for Nano Science and Technology, Anhui Normal University, 241000, Wuhu, China
| | - Qiyue Wang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Yamin Liu
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Chunyan Fang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Bo Zhang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, 200240, Shanghai, China
- World Laureates Association (WLA) Laboratories, 201203, Shanghai, China
| | - Shengfei Yang
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Fu Zhou
- School of Chemistry and Materials Science, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, Center for Nano Science and Technology, Anhui Normal University, 241000, Wuhu, China
| | - Peihua Lin
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Mingzheng Gu
- School of Chemistry and Materials Science, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, Center for Nano Science and Technology, Anhui Normal University, 241000, Wuhu, China
| | - Canyu Huang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Xiaojun Zhang
- School of Chemistry and Materials Science, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, Center for Nano Science and Technology, Anhui Normal University, 241000, Wuhu, China
| | - Fangyuan Li
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China.
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, 310009, Hangzhou, China.
- Songjiang Institute and Songjiang Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Hongying Liu
- College of Automation, Hangzhou Dianzi University, 310018, Hangzhou, China.
| | - Guangfeng Wang
- School of Chemistry and Materials Science, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, Center for Nano Science and Technology, Anhui Normal University, 241000, Wuhu, China.
| | - Daishun Ling
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, 200240, Shanghai, China.
- World Laureates Association (WLA) Laboratories, 201203, Shanghai, China.
| |
Collapse
|
22
|
Zhu L, Wu W. Dual/Multi-Modal Image-Guided Diagnosis and Therapy Based on Luminogens with Aggregation-Induced Emission. Molecules 2024; 29:371. [PMID: 38257284 PMCID: PMC10819122 DOI: 10.3390/molecules29020371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
The combination of multiple imaging methods has made an indelible contribution to the diagnosis, surgical navigation, treatment, and prognostic evaluation of various diseases. Due to the unique advantages of luminogens with aggregation-induced emission (AIE), their progress has been significant in the field of organic fluorescent contrast agents. Herein, this manuscript summarizes the recent advancements in AIE molecules as contrast agents for optical image-based dual/multi-modal imaging. We particularly focus on the exceptional properties of each material and the corresponding application in the diagnosis and treatment of diseases.
Collapse
Affiliation(s)
| | - Wenbo Wu
- Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China;
| |
Collapse
|
23
|
Hu Q, Tang D, Li M, Liang X, Zhou J, Meng Y, Wei Y, Yan S, Lin R, Niu X, Zhang L. Hybrid chain reaction and selective recognition-based homogeneous dual-fluorescence analysis of circulating tumor cells in clinical ovarian cancer samples. Anal Chim Acta 2023; 1281:341877. [PMID: 38783734 DOI: 10.1016/j.aca.2023.341877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 05/25/2024]
Abstract
BACKGROUND Oncological analysis is important in tumor diagnosis. We constructed a dual-fluorescence and binary visual analysis system for circulating tumor cells (CTCs) using the folate receptor as a biomarker, combined with hybridization chain reaction and nanomaterial amplification. This strategy integrates terminal protection, selective recognition properties of N-methyl mesoporphyrin IX and CdTe quantum dots for Cu2+ and double-stranded templated copper nanoparticles, and inkjet printing technology. RESULTS In fluorescence mode, folate receptor and A2780 ovarian cancer cells were specifically detected with a limit of detection of 0.1 fg mL-1, and 10 cells mL-1 were observed. The detection limits of both the color and distance reading modes were comparable to those obtained in fluorescence mode. The applicability of the method for quantifying CTCs was validated using 27 (6 negative and 21 positive) clinical ovarian cancer samples; the results agreed with those of both the clinical folate receptor-polymerase chain reaction kit and radiological and pathological results. SIGNIFICANCE This dual-fluorescence and binary visual CTCs detection method provides multiple options for clinical tumor liquid biopsy.
Collapse
Affiliation(s)
- Qian Hu
- Laboratory of Molecular Translational Medicine, Centre for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Clinical Research Center for Birth Defects of Sichuan Province, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Dan Tang
- Laboratory of Molecular Translational Medicine, Centre for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Clinical Research Center for Birth Defects of Sichuan Province, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Mei Li
- Department of Laboratory Medicine, Med+X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xiaodu Liang
- Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Juan Zhou
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yanming Meng
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yinhao Wei
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, No.17 Renmin South Road Section Three, Chengdu, 610041, Sichuan, China
| | - Shixin Yan
- Sichuan University, Chengdu, Sichuan, 610041, China
| | - Ruoyu Lin
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xiaoyu Niu
- Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Lin Zhang
- Laboratory of Molecular Translational Medicine, Centre for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Clinical Research Center for Birth Defects of Sichuan Province, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
24
|
Zou Q, Lu Y, Qing B, Li N, Zhou T, Pan J, Zhang X, Zhang X, Chen Y, Sun SK. Photoactivatable base editors for spatiotemporally controlled genome editing in vivo. Biomaterials 2023; 302:122328. [PMID: 37722184 DOI: 10.1016/j.biomaterials.2023.122328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/05/2023] [Accepted: 09/12/2023] [Indexed: 09/20/2023]
Abstract
CRISPR-based base editors (BEs) are powerful tools for precise nucleotide substitution in a wide range of organisms, but spatiotemporal control of base editing remains a daunting challenge. Herein, we develop a photoactivatable base editor (Mag-ABE) for spatiotemporally controlled genome editing in vivo for the first time. The base editing activity of Mag-ABE can be activated by blue light for spatiotemporal regulation of both EGFP reporter gene and various endogenous genes editing. Meanwhile, the Mag-ABE prefers to edit A4 and A5 positions rather than to edit A6 position, showing the potential to decrease bystander editing of traditional adenine base editors. After integration with upconversion nanoparticles as a light transducer, the Mag-ABE is further applied for near-infrared (NIR) light-activated base editing of liver in transgenic reporter mice successfully. This study opens a promising way to improve the operability, safety, and precision of base editing.
