1
|
Zhang JA, Xiao X, Wang J, Luo S, Lu Y, Pang YY, Tian W. Biomimetic Parallel Vein-like Two-Dimensional Supramolecular Layers Containing Embedded One-Dimensional Conduits Driven by Cation-π Interaction and Hydrogen Bonding to Promote Photocatalytic Hydrogen Evolution. J Am Chem Soc 2025; 147:13447-13460. [PMID: 40198085 DOI: 10.1021/jacs.5c00204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Two-dimensional supramolecular assemblies (2DSAs) with well-defined nanostructures have emerged as promising candidates for diverse applications, particularly in photocatalysis. However, it still remains a significant challenge to simultaneously achieve effective electron transport and multiple active sites in 2DSA, even though this is crucial for enhancing photocatalytic performance. This reason can be attributed to the lack of a suitable structural paradigm that enables both effective intermolecular orbital overlap and increased substrate contact. Inspired by the parallel venation of monocotyledons that can facilitate substrate transfer, we overcome the limitation, in this study, by integrating parallel-arranged one-dimensional (1D) conduits with edge-on packing motifs to construct biomimetic, parallel vein-like two-dimensional supramolecular layers (PV-2DSLs) through the hierarchical self-assembly of cationically modified, rigid multiarmed monomers. The resulting PV-2DSLs exhibit a long-range aromatic cation-π stacking that can facilitate electron transport. Importantly, the unique structural feature of these PV-2DSLs is the orderly and parallel embedding of 1D conduits within the 2D plane, which is significantly different from the conventional channels formed by the vertical stacking of 2D porous materials. These conduits promote multielectron transfer pathways, leading to enhanced charge separation and carrier transport when coupled with long-range aromatic cation-π stacking. As a consequence, these PV-2DSLs exhibit long excited state lifetime, leading to significantly improved hydrogen production rates up to 3.5 mmol g-1 h-1, which is approximately 17.5 times higher than that of the counterpart without 1D conduits (0.2 mmol g-1 h-1).
Collapse
Affiliation(s)
- Ju-An Zhang
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xuedong Xiao
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Jinyi Wang
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Shuai Luo
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yi Lu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yan-Yu Pang
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Wei Tian
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
2
|
Yao XY, Wang ZF, Jiang M, Li XL, Liu H, Xing LB. Boosting the Superoxide Anion Radical Generation of Triphenylamine- and Benzothiadiazole-based Supramolecular Organic Framework for Improving Photocatalytic Performance. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:4764-4773. [PMID: 39933119 DOI: 10.1021/acs.langmuir.4c04744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
The construction of three-component supramolecular organic frameworks (SOFs) remains a challenge in this field due to the complex noncovalent interactions involved and the limitations of existing preparation methods. In this study, we designed and synthesized two photosensitive modules, with naphthalene-modified triphenylamine derivative (NA-TPA) as the donor unit and methylated-viologen-modified benzothiadiazole derivative (DPBT) as the acceptor unit, which can self-assemble into a two-dimensional supramolecular organic framework (SOF) through encapsulation-enhanced donor-acceptor interaction with cucurbit[8]uril (CB[8]) in water. The donor-acceptor SOF can not only self-assemble into two-dimensional nanosheet morphology in water but also exhibit excellent luminescence enhancement performance. Compared with monomers NA-TPA and DPBT, the SOF can also effectively promote electron transfer and greatly improve the ability to produce superoxide anion radicals (O2•-), which can be effectively used to photocatalyze thiol-ene cross-coupling reaction in water with a yield of up to 90%. This work provides useful exploration for the construction of three-component SOFs through encapsulation-enhanced donor-acceptor interactions for photocatalytic application.
Collapse
Affiliation(s)
- Xian-Ya Yao
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China
| | - Ze-Fan Wang
- School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, P. R. China
| | - Man Jiang
- School of Resources and Environmental Engineering, Shandong University of Technology, Zibo 255000, P. R. China
| | - Xin-Long Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China
| | - Hui Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China
| | - Ling-Bao Xing
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China
| |
Collapse
|
3
|
Zhang Y, Chen J, He Q, He J, Xu W, Sun M, Qiu H. Selective Separation of Thorium from Rare Earth Ions Using Bisphosphonate-Functionalized Ionic Single Crystals Co-Self-Assembled via π-π and Ionic Interactions. NANO LETTERS 2025. [PMID: 39984421 DOI: 10.1021/acs.nanolett.4c06572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2025]
Abstract
In this study, new bisphosphonate-functionalized ionic organic crystals (IOCs) were developed by π-π and ionic interactions with the high oxygen content of the phosphonic acid group. Meanwhile, this novel material achieved an extremely high selectivity of Th adsorption with a saturation adsorption capacity of 426 mg/g. In addition, the heat resistance (400 °C) and the recyclability (more than five cycles) make the IOCs economical for their extraordinary stability. Moreover, we use single-crystal X-ray diffraction to determine the monomer connections and the ionic bonds. We used kinetic fitting and X-ray photoelectron spectroscopy testing to explain the adsorption mechanism, which reveals a monolayer adsorption process with a distinct O-Th bond post-adsorption. This study not only gave an example to develop new ionic single crystals based on different functional groups but also expanded the potential application to use these new types of nanomaterials.
Collapse
Affiliation(s)
- Yunyun Zhang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia Chen
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qifang He
- Key Laboratory of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
| | - Jing He
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Wei Xu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Mingxia Sun
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Hongdeng Qiu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
| |
Collapse
|
4
|
Li Z, Li H, Lin Y, Shi W, Wang X. Cluster-Cation Pairs Mediated Assembly of Subnanometer Polyoxometalates Superstructures. J Am Chem Soc 2024; 146:28874-28884. [PMID: 39387132 DOI: 10.1021/jacs.4c09034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Superstructures assembled by subnanometer polyoxometalate (POM) clusters are interesting for their attractive structures and excellent properties. However, the complex interactions between clusters and cations make it challenging to control the assembly of POM clusters at the subnanometer scale. Here, 20 cluster-assembled superstructures built by two types of MP2W17O61 (M = La-Lu) clusters are successfully synthesized. The precise structures and configurations of the subnanostructures, including nanowires, tetragonal nanosheets, and rectangular nanosheets, are characterized and presented. Molecular dynamics (MD) simulations reveal that the difference in interactions of POM clusters and cations leads to the formation of distinct superstructures. Two mechanisms of superstructure formation are proposed. Furthermore, the EuP2W17 nanosheet behaves with a high Faradaic efficiency of 90.2% and selectivity of 87.3% for glycolic acid in the electrocatalytic ethylene glycol oxidation reaction, which is much higher than that of isolated cluster components. This work connects the cluster topologies and cluster-cation pairs to the superstructures of cluster assemblies, providing general guidelines for the supramolecular self-assembly of POM clusters.
Collapse
Affiliation(s)
- Zhong Li
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Haoyang Li
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yan Lin
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Wenxiong Shi
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Xun Wang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
5
|
Yamada R, Kimura R, Kuwahara S. Depletion force optimization for high-purity gold nanotriangles prepared using different growth methods. RSC Adv 2023; 13:32143-32149. [PMID: 37928845 PMCID: PMC10620599 DOI: 10.1039/d3ra05955c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023] Open
Abstract
A homogeneous structural distribution in metal nanoparticle is commonly required for their application, and despite high-yield growth techniques, unavoidable structural heterogeneity remains a concern in metal nanoparticle synthesis. Gold nanotriangles (AuNTs) were synthesized using seed-mediated and seedless growth methods. Recent advancements in high-yield synthesis processes have enabled easy handling of AuNTs, which exhibit unique localized surface plasmon resonance characteristics due to their anisotropic triangular form. The flocculation and subsequent precipitation technique was used to purify AuNTs of different sizes synthesized using seed-mediated and seedless growth methods. The optimal conditions for obtaining high-purity AuNTs were explored by introducing a high concentration of cetyltrimethylammonium chloride. Additionally, the depletion force necessary for achieving high-purity AuNTs was calculated to reveal variations in the required depletion forces for AuNTs synthesized using different growth techniques. The alternations in the size distribution of AuNTs during the flocculation step were tracked using dynamic light scattering, and the surface charge of AuNTs synthesized through different growth methods was evaluated by ζ-potential. The high purity of the AuNTs produced using the seedless growth method required a larger depletion force than the seed-mediated grown AuNTs. The difference in the required depletion forces results from the difference in the electrostatic forces caused by the different growth methods.
