1
|
Damianov A, Lin CH, Zhang J, Manley JL, Black DL. Cancer-associated SF3B1 mutation K700E causes widespread changes in U2/branchpoint recognition without altering splicing. Proc Natl Acad Sci U S A 2025; 122:e2423776122. [PMID: 40138349 PMCID: PMC12002318 DOI: 10.1073/pnas.2423776122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 02/21/2025] [Indexed: 03/29/2025] Open
Abstract
Myelodysplastic syndromes and other cancers are often associated with mutations in the U2 snRNP protein SF3B1. Common SF3B1 mutations, including K700E, disrupt SF3B1 interaction with the protein SUGP1 and induce aberrant activation of alternative 3' splice sites (ss), presumably resulting from aberrant U2/branch site (BS) recognition by the mutant spliceosome. Here, we apply a method of U2 IP-seq to profile BS binding across the transcriptome of K562 leukemia cells carrying the SF3B1 K700E mutation. For alternative 3' ss activated by K700E, we identify their associated BSs and show that they are indeed shifted from the WT sites. Unexpectedly, we also identify thousands of additional changes in BS binding in the mutant cells that do not alter splicing. These new BSs are usually very close to the natural sites, occur upstream or downstream, and either exhibit stronger base-pairing potential with U2 snRNA or are adjacent to stronger polypyrimidine tracts than the WT sites. The widespread imprecision in BS recognition induced by K700E with limited changes in 3' ss selection expands the physiological consequences of this oncogenic mutation.
Collapse
Affiliation(s)
- Andrey Damianov
- Department of Microbiology, Immunology, and Molecular Genetics, Molecular Biology Institute, David Geffen School of Medicine, University of California,Los Angeles, CA90095
| | - Chia-Ho Lin
- Department of Microbiology, Immunology, and Molecular Genetics, Molecular Biology Institute, David Geffen School of Medicine, University of California,Los Angeles, CA90095
| | - Jian Zhang
- Department of Biological Sciences, Columbia University, New York, NY10027
| | - James L. Manley
- Department of Biological Sciences, Columbia University, New York, NY10027
| | - Douglas L. Black
- Department of Microbiology, Immunology, and Molecular Genetics, Molecular Biology Institute, David Geffen School of Medicine, University of California,Los Angeles, CA90095
| |
Collapse
|
2
|
Gao Y, Mo Y, Chen S, Ren L, Wei L, Chen B, Ling Y. Identification of pine SF3B1 protein and cross-species comparison highlight its conservation and biological significance in pre-mRNA splicing regulation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 223:109827. [PMID: 40147324 DOI: 10.1016/j.plaphy.2025.109827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/20/2025] [Accepted: 03/22/2025] [Indexed: 03/29/2025]
Abstract
As a key component of the largest subunit of the splicing machinery, SF3B1 plays essential roles in eukaryotic growth and development. However, only a few studies have focused on the evolutionary features and functions of this protein in plants. In this study, with the assistance of a bioinformatic analysis, we determined the complete coding sequence of the gene encoding the pine SF3B1 protein using RT-PCR and DNA sequencing. The evolutionary features of SF3B1 proteins were further examined based on a phylogenetic tree of SF3B1 homologous proteins from different eukaryotes, along with comprehensive comparisons of their functional domains, conserved motifs, and cis-regulatory elements and the structures of the corresponding genes. Furthermore, the effects of the splicing modulator GEX1a on several plant species were analysed, confirming that the re-identified SF3B1, with a full-length HEAT repeat domain, is expressed and functions in pre-mRNA splicing regulation in pines. In summary, we conducted a systematic cross-species comparison of SF3B1 homologous proteins, with an emphasis on complete sequence determination and the functional confirmation of pine SF3B1, illustrating the conservation of homologous proteins in plants. This study provides a valuable reference for understanding functional and regulatory mechanisms, as well as the potential applications of SF3B1.
Collapse
Affiliation(s)
- Yanhu Gao
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yujian Mo
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Shanlan Chen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Lei Ren
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China; South China Branch of National Saline-Alkali Tolerant Rice Technology Innovation Center, Zhanjiang, 524088, China
| | - Long Wei
- Guangdong Coastal Shelter-belt Ecosystem National Observation and Research Station, Guangdong Coast Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, 510520, China
| | - Beibei Chen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China.
| | - Yu Ling
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China; South China Branch of National Saline-Alkali Tolerant Rice Technology Innovation Center, Zhanjiang, 524088, China.
| |
Collapse
|
3
|
Nell RJ, Versluis M, Cats D, Mei H, Verdijk RM, Kroes WGM, Luyten GPM, Jager MJ, van der Velden PA. Identification of diagnostic and prognostic genetic alterations in uveal melanoma using RNA sequencing. Sci Rep 2025; 15:8167. [PMID: 40059100 PMCID: PMC11891316 DOI: 10.1038/s41598-025-90122-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 02/11/2025] [Indexed: 05/13/2025] Open
Abstract
Uveal melanoma is a lethal intraocular tumour, in which the presence of various genetic alterations correlates with the risk of metastatic dissemination and survival. Here, we tested the detectability of all key mutations and chromosomal changes from RNA sequencing data in 80 primary uveal melanomas studied by The Cancer Genome Atlas (TCGA) initiative, and in five prospective cases. Whereas unsupervised gene expression profiling strongly indicated the presence of chromosome 3 alterations, it was not reliable in identifying other alterations. Though, the presence of both chromosome 3 and 8q copy number alterations could be successfully inferred from expressed allelic imbalances of heterozygous common single nucleotide polymorphisms. Most mutations were adequately recognised in the RNA by their nucleotide changes (all genes), alternative splicing around the mutation (BAP1) and transcriptome-wide aberrant splicing (SF3B1). Notably, in the TCGA cohort we detected previously unreported mutations in BAP1 (n = 3) and EIF1AX (n = 5), that were missed by the original DNA sequencing. In our prospective cohort, all genetic alterations were successfully identified by combining the described approaches. In conclusion, a transcriptional analysis presents insights into the expressed tumour genotype and its phenotypic consequences and may augment or even substitute DNA-based approaches, with potential applicability in research and clinical practice.
Collapse
Affiliation(s)
- Rogier J Nell
- Department of Ophthalmology, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands.
| | - Mieke Versluis
- Department of Ophthalmology, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands
| | - Davy Cats
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Hailiang Mei
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Robert M Verdijk
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Wilma G M Kroes
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Gregorius P M Luyten
- Department of Ophthalmology, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands
| | - Martine J Jager
- Department of Ophthalmology, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands
| | - Pieter A van der Velden
- Department of Ophthalmology, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands
| |
Collapse
|
4
|
Jutten E, van Kempen LCLT, Diercks GFH, van Leeuwen BL, Kruijff S, Wevers KP. Real-World Evidence of the Prevalence of Driver Mutations in Anorectal Melanoma. Mol Diagn Ther 2025; 29:229-238. [PMID: 39739287 DOI: 10.1007/s40291-024-00764-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2024] [Indexed: 01/02/2025]
Abstract
INTRODUCTION Anorectal melanoma is a rare neoplasm with an aggressive behavior and poor prognosis. Recently, recurrent gene mutations related to anorectal melanoma have been identified in a small series of cases, and this holds promise for targeted therapies, analogous to cutaneous melanoma. The purpose of this study was to analyze testing rates and prevalence of mutations in anorectal melanoma in the Dutch population. METHODS The Netherlands Cancer Registry and the Dutch Nationwide Pathology Databank were queried for all patients with a diagnosis of anorectal melanoma (2009-2019) and for whom a molecular analysis was performed. The genes that were tested and mutations that were reported were recorded. Mutation status was correlated with clinical characteristics. RESULTS In the period 2009-2019, 121 patients were diagnosed with anorectal melanoma. A molecular analysis was performed for 81 (67%) using single gene testing and various next-generation sequencing panels. Testing rates increased from 53% in 2009-2012 to 73% in 2016-2019. In 29/81 (36%) analyzed tumors, one or more mutations were reported: mutations in KIT (16/70, 23%), CTNNB1 (3/20, 15%), NRAS (6/60, 10%), BRAF non-V600E (4/74, 5%), GNAS (1/19, 5%), KRAS (1/28, 4%), BRAF V600E (1/74, 1%), and SF3B1 (1/1). In this cohort, a positive correlation was found between BRAF mutation status and age. Mutation status did not correlate with sex, date of diagnosis, tumor stage or surgical treatment. Survival was not influenced by any mutation status. CONCLUSION KIT was the most frequently mutated gene in the 81 analyzed anorectal melanomas in the period 2009-2019. With the increasing testing rates and use of next generation sequencing, the molecular landscape of anorectal melanomas is gradually being revealed. Adoption of broad mutation analysis will reveal potentially actionable targets for treatment of patients with anorectal melanoma.
Collapse
Affiliation(s)
- E Jutten
- Hospital group Twente, Zilvermeeuw 1, 7609 PP, Almelo, The Netherlands
- University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - L C L T van Kempen
- University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
- Department of Pathology, University of Antwerp, Antwerp University Hospital, 655 Drie Eikenstraat, 2650, Edegem, Belgium
| | - G F H Diercks
- University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - B L van Leeuwen
- University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - S Kruijff
- University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - K P Wevers
- Comprehensive Cancer Center, University of Maastricht, Maastricht University Medical Center, P. Debyelaan 25, 6229 HX, Maastricht, The Netherlands.
| |
Collapse
|
5
|
Bak-Gordon P, Manley JL. SF3B1: from core splicing factor to oncogenic driver. RNA (NEW YORK, N.Y.) 2025; 31:314-332. [PMID: 39773890 PMCID: PMC11874996 DOI: 10.1261/rna.080368.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025]
Abstract
Highly recurrent somatic mutations in the gene encoding the core splicing factor SF3B1 are drivers of multiple cancer types. SF3B1 is a scaffold protein that orchestrates multivalent protein-protein interactions within the spliceosome that are essential for recognizing the branchsite (BS) and selecting the 3' splice site during the earliest stage of pre-mRNA splicing. In this review, we first describe the molecular mechanism by which multiple oncogenic SF3B1 mutations disrupt splicing. This involves perturbation of an early spliceosomal trimeric protein complex necessary for accurate BS recognition in a subset of introns, which leads to activation of upstream branchpoints and selection of cryptic 3' splice sites. We next discuss how specific transcripts affected by aberrant splicing in SF3B1-mutant cells contribute to the initiation and progression of cancer. Finally, we highlight the prognostic value and disease phenotypes of different cancer-associated SF3B1 mutations, which is critical for developing new targeted therapeutics against SF3B1-mutant cancers still lacking in the clinic.
Collapse
Affiliation(s)
- Pedro Bak-Gordon
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - James L Manley
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| |
Collapse
|
6
|
Xing P, Bak-Gordon P, Xie J, Zhang J, Liu Z, Manley JL. SUGP1 loss is the sole driver of SF3B1 hotspot mutant missplicing in cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.17.638713. [PMID: 40027711 PMCID: PMC11870612 DOI: 10.1101/2025.02.17.638713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
SF3B1 is the most frequently mutated splicing factor in cancer. Mechanistically, such mutations cause missplicing by promoting aberrant 3' splice site usage; however, how this occurs remains controversial. To address this issue, we employed a computational screen of 600 splicing-related proteins to identify those whose reduced expression recapitulated mutant SF3B1 splicing dysregulation. Strikingly, our analysis revealed only two proteins whose loss reproduced this effect. Extending our previous findings, loss of the G-patch protein SUGP1 recapitulated almost all splicing defects induced by SF3B1 hotspot mutations. Unexpectedly, loss of the RNA helicase Aquarius (AQR) reproduced ~40% of these defects. However, we found that AQR knockdown caused significant SUGP1 missplicing and reduced protein levels, suggesting that AQR loss reproduced mutant SF3B1 splicing defects only indirectly. This study advances our understanding of missplicing caused by oncogenic SF3B1 mutations, and highlights the fundamental role of SUGP1 in this process.
Collapse
Affiliation(s)
- Peiqi Xing
- National Genomics Data Center, China National Center for Bioinformation, Beijing, 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Pedro Bak-Gordon
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Jindou Xie
- National Genomics Data Center, China National Center for Bioinformation, Beijing, 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Zhang
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Zhaoqi Liu
- National Genomics Data Center, China National Center for Bioinformation, Beijing, 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - James L. Manley
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| |
Collapse
|
7
|
Amorello AN, Chandrashekar Reddy G, Melillo B, Cravatt BF, Ghosh AK, Jurica MS. SF3B1 thermostability as an assay for splicing inhibitor interactions. J Biol Chem 2025; 301:108135. [PMID: 39725033 PMCID: PMC11791315 DOI: 10.1016/j.jbc.2024.108135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 11/16/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024] Open
Abstract
The spliceosome protein, SF3B1, is associated with U2 snRNP during early spliceosome assembly for pre-mRNA splicing. Frequent somatic mutations in SF3B1 observed in cancer necessitates the characterization of its role in identifying the branchpoint adenosine of introns. Remarkably, SF3B1 is the target of three distinct natural product drugs, each identified by their potent anti-tumor properties. Structural studies indicate that SF3B1 conformational flexibility is functionally important, and suggest that drug binding blocks the transition to a closed state of SF3B1 required for the next stage of spliceosome assembly. This model is confounded, however, by the antagonistic property of an inactive herboxidiene analog. In this study, we established an assay for evaluating the thermostability of SF3B1 present in the nuclear extract preparations employed for in vitro splicing studies, to investigate inhibitor interactions with SF3B1 in a functional context. We show that both active and antagonistic analogs of natural product inhibitors affect SF3B1 thermostability, consistent with binding alone being insufficient to impair SF3B1 function. Surprisingly, SF3B1 thermostability differs among nuclear extract preparations, likely reflecting its conformational status. We also investigated a synthetic SF3B1 ligand, WX-02-23, and found that it increases SF3B1 thermostability and interferes with in vitro splicing by a mechanism that strongly resembles the activity of natural product inhibitors. We propose that altered SF3B1 thermostability can serve as an indicator of inhibitor binding to complement functional assays of their general effect on splicing. It may also provide a means to investigate the factors that influence SF3B1 conformation.
Collapse
Affiliation(s)
- Angela N Amorello
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California, USA
| | - Guddeti Chandrashekar Reddy
- Department of Chemistry and Department of Medicinal Chemistry, Purdue University, West Lafayette, Indiana, USA
| | - Bruno Melillo
- Department of Chemistry, Scripps Research, La Jolla, California, USA
| | | | - Arun K Ghosh
- Department of Chemistry and Department of Medicinal Chemistry, Purdue University, West Lafayette, Indiana, USA
| | - Melissa S Jurica
- Department of Molecular Cell and Developmental Biology, University of California, Santa Cruz, California, USA; Center for Molecular Biology of RNA, University of California, Santa Cruz, California, USA.
| |
Collapse
|
8
|
Tzaban S, Stern O, Zisman E, Eisenberg G, Klein S, Frankenburg S, Lotem M. Alternative splicing of modulatory immune receptors in T lymphocytes: a newly identified and targetable mechanism for anticancer immunotherapy. Front Immunol 2025; 15:1490035. [PMID: 39845971 PMCID: PMC11752881 DOI: 10.3389/fimmu.2024.1490035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/25/2024] [Indexed: 01/24/2025] Open
Abstract
Alternative splicing (AS) is a mechanism that generates translational diversity within a genome. Equally important is the dynamic adaptability of the splicing machinery, which can give preference to one isoform over others encoded by a single gene. These isoform preferences change in response to the cell's state and function. Particularly significant is the impact of physiological alternative splicing in T lymphocytes, where specific isoforms can enhance or reduce the cells' reactivity to stimuli. This process makes splicing isoforms defining features of cell states, exemplified by CD45 splice isoforms, which characterize the transition from naïve to memory states. Two developments have accelerated the use of AS dynamics for therapeutic interventions: advancements in long-read RNA sequencing and progress in nucleic acid chemical modifications. Improved oligonucleotide stability has enabled their use in directing splicing to specific sites or modifying sequences to enhance or silence particular splicing events. This review highlights immune regulatory splicing patterns with potential significance for enhancing anticancer immunotherapy.
Collapse
Affiliation(s)
- Shay Tzaban
- The Lautenberg Center for Immunology and Cancer Research, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ori Stern
- The Lautenberg Center for Immunology and Cancer Research, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Elad Zisman
- The Lautenberg Center for Immunology and Cancer Research, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Galit Eisenberg
- The Lautenberg Center for Immunology and Cancer Research, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Center for Melanoma and Cancer Immunotherapy, Sharett Institute of Oncology, Jerusalem, Israel
| | - Shiri Klein
- The Lautenberg Center for Immunology and Cancer Research, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Center for Melanoma and Cancer Immunotherapy, Sharett Institute of Oncology, Jerusalem, Israel
| | - Shoshana Frankenburg
- The Lautenberg Center for Immunology and Cancer Research, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Michal Lotem
- The Lautenberg Center for Immunology and Cancer Research, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Center for Melanoma and Cancer Immunotherapy, Sharett Institute of Oncology, Jerusalem, Israel
- Hadassah Cancer Research Institute, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
9
|
Liu G, Zhao B, Shi Y, Wan Y. Cancer-associated SF3B1 mutations inhibit mRNA nuclear export by disrupting SF3B1-THOC5 interactions. J Biochem 2024; 176:437-448. [PMID: 39259498 DOI: 10.1093/jb/mvae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/31/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024] Open
Abstract
Mutations in SF3B1 are common in many types of cancer, promoting cancer progression through aberrant RNA splicing. Recently, mRNA nuclear export has been reported to be defective in cells with the SF3B1 K700E mutation. However, the mechanism remains unclear. Our study reveals that the K700E mutation in SF3B1 attenuates its interaction with THOC5, an essential component of the mRNA nuclear export complex THO. Furthermore, the SF3B1 mutation caused reduced binding of THOC5 with some mRNA and inhibited the nuclear export of these mRNAs. Interestingly, overexpression of THOC5 restores the nuclear export of these mRNAs in cells with the SF3B1 K700E mutation. Importantly, other types of cancer-associated SF3B1 mutations also inhibited mRNA nuclear export similarly, suggesting that it is common for cancer-associated SF3B1 mutations to inhibit mRNA nuclear export. Our research highlights the critical role of the THOC5-SF3B1 interaction in the regulation of mRNA nuclear export and provides valuable insights into the impact of SF3B1 mutations on mRNA nuclear export.
