1
|
Kim J, Zhao Y, Kim HY, Kim S, Jiang Y, Lee MJ. Extracellular Vesicle-Mediated Delivery of 20S Proteasomes Enhances Tau Degradation in Recipient Cells. J Extracell Vesicles 2025; 14:e70086. [PMID: 40384174 PMCID: PMC12086326 DOI: 10.1002/jev2.70086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 04/10/2025] [Indexed: 05/20/2025] Open
Abstract
The 26S proteasome holoenzyme comprises 20S catalytic and 19S regulatory complexes. Accumulating evidence suggests that the majority of proteasomes in the extracellular space exist as free 20S proteasomes; however, their origin and pathophysiological function remain to be determined. Here, we report that cellular proteasomes are effectively packaged into the lumen of extracellular vesicles (EVs) and secreted in a structurally intact and enzymatically active 20S form. We further demonstrate that EV-encapsulated 20S proteasomes are delivered to recipient cells and facilitate the degradation of overexpressed tau proteins without disrupting global proteolytic pathways. These findings highlight a novel cell-to-cell communication system that transports the proteasomes to target cells for the clearance of proteotoxic substrates. Further characterisation of this homeostatic mechanism will improve our understanding of organismal stress response mechanisms and may provide a therapeutic approach to treat various proteinopathies, including Alzheimer's disease.
Collapse
Affiliation(s)
- Jiseong Kim
- Department of Biochemistry and Molecular BiologySeoul National University College of MedicineSeoulSouth Korea
- Department of Biomedical SciencesSeoul National University Graduate SchoolSeoulSouth Korea
| | - Yuping Zhao
- Shandong Provincial Key Laboratory of Tumor Imaging Equipment Development and Theragnostic TechnologiesLinyi UniversityLinyiChina
| | - Hyun Young Kim
- Department of Oral Microbiology and ImmunologyDental Research InstituteSchool of DentistrySeoul National UniversitySeoulSouth Korea
- Department of MicrobiologyADA Forsyth InstituteSomervilleMassachusettsUSA
| | - Sumin Kim
- Department of Biochemistry and Molecular BiologySeoul National University College of MedicineSeoulSouth Korea
- Department of Biomedical SciencesSeoul National University Graduate SchoolSeoulSouth Korea
| | - Yanxialei Jiang
- Shandong Provincial Key Laboratory of Tumor Imaging Equipment Development and Theragnostic TechnologiesLinyi UniversityLinyiChina
| | - Min Jae Lee
- Department of Biochemistry and Molecular BiologySeoul National University College of MedicineSeoulSouth Korea
- Department of Biomedical SciencesSeoul National University Graduate SchoolSeoulSouth Korea
- Ischemic/Hypoxic Disease InstituteConvergence Research Center for DementiaMedical Research CenterSeoul National UniversitySeoulSouth Korea
| |
Collapse
|
2
|
Ibrahim NK, Schreek S, Cinar B, Stasche AS, Lee SH, Zeug A, Dolgner T, Niessen J, Ponimaskin E, Shcherbata H, Fehlhaber B, Bourquin JP, Bornhauser B, Stanulla M, Pich A, Gutierrez A, Hinze L. SOD2 is a regulator of proteasomal degradation promoting an adaptive cellular starvation response. Cell Rep 2025; 44:115434. [PMID: 40131931 PMCID: PMC12094083 DOI: 10.1016/j.celrep.2025.115434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 02/07/2025] [Accepted: 02/24/2025] [Indexed: 03/27/2025] Open
Abstract
Adaptation to changes in amino acid availability is crucial for cellular homeostasis, which requires an intricate orchestration of involved pathways. Some cancer cells can maintain cellular fitness upon amino acid shortage, which has a poorly understood mechanistic basis. Leveraging a genome-wide CRISPR-Cas9 screen, we find that superoxide dismutase 2 (SOD2) has a previously unrecognized dismutase-independent function. We demonstrate that SOD2 regulates global proteasomal protein degradation and promotes cell survival under conditions of metabolic stress in malignant cells through the E3 ubiquitin ligases UBR1 and UBR2. Consequently, inhibition of SOD2-mediated protein degradation highly sensitizes different cancer entities, including patient-derived xenografts, to amino acid depletion, highlighting the pathophysiological relevance of our findings. Our study reveals that SOD2 is a regulator of proteasomal protein breakdown upon starvation, which serves as an independent catabolic source of amino acids, a mechanism co-opted by cancer cells to maintain cellular fitness.
Collapse
Affiliation(s)
- Nurul Khalida Ibrahim
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany
| | - Sabine Schreek
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany
| | - Buesra Cinar
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany
| | - Anna Sophie Stasche
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany
| | - Su Hyun Lee
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Andre Zeug
- Department of Cellular Neurophysiology, Hannover Medical School, 30625 Hannover, Germany
| | - Tim Dolgner
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany
| | - Julia Niessen
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany
| | - Evgeni Ponimaskin
- Department of Cellular Neurophysiology, Hannover Medical School, 30625 Hannover, Germany
| | - Halyna Shcherbata
- Department of Cell Biochemistry, Hannover Medical School, 30625 Hannover, Germany; Mount Desert Island Biological Laboratory, Bar Harbor, ME 04609, USA
| | - Beate Fehlhaber
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany
| | - Jean-Pierre Bourquin
- Department of Pediatric Hematology/Oncology, University Children's Hospital, 8032 Zurich, Switzerland
| | - Beat Bornhauser
- Department of Pediatric Hematology/Oncology, University Children's Hospital, 8032 Zurich, Switzerland
| | - Martin Stanulla
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany
| | - Andreas Pich
- Institute of Toxicology, Research Core Unit - Proteomics, Hannover Medical School, 30625 Hannover, Germany
| | - Alejandro Gutierrez
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Department of Pediatric Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Laura Hinze
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany.
| |
Collapse
|
3
|
Sedlacek J. Activation of the 26S Proteasome to Reduce Proteotoxic Stress and Improve the Efficacy of PROTACs. ACS Pharmacol Transl Sci 2025; 8:21-35. [PMID: 39816802 PMCID: PMC11729432 DOI: 10.1021/acsptsci.4c00408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/22/2024] [Accepted: 12/02/2024] [Indexed: 01/18/2025]
Abstract
The 26S proteasome degrades the majority of cellular proteins and affects all aspects of cellular life. Therefore, the 26S proteasome abundance, proper assembly, and activity in different life contexts need to be precisely controlled. Impaired proteasome activity is considered a causative factor in several serious disorders. Recent advances in proteasome biology have revealed that the proteasome can be activated by different factors or small molecules. Thus, activated ubiquitin-dependent proteasome degradation has effects such as extending the lifespan in different models, preventing the accumulation of protein aggregates, and reducing their negative impact on cells. Increased 26S proteasome-mediated degradation reduces proteotoxic stress and can potentially improve the efficacy of engineered degraders, such as PROTACs, particularly in situations characterized by proteasome malfunction. Here, emerging ideas and recent insights into the pharmacological activation of the proteasome at the transcriptional and posttranslational levels are summarized.