Collapse
Affiliation(s)
- Ryuichi Yamada
- Department of Chemistry, Faculty of Science, Toho University Funabashi Chiba 274-8510 Japan
| | - Ryusei Kimura
- Department of Chemistry, Faculty of Science, Toho University Funabashi Chiba 274-8510 Japan
| | - Shota Kuwahara
- Department of Chemistry, Faculty of Science, Toho University Funabashi Chiba 274-8510 Japan
| |
Collapse
|
6
|
Wu Y, Wu N, Jiang X, Duan S, Li T, Zhou Q, Chen M, Diao G, Wu Z, Ni L. Bifunctional K 3PW 12O 40/Graphene Oxide-Modified Separator for Inhibiting Polysulfide Diffusion and Stabilizing Lithium Anode. Inorg Chem 2023; 62:15440-15449. [PMID: 37700509 DOI: 10.1021/acs.inorgchem.3c01720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Lithium-sulfur (Li-S) batteries are considered as promising candidates for next-generation batteries due to their high theoretical energy density. However, the practical application of Li-S batteries is still hindered by several challenges, such as the polysulfide shuttle and the growth of lithium dendrites. Herein, we introduce a bifunctional K3PW12O40/graphene oxide-modified polypropylene separator (KPW/GO/PP) as a highly effective solution for mitigating polysulfide diffusion and protecting the lithium anode in Li-S batteries. By incorporating KPW into a densely stacked nanostructured graphene oxide (GO) barrier membrane, we synergistically capture and rapidly convert lithium polysulfides (LiPSs) electrochemically, thus effectively suppressing the shuttling effect. Moreover, the KPW/GO/PP separator can stabilize the lithium metal anode during cycling, suppress dendrite formation, and ensure a smooth and dense lithium metal surface, owing to regulated Li+ flux and uniform Li nucleation. Consequently, the constructed KPW/GO/PP separator delivered a favorable initial specific capacity (1006 mAh g-1) and remarkable cycling performance at 1.0 C (626 mAh g-1 for up to 500 cycles with a decay rate of 0.075% per cycle).
Collapse
Affiliation(s)
- Yuchao Wu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, People's Republic of China
| | - Ni Wu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, People's Republic of China
| | - Xinyuan Jiang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, People's Republic of China
| | - Suqin Duan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, People's Republic of China
| | - Tangsuo Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, People's Republic of China
| | - Qiuping Zhou
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, People's Republic of China
| | - Ming Chen
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, People's Republic of China
| | - Guowang Diao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, People's Republic of China
| | - Zhen Wu
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Lubin Ni
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, People's Republic of China
| |
Collapse
|
7
|
Ni L, Gu J, Jiang X, Xu H, Wu Z, Wu Y, Liu Y, Xie J, Wei Y, Diao G. Polyoxometalate-Cyclodextrin-Based Cluster-Organic Supramolecular Framework for Polysulfide Conversion and Guest-Host Recognition in Lithium-sulfur Batteries. Angew Chem Int Ed Engl 2023; 62:e202306528. [PMID: 37464580 DOI: 10.1002/anie.202306528] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/22/2023] [Accepted: 07/17/2023] [Indexed: 07/20/2023]
Abstract
Developing polyoxometalate-cyclodextrin cluster-organic supramolecular framework (POM-CD-COSF) still remains challenging due to an extremely difficult task in rationally interconnecting two dissimilar building blocks. Here we report an unprecedented POM-CD-COSF crystalline structure produced through the self-assembly process of a Krebs-type POM, [Zn2 (WO2 )2 (SbW9 O33 )2 ]10- , and two β-CD units. The as-prepared POM-CD-COSF-based battery separator can be applied as a lightweight barrier (approximately 0.3 mg cm-2 ) to mitigate the polysulfide shuttle effect in lithium-sulfur batteries. The designed Li-S batteries equipped with the POM-CD-COSF modified separator exhibit remarkable electrochemical performance, attributed to fast Li+ diffusion through the supramolecular channel of β-CD, efficient polysulfide-capture ability by the dynamic host-guest interaction of β-CD, and improved sulfur redox kinetics by the bidirectional catalysis of POM cluster. This research provides a broad perspective for the development of multifunctional supramolecular POM frameworks and their applications in Li-S batteries.
Collapse
Affiliation(s)
- Lubin Ni
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, Jiangsu, P. R. China
| | - Jie Gu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, Jiangsu, P. R. China
| | - Xinyuan Jiang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, Jiangsu, P. R. China
| | - Hongjie Xu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, Jiangsu, P. R. China
| | - Zhen Wu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, Jiangsu, P. R. China
| | - Yuchao Wu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, Jiangsu, P. R. China
| | - Yi Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, Jiangsu, P. R. China
| | - Ju Xie
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, Jiangsu, P. R. China
| | - Yongge Wei
- Key Lab of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Guowang Diao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, Jiangsu, P. R. China
| |
Collapse
|
8
|
Hatakeyama G, Zhou H, Kikuchi T, Nishio M, Oka K, Sadakiyo M, Nishiyama Y, Yamada T. Design of a robust and strong-acid MOF platform for selective ammonium recovery and proton conductivity. Chem Sci 2023; 14:9068-9073. [PMID: 37655037 PMCID: PMC10466313 DOI: 10.1039/d3sc02743k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/31/2023] [Indexed: 09/02/2023] Open
Abstract
Metal-organic frameworks (MOFs) are potential candidates for the platform of the solid acid; however, no MOF has been reported that has both aqueous ammonium stability and a strong acid site. This manuscript reports a highly stable MOF with a cation exchange site synthesized by the reaction between zirconium and mellitic acid under a high concentration of ammonium cations (NH4+). Single-crystal XRD analysis of the MOF revealed the presence of four free carboxyl groups of the mellitic acid ligand, and the high first association constant (pKa1) of one of the carboxyl groups acts as a monovalent ion-exchanging site. NH4+ in the MOF can be reversibly exchanged with proton (H+), sodium (Na+), and potassium (K+) cations in an aqueous solution. Moreover, the uniform nanospace of the MOF provides the acid site for selective NH4+ recovery from the aqueous mixture of NH4+ and Na+, which could solve the global nitrogen cycle problem. The solid acid nature of the MOF also results in the proton conductivity reaching 1.34 × 10-3 S cm-1 at 55 °C by ion exchange from NH4+ to H+.
Collapse
Affiliation(s)
- Genki Hatakeyama
- Division of Chemistry, Graduate School of Science, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Hongyao Zhou
- Division of Chemistry, Graduate School of Science, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Takashi Kikuchi
- Rigaku Corporation 3-9-12 Matsubaracho Akishima Tokyo 196-8666 Japan
| | - Masaki Nishio
- Division of Chemistry, Graduate School of Science, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Kouki Oka
- Division of Chemistry, Graduate School of Science, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Masaaki Sadakiyo
- Department of Applied Chemistry, Faculty of Science Division I, Tokyo University of Science 1-3 Kagurazaka Shinjuku-ku Tokyo 162-8601 Japan
| | - Yusuke Nishiyama
- Nano-Crystallography Unit, RIKEN-JEOL Collaboration Center, RIKEN Yokohama Kanagawa 230-0045 Japan
- JEOL RESONANCE Inc. Akishima Tokyo 196-8558 Japan
| | - Teppei Yamada
- Division of Chemistry, Graduate School of Science, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| |
Collapse
|
9
|
Salhi J, Calupitan JP, Mattera M, Montero D, Miche A, Maruchenko R, Proust A, Izzet G, Kreher D, Arfaoui I, Volatron F. Ready-to-be-addressed oxo-clusters: individualized, periodically organized and separated from the substrate. NANOSCALE 2023; 15:13233-13238. [PMID: 37540202 DOI: 10.1039/d3nr02649c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Clusters and oxo-clusters are drawing attention for their amazing physical properties, especially at the scale of the single molecule. However, chemical methods to organize them individually on a surface are still lacking. In this study we show that it is possible to periodically organize individual polyoxometalates thanks to their ordering by a new supramolecular assembly.
Collapse
Affiliation(s)
- Juba Salhi
- Institut parisien de chimie moléculaire (IPCM), CNRS, Sorbonne Université, 4 Place Jussieu, F-75005 Paris, France.
| | - Jan Patrick Calupitan
- Institut parisien de chimie moléculaire (IPCM), CNRS, Sorbonne Université, 4 Place Jussieu, F-75005 Paris, France.
| | - Michele Mattera
- Institut parisien de chimie moléculaire (IPCM), CNRS, Sorbonne Université, 4 Place Jussieu, F-75005 Paris, France.
| | - David Montero
- Fédération de chimie et matériaux de Paris-centre (FCMat), Sorbonne Université, 4 Place Jussieu, F-75005 Paris, France
| | - Antoine Miche
- Laboratoire de réactivité de surface (LRS), CNRS, Sorbonne Université, 4 Place Jussieu, F-75005 Paris, France
| | - Régina Maruchenko
- Institut parisien de chimie moléculaire (IPCM), CNRS, Sorbonne Université, 4 Place Jussieu, F-75005 Paris, France.
| | - Anna Proust
- Institut parisien de chimie moléculaire (IPCM), CNRS, Sorbonne Université, 4 Place Jussieu, F-75005 Paris, France.
| | - Guillaume Izzet
- Institut parisien de chimie moléculaire (IPCM), CNRS, Sorbonne Université, 4 Place Jussieu, F-75005 Paris, France.
| | - David Kreher
- Institut Lavoisier de Versailles (ILV), CNRS, Université Paris-Saclay, 45 avenue des Etats-Unis, F-78035 Versailles, France
| | - Imad Arfaoui
- De la molécule aux nano-objets: réactivité, interactions et spectroscopies (MONARIS), CNRS, Sorbonne Université, 4 Place Jussieu, F-75005 Paris, France
| | - Florence Volatron
- Institut parisien de chimie moléculaire (IPCM), CNRS, Sorbonne Université, 4 Place Jussieu, F-75005 Paris, France.
| |
Collapse
|
10
|
Wei M, Li B, Wu L. Structure Transformation and Morphologic Modulation of Supramolecular Frameworks for Nanoseparation and Enzyme Loading. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207047. [PMID: 37060107 DOI: 10.1002/advs.202207047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/13/2023] [Indexed: 06/04/2023]
Abstract
Supramolecular framework (SF) encourages the emergence of porous structures with molecular flexibility while the dimension and morphology controls are less involved even though critical factors are vital for various utilizations. Targeting this purpose, two isolated components are designed and their stepped combinations via ionic interaction, metal coordination, and hydrogen bond into framework assembly with two morphologic states are realized. The zinc coordination to an ionic complex of polyoxometalate with three cationic terpyridine ligands constructs 2D hexagonal SF structure. A further growth along perpendicular direction driven by hydrogen bonding between grafted mannose groups leads to 3D SF assemblies, providing a modulation superiority in one framework for multiple utilizations. The large area of multilayered SF sheet affords a filtration membrane for strict separation of nanoparticles/proteins under gently reduced pressures while the granular SF assembly demonstrates an efficient carrier to load and fix horse radish peroxidase with maintained activity for enzymatic catalysis.