Collapse
Affiliation(s)
- Gang Liu
- China-Japan Union Hospital of Jilin University, No. 126, Xiantai Street, Changchun, Jilin 130033, China
| | - Bo Zhao
- China-Japan Union Hospital of Jilin University, No. 126, Xiantai Street, Changchun, Jilin 130033, China
| | - Yueru Shi
- China-Japan Union Hospital of Jilin University, No. 126, Xiantai Street, Changchun, Jilin 130033, China
| | - Youzhong Wan
- China-Japan Union Hospital of Jilin University, No. 126, Xiantai Street, Changchun, Jilin 130033, China
| |
Collapse
|
10
|
Li B, Liu J, Huang L, Cai J, Guo L, Xu L, Xu Q, Liu J, Huang J, Hu W, Tang X, Liu Z, Liu T. SNRPB2 in the pan-cancer landscape: A bioinformatics exploration and validation in hepatocellular carcinoma. Cell Signal 2024; 124:111445. [PMID: 39366532 DOI: 10.1016/j.cellsig.2024.111445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 09/13/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024]
Abstract
Aberrant splicing is a significant contributor to gene expression abnormalities in cancer. SNRPB2, a component of U2 small nuclear ribonucleoprotein particles (snRNPs), contributes to the assembly of the spliceosome, the molecular machinery responsible for splicing. To date, few studies have investigated the role of SNRPB2 in tumorigenesis. We examined data sourced from various public databases, such as The Cancer Genome Atlas(TCGA), the Clinical Proteomic Tumor Analysis Consortium(CPTAC), and Gene Expression Omnibus(GEO). Our investigation included gene expression, genomic and epigenomic scrutiny, gene set enrichment assessment(GSEA), and immune cell infiltration evaluation. Furthermore, we performed empirical validation to ascertain the impact of SNRPB2 suppression on the proliferation and migration of liver cancer cells. Analysis of gene expression revealed widespread upregulation of SNRPB2 across a spectrum of cancer types, with heightened levels of SNRPB2 expression in numerous tumors linked to unfavorable prognosis. Genomic and epigenomic assessments revealed connections between SNRPB2 expression and variations in SNRPB2 copy number, DNA methylation patterns, and RNA modifications. Through gene set enrichment analysis, the involvement of SNRPB2 in vital biological processes and pathways related to cancer was identified. Furthermore, scrutiny of immune cell infiltration suggested a potential relationship between SNRPB2 and the tumor microenvironment, which was reinforced by multiple single-cell sequencing profiles. Subsequent experimental validation revealed that silencing SNRPB2 effectively impeded the proliferation and migration of liver cancer cells. Taken together, these findings underscore the prospective utility of SNRPB2 as a prognostic biomarker and a promising candidate for immunotherapy in cancer. It is necessary to engage in additional exploration into its underlying mechanisms and clinical treatment potential.
Collapse
Affiliation(s)
- Bowen Li
- Department of Interventional and Vascular Surgery, Affiliated Hospital of Jinggangshan University, Ji'an 343009, Jiangxi Province, China; Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi Province, China
| | - Jiang Liu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi Province, China
| | - Ling Huang
- Department of Interventional and Vascular Surgery, Affiliated Hospital of Jinggangshan University, Ji'an 343009, Jiangxi Province, China
| | - Jing Cai
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi Province, China
| | - Liangyun Guo
- Department of Ultrasonography, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi Province, China
| | - Liangzhi Xu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi Province, China
| | - Qi Xu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi Province, China
| | - Jinghang Liu
- Department of General Surgery, The First People's Hospital of Nanyang, Nanyang 473000, Henan Province, China
| | - Jian Huang
- Department of General Surgery, The Second Hospital of Longyan, Longyan 364000, Fujian Province, China
| | - Wei Hu
- Department of General Surgery, The Central Hospital of Xiaogan, Xiaogan 432003, Hubei Province, China
| | - Xinguo Tang
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi Province, China
| | - Zhaohui Liu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi Province, China
| | - Tiande Liu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi Province, China.
| |
Collapse
|
11
|
Anczukow O, Allain FHT, Angarola BL, Black DL, Brooks AN, Cheng C, Conesa A, Crosse EI, Eyras E, Guccione E, Lu SX, Neugebauer KM, Sehgal P, Song X, Tothova Z, Valcárcel J, Weeks KM, Yeo GW, Thomas-Tikhonenko A. Steering research on mRNA splicing in cancer towards clinical translation. Nat Rev Cancer 2024; 24:887-905. [PMID: 39384951 DOI: 10.1038/s41568-024-00750-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/27/2024] [Indexed: 10/11/2024]
Abstract
Splicing factors are affected by recurrent somatic mutations and copy number variations in several types of haematologic and solid malignancies, which is often seen as prima facie evidence that splicing aberrations can drive cancer initiation and progression. However, numerous spliceosome components also 'moonlight' in DNA repair and other cellular processes, making their precise role in cancer difficult to pinpoint. Still, few would deny that dysregulated mRNA splicing is a pervasive feature of most cancers. Correctly interpreting these molecular fingerprints can reveal novel tumour vulnerabilities and untapped therapeutic opportunities. Yet multiple technological challenges, lingering misconceptions, and outstanding questions hinder clinical translation. To start with, the general landscape of splicing aberrations in cancer is not well defined, due to limitations of short-read RNA sequencing not adept at resolving complete mRNA isoforms, as well as the shallow read depth inherent in long-read RNA-sequencing, especially at single-cell level. Although individual cancer-associated isoforms are known to contribute to cancer progression, widespread splicing alterations could be an equally important and, perhaps, more readily actionable feature of human cancers. This is to say that in addition to 'repairing' mis-spliced transcripts, possible therapeutic avenues include exacerbating splicing aberration with small-molecule spliceosome inhibitors, targeting recurrent splicing aberrations with synthetic lethal approaches, and training the immune system to recognize splicing-derived neoantigens.
Collapse
Affiliation(s)
- Olga Anczukow
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.
| | - Frédéric H-T Allain
- Department of Biology, Eidgenössische Technische Hochschule (ETH), Zürich, Switzerland
| | | | - Douglas L Black
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, USA
| | - Angela N Brooks
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Chonghui Cheng
- Department of Molecular and Human Genetics, Lester & Sue Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Ana Conesa
- Institute for Integrative Systems Biology, Spanish National Research Council, Paterna, Spain
| | - Edie I Crosse
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Eduardo Eyras
- Shine-Dalgarno Centre for RNA Innovation, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Ernesto Guccione
- Department of Oncological Sciences, Mount Sinai School of Medicine, New York, NY, USA
| | - Sydney X Lu
- Department of Medicine, Stanford Medical School, Palo Alto, CA, USA
| | - Karla M Neugebauer
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, USA
| | - Priyanka Sehgal
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Xiao Song
- Department of Neurology, Northwestern University, Chicago, IL, USA
| | - Zuzana Tothova
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Juan Valcárcel
- Centre for Genomic Regulation, Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Kevin M Weeks
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Andrei Thomas-Tikhonenko
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
12
|
Pacholewska A, Lienhard M, Brüggemann M, Hänel H, Bilalli L, Königs A, Heß F, Becker K, Köhrer K, Kaiser J, Gohlke H, Gattermann N, Hallek M, Herling CD, König J, Grimm C, Herwig R, Zarnack K, Schweiger MR. Long-read transcriptome sequencing of CLL and MDS patients uncovers molecular effects of SF3B1 mutations. Genome Res 2024; 34:1832-1848. [PMID: 39271291 DOI: 10.1101/gr.279327.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024]
Abstract
Mutations in splicing factor 3B subunit 1 (SF3B1) frequently occur in patients with chronic lymphocytic leukemia (CLL) and myelodysplastic syndromes (MDSs). These mutations have different effects on the disease prognosis with beneficial effect in MDS and worse prognosis in CLL patients. A full-length transcriptome approach can expand our knowledge on SF3B1 mutation effects on RNA splicing and its contribution to patient survival and treatment options. We applied long-read transcriptome sequencing (LRTS) to 44 MDS and CLL patients, as well as two pairs of isogenic cell lines with and without SF3B1 mutations, and found >60% of novel isoforms. Splicing alterations were largely shared between cancer types and specifically affected the usage of introns and 3' splice sites. Our data highlighted a constrained window at canonical 3' splice sites in which dynamic splice-site switches occurred in SF3B1-mutated patients. Using transcriptome-wide RNA-binding maps and molecular dynamics simulations, we showed multimodal SF3B1 binding at 3' splice sites and predicted reduced RNA binding at the second binding pocket of SF3B1K700E Our work presents the hitherto most-complete LRTS study of the SF3B1 mutation in CLL and MDS and provides a resource to study aberrant splicing in cancer. Moreover, we showed that different disease prognosises result most likely from the different cell types expanded during carcinogenesis rather than different mechanisms of action of the mutated SF3B1. These results have important implications for understanding the role of SF3B1 mutations in hematological malignancies and other related diseases.
Collapse
Affiliation(s)
- Alicja Pacholewska
- Institute for Translational Epigenetics, Faculty of Medicine, University of Cologne, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine, University of Cologne, 50931 Cologne, Germany
| | - Matthias Lienhard
- Department of Computational Molecular Biology, Max Planck Institute (MPI) for Molecular Genetics, 14195 Berlin, Germany
| | - Mirko Brüggemann
- Buchmann Institute for Molecular Life Sciences and Institute of Molecular Biosciences, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Heike Hänel
- Institute of Molecular Biology, 55128 Mainz, Germany
| | - Lorina Bilalli
- Institute for Translational Epigenetics, Faculty of Medicine, University of Cologne, 50931 Cologne, Germany
| | - Anja Königs
- Institute for Translational Epigenetics, Faculty of Medicine, University of Cologne, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine, University of Cologne, 50931 Cologne, Germany
| | - Felix Heß
- Institute for Translational Epigenetics, Faculty of Medicine, University of Cologne, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine, University of Cologne, 50931 Cologne, Germany
| | - Kerstin Becker
- Genomics and Transcriptomics Laboratory, Biological and Medical Research Center, Heinrich Heine University and West German Genome Center, 40225 Düsseldorf, Germany
- Cologne Center for Genomics (CCG), Faculty of Medicine, University of Cologne, 50931 Cologne, Germany
| | - Karl Köhrer
- Genomics and Transcriptomics Laboratory, Biological and Medical Research Center, Heinrich Heine University and West German Genome Center, 40225 Düsseldorf, Germany
| | - Jesko Kaiser
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
- Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Norbert Gattermann
- Department of Hematology, Oncology, and Clinical Immunology, University Hospital Düsseldorf, 40225 Düsseldorf, Germany
| | - Michael Hallek
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine, University of Cologne, 50931 Cologne, Germany
- Department I of Internal Medicine, Center for Integrated Oncology Aachen-Bonn-Cologne-Düsseldorf, University Hospital Cologne, 50937 Cologne, Germany
| | - Carmen D Herling
- Department I of Internal Medicine, Center for Integrated Oncology Aachen-Bonn-Cologne-Düsseldorf, University Hospital Cologne, 50937 Cologne, Germany
- Department for Hematology, Cellular Therapy, Hemostaseology and Infectious Diseases, University Hospital Leipzig, 04103 Leipzig, Germany
| | - Julian König
- Institute of Molecular Biology, 55128 Mainz, Germany
| | - Christina Grimm
- Institute for Translational Epigenetics, Faculty of Medicine, University of Cologne, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine, University of Cologne, 50931 Cologne, Germany
| | - Ralf Herwig
- Department of Computational Molecular Biology, Max Planck Institute (MPI) for Molecular Genetics, 14195 Berlin, Germany
| | - Kathi Zarnack
- Buchmann Institute for Molecular Life Sciences and Institute of Molecular Biosciences, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Michal R Schweiger
- Institute for Translational Epigenetics, Faculty of Medicine, University of Cologne, 50931 Cologne, Germany;
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine, University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
13
|
Damianov A, Lin CH, Zhang J, Manley JL, Black DL. Cancer-associated SF3B1 mutation K700E causes widespread changes in U2/branchpoint recognition without altering splicing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.18.624191. [PMID: 39605567 PMCID: PMC11601671 DOI: 10.1101/2024.11.18.624191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Myelodysplastic syndromes and other cancers are often associated with mutations in the U2 snRNP protein SF3B1. Common SF3B1 mutations, including K700E, disrupt SF3B1 interaction with the protein SUGP1 and induce aberrant activation of cryptic 3' splice sites (ss), presumably resulting from aberrant U2/branch site (BS) recognition by the mutant spliceosome. Here, we apply the new method of U2 IP-seq to profile BS binding across the transcriptome of K562 leukemia cells carrying the SF3B1 K700E mutation. For cryptic 3' ss activated by K700E, we identify their associated BSs and show that they are indeed shifted from the WT sites. Unexpectedly, we also identify thousands of additional changes in BS binding in the mutant cells that do not alter 3' ss choice. These new BS are usually very close to the natural sites, occur upstream or downstream, and either exhibit stronger base-pairing potential with U2 snRNA or are adjacent to stronger polypyrimidine tracts than the WT sites. The widespread imprecision in BS recognition induced by K700E with limited changes in 3' ss selection supports a positive role for SUGP1 in early BS choice and expands the physiological consequences of this oncogenic mutation.
Collapse
Affiliation(s)
- Andrey Damianov
- Department of Microbiology, Immunology, and Molecular Genetics, Molecular Biology Institute, David Geffen School of Medicine, UCLA, Los Angeles, CA
| | - Chia-Ho Lin
- Department of Microbiology, Immunology, and Molecular Genetics, Molecular Biology Institute, David Geffen School of Medicine, UCLA, Los Angeles, CA
| | - Jian Zhang
- Department of Biological Sciences, Columbia University, New York, NY
| | - James L Manley
- Department of Biological Sciences, Columbia University, New York, NY
| | - Douglas L Black
- Department of Microbiology, Immunology, and Molecular Genetics, Molecular Biology Institute, David Geffen School of Medicine, UCLA, Los Angeles, CA
| |
Collapse
|
14
|
Biswas J, Boussi L, Stein E, Abdel-Wahab O. Aberrant pre-mRNA processing in cancer. J Exp Med 2024; 221:e20230891. [PMID: 39316554 PMCID: PMC11448470 DOI: 10.1084/jem.20230891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/29/2024] [Accepted: 08/26/2024] [Indexed: 09/26/2024] Open
Abstract
Dysregulation of the flow of information from genomic DNA to RNA to protein occurs within all cancer types. In this review, we described the current state of understanding of how RNA processing is dysregulated in cancer with a focus on mutations in the RNA splicing factor machinery that are highly prevalent in hematologic malignancies. We discuss the downstream effects of these mutations highlighting both individual genes as well as common pathways that they perturb. We highlight examples of how alterations in RNA processing have been harnessed for therapeutic intent as well as to promote the selective toxicity of cancer cells.
Collapse
Affiliation(s)
- Jeetayu Biswas
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Leora Boussi
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Eytan Stein
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Omar Abdel-Wahab
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
15
|
Hoshino Y, Liu S, Furutera T, Yamada T, Koyabu D, Nukada Y, Miyazawa M, Yoda T, Ichimura K, Iseki S, Tasaki J, Takechi M. Pharmacological Inhibition of the Spliceosome SF3b Complex by Pladienolide-B Elicits Craniofacial Developmental Defects in Mouse and Zebrafish. Birth Defects Res 2024; 116:e2404. [PMID: 39494782 PMCID: PMC11579809 DOI: 10.1002/bdr2.2404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/13/2024] [Accepted: 09/23/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Mutations in genes encoding spliceosome components result in craniofacial structural defects in humans, referred to as spliceosomopathies. The SF3b complex is a crucial unit of the spliceosome, but model organisms generated through genetic modification of the complex do not perfectly mimic the phenotype of spliceosomopathies. Since the phenotypes are suggested to be determined by the extent of spliceosome dysfunction, an alternative experimental system that can seamlessly control SF3b function is needed. METHODS To establish another experimental system for model organisms elucidating relationship between spliceosome function and human diseases, we administered Pladienolide-B (PB), a SF3b complex inhibitor, to mouse and zebrafish embryos and assessed resulting phenotypes. RESULTS PB-treated mouse embryos exhibited neural tube defect and exencephaly, accompanied by apoptosis and reduced cell proliferation in the neural tube, but normal structure in the midface and jaw. PB administration to heterozygous knockout mice of Sf3b4, a gene coding for a SF3b component, influenced the formation of cranial neural crest cells (CNCCs). Despite challenges in continuous PB administration and a high death rate in mice, PB was stably administered to zebrafish embryos, resulting in prolonged survival. Brain, cranial nerve, retina, midface, and jaw development were affected, mimicking spliceosomopathy phenotypes. Additionally, alterations in cell proliferation, cell death, and migration of CNCCs were detected. CONCLUSIONS We demonstrated that zebrafish treated with PB exhibited phenotypes similar to those observed in human spliceosomopathies. This experimental system may serve as a valuable research tool for understanding spliceosome function and human diseases.