Collapse
Affiliation(s)
- Jindrich Sedlacek
- Department
of Genetics and Microbiology, Charles University
and Research Center BIOCEV, Pru°myslová 595, Vestec 252 50, Czech Republic
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 16610 Prague, Czech
Republic
| |
Collapse
|
4
|
Brooks C, Kolson D, Sechrest E, Chuah J, Schupp J, Billington N, Deng WT, Smith D, Sokolov M. Therapeutic potential of archaeal unfoldase PANet and the gateless T20S proteasome in P23H rhodopsin retinitis pigmentosa mice. PLoS One 2024; 19:e0308058. [PMID: 39361629 PMCID: PMC11449290 DOI: 10.1371/journal.pone.0308058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/19/2024] [Indexed: 10/05/2024] Open
Abstract
Neurodegenerative diseases are characterized by the presence of misfolded and aggregated proteins which are thought to contribute to the development of the disease. In one form of inherited blinding disease, retinitis pigmentosa, a P23H mutation in the light-sensing receptor, rhodopsin causes rhodopsin misfolding resulting in complete vision loss. We investigated whether a xenogeneic protein-unfolding ATPase (unfoldase) from thermophilic Archaea, termed PANet, could counteract the proteotoxicity of P23H rhodopsin. We found that PANet increased the number of surviving photoreceptors in P23H rhodopsin mice and recognized rhodopsin as a substate in vitro. This data supports the feasibility and efficacy of using a xenogeneic unfoldase as a therapeutic approach in mouse models of human neurodegenerative diseases. We also showed that an archaeal proteasome, called the T20S can degrade rhodopsin in vitro and demonstrated that it is feasible and safe to express gateless T20S proteasomes in vivo in mouse rod photoreceptors. Expression of archaeal proteasomes may be an effective therapeutic approach to stimulate protein degradation in retinopathies and neurodegenerative diseases with protein-misfolding etiology.
Collapse
Affiliation(s)
- Celine Brooks
- Department of Ophthalmology, West Virginia University, Morgantown, West Virginia, United States of America
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, United States of America
| | - Douglas Kolson
- Department of Ophthalmology, West Virginia University, Morgantown, West Virginia, United States of America
| | - Emily Sechrest
- Department of Ophthalmology, West Virginia University, Morgantown, West Virginia, United States of America
| | - Janelle Chuah
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, United States of America
| | - Jane Schupp
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, United States of America
| | - Neil Billington
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, United States of America
| | - Wen-Tao Deng
- Department of Ophthalmology, West Virginia University, Morgantown, West Virginia, United States of America
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, United States of America
| | - David Smith
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, United States of America
- Department of Neuroscience, West Virginia University, Morgantown, West Virginia, United States of America
| | - Maxim Sokolov
- Department of Ophthalmology, West Virginia University, Morgantown, West Virginia, United States of America
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, United States of America
- Department of Neuroscience, West Virginia University, Morgantown, West Virginia, United States of America
| |
Collapse
|
5
|
Guo X, Prajapati R, Chun J, Byun I, Gebis KK, Wang YZ, Ling K, Dalton C, Blair JA, Hamidianjahromi A, Bachmann G, Rigo F, Jafar-Nejad P, Savas JN, Lee MJ, Sreedharan J, Kalb RG. Reduction of RAD23A extends lifespan and mitigates pathology in TDP-43 mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.10.612226. [PMID: 39314471 PMCID: PMC11419047 DOI: 10.1101/2024.09.10.612226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Protein misfolding and aggregation are cardinal features of neurodegenerative disease (NDD) and they contribute to pathophysiology by both loss-of-function (LOF) and gain-of-function (GOF) mechanisms. This is well exemplified by TDP-43 which aggregates and mislocalizes in several NDDs. The depletion of nuclear TDP-43 leads to reduction in its normal function in RNA metabolism and the cytoplasmic accumulation of TDP-43 leads to aberrant protein homeostasis. A modifier screen found that loss of rad23 suppressed TDP-43 pathology in invertebrate and tissue culture models. Here we show in a mouse model of TDP-43 pathology that genetic or antisense oligonucleotide (ASO)-mediated reduction in rad23a confers benefits on survival and behavior, histological hallmarks of disease and reduction of mislocalized and aggregated TDP-43. This results in improved function of the ubiquitin-proteasome system (UPS) and correction of transcriptomic alterations evoked by pathologic TDP-43. RAD23A-dependent remodeling of the insoluble proteome appears to be a key event driving pathology in this model. As TDP-43 pathology is prevalent in both familial and sporadic NDD, targeting RAD23A may have therapeutic potential.