Collapse
Affiliation(s)
- Mingfeng Wei
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Bao Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Lixin Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| |
Collapse
|
11
|
Zhang Y, Zhang G, Li B, Wu L. Non-Stop Switching Separation of Superfine Solid/Liquid Dispersed Phases in Oil and Water Systems Using Polymer-Assisted Framework Fiber Membranes. SMALL METHODS 2023; 7:e2201455. [PMID: 36908003 DOI: 10.1002/smtd.202201455] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/20/2023] [Indexed: 06/09/2023]
Abstract
Fabricating filtration membranes with wide applicability and high efficiency is always a challenge in the precise separation of small colloidal particles under mild conditions. For this purpose, a strategy mixing supramolecular framework fiber with polymer is adopted. The fibrous assembly in the gel state provides uniform nanopores for both channel and interception and controlled wettability for lyophilic/lyophobic switching. The used polymer fills the gaps between fiber assemblies and improves the mechanical property. The composite membrane shows both under-oil superhydrophobic and underwater superoleophobic nature, which allows the conversions via in situ modulation of joystick solvents. Based on surface wetting and size-sieving, ultrafine hard nanoparticles dispersing in both hydrophobic organic solvents and water are selectively sieved. In addition, on-demand separation of water-in-oil and oil-in-water microemulsions without and with surfactants as systems containing soft droplets are realized. The smallest cut-off size of ≈3 nm is achieved for both hard and soft emulsions, while separation efficiency maintains during sustained in situ reversible switches.
Collapse
Affiliation(s)
- Yue Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Guohua Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Bao Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Lixin Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
12
|
Chen X, Wu H, Shi X, Wu L. Polyoxometalate-based frameworks for photocatalysis and photothermal catalysis. NANOSCALE 2023. [PMID: 37158109 DOI: 10.1039/d3nr01176c] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Polyoxometalate-based frameworks (POM-based frameworks) are extended structures assembled from metal-oxide cluster units and organic frameworks that simultaneously possess the virtues of POMs and frameworks. They have been attracting immense attention because of their diverse architectures and charming topologies and also due to their probable application prospects in the areas of catalysis, separation, and energy storage. In this review, the recent progress in POM-based frameworks including POM-based metal organic frameworks (PMOFs), POM-based covalent organic frameworks (PCOFs), and POM-based supramolecular frameworks (PSFs) is systematically summarized. The design and construction of a POM-based framework and its application in photocatalysis and photothermal catalysis are introduced, respectively. Finally, our brief outlooks on the current challenges and future development of POM-based frameworks for photocatalysis and photothermal catalysis are provided.
Collapse
Affiliation(s)
- Xiaofei Chen
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, Henan University, Kaifeng 475004, China.
| | - Hongzhuo Wu
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, Henan University, Kaifeng 475004, China.
| | - Xinjian Shi
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, Henan University, Kaifeng 475004, China.
| | - Lixin Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.
| |
Collapse
|
13
|
Organic macrocycle-polyoxometalate hybrids. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
14
|
Liu Y, Wu Y, Luo Z, Li M. Designing supramolecular self-assembly nanomaterials as stimuli-responsive drug delivery platforms for cancer therapy. iScience 2023; 26:106279. [PMID: 36936787 PMCID: PMC10014307 DOI: 10.1016/j.isci.2023.106279] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Stimuli-responsive nanomaterials have attracted substantial interest in cancer therapy, as they hold promise to deliver anticancer agents to tumor sites in a precise and on-demand manner. Interestingly, supramolecular chemistry is a burgeoning discipline that entails the reversible bonding between components at the molecular and nanoscale levels, and the recent advances in this area offer the possibility to design nanotherapeutics with improved controllability and functionality for cancer therapy. Herein, we provide a comprehensive summary of typical non-covalent interaction modes, which primarily include hydrophobic interaction, hydrogel bonding, host-guest interaction, π-π stacking, and electrostatic interaction. Special emphasis is placed on the implications of these interaction modes to design novel stimuli-responsive drug delivery principles and concepts, aiming to enhance the spatial, temporal, and dosage precision of drug delivery to cancer cells. Finally, future perspectives are discussed to highlight current challenges and future opportunities in self-assembly-based stimuli-responsive drug delivery nanotechnologies for cancer therapy.
Collapse
Affiliation(s)
- Yingqi Liu
- School of Life Science, Chongqing University, Chongqing 400044, P. R. China
| | - Yunyun Wu
- Chongqing Municipal Center for Disease Control and Prevention, Chongqing 400042, China
| | - Zhong Luo
- School of Life Science, Chongqing University, Chongqing 400044, P. R. China
| | - Menghuan Li
- School of Life Science, Chongqing University, Chongqing 400044, P. R. China
| |
Collapse
|
15
|
Supramolecular framework membrane for precise sieving of small molecules, nanoparticles and proteins. Nat Commun 2023; 14:975. [PMID: 36810849 PMCID: PMC9944550 DOI: 10.1038/s41467-023-36684-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 02/13/2023] [Indexed: 02/24/2023] Open
Abstract
Synthetic framework materials have been cherished as appealing candidates for separation membranes in daily life and industry, while the challenges still remain in precise control of aperture distribution and separation threshold, mild processing methods, and extensive application aspects. Here, we show a two-dimensional (2D) processible supramolecular framework (SF) by integrating directional organic host-guest motifs and inorganic functional polyanionic clusters. The thickness and flexibility of the obtained 2D SFs are tuned by the solvent modulation to the interlayer interactions, and the optimized SFs with limited layers but micron-sized areas are used to fabricate the sustainable membranes. The uniform nanopores allow the membrane composed of layered SF to exhibit strict size retention for substrates with the rejection value of 3.8 nm, and the separation accuracy within 5 kDa for proteins. Furthermore, the membrane performs high charge selectivity for charged organics, nanoparticles, and proteins, due to the insertion of polyanionic clusters in the framework skeletons. This work displays the extensional separation potentials of self-assembled framework membranes comprising of small-molecules and provides a platform for the preparation of multifunctional framework materials due to the conveniently ionic exchange of the counterions of the polyanionic clusters.
Collapse
|
16
|
Supramolecular Host–Guest Assemblies of [M6Cl14]2–, M = Mo, W, Clusters with γ-Cyclodextrin for the Development of CLUSPOMs. INORGANICS 2023. [DOI: 10.3390/inorganics11020077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Abstract
Host–guest assemblies open up opportunities for developing novel functional CLUSPOM multicomponent systems based on transition metal clusters (CLUS), polyoxometalates (POMs) and macrocyclic organic ligands. In water–ethanol solution γ-cyclodextrin (γ-CD) interacts with halide metal clusters [M6Cl14]2– (M = Mo, W) to form sandwich-type structures. The supramolecular association between the clusters and CDs, however, remains weak in solution, and the interactions are not strong enough to prevent the hydrolysis of the inorganic guest. Although analysis of the resulting crystal structures reveals inclusion complexation, 1H NMR experiments in solution show no specific affinity between the two components. The luminescent properties of the host–guest compounds in comparison with the initial cluster complexes are also studied to evaluate the influence of CD.