Collapse
Affiliation(s)
- Yukiko Hoshino
- Department of Molecular Craniofacial Embryology and Oral Histology, Graduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU)TokyoJapan
- Office of VaccinesPharmaceuticals and Medical Devices Agency (PMDA)Japan
| | - Shujie Liu
- R&D, Safety Science Research, Kao CorporationKawasakiJapan
| | - Toshiko Furutera
- Department of Anatomy and Life StructureJuntendo University Graduate School of MedicineTokyoJapan
| | - Takahiko Yamada
- Department of Molecular Craniofacial Embryology and Oral Histology, Graduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU)TokyoJapan
- Department of Maxillofacial Surgery, Graduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU)TokyoJapan
| | - Daisuke Koyabu
- Research and Development Center for Precision MedicineUniversity of TsukubaIbarakiJapan
| | - Yuko Nukada
- R&D, Safety Science Research, Kao CorporationTochigiJapan
| | | | - Tetsuya Yoda
- Department of Maxillofacial Surgery, Graduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU)TokyoJapan
| | - Koichiro Ichimura
- Department of Anatomy and Life StructureJuntendo University Graduate School of MedicineTokyoJapan
| | - Sachiko Iseki
- Department of Molecular Craniofacial Embryology and Oral Histology, Graduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU)TokyoJapan
| | - Junichi Tasaki
- R&D, Safety Science Research, Kao CorporationKawasakiJapan
| | - Masaki Takechi
- Department of Molecular Craniofacial Embryology and Oral Histology, Graduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU)TokyoJapan
- Department of Anatomy and Life StructureJuntendo University Graduate School of MedicineTokyoJapan
| |
Collapse
|
16
|
Deschênes M, Durand M, Olivier M, Pellerin‐Viger A, Rodier F, Chabot B. A defective splicing machinery promotes senescence through MDM4 alternative splicing. Aging Cell 2024; 23:e14301. [PMID: 39118304 PMCID: PMC11561654 DOI: 10.1111/acel.14301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
Defects in the splicing machinery are implicated in various diseases, including cancer. We observed a general reduction in the expression of spliceosome components and splicing regulators in human cell lines undergoing replicative, stress-induced, and telomere uncapping-induced senescence. Supporting the view that defective splicing contributes to senescence, splicing inhibitors herboxidiene, and pladienolide B induced senescence in normal and cancer cell lines. Furthermore, depleting individual spliceosome components also promoted senescence. All senescence types were associated with an alternative splicing transition from the MDM4-FL variant to MDM4-S. The MDM4 splicing shift was reproduced when splicing was inhibited, and spliceosome components were depleted. While decreasing the level of endogenous MDM4 promoted senescence and cell survival independently of the MDM4-S expression status, cell survival was also improved by increasing MDM4-S. Overall, our work establishes that splicing defects modulate the alternative splicing of MDM4 to promote senescence and cell survival.
Collapse
Affiliation(s)
- Mathieu Deschênes
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health SciencesUniversité de SherbrookeSherbrookeQuebecCanada
| | - Mathieu Durand
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health SciencesUniversité de SherbrookeSherbrookeQuebecCanada
| | - Marc‐Alexandre Olivier
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM)MontréalQuebecCanada
- Institut du Cancer de MontréalMontréalQuebecCanada
| | - Alicia Pellerin‐Viger
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM)MontréalQuebecCanada
- Institut du Cancer de MontréalMontréalQuebecCanada
| | - Francis Rodier
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM)MontréalQuebecCanada
- Institut du Cancer de MontréalMontréalQuebecCanada
- Department of Radiology, Radio‐Oncology and Nuclear MedicineUniversité de MontréalMontréalQuebecCanada
| | - Benoit Chabot
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health SciencesUniversité de SherbrookeSherbrookeQuebecCanada
| |
Collapse
|
17
|
Bessière C, Xue H, Guibert B, Boureux A, Rufflé F, Viot J, Chikhi R, Salson M, Marchet C, Commes T, Gautheret D. Transipedia.org: k-mer-based exploration of large RNA sequencing datasets and application to cancer data. Genome Biol 2024; 25:266. [PMID: 39390592 PMCID: PMC11468207 DOI: 10.1186/s13059-024-03413-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024] Open
Abstract
Indexing techniques relying on k-mers have proven effective in searching for RNA sequences across thousands of RNA-seq libraries, but without enabling direct RNA quantification. We show here that arbitrary RNA sequences can be quantified in seconds through their decomposition into k-mers, with a precision akin to that of conventional RNA quantification methods. Using an index of the Cancer Cell Line Encyclopedia (CCLE) collection consisting of 1019 RNA-seq samples, we show that k-mer indexing offers a powerful means to reveal non-reference sequences, and variant RNAs induced by specific gene alterations, for instance in splicing factors.
Collapse
Affiliation(s)
- Chloé Bessière
- IRMB, INSERM U1183, Hopital Saint-Eloi, Universite de Montpellier, Montpellier, France
- CRCT, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Haoliang Xue
- I2BC, Université Paris-Saclay, CNRS, CEA, Gif sur Yvette, France
| | - Benoit Guibert
- IRMB, INSERM U1183, Hopital Saint-Eloi, Universite de Montpellier, Montpellier, France
| | - Anthony Boureux
- IRMB, INSERM U1183, Hopital Saint-Eloi, Universite de Montpellier, Montpellier, France
| | - Florence Rufflé
- IRMB, INSERM U1183, Hopital Saint-Eloi, Universite de Montpellier, Montpellier, France
| | - Julien Viot
- Department of Medical Oncology, Biotechnology and Immuno-Oncology Platform, University Hospital of Besançon, Besançon, France
- INSERM, EFS BFC, UMR1098, RIGHT, University of Franche-Comté, Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France
| | - Rayan Chikhi
- Institut Pasteur, Université Paris Cité, Paris, France
| | - Mikaël Salson
- Université de Lille, CNRS, Centrale Lille, UMR 9189 CRIStAL, F-59000, Lille, France
| | - Camille Marchet
- Université de Lille, CNRS, Centrale Lille, UMR 9189 CRIStAL, F-59000, Lille, France
| | - Thérèse Commes
- IRMB, INSERM U1183, Hopital Saint-Eloi, Universite de Montpellier, Montpellier, France.
| | - Daniel Gautheret
- I2BC, Université Paris-Saclay, CNRS, CEA, Gif sur Yvette, France.
| |
Collapse
|
18
|
Nguyen JQN, Drabarek W, Leeflang AMCHJ, Brands T, van den Bosch TPP, Verdijk RM, van de Werken HJG, van Riet J, Paridaens D, de Klein A, Brosens E, Kiliç E. The Impact of Spliceosome Inhibition in SF3B1-Mutated Uveal Melanoma. Invest Ophthalmol Vis Sci 2024; 65:11. [PMID: 39374010 PMCID: PMC11463709 DOI: 10.1167/iovs.65.12.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/08/2024] [Indexed: 10/08/2024] Open
Abstract
Purpose Unfortunately, treatment of patients with uveal melanoma (UM) with metastatic disease is limited. Twenty percent of patients with UM harbor a mutation in the splicing factor gene SF3B1, suggesting that aberrant spliceosome function plays a vital role in tumorigenesis. Splicing inhibitors exploit the preferential sensitivity of spliceosome-compromised leukemic cells to these compounds. Methods We studied the effect of the splicing inhibitor E7107 using two UM cell lines and ex vivo cultured SF3B1- and BAP1-mutated primary UM tumor slices. These UM cell lines and ex vivo tumor slices were exposed for 24 hours to different concentrations of E7107. Tumor slices were stained with hematoxylin and eosin (H&E) and incubated with BAP1, MelanA, MIB-1, and caspase-3 antisera. Results The E7107-exposed UM cell lines exhibited decreased cell viability and increased apoptosis, with the greatest effect on SF3B1-mutated UM cells. A similar effect on UM tumor slices was observed upon exposure to E7107. Additionally, RNA was isolated for differential isoform expression analysis. No significant difference in isoform usage was found genome-wide. However, specific genes were differentially expressed after E7107 treatment in the SF3B1-mutated samples. Moreover, E7107 had the greatest effect on intron retention. Conclusions This study indicates/suggests that mutated SF3B1 UM cells are more sensitive to the splicing inhibitor E7107 than wild-type SF3B1 UM cells.
Collapse
Affiliation(s)
- Josephine Q. N. Nguyen
- Department of Ophthalmology, Erasmus MC Cancer Institute, Erasmus MC Medical Center Rotterdam, CA Rotterdam, The Netherlands
- Department of Clinical Genetics, Erasmus MC Cancer Institute, Erasmus MC Medical Center Rotterdam, CA Rotterdam, The Netherlands
| | | | - Aïsha M. C. H. J. Leeflang
- Department of Ophthalmology, Erasmus MC Cancer Institute, Erasmus MC Medical Center Rotterdam, CA Rotterdam, The Netherlands
- Department of Clinical Genetics, Erasmus MC Cancer Institute, Erasmus MC Medical Center Rotterdam, CA Rotterdam, The Netherlands
| | - Tom Brands
- Department of Ophthalmology, Erasmus MC Cancer Institute, Erasmus MC Medical Center Rotterdam, CA Rotterdam, The Netherlands
- Department of Clinical Genetics, Erasmus MC Cancer Institute, Erasmus MC Medical Center Rotterdam, CA Rotterdam, The Netherlands
| | - Thierry P. P. van den Bosch
- Department of Pathology, Section Ophthalmic Pathology, Erasmus MC Cancer Institute, Erasmus MC Medical Center Rotterdam, CA Rotterdam, The Netherlands
| | - Robert M. Verdijk
- The Rotterdam Eye Hospital, BH Rotterdam, The Netherlands
- Department of Pathology, Section Ophthalmic Pathology, Erasmus MC Cancer Institute, Erasmus MC Medical Center Rotterdam, CA Rotterdam, The Netherlands
- Department of Pathology, Leiden University Medical Center, ZA Leiden, The Netherlands
| | - Harmen J. G. van de Werken
- Cancer Computational Biology Center, Erasmus MC Cancer Institute, University Medical Center Rotterdam, CA Rotterdam, The Netherlands
- Department of Urology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, CA Rotterdam, The Netherlands
- Department of Immunology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, CA Rotterdam, The Netherlands
| | - Job van Riet
- Cancer Computational Biology Center, Erasmus MC Cancer Institute, University Medical Center Rotterdam, CA Rotterdam, The Netherlands
- Department of Urology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, CA Rotterdam, The Netherlands
| | - Dion Paridaens
- Department of Ophthalmology, Erasmus MC Cancer Institute, Erasmus MC Medical Center Rotterdam, CA Rotterdam, The Netherlands
- The Rotterdam Eye Hospital, BH Rotterdam, The Netherlands
| | - Annelies de Klein
- Department of Clinical Genetics, Erasmus MC Cancer Institute, Erasmus MC Medical Center Rotterdam, CA Rotterdam, The Netherlands
| | - Erwin Brosens
- Department of Clinical Genetics, Erasmus MC Cancer Institute, Erasmus MC Medical Center Rotterdam, CA Rotterdam, The Netherlands
| | - Emine Kiliç
- Department of Ophthalmology, Erasmus MC Cancer Institute, Erasmus MC Medical Center Rotterdam, CA Rotterdam, The Netherlands
| | - on behalf of the Rotterdam Ocular Melanoma Study Group
- Department of Ophthalmology, Erasmus MC Cancer Institute, Erasmus MC Medical Center Rotterdam, CA Rotterdam, The Netherlands
- Department of Clinical Genetics, Erasmus MC Cancer Institute, Erasmus MC Medical Center Rotterdam, CA Rotterdam, The Netherlands
- The Rotterdam Eye Hospital, BH Rotterdam, The Netherlands
- Department of Pathology, Section Ophthalmic Pathology, Erasmus MC Cancer Institute, Erasmus MC Medical Center Rotterdam, CA Rotterdam, The Netherlands
- Department of Pathology, Leiden University Medical Center, ZA Leiden, The Netherlands
- Cancer Computational Biology Center, Erasmus MC Cancer Institute, University Medical Center Rotterdam, CA Rotterdam, The Netherlands
- Department of Urology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, CA Rotterdam, The Netherlands
- Department of Immunology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, CA Rotterdam, The Netherlands
| |
Collapse
|
19
|
Shi Y, Zhang W, Jia Q, Zhong X, Iyer P, Wu H, Yuan YC, Zhao Y, Zhang L, Wang L, Jia Z, Kuo YH, Sun Z. Cancer-associated SF3B1-K700E mutation controls immune responses by regulating T reg function via aberrant Anapc13 splicing. SCIENCE ADVANCES 2024; 10:eado4274. [PMID: 39303038 PMCID: PMC11414738 DOI: 10.1126/sciadv.ado4274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 08/14/2024] [Indexed: 09/22/2024]
Abstract
Recurrent somatic mutations in spliceosome factor 3b subunit 1 (SF3B1) are identified in hematopoietic malignancies, with SF3B1-K700E being the most common one. Here, we show that regulatory T cell (Treg)-specific expression of SF3B1-K700E (Sf3b1K700Efl/+/Foxp3YFP-Cre) results in spontaneous autoimmune phenotypes. CD4+ T cells from Sf3b1K700Efl/+/Foxp3YFP-Cre mice display defective Treg differentiation and inhibitory function, which is demonstrated by failed prevention of adoptive transfer colitis by Sf3b1K700Efl/+/Foxp3YFP-Cre Tregs. Mechanically, SF3B1-K700E induces an aberrant splicing event that results in reduced expression of a cell proliferation regulator Anapc13 due to the insertion of a 231-base pair DNA fragment to the 5' untranslated region. Forced expression of the Anapc13 gene restores the differentiation and ability of Sf3b1K700Efl/+/Foxp3YFP-Cre Tregs to prevent adoptive transfer colitis. In addition, acute myeloid leukemia grows faster in aged, but not young, Sf3b1K700Efl/+/Foxp3YFP-Cre mice compared to Foxp3YFP-Cre mice. Our results highlight the impact of cancer-associated SF3B1 mutation on immune responses, which affect cancer development.
Collapse
Affiliation(s)
- Yun Shi
- Department of Immunology & Theranostics, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Wencan Zhang
- Department of Immunology & Theranostics, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Qiong Jia
- Department of Botany & Plant Sciences, University of California, Riverside, CA 92527, USA
| | - Xiancai Zhong
- Department of Immunology & Theranostics, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Prajish Iyer
- Department of System Biology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Hongmin Wu
- Department of Immunology & Theranostics, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Yate-Ching Yuan
- Translational Bioinformatics, Department of Computational Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Yuqi Zhao
- Integrated Genomics Core, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Lianjun Zhang
- Gehr Family Center for Leukemia Research, Department of Hematological Malignancies Translational Science, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Lili Wang
- Department of System Biology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Zhenyu Jia
- Department of Botany & Plant Sciences, University of California, Riverside, CA 92527, USA
| | - Ya-Huei Kuo
- Gehr Family Center for Leukemia Research, Department of Hematological Malignancies Translational Science, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Zuoming Sun
- Department of Immunology & Theranostics, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
20
|
Liang CE, Hrabeta-Robinson E, Behera A, Arevalo C, Fetter IJ, Soulette CM, Thornton AM, Sikandar SS, Brooks AN. U2AF1 S34F enhances tumorigenic potential of lung cells by exhibiting synergy with KRAS mutation and altering response to environmental stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.11.612492. [PMID: 39314447 PMCID: PMC11419039 DOI: 10.1101/2024.09.11.612492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Although U2AF1 S34F is a recurrent splicing factor mutation in lung adenocarcinoma (ADC), U2AF1 S34F alone is insufficient for producing tumors in previous models. Because lung ADCs with U2AF1 S34F frequently have co-occurring KRAS mutations and smoking histories, we hypothesized that tumor-forming potential arises from U2AF1 S34F interacting with oncogenic KRAS and environmental stress. To elucidate the effect of U2AF1 S34F co-occurring with a second mutation, we generated human bronchial epithelial cells (HBEC3kt) with co-occurring U2AF1 S34F and KRAS G12V . Transcriptome analysis revealed that co-occurring U2AF1 S34F and KRAS G12V differentially impacts inflammatory, cell cycle, and KRAS pathways. Subsequent phenotyping found associated suppressed cytokine production, increased proliferation, anchorage-independent growth, and tumors in mouse xenografts. Interestingly, HBEC3kts harboring only U2AF1 S34F display increased splicing in stress granule protein genes and viability in cigarette smoke concentrate. Our results suggest that U2AF1 S34F may potentiate transformation by granting precancerous cells survival advantage in environmental stress, permitting accumulation of additional mutations like KRAS G12V , which synergize with U2AF1 S34F to transform the cell.
Collapse
Affiliation(s)
- Cindy E Liang
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
- Co-first author
| | - Eva Hrabeta-Robinson
- Department of Biomolecular Engineering, UC Santa Cruz, Santa Cruz, CA 95064, USA
- Co-first author
| | - Amit Behera
- Department of Biomolecular Engineering, UC Santa Cruz, Santa Cruz, CA 95064, USA
| | - Carlos Arevalo
- Department of Biomolecular Engineering, UC Santa Cruz, Santa Cruz, CA 95064, USA
| | - Isobel J. Fetter
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Cameron M. Soulette
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Alexis M. Thornton
- Department of Biomolecular Engineering, UC Santa Cruz, Santa Cruz, CA 95064, USA
| | - Shaheen S. Sikandar
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Angela N. Brooks
- Department of Biomolecular Engineering, UC Santa Cruz, Santa Cruz, CA 95064, USA
| |
Collapse
|
21
|
Nugent PJ, Park H, Wladyka CL, Chen KY, Bynum C, Quarterman G, Hsieh AC, Subramaniam AR. Decoding RNA Metabolism by RNA-linked CRISPR Screening in Human Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.25.605204. [PMID: 39091804 PMCID: PMC11291135 DOI: 10.1101/2024.07.25.605204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
RNAs undergo a complex choreography of metabolic processes in human cells that are regulated by thousands of RNA-associated proteins. While the effects of individual RNA-associated proteins on RNA metabolism have been extensively characterized, the full complement of regulators for most RNA metabolic events remain unknown. Here we present a massively parallel RNA-linked CRISPR (ReLiC) screening approach to measure the responses of diverse RNA metabolic events to knockout of 2,092 human genes encoding all known RNA-associated proteins. ReLiC screens highlight modular interactions between gene networks regulating splicing, translation, and decay of mRNAs. When combined with biochemical fractionation of polysomes, ReLiC reveals striking pathway-specific coupling between growth fitness and mRNA translation. Perturbing different components of the translation and proteostasis machineries have distinct effects on ribosome occupancy, while perturbing mRNA transcription leaves ribosome occupancy largely intact. Isoform-selective ReLiC screens capture differential regulation of intron retention and exon skipping by SF3b complex subunits. Chemogenomic screens using ReLiC decipher translational regulators upstream of mRNA decay and uncover a role for the ribosome collision sensor GCN1 during treatment with the anti-leukemic drug homoharringtonine. Our work demonstrates ReLiC as a versatile platform for discovering and dissecting regulatory principles of human RNA metabolism.