Collapse
Affiliation(s)
- Quan Zou
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Yi Lu
- School of Medical Imaging, Tianjin Medical University, Tianjin, 300203, China
| | - Bo Qing
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Na Li
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Ting Zhou
- School of Medical Imaging, Tianjin Medical University, Tianjin, 300203, China
| | - Jinbin Pan
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xuejun Zhang
- School of Medical Imaging, Tianjin Medical University, Tianjin, 300203, China
| | - Xuening Zhang
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Yupeng Chen
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China; Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China.
| | - Shao-Kai Sun
- School of Medical Imaging, Tianjin Medical University, Tianjin, 300203, China.
| |
Collapse
|
25
|
Di Y, Shen Q, Yang Z, Song G, Fang T, Liu Y, Liu Y, Luo Q, Wang F, Yan X, Bai H, Huang Y, Lv F, Wang S. Biosynthesis of Multifunctional Transformable Peptides for Inducing Tumor Cell Apoptosis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303035. [PMID: 37605329 DOI: 10.1002/smll.202303035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/12/2023] [Indexed: 08/23/2023]
Abstract
Engineered nanomaterials hold great promise to improve the specificity of disease treatment. Herein, a fully protein-based material is obtained from nonpathogenic Escherichia coli (E. coli), which is capable of morphological transformation from globular to fibrous in situ for inducing tumor cell apoptosis. The protein-based material P1 is comprised of a β-sheet-forming peptide KLVFF, pro-apoptotic protein BAK, and GFP along with targeting moieties. The self-assembled nanoparticles of P1 transform into nanofibers in situ in the presence of cathepsin B, and the generated nanofibrils favor the dimerization of functional BH3 domain of BAK on the mitochondrial outer membrane, leading to efficient anticancer activity both in vitro and in vivo via mitochondria-dependent apoptosis through Bcl-2 pathway. To precisely manipulate the morphological transformation of biosynthetic molecules in living cells, a spatiotemporally controllable anticancer system is constructed by coating P1-expressing E. coli with cationic conjugated polyelectrolytes to release the peptides in situ under light irradiation. The biosynthetic peptide-based enzyme-catalytic transformation strategy in vivo would offer a novel perspective for targeted delivery and shows great potential in precision disease therapeutics.
Collapse
Affiliation(s)
- Yufei Di
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- College of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qi Shen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Zhiwen Yang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- College of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Gang Song
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- College of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Tiantian Fang
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yazhou Liu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yamei Liu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Qun Luo
- College of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Fuyi Wang
- College of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xuehai Yan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Haotian Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yiming Huang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Fengting Lv
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- College of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
26
|
Song J, Kang X, Wang L, Ding D, Kong D, Li W, Qi J. Near-infrared-II photoacoustic imaging and photo-triggered synergistic treatment of thrombosis via fibrin-specific homopolymer nanoparticles. Nat Commun 2023; 14:6881. [PMID: 37898604 PMCID: PMC10613240 DOI: 10.1038/s41467-023-42691-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 10/18/2023] [Indexed: 10/30/2023] Open
Abstract
The formation of an occlusive thrombus in the blood vessel is the main culprit for numerous life-threatening cardiovascular diseases that represent the leading cause of morbidity and mortality worldwide. Herein, we develop a polymer nanoplatform that integrates long-wavelength second near-infrared (NIR-II) photoacoustic imaging-based thrombosis detection and antithrombotic activity. We design and synthesize a semiconducting homopolymer with strong absorption in the NIR-II region and molecular motion that boosts photothermal conversion and photoacoustic signal. We dope the homopolymer with a thermosensitive nitric oxide donor to formulate a nanoplatform, on which a fibrin-specific ligand is functionalized to ensure selective thrombus targeting. We show that with strong NIR-II light harvesting capability, bright photoacoustic signal and active thrombus accumulation ability, the NIR-II photoacoustic nanoprobes are able to sensitively and selectively delineate thrombi. We find that the nanoplatform also displays rapid and efficient blood clot removal activity with nearly complete blood flow restoration in both carotid thrombosis models and low extremity arterial thrombosis models under NIR-II light trigger by integrating a thrombus-localized photothermal effect and on-demand nitric oxide release. This nanoplatform offers a versatile approach for the diagnosis and treatment of life-threatening diseases caused by various thrombotic disorders.
Collapse
Affiliation(s)
- Jianwen Song
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Frontiers Science Center for Cell Responses, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xiaoying Kang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Frontiers Science Center for Cell Responses, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Lu Wang
- Tianjin Key Laboratory of Biomedical Materials and Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Dan Ding
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Frontiers Science Center for Cell Responses, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Deling Kong
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Frontiers Science Center for Cell Responses, and College of Life Sciences, Nankai University, Tianjin, 300071, China.
| | - Wen Li
- Tianjin Key Laboratory of Biomedical Materials and Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China.
| | - Ji Qi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Frontiers Science Center for Cell Responses, and College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
27
|
Sun Q, Chen W, Wang M, Zheng P, Gao M, Song F, Li C. A "Chase and Block" Strategy for Enhanced Cancer Therapy with Hypoxia-Promoted Photodynamic Therapy and Autophagy Inhibition Based on Upconversion Nanocomposites. Adv Healthc Mater 2023; 12:e2301087. [PMID: 37248635 DOI: 10.1002/adhm.202301087] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Indexed: 05/31/2023]
Abstract
The combination of hypoxia-promoted photodynamic therapy (PDT) and autophagy modulation has shown strong potential in the treatment of hypoxic tumors. Here, a novel design is put forward for synergistic PDT and autophagy inhibition to amplify the effect of cancer therapy by a "chase and block" strategy. Specifically, the organic photosensitive molecule (denoted FL) is encapsulated in a hydrophobic layer between multi-band emitted upconversion nanoparticles (UCNPs) and the amphiphilic polymer DSPE-PEG-COOH, allowing FL to fully exploit the luminescence spectrum of UCNPs under near-infrared (NIR) light irradiation. The FL is specifically activated by nitroreductase in the tumor microenvironment (TME), enabling hypoxia-promoted PDT and thus performing a "chase" strategy for cancer therapy. Additionally, the nanosystem is combined with an autophagy-inhibiting melittin pro-peptide (denoted as MEL), which could be triggered by the highly expressed legumain in tumor cells to inhibit the autophagy procedure by disrupting the lysosomal membrane, thus "blocking" the cancer cells from rescuing themselves and amplifying the killing effect of PDT. Both FL and MEL can be specifically activated by TME and the upconversion luminescence imaging of UCNPs offers a tracer function for the treatment. Therefore, UCNPs@FL-MEL might be an important reference for the design and development of future nanotherapeutic agents.