Collapse
Affiliation(s)
- Xueshui Guo
- Department of Neurology, Northwestern University School of Medicine, Chicago, IL, United States
| | - Ravindra Prajapati
- Maurice Wohl Clinical Neuroscience Research Institute, King's College London, London, United Kingdom
| | - Jiyeon Chun
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Korea
| | - Insuk Byun
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Korea
| | - Kamil K Gebis
- Department of Neurology, Northwestern University School of Medicine, Chicago, IL, United States
| | - Yi-Zhi Wang
- Department of Neurology, Northwestern University School of Medicine, Chicago, IL, United States
| | - Karen Ling
- Ionis Pharmaceuticals, Carlsbad, CA, United States
| | - Casey Dalton
- Department of Neurology, Northwestern University School of Medicine, Chicago, IL, United States
| | - Jeff A Blair
- Department of Neurology, Northwestern University School of Medicine, Chicago, IL, United States
| | - Anahid Hamidianjahromi
- Department of Neurology, Northwestern University School of Medicine, Chicago, IL, United States
| | | | - Frank Rigo
- Ionis Pharmaceuticals, Carlsbad, CA, United States
| | | | - Jeffrey N Savas
- Department of Neurology, Northwestern University School of Medicine, Chicago, IL, United States
| | - Min Jae Lee
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Korea
| | - Jemeen Sreedharan
- Maurice Wohl Clinical Neuroscience Research Institute, King's College London, London, United Kingdom
| | - Robert G Kalb
- Department of Neurology, Northwestern University School of Medicine, Chicago, IL, United States
| |
Collapse
|
6
|
Kulagin KA, Starodubova ES, Osipova PJ, Lipatova AV, Cherdantsev IA, Poddubko SV, Karpov VL, Karpov DS. Synergistic Effect of a Combination of Proteasome and Ribonucleotide Reductase Inhibitors in a Biochemical Model of the Yeast Saccharomyces cerevisiae and a Glioblastoma Cell Line. Int J Mol Sci 2024; 25:3977. [PMID: 38612788 PMCID: PMC11011839 DOI: 10.3390/ijms25073977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/31/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Proteasome inhibitors are used in the therapy of several cancers, and clinical trials are underway for their use in the treatment of glioblastoma (GBM). However, GBM becomes resistant to chemotherapy relatively rapidly. Recently, the overexpression of ribonucleotide reductase (RNR) genes was found to mediate therapy resistance in GBM. The use of combinations of chemotherapeutic agents is considered a promising direction in cancer therapy. The present work aimed to evaluate the efficacy of the combination of proteasome and RNR inhibitors in yeast and GBM cell models. We have shown that impaired proteasome function results in increased levels of RNR subunits and increased enzyme activity in yeast. Co-administration of the proteasome inhibitor bortezomib and the RNR inhibitor hydroxyurea was found to significantly reduce the growth rate of S. cerevisiae yeast. Accordingly, the combination of bortezomib and another RNR inhibitor gemcitabine reduced the survival of DBTRG-05MG compared to the HEK293 cell line. Thus, yeast can be used as a simple model to evaluate the efficacy of combinations of proteasome and RNR inhibitors.
Collapse
Affiliation(s)
- Kirill A. Kulagin
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (K.A.K.); (E.S.S.); (P.J.O.); (A.V.L.); (I.A.C.)
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Elizaveta S. Starodubova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (K.A.K.); (E.S.S.); (P.J.O.); (A.V.L.); (I.A.C.)
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Pamila J. Osipova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (K.A.K.); (E.S.S.); (P.J.O.); (A.V.L.); (I.A.C.)
- Institute of Biomedical Problems of Russian Academy of Sciences, 123007 Moscow, Russia;
| | - Anastasia V. Lipatova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (K.A.K.); (E.S.S.); (P.J.O.); (A.V.L.); (I.A.C.)
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Igor A. Cherdantsev
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (K.A.K.); (E.S.S.); (P.J.O.); (A.V.L.); (I.A.C.)
| | - Svetlana V. Poddubko
- Institute of Biomedical Problems of Russian Academy of Sciences, 123007 Moscow, Russia;
| | - Vadim L. Karpov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Dmitry S. Karpov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (K.A.K.); (E.S.S.); (P.J.O.); (A.V.L.); (I.A.C.)
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia;
| |
Collapse
|
7
|
Zhao Z, Yan J, Huang L, Yang X. Phytochemicals targeting Alzheimer's disease via the AMP-activated protein kinase pathway, effects, and mechanisms of action. Biomed Pharmacother 2024; 173:116373. [PMID: 38442672 DOI: 10.1016/j.biopha.2024.116373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/07/2024] Open
Abstract
Alzheimer's disease (AD), characterized by cognitive dysfunction and other behavioral abnormalities, is a progressive neurodegenerative disease that occurs due to aging. Currently, effective drugs to mitigate or treat AD remain unavailable. AD is associated with several abnormalities in neuronal energy metabolism, such as decreased glucose uptake, mitochondrial dysfunction, and defects in cholesterol metabolism. Amp-activated protein kinase (AMPK) is an important serine/threonine protein kinase that regulates the energy status of cells. AMPK is widely present in eukaryotic cells and can sense and regulate energy metabolism to maintain energy supply and demand balance, making it a promising target for energy metabolism-based AD therapy. Therefore, this review aimed to discuss the molecular mechanism of AMPK in the pathogenesis of AD to provide a theoretical basis for the development of new anti-AD drugs. To review the mechanisms of phytochemicals in the treatment of AD via AMPK pathway regulation, we searched PubMed, Google Scholar, Web of Science, and Embase databases using specific keywords related to AD and phytochemicals in September 2023. Phytochemicals can activate AMPK or regulate the AMPK pathway to exert therapeutic effects in AD. The anti-AD mechanisms of these phytochemicals include inhibiting Aβ aggregation, preventing Tau hyperphosphorylation, inhibiting inflammatory response and glial activation, promoting autophagy, and suppressing anti-oxidative stress. Additionally, several AMPK-related pathways are involved in the anti-AD mechanism, including the AMPK/CaMKKβ/mTOR, AMPK/SIRT1/PGC-1α, AMPK/NF-κB/NLRP3, AMPK/mTOR, and PERK/eIF2α pathways. Notably, urolithin A, artemisinin, justicidin A, berberine, stigmasterol, arctigenin, and rutaecarpine are promising AMPK agonists with anti-AD effects. Several phytochemicals are effective AMPK agonists and may have potential applications in AD treatment. Overall, phytochemical-based drugs may overcome the barriers to the effective treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Zheng Zhao
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Jun Yan
- Department of Neurology, Fushun Central Hospital, Fushun, Liaoning, PR China
| | - Lei Huang
- Department of Cardiology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, Liaoning 110004, PR China.
| | - Xue Yang
- Department of Neurology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, Liaoning 110004, PR China.
| |
Collapse
|
8
|
Byun I, Seo H, Kim J, Jeong D, Han D, Lee MJ. Purification and characterization of different proteasome species from mammalian cells. STAR Protoc 2023; 4:102748. [PMID: 37999974 PMCID: PMC10709379 DOI: 10.1016/j.xpro.2023.102748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/10/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Proteasomes are heterogeneous in forms and functions, but how the equilibrium among the 20S, 26S, and 30S proteasomes is achieved and altered is elusive. Here, we present a protocol for purifying and characterizing proteasome species. We describe steps for generating stable cell lines; affinity purifying the proteasome species; and characterizing them through native PAGE, activity assay, size-exclusion chromatography, and mass spectrometry. These standardized methods may contribute to biochemical studies of cellular proteasomes under both physiological and pathological conditions. For complete details on the use and execution of this protocol, please refer to Choi et al. (2023).1.