Collapse
|
17
|
Jiang F, Li B, Wu L. Hydrogen-Bonded Framework of a Polyanionic Cluster and Its Growth from 2D to 3D for Dual-Selective Adsorption and pH-Controlled Oxidation. Inorg Chem 2022; 61:20587-20595. [DOI: 10.1021/acs.inorgchem.2c03436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Fengrui Jiang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Bao Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Lixin Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
18
|
Li X, Jiao C, Zhang X, Li X, Song X, Zhang Z, Jiang H. Ultrathin polyamide membrane tailored by mono-(6-ethanediamine-6-deoxy)-β-cyclodextrin for CO2 separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
19
|
Zhang H, Ma Z, Duan S, Liu Y, Jiang X, Zhou Q, Chen M, Ni L, Diao G. Dawson-type polyoxometalate modified separator for anchoring/catalyzing polysulfides in high-performance lithium-sulfur batteries. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
20
|
Self-sorting in macroscopic supramolecular self-assembly via additive effects of capillary and magnetic forces. Nat Commun 2022; 13:5201. [PMID: 36057726 PMCID: PMC9440903 DOI: 10.1038/s41467-022-32892-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 08/23/2022] [Indexed: 11/08/2022] Open
Abstract
Supramolecular self-assembly of μm-to-mm sized components is essential to construct complex supramolecular systems. However, the selective assembly to form designated structures at this length scale is challenging because the short-ranged molecular recognition could hardly direct the assembly of macroscopic components. Here we demonstrate a self-sorting mechanism to automatically identify the surface chemistry of μm-to-mm components (A: polycations; B: polyanions) based on the A-B attraction and the A-A repulsion, which is realized by the additivity and the competence between long-ranged magnetic/capillary forces, respectively. Mechanistic studies of the correlation between the magnetic/capillary forces and the interactive distance have revealed the energy landscape of each assembly pattern to support the self-sorting results. By applying this mechanism, the assembly yield of ABA trimers has been increased from 30%~40% under conventional conditions to 100% with self-sorting. Moreover, we have demonstrated rapid and spontaneous self-assembly of advanced chain-like structures with alternate surface chemistry.
Collapse
|
21
|
Wang F, Wang Q, Wang S, Zhang K, Jia S, Chen J, Wang X. Water-Phase Lateral Interconnecting Quantum Dots as Free-Floating 2D Film Assembled by Hydrogen-Bonding Interactions to Acquire Excellent Electrocatalytic Activity. ACS NANO 2022; 16:9049-9061. [PMID: 35695291 DOI: 10.1021/acsnano.2c00507] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Supramolecular self-assembly of nanoparticles in two orthogonal directions would potentially allow one to fabricate nanomaterials with fascinating properties. In this study of a hydrothermal polycondensation of melamine/cyanuric acid, graphitic carbon nitride-based quantum dots (CNQD, ∼2 nm) are in situ arranged along two orthogonal directions through lateral hydrogen bonding, and free-floating two-dimensional hydrogen-bonded films of CNQD (2D CNQD) are built. On the basis of the universality of this hydrothermal in situ supramolecular self-assembly technique, 2D films linked by other quantum dots such as sulfur-doped graphitic carbon nitride and CdTe are also constructed. With the benefits of stimuli responsiveness and the reversibility of hydrogen bonds, controllable assembly/disassembly of the 2D CNQD film is feasibly achieved by external stimuli such as inletting CO2/N2, which endows the assembled 2D CNQD films optimal electrochemical superiorities of both 2D film and zero-dimensional (0D) quantum dots. Accordingly, the 2D CNQD film delivers a high bifunctional activity in both a nitrogen reduction reaction (NRR) and an oxygen evolution reaction (OER). Especially in NRR, it exhibits the high yield rate of NH3 reaching 75.07 μg h-1 mg-1 at -0.85 V versus reversible hydrogen electrode at ambient condition. Strikingly, the power density of the rechargeable Zn-N2 battery using 2D CNQD film as cathode reaches 31.94 mW cm-2, outperforming the majority of Zn-N2 batteries. Density functional theory calculations proved the promoted adsorption of N2 and stabilized NRR intermediates on 2D CNQD cooperated by multiply hydrogen-bonding interactions are the main reasons for the excellent NRR electrocatalytic performances. This work hints that hydrothermal in situ supramolecular self-assembly is a feasible and direct way to integrate 0D quantum dots into 2D directional arrays, and the hydrogen bond that interlinks enables this free-floating 2D structure to maintain the electrochemical superiority of both 0D and 2D structures.
Collapse
Affiliation(s)
- Feifei Wang
- The Youth Innovation Team of Shaanxi Universities, Shaanxi Key Laboratory of Photoelectric Functional Materials and Devices, School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China
| | - Qiguan Wang
- The Youth Innovation Team of Shaanxi Universities, Shaanxi Key Laboratory of Photoelectric Functional Materials and Devices, School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China
| | - Sumin Wang
- The Youth Innovation Team of Shaanxi Universities, Shaanxi Key Laboratory of Photoelectric Functional Materials and Devices, School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China
| | - Kai Zhang
- The Youth Innovation Team of Shaanxi Universities, Shaanxi Key Laboratory of Photoelectric Functional Materials and Devices, School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China
| | | | - Jian Chen
- The Youth Innovation Team of Shaanxi Universities, Shaanxi Key Laboratory of Photoelectric Functional Materials and Devices, School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China
| | - Xinhai Wang
- School of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| |
Collapse
|
22
|
Abstract
Multicharged cyclodextrin (CD) supramolecular assemblies, including those based on positively/negatively charged modified mono-6-deoxy-CDs, per-6-deoxy-CDs, and random 2,3,6-deoxy-CDs, as well as parent CDs binding positively/negatively charged guests, have been extensively applied in chemistry, materials science, medicine, biological science, catalysis, and other fields. In this review, we primarily focus on summarizing the recent advances in positively/negatively charged CDs and parent CDs encapsulating positively/negatively charged guests, especially the construction process of supramolecular assemblies and their applications. Compared with uncharged CDs, multicharged CDs display remarkably high antiviral and antibacterial activity as well as efficient protein fibrosis inhibition. Meanwhile, charged CDs can interact with oppositely charged dyes, drugs, polymers, and biomacromolecules to achieve effective encapsulation and aggregation. Consequently, multicharged CD supramolecular assemblies show great advantages in improving drug-delivery efficiency, the luminescence properties of materials, molecular recognition and imaging, and the toughness of supramolecular hydrogels, in addition to enabling the construction of multistimuli-responsive assemblies. These features are anticipated to not only promote the development of CD-based supramolecular chemistry but also contribute to the rapid exploitation of these assemblies in diverse interdisciplinary applications.
Collapse
Affiliation(s)
- Zhixue Liu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.
| | - Yu Liu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China. .,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
23
|
Liu X, Zhang J, Lan Y, Zheng Q, Xuan W. Infinite building blocks for directed self-assembly of a supramolecular polyoxometalate–cyclodextrin framework for multifunctional oxidative catalysis. Inorg Chem Front 2022. [DOI: 10.1039/d2qi02085h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
With evolution from polyoxometalate-based molecular building blocks to infinite building blocks (IBBs), a supramolecular polyoxometalate–cyclodextrin framework was constructed by an IBB strategy for multifunctional oxidative catalysis.
Collapse
Affiliation(s)
- Xiaohui Liu
- College of Chemistry and Chemical Engineering & State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, P. R. China
| | - Jinlin Zhang
- College of Chemistry and Chemical Engineering & State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, P. R. China
| | - Yuxin Lan
- College of Chemistry and Chemical Engineering & State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, P. R. China
| | - Qi Zheng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials & College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Weimin Xuan
- College of Chemistry and Chemical Engineering & State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, P. R. China
| |
Collapse
|
24
|
Xie X, Liu X, Ma Z, Zhao H, Li W. Cationic peptides template the assembly of polyoxometalates into ultrathin nanosheet with in-plane ordered arrangement. Dalton Trans 2022; 51:3839-3844. [DOI: 10.1039/d1dt04292k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ultrathin polyoxometalates nanosheets with in-plane alignment have been constructed in aqueous solution with the assistance of cationic peptides. Different POMs varying in topology, size, and charges could be templated into...
Collapse
|
25
|
Yu SB, Lin F, Tian J, Yu J, Zhang DW, Li ZT. Water-soluble and dispersible porous organic polymers: preparation, functions and applications. Chem Soc Rev 2021; 51:434-449. [PMID: 34931205 DOI: 10.1039/d1cs00862e] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Porous organic polymers (POPs) have attracted increasing attention and emerged as a new research area in polymer chemistry. During the past decade, the intense desirability for application in aqueous scenarios has spawned the development of a specific class of POPs, i.e., water-soluble or dispersible porous organic polymers (WS-POPs) that can allow the implementation of porosity-based functions in aqueous media. In this Tutorial Review, aiming at providing a practical guide to this area, we will discuss recent advances in the preparation of WS-POPs through covalent/dynamic covalent, coordination and supramolecular approaches. As a result of their intrinsic and well-defined porosity, diverse topological architectures as well as unique water-processable features, many water-soluble/dispersible POPs have been demonstrated to exhibit potential for various applications, which include drug, DNA and protein delivery, bioimaging, photocatalysis, explosive detection and membrane separation. We will also highlight the related function of the representative structures. Finally, we provide our perspective for the future research, with a focus on the development of new structures and biofunctions.