Collapse
Affiliation(s)
- Qianqian Sun
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong, 266237, P. R. China
| | - Weilin Chen
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong, 266237, P. R. China
| | - Man Wang
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong, 266237, P. R. China
| | - Pan Zheng
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong, 266237, P. R. China
| | - Minghong Gao
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong, 266237, P. R. China
| | - Fengling Song
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong, 266237, P. R. China
| | - Chunxia Li
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong, 266237, P. R. China
| |
Collapse
|
28
|
Kang X, Zhang Y, Song J, Wang L, Li W, Qi J, Tang BZ. A photo-triggered self-accelerated nanoplatform for multifunctional image-guided combination cancer immunotherapy. Nat Commun 2023; 14:5216. [PMID: 37626073 PMCID: PMC10457322 DOI: 10.1038/s41467-023-40996-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Precise and efficient image-guided immunotherapy holds great promise for cancer treatment. Here, we report a self-accelerated nanoplatform combining an aggregation-induced emission luminogen (AIEgen) and a hypoxia-responsive prodrug for multifunctional image-guided combination immunotherapy. The near-infrared AIEgen with methoxy substitution simultaneously possesses boosted fluorescence and photoacoustic (PA) brightness for the strong light absorption ability, as well as amplified type I and type II photodynamic therapy (PDT) properties via enhanced intersystem crossing process. By formulating the high-performance AIEgen with a hypoxia-responsive paclitaxel (PTX) prodrug into nanoparticles, and further camouflaging with macrophage cell membrane, a tumor-targeting theranostic agent is built. The integration of fluorescence and PA imaging helps to delineate tumor site sensitively, providing accurate guidance for tumor treatment. The light-induced PDT effect could consume the local oxygen and lead to severer hypoxia, accelerating the release of PTX drug. As a result, the combination of PDT and PTX chemotherapy induces immunogenic cancer cell death, which could not only elicit strong antitumor immunity to suppress the primary tumor, but also inhibit the growth of distant tumor in 4T1 tumor-bearing female mice. Here, we report a strategy to develop theranostic agents via rational molecular design for boosting antitumor immunotherapy.
Collapse
Affiliation(s)
- Xiaoying Kang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yuan Zhang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jianwen Song
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Lu Wang
- Tianjin Key Laboratory of Biomedical Materials and Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Wen Li
- Tianjin Key Laboratory of Biomedical Materials and Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China.
| | - Ji Qi
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China.
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, 518172, Guangdong, China.
| |
Collapse
|
29
|
Lu Q, Yu H, Zhao T, Zhu G, Li X. Nanoparticles with transformable physicochemical properties for overcoming biological barriers. NANOSCALE 2023; 15:13202-13223. [PMID: 37526946 DOI: 10.1039/d3nr01332d] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
In recent years, tremendous progress has been made in the development of nanomedicines for advanced therapeutics, yet their unsatisfactory targeting ability hinders the further application of nanomedicines. Nanomaterials undergo a series of processes, from intravenous injection to precise delivery at target sites. Each process faces different or even contradictory requirements for nanoparticles to pass through biological barriers. To overcome biological barriers, researchers have been developing nanomedicines with transformable physicochemical properties in recent years. Physicochemical transformability enables nanomedicines to responsively switch their physicochemical properties, including size, shape, surface charge, etc., thus enabling them to cross a series of biological barriers and achieve maximum delivery efficiency. In this review, we summarize recent developments in nanomedicines with transformable physicochemical properties. First, the biological dilemmas faced by nanomedicines are analyzed. Furthermore, the design and synthesis of nanomaterials with transformable physicochemical properties in terms of size, charge, and shape are summarized. Other switchable physicochemical parameters such as mobility, roughness and mechanical properties, which have been sought after most recently, are also discussed. Finally, the prospects and challenges for nanomedicines with transformable physicochemical properties are highlighted.
Collapse
Affiliation(s)
- Qianqian Lu
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), Fudan University, Shanghai 200433, P. R. China.
| | - Hongyue Yu
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), Fudan University, Shanghai 200433, P. R. China.
| | - Tiancong Zhao
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), Fudan University, Shanghai 200433, P. R. China.
| | - Guanjia Zhu
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, P. R. China.
| | - Xiaomin Li
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), Fudan University, Shanghai 200433, P. R. China.
| |
Collapse
|
30
|
Lin G, Zhou J, Cheng H, Liu G. Smart Nanosystems for Overcoming Multiple Biological Barriers in Cancer Nanomedicines Transport: Design Principles, Progress, and Challenges. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207973. [PMID: 36971279 DOI: 10.1002/smll.202207973] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/28/2023] [Indexed: 06/18/2023]
Abstract
The development of smart nanosystems, which could overcome diverse biological barriers of nanomedicine transport, has received intense scientific interest in improving the therapeutic efficacies of traditional nanomedicines. However, the reported nanosystems generally hold disparate structures and functions, and the knowledge of involved biological barriers is usually scattered. There is an imperative need for a summary of biological barriers and how these smart nanosystems conquer biological barriers, to guide the rational design of the new-generation nanomedicines. This review starts from the discussion of major biological barriers existing in nanomedicine transport, including blood circulation, tumoral accumulation and penetration, cellular uptake, drug release, and response. Design principles and recent progress of smart nanosystems in overcoming the biological barriers are overviewed. The designated physicochemical properties of nanosystems can dictate their functions in biological environments, such as protein absorption inhibition, tumor accumulation, penetration, cellular internalization, endosomal escape, and controlled release, as well as modulation of tumor cells and their resident tumor microenvironment. The challenges facing smart nanosystems on the road heading to clinical approval are discussed, followed by the proposals that could further advance the nanomedicine field. It is expected that this review will provide guidelines for the rational design of the new-generation nanomedicines for clinical use.
Collapse
Affiliation(s)
- Gan Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
- Department of Chemistry, the University of Chicago, Chicago, IL, 60637, USA
| | - Jiajing Zhou
- College of Biomass Science and Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, China
| | - Hongwei Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
31
|
Egorova VS, Kolesova EP, Lopus M, Yan N, Parodi A, Zamyatnin AA. Smart Delivery Systems Responsive to Cathepsin B Activity for Cancer Treatment. Pharmaceutics 2023; 15:1848. [PMID: 37514035 PMCID: PMC10386206 DOI: 10.3390/pharmaceutics15071848] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Cathepsin B is a lysosomal cysteine protease, contributing to vital cellular homeostatic processes including protein turnover, macroautophagy of damaged organelles, antigen presentation, and in the extracellular space, it takes part in tissue remodeling, prohormone processing, and activation. However, aberrant overexpression of cathepsin B and its enzymatic activity is associated with different pathological conditions, including cancer. Cathepsin B overexpression in tumor tissues makes this enzyme an important target for smart delivery systems, responsive to the activity of this enzyme. The generation of technologies which therapeutic effect is activated as a result of cathepsin B cleavage provides an opportunity for tumor-targeted therapy and controlled drug release. In this review, we summarized different technologies designed to improve current cancer treatments responsive to the activity of this enzyme that were shown to play a key role in disease progression and response to the treatment.