Collapse
Affiliation(s)
- Insuk Byun
- Department of Biochemistry and Molecular Biology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Hoseok Seo
- Department of Transdisciplinary Medicine, Seoul National University Hospital, Seoul 03080, Korea
| | - Jiseong Kim
- Department of Biochemistry and Molecular Biology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Dawon Jeong
- Department of Biochemistry and Molecular Biology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Dohyun Han
- Department of Transdisciplinary Medicine, Seoul National University Hospital, Seoul 03080, Korea; Department of Medicine, Seoul National University College of Medicine, Seoul 03080, Korea.
| | - Min Jae Lee
- Department of Biochemistry and Molecular Biology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea.
| |
Collapse
|
9
|
Loxha L, Ibrahim NK, Stasche AS, Cinar B, Dolgner T, Niessen J, Schreek S, Fehlhaber B, Forster M, Stanulla M, Hinze L. GSK3α Regulates Temporally Dynamic Changes in Ribosomal Proteins upon Amino Acid Starvation in Cancer Cells. Int J Mol Sci 2023; 24:13260. [PMID: 37686063 PMCID: PMC10488213 DOI: 10.3390/ijms241713260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
Amino acid availability is crucial for cancer cells' survivability. Leukemia and colorectal cancer cells have been shown to resist asparagine depletion by utilizing GSK3-dependent proteasomal degradation, termed the Wnt-dependent stabilization of proteins (Wnt/STOP), to replenish their amino acid pool. The inhibition of GSK3α halts the sourcing of amino acids, which subsequently leads to cancer cell vulnerability toward asparaginase therapy. However, resistance toward GSK3α-mediated protein breakdown can occur, whose underlying mechanism is poorly understood. Here, we set out to define the mechanisms driving dependence toward this degradation machinery upon asparagine starvation in cancer cells. We show the independence of known stress response pathways including the integrated stress response mediated with GCN2. Additionally, we demonstrate the independence of changes in cell cycle progression and expression levels of the asparagine-synthesizing enzyme ASNS. Instead, RNA sequencing revealed that GSK3α inhibition and asparagine starvation leads to the temporally dynamic downregulation of distinct ribosomal proteins, which have been shown to display anti-proliferative functions. Using a CRISPR/Cas9 viability screen, we demonstrate that the downregulation of these specific ribosomal proteins can rescue cell death upon GSK3α inhibition and asparagine starvation. Thus, our findings suggest the vital role of the previously unrecognized regulation of ribosomal proteins in bridging GSK3α activity and tolerance of asparagine starvation.
Collapse
Affiliation(s)
- Lorent Loxha
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany; (L.L.); (N.K.I.); (A.S.S.); (B.C.); (T.D.); (J.N.); (S.S.); (B.F.); (M.S.)
| | - Nurul Khalida Ibrahim
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany; (L.L.); (N.K.I.); (A.S.S.); (B.C.); (T.D.); (J.N.); (S.S.); (B.F.); (M.S.)
| | - Anna Sophie Stasche
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany; (L.L.); (N.K.I.); (A.S.S.); (B.C.); (T.D.); (J.N.); (S.S.); (B.F.); (M.S.)
| | - Büsra Cinar
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany; (L.L.); (N.K.I.); (A.S.S.); (B.C.); (T.D.); (J.N.); (S.S.); (B.F.); (M.S.)
| | - Tim Dolgner
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany; (L.L.); (N.K.I.); (A.S.S.); (B.C.); (T.D.); (J.N.); (S.S.); (B.F.); (M.S.)
| | - Julia Niessen
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany; (L.L.); (N.K.I.); (A.S.S.); (B.C.); (T.D.); (J.N.); (S.S.); (B.F.); (M.S.)
| | - Sabine Schreek
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany; (L.L.); (N.K.I.); (A.S.S.); (B.C.); (T.D.); (J.N.); (S.S.); (B.F.); (M.S.)
| | - Beate Fehlhaber
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany; (L.L.); (N.K.I.); (A.S.S.); (B.C.); (T.D.); (J.N.); (S.S.); (B.F.); (M.S.)
| | - Michael Forster
- Institute of Clinical Molecular Biology, Kiel University, 24105 Kiel, Germany;
| | - Martin Stanulla
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany; (L.L.); (N.K.I.); (A.S.S.); (B.C.); (T.D.); (J.N.); (S.S.); (B.F.); (M.S.)
| | - Laura Hinze
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany; (L.L.); (N.K.I.); (A.S.S.); (B.C.); (T.D.); (J.N.); (S.S.); (B.F.); (M.S.)
| |
Collapse
|
10
|
Lee D, Zhu Y, Colson L, Wang X, Chen S, Tkacik E, Huang L, Ouyang Q, Goldberg AL, Lu Y. Molecular mechanism for activation of the 26S proteasome by ZFAND5. Mol Cell 2023; 83:2959-2975.e7. [PMID: 37595557 PMCID: PMC10523585 DOI: 10.1016/j.molcel.2023.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 05/07/2023] [Accepted: 07/24/2023] [Indexed: 08/20/2023]
Abstract
Various hormones, kinases, and stressors (fasting, heat shock) stimulate 26S proteasome activity. To understand how its capacity to degrade ubiquitylated proteins can increase, we studied mouse ZFAND5, which promotes protein degradation during muscle atrophy. Cryo-electron microscopy showed that ZFAND5 induces large conformational changes in the 19S regulatory particle. ZFAND5's AN1 Zn-finger domain interacts with the Rpt5 ATPase and its C terminus with Rpt1 ATPase and Rpn1, a ubiquitin-binding subunit. Upon proteasome binding, ZFAND5 widens the entrance of the substrate translocation channel, yet it associates only transiently with the proteasome. Dissociation of ZFAND5 then stimulates opening of the 20S proteasome gate. Using single-molecule microscopy, we showed that ZFAND5 binds ubiquitylated substrates, prolongs their association with proteasomes, and increases the likelihood that bound substrates undergo degradation, even though ZFAND5 dissociates before substrate deubiquitylation. These changes in proteasome conformation and reaction cycle can explain the accelerated degradation and suggest how other proteasome activators may stimulate proteolysis.