Collapse
Affiliation(s)
- Patrick J Nugent
- Basic Sciences Division and Computational Biology Section of the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle WA, USA
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle WA, USA
| | - Heungwon Park
- Basic Sciences Division and Computational Biology Section of the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle WA, USA
| | - Cynthia L Wladyka
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle WA, USA
| | - Katharine Y Chen
- Basic Sciences Division and Computational Biology Section of the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle WA, USA
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle WA, USA
| | - Christine Bynum
- Basic Sciences Division and Computational Biology Section of the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle WA, USA
- Department of Biology, Spelman College, Atlanta GA, USA
| | - Grace Quarterman
- Basic Sciences Division and Computational Biology Section of the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle WA, USA
- Department of Biology, Spelman College, Atlanta GA, USA
| | - Andrew C Hsieh
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle WA, USA
- Department of Medicine and Department of Genome Sciences, University of Washington, Seattle WA, USA
| | - Arvind Rasi Subramaniam
- Basic Sciences Division and Computational Biology Section of the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle WA, USA
- Department of Biochemistry and Department of Genome Sciences, University of Washington, Seattle WA, USA
| |
Collapse
|
22
|
Subbarayan R, Srinivasan D, Balakrishnan R, Kumar A, Usmani SS, Srivastava N. DNA damage response and neoantigens: A favorable target for triple-negative breast cancer immunotherapy and vaccine development. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 389:104-152. [PMID: 39396845 DOI: 10.1016/bs.ircmb.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Triple-negative breast cancer (TNBC) poses a significant clinical challenge due to its aggressive nature and limited therapeutic options. The interplay between DNA damage response (DDR) mechanisms and the emergence of neoantigens represents a promising avenue for developing targeted immunotherapeutic strategies and vaccines for TNBC. The DDR is a complex network of cellular mechanisms designed to maintain genomic integrity. In TNBC, where genetic instability is a hallmark, dysregulation of DDR components plays a pivotal role in tumorigenesis and progression. This review explores the intricate relationship between DDR and neoantigens, shedding light on the potential vulnerabilities of TNBC cells. Neoantigens, arising from somatic mutations in cancer cells, represent unique antigens that can be recognized by the immune system. TNBC's propensity for genomic instability leads to an increased mutational burden, consequently yielding a rich repertoire of neoantigens. The convergence of DDR and neoantigens in TNBC offers a distinctive opportunity for immunotherapeutic targeting. Immunotherapy has revolutionized cancer treatment by harnessing the immune system to selectively target cancer cells. The unique immunogenicity conferred by DDR-related neoantigens in TNBC positions them as ideal targets for immunotherapeutic interventions. This review also explores various immunotherapeutic modalities, including immune checkpoint inhibitors (ICIs), adoptive cell therapies, and cancer vaccines, that leverage the DDR and neoantigen interplay to enhance anti-tumor immune responses. Moreover, the potential for developing vaccines targeting DDR-related neoantigens opens new frontiers in preventive and therapeutic strategies for TNBC. The rational design of vaccines tailored to the individual mutational landscape of TNBC holds promise for precision medicine approaches. In conclusion, the convergence of DDR and neoantigens in TNBC presents a compelling rationale for the development of innovative immunotherapies and vaccines. Understanding and targeting these interconnected processes may pave the way for personalized and effective interventions, offering new hope for patients grappling with the challenges posed by TNBCs.
Collapse
Affiliation(s)
- Rajasekaran Subbarayan
- Centre for Advanced Biotherapeutics and Regenerative Medicine, FAHS, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| | - Dhasarathdev Srinivasan
- Centre for Advanced Biotherapeutics and Regenerative Medicine, FAHS, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| | - Ranjith Balakrishnan
- Centre for Advanced Biotherapeutics and Regenerative Medicine, FAHS, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| | - Ajeet Kumar
- Department of Psychiatry, Washington university School of Medicine, St louis, MO, United States
| | - Salman Sadullah Usmani
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States.
| | - Nityanand Srivastava
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, United States.
| |
Collapse
|
23
|
Lucibello F, Lalanne AI, Le Gac AL, Soumare A, Aflaki S, Cyrta J, Dubreuil L, Mestdagh M, Salou M, Houy A, Ekwegbara C, Jamet C, Gardrat S, Le Ven A, Bernardeau K, Cassoux N, Matet A, Malaise D, Pierron G, Piperno-Neumann S, Stern MH, Rodrigues M, Lantz O. Divergent local and systemic antitumor response in primary uveal melanomas. J Exp Med 2024; 221:e20232094. [PMID: 38563818 PMCID: PMC10986814 DOI: 10.1084/jem.20232094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/08/2024] [Accepted: 03/11/2024] [Indexed: 04/04/2024] Open
Abstract
Uveal melanoma (UM) is the most common cancer of the eye. The loss of chromosome 3 (M3) is associated with a high risk of metastases. M3 tumors are more infiltrated by T-lymphocytes than low-risk disomic-3 (D3) tumors, contrasting with other tumor types in which T cell infiltration correlates with better prognosis. Whether these T cells represent an antitumor response and how these T cells would be primed in the eye are both unknown. Herein, we characterized the T cells infiltrating primary UMs. CD8+ and Treg cells were more abundant in M3 than in D3 tumors. CD39+PD-1+CD8+ T cells were enriched in M3 tumors, suggesting specific responses to tumor antigen (Ag) as confirmed using HLA-A2:Melan-A tetramers. scRNAseq-VDJ analysis of T cells evidenced high numbers of proliferating CD39+PD1+CD8+ clonal expansions, suggesting in situ antitumor Ag responses. TCRseq and tumor-Ag tetramer staining characterized the recirculation pattern of the antitumor responses in M3 and D3 tumors. Thus, tumor-Ag responses occur in localized UMs, raising the question of the priming mechanisms in the absence of known lymphatic drainage.
Collapse
Affiliation(s)
- Francesca Lucibello
- Department of Immunity and Cancer, Inserm U932, Paris Sciences et Lettres (PSL) University, Institut Curie, Paris, France
| | - Ana I. Lalanne
- Laboratoire d’Immunologie Clinique, Institut Curie, Paris, France
- Centre d’investigation Clinique en Biothérapie Gustave-Roussy Institut Curie (CIC-BT1428), Paris, France
| | - Anne-Laure Le Gac
- Department of Immunity and Cancer, Inserm U932, Paris Sciences et Lettres (PSL) University, Institut Curie, Paris, France
| | - Abdoulaye Soumare
- Department of Immunity and Cancer, Inserm U932, Paris Sciences et Lettres (PSL) University, Institut Curie, Paris, France
| | - Setareh Aflaki
- Department of Immunity and Cancer, Inserm U932, Paris Sciences et Lettres (PSL) University, Institut Curie, Paris, France
| | - Joanna Cyrta
- Departments of Pathology, Institut Curie, Paris, France
| | - Lea Dubreuil
- Laboratoire d’Immunologie Clinique, Institut Curie, Paris, France
| | - Martin Mestdagh
- Department of Immunity and Cancer, Inserm U932, Paris Sciences et Lettres (PSL) University, Institut Curie, Paris, France
| | - Marion Salou
- Department of Immunity and Cancer, Inserm U932, Paris Sciences et Lettres (PSL) University, Institut Curie, Paris, France
| | - Alexandre Houy
- INSERM U830, DNA Repair and Uveal Melanoma (D.R.U.M.), Equipe Labellisée par la Ligue Nationale Contre le Cancer, PSL University, Institut Curie, Paris, France
| | - Christina Ekwegbara
- Laboratoire d’Immunologie Clinique, Institut Curie, Paris, France
- Centre d’investigation Clinique en Biothérapie Gustave-Roussy Institut Curie (CIC-BT1428), Paris, France
| | - Camille Jamet
- Department of Immunity and Cancer, Inserm U932, Paris Sciences et Lettres (PSL) University, Institut Curie, Paris, France
| | | | - Anais Le Ven
- INSERM U830, DNA Repair and Uveal Melanoma (D.R.U.M.), Equipe Labellisée par la Ligue Nationale Contre le Cancer, PSL University, Institut Curie, Paris, France
| | - Karine Bernardeau
- Centre Hospitalier Universitaire (CHU) Nantes, Centre National de la Recherche Scientifique, Inserm, BioCore, US16, Nantes Université, Nantes, France
| | - Nathalie Cassoux
- Department of Surgical Oncology, University of Paris, Institut Curie, Paris, France
| | - Alexandre Matet
- Department of Surgical Oncology, University of Paris, Institut Curie, Paris, France
| | - Denis Malaise
- Department of Surgical Oncology, University of Paris, Institut Curie, Paris, France
| | | | | | - Marc-Henri Stern
- INSERM U830, DNA Repair and Uveal Melanoma (D.R.U.M.), Equipe Labellisée par la Ligue Nationale Contre le Cancer, PSL University, Institut Curie, Paris, France
| | - Manuel Rodrigues
- INSERM U830, DNA Repair and Uveal Melanoma (D.R.U.M.), Equipe Labellisée par la Ligue Nationale Contre le Cancer, PSL University, Institut Curie, Paris, France
- Department of Medical Oncology, Institut Curie, Paris, France
| | - Olivier Lantz
- Department of Immunity and Cancer, Inserm U932, Paris Sciences et Lettres (PSL) University, Institut Curie, Paris, France
- Laboratoire d’Immunologie Clinique, Institut Curie, Paris, France
- Centre d’investigation Clinique en Biothérapie Gustave-Roussy Institut Curie (CIC-BT1428), Paris, France
| |
Collapse
|
24
|
Benbarche S, Pineda JMB, Galvis LB, Biswas J, Liu B, Wang E, Zhang Q, Hogg SJ, Lyttle K, Dahi A, Lewis AM, Sarchi M, Rahman J, Fox N, Ai Y, Mehta S, Garippa R, Ortiz-Pacheco J, Li Z, Monetti M, Stanley RF, Doulatov S, Bradley RK, Abdel-Wahab O. GPATCH8 modulates mutant SF3B1 mis-splicing and pathogenicity in hematologic malignancies. Mol Cell 2024; 84:1886-1903.e10. [PMID: 38688280 PMCID: PMC11102302 DOI: 10.1016/j.molcel.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 03/04/2024] [Accepted: 04/09/2024] [Indexed: 05/02/2024]
Abstract
Mutations in the RNA splicing factor gene SF3B1 are common across hematologic and solid cancers and result in widespread alterations in splicing, yet there is currently no therapeutic means to correct this mis-splicing. Here, we utilize synthetic introns uniquely responsive to mutant SF3B1 to identify trans factors required for aberrant mutant SF3B1 splicing activity. This revealed the G-patch domain-containing protein GPATCH8 as required for mutant SF3B1-induced splicing alterations and impaired hematopoiesis. GPATCH8 is involved in quality control of branchpoint selection, interacts with the RNA helicase DHX15, and functionally opposes SURP and G-patch domain containing 1 (SUGP1), a G-patch protein recently implicated in SF3B1-mutant diseases. Silencing of GPATCH8 corrected one-third of mutant SF3B1-dependent splicing defects and was sufficient to improve dysfunctional hematopoiesis in SF3B1-mutant mice and primary human progenitors. These data identify GPATCH8 as a novel splicing factor required for mis-splicing by mutant SF3B1 and highlight the therapeutic impact of correcting aberrant splicing in SF3B1-mutant cancers.
Collapse
Affiliation(s)
- Salima Benbarche
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jose Mario Bello Pineda
- Public Health Sciences and Basic Sciences Divisions, Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Genome Sciences, University of Washington, Seattle, WA, USA; Medical Scientist Training Program, University of Washington, Seattle, WA, USA
| | - Laura Baquero Galvis
- Division of Hematology/Oncology, Department of Medicine, Department of Genome Sciences, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Jeetayu Biswas
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Bo Liu
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Eric Wang
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Qian Zhang
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Simon J Hogg
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kadeen Lyttle
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ariana Dahi
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alexander M Lewis
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Martina Sarchi
- Division of Hematology/Oncology, Department of Medicine, Department of Genome Sciences, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Jahan Rahman
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nina Fox
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yuxi Ai
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sanjoy Mehta
- Gene Editing and Screening Core Facility, Department of Cancer Biology and Genetics, Memorial Sloan Kettering Institute and Cancer Center, New York, NY, USA
| | - Ralph Garippa
- Gene Editing and Screening Core Facility, Department of Cancer Biology and Genetics, Memorial Sloan Kettering Institute and Cancer Center, New York, NY, USA
| | - Juliana Ortiz-Pacheco
- Proteomics Innovation Laboratory, Memorial Sloan Kettering Institute and Cancer Center, New York, NY, USA
| | - Zhuoning Li
- Proteomics Innovation Laboratory, Memorial Sloan Kettering Institute and Cancer Center, New York, NY, USA
| | - Mara Monetti
- Proteomics Innovation Laboratory, Memorial Sloan Kettering Institute and Cancer Center, New York, NY, USA
| | - Robert F Stanley
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sergei Doulatov
- Division of Hematology/Oncology, Department of Medicine, Department of Genome Sciences, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Robert K Bradley
- Public Health Sciences and Basic Sciences Divisions, Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Genome Sciences, University of Washington, Seattle, WA, USA.
| | - Omar Abdel-Wahab
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
25
|
Zhang X, Zhan X, Bian T, Yang F, Li P, Lu Y, Xing Z, Fan R, Zhang QC, Shi Y. Structural insights into branch site proofreading by human spliceosome. Nat Struct Mol Biol 2024; 31:835-845. [PMID: 38196034 DOI: 10.1038/s41594-023-01188-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/23/2023] [Indexed: 01/11/2024]
Abstract
Selection of the pre-mRNA branch site (BS) by the U2 small nuclear ribonucleoprotein (snRNP) is crucial to prespliceosome (A complex) assembly. The RNA helicase PRP5 proofreads BS selection but the underlying mechanism remains unclear. Here we report the atomic structures of two sequential complexes leading to prespliceosome assembly: human 17S U2 snRNP and a cross-exon pre-A complex. PRP5 is anchored on 17S U2 snRNP mainly through occupation of the RNA path of SF3B1 by an acidic loop of PRP5; the helicase domain of PRP5 associates with U2 snRNA; the BS-interacting stem-loop (BSL) of U2 snRNA is shielded by TAT-SF1, unable to engage the BS. In the pre-A complex, an initial U2-BS duplex is formed; the translocated helicase domain of PRP5 stays with U2 snRNA and the acidic loop still occupies the RNA path. The pre-A conformation is specifically stabilized by the splicing factors SF1, DNAJC8 and SF3A2. Cancer-derived mutations in SF3B1 damage its association with PRP5, compromising BS proofreading. Together, these findings reveal key insights into prespliceosome assembly and BS selection or proofreading by PRP5.
Collapse
Affiliation(s)
- Xiaofeng Zhang
- Research Center for Industries of the Future, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China.
- Division of Reproduction and Genetics, The First Affiliated Hospital of USTC; MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Xiechao Zhan
- Research Center for Industries of the Future, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China
| | - Tong Bian
- Research Center for Industries of the Future, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China
- College of Life Sciences, Fudan University, Shanghai, China
| | - Fenghua Yang
- Research Center for Industries of the Future, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China
- College of Life Sciences, Fudan University, Shanghai, China
| | - Pan Li
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure; Tsinghua-Peking Joint Center for Life Sciences; School of Life Sciences, Tsinghua University, Beijing, China
| | - Yichen Lu
- Research Center for Industries of the Future, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China
- College of Life Sciences, Fudan University, Shanghai, China
| | - Zhihan Xing
- Research Center for Industries of the Future, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China
| | - Rongyan Fan
- Research Center for Industries of the Future, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China
| | - Qiangfeng Cliff Zhang
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure; Tsinghua-Peking Joint Center for Life Sciences; School of Life Sciences, Tsinghua University, Beijing, China
| | - Yigong Shi
- Research Center for Industries of the Future, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China.
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure; Tsinghua-Peking Joint Center for Life Sciences; School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
26
|
Liu XL, Run-Hua Z, Pan JX, Li ZJ, Yu L, Li YL. Emerging therapeutic strategies for metastatic uveal melanoma: Targeting driver mutations. Pigment Cell Melanoma Res 2024; 37:411-425. [PMID: 38411373 DOI: 10.1111/pcmr.13161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/29/2023] [Accepted: 01/18/2024] [Indexed: 02/28/2024]
Abstract
Uveal melanoma (UM) is the most common primary malignant intraocular tumor in adults. Although primary UM can be effectively controlled, a significant proportion of cases (40% or more) eventually develop distant metastases, commonly in the liver. Metastatic UM remains a lethal disease with limited treatment options. The initiation of UM is typically attributed to activating mutations in GNAQ or GNA11. The elucidation of the downstream pathways such as PKC/MAPK, PI3K/AKT/mTOR, and Hippo-YAP have provided potential therapeutic targets. Concurrent mutations in BRCA1 associated protein 1 (BAP1) or splicing factor 3b subunit 1 (SF3B1) are considered crucial for the acquisition of malignant potential. Furthermore, in preclinical studies, actionable targets associated with BAP1 loss or oncogenic mutant SF3B1 have been identified, offering promising avenues for UM treatment. This review aims to summarize the emerging targeted and epigenetic therapeutic strategies for metastatic UM carrying specific driver mutations and the potential of combining these approaches with immunotherapy, with particular focus on those in upcoming or ongoing clinical trials.