Collapse
Affiliation(s)
- Vera S Egorova
- Scientific Center for Translation Medicine, Sirius University of Science and Technology, Sochi 354340, Russia
| | - Ekaterina P Kolesova
- Scientific Center for Translation Medicine, Sirius University of Science and Technology, Sochi 354340, Russia
| | - Manu Lopus
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai Kalina Campus, Vidyanagari, Mumbai 400098, India
| | - Neng Yan
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Alessandro Parodi
- Scientific Center for Translation Medicine, Sirius University of Science and Technology, Sochi 354340, Russia
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Andrey A Zamyatnin
- Scientific Center for Translation Medicine, Sirius University of Science and Technology, Sochi 354340, Russia
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow 119991, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119991, Russia
| |
Collapse
|
32
|
Yang Z, Zhao Y, Li Y, Song L, Lin Y, Liu K, Zhang Y, Zvyagin AV, Fang L, Sun Y, Yang B, Lin Q. Au/Mn nanodot platform for in vivo CT/MRI/FI multimodal bioimaging and photothermal therapy against tongue cancer. J Mater Chem B 2023; 11:4752-4762. [PMID: 37183453 DOI: 10.1039/d3tb00468f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Surgical resection is the main method for oral tongue squamous cell carcinoma (OTSCC) treatment. However, the oral physiological function and aesthetics may be seriously damaged during the operation with a high risk of recurrence. Therefore, it is important to develop an alternative strategy with precise guidance for OTSCC treatment. Herein, multifunctional Au/Mn nanodots (NDs) are designed and synthesized. They can perform multimodal bioimaging, including computed tomography (CT) and magnetic resonance imaging (MRI) simultaneously, and exhibit bright near-infrared fluorescence imaging (FI) for navigation, and even integrate photothermal therapy (PTT) property. The localization of OTSCC relies on visual and tactile cues of surgeons while lacking noninvasive pretreament labeling and guidance. Au/Mn NDs provide CT/MRI imaging, giving two means of accurate positioning pretherapy. Meanwhile, the fluorescence of the Au/Mn NDs in the near-infrared region (NIR) is beneficial for noninvasive labeling and intuitive observation with the naked eye to determine the tumor boundary during PTT. Further, Au/Mn NDs showed excellent results in ablating tumors in vivo. Above all, the Au/Mn NDs provide a key platform for multimodal bioimaging and PTT in a single nanoagent, which demonstrated attractive performance for OTSCC treatment.
Collapse
Affiliation(s)
- Zhe Yang
- State Key Laboratory of Supramolecular Structure and Material, College of Chemistry, Jilin University, Changchun 130012, China.
| | - Yueqi Zhao
- State Key Laboratory of Supramolecular Structure and Material, College of Chemistry, Jilin University, Changchun 130012, China.
| | - Yang Li
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun 130000, China
| | - Lei Song
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun 130000, China
| | - Yangliu Lin
- State Key Laboratory of Supramolecular Structure and Material, College of Chemistry, Jilin University, Changchun 130012, China.
| | - Kaimeng Liu
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun 130000, China
| | - Yujia Zhang
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun 130000, China
| | - Andrei V Zvyagin
- Australian Research Council Centre of Excellence for Nanoscale Biophotonics, Macquarie University, Sydney, NSW 2109, Australia
| | - Linan Fang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun 130000, China
| | - Yuanqing Sun
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing 102249, China
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Material, College of Chemistry, Jilin University, Changchun 130012, China.
| | - Quan Lin
- State Key Laboratory of Supramolecular Structure and Material, College of Chemistry, Jilin University, Changchun 130012, China.
| |
Collapse
|
33
|
Jiang P, Bai Y, Yan L, Feng P, Huang K, Chen J, Chen P. Nanoarchitectonics-Assisted Simultaneous Fluorescence Detection of Urinary Dual miRNAs for Noninvasive Diagnosis of Prostate Cancer. Anal Chem 2023; 95:7676-7684. [PMID: 37129316 DOI: 10.1021/acs.analchem.3c00701] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Herein, we report a fluorescence strategy for the homogeneous and simultaneous analysis of urine miRNA-375 and miRNA-148a. The target miRNAs in urine bonded the devised dumbbell-shaped "C-Ag+-C" and "T-Hg2+-T" hairpin structures that could trigger cascade enzyme-free amplification. Then, the fluorescent CdTe quantum dots (QDs) and carbon dots (CDs) could selectively recognize Ag+ and Hg2+, to quantify the dual miRNAs concurrently. Under optimized conditions, the linear range was from 0.1 to 1000 fM and the limits of detection (LOD) for dual miRNAs reached 30 and 25 aM, respectively. The practicality was further evaluated with 45 clinical urine samples including prostate cancer (PC) and other patients, and the results were consistent with the clinical polymerase chain reaction (PCR) kit and ultrasonic and pathological findings. The receiver operating characteristic (ROC) curve analysis showed that the estimates of the area under the curve (AUC) were 0.739 for the serum prostate-specific antigen (PSA) and 0.941 for miRNA-375 and 0.946 for miRNA-148a. The sensitivity and specificity reached 75 and 100% for miRNA-375 and 71 and 94% for miRNA-148a, respectively, which was better than serum PSA. This strategy constructed a reliable system for dual miRNA detection in urine samples and proposed new insights into the rapid and noninvasive diagnosis of PC.
Collapse
Affiliation(s)
- Pengjun Jiang
- Department of Laboratory Medicine, Med+X Center for Manufacturing, Institute of Urology, Out-Patient Department, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yunjin Bai
- Department of Laboratory Medicine, Med+X Center for Manufacturing, Institute of Urology, Out-Patient Department, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Li Yan
- Department of Laboratory Medicine, Med+X Center for Manufacturing, Institute of Urology, Out-Patient Department, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Pan Feng
- Department of Laboratory Medicine, Med+X Center for Manufacturing, Institute of Urology, Out-Patient Department, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ke Huang
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610068, China
| | - Jie Chen
- Department of Laboratory Medicine, Med+X Center for Manufacturing, Institute of Urology, Out-Patient Department, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Piaopiao Chen
- Department of Laboratory Medicine, Med+X Center for Manufacturing, Institute of Urology, Out-Patient Department, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
34
|
Gao H, Qi X, Zhang J, Wang N, Xin J, Jiao D, Liu K, Qi J, Guan Y, Ding D. Smart One-for-All Agent with Adaptive Functions for Improving Photoacoustic /Fluorescence Imaging-Guided Photodynamic Immunotherapy. SMALL METHODS 2023; 7:e2201582. [PMID: 36807567 DOI: 10.1002/smtd.202201582] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/19/2023] [Indexed: 05/17/2023]
Abstract
Multifunctional phototheranostics that integrate several diagnostic and therapeutic strategies into one platform hold great promise for precision medicine. However, it is really difficult for one molecule to possess multimodality optical imaging and therapy properties that all functions are in the optimized mode because the absorbed photoenergy is fixed. Herein, a smart one-for-all nanoagent that the photophysical energy transformation processes can be facilely tuned by external light stimuli is developed for precise multifunctional image-guided therapy. A dithienylethene-based molecule is designed and synthesized because it has two light-switchable forms. In the ring-closed form, most of the absorbed energy dissipates via nonradiative thermal deactivation for photoacoustic (PA) imaging. In the ring-open form, the molecule possesses obvious aggregation-induced emission features with excellent fluorescence and photodynamic therapy properties. In vivo experiments demonstrate that preoperative PA and fluorescence imaging help to delineate tumors in a high-contrast manner, and intraoperative fluorescence imaging is able to sensitively detect tiny residual tumors. Furthermore, the nanoagent can induce immunogenic cell death to elicit antitumor immunity and significantly suppress solid tumors. This work develops a smart one-for-all agent that the photophysical energy transformation and related phototheranostic properties can be optimized by light-driven structure switch, which is promising for multifunctional biomedical applications.