Collapse
Affiliation(s)
- Donghoon Lee
- Department of Cell Biology, Harvard Medical School, Boston, MA USA
| | - Yanan Zhu
- Department of Systems Biology, Harvard Medical School, Boston, MA USA; Center for Quantitative Biology, Peking University, Beijing, China; State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing, China
| | - Louis Colson
- Department of Systems Biology, Harvard Medical School, Boston, MA USA
| | - Xiaorong Wang
- School of Medicine, University of California Irvine, Irvine, Irvine, CA USA
| | - Siyi Chen
- Department of Systems Biology, Harvard Medical School, Boston, MA USA
| | - Emre Tkacik
- Department of Systems Biology, Harvard Medical School, Boston, MA USA
| | - Lan Huang
- School of Medicine, University of California Irvine, Irvine, Irvine, CA USA
| | - Qi Ouyang
- Center for Quantitative Biology, Peking University, Beijing, China; State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | | | - Ying Lu
- Department of Systems Biology, Harvard Medical School, Boston, MA USA.
| |
Collapse
|
11
|
Brockmann F, Catone N, Wünsch C, Offensperger F, Scheffner M, Schmidtke G, Aichem A. FAT10 and NUB1L cooperate to activate the 26S proteasome. Life Sci Alliance 2023; 6:e202201463. [PMID: 37188463 PMCID: PMC10185811 DOI: 10.26508/lsa.202201463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/17/2023] Open
Abstract
The interaction of the 19S regulatory particle of the 26S proteasome with ubiquitylated proteins leads to gate opening of the 20S core particle and increases its proteolytic activity by binding of the ubiquitin chain to the inhibitory deubiquitylation enzyme USP14 on the 19S regulatory subunit RPN1. Covalent modification of proteins with the cytokine inducible ubiquitin-like modifier FAT10 is an alternative signal for proteasomal degradation. Here, we report that FAT10 and its interaction partner NUB1L facilitate the gate opening of the 20S proteasome in an ubiquitin- and USP14-independent manner. We also show that FAT10 is capable to activate all peptidolytic activities of the 26S proteasome, however only together with NUB1L, by binding to the UBA domains of NUB1L and thereby interfering with NUB1L dimerization. The binding of FAT10 to NUB1L leads to an increased affinity of NUB1L for the subunit RPN1. In conclusion, the herein described cooperation of FAT10 and NUB1L is a substrate-induced mechanism to activate the 26S proteasome.
Collapse
Affiliation(s)
- Florian Brockmann
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Nicola Catone
- Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, Switzerland
| | - Christine Wünsch
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Fabian Offensperger
- Division of Biochemistry, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Martin Scheffner
- Division of Biochemistry, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Gunter Schmidtke
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Annette Aichem
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany
- Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, Switzerland
| |
Collapse
|
12
|
Chuah JJY, Rexroad MS, Smith DM. High resolution structures define divergent and convergent mechanisms of archaeal proteasome activation. Commun Biol 2023; 6:733. [PMID: 37454196 PMCID: PMC10349882 DOI: 10.1038/s42003-023-05123-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023] Open
Abstract
Considering the link between neurodegenerative diseases and impaired proteasome function, and the neuro-protective impact of enhanced proteasome activity in animal models, it's crucial to understand proteasome activation mechanisms. A hydrophobic-tyrosine-any residue (HbYX) motif on the C-termini of proteasome-activating complexes independently triggers gate-opening of the 20S core particle for protein degradation; however, the causal allosteric mechanism remains unclear. Our study employs a structurally irreducible dipeptide HbYX mimetic to investigate the allosteric mechanism of gate-opening in the archaeal proteasome. High-resolution cryo-EM structures pinpoint vital residues and conformational changes in the proteasome α-subunit implicated in HbYX-dependent activation. Using point mutations, we simulated the HbYX-bound state, providing support for our mechanistic model. We discerned four main mechanistic elements triggering gate-opening: 1) back-loop rearrangement adjacent to K66, 2) intra- and inter- α subunit conformational changes, 3) occupancy of the hydrophobic pocket, and 4) a highly conserved isoleucine-threonine pair in the 20S channel stabilizing the open and closed states, termed the "IT switch." Comparison of different complexes unveiled convergent and divergent mechanism of 20S gate-opening among HbYX-dependent and independent activators. This study delivers a detailed molecular model for HbYX-dependent 20S gate-opening, enabling the development of small molecule proteasome activators that hold promise to treat neurodegenerative diseases.
Collapse
Affiliation(s)
- Janelle J Y Chuah
- Department of Biochemistry and Molecular Medicine, West Virginia University School of Medicine, 64 Medical Center Dr., Morgantown, WV, USA
| | - Matthew S Rexroad
- Department of Biochemistry and Molecular Medicine, West Virginia University School of Medicine, 64 Medical Center Dr., Morgantown, WV, USA
| | - David M Smith
- Department of Biochemistry and Molecular Medicine, West Virginia University School of Medicine, 64 Medical Center Dr., Morgantown, WV, USA.
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA.
| |
Collapse
|
13
|
Chuah JJY, Thibaudeau TA, Smith DM. Minimal mechanistic component of HbYX-dependent proteasome activation that reverses impairment by neurodegenerative-associated oligomers. Commun Biol 2023; 6:725. [PMID: 37452144 PMCID: PMC10349142 DOI: 10.1038/s42003-023-05082-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 06/28/2023] [Indexed: 07/18/2023] Open
Abstract
The implication of reduced proteasomal function in neurodegenerative diseases combined with studies showing the protective effects of increasing proteasome activity in animal models highlight the need to understand the capacity for proteasome activation by small molecules. The C-terminal HbYX motif is present on many proteasome binding proteins and functions to tether activators to the 20S core particle. Previous studies have shown that peptides with a HbYX motif can autonomously activate 20S gate-opening to allow protein degradation. In this study, through an iterative process of peptide synthesis, we design a HbYX-like dipeptide mimetic that represents only the fundamental components of the HbYX motif. The mimetic robustly induces gate-opening in archaeal, yeast, and mammalian proteasomes. We identify multiple proteasome α subunit residues in the archaeal proteasome involved in HbYX-dependent activation. When stimulated by the mimetic, the mammalian 20S can degrade unfolded proteins such as tau. Findings using our peptide mimetic suggest the HbYX-dependent mechanism requires cooperative binding in at least two intersubunit pockets of the α ring. Most significantly, our peptide mimetic reverses proteasome impairment by neurodegenerative disease-associated oligomers. Collectively, these results validate HbYX-like molecules as having robust potential to stimulate proteasome function, which are potentially useful for treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Janelle J Y Chuah
- Department of Biochemistry and Molecular Medicine, West Virginia University School of Medicine, 64 Medical Center Dr., Morgantown, WV, USA
| | - Tiffany A Thibaudeau
- Department of Biochemistry and Molecular Medicine, West Virginia University School of Medicine, 64 Medical Center Dr., Morgantown, WV, USA
| | - David M Smith
- Department of Biochemistry and Molecular Medicine, West Virginia University School of Medicine, 64 Medical Center Dr., Morgantown, WV, USA.