Collapse
Affiliation(s)
- Xiao-Lian Liu
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Zhou Run-Hua
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jing-Xuan Pan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Zhi-Jie Li
- Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Le Yu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Yi-Lei Li
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
27
|
Emilius L, Bremm F, Binder AK, Schaft N, Dörrie J. Tumor Antigens beyond the Human Exome. Int J Mol Sci 2024; 25:4673. [PMID: 38731892 PMCID: PMC11083240 DOI: 10.3390/ijms25094673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
With the advent of immunotherapeutics, a new era in the combat against cancer has begun. Particularly promising are neo-epitope-targeted therapies as the expression of neo-antigens is tumor-specific. In turn, this allows the selective targeting and killing of cancer cells whilst healthy cells remain largely unaffected. So far, many advances have been made in the development of treatment options which are tailored to the individual neo-epitope repertoire. The next big step is the achievement of efficacious "off-the-shelf" immunotherapies. For this, shared neo-epitopes propose an optimal target. Given the tremendous potential, a thorough understanding of the underlying mechanisms which lead to the formation of neo-antigens is of fundamental importance. Here, we review the various processes which result in the formation of neo-epitopes. Broadly, the origin of neo-epitopes can be categorized into three groups: canonical, noncanonical, and viral neo-epitopes. For the canonical neo-antigens that arise in direct consequence of somatic mutations, we summarize past and recent findings. Beyond that, our main focus is put on the discussion of noncanonical and viral neo-epitopes as we believe that targeting those provides an encouraging perspective to shape the future of cancer immunotherapeutics.
Collapse
Affiliation(s)
- Lisabeth Emilius
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.E.); (F.B.); (A.K.B.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Franziska Bremm
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.E.); (F.B.); (A.K.B.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Amanda Katharina Binder
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.E.); (F.B.); (A.K.B.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Niels Schaft
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.E.); (F.B.); (A.K.B.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Jan Dörrie
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.E.); (F.B.); (A.K.B.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| |
Collapse
|
28
|
Abdulbaki R, Pullarkat ST. A Brief Overview of the Molecular Landscape of Myelodysplastic Neoplasms. Curr Oncol 2024; 31:2353-2363. [PMID: 38785456 PMCID: PMC11119831 DOI: 10.3390/curroncol31050175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024] Open
Abstract
Myelodysplastic neoplasm (MDS) is a heterogeneous group of clonal hematological disorders that originate from the hematopoietic and progenitor cells and present with cytopenias and morphologic dysplasia with a propensity to progress to bone marrow failure or acute myeloid leukemia (AML). Genetic evolution plays a critical role in the pathogenesis, progression, and clinical outcomes of MDS. This process involves the acquisition of genetic mutations in stem cells that confer a selective growth advantage, leading to clonal expansion and the eventual development of MDS. With the advent of next-generation sequencing (NGS) assays, an increasing number of molecular aberrations have been discovered in recent years. The knowledge of molecular events in MDS has led to an improved understanding of the disease process, including the evolution of the disease and prognosis, and has paved the way for targeted therapy. The 2022 World Health Organization (WHO) Classification and the International Consensus Classification (ICC) have incorporated the molecular signature into the classification system for MDS. In addition, specific germline mutations are associated with MDS development, especially in pediatrics and young adults. This article reviews the genetic abnormalities of MDS in adults with a brief review of germline predisposition syndromes.
Collapse
Affiliation(s)
- Rami Abdulbaki
- Department of Pathology, Laboratory Medicine, UCLA, David Geffen School of Medicine, Los Angeles, CA 90095, USA;
| | | |
Collapse
|
29
|
Santoro N, Salutari P, Di Ianni M, Marra A. Precision Medicine Approaches in Acute Myeloid Leukemia with Adverse Genetics. Int J Mol Sci 2024; 25:4259. [PMID: 38673842 PMCID: PMC11050344 DOI: 10.3390/ijms25084259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/08/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
The treatment of acute myeloid leukemia (AML) with adverse genetics remains unsatisfactory, with very low response rates to standard chemotherapy and shorter durations of remission commonly observed in these patients. The complex biology of AML with adverse genetics is continuously evolving. Herein, we discuss recent advances in the field focusing on the contribution of molecular drivers of leukemia biogenesis and evolution and on the alterations of the immune system that can be exploited with immune-based therapeutic strategies. We focus on the biological rationales for combining targeted therapy and immunotherapy, which are currently being investigated in ongoing trials, and could hopefully ameliorate the poor outcomes of patients affected by AML with adverse genetics.
Collapse
Affiliation(s)
- Nicole Santoro
- Hematology Unit, Department of Hematology and Oncology, Ospedale Civile “Santo Spirito”, 65122 Pescara, Italy; (P.S.); (M.D.I.)
| | - Prassede Salutari
- Hematology Unit, Department of Hematology and Oncology, Ospedale Civile “Santo Spirito”, 65122 Pescara, Italy; (P.S.); (M.D.I.)
| | - Mauro Di Ianni
- Hematology Unit, Department of Hematology and Oncology, Ospedale Civile “Santo Spirito”, 65122 Pescara, Italy; (P.S.); (M.D.I.)
- Department of Medicine and Science of Aging, “G.D’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Andrea Marra
- Laboratory of Molecular Medicine and Biotechnology, Department of Medicine, University Campus Bio-Medico of Rome, 00128 Rome, Italy
- Institute of Translational Pharmacology, National Research Council of Italy (CNR), 00196 Rome, Italy
| |
Collapse
|
30
|
Rombaut D, Lefèvre C, Rached T, Bondu S, Letessier A, Mangione RM, Farhat B, Lesieur-Pasquier A, Castillo-Guzman D, Boussaid I, Friedrich C, Tourville A, De Carvalho M, Levavasseur F, Leduc M, Le Gall M, Battault S, Temple M, Houy A, Bouscary D, Willems L, Park S, Raynaud S, Cluzeau T, Clappier E, Fenaux P, Adès L, Margueron R, Wassef M, Alsafadi S, Chapuis N, Kosmider O, Solary E, Constantinou A, Stern MH, Droin N, Palancade B, Miotto B, Chédin F, Fontenay M. Accelerated DNA replication fork speed due to loss of R-loops in myelodysplastic syndromes with SF3B1 mutation. Nat Commun 2024; 15:3016. [PMID: 38589367 PMCID: PMC11001894 DOI: 10.1038/s41467-024-46547-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/29/2024] [Indexed: 04/10/2024] Open
Abstract
Myelodysplastic syndromes (MDS) with mutated SF3B1 gene present features including a favourable outcome distinct from MDS with mutations in other splicing factor genes SRSF2 or U2AF1. Molecular bases of these divergences are poorly understood. Here we find that SF3B1-mutated MDS show reduced R-loop formation predominating in gene bodies associated with intron retention reduction, not found in U2AF1- or SRSF2-mutated MDS. Compared to erythroblasts from SRSF2- or U2AF1-mutated patients, SF3B1-mutated erythroblasts exhibit augmented DNA synthesis, accelerated replication forks, and single-stranded DNA exposure upon differentiation. Importantly, histone deacetylase inhibition using vorinostat restores R-loop formation, slows down DNA replication forks and improves SF3B1-mutated erythroblast differentiation. In conclusion, loss of R-loops with associated DNA replication stress represents a hallmark of SF3B1-mutated MDS ineffective erythropoiesis, which could be used as a therapeutic target.
Collapse
Affiliation(s)
- David Rombaut
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut Cochin, Paris, France
- Equipe labellisée par la Fondation pour la Recherche Médicale, Paris, France
- Laboratoire d'excellence du Globule Rouge GR-Ex, Université Paris Cité, Paris, France
- Assistance Publique-Hôpitaux de Paris.Centre-Université Paris Cité, Hôpital Cochin, Laboratory of Hematology, Paris, France
| | - Carine Lefèvre
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut Cochin, Paris, France
- Equipe labellisée par la Fondation pour la Recherche Médicale, Paris, France
- Laboratoire d'excellence du Globule Rouge GR-Ex, Université Paris Cité, Paris, France
| | - Tony Rached
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut Cochin, Paris, France
- Equipe labellisée par la Fondation pour la Recherche Médicale, Paris, France
| | - Sabrina Bondu
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut Cochin, Paris, France
- Equipe labellisée par la Fondation pour la Recherche Médicale, Paris, France
| | - Anne Letessier
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut Cochin, Paris, France
| | | | - Batoul Farhat
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut Cochin, Paris, France
- Equipe labellisée par la Fondation pour la Recherche Médicale, Paris, France
| | - Auriane Lesieur-Pasquier
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut Cochin, Paris, France
- Equipe labellisée par la Fondation pour la Recherche Médicale, Paris, France
| | - Daisy Castillo-Guzman
- Department of Molecular and Cellular Biology and Genome Center, University of California, Davis, CA, USA
| | - Ismael Boussaid
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut Cochin, Paris, France
- Equipe labellisée par la Fondation pour la Recherche Médicale, Paris, France
- Assistance Publique-Hôpitaux de Paris.Centre-Université Paris Cité, Hôpital Cochin, Laboratory of Hematology, Paris, France
| | - Chloé Friedrich
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut Cochin, Paris, France
- Equipe labellisée par la Fondation pour la Recherche Médicale, Paris, France
- Assistance Publique-Hôpitaux de Paris.Centre-Université Paris Cité, Hôpital Cochin, Laboratory of Hematology, Paris, France
| | - Aurore Tourville
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut Cochin, Paris, France
- Equipe labellisée par la Fondation pour la Recherche Médicale, Paris, France
| | - Magali De Carvalho
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut Cochin, Paris, France
- Equipe labellisée par la Fondation pour la Recherche Médicale, Paris, France
| | - Françoise Levavasseur
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut Cochin, Paris, France
- Equipe labellisée par la Fondation pour la Recherche Médicale, Paris, France
| | - Marjorie Leduc
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut Cochin, Paris, France
- Platform Proteom'IC, Université Paris Cité, Institut Cochin, Paris, France
| | - Morgane Le Gall
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut Cochin, Paris, France
- Platform Proteom'IC, Université Paris Cité, Institut Cochin, Paris, France
| | - Sarah Battault
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut Cochin, Paris, France
- Equipe labellisée par la Fondation pour la Recherche Médicale, Paris, France
| | - Marie Temple
- Assistance Publique-Hôpitaux de Paris.Centre-Université Paris Cité, Hôpital Cochin, Laboratory of Hematology, Paris, France
| | - Alexandre Houy
- Institut Curie, PSL Research University, Sorbonne University, INSERM U830, DNA repair and uveal melanoma, Equipe labellisée par la Ligue Nationale contre le Cancer, Paris, France
| | - Didier Bouscary
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut Cochin, Paris, France
- Assistance Publique-Hôpitaux de Paris.Centre-Université Paris Cité, Hôpital Cochin, Clinical Department of Hematology, Paris, France
| | - Lise Willems
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut Cochin, Paris, France
- Assistance Publique-Hôpitaux de Paris.Centre-Université Paris Cité, Hôpital Cochin, Clinical Department of Hematology, Paris, France
| | - Sophie Park
- Department of Hematology, Centre Hospitalier Universitaire, Université de Grenoble Alpes, Grenoble, France
| | - Sophie Raynaud
- Laboratory of Hematology, Université Côte d'Azur, Centre Hospitalier Universitaire, Nice, France
| | - Thomas Cluzeau
- Clinical Department of Hematology, Université Côte d'Azur, Centre Hospitalier Universitaire, Nice, France
| | - Emmanuelle Clappier
- Assistance Publique-Hôpitaux de Paris.Nord-Université Paris Cité, Saint-Louis Hospital, Laboratory of Hematology, Paris, France
| | - Pierre Fenaux
- Assistance Publique-Hôpitaux de Paris.Nord-Université Paris Cité, Saint-Louis Hospital, Service Hématologie Séniors, Paris, France
| | - Lionel Adès
- Assistance Publique-Hôpitaux de Paris.Nord-Université Paris Cité, Saint-Louis Hospital, Service Hématologie Séniors, Paris, France
| | - Raphael Margueron
- Institut Curie, Paris Sciences Lettres Research University, Sorbonne University, INSERM U934, UMR3215, Paris, France
| | - Michel Wassef
- Institut Curie, Paris Sciences Lettres Research University, Sorbonne University, INSERM U934, UMR3215, Paris, France
| | - Samar Alsafadi
- Institut Curie, PSL Research University, Sorbonne University, INSERM U830, DNA repair and uveal melanoma, Equipe labellisée par la Ligue Nationale contre le Cancer, Paris, France
| | - Nicolas Chapuis
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut Cochin, Paris, France
- Assistance Publique-Hôpitaux de Paris.Centre-Université Paris Cité, Hôpital Cochin, Laboratory of Hematology, Paris, France
| | - Olivier Kosmider
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut Cochin, Paris, France
- Equipe labellisée par la Fondation pour la Recherche Médicale, Paris, France
- Assistance Publique-Hôpitaux de Paris.Centre-Université Paris Cité, Hôpital Cochin, Laboratory of Hematology, Paris, France
| | - Eric Solary
- Institut Gustave Roussy, INSERM 1287, Université Paris Saclay, Villejuif, France
| | - Angelos Constantinou
- Institut de Génétique Humaine, Centre National de la Recherche Scientifique, Université de Montpellier, Montpellier, France
| | - Marc-Henri Stern
- Institut Curie, PSL Research University, Sorbonne University, INSERM U830, DNA repair and uveal melanoma, Equipe labellisée par la Ligue Nationale contre le Cancer, Paris, France
| | - Nathalie Droin
- Institut Gustave Roussy, INSERM 1287, Université Paris Saclay, Villejuif, France
| | - Benoit Palancade
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | - Benoit Miotto
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut Cochin, Paris, France
| | - Frédéric Chédin
- Department of Molecular and Cellular Biology and Genome Center, University of California, Davis, CA, USA
| | - Michaela Fontenay
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut Cochin, Paris, France.
- Equipe labellisée par la Fondation pour la Recherche Médicale, Paris, France.
- Laboratoire d'excellence du Globule Rouge GR-Ex, Université Paris Cité, Paris, France.
- Assistance Publique-Hôpitaux de Paris.Centre-Université Paris Cité, Hôpital Cochin, Laboratory of Hematology, Paris, France.
| |
Collapse
|
31
|
Chitluri KK, Emerson IA. The importance of protein domain mutations in cancer therapy. Heliyon 2024; 10:e27655. [PMID: 38509890 PMCID: PMC10950675 DOI: 10.1016/j.heliyon.2024.e27655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 03/22/2024] Open
Abstract
Cancer is a complex disease that is caused by multiple genetic factors. Researchers have been studying protein domain mutations to understand how they affect the progression and treatment of cancer. These mutations can significantly impact the development and spread of cancer by changing the protein structure, function, and signalling pathways. As a result, there is a growing interest in how these mutations can be used as prognostic indicators for cancer prognosis. Recent studies have shown that protein domain mutations can provide valuable information about the severity of the disease and the patient's response to treatment. They may also be used to predict the response and resistance to targeted therapy in cancer treatment. The clinical implications of protein domain mutations in cancer are significant, and they are regarded as essential biomarkers in oncology. However, additional techniques and approaches are required to characterize changes in protein domains and predict their functional effects. Machine learning and other computational tools offer promising solutions to this challenge, enabling the prediction of the impact of mutations on protein structure and function. Such predictions can aid in the clinical interpretation of genetic information. Furthermore, the development of genome editing tools like CRISPR/Cas9 has made it possible to validate the functional significance of mutants more efficiently and accurately. In conclusion, protein domain mutations hold great promise as prognostic and predictive biomarkers in cancer. Overall, considerable research is still needed to better define genetic and molecular heterogeneity and to resolve the challenges that remain, so that their full potential can be realized.
Collapse
Affiliation(s)
- Kiran Kumar Chitluri
- Bioinformatics Programming Lab, Department of Bio-Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, TN, 632014, India
| | - Isaac Arnold Emerson
- Bioinformatics Programming Lab, Department of Bio-Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, TN, 632014, India
| |
Collapse
|
32
|
Moison C, Gracias D, Schmitt J, Girard S, Spinella JF, Fortier S, Boivin I, Mendoza-Sanchez R, Thavonekham B, MacRae T, Mayotte N, Bonneil E, Wittman M, Carmichael J, Ruel R, Thibault P, Hébert J, Marinier A, Sauvageau G. SF3B1 mutations provide genetic vulnerability to copper ionophores in human acute myeloid leukemia. SCIENCE ADVANCES 2024; 10:eadl4018. [PMID: 38517966 PMCID: PMC10959413 DOI: 10.1126/sciadv.adl4018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/20/2024] [Indexed: 03/24/2024]
Abstract
In a phenotypical screen of 56 acute myeloid leukemia (AML) patient samples and using a library of 10,000 compounds, we identified a hit with increased sensitivity toward SF3B1-mutated and adverse risk AMLs. Through structure-activity relationship studies, this hit was optimized into a potent, specific, and nongenotoxic molecule called UM4118. We demonstrated that UM4118 acts as a copper ionophore that initiates a mitochondrial-based noncanonical form of cell death known as cuproptosis. CRISPR-Cas9 loss-of-function screen further revealed that iron-sulfur cluster (ISC) deficiency enhances copper-mediated cell death. Specifically, we found that loss of the mitochondrial ISC transporter ABCB7 is synthetic lethal to UM4118. ABCB7 is misspliced and down-regulated in SF3B1-mutated leukemia, creating a vulnerability to copper ionophores. Accordingly, ABCB7 overexpression partially rescued SF3B1-mutated cells to copper overload. Together, our work provides mechanistic insights that link ISC deficiency to cuproptosis, as exemplified by the high sensitivity of SF3B1-mutated AMLs. We thus propose SF3B1 mutations as a biomarker for future copper ionophore-based therapies.