Collapse
Affiliation(s)
- Heqi Gao
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xinwen Qi
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jingtian Zhang
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Nan Wang
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jingrui Xin
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Di Jiao
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Kaining Liu
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Ji Qi
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yong Guan
- Department of Urology, Tianjin Children's Hospital /Tianjin University Children's Hospital, Tianjin, 300134, China
| | - Dan Ding
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| |
Collapse
|
35
|
Zhao M, Zhuang H, Li B, Chen M, Chen X. In Situ Transformable Nanoplatforms with Supramolecular Cross-Linking Triggered Complementary Function for Enhanced Cancer Photodynamic Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209944. [PMID: 36856448 DOI: 10.1002/adma.202209944] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/29/2023] [Indexed: 05/19/2023]
Abstract
In vivo cross-linking of nanoparticles is widely used to increase accumulation of therapeutic agents at tumor site for enhanced therapy. However, the components in nanoplatforms usually only play for one role and are independent of each other, unable to amplify their biofunctions. Herein, a complementary functioning tumor microenvironment triggered, supramolecular coordination-induced nanoparticle cross-linking strategy is constructed for enhanced photodynamic therapy. Manganese oxide (MnOx ) and polyhydroxy photosensitizer hypericin (Hyp) are coated and loaded onto lanthanide-doped upconversion nanoparticles (UCNPs) to form transformable UCNP@MnOx -Hyp. In CT26 mouse colon cancer cells and xenograft tumors, UCNP@MnOx -Hyp is reduced by glutathione and H2 O2 , releasing Mn2+ and Hyp for in situ cross-linking to transform to UCNP@Mn2+ -Hyp. Compared to the simple photosensitizer-loaded UCNP@PEI-Hyp, the Mn2+ -Hyp coordination redshifts absorbance of Hyp and improves the energy transfer efficiency from UCNPs to Hyp (5.6-fold). In turn, the supramolecular coordination-induced UCNPs cross-linking exhibits enhanced luminescence recovery and increased intracellular accumulation of both UCNPs and Hyp, thus enhancing the photodynamic therapy efficacy both at cellular level (2.1-fold) and in vivo, realizing the function amplification of each component after responsive transformation and offering a new avenue for enhanced cancer therapy.
Collapse
Affiliation(s)
- Mengyao Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
| | - Hongjun Zhuang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Material, Fudan University, Shanghai, 200433, China
| | - Benhao Li
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| |
Collapse
|
36
|
Zhang G, Guo M, Ma H, Wang J, Zhang XD. Catalytic nanotechnology of X-ray photodynamics for cancer treatments. Biomater Sci 2023; 11:1153-1181. [PMID: 36602259 DOI: 10.1039/d2bm01698b] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Photodynamic therapy (PDT) has been applied in cancer treatment because of its high selectivity, low toxicity, and non-invasiveness. However, the limited penetration depth of the light still hampers from reaching deep-seated tumors. Considering the penetrating ability of high-energy radiotherapy, X-ray-induced photodynamic therapy (X-PDT) has evolved as an alternative to overcome tissue blocks. As the basic principle of X-PDT, X-rays stimulate the nanoparticles to emit scintillating or persistent luminescence and further activate the photosensitizers to generate reactive oxygen species (ROS), which would cause a series of molecular and cellular damages, immune response, and eventually break down the tumor tissue. In recent years, catalytic nanosystems with unique structures and functions have emerged that can enhance X-PDT therapeutic effects via an immune response. The anti-cancer effect of X-PDT is closely related to the following factors: energy conversion efficiency of the material, the radiation dose of X-rays, quantum yield of the material, tumor resistance, and biocompatibility. Based on the latest research in this field and the classical theories of nanoscience, this paper systematically elucidates the current development of the X-PDT and related immunotherapy, and highlights its broad prospects in medical applications, discussing the connection between fundamental science and clinical translation.
Collapse
Affiliation(s)
- Gang Zhang
- Department of Physics, School of Science, Tianjin Chengjian University, Tianjin 300384, China.
| | - Meili Guo
- Department of Physics, School of Science, Tianjin Chengjian University, Tianjin 300384, China.
| | - Huizhen Ma
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China.
| | - Junying Wang
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Xiao-Dong Zhang
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China. .,Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| |
Collapse
|
37
|
Sun X, Xu X, Wang J, Zhang X, Zhao Z, Liu X, Wang G, Teng L, Chen X, Wang D, Li Y. Acid-switchable nanoparticles induce self-adaptive aggregation for enhancing antitumor immunity of natural killer cells. Acta Pharm Sin B 2023. [PMID: 37521862 PMCID: PMC10373095 DOI: 10.1016/j.apsb.2023.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Deficiency of natural killer (NK) cells shows a significant impact on tumor progression and failure of immunotherapy. It is highly desirable to boost NK cell immunity by upregulating active receptors and relieving the immunosuppressive tumor microenvironment. Unfortunately, mobilization of NK cells is hampered by poor accumulation and short retention of drugs in tumors, thus declining antitumor efficiency. Herein, we develop an acid-switchable nanoparticle with self-adaptive aggregation property for co-delivering galunisertib and interleukin 15 (IL-15). The nanoparticles induce morphology switch by a decomposition-metal coordination cascade reaction, which provides a new methodology to trigger aggregation. It shows self-adaptive size-enlargement upon acidity, thus improving drug retention in tumor to over 120 h. The diameter of agglomerates is increased and drug release is effectively promoted following reduced pH values. The nanoparticles activate both NK cell and CD8+ T cell immunity in vivo. It significantly suppresses CT26 tumor in immune-deficient BALB/c mice, and the efficiency is further improved in immunocompetent mice, indicating that the nanoparticles can not only boost innate NK cell immunity but also adaptive T cell immunity. The approach reported here provides an innovative strategy to improve drug retention in tumors, which will enhance cancer immunotherapy by boosting NK cells.