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA.
| |
Collapse
|
14
|
Wang Y, Snell A, Dyka FM, Colvin ER, Ildefonso C, Ash JD, Lobanova ES. Overexpression of Nfe2l1 increases proteasome activity and delays vision loss in a preclinical model of human blindness. SCIENCE ADVANCES 2023; 9:eadd5479. [PMID: 37450596 PMCID: PMC10348684 DOI: 10.1126/sciadv.add5479] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 06/14/2023] [Indexed: 07/18/2023]
Abstract
Proteasomes are the central proteolytic machines that are critical for breaking down most of the damaged and abnormal proteins in human cells. Although universally applicable drugs are not yet available, the stimulation of proteasomal activity is being analyzed as a proof-of-principle strategy to increase cellular resistance to a broad range of proteotoxic stressors. These approaches have included the stimulation of proteasomes through the overexpression of individual proteasome subunits, phosphorylation, or conformational changes induced by small molecules or peptides. In contrast to these approaches, we evaluated a transcription-driven increase in the total proteasome pool to enhance the proteolytic capacity of degenerating retinal neurons. We show that overexpression of nuclear factor erythroid-2-like 1 (Nfe2l1) transcription factor stimulated proteasome biogenesis and activity, improved the clearance of the ubiquitin-proteasomal reporter, and delayed photoreceptor neuron loss in a preclinical mouse model of human blindness caused by misfolded proteins. The findings highlight Nfe2l1 as an emerging therapeutic target to treat neurodegenerative diseases linked to protein misfolding.
Collapse
Affiliation(s)
- Yixiao Wang
- Department of Ophthalmology, University of Florida, Gainesville, FL 32610, USA
| | - Aaron Snell
- Department of Ophthalmology, University of Florida, Gainesville, FL 32610, USA
| | - Frank M. Dyka
- Department of Ophthalmology, University of Florida, Gainesville, FL 32610, USA
| | - Elizabeth R. Colvin
- Department of Ophthalmology, University of Florida, Gainesville, FL 32610, USA
| | - Cristhian Ildefonso
- Department of Ophthalmology, University of Florida, Gainesville, FL 32610, USA
| | - John D. Ash
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Ekaterina S. Lobanova
- Department of Ophthalmology, University of Florida, Gainesville, FL 32610, USA
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
15
|
Choi WH, Yun Y, Byun I, Kim S, Lee S, Sim J, Levi S, Park SH, Jun J, Kleifeld O, Kim KP, Han D, Chiba T, Seok C, Kwon YT, Glickman MH, Lee MJ. ECPAS/Ecm29-mediated 26S proteasome disassembly is an adaptive response to glucose starvation. Cell Rep 2023; 42:112701. [PMID: 37384533 DOI: 10.1016/j.celrep.2023.112701] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 05/07/2023] [Accepted: 06/09/2023] [Indexed: 07/01/2023] Open
Abstract
The 26S proteasome comprises 20S catalytic and 19S regulatory complexes. Approximately half of the proteasomes in cells exist as free 20S complexes; however, our mechanistic understanding of what determines the ratio of 26S to 20S species remains incomplete. Here, we show that glucose starvation uncouples 26S holoenzymes into 20S and 19S subcomplexes. Subcomplex affinity purification and quantitative mass spectrometry reveal that Ecm29 proteasome adaptor and scaffold (ECPAS) mediates this structural remodeling. The loss of ECPAS abrogates 26S dissociation, reducing degradation of 20S proteasome substrates, including puromycylated polypeptides. In silico modeling suggests that ECPAS conformational changes commence the disassembly process. ECPAS is also essential for endoplasmic reticulum stress response and cell survival during glucose starvation. In vivo xenograft model analysis reveals elevated 20S proteasome levels in glucose-deprived tumors. Our results demonstrate that the 20S-19S disassembly is a mechanism adapting global proteolysis to physiological needs and countering proteotoxic stress.
Collapse
Affiliation(s)
- Won Hoon Choi
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Yejin Yun
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea; Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 03080, Korea
| | - Insuk Byun
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea; Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 03080, Korea
| | - Sumin Kim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea; Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 03080, Korea
| | - Seho Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Jiho Sim
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Shahar Levi
- Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Seo Hyeong Park
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea; Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 03080, Korea
| | - Jeongmoo Jun
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Oded Kleifeld
- Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Kwang Pyo Kim
- Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin 17104, Korea
| | - Dohyun Han
- Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Korea
| | - Tomoki Chiba
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki 305-8577, Japan
| | - Chaok Seok
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Yong Tae Kwon
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 03080, Korea; Ischemic/Hypoxic Disease Institute, Convergence Research Center for Dementia, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Michael H Glickman
- Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel.
| | - Min Jae Lee
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea; Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 03080, Korea; Ischemic/Hypoxic Disease Institute, Convergence Research Center for Dementia, Seoul National University College of Medicine, Seoul 03080, Korea.
| |
Collapse
|
16
|
Lee D, Zhu Y, Colson L, Wang X, Chen S, Tkacik E, Huang L, Ouyang Q, Goldberg AL, Lu Y. Molecular mechanisms for activation of the 26S proteasome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.09.540094. [PMID: 37214989 PMCID: PMC10197607 DOI: 10.1101/2023.05.09.540094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Various hormones, kinases, and stressors (fasting, heat shock) stimulate 26S proteasome activity. To understand how its capacity to degrade ubiquitylated protein can increase, we studied ZFAND5, which promotes protein degradation during muscle atrophy. Cryo-electron microscopy showed that ZFAND5 induces large conformational changes in the 19S regulatory particle. ZFAND5's AN1 Zn finger interacts with the Rpt5 ATPase and its C-terminus with Rpt1 ATPase and Rpn1, a ubiquitin-binding subunit. Surprisingly, these C-terminal interactions are sufficient to activate proteolysis. With ZFAND5 bound, entry into the proteasome's protein translocation channel is wider, and ZFAND5 dissociation causes opening of the 20S gate for substrate entry. Using single-molecular microscopy, we showed that ZFAND5 binds ubiquitylated substrates, prolongs their association with proteasomes, and increases the likelihood that bound substrates undergo degradation, even though ZFAND5 dissociates before substrate deubiquitylation. These changes in proteasome conformation and reaction cycle can explain the accelerated degradation and suggest how other proteasome activators may stimulate proteolysis.