Collapse
Affiliation(s)
- Shang-Bo Yu
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry (SIOC), Chinese Academy of Sciences, Shanghai 200032, China.
| | - Furong Lin
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry (SIOC), Chinese Academy of Sciences, Shanghai 200032, China.
| | - Jia Tian
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry (SIOC), Chinese Academy of Sciences, Shanghai 200032, China.
| | - Junlai Yu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2205 Songhu Road, Shanghai 200438, China.
| | - Dan-Wei Zhang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2205 Songhu Road, Shanghai 200438, China.
| | - Zhan-Ting Li
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry (SIOC), Chinese Academy of Sciences, Shanghai 200032, China. .,Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2205 Songhu Road, Shanghai 200438, China.
| |
Collapse
|
26
|
Cameron JM, Guillemot G, Galambos T, Amin SS, Hampson E, Mall Haidaraly K, Newton GN, Izzet G. Supramolecular assemblies of organo-functionalised hybrid polyoxometalates: from functional building blocks to hierarchical nanomaterials. Chem Soc Rev 2021; 51:293-328. [PMID: 34889926 DOI: 10.1039/d1cs00832c] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This review provides a comprehensive overview of recent advances in the supramolecular organisation and hierarchical self-assembly of organo-functionalised hybrid polyoxometalates (hereafter referred to as hybrid POMs), and their emerging role as multi-functional building blocks in the construction of new nanomaterials. Polyoxometalates have long been studied as a fascinating outgrowth of traditional metal-oxide chemistry, where the unusual position they occupy between individual metal oxoanions and solid-state bulk oxides imbues them with a range of attractive properties (e.g. solubility, high structural modularity and tuneable properties/reactivity). Specifically, the capacity for POMs to be covalently coupled to an effectively limitless range of organic moieties has opened exciting new avenues in their rational design, while the combination of distinct organic and inorganic components facilitates the formation of complex molecular architectures and the emergence of new, unique functionalities. Here, we present a detailed discussion of the design opportunities afforded by hybrid POMs, where fine control over their size, topology and their covalent and non-covalent interactions with a range of other species and/or substrates makes them ideal building blocks in the assembly of a broad range of supramolecular hybrid nanomaterials. We review both direct self-assembly approaches (encompassing both solution and solid-state approaches) and the non-covalent interactions of hybrid POMs with a range of suitable substrates (including cavitands, carbon nanotubes and biological systems), while giving key consideration to the underlying driving forces in each case. Ultimately, this review aims to demonstrate the enormous potential that the rational assembly of hybrid POM clusters shows for the development of next-generation nanomaterials with applications in areas as diverse as catalysis, energy-storage and molecular biology, while providing our perspective on where the next major developments in the field may emerge.
Collapse
Affiliation(s)
- Jamie M Cameron
- Nottingham Applied Materials and Interfaces (NAMI) Group, The GSK Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, UK.
| | - Geoffroy Guillemot
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, 4 Place Jussieu, F-75005 Paris, France.
| | - Theodor Galambos
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, 4 Place Jussieu, F-75005 Paris, France.
| | - Sharad S Amin
- Nottingham Applied Materials and Interfaces (NAMI) Group, The GSK Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, UK.
| | - Elizabeth Hampson
- Nottingham Applied Materials and Interfaces (NAMI) Group, The GSK Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, UK.
| | - Kevin Mall Haidaraly
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, 4 Place Jussieu, F-75005 Paris, France.
| | - Graham N Newton
- Nottingham Applied Materials and Interfaces (NAMI) Group, The GSK Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, UK.
| | - Guillaume Izzet
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, 4 Place Jussieu, F-75005 Paris, France.
| |
Collapse
|
27
|
Wang X, Yang C, Song P, Li M, Liu Y, Sun H, Liu Y, Zheng H, Huang J, Zhu H. Ionic surfactants as assembly crosslinkers triggered supramolecular membrane with 2D↔3D conversion under multiple stimulus. J Colloid Interface Sci 2021; 609:627-636. [PMID: 34844735 DOI: 10.1016/j.jcis.2021.11.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 11/17/2022]
Abstract
HYPOTHESIS General strategies leading to 2D assemblies promise a significant step forward in the development of supramolecular materials with diversity and superiority. Considering molecular packing parameter indicates a connection between molecular geometry and aggregate morphology, we predict the introduction of ionic surfactants as assembly crosslinker would be endowed to develop a methodology of 2D supramolecular assembles. EXPERIMENTS In this work, by introducing ionic surfactants such as sodium dodecylsulfate (SDS), the molecular packing parameter P in bolaamphiphile (A2G) system was increased, which successfully manipulated the transformation of the 3D vesicles into 2D membranes. This 2D membranes further showed excellent light and enzyme response, and thus 2D to 3D morphological conversion can be rationally controlled via UV/Vis light irradiation and alternate addition of β-CD and α-amylase. Significantly, the 2D feature revealed not only a remarkable fluorescence enhancement to luminescent molecules but also the ability to effectively remove pollutants from water through filtration. FINDINGS We report a general and facile strategy for the construction of 2D supramolecular membranes, initiated by introducing ionic surfactants as assembly crosslinker to increase P. In the existence of stimulus response factors, 2D↔3D morphological conversion can be further controlled in a flexible manner, which opens up a new paradigm leading to interconvertible supramolecular materials.
Collapse
Affiliation(s)
- Xuejiao Wang
- Fujian Provincial University Engineering Research Center of Industrial Biocatalysis, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, PR China; Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China.
| | - Chunlian Yang
- Fujian Provincial University Engineering Research Center of Industrial Biocatalysis, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, PR China
| | - Pengbo Song
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
| | - Maodong Li
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, PR China
| | - Yuxin Liu
- Department of Biomolecular System, Max-Planck Institute for Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Hao Sun
- Fujian Provincial University Engineering Research Center of Industrial Biocatalysis, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, PR China
| | - Yuting Liu
- Fujian Provincial University Engineering Research Center of Industrial Biocatalysis, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, PR China
| | - Hang Zheng
- Fujian Provincial University Engineering Research Center of Industrial Biocatalysis, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, PR China
| | - Jianbin Huang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China.
| | - Hu Zhu
- Fujian Provincial University Engineering Research Center of Industrial Biocatalysis, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, PR China.
| |
Collapse
|
28
|
Ni L, Yang G, Liu Y, Wu Z, Ma Z, Shen C, Lv Z, Wang Q, Gong X, Xie J, Diao G, Wei Y. Self-Assembled Polyoxometalate Nanodots as Bidirectional Cluster Catalysts for Polysulfide/Sulfide Redox Conversion in Lithium-Sulfur Batteries. ACS NANO 2021; 15:12222-12236. [PMID: 34156812 DOI: 10.1021/acsnano.1c03852] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Polyoxometalates (POMs) are a class of discrete molecular inorganic metal-oxide clusters with reversible multielectron redox capability. Taking advantage of their redox properties, POMs are thus expected to be directly involved in the lithium-sulfur batteries (Li-S, LSBs) system as a bidirectional molecular catalyst. Herein, we design a three-dimensional porous structure of reduced graphene-carbon nanotube skeleton supported POM catalyst as a high-conductive and high-stability host material. Based on various spectroscopic techniques and in situ electrochemical studies together with computational methods, the catalytic mechanism of POM clusters in Li-S battery was systematically clarified at the molecular level. The constructed POM-based sulfur cathode delivers a reversible capacity 1110 mAh g-1 at 1.0 C and cycling stability up to 1000 cycles at 3.0 C. Furthermore, Li-S pouch/beaker batteries with a POM-based cathode were successfully demonstrated. This work provides essential inputs to promote molecular catalyst design and its application in LSBs.
Collapse
Affiliation(s)
- Lubin Ni
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002 Jiangsu, P. R. China
| | - Guang Yang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002 Jiangsu, P. R. China
| | - Yi Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002 Jiangsu, P. R. China
| | - Zhen Wu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002 Jiangsu, P. R. China
| | - Zhiyuan Ma
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002 Jiangsu, P. R. China
| | - Chao Shen
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002 Jiangsu, P. R. China
| | - Zengxiang Lv
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002 Jiangsu, P. R. China
| | - Qi Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002 Jiangsu, P. R. China
| | - Xiangxiang Gong
- Testing Center, Yangzhou University, Yangzhou, 225002 Jiangsu, P. R. China
| | - Ju Xie
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002 Jiangsu, P. R. China
| | - Guowang Diao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002 Jiangsu, P. R. China
| | - Yongge Wei
- Key Lab of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
29
|
Abstract
Nanopore structures in nature play a crucial role in performing many sophisticated functions such as signal transduction, mass transport, ion channel, and enzyme reaction. Inspired by pore-forming proteins, considerable effort has been made to design self-assembling molecules that are able to form nanostructures with internal pores in aqueous media. These nanostructures offer ample opportunity for applications because their internal pores are able to perform a number of unique functions required for a confined nanospace. However, unlike nanopore assembly in nature, the synthetic nanopore structures are mostly based on a fixed pore that impedes performing adaptable regulation of properties to environmental change. This limitation can be overcome by integration of hydrophilic oligo(ethylene oxide) dendrons into aromatic building blocks for nanopore self-assembly, because the dendritic chains undergo large conformational changes triggered by environmental change. The transition of the oligoether chains triggers the aromatic nanopore assembly to undergo reversible pore deformation through closing, squeezing, and shape change without structural collapse. These switching properties allow the aromatic nanopore structures to perform adaptable, complex functions which are difficult to achieve using a fixed pore assembly.In this Account, we summarize our recent progress in the development of switchable nanopore structures by self-assembly of rigid aromatic amphiphiles grafted by hydrophilic oligo(ethylene oxide) dendrons in aqueous media. We show that combining oligoether chains into aromatic segments generates switchable aromatic nanopore structures in aqueous media such as hollow tubules, toroidal structures, and 2D porous sheets depending on the shape of the aromatic building block. Next, we discuss the chemical principle behind the switching motion of the aromatic nanopore structures triggered by external stimuli. We show that the internal pores of the aromatic nanostructures are able to undergo reversible switching between open-closed or expanded-contracted states triggered by external stimuli such as temperature, pH, and salts. In the case of toroidal structures, closed ring-like aromatic frameworks can be spirally open triggered by heat treatment, which spontaneously initiate helical polymerization. Additionally, we discuss switchable functions carried out by the aromatic nanopores such as driving helicity inversion of DNA, consecutive enzymatic action, reversible actuation of lipid vesicles, and pumping of captured guests out of internal pores. By understanding the underlying chemical principle required for dynamic mechanical motion, aromatic assembly can be exploited more broadly to create emergent nanopore structures with functions as complex as those of biological systems.