Collapse
|
38
|
Chen H, Zhou B, Zheng X, Wei J, Ji C, Yin M. Tumor microenvironment-activated multi-functional nanodrug with size-enlargement for enhanced cancer phototheranostics. Biomater Sci 2023; 11:472-480. [PMID: 36472245 DOI: 10.1039/d2bm01604d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Phototheranostics that integrate diagnosis and treatment modalities have shown great promise in personalized cancer therapy. However, the "always on" characteristics often lead to suboptimal imaging quality and severe side effects. Herein, we report the construction of a perylenemonoimide based nanodrug CPMI NP with multi-functional activatable theranostic capability. The nanodrug is facilely co-assembled from a prodrug CPMI and DSPE-mPEG2000. In a tumor microenvironment (TME) with excessive glutathione (GSH), CPMI undergoes a cascade reaction to generate the phototheranostic molecule NPMI and the chemodrug chlorambucil, simultaneously switching on the near-infrared (NIR) fluorescence, photothermal effect, and drug release. The photothermal conversion efficiency is as high as 52.2%. Moreover, NPMI exhibits an enhanced intermolecular π-π stacking effect, leading to significant size-enlargement of the nanodrug and prolonged tumor retention. Due to TME-activation, the strong in vivo fluorescence signal of the tumor can be observed 144 h post injection with a high signal-to-noise ratio of up to 17. The enhanced tumor inhibition efficiency of the nanodrug is confirmed through activatable chemo-photothermal therapy. This work paves the way for the design of activatable phototheranostic agents for accurate cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Hongtao Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Bingcheng Zhou
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xian Zheng
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Jie Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Chendong Ji
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Meizhen Yin
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
39
|
Cheng Y, Cai Z, Xu Z, Sang X, Song C. Smart sensing device for formaldehyde that based on uniform lanthanide CPs microsphere. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
40
|
Chang Y, Cui P, Zhou S, Qiu L, Jiang P, Chen S, Wang C, Wang J. Metal-phenolic network for cancer therapy. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
41
|
Xie Y, Wang M, Sun Q, Wang D, Li C. Recent Advances in Tetrakis (4‐Carboxyphenyl) Porphyrin‐Based Nanocomposites for Tumor Therapy. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Yulin Xie
- Institute of Molecular Sciences and Engineering Institute of Frontier and Interdisciplinary Science Shandong University Qingdao 266237 P.R. China
| | - Man Wang
- Institute of Molecular Sciences and Engineering Institute of Frontier and Interdisciplinary Science Shandong University Qingdao 266237 P.R. China
| | - Qianqian Sun
- Institute of Molecular Sciences and Engineering Institute of Frontier and Interdisciplinary Science Shandong University Qingdao 266237 P.R. China
| | - Dongmei Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials College of Chemistry and Life Sciences Zhejiang Normal University Jinhua 321004 P.R. China
| | - Chunxia Li
- Institute of Molecular Sciences and Engineering Institute of Frontier and Interdisciplinary Science Shandong University Qingdao 266237 P.R. China
| |
Collapse
|
42
|
Hu X, Ha E, Ai F, Huang X, Yan L, He S, Ruan S, Hu J. Stimulus-responsive inorganic semiconductor nanomaterials for tumor-specific theranostics. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
43
|
Zhang Y, Li J, Pu K. Recent advances in dual- and multi-responsive nanomedicines for precision cancer therapy. Biomaterials 2022; 291:121906. [DOI: 10.1016/j.biomaterials.2022.121906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/03/2022] [Accepted: 11/05/2022] [Indexed: 11/09/2022]
|
44
|
Advancing biomedical applications via manipulating intersystem crossing. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
45
|
Wang M, Cha R, Hao W, Du R, Zhang P, Hu Y, Jiang X. Nanocrystalline Cellulose Cures Constipation via Gut Microbiota Metabolism. ACS NANO 2022; 16:16481-16496. [PMID: 36129390 DOI: 10.1021/acsnano.2c05809] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Constipation can seriously affect the quality of life and increase the risk of colorectal cancer. The present strategies for constipation therapy have adverse effects, such as causing irreversible intestinal damage and affecting the absorption of nutrients. Nanocrystalline cellulose (NCC), which is from natural plants, has good biocompatibility and high safety. Herein, we used NCC to treat constipation assessed by the black stool, intestinal tissue sections, and serum biomarkers. We studied the effect of NCC on gut microbiota and discussed the correlation of gut microbiota and metabolites. We evaluated the long-term biosafety of NCC. NCC could effectively treat constipation through gut microbiota metabolism, which required a small dosage and did not affect the organs and intestines. NCC could be used as an alternative to medications and dietary fiber for constipation therapy.
Collapse
Affiliation(s)
- Mingzheng Wang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, People's Republic of China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology, Beijing 100190, People's Republic of China
| | - Ruitao Cha
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology, Beijing 100190, People's Republic of China
| | - Wenshuai Hao
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, People's Republic of China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology, Beijing 100190, People's Republic of China
| | - Ran Du
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen Key Laboratory of Agricultural Synthetic Biology, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518124, People's Republic of China
| | - Pai Zhang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, People's Republic of China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology, Beijing 100190, People's Republic of China
| | - Yingmo Hu
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, People's Republic of China
| | - Xingyu Jiang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, People's Republic of China
| |
Collapse
|
46
|
Roy S, Curry SD, Bagot CC, Mueller EN, Mansouri AM, Park W, Cha JN, Goodwin AP. Enzyme Prodrug Therapy with Photo-Cross-Linkable Anti-EGFR Affibodies Conjugated to Upconverting Nanoparticles. ACS NANO 2022; 16:15873-15883. [PMID: 36129781 PMCID: PMC10197967 DOI: 10.1021/acsnano.2c02558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
In this work, we demonstrate that a photo-cross-linkable conjugate of upconverting nanoparticles and cytosine deaminase can catalyze prodrug conversion specifically at tumor sites in vivo. Non-covalent association of proteins and peptides with cellular surfaces leads to receptor-mediated endocytosis and catabolic degradation. Recently, we showed that covalent attachment of proteins such as affibodies to cell receptors yields extended expression on cell surfaces with preservation of protein function. To adapt this technology for in vivo applications, conjugates were prepared from upconverting nanoparticles and fusion proteins of affibody and cytosine deaminase enzyme (UC-ACD). The affibody allows covalent photo-cross-linking to epidermal growth factor receptors (EGFRs) overexpressed on Caco-2 human colorectal cancer cells under near-infrared (NIR) light. Once bound, the cytosine deaminase portion of the fusion protein converts the prodrug 5-fluorocytosine (5-FC) to the anticancer drug 5-fluorouracil (5-FU). NIR covalent photoconjugation of UC-ACD to Caco-2 cells showed 4-fold higher retention than observed with cells that were not irradiated in vitro. Next, athymic mice expressing Caco-2 tumors showed 5-fold greater UC-ACD accumulation in the tumors than either conjugates without the CD enzyme or UC-ACDs in the absence of NIR excitation. With oral administration of 5-FC prodrug, tumors with photoconjugated UC-ACD yielded 2-fold slower growth than control groups, and median mouse survival increased from 28 days to 35 days. These experiments demonstrate that enzyme-decorated nanoparticles can remain viable after a single covalent photoconjugation in vivo, which can in turn localize prodrug conversion to tumor sites for multiple weeks.