Collapse
Affiliation(s)
- Céline Moison
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Deanne Gracias
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Julie Schmitt
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Simon Girard
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Jean-François Spinella
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Simon Fortier
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Isabel Boivin
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | | | - Bounkham Thavonekham
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Tara MacRae
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Nadine Mayotte
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Eric Bonneil
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Mark Wittman
- Research and Development, Bristol Myers Squibb Company, Cambridge, MA, USA
| | - James Carmichael
- Research and Development, Bristol Myers Squibb Company, Cambridge, MA, USA
| | - Réjean Ruel
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Pierre Thibault
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
- Department of Chemistry, Université de Montréal, Montréal, Canada
| | - Josée Hébert
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
- Division of Hematology-Oncology and Quebec Leukemia Cell Bank, Maisonneuve-Rosemont Hospital, Montréal, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, Canada
| | - Anne Marinier
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
- Department of Chemistry, Université de Montréal, Montréal, Canada
| | - Guy Sauvageau
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
- Division of Hematology-Oncology and Quebec Leukemia Cell Bank, Maisonneuve-Rosemont Hospital, Montréal, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, Canada
| |
Collapse
|
33
|
Gonzalez-Cárdenas M, Treviño V. The Impact of Mutational Hotspots on Cancer Survival. Cancers (Basel) 2024; 16:1072. [PMID: 38473427 DOI: 10.3390/cancers16051072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/11/2024] [Accepted: 02/15/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Cofactors, biomarkers, and the mutational status of genes such as TP53, EGFR, IDH1/2, or PIK3CA have been used for patient stratification. However, many genes exhibit recurrent mutational positions known as hotspots, specifically linked to varying degrees of survival outcomes. Nevertheless, few hotspots have been analyzed (e.g., TP53 and EGFR). Thus, many other genes and hotspots remain unexplored. METHODS We systematically screened over 1400 hotspots across 33 TCGA cancer types. We compared the patients carrying a hotspot against (i) all cases, (ii) gene-mutated cases, (iii) other mutated hotspots, or (iv) specific hotspots. Due to the limited number of samples in hotspots and the inherent group imbalance, besides Cox models and the log-rank test, we employed VALORATE to estimate their association with survival precisely. RESULTS We screened 1469 hotspots in 6451 comparisons, where 314 were associated with survival. Many are discussed and linked to the current literature. Our findings demonstrate associations between known hotspots and survival while also revealing more potential hotspots. To enhance accessibility and promote further investigation, all the Kaplan-Meier curves, the log-rank tests, Cox statistics, and VALORATE-estimated null distributions are accessible on our website. CONCLUSIONS Our analysis revealed both known and putatively novel hotspots associated with survival, which can be used as biomarkers. Our web resource is a valuable tool for cancer research.
Collapse
Affiliation(s)
- Melissa Gonzalez-Cárdenas
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, Monterrey 64710, Nuevo León, Mexico
- Tecnologico de Monterrey, The Institute for Obesity Research, Eugenio Garza Sada Avenue 2501, Monterrey 64849, Nuevo León, Mexico
| | - Víctor Treviño
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, Monterrey 64710, Nuevo León, Mexico
- Tecnologico de Monterrey, The Institute for Obesity Research, Eugenio Garza Sada Avenue 2501, Monterrey 64849, Nuevo León, Mexico
- Tecnologico de Monterrey, oriGen Project, Eugenio Garza Sada Avenue 2501, Monterrey 64849, Nuevo León, Mexico
| |
Collapse
|
34
|
Liao M, Yao D, Wu L, Luo C, Wang Z, Zhang J, Liu B. Targeting the Warburg effect: A revisited perspective from molecular mechanisms to traditional and innovative therapeutic strategies in cancer. Acta Pharm Sin B 2024; 14:953-1008. [PMID: 38487001 PMCID: PMC10935242 DOI: 10.1016/j.apsb.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 03/17/2024] Open
Abstract
Cancer reprogramming is an important facilitator of cancer development and survival, with tumor cells exhibiting a preference for aerobic glycolysis beyond oxidative phosphorylation, even under sufficient oxygen supply condition. This metabolic alteration, known as the Warburg effect, serves as a significant indicator of malignant tumor transformation. The Warburg effect primarily impacts cancer occurrence by influencing the aerobic glycolysis pathway in cancer cells. Key enzymes involved in this process include glucose transporters (GLUTs), HKs, PFKs, LDHs, and PKM2. Moreover, the expression of transcriptional regulatory factors and proteins, such as FOXM1, p53, NF-κB, HIF1α, and c-Myc, can also influence cancer progression. Furthermore, lncRNAs, miRNAs, and circular RNAs play a vital role in directly regulating the Warburg effect. Additionally, gene mutations, tumor microenvironment remodeling, and immune system interactions are closely associated with the Warburg effect. Notably, the development of drugs targeting the Warburg effect has exhibited promising potential in tumor treatment. This comprehensive review presents novel directions and approaches for the early diagnosis and treatment of cancer patients by conducting in-depth research and summarizing the bright prospects of targeting the Warburg effect in cancer.
Collapse
Affiliation(s)
- Minru Liao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dahong Yao
- School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen 518118, China
| | - Lifeng Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chaodan Luo
- Department of Psychology, University of Southern California, Los Angeles, CA 90089, USA
| | - Zhiwen Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen 518118, China
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Jin Zhang
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Bo Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
35
|
Hunter O, Talkish J, Quick-Cleveland J, Igel H, Tan A, Kuersten S, Katzman S, Donohue JP, S Jurica M, Ares M. Broad variation in response of individual introns to splicing inhibitors in a humanized yeast strain. RNA (NEW YORK, N.Y.) 2024; 30:149-170. [PMID: 38071476 PMCID: PMC10798247 DOI: 10.1261/rna.079866.123] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/14/2023] [Indexed: 12/19/2023]
Abstract
Intron branchpoint (BP) recognition by the U2 snRNP is a critical step of splicing, vulnerable to recurrent cancer mutations and bacterial natural product inhibitors. The BP binds a conserved pocket in the SF3B1 (human) or Hsh155 (yeast) U2 snRNP protein. Amino acids that line this pocket affect the binding of splicing inhibitors like Pladienolide-B (Plad-B), such that organisms differ in their sensitivity. To study the mechanism of splicing inhibitor action in a simplified system, we modified the naturally Plad-B resistant yeast Saccharomyces cerevisiae by changing 14 amino acids in the Hsh155 BP pocket to those from human. This humanized yeast grows normally, and splicing is largely unaffected by the mutation. Splicing is inhibited within minutes after the addition of Plad-B, and different introns appear inhibited to different extents. Intron-specific inhibition differences are also observed during cotranscriptional splicing in Plad-B using single-molecule intron tracking to minimize gene-specific transcription and decay rates that cloud estimates of inhibition by standard RNA-seq. Comparison of Plad-B intron sensitivities to those of the structurally distinct inhibitor Thailanstatin-A reveals intron-specific differences in sensitivity to different compounds. This work exposes a complex relationship between the binding of different members of this class of inhibitors to the spliceosome and intron-specific rates of BP recognition and catalysis. Introns with variant BP sequences seem particularly sensitive, echoing observations from mammalian cells, where monitoring individual introns is complicated by multi-intron gene architecture and alternative splicing. The compact yeast system may hasten the characterization of splicing inhibitors, accelerating improvements in selectivity and therapeutic efficacy.
Collapse
Affiliation(s)
- Oarteze Hunter
- Center for Molecular Biology of RNA, University of California, Santa Cruz, California 95064, USA
| | - Jason Talkish
- Center for Molecular Biology of RNA, University of California, Santa Cruz, California 95064, USA
| | - Jen Quick-Cleveland
- Center for Molecular Biology of RNA, University of California, Santa Cruz, California 95064, USA
| | - Haller Igel
- Center for Molecular Biology of RNA, University of California, Santa Cruz, California 95064, USA
| | - Asako Tan
- Illumina, Inc., Madison, Wisconsin 53719, USA
| | | | - Sol Katzman
- Center for Molecular Biology of RNA, University of California, Santa Cruz, California 95064, USA
| | - John Paul Donohue
- Center for Molecular Biology of RNA, University of California, Santa Cruz, California 95064, USA
| | - Melissa S Jurica
- Center for Molecular Biology of RNA, University of California, Santa Cruz, California 95064, USA
| | - Manuel Ares
- Center for Molecular Biology of RNA, University of California, Santa Cruz, California 95064, USA
| |
Collapse
|
36
|
Malakar P, Shukla S, Mondal M, Kar RK, Siddiqui JA. The nexus of long noncoding RNAs, splicing factors, alternative splicing and their modulations. RNA Biol 2024; 21:1-20. [PMID: 38017665 PMCID: PMC10761143 DOI: 10.1080/15476286.2023.2286099] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2023] [Indexed: 11/30/2023] Open
Abstract
The process of alternative splicing (AS) is widely deregulated in a variety of cancers. Splicing is dependent upon splicing factors. Recently, several long noncoding RNAs (lncRNAs) have been shown to regulate AS by directly/indirectly interacting with splicing factors. This review focuses on the regulation of AS by lncRNAs through their interaction with splicing factors. AS mis-regulation caused by either mutation in splicing factors or deregulated expression of splicing factors and lncRNAs has been shown to be involved in cancer development and progression, making aberrant splicing, splicing factors and lncRNA suitable targets for cancer therapy. This review also addresses some of the current approaches used to target AS, splicing factors and lncRNAs. Finally, we discuss research challenges, some of the unanswered questions in the field and provide recommendations to advance understanding of the nexus of lncRNAs, AS and splicing factors in cancer.
Collapse
Affiliation(s)
- Pushkar Malakar
- Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational Research Institute (RKMVERI), Kolkata, India
| | - Sudhanshu Shukla
- Department of Biosciences and Bioengineering, Indian Institute of Technology Dharwad, Dharwad, Karnataka, India
| | - Meghna Mondal
- Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational Research Institute (RKMVERI), Kolkata, India
| | - Rajesh Kumar Kar
- Department of Neurosurgery, School of Medicine, Yale University, New Haven, CT, USA
| | - Jawed Akhtar Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
37
|
Zhang J, Xie J, Huang J, Liu X, Xu R, Tholen J, Galej WP, Tong L, Manley JL, Liu Z. Characterization of the SF3B1-SUGP1 interface reveals how numerous cancer mutations cause mRNA missplicing. Genes Dev 2023; 37:968-983. [PMID: 37977822 PMCID: PMC10760632 DOI: 10.1101/gad.351154.123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023]
Abstract
The spliceosomal gene SF3B1 is frequently mutated in cancer. While it is known that SF3B1 hotspot mutations lead to loss of splicing factor SUGP1 from spliceosomes, the cancer-relevant SF3B1-SUGP1 interaction has not been characterized. To address this issue, we show by structural modeling that two regions flanking the SUGP1 G-patch make numerous contacts with the region of SF3B1 harboring hotspot mutations. Experiments confirmed that all the cancer-associated mutations in these regions, as well as mutations affecting other residues in the SF3B1-SUGP1 interface, not only weaken or disrupt the interaction but also alter splicing similarly to SF3B1 cancer mutations. Finally, structural modeling of a trimeric protein complex reveals that the SF3B1-SUGP1 interaction "loops out" the G-patch for interaction with the helicase DHX15. Our study thus provides an unprecedented molecular view of a protein complex essential for accurate splicing and also reveals that numerous cancer-associated mutations disrupt the critical SF3B1-SUGP1 interaction.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Jindou Xie
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ji Huang
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Xiangyang Liu
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Ruihong Xu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jonas Tholen
- European Molecular Biology Laboratory, 38042 Grenoble, France
| | | | - Liang Tong
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - James L Manley
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA;
| | - Zhaoqi Liu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
38
|
Torres-Morán M, Franco-Álvarez AL, Rebollar-Vega RG, Hernández-Ramírez LC. Hotspots of Somatic Genetic Variation in Pituitary Neuroendocrine Tumors. Cancers (Basel) 2023; 15:5685. [PMID: 38067388 PMCID: PMC10705109 DOI: 10.3390/cancers15235685] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 02/13/2025] Open
Abstract
The most common genetic drivers of pituitary neuroendocrine tumors (PitNETs) lie within mutational hotspots, which are genomic regions where variants tend to cluster. Some of these hotspot defects are unique to PitNETs, while others are associated with additional neoplasms. Hotspot variants in GNAS and USP8 are the most common genetic causes of acromegaly and Cushing's disease, respectively. Although it has been proposed that these genetic defects could define specific clinical phenotypes, results are highly variable among studies. In contrast, DICER1 hotspot variants are associated with a familial syndrome of cancer predisposition, and only exceptionally occur as somatic changes. A small number of non-USP8-driven corticotropinomas are due to somatic hotspot variants in USP48 or BRAF; the latter is a well-known mutational hotspot in cancer. Finally, somatic variants affecting a hotspot in SF3B1 have been associated with multiple cancers and, more recently, with prolactinomas. Since the associations of BRAF, USP48, and SF3B1 hotspot variants with PitNETs are very recent, their effects on clinical phenotypes are still unknown. Further research is required to fully define the role of these genetic defects as disease biomarkers and therapeutic targets.
Collapse
Affiliation(s)
| | | | | | - Laura C. Hernández-Ramírez
- Red de Apoyo a la Investigación, Coordinación de la Investigación Científica, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| |
Collapse
|
39
|
Yao T, Zhang Z, Li Q, Huang R, Hong Y, Li C, Zhang F, Huang Y, Fang Y, Cao Q, Jin X, Li C, Wang Z, Lin XJ, Li L, Wei W, Wang Z, Shen J. Long-Read Sequencing Reveals Alternative Splicing-Driven, Shared Immunogenic Neoepitopes Regardless of SF3B1 Status in Uveal Melanoma. Cancer Immunol Res 2023; 11:1671-1687. [PMID: 37756564 DOI: 10.1158/2326-6066.cir-23-0083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/13/2023] [Accepted: 09/22/2023] [Indexed: 09/29/2023]
Abstract
Tumor-specific neoepitopes are promising targets in cancer immunotherapy. However, the identification of functional tumor-specific neoepitopes remains challenging. In addition to the most common source, single-nucleotide variants (SNV), alternative splicing (AS) represents another rich source of neoepitopes and can be utilized in cancers with low SNVs such as uveal melanoma (UM). UM, the most prevalent adult ocular malignancy, has poor clinical outcomes due to a lack of effective therapies. Recent studies have revealed the promise of harnessing tumor neoepitopes to treat UM. Previous studies have focused on neoepitope targets associated with mutations in splicing factor 3b subunit 1 (SF3B1), a key splicing factor; however, little is known about the neoepitopes that are commonly shared by patients independent of SF3B1 status. To identify the AS-derived neoepitopes regardless of SF3B1 status, we herein used a comprehensive nanopore long-read-sequencing approach to elucidate the landscape of AS and novel isoforms in UM. We also performed high-resolution mass spectrometry to further validate the presence of neoepitope candidates and analyzed their structures using the AlphaFold2 algorithm. We experimentally evaluated the antitumor effects of these neoepitopes and found they induced robust immune responses by stimulating interferon (IFN)γ production and activating T cell-based UM tumor killing. These results provide novel insights into UM-specific neoepitopes independent of SF3B1 and lay the foundation for developing therapies by targeting these actionable neoepitopes.
Collapse
Affiliation(s)
- Tengteng Yao
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Zhe Zhang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
- Institute of Translational Medicine, National Facility for Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qian Li
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
- Institute of Translational Medicine, National Facility for Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Rui Huang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
- Institute of Translational Medicine, National Facility for Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yanhong Hong
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Lingang Laboratory, Shanghai, China
| | - Chen Li
- High Performance Computing Center, Shanghai Jiao Tong University, Shanghai, China
| | - Feng Zhang
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingying Huang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Lingang Laboratory, Shanghai, China
| | - Yan Fang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
- Institute of Translational Medicine, National Facility for Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qin Cao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoliang Jin
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Chunliang Li
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Zefeng Wang
- CAS Key Laboratory of Computational Biology, CAS Shanghai Institute of Nutrition and Health, Shanghai, China
| | - Xinhua James Lin
- High Performance Computing Center, Shanghai Jiao Tong University, Shanghai, China
| | - Lingjie Li
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wu Wei
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Lingang Laboratory, Shanghai, China
| | - Zhaoyang Wang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Jianfeng Shen
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
- Institute of Translational Medicine, National Facility for Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
40
|
Trsova I, Hrustincova A, Krejcik Z, Kundrat D, Holoubek A, Staflova K, Janstova L, Vanikova S, Szikszai K, Klema J, Rysavy P, Belickova M, Kaisrlikova M, Vesela J, Cermak J, Jonasova A, Dostal J, Fric J, Musil J, Dostalova Merkerova M. Expression of circular RNAs in myelodysplastic neoplasms and their association with mutations in the splicing factor gene SF3B1. Mol Oncol 2023; 17:2565-2583. [PMID: 37408496 PMCID: PMC10701770 DOI: 10.1002/1878-0261.13486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/27/2023] [Accepted: 07/04/2023] [Indexed: 07/07/2023] Open
Abstract
Mutations in the splicing factor 3b subunit 1 (SF3B1) gene are frequent in myelodysplastic neoplasms (MDS). Because the splicing process is involved in the production of circular RNAs (circRNAs), we investigated the impact of SF3B1 mutations on circRNA processing. Using RNA sequencing, we measured circRNA expression in CD34+ bone marrow MDS cells. We defined circRNAs deregulated in a heterogeneous group of MDS patients and described increased circRNA formation in higher-risk MDS. We showed that the presence of SF3B1 mutations did not affect the global production of circRNAs; however, deregulation of specific circRNAs was observed. Particularly, we demonstrated that strong upregulation of circRNAs processed from the zinc finger E-box binding homeobox 1 (ZEB1) transcription factor; this upregulation was exclusive to SF3B1-mutated patients and was not observed in those with mutations in other splicing factors or other recurrently mutated genes, or with other clinical variables. Furthermore, we focused on the most upregulated ZEB1-circRNA, hsa_circ_0000228, and, by its knockdown, we demonstrated that its expression is related to mitochondrial activity. Using microRNA analyses, we proposed miR-1248 as a direct target of hsa_circ_0000228. To conclude, we demonstrated that mutated SF3B1 leads to deregulation of ZEB1-circRNAs, potentially contributing to the defects in mitochondrial metabolism observed in SF3B1-mutated MDS.