Collapse
|
17
|
Türker F, Bharadwaj RA, Kleinman JE, Weinberger DR, Hyde TM, White CJ, Williams DW, Margolis SS. Orthogonal approaches required to measure proteasome composition and activity in mammalian brain tissue. J Biol Chem 2023:104811. [PMID: 37172721 DOI: 10.1016/j.jbc.2023.104811] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/20/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
Proteasomes are large macromolecular complexes with multiple distinct catalytic activities that are each vital to human brain health and disease. Despite their importance, standardized approaches to investigate proteasomes have not been universally adapted. Here, we describe pitfalls and define straightforward orthogonal biochemical approaches essential to measure and understand changes in proteasome composition and activity in the mammalian central nervous system. Through our experimentation in the mammalian brain, we determined an abundance of catalytically active proteasomes exist with and without a 19S cap(s), the regulatory particle essential for ubiquitin-dependent degradation. Moreover, we learned that in-cell measurements using activity-based probes (ABPs) are more sensitive in determining the available activity of the 20S proteasome without the 19S cap and in measuring individual catalytic subunit activities of each β subunit within all neuronal proteasomes. Subsequently, applying these tools to human brain samples, we were surprised to find that post-mortem tissue retained little to no 19S-capped proteasome, regardless of age, sex, or disease state. Comparing brain tissues (parahippocampal gyrus) from human Alzheimer's disease (AD) patients and unaffected subjects, available 20S proteasome activity was significantly elevated in severe cases of AD, an observation not previously noted. Taken together, our study establishes standardized approaches for comprehensive investigation of proteasomes in mammalian brain tissue, and we reveal new insight into brain proteasome biology.
Collapse
Affiliation(s)
- Fulya Türker
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Rahul A Bharadwaj
- The Lieber Institute for Brain Development, Baltimore, MD 21205, USA
| | - Joel E Kleinman
- The Lieber Institute for Brain Development, Baltimore, MD 21205, USA; Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Daniel R Weinberger
- The Lieber Institute for Brain Development, Baltimore, MD 21205, USA; Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; McKusick-Nathans Institute of Genetic Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Thomas M Hyde
- The Lieber Institute for Brain Development, Baltimore, MD 21205, USA; Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Cory J White
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Dionna W Williams
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Medicine, Division of Clinical Pharmacology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA; Department of Molecular Microbiology & Immunology, Johns Hopkins School of Public Health, Baltimore, Maryland 21205, USA; Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Seth S Margolis
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
18
|
Chuah JJ, Thibaudeau TA, Rexroad MS, Smith DM. Minimal mechanistic component of HbYX-dependent proteasome activation. RESEARCH SQUARE 2023:rs.3.rs-2496767. [PMID: 36993338 PMCID: PMC10055539 DOI: 10.21203/rs.3.rs-2496767/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The implication of reduced proteasomal function in neurodegenerative diseases combined with numerous studies showing the protective effects of increasing proteasome activity in animal models justify the need to understand how the proteasome is activated for protein degradation. The C-terminal HbYX motif is present on many proteasome binding proteins and functions to tether activators to the 20S core particle. Peptides with a HbYX motif can also autonomously activate 20S gate-opening to allow protein degradation, but the underlying allosteric molecular mechanism is not clear. We designed a HbYX-like dipeptide mimetic that represents only the fundamental components of the HbYX motif to allow rigorous elucidation of the underlying molecular mechanisms of HbYX induced 20S gate-opening in the archaeal and mamalian proteasome. By generating several high-resolution cryo-EM structures (e.g. 1.9Å) we identified multiple proteasome α subunit residues involved in HbYX-dependent activation and the conformational changes involved in gate-opening. In addition, we generated mutants probing these structural findings and identified specific point mutations that strongly activate the proteasome by partially mimicking a HbYX-bound state. These structures resolve 3 novel mechanistic features that are critical for allosteric α subunit conformational changes that ultimately trigger gate-opening: 1) rearrangement of the loop adjacent to K66, 2) inter- and intra- α subunit conformational changes and 3) a pair of IT residues on the α N-terminus in the 20S channel that alternate binding sites to stabilize the open and closed states. All gate-opening mechanisms appear to converge on this "IT switch". When stimulated by the mimetic, the human 20S can degrade unfolded proteins such as tau, and prevent proteasomal inhibition by toxic soluble oligomers. Collectively, the results presented here provide a mechanistic model of HbYX-dependent 20S gate-opening and offer proof of concept for the robust potential of HbYX-like small molecules to stimulate proteasome function, which could be useful to treat neurodegenerative diseases.
Collapse
Affiliation(s)
- Janelle J. Chuah
- Department of Biochemistry and Molecular Medicine, West Virginia University School of Medicine, 64 Medical Center Dr., Morgantown, WV USA
| | - Tiffany A. Thibaudeau
- Department of Biochemistry and Molecular Medicine, West Virginia University School of Medicine, 64 Medical Center Dr., Morgantown, WV USA
| | - Matthew S. Rexroad
- Department of Biochemistry and Molecular Medicine, West Virginia University School of Medicine, 64 Medical Center Dr., Morgantown, WV USA
| | - David M. Smith
- Department of Biochemistry and Molecular Medicine, West Virginia University School of Medicine, 64 Medical Center Dr., Morgantown, WV USA
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia, USA
| |
Collapse
|
19
|
Lim S, Shin S, Sung Y, Lee HE, Kim KH, Song JY, Lee GH, Aziz H, Lukianenko N, Kang DM, Boesen N, Jeong H, Abdildinova A, Lee J, Yu BY, Lim SM, Lee JS, Ryu H, Pae AN, Kim YK. Levosimendan inhibits disulfide tau oligomerization and ameliorates tau pathology in Tau P301L-BiFC mice. Exp Mol Med 2023; 55:612-627. [PMID: 36914856 PMCID: PMC10073126 DOI: 10.1038/s12276-023-00959-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/26/2022] [Accepted: 01/01/2023] [Indexed: 03/14/2023] Open
Abstract
Tau oligomers play critical roles in tau pathology and are responsible for neuronal cell death and transmitting the disease in the brain. Accordingly, preventing tau oligomerization has become an important therapeutic strategy to treat tauopathies, including Alzheimer's disease. However, progress has been slow because detecting tau oligomers in the cellular context is difficult. Working toward tau-targeted drug discovery, our group has developed a tau-BiFC platform to monitor and quantify tau oligomerization. By using the tau-BiFC platform, we screened libraries with FDA-approved and passed phase I drugs and identified levosimendan as a potent anti-tau agent that inhibits tau oligomerization. 14C-isotope labeling of levosimendan revealed that levosimendan covalently bound to tau cysteines, directly inhibiting disulfide-linked tau oligomerization. In addition, levosimendan disassembles tau oligomers into monomers, rescuing neurons from aggregation states. In comparison, the well-known anti-tau agents methylene blue and LMTM failed to protect neurons from tau-mediated toxicity, generating high-molecular-weight tau oligomers. Levosimendan displayed robust potency against tau oligomerization and rescued cognitive declines induced by tauopathy in the TauP301L-BiFC mouse model. Our data present the potential of levosimendan as a disease-modifying drug for tauopathies.