Collapse
Affiliation(s)
- Shambojit Roy
- Department of Chemical and Biological Engineering, University of Colorado, 596 UCB, Boulder, Colorado 80309, United States
| | - Shane D. Curry
- Department of Chemical and Biological Engineering, University of Colorado, 596 UCB, Boulder, Colorado 80309, United States
| | - Conrad Corbella Bagot
- Department of Electrical, Computer, and Energy Engineering, University of Colorado, 596 UCB, Boulder, Colorado 80309, United States
| | - Evan N. Mueller
- Department of Chemical and Biological Engineering, University of Colorado, 596 UCB, Boulder, Colorado 80309, United States
| | - Abdulrahman M. Mansouri
- Department of Chemical and Biological Engineering, University of Colorado, 596 UCB, Boulder, Colorado 80309, United States
| | - Wounjhang Park
- Department of Electrical, Computer, and Energy Engineering, University of Colorado, 596 UCB, Boulder, Colorado 80309, United States
| | - Jennifer N. Cha
- Department of Chemical and Biological Engineering, University of Colorado, 596 UCB, Boulder, Colorado 80309, United States
- Materials Science and Engineering Program, University of Colorado, 596 UCB, Boulder, Colorado 80309, United States
| | - Andrew P. Goodwin
- Department of Chemical and Biological Engineering, University of Colorado, 596 UCB, Boulder, Colorado 80309, United States
- Materials Science and Engineering Program, University of Colorado, 596 UCB, Boulder, Colorado 80309, United States
| |
Collapse
|
47
|
Li D, Zhao T, Chen J, Shi J, Wang J, Yin Y, Chen S, Xu S, Luo X. Spatiotemporally Controlled Ultrasensitive Molecular Imaging Using a DNA Computation-Mediated DNAzyme Platform. Anal Chem 2022; 94:14467-14474. [PMID: 36194489 DOI: 10.1021/acs.analchem.2c03532] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Programming ultrasensitive and stimuli-responsive DNAzyme-based probes that contain logic gate biocomputation hold great potential for precise molecular imaging. In this work, a DNA computation-mediated DNAzyme platform that can be activated by 808 nm NIR light and target c-MYC was designed for spatiotemporally controlled ultrasensitive AND-gated molecular imaging. Particularly, the sensing and recognition function of the traditional DNAzyme platform was inhibited by introducing a blocking sequence containing a photo-cleavable linker (PC-linker) that can be indirectly cleaved by 808 nm NIR light and thus enables the AND-gated molecular imaging. According to the responses toward three designed SDz, nPC-SDz, and m-SDz DNAzyme probes, the fluorescence recovery in diverse cell lines (MCF-7, HeLa, and L02) and inhibitor-treated cells was investigated to confirm the AND-gated sensing mechanism. It is worth noting that thanks to the strand displacement amplification and the ability of gold nanopyramids (Au NBPs) to enhance fluorescence, the fluorescence intensity increased by ∼7.9 times and the detection limit decreased by nearly 40.5 times. Moreover, false positive signals can be also excluded due to such AND-gated design. Furthermore, such a designed "AND-gate" sensing manner can also be applied to spatiotemporally controlled ultrasensitive in vivo molecular imaging, indicating its promising potential in precise biological molecular imaging.
Collapse
Affiliation(s)
- Dan Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Tingting Zhao
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Jing Chen
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Jiaheng Shi
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Junhao Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Yue Yin
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Shuwei Chen
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Shenghao Xu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Xiliang Luo
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| |
Collapse
|
48
|
Luo Y, Chen Z, Wen S, Han Q, Fu L, Yan L, Jin D, Bünzli JCG, Bao G. Magnetic regulation of the luminescence of hybrid lanthanide-doped nanoparticles. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214653] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
49
|
Platinum-based nanocomposites loaded with MTH1 inhibitor amplify oxidative damage for cancer therapy. Colloids Surf B Biointerfaces 2022; 218:112715. [PMID: 35932557 DOI: 10.1016/j.colsurfb.2022.112715] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 07/10/2022] [Accepted: 07/20/2022] [Indexed: 11/22/2022]
Abstract
Photodynamic therapy (PDT) is a promising therapeutic strategy for tumor ablation by generating highly toxic reactive oxygen species (ROS) to damage DNA and other biomacromolecules. However, the local hypoxic microenvironment of the tumor and the presence of ROS-defensing system, such as the mobilization of mutt homolog 1 (MTH1) to sanitize ROS-oxidized nucleotide pool, severely limit the efficiency of PDT. Therefore, a novel tumor ablation strategy was developed that not only focused on the enhancement of ROS generation but also weakened the ROS-defensing system by inhibiting MTH1 enzyme activity. In our work, a simple one-step reduction approach was applied to enable platinum nanoparticles (Pt NPs) with catalase activity to grow in situ in the nanochannels of mesoporous silica nanoparticles (MSNs). After physical encapsulation of photosensitizer chlorin e6 (Ce6) and MTH1 inhibitor TH588, the drug loading nanoplatform was modified with an arginine-glycine-aspartic acid (RGD) functionalized liposome shell, resulting in the fabrication of amplified oxidative damage nanoplatform MSN-Pt@Ce6/TH588 @Liposome-RGD (MPCT@Li-R). The prepared MPCT@Li-R NPs could continuously catalyze the decomposition of hydrogen peroxide (H2O2) into oxygen (O2) in tumor, thus promoting the generation of singlet oxygen during PDT process for improved oxidative damage of bases. Simultaneously, acid responsive released TH588 hindered MTH1-mediated scavenging of oxidative bases, further aggravating DNA oxidative damage. Consequently, this cascade therapy strategy exhibited excellent tumor suppression efficiency both in vitro and in vivo.