Collapse
Affiliation(s)
- Iva Trsova
- Department of GenomicsInstitute of Hematology and Blood TransfusionPragueCzech Republic
- Department of Genetics and Microbiology, Faculty of ScienceCharles UniversityPragueCzech Republic
| | - Andrea Hrustincova
- Department of GenomicsInstitute of Hematology and Blood TransfusionPragueCzech Republic
| | - Zdenek Krejcik
- Department of GenomicsInstitute of Hematology and Blood TransfusionPragueCzech Republic
| | - David Kundrat
- Department of GenomicsInstitute of Hematology and Blood TransfusionPragueCzech Republic
| | - Aleš Holoubek
- Department of ProteomicsInstitute of Hematology and Blood TransfusionPragueCzech Republic
| | - Karolina Staflova
- Department of BiochemistryInstitute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesPragueCzech Republic
| | - Lucie Janstova
- Department of Modern ImmunotherapyInstitute of Hematology and Blood TransfusionPragueCzech Republic
- Department of Cell Biology, Faculty of ScienceCharles UniversityPragueCzech Republic
| | - Sarka Vanikova
- Department of Immunomonitoring and Flow CytometryInstitute of Hematology and Blood TransfusionPragueCzech Republic
| | - Katarina Szikszai
- Department of GenomicsInstitute of Hematology and Blood TransfusionPragueCzech Republic
| | - Jiri Klema
- Department of Computer ScienceCzech Technical UniversityPragueCzech Republic
| | - Petr Rysavy
- Department of Computer ScienceCzech Technical UniversityPragueCzech Republic
| | - Monika Belickova
- Department of GenomicsInstitute of Hematology and Blood TransfusionPragueCzech Republic
| | - Monika Kaisrlikova
- Department of GenomicsInstitute of Hematology and Blood TransfusionPragueCzech Republic
| | - Jitka Vesela
- Department of GenomicsInstitute of Hematology and Blood TransfusionPragueCzech Republic
| | - Jaroslav Cermak
- Laboratory of AnemiasInstitute of Hematology and Blood TransfusionPragueCzech Republic
| | - Anna Jonasova
- First Department of MedicineGeneral University HospitalPragueCzech Republic
| | - Jiri Dostal
- Department of BiochemistryInstitute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesPragueCzech Republic
| | - Jan Fric
- Department of Modern ImmunotherapyInstitute of Hematology and Blood TransfusionPragueCzech Republic
- International Clinical Research Center of St. Anne's University Hospital (FNUSA‐ICRC)BrnoCzech Republic
| | - Jan Musil
- Department of Immunomonitoring and Flow CytometryInstitute of Hematology and Blood TransfusionPragueCzech Republic
| | | |
Collapse
|
41
|
Hunter O, Talkish J, Quick-Cleveland J, Igel H, Tan A, Kuersten S, Katzman S, Donohue JP, Jurica M, Ares M. Broad variation in response of individual introns to splicing inhibitors in a humanized yeast strain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.05.560965. [PMID: 37873484 PMCID: PMC10592967 DOI: 10.1101/2023.10.05.560965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Intron branch point (BP) recognition by the U2 snRNP is a critical step of splicing, vulnerable to recurrent cancer mutations and bacterial natural product inhibitors. The BP binds a conserved pocket in the SF3B1 (human) or Hsh155 (yeast) U2 snRNP protein. Amino acids that line this pocket affect binding of splicing inhibitors like Pladienolide-B (Plad-B), such that organisms differ in their sensitivity. To study the mechanism of splicing inhibitor action in a simplified system, we modified the naturally Plad-B resistant yeast Saccharomyces cerevisiae by changing 14 amino acids in the Hsh155 BP pocket to those from human. This humanized yeast grows normally, and splicing is largely unaffected by the mutation. Splicing is inhibited within minutes after addition of Plad-B, and different introns appear inhibited to different extents. Intron-specific inhibition differences are also observed during co-transcriptional splicing in Plad-B using single-molecule intron tracking (SMIT) to minimize gene-specific transcription and decay rates that cloud estimates of inhibition by standard RNA-seq. Comparison of Plad-B intron sensitivities to those of the structurally distinct inhibitor Thailanstatin-A reveals intron-specific differences in sensitivity to different compounds. This work exposes a complex relationship between binding of different members of this class of inhibitors to the spliceosome and intron-specific rates of BP recognition and catalysis. Introns with variant BP sequences seem particularly sensitive, echoing observations from mammalian cells, where monitoring individual introns is complicated by multi-intron gene architecture and alternative splicing. The compact yeast system may hasten characterization of splicing inhibitors, accelerating improvements in selectivity and therapeutic efficacy.
Collapse
Affiliation(s)
- Oarteze Hunter
- Center for Molecular Biology of RNA, University of California, Santa Cruz, CA 95064
| | - Jason Talkish
- Center for Molecular Biology of RNA, University of California, Santa Cruz, CA 95064
| | - Jen Quick-Cleveland
- Center for Molecular Biology of RNA, University of California, Santa Cruz, CA 95064
| | - Haller Igel
- Center for Molecular Biology of RNA, University of California, Santa Cruz, CA 95064
| | | | | | - Sol Katzman
- Center for Molecular Biology of RNA, University of California, Santa Cruz, CA 95064
| | - John Paul Donohue
- Center for Molecular Biology of RNA, University of California, Santa Cruz, CA 95064
| | - Melissa Jurica
- Center for Molecular Biology of RNA, University of California, Santa Cruz, CA 95064
| | - Manuel Ares
- Center for Molecular Biology of RNA, University of California, Santa Cruz, CA 95064
| |
Collapse
|
42
|
Xie J, Wang L, Lin RJ. Variations of intronic branchpoint motif: identification and functional implications in splicing and disease. Commun Biol 2023; 6:1142. [PMID: 37949953 PMCID: PMC10638238 DOI: 10.1038/s42003-023-05513-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023] Open
Abstract
The branchpoint (BP) motif is an essential intronic element for spliceosomal pre-mRNA splicing. In mammals, its sequence composition, distance to the downstream exon, and number of BPs per 3´ splice site are highly variable, unlike the GT/AG dinucleotides at the intron ends. These variations appear to provide evolutionary advantages for fostering alternative splicing, satisfying more diverse cellular contexts, and promoting resilience to genetic changes, thus contributing to an extra layer of complexity for gene regulation. Importantly, variants in the BP motif itself or in genes encoding BP-interacting factors cause human genetic diseases or cancers, highlighting the critical function of BP motif and the need to precisely identify functional BPs for faithful interpretation of their roles in splicing. In this perspective, we will succinctly summarize the major findings related to BP motif variations, discuss the relevant issues/challenges, and provide our insights.
Collapse
Affiliation(s)
- Jiuyong Xie
- Department of Physiology & Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, R3E 0J9, Canada.
| | - Lili Wang
- Department of Systems Biology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, 91010, USA.
| | - Ren-Jang Lin
- Center for RNA Biology & Therapeutics, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, 91010, USA.
| |
Collapse
|
43
|
López-Oreja I, Gohr A, Playa-Albinyana H, Giró A, Arenas F, Higashi M, Tripathi R, López-Guerra M, Irimia M, Aymerich M, Valcárcel J, Bonnal S, Colomer D. SF3B1 mutation-mediated sensitization to H3B-8800 splicing inhibitor in chronic lymphocytic leukemia. Life Sci Alliance 2023; 6:e202301955. [PMID: 37562845 PMCID: PMC10415613 DOI: 10.26508/lsa.202301955] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023] Open
Abstract
Splicing factor 3B subunit 1 (SF3B1) is involved in pre-mRNA branch site recognition and is the target of antitumor-splicing inhibitors. Mutations in SF3B1 are observed in 15% of patients with chronic lymphocytic leukemia (CLL) and are associated with poor prognosis, but their pathogenic mechanisms remain poorly understood. Using deep RNA-sequencing data from 298 CLL tumor samples and isogenic SF3B1 WT and K700E-mutated CLL cell lines, we characterize targets and pre-mRNA sequence features associated with the selection of cryptic 3' splice sites upon SF3B1 mutation, including an event in the MAP3K7 gene relevant for activation of NF-κB signaling. Using the H3B-8800 splicing modulator, we show, for the first time in CLL, cytotoxic effects in vitro in primary CLL samples and in SF3B1-mutated isogenic CLL cell lines, accompanied by major splicing changes and delayed leukemic infiltration in a CLL xenotransplant mouse model. H3B-8800 displayed preferential lethality towards SF3B1-mutated cells and synergism with the BCL2 inhibitor venetoclax, supporting the potential use of SF3B1 inhibitors as a novel therapeutic strategy in CLL.
Collapse
Affiliation(s)
- Irene López-Oreja
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Hematopathology Section, Department of Pathology, Hospital Clínic, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Oncologia, Madrid, Spain
| | - André Gohr
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Heribert Playa-Albinyana
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Oncologia, Madrid, Spain
| | - Ariadna Giró
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Fabian Arenas
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Oncologia, Madrid, Spain
| | - Morihiro Higashi
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Rupal Tripathi
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Mònica López-Guerra
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Hematopathology Section, Department of Pathology, Hospital Clínic, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Oncologia, Madrid, Spain
| | - Manuel Irimia
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Marta Aymerich
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Hematopathology Section, Department of Pathology, Hospital Clínic, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Oncologia, Madrid, Spain
| | - Juan Valcárcel
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Sophie Bonnal
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Dolors Colomer
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Hematopathology Section, Department of Pathology, Hospital Clínic, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Oncologia, Madrid, Spain
- Universitat Barcelona, Barcelona, Spain
| |
Collapse
|
44
|
Alors-Pérez E, Pedraza-Arevalo S, Blázquez-Encinas R, Moreno-Montilla MT, García-Vioque V, Berbel I, Luque RM, Sainz B, Ibáñez-Costa A, Castaño JP. Splicing alterations in pancreatic ductal adenocarcinoma: a new molecular landscape with translational potential. J Exp Clin Cancer Res 2023; 42:282. [PMID: 37880792 PMCID: PMC10601233 DOI: 10.1186/s13046-023-02858-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/09/2023] [Indexed: 10/27/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains one of the most lethal cancers worldwide, mainly due to its late diagnosis and lack of effective therapies, translating into a low 5-year 12% survival rate, despite extensive clinical efforts to improve outcomes. International cooperative studies have provided informative multiomic landscapes of PDAC, but translation of these discoveries into clinical advances are lagging. Likewise, early diagnosis biomarkers and new therapeutic tools are sorely needed to tackle this cancer. The study of poorly explored molecular processes, such as splicing, can provide new tools in this regard. Alternative splicing of pre-RNA allows the generation of multiple RNA variants from a single gene and thereby contributes to fundamental biological processes by finely tuning gene expression. However, alterations in alternative splicing are linked to many diseases, and particularly to cancer, where it can contribute to tumor initiation, progression, metastasis and drug resistance. Splicing defects are increasingly being associated with PDAC, including both mutations or dysregulation of components of the splicing machinery and associated factors, and altered expression of specific relevant gene variants. Such disruptions can be a key element enhancing pancreatic tumor progression or metastasis, while they can also provide suitable tools to identify potential candidate biomarkers and discover new actionable targets. In this review, we aimed to summarize the current information about dysregulation of splicing-related elements and aberrant splicing isoforms in PDAC, and to describe their relationship with the development, progression and/or aggressiveness of this dismal cancer, as well as their potential as therapeutic tools and targets.
Collapse
Affiliation(s)
- Emilia Alors-Pérez
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Reina Sofía University Hospital (HURS), Cordoba, Spain
| | - Sergio Pedraza-Arevalo
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Reina Sofía University Hospital (HURS), Cordoba, Spain
| | - Ricardo Blázquez-Encinas
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Reina Sofía University Hospital (HURS), Cordoba, Spain
| | - María Trinidad Moreno-Montilla
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Reina Sofía University Hospital (HURS), Cordoba, Spain
| | - Víctor García-Vioque
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Reina Sofía University Hospital (HURS), Cordoba, Spain
| | - Inmaculada Berbel
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Reina Sofía University Hospital (HURS), Cordoba, Spain
| | - Raúl M Luque
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Reina Sofía University Hospital (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERObn), Córdoba, Spain
| | - Bruno Sainz
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
- Cancer Stem Cells and Fibroinflammatory Microenvironment Group, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Area 3, Cancer, Madrid, Spain
- Gastrointestinal Tumours Research Programme, Biomedical Research Network in Cancer (CIBERONC), Madrid, Spain
| | - Alejandro Ibáñez-Costa
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Cordoba, Spain.
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain.
- Reina Sofía University Hospital (HURS), Cordoba, Spain.
| | - Justo P Castaño
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Cordoba, Spain.
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain.
- Reina Sofía University Hospital (HURS), Cordoba, Spain.
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERObn), Córdoba, Spain.
| |
Collapse
|
45
|
Simmler P, Ioannidi EI, Mengis T, Marquart KF, Asawa S, Van-Lehmann K, Kahles A, Thomas T, Schwerdel C, Aceto N, Rätsch G, Stoffel M, Schwank G. Mutant SF3B1 promotes malignancy in PDAC. eLife 2023; 12:e80683. [PMID: 37823551 PMCID: PMC10629822 DOI: 10.7554/elife.80683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/11/2023] [Indexed: 10/13/2023] Open
Abstract
The splicing factor SF3B1 is recurrently mutated in various tumors, including pancreatic ductal adenocarcinoma (PDAC). The impact of the hotspot mutation SF3B1K700E on the PDAC pathogenesis, however, remains elusive. Here, we demonstrate that Sf3b1K700E alone is insufficient to induce malignant transformation of the murine pancreas, but that it increases aggressiveness of PDAC if it co-occurs with mutated KRAS and p53. We further show that Sf3b1K700E already plays a role during early stages of pancreatic tumor progression and reduces the expression of TGF-β1-responsive epithelial-mesenchymal transition (EMT) genes. Moreover, we found that SF3B1K700E confers resistance to TGF-β1-induced cell death in pancreatic organoids and cell lines, partly mediated through aberrant splicing of Map3k7. Overall, our findings demonstrate that SF3B1K700E acts as an oncogenic driver in PDAC, and suggest that it promotes the progression of early stage tumors by impeding the cellular response to tumor suppressive effects of TGF-β.
Collapse
Affiliation(s)
- Patrik Simmler
- Department of Biology, Institute of Molecular Health Sciences, ETH ZurichZurichSwitzerland
- Institute of Pharmacology and Toxicology, University of ZurichZurichSwitzerland
| | - Eleonora I Ioannidi
- Institute of Pharmacology and Toxicology, University of ZurichZurichSwitzerland
| | - Tamara Mengis
- Institute of Pharmacology and Toxicology, University of ZurichZurichSwitzerland
| | - Kim Fabiano Marquart
- Department of Biology, Institute of Molecular Health Sciences, ETH ZurichZurichSwitzerland
- Institute of Pharmacology and Toxicology, University of ZurichZurichSwitzerland
| | - Simran Asawa
- Department of Biology, Institute of Molecular Health Sciences, ETH ZurichZurichSwitzerland
| | - Kjong Van-Lehmann
- Department of Computer Science, Biomedical Informatics Group, ETH ZurichZurichSwitzerland
- Swiss Institute of BioinformaticsLausanneSwitzerland
| | - Andre Kahles
- Department of Computer Science, Biomedical Informatics Group, ETH ZurichZurichSwitzerland
- Swiss Institute of BioinformaticsLausanneSwitzerland
| | - Tinu Thomas
- Department of Computer Science, Biomedical Informatics Group, ETH ZurichZurichSwitzerland
- Swiss Institute of BioinformaticsLausanneSwitzerland
| | - Cornelia Schwerdel
- Institute of Pharmacology and Toxicology, University of ZurichZurichSwitzerland
| | - Nicola Aceto
- Department of Biology, Institute of Molecular Health Sciences, ETH ZurichZurichSwitzerland
| | - Gunnar Rätsch
- Department of Computer Science, Biomedical Informatics Group, ETH ZurichZurichSwitzerland
- Swiss Institute of BioinformaticsLausanneSwitzerland
- Department of Biology, ETH ZurichZurichSwitzerland
- Biomedical Informatics Research, University Hospital ZurichZurichSwitzerland
| | - Markus Stoffel
- Department of Biology, Institute of Molecular Health Sciences, ETH ZurichZurichSwitzerland
| | - Gerald Schwank
- Institute of Pharmacology and Toxicology, University of ZurichZurichSwitzerland
| |
Collapse
|
46
|
Zheng J, Wu S, Tang M, Xi S, Wang Y, Ren J, Luo H, Hu P, Sun L, Du Y, Yang H, Wang F, Gao H, Dai Z, Ou X, Li Y. USP39 promotes hepatocellular carcinogenesis through regulating alternative splicing in cooperation with SRSF6/HNRNPC. Cell Death Dis 2023; 14:670. [PMID: 37821439 PMCID: PMC10567755 DOI: 10.1038/s41419-023-06210-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 09/20/2023] [Accepted: 10/02/2023] [Indexed: 10/13/2023]
Abstract
Abnormal alternative splicing (AS) caused by alterations in spliceosomal factors is implicated in cancers. Standard models posit that splice site selection is mainly determined by early spliceosomal U1 and U2 snRNPs. Whether and how other mid/late-acting spliceosome components such as USP39 modulate tumorigenic splice site choice remains largely elusive. We observed that hepatocyte-specific overexpression of USP39 promoted hepatocarcinogenesis and potently regulated splice site selection in transgenic mice. In human liver cancer cells, USP39 promoted tumor proliferation in a spliceosome-dependent manner. USP39 depletion deregulated hundreds of AS events, including the oncogenic splice-switching of KANK2. Mechanistically, we developed a novel RBP-motif enrichment analysis and found that USP39 modulated exon inclusion/exclusion by interacting with SRSF6/HNRNPC in both humans and mice. Our data represented a paradigm for the control of splice site selection by mid/late-acting spliceosome proteins and their interacting RBPs. USP39 and possibly other mid/late-acting spliceosome proteins may represent potential prognostic biomarkers and targets for cancer therapy.