Collapse
Affiliation(s)
- Mo Sun
- Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Myongsoo Lee
- Department of Chemistry, Fudan University, Shanghai 200438, China
| |
Collapse
|
30
|
Chen X, Zhang G, Li B, Wu L. An integrated giant polyoxometalate complex for photothermally enhanced catalytic oxidation. SCIENCE ADVANCES 2021; 7:eabf8413. [PMID: 34301598 PMCID: PMC8302132 DOI: 10.1126/sciadv.abf8413] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 06/04/2021] [Indexed: 05/11/2023]
Abstract
A strategy integrating near infrared (NIR) photothermal and catalytic effects within one active center beyond ultraviolet and visible light is proposed without the combination of separated photothermal transformation components. A giant polyoxomolybdate, which has high NIR photothermal conversion efficiency, is selected as the model catalyst, while a cationic β-cyclodextrin is used to cover its negatively charged surface electrostatically. Under NIR light radiation, the designed catalyst increases catalytic activity of cyclohexene oxidation under O2 atmosphere in water. The conversion reaches about pentaploid of the reaction without NIR radiation. By excluding heating effect from the external heater at the same temperature, about twice as much enhancement, which can be attributed to the sole photothermal action, is still observed. While the catalytic center is shielded by the organic porous layer, the surface cavity allows the integrated catalyst to conduct a selective catalysis by screening the molecules in size over the surface channel.
Collapse
Affiliation(s)
- Xiaofei Chen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Guohua Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Bao Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.
| | - Lixin Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.
| |
Collapse
|
31
|
Li R, Xu J, Wang T, Wang L, Li F, Liu S, Jiang X, Luo Q, Liu J. Dynamically Tunable Ultrathin Protein Membranes for Controlled Molecular Separation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:12359-12365. [PMID: 33666409 DOI: 10.1021/acsami.0c21817] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Developing the ultrathin membranes for high-performance separation still faces the challenge of both high permeance and selectivity. Herein, a large-area protein membrane was fabricated by the interfacial self-assembly of bovine serum albumin (BSA) and surfactants at the oil/water interface of emulsions. Benefiting from the ultrathin thickness and unique protein-surrounded tortuous channels, the membrane displays ultrahigh permeation flux and selective sieving capability for various molecules ranging from small dye molecules to proteins based on a dual filtration mechanism. More importantly, the rejection precision can also be reversibly regulated by the folding/unfolding transition of proteins to control the effective pore size of transport channels, even under a pressure-driven condition. This dynamically tunable ultrathin protein membrane combines the advantages of high permeance, selectivity, controllability, recyclability, and mechanical stability, which may create new opportunities for advanced applications in extended fields.
Collapse
Affiliation(s)
- Ruyu Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Jiayun Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310000, China
| | - Tingting Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Liang Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Fei Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Shengda Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Xiaojia Jiang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Quan Luo
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
- Key Laboratory of Emergency and Trauma, Ministry of Education, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Junqiu Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310000, China
| |
Collapse
|
32
|
Yang J, Liu X, Tang J, Dėdinaitė A, Liu J, Miao R, Liu K, Peng J, Claesson PM, Liu X, Fang Y. Robust and Large-Area Calix[4]pyrrole-Based Nanofilms Enabled by Air/DMSO Interfacial Self-Assembly-Confined Synthesis. ACS APPLIED MATERIALS & INTERFACES 2021; 13:3336-3348. [PMID: 33356087 DOI: 10.1021/acsami.0c16831] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The modular construction of defect-free nanofilms with a large area remains a challenge. Herein, we present a scalable strategy for the preparation of calix[4]pyrrole (C[4]P)-based nanofilms through acryl hydrazone reaction conducted in a tetrahydrazide calix[4]pyrrole (CPTH)-based self-assembled layer at the air/DMSO interface. With this strategy, robust, regenerable, and defect-free nanofilms with an exceptionally large area (∼750 cm2) were constructed. The thickness and permeability of the film systems can be fine-tuned by varying the precursor concentration or by changing another building block. A typical nanofilm (C[4]P-TFB, ∼67 nm) depicted high water flux (39.9 L m-2 h-1 under 1 M Na2SO4), narrow molecular weight cut-off value (∼200 Da), and promising antifouling properties in the forward osmosis (FO) process. In addition, the nanofilms are stable over a wide pH range and tolerable to different organic solvents. Interestingly, the introduction of C[4]P endowed the nanofilms with both outstanding mechanical properties and unique group-selective separation capability, laying the foundation for wastewater treatment and pharmaceutical concentration.
Collapse
Affiliation(s)
- Jinglun Yang
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Xiangquan Liu
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Jiaqi Tang
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Andra Dėdinaitė
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Chemistry, Division of Surface and Corrosion Science, KTH Royal Institute of Technology, Drottning Kristinas väg 51, SE-100 44 Stockholm, Sweden
- Division of Bioscience and Materials, RISE Research Institutes of Sweden, SE-114 86 Stockholm, Sweden
| | - Jianfei Liu
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Rong Miao
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Kaiqiang Liu
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Junxia Peng
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Per Martin Claesson
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Chemistry, Division of Surface and Corrosion Science, KTH Royal Institute of Technology, Drottning Kristinas väg 51, SE-100 44 Stockholm, Sweden
- Division of Bioscience and Materials, RISE Research Institutes of Sweden, SE-114 86 Stockholm, Sweden
| | - Xiaoyan Liu
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| |
Collapse
|
33
|
Cao L, Wang C. Metal-Organic Layers for Electrocatalysis and Photocatalysis. ACS CENTRAL SCIENCE 2020; 6:2149-2158. [PMID: 33376778 PMCID: PMC7760065 DOI: 10.1021/acscentsci.0c01150] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Indexed: 05/15/2023]
Abstract
Metal-organic layers (MOLs) are two-dimensional analogues of metal-organic frameworks (MOFs) with a high aspect ratio and thickness down to a monolayer. Active sites on MOLs are more accessible than those on MOFs thanks to the two-dimensional feature of MOLs, which allows easier chemical modification around the catalytic center. MOLs can also be assembled with other functional materials through surface anchoring sites that can facilitate charge/energy transport through the hybrid material. MOLs are thus quite suitable for interfacial catalysis like electrocatalysis and photocatalysis. In this outlook, we focus on representative progress of constructing unique interfacial sites on MOLs with designer paths for charge separation and energy transfer, as well as cooperative cavities for superior substrate adsorption and activation. We also discuss challenges and potentials in the future development of MOL catalysts and catalysts beyond MOLs.
Collapse
Affiliation(s)
- Lingyun Cao
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Cheng Wang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| |
Collapse
|
34
|
Kim T, Park JY, Hwang J, Seo G, Kim Y. Supramolecular Two-Dimensional Systems and Their Biological Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002405. [PMID: 32989841 DOI: 10.1002/adma.202002405] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/07/2020] [Indexed: 06/11/2023]
Abstract
Various biological systems rely on the supramolecular assembly of biomolecules through noncovalent bonds for performing sophisticated functions. In particular, cell membranes, which are 2D structures in biological systems, have various characteristics such as a large surface, flexibility, and molecule-recognition ability. Supramolecular 2D materials based on biological systems provide a novel perspective for the development of functional 2D materials. The physical and chemical properties of 2D structures, attributed to their large surface area, can enhance the sensitivity of the detection of target molecules, molecular loading, and bioconjugation efficiency, suggesting the potential utility of functional 2D materials as candidates for biological systems. Although several types of studies on supramolecular 2D materials have been reported, supramolecular biofunctional 2D materials have not been reviewed previously. In this regard, the current advances in 2D material development using molecular assembly are discussed with respect to the rational design of self-assembling aromatic amphiphiles, the formation of 2D structures, and the biological applications of functional 2D materials.