Collapse
|
50
|
Sang X, Gao T, Liu X, Shen Y, Chang L, Fu S, Yang H, Yang H, Mu W, Liang S, Zhang Z, Zhang N, Liu Y. Two-Wave Variable Nanotheranostic Agents for Dual-Mode Imaging-Guided Photo-Induced Triple-Therapy for Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201834. [PMID: 35918610 PMCID: PMC9507363 DOI: 10.1002/advs.202201834] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Photothermal therapy (PTT) is a promising strategy for cancer treatment, but its clinical application relies heavily on accurate tumor positioning and effective combination. Nanotheranostics has shown superior application in precise tumor positioning and treatment, bringing potential opportunities for developing novel PTT-based therapies. Here, a nanotheranostic agent is proposed to enhance magnetic resonance imaging (MRI)/ near-infrared fluorescence imaging (NIRFI) imaging-guided photo-induced triple-therapy for cancer. Thermosensitive liposomes co-loaded with SPIONs/IR780 and Abemaciclib (SIA-TSLs), peptide ACKFRGD, and click group 2-cyano-6-amino-benzothiazole (CABT) are co-modified on the surface of SIA-TSLs to form SIA-αTSLs. ACKFRGD can be hydrolyzed to expose the 1, 2-thiolamino groups in the presence of cathepsin B in tumors, which click cycloaddition with the cyano group on CABT, resulting in the formation of SIA-αTSLs aggregates. The aggregation of SIA-αTSLs in tumors enhances the MRI/NIRFI imaging capability and enables precise PTT. Photo-induced triple-therapy enhances precision cancer therapy. First, PTT ablates specific tumors and induces ICD via localized photothermal. Second, local tumor heating promotes the rupture of SIA-αTSLs, which release Abemaciclib to block the tumor cell cycle and inhibit Tregs proliferation. Third, injecting GM-CSF into tumor tissue leads to recruitment of dendritic cells and initiation of antitumor immunity. Collectively, these results present a promising nanotheranostic strategy for future cancer therapy.
Collapse
Affiliation(s)
- Xiao Sang
- Department of PharmaceuticsKey Laboratory of Chemical Biology (Ministry of Education)NMPA Key Laboratory for Technology Research and Evaluation of Drug ProductsSchool of Pharmaceutical SciencesCheeloo College of MedicineShandong University44 Wenhua Xi RoadJinanShandong Province250012China
| | - Tong Gao
- Department of PharmaceuticsKey Laboratory of Chemical Biology (Ministry of Education)NMPA Key Laboratory for Technology Research and Evaluation of Drug ProductsSchool of Pharmaceutical SciencesCheeloo College of MedicineShandong University44 Wenhua Xi RoadJinanShandong Province250012China
| | - Xiaoqing Liu
- Department of PharmaceuticsKey Laboratory of Chemical Biology (Ministry of Education)NMPA Key Laboratory for Technology Research and Evaluation of Drug ProductsSchool of Pharmaceutical SciencesCheeloo College of MedicineShandong University44 Wenhua Xi RoadJinanShandong Province250012China
| | - Yelong Shen
- Department of RadiologyShandong Provincial Hospital Affiliated to Shandong First Medical University324 Jingwu Weiqi RoadJinanShandong Province250021China
| | - Lili Chang
- Department of PharmaceuticsKey Laboratory of Chemical Biology (Ministry of Education)NMPA Key Laboratory for Technology Research and Evaluation of Drug ProductsSchool of Pharmaceutical SciencesCheeloo College of MedicineShandong University44 Wenhua Xi RoadJinanShandong Province250012China
| | - Shunli Fu
- Department of PharmaceuticsKey Laboratory of Chemical Biology (Ministry of Education)NMPA Key Laboratory for Technology Research and Evaluation of Drug ProductsSchool of Pharmaceutical SciencesCheeloo College of MedicineShandong University44 Wenhua Xi RoadJinanShandong Province250012China
| | - Han Yang
- Department of PharmaceuticsKey Laboratory of Chemical Biology (Ministry of Education)NMPA Key Laboratory for Technology Research and Evaluation of Drug ProductsSchool of Pharmaceutical SciencesCheeloo College of MedicineShandong University44 Wenhua Xi RoadJinanShandong Province250012China
| | - Huizhen Yang
- Department of PharmaceuticsKey Laboratory of Chemical Biology (Ministry of Education)NMPA Key Laboratory for Technology Research and Evaluation of Drug ProductsSchool of Pharmaceutical SciencesCheeloo College of MedicineShandong University44 Wenhua Xi RoadJinanShandong Province250012China
| | - Weiwei Mu
- Department of PharmaceuticsKey Laboratory of Chemical Biology (Ministry of Education)NMPA Key Laboratory for Technology Research and Evaluation of Drug ProductsSchool of Pharmaceutical SciencesCheeloo College of MedicineShandong University44 Wenhua Xi RoadJinanShandong Province250012China
| | - Shuang Liang
- Department of PharmaceuticsKey Laboratory of Chemical Biology (Ministry of Education)NMPA Key Laboratory for Technology Research and Evaluation of Drug ProductsSchool of Pharmaceutical SciencesCheeloo College of MedicineShandong University44 Wenhua Xi RoadJinanShandong Province250012China
| | - Zipeng Zhang
- Department of PharmaceuticsKey Laboratory of Chemical Biology (Ministry of Education)NMPA Key Laboratory for Technology Research and Evaluation of Drug ProductsSchool of Pharmaceutical SciencesCheeloo College of MedicineShandong University44 Wenhua Xi RoadJinanShandong Province250012China
| | - Na Zhang
- Department of PharmaceuticsKey Laboratory of Chemical Biology (Ministry of Education)NMPA Key Laboratory for Technology Research and Evaluation of Drug ProductsSchool of Pharmaceutical SciencesCheeloo College of MedicineShandong University44 Wenhua Xi RoadJinanShandong Province250012China
| | - Yongjun Liu
- Department of PharmaceuticsKey Laboratory of Chemical Biology (Ministry of Education)NMPA Key Laboratory for Technology Research and Evaluation of Drug ProductsSchool of Pharmaceutical SciencesCheeloo College of MedicineShandong University44 Wenhua Xi RoadJinanShandong Province250012China
| |
Collapse
|