Collapse
Affiliation(s)
- Jingyi Zheng
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Shasha Wu
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Mao Tang
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Shaoyan Xi
- Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yanchen Wang
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Jun Ren
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Hao Luo
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Pengchao Hu
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Liangzhan Sun
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Yuyang Du
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Hui Yang
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Fenfen Wang
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Han Gao
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Ziwei Dai
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Xijun Ou
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Yan Li
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
47
|
Yan Y, Ren Y, Bao Y, Wang Y. RNA splicing alterations in lung cancer pathogenesis and therapy. CANCER PATHOGENESIS AND THERAPY 2023; 1:272-283. [PMID: 38327600 PMCID: PMC10846331 DOI: 10.1016/j.cpt.2023.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/25/2023] [Accepted: 04/29/2023] [Indexed: 02/09/2024]
Abstract
RNA splicing alterations are widespread and play critical roles in cancer pathogenesis and therapy. Lung cancer is highly heterogeneous and causes the most cancer-related deaths worldwide. Large-scale multi-omics studies have not only characterized the mutational landscapes but also discovered a plethora of transcriptional and post-transcriptional changes in lung cancer. Such resources have greatly facilitated the development of new diagnostic markers and therapeutic options over the past two decades. Intriguingly, altered RNA splicing has emerged as an important molecular feature and therapeutic target of lung cancer. In this review, we provide a brief overview of splicing dysregulation in lung cancer and summarize the recent progress on key splicing events and splicing factors that contribute to lung cancer pathogenesis. Moreover, we describe the general strategies targeting splicing alterations in lung cancer and highlight the potential of combining splicing modulation with currently approved therapies to combat this deadly disease. This review provides new mechanistic and therapeutic insights into splicing dysregulation in cancer.
Collapse
Affiliation(s)
- Yueren Yan
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Yunpeng Ren
- Department of Cellular and Genetic Medicine, Shanghai Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yufang Bao
- Department of Cellular and Genetic Medicine, Shanghai Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yongbo Wang
- Department of Cellular and Genetic Medicine, Shanghai Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
48
|
Gentien D, Saberi-Ansari E, Servant N, Jolly A, de la Grange P, Némati F, Liot G, Saule S, Teissandier A, Bourc'his D, Girard E, Wong J, Masliah-Planchon J, Narmanli E, Liu Y, Torun E, Goulancourt R, Rodrigues M, Gaudé LV, Reyes C, Bazire M, Chenegros T, Henry E, Rapinat A, Bohec M, Baulande S, M'kacher R, Jeandidier E, Nicolas A, Ciriello G, Margueron R, Decaudin D, Cassoux N, Piperno-Neumann S, Stern MH, Gibcus JH, Dekker J, Heard E, Roman-Roman S, Waterfall JJ. Multi-omics comparison of malignant and normal uveal melanocytes reveals molecular features of uveal melanoma. Cell Rep 2023; 42:113132. [PMID: 37708024 PMCID: PMC10598242 DOI: 10.1016/j.celrep.2023.113132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 07/10/2023] [Accepted: 08/30/2023] [Indexed: 09/16/2023] Open
Abstract
Uveal melanoma (UM) is a rare cancer resulting from the transformation of melanocytes in the uveal tract. Integrative analysis has identified four molecular and clinical subsets of UM. To improve our molecular understanding of UM, we performed extensive multi-omics characterization comparing two aggressive UM patient-derived xenograft models with normal choroidal melanocytes, including DNA optical mapping, specific histone modifications, and DNA topology analysis using Hi-C. Our gene expression and cytogenetic analyses suggest that genomic instability is a hallmark of UM. We also identified a recurrent deletion in the BAP1 promoter resulting in loss of expression and associated with high risk of metastases in UM patients. Hi-C revealed chromatin topology changes associated with the upregulation of PRAME, an independent prognostic biomarker in UM, and a potential therapeutic target. Our findings illustrate how multi-omics approaches can improve our understanding of tumorigenesis and reveal two distinct mechanisms of gene expression dysregulation in UM.
Collapse
Affiliation(s)
- David Gentien
- Translational Research Department, Research Center, Institut Curie, Paris Sciences et Lettres (PSL) Research University, 75005 Paris, France; Genomics Platform, Research Center, Institut Curie, Paris Sciences et Lettres (PSL) Research University, 75005 Paris, France.
| | - Elnaz Saberi-Ansari
- Translational Research Department, Research Center, Institut Curie, Paris Sciences et Lettres (PSL) Research University, 75005 Paris, France; INSERM U830, Research Center, Institut Curie, PSL Research University, 75005 Paris, France
| | | | | | | | - Fariba Némati
- Translational Research Department, Research Center, Institut Curie, Paris Sciences et Lettres (PSL) Research University, 75005 Paris, France; Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, PSL Research University, 75248 Paris, France
| | - Géraldine Liot
- Institut Curie, PSL Research University, CNRS, INSERM, UMR3347, U1021, Orsay, France
| | - Simon Saule
- Institut Curie, PSL Research University, CNRS, INSERM, UMR3347, U1021, Orsay, France; Université Paris-Saclay Centre National de La Recherche Scientifique, UMR 3347, Unité 1021, Orsay, France
| | - Aurélie Teissandier
- Institut Curie, PSL Research University, Sorbonne University, INSERM U934, CNRS UMR 3215, 75005 Paris, France
| | - Deborah Bourc'his
- Institut Curie, PSL Research University, Sorbonne University, INSERM U934, CNRS UMR 3215, 75005 Paris, France
| | | | - Jennifer Wong
- Department of Diagnostic and Theranostic Molecular Pathology, Unit of Somatic Genetic, Hospital, Institut Curie, Paris, France
| | - Julien Masliah-Planchon
- Department of Diagnostic and Theranostic Molecular Pathology, Unit of Somatic Genetic, Hospital, Institut Curie, Paris, France
| | - Erkan Narmanli
- Translational Research Department, Research Center, Institut Curie, Paris Sciences et Lettres (PSL) Research University, 75005 Paris, France; INSERM U830, Research Center, Institut Curie, PSL Research University, 75005 Paris, France
| | - Yuanlong Liu
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland; Swiss Cancer Center Leman, Lausanne, Switzerland; Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Emma Torun
- Institut Curie, PSL Research University, Sorbonne University, INSERM U934, CNRS UMR 3215, 75005 Paris, France
| | | | - Manuel Rodrigues
- Department of Medical Oncology, Institut Curie, PSL Research University, 75005 Paris, France; INSERM U830, DNA Repair and Uveal Melanoma (D.R.U.M.), Equipe Labellisée par la Ligue Nationale Contre le Cancer, Department of Genetics, Institut Curie, PSL Research University, 75005 Paris, France
| | - Laure Villoing Gaudé
- Translational Research Department, Research Center, Institut Curie, Paris Sciences et Lettres (PSL) Research University, 75005 Paris, France; Genomics Platform, Research Center, Institut Curie, Paris Sciences et Lettres (PSL) Research University, 75005 Paris, France
| | - Cécile Reyes
- Translational Research Department, Research Center, Institut Curie, Paris Sciences et Lettres (PSL) Research University, 75005 Paris, France; Genomics Platform, Research Center, Institut Curie, Paris Sciences et Lettres (PSL) Research University, 75005 Paris, France
| | - Matéo Bazire
- Translational Research Department, Research Center, Institut Curie, Paris Sciences et Lettres (PSL) Research University, 75005 Paris, France; Genomics Platform, Research Center, Institut Curie, Paris Sciences et Lettres (PSL) Research University, 75005 Paris, France
| | - Thomas Chenegros
- Translational Research Department, Research Center, Institut Curie, Paris Sciences et Lettres (PSL) Research University, 75005 Paris, France; Genomics Platform, Research Center, Institut Curie, Paris Sciences et Lettres (PSL) Research University, 75005 Paris, France
| | - Emilie Henry
- Translational Research Department, Research Center, Institut Curie, Paris Sciences et Lettres (PSL) Research University, 75005 Paris, France; Genomics Platform, Research Center, Institut Curie, Paris Sciences et Lettres (PSL) Research University, 75005 Paris, France
| | - Audrey Rapinat
- Translational Research Department, Research Center, Institut Curie, Paris Sciences et Lettres (PSL) Research University, 75005 Paris, France; Genomics Platform, Research Center, Institut Curie, Paris Sciences et Lettres (PSL) Research University, 75005 Paris, France
| | - Mylene Bohec
- Institut Curie Genomics of Excellence (ICGex) Platform, Institut Curie Research Center, PSL Research University, Paris, France
| | - Sylvain Baulande
- Institut Curie Genomics of Excellence (ICGex) Platform, Institut Curie Research Center, PSL Research University, Paris, France
| | | | - Eric Jeandidier
- Laboratoire de Génétique, Groupe Hospitalier de la Région de Mulhouse Sud-Alsace, Mulhouse, France
| | - André Nicolas
- Pathex, Institut Curie, PSL Research University, Paris, France
| | - Giovanni Ciriello
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland; Swiss Cancer Center Leman, Lausanne, Switzerland; Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Raphael Margueron
- Institut Curie, PSL Research University, Sorbonne University, INSERM U934, CNRS UMR 3215, 75005 Paris, France
| | - Didier Decaudin
- Translational Research Department, Research Center, Institut Curie, Paris Sciences et Lettres (PSL) Research University, 75005 Paris, France; Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, PSL Research University, 75248 Paris, France
| | - Nathalie Cassoux
- Department of Medical Oncology, Institut Curie, PSL Research University, 75005 Paris, France; Department of Ocular Oncology, Faculty of Medicine, Institut Curie, Université de Paris Descartes, 75005 Paris, France
| | - Sophie Piperno-Neumann
- Department of Medical Oncology, Institut Curie, PSL Research University, 75005 Paris, France
| | - Marc-Henri Stern
- INSERM U830, DNA Repair and Uveal Melanoma (D.R.U.M.), Equipe Labellisée par la Ligue Nationale Contre le Cancer, Department of Genetics, Institut Curie, PSL Research University, 75005 Paris, France
| | - Johan Harmen Gibcus
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Job Dekker
- Howard Hughes Medical Institute, Department of Systems Biology, Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Edith Heard
- Director's Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Sergio Roman-Roman
- Translational Research Department, Research Center, Institut Curie, Paris Sciences et Lettres (PSL) Research University, 75005 Paris, France.
| | - Joshua J Waterfall
- Translational Research Department, Research Center, Institut Curie, Paris Sciences et Lettres (PSL) Research University, 75005 Paris, France; INSERM U830, Research Center, Institut Curie, PSL Research University, 75005 Paris, France.
| |
Collapse
|
49
|
Simon J, Perez-Rivas LG, Zhao Y, Chasseloup F, Lasolle H, Cortet C, Descotes F, Villa C, Baussart B, Burman P, Maiter D, von Selzam V, Rotermund R, Flitsch J, Thorsteinsdottir J, Jouanneau E, Buchfelder M, Chanson P, Raverot G, Theodoropoulou M. Prevalence and clinical correlations of SF3B1 variants in lactotroph tumours. Eur J Endocrinol 2023; 189:372-378. [PMID: 37721395 DOI: 10.1093/ejendo/lvad114] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/30/2023] [Accepted: 07/24/2023] [Indexed: 09/19/2023]
Abstract
OBJECTIVE A somatic mutational hotspot in the SF3B1 gene was reported in lactotroph tumours. The aim of our study was to examine the prevalence of driver SF3B1 variants in a multicentre independent cohort of patients with lactotroph tumours and correlate with clinical data. DESIGN AND METHODS This was a retrospective, multicentre study involving 282 patients with lactotroph tumours (including 6 metastatic lactotroph tumours) from 8 European centres. We screened SF3B1 exon 14 hotspot for somatic variants using Sanger sequencing and correlated with clinicopathological data. RESULTS We detected SF3B1 variants in seven patients with lactotroph tumours: c.1874G > A (p.Arg625His) (n = 4, 3 of which metastatic) and a previously undescribed in pituitary tumours variant c.1873C > T (p.Arg625Cys) (n = 3 aggressive pituitary tumours). In two metastatic lactotroph tumours with tissue available, the variant was detected in both primary tumour and metastasis. The overall prevalence of likely pathogenic SF3B1 variants in lactotroph tumours was 2.5%, but when we considered only metastatic cases, it reached the 50%. SF3B1 variants correlated with significantly larger tumour size; higher Ki67 proliferation index; multiple treatments, including radiotherapy and chemotherapy; increased disease-specific death; and shorter postoperative survival. CONCLUSIONS SF3B1 variants are uncommon in lactotroph tumours but may be frequent in metastatic lactotroph tumours. When present, they associate with aggressive tumour behaviour and worse clinical outcome.
Collapse
Affiliation(s)
- Julia Simon
- Medizinische Klinik und Poliklinik IV, LMU Klinikum, LMU München, Munich 80336, Germany
| | | | - Yining Zhao
- Department of Neurosurgery, University of Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Fanny Chasseloup
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, Service d'Endocrinologie et des Maladies de la Reproduction, Centre de Référence des Maladies Rares de l'Hypophyse, Le Kremlin-Bicêtre 94275, France
| | - Helene Lasolle
- Endocrinology Department, Reference Center for Rare Pituitary Diseases HYPO, Claude Bernard Lyon 1 University, "Groupement Hospitalier Est" Hospices Civils de Lyon, Bron 69500, France
| | | | - Francoise Descotes
- Service de Biochimie Biologie Moléculaire, Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Pierre Bénite Cedex 69495, France
| | - Chiara Villa
- Neuropathology Department, Pitié-Salpêtrière University Hospital, AP-HP, Sorbonne Université and Université Paris Cité, CNRS UMR8104, INSERM U1016, Institut Cochin, Paris 75014, France
| | - Bertrand Baussart
- Department of Neurosurgery, Assistance Publique-Hopitaux de Paris, Pitié-Salpetrière University Hospital and Université Paris Cité, CNRS UMR8104, INSERM U1016, Institut Cochin, Paris 75014, France
| | - Pia Burman
- Department of Endocrinology, Skåne University Hospital, Lund University, Malmö 214 28, Sweden
| | - Dominique Maiter
- Department of Endocrinology and Nutrition, UCLouvain Cliniques Universitaires Saint-Luc, Bruxelles 1200, Belgium
| | - Vivian von Selzam
- Medizinische Klinik und Poliklinik IV, LMU Klinikum, LMU München, Munich 80336, Germany
| | - Roman Rotermund
- Department of Neurosurgery, Division of Pituitary Surgery, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Jörg Flitsch
- Department of Neurosurgery, Division of Pituitary Surgery, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Jun Thorsteinsdottir
- Neurochirurgische Klinik und Poliklinik, LMU Klinikum, LMU München, Munich 81377, Germany
| | - Emmanuel Jouanneau
- Pituitary and Skull Base Neurosurgical Department, Reference Center for Rare Pituitary Diseases HYPO, "Groupement Hospitalier Est" Hospices Civils de Lyon, "Claude Bernard" Lyon 1 University, Hôpital Pierre Wertheimer, Lyon, Bron 69677, France
| | - Michael Buchfelder
- Department of Neurosurgery, University of Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Philippe Chanson
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, Service d'Endocrinologie et des Maladies de la Reproduction, Centre de Référence des Maladies Rares de l'Hypophyse, Le Kremlin-Bicêtre 94275, France
| | - Gerald Raverot
- Endocrinology Department, Reference Center for Rare Pituitary Diseases HYPO, Claude Bernard Lyon 1 University, "Groupement Hospitalier Est" Hospices Civils de Lyon, Bron 69500, France
| | - Marily Theodoropoulou
- Medizinische Klinik und Poliklinik IV, LMU Klinikum, LMU München, Munich 80336, Germany
| |
Collapse
|
50
|
Rasmussen A, Okholm T, Knudsen M, Vang S, Dyrskjøt L, Hansen T, Pedersen J. Circular stable intronic RNAs possess distinct biological features and are deregulated in bladder cancer. NAR Cancer 2023; 5:zcad041. [PMID: 37554968 PMCID: PMC10405568 DOI: 10.1093/narcan/zcad041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/02/2023] [Indexed: 08/10/2023] Open
Abstract
Until recently, intronic lariats were regarded as short-lasting splicing byproducts with no apparent function; however, increasing evidence of stable derivatives suggests regulatory roles. Yet little is known about their characteristics, functions, distribution, and expression in healthy and tumor tissue. Here, we profiled and characterized circular stable intronic sequence RNAs (sisRNAs) using total RNA-Seq data from bladder cancer (BC; n = 457, UROMOL cohort), healthy tissue (n = 46), and fractionated cell lines (n = 5). We found that the recently-discovered full-length intronic circles and the stable lariats formed distinct subclasses, with a surprisingly high intronic circle fraction in BC (∼45%) compared to healthy tissues (0-20%). The stable lariats and their host introns were characterized by small transcript sizes, highly conserved BP regions, enriched BP motifs, and localization in multiple cell fractions. Additionally, circular sisRNAs showed tissue-specific expression patterns. We found nine circular sisRNAs as differentially expressed across early-stage BC patients with different prognoses, and sisHNRNPK expression correlated with progression-free survival. In conclusion, we identify distinguishing biological features of circular sisRNAs and point to specific candidates (incl. sisHNRNPK, sisWDR13 and sisMBNL1) that were highly expressed, had evolutionary conserved sequences, or had clinical correlations, which may facilitate future studies and further insights into their functional roles.
Collapse
Affiliation(s)
- Asta M Rasmussen
- Department of Clinical Medicine, Aarhus University, Aarhus 8000, Denmark
- Department of Molecular Medicine (MOMA), Aarhus University Hospital, Aarhus N 8200, Denmark
- Bioinformatics Research Center (BiRC), Aarhus University, Aarhus 8000, Denmark
| | - Trine Line H Okholm
- Departments of Otolaryngology-Head and Neck Surgery and Microbiology & Immunology, University of California, San Francisco, CA, USA
| | - Michael Knudsen
- Department of Clinical Medicine, Aarhus University, Aarhus 8000, Denmark
- Department of Molecular Medicine (MOMA), Aarhus University Hospital, Aarhus N 8200, Denmark
| | - Søren Vang
- Department of Clinical Medicine, Aarhus University, Aarhus 8000, Denmark
- Department of Molecular Medicine (MOMA), Aarhus University Hospital, Aarhus N 8200, Denmark
| | - Lars Dyrskjøt
- Department of Clinical Medicine, Aarhus University, Aarhus 8000, Denmark
- Department of Molecular Medicine (MOMA), Aarhus University Hospital, Aarhus N 8200, Denmark
| | - Thomas B Hansen
- Department of Molecular Biology and Genetics (MBG), Aarhus University, Aarhus 8000, Denmark
| | - Jakob S Pedersen
- Department of Clinical Medicine, Aarhus University, Aarhus 8000, Denmark
- Department of Molecular Medicine (MOMA), Aarhus University Hospital, Aarhus N 8200, Denmark
- Bioinformatics Research Center (BiRC), Aarhus University, Aarhus 8000, Denmark
| |
Collapse
|