Collapse
Affiliation(s)
- Taeyeon Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Jung Yeon Park
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Jiwon Hwang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Gunhee Seo
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Yongju Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| |
Collapse
|
35
|
Polyrotaxane-based thin film composite membranes for enhanced nanofiltration performance. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116893] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
Zhou Y, Zhang G, Li B, Wu L. Two-Dimensional Supramolecular Ionic Frameworks for Precise Membrane Separation of Small Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2020; 12:30761-30769. [PMID: 32462871 DOI: 10.1021/acsami.0c05947] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Supramolecular frameworks driven by intermolecular interactions represent a new type of porous materials differing from those driven by covalent or coordination bonding. The intermolecular interaction-induced flexible assembly structures display unique advantages in material processing, structure stimuli response, and recycling. In this work, a two-dimensional (2D) supramolecular ionic framework (SIF) was constructed through the initial ionic interaction between the host cation and polyoxometalate polyanion and then the host-guest inclusion of the formed host ionic complex with a four-arm porphyrin guest molecule following a [2+4] type reaction. Several prepared framework monolayers bearing an orthometric grid structure constituted a nanosheet-like assembly with flexibility and exhibited processability, which provided feasibility for the further preparation of separation membranes via a simple suction procedure of their dispersed suspensions in mixed solvents. The nanofiltration based on the uniform square pores under a slightly reduced pressure successfully achieved precise separation of several types of nanoparticles and molecular clusters in wide distribution at a cutting off value as small as 2.2 nm. These results also implied the potential of the present strategy for more separations at a molecular level and very fine nanoscale.
Collapse
Affiliation(s)
- Yan Zhou
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Guohua Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Bao Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Lixin Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
37
|
Yang B, Wang H, Zhang D, Li Z. Water‐Soluble Three‐Dimensional
Polymers:
Non‐Covalent
and Covalent Synthesis and Functions
†. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.202000085] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Bo Yang
- College of Chemistry, Zhengzhou University 100 Kexue Street Zhengzhou Henan 450001 China
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University 2205 Songhu Road Shanghai 200438 China
| | - Hui Wang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University 2205 Songhu Road Shanghai 200438 China
| | - Dan‐Wei Zhang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University 2205 Songhu Road Shanghai 200438 China
| | - Zhan‐Ting Li
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University 2205 Songhu Road Shanghai 200438 China
| |
Collapse
|
38
|
Wang J, Wang T, Liu X, Lu Y, Geng J. Multiple-responsive supramolecular vesicle based on azobenzene-cyclodextrin host-guest interaction. RSC Adv 2020; 10:18572-18580. [PMID: 35518297 PMCID: PMC9053703 DOI: 10.1039/d0ra02123g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/08/2020] [Indexed: 12/14/2022] Open
Abstract
Multiple-responsive supramolecular vesicles have been successfully fabricated by the complexation between β-cyclodextrin (β-CD) and a pH/photo dual-responsive amphiphile 4-(4-(hexyloxy)phenylazo)benzoate sodium (HPB) with azobenzene and carboxylate groups. When mixing β-CD with HPB to reach a host/guest molar ratio of 1 : 1, the azobenzene group of HPB could be spontaneously included by β-CD molecules. Then, the formed inclusion complexes (HPB@β-CD) could self-assemble into vesicles, which was driven by the hydrophobic interaction of the alkyl chain of HPB and the hydrogen bonds between neighboring β-CDs. The reversible assembly/disassembly of the vesicles could be simply regulated under UV or visible light irradiation. The reversible phase transformation between vesicles and microbelts could also be realized by adjusting the pH values of the sample. Adding both competitive guest molecules (1-adamantane carboxylic acid sodium (ADA)) and α-amylase would result in the phase transformation from vesicles to micelles. Moreover, the vesicles would be destroyed when β-CD was continuously added until the ratio of host/guest reached 2 : 1. Such an interesting quintuple-responsive vesicle system reported here not only has potential applications in various fields such as controlled release or drug delivery, but also provides a reference for the design and construction of multiple responsive systems. A quintuple-responsive vesicle system was successfully fabricated by simply mixing HPB with an equal amount of β-CD.![]()
Collapse
Affiliation(s)
- Jiao Wang
- Department of Chemistry, Taiyuan Normal University Jinzhong 030619 China
| | - Ting Wang
- Department of Chemistry, Taiyuan Normal University Jinzhong 030619 China
| | - Xiaohui Liu
- Department of Chemistry, Taiyuan Normal University Jinzhong 030619 China
| | - Yan Lu
- Department of Chemistry, Taiyuan Normal University Jinzhong 030619 China
| | - Jingjing Geng
- Department of Chemistry, Taiyuan Normal University Jinzhong 030619 China
| |
Collapse
|
39
|
Feng X, Shen B, Sun B, Kim J, Liu X, Lee M. Single‐Layered Chiral Nanosheets with Dual Chiral Void Spaces for Highly Efficient Enantiomer Absorption. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003807] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xiaopeng Feng
- State Key Laboratory for Supramolecular Strucuture and Materials College of Chemistry Jilin University Changchun 130012 China
| | - Bowen Shen
- Department of Chemistry Fudan University Shanghai 200438 China
| | - Bo Sun
- State Key Laboratory for Supramolecular Strucuture and Materials College of Chemistry Jilin University Changchun 130012 China
| | - Jehan Kim
- Pohang Accelerator Laboratory, POSTECH Pohang 37673 Korea
| | - Xin Liu
- State Key Laboratory for Supramolecular Strucuture and Materials College of Chemistry Jilin University Changchun 130012 China
| | - Myongsoo Lee
- State Key Laboratory for Supramolecular Strucuture and Materials College of Chemistry Jilin University Changchun 130012 China
- Department of Chemistry Fudan University Shanghai 200438 China
| |
Collapse
|
40
|
Feng X, Shen B, Sun B, Kim J, Liu X, Lee M. Single-Layered Chiral Nanosheets with Dual Chiral Void Spaces for Highly Efficient Enantiomer Absorption. Angew Chem Int Ed Engl 2020; 59:11355-11359. [PMID: 32246737 DOI: 10.1002/anie.202003807] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Indexed: 12/19/2022]
Abstract
Although considerable effort in recent years has been devoted to the development of two-dimensional nanostructures, single-layered chiral sheet structures with a lateral assembly of discrete clusters remain elusive. Here, we report single-layered chiral 2D sheet structures with dual chiral void spaces in which discrete clusters of planar aromatic segments are arranged with in-plane AB order in aqueous methanol solution. The chirality of the sheet is induced by the slipped-cofacial stacks of rectangular plate-like aromatic segments in the discrete clusters which are arranged laterally with up and down packing, resulting in dual chiral void spaces. The chiral nanosheets function as superfast enantiomer separation nanomaterials, which rapidly absorb a single enantiomer from a racemic mixture with greater than 99 % ee.
Collapse
Affiliation(s)
- Xiaopeng Feng
- State Key Laboratory for Supramolecular Strucuture and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Bowen Shen
- Department of Chemistry, Fudan University, Shanghai, 200438, China
| | - Bo Sun
- State Key Laboratory for Supramolecular Strucuture and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Jehan Kim
- Pohang Accelerator Laboratory, POSTECH, Pohang, 37673, Korea
| | - Xin Liu
- State Key Laboratory for Supramolecular Strucuture and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Myongsoo Lee
- State Key Laboratory for Supramolecular Strucuture and Materials, College of Chemistry, Jilin University, Changchun, 130012, China.,Department of Chemistry, Fudan University, Shanghai, 200438, China
| |
Collapse
|
41
|
Xiao X, Chen H, Dong X, Ren D, Deng Q, Wang D, Tian W. A Double Cation–π‐Driven Strategy Enabling Two‐Dimensional Supramolecular Polymers as Efficient Catalyst Carriers. Angew Chem Int Ed Engl 2020; 59:9534-9541. [DOI: 10.1002/anie.202000255] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/19/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Xuedong Xiao
- Shaanxi Key Laboratory of Macromolecular Science and TechnologyMOE Key Laboratory of Material Physics and Chemistry under Extraordinary ConditionsSchool of Chemistry and Chemical EngineeringNorthwestern Polytechnical University Xi'an 710072 China
| | - Hongbo Chen
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun Jilin 130022 China
| | - Xuxu Dong
- Shaanxi Key Laboratory of Macromolecular Science and TechnologyMOE Key Laboratory of Material Physics and Chemistry under Extraordinary ConditionsSchool of Chemistry and Chemical EngineeringNorthwestern Polytechnical University Xi'an 710072 China
| | - Dazhuo Ren
- Shaanxi Key Laboratory of Macromolecular Science and TechnologyMOE Key Laboratory of Material Physics and Chemistry under Extraordinary ConditionsSchool of Chemistry and Chemical EngineeringNorthwestern Polytechnical University Xi'an 710072 China
| | - Qiang Deng
- Shaanxi Key Laboratory of Macromolecular Science and TechnologyMOE Key Laboratory of Material Physics and Chemistry under Extraordinary ConditionsSchool of Chemistry and Chemical EngineeringNorthwestern Polytechnical University Xi'an 710072 China
| | - Dapeng Wang
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun Jilin 130022 China
| | - Wei Tian
- Shaanxi Key Laboratory of Macromolecular Science and TechnologyMOE Key Laboratory of Material Physics and Chemistry under Extraordinary ConditionsSchool of Chemistry and Chemical EngineeringNorthwestern Polytechnical University Xi'an 710072 China
| |
Collapse
|
42
|
Xiao X, Chen H, Dong X, Ren D, Deng Q, Wang D, Tian W. A Double Cation–π‐Driven Strategy Enabling Two‐Dimensional Supramolecular Polymers as Efficient Catalyst Carriers. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xuedong Xiao
- Shaanxi Key Laboratory of Macromolecular Science and TechnologyMOE Key Laboratory of Material Physics and Chemistry under Extraordinary ConditionsSchool of Chemistry and Chemical EngineeringNorthwestern Polytechnical University Xi'an 710072 China
| | - Hongbo Chen
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun Jilin 130022 China
| | - Xuxu Dong
- Shaanxi Key Laboratory of Macromolecular Science and TechnologyMOE Key Laboratory of Material Physics and Chemistry under Extraordinary ConditionsSchool of Chemistry and Chemical EngineeringNorthwestern Polytechnical University Xi'an 710072 China
| | - Dazhuo Ren
- Shaanxi Key Laboratory of Macromolecular Science and TechnologyMOE Key Laboratory of Material Physics and Chemistry under Extraordinary ConditionsSchool of Chemistry and Chemical EngineeringNorthwestern Polytechnical University Xi'an 710072 China
| | - Qiang Deng
- Shaanxi Key Laboratory of Macromolecular Science and TechnologyMOE Key Laboratory of Material Physics and Chemistry under Extraordinary ConditionsSchool of Chemistry and Chemical EngineeringNorthwestern Polytechnical University Xi'an 710072 China
| | - Dapeng Wang
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun Jilin 130022 China
| | - Wei Tian
- Shaanxi Key Laboratory of Macromolecular Science and TechnologyMOE Key Laboratory of Material Physics and Chemistry under Extraordinary ConditionsSchool of Chemistry and Chemical EngineeringNorthwestern Polytechnical University Xi'an 710072 China
| |
Collapse
|
43
|
Cheng N, Chen Y, Zhang Y, Liu Y. Cucurbit[7]uril-Mediated 2D Single-Layer Hybrid Frameworks Assembled by Tetraphenylethene and Polyoxometalate toward Modulation of the α-Chymotrypsin Activity. ACS APPLIED MATERIALS & INTERFACES 2020; 12:15615-15621. [PMID: 32134235 DOI: 10.1021/acsami.0c02976] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Construction of large-scale single-layer two-dimensional (2D) frameworks in water is significant due to their utilities in various fields. Utilizing macrocycle-mediated supramolecular self-assembly represents a promising approach; however, challenges still remain in their practical preparation. Here, we exploited a two-step supramolecular strategy to build 2D organic-inorganic hybrid frameworks at a micrometer scale in water. Taking advantage of the high binding affinity to cucurbit[7]uril (CB[7]), mono-quaternary ammonium tetraphenylethene (MQATPE) derivatives were first included with CB[7] to form a 1:1 complex (MQATPE@CB[7]). Then, just mixing the complex with anionic polyoxometalate Na9[EuW10O36]·32H2O (denoted as Eu-POM) in a 3:1 molar ratio leads to the formation of single-layer 2D films with tens of micrometers via electrostatic and π-π stacking interactions. The most unique feature of this strategy is that the steric effect imposed by CB[7] would not only lead the modules to adopt a periodic hexagonal assembly but also forbid stacking between layers through comparison with the merely multilayered 2D nanosheets self-assembled by MQATPE/Eu-POM. Interestingly, the charge interactions between MQATPE and Eu-POM would lead to the aggregation-induced emission (AIE) fluorescence of MQATPE, and white light emission could be obtained through the simple regulation of the contents of Eu-POM and MQATPE. Furthermore, due to the high surface areas and more accessible active sites, the single-layer films can act as an effective enzyme inhibitor to modulate the activity of α-chymotrypsin (ChT). These findings suggest a simple but universal approach for single-layer hybrid materials, which may hold promise for practical applications in photophysical and biomedical fields.
Collapse
Affiliation(s)
- Ni Cheng
- College of Pharmacy, Weifang Medical University, Weifang, Shandong 261053, P. R. China
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yong Chen
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yi Zhang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, P. R. China
| |
Collapse
|
44
|
Chen Z, Yam VW. Precise Size‐Selective Sieving of Nanoparticles Using a Highly Oriented Two‐Dimensional Supramolecular Polymer. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201913621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Zhen Chen
- Institute of Molecular Functional Materials and Department of ChemistryThe University of Hong Kong Pokfulam Road Hong Kong P. R. China
| | - Vivian Wing‐Wah Yam
- Institute of Molecular Functional Materials and Department of ChemistryThe University of Hong Kong Pokfulam Road Hong Kong P. R. China
| |
Collapse
|
45
|
Chen Z, Yam VW. Precise Size‐Selective Sieving of Nanoparticles Using a Highly Oriented Two‐Dimensional Supramolecular Polymer. Angew Chem Int Ed Engl 2020; 59:4840-4845. [DOI: 10.1002/anie.201913621] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Zhen Chen
- Institute of Molecular Functional Materials and Department of ChemistryThe University of Hong Kong Pokfulam Road Hong Kong P. R. China
| | - Vivian Wing‐Wah Yam
- Institute of Molecular Functional Materials and Department of ChemistryThe University of Hong Kong Pokfulam Road Hong Kong P. R. China
| |
Collapse
|
46
|
Processing supramolecular framework for free interconvertible liquid separation. Nat Commun 2020; 11:425. [PMID: 31969563 PMCID: PMC6976700 DOI: 10.1038/s41467-019-14227-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/11/2019] [Indexed: 01/10/2023] Open
Abstract
Nanoporous structures constructed by small molecular components exhibited vigorous materials potentials. While maintianing uniform porosity and functional properties, more applicable processing methods for the solid powders need to be considered and the improvement of binding interactions represents a preferable approach for structural flexibility. Here, by combining ionic interaction and host-guest inclusion, we constructed flexible supramolecular frameworks composing of inorganic polyanionic clusters, cationic organic hosts, and a bridging guest. The formed layer framework structure assemblies grew into nano-fibers and then supramolecular gels, donating highly convenient processability to porous materials. A simple spin-coating generated a new type of liquid separation membranes which showed structural stability for many liquids. The surface properties can be facilely modulated via filling a joystick liquid and then a hydrophilic/hydrophobic liquid into the porous frameworks, providing in-situ consecutive switchings for cutting liquids. This strategy extends the potential of flexible supramolecular frameworks for responsive materials in the laboratory and in industry. Porous materials show potential in various technological fields but processing of these materials remains challenging which hampers their application. Here the authors demonstrate an organic/inorganic framework composed of a supramolecular gel as processable porous material.
Collapse
|
47
|
Li H, Wu L. A perspective on polyoxometalates as versatile synthons for precisely hybridized polymer materials. POLYM INT 2019. [DOI: 10.1002/pi.5948] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Haolong Li
- State Key Laboratory of Supramolecular Structure and MaterialsCollege of Chemistry, Jilin University Changchun China
| | - Lixin Wu
- State Key Laboratory of Supramolecular Structure and MaterialsCollege of Chemistry, Jilin University Changchun China
| |
Collapse
|
48
|
Wang J, Chen Y, Cheng N, Feng L, Gu BH, Liu Y. Multivalent Supramolecular Self-Assembly between β-Cyclodextrin Derivatives and Polyoxometalate for Photodegradation of Dyes and Antibiotics. ACS APPLIED BIO MATERIALS 2019; 2:5898-5904. [DOI: 10.1021/acsabm.9b00845] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Jing Wang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yong Chen
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Ni Cheng
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Li Feng
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Bo-Han Gu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
49
|
Ni L, Li H, Xu H, Shen C, Liu R, Xie J, Zhang F, Chen C, Zhao H, Zuo T, Diao G. Self-Assembled Supramolecular Polyoxometalate Hybrid Architecture as a Multifunctional Oxidation Catalyst. ACS APPLIED MATERIALS & INTERFACES 2019; 11:38708-38718. [PMID: 31545027 DOI: 10.1021/acsami.9b12531] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Polyoxometalates (POMs) are widely applied as tuneable and versatile catalysts for a variety of oxidation reactions in an aqueous/organic two-phase system. However, the practical applications of POMs-based biphasic catalysis are hampered by low space-time yields and mass-transport limitation between two layers due to extremely low solubility of the organic reactants in the aqueous phase. Here, we first introduced β-cyclodextrin (β-CD) as an inverse phase transfer agent and a supramolecular nanoreactor to construct a supramolecular POM inorganic-organic hybrid framework (KCl4)Na7[(β-CD)3(SiW12O40)]·9H2O {3CD@SiW12} for various oxidation catalyses. In contrast to free CD, Keggin [SiW12O40]4- catalysts, and their mixture, the {3CD@SiW12} catalyst, efficiently catalyze oxidation reactions of alcohol, alkene, and thiophene. A comprehensive strategy of experimental, crystallographic, and density functional theory (DFT) calculations elucidates that the catalytic pathway involved three combined aspects of supramolecular recognition, phase transfer property, and POM catalysis. The strategic combination of supramolecular characteristic and POM-based catalysts to fabricate supramolecular POM hybrid materials opens up new economic and green tuning options, thus paving the way to informed catalyst design.
Collapse
|
50
|
Cheng X, Sun P, Zhang S, Sun D, Jiang B, Wang W, Xin X. Self-assembly of m-phenylenediamine and polyoxometalate into hollow-sphere and core-in-hollow-shell nanostructures for selective adsorption of dyes. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.110982] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|