Collapse
Affiliation(s)
- Sungsu Lim
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Seulgi Shin
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Yoonsik Sung
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.,Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| | - Ha Eun Lee
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Kyu Hyeon Kim
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.,Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| | - Ji Yeon Song
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Gwan-Ho Lee
- Advanced Analysis Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Hira Aziz
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.,Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| | - Nataliia Lukianenko
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.,Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| | - Dong Min Kang
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.,Department of Life Sciences, Korea University, Seoul, 02841, Korea
| | - Nicolette Boesen
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.,Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| | - Hyeanjeong Jeong
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Aizhan Abdildinova
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Junghee Lee
- Boston University Alzheimer's disease Research Center and VA Boston Health care System, Boston, MA, 02130, USA
| | - Byung-Yong Yu
- Advanced Analysis Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Sang Min Lim
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Jun-Seok Lee
- Department of Pharmacology, Korea University College of Medicine, Seoul, 02792, Republic of Korea
| | - Hoon Ryu
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.,Boston University Alzheimer's disease Research Center and Department of Neurology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Ae Nim Pae
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.
| | - Yun Kyung Kim
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea. .,Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, Republic of Korea.
| |
Collapse
|
20
|
Somin S, Kulasiri D, Samarasinghe S. Alleviating the unwanted effects of oxidative stress on Aβ clearance: a review of related concepts and strategies for the development of computational modelling. Transl Neurodegener 2023; 12:11. [PMID: 36907887 PMCID: PMC10009979 DOI: 10.1186/s40035-023-00344-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/21/2023] [Indexed: 03/14/2023] Open
Abstract
Treatment for Alzheimer's disease (AD) can be more effective in the early stages. Although we do not completely understand the aetiology of the early stages of AD, potential pathological factors (amyloid beta [Aβ] and tau) and other co-factors have been identified as causes of AD, which may indicate some of the mechanism at work in the early stages of AD. Today, one of the primary techniques used to help delay or prevent AD in the early stages involves alleviating the unwanted effects of oxidative stress on Aβ clearance. 4-Hydroxynonenal (HNE), a product of lipid peroxidation caused by oxidative stress, plays a key role in the adduction of the degrading proteases. This HNE employs a mechanism which decreases catalytic activity. This process ultimately impairs Aβ clearance. The degradation of HNE-modified proteins helps to alleviate the unwanted effects of oxidative stress. Having a clear understanding of the mechanisms associated with the degradation of the HNE-modified proteins is essential for the development of strategies and for alleviating the unwanted effects of oxidative stress. The strategies which could be employed to decrease the effects of oxidative stress include enhancing antioxidant activity, as well as the use of nanozymes and/or specific inhibitors. One area which shows promise in reducing oxidative stress is protein design. However, more research is needed to improve the effectiveness and accuracy of this technique. This paper discusses the interplay of potential pathological factors and AD. In particular, it focuses on the effect of oxidative stress on the expression of the Aβ-degrading proteases through adduction of the degrading proteases caused by HNE. The paper also elucidates other strategies that can be used to alleviate the unwanted effects of oxidative stress on Aβ clearance. To improve the effectiveness and accuracy of protein design, we explain the application of quantum mechanical/molecular mechanical approach.
Collapse
Affiliation(s)
- Sarawoot Somin
- Centre for Advanced Computational Solutions (C-fACS), Lincoln University, Christchurch, 7647, New Zealand.,Department of Wine, Food and Molecular Biosciences, Lincoln University, Christchurch, 7647, New Zealand
| | - Don Kulasiri
- Centre for Advanced Computational Solutions (C-fACS), Lincoln University, Christchurch, 7647, New Zealand. .,Department of Wine, Food and Molecular Biosciences, Lincoln University, Christchurch, 7647, New Zealand.
| | - Sandhya Samarasinghe
- Centre for Advanced Computational Solutions (C-fACS), Lincoln University, Christchurch, 7647, New Zealand
| |
Collapse
|
21
|
Sahu I, Bajorek M, Tan X, Srividya M, Krutauz D, Reis N, Osmulski PA, Gaczynska ME, Glickman MH. A Role for the Proteasome Alpha2 Subunit N-Tail in Substrate Processing. Biomolecules 2023; 13:480. [PMID: 36979414 PMCID: PMC10046698 DOI: 10.3390/biom13030480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
The proteolytic active sites of the 26S proteasome are sequestered within the catalytic chamber of its 20S core particle (CP). Access to this chamber is through a narrow channel defined by the seven outer α subunits. In the resting state, the N-termini of neighboring α subunits form a gate blocking access to the channel. The attachment of the activators or regulatory particles rearranges the blocking α subunit N-termini facilitating the entry of substrates. By truncating or mutating each of the participating α N-termini, we report that whereas only a few N-termini are important for maintaining the closed gate, all seven N-termini participate in the open gate. Specifically, the open state is stabilized by a hydrogen bond between an invariant tyrosine (Y) in each subunit with a conserved aspartate (D) in its counterclockwise neighbor. The lone exception is the α1-α2 pair leaving a gap in the ring circumference. The third residue (X) of this YD(X) motif aligns with the open channel. Phenylalanine at this position in the α2 subunit comes in direct contact with the translocating substrate. Consequently, deletion of the α2 N-terminal tail attenuates proteolysis despite the appearance of an open gate state. In summary, the interlacing N-terminal YD(X) motifs regulate both the gating and translocation of the substrate.
Collapse
Affiliation(s)
- Indrajit Sahu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Monika Bajorek
- Faculty of Biology, Technion—Israel Institute of Technology, Haifa 3525433, Israel
| | - Xiaolin Tan
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Madabhushi Srividya
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Daria Krutauz
- Faculty of Biology, Technion—Israel Institute of Technology, Haifa 3525433, Israel
| | - Noa Reis
- Faculty of Biology, Technion—Israel Institute of Technology, Haifa 3525433, Israel
| | - Pawel A. Osmulski
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Maria E. Gaczynska
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Michael H. Glickman
- Faculty of Biology, Technion—Israel Institute of Technology, Haifa 3525433, Israel
| |
Collapse
|
22
|
Yu P, Hua Z. To Kill or to Be Killed: How Does the Battle between the UPS and Autophagy Maintain the Intracellular Homeostasis in Eukaryotes? Int J Mol Sci 2023; 24:ijms24032221. [PMID: 36768543 PMCID: PMC9917186 DOI: 10.3390/ijms24032221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/27/2023] Open
Abstract
The ubiquitin-26S proteasome system and autophagy are two major protein degradation machineries encoded in all eukaryotic organisms. While the UPS is responsible for the turnover of short-lived and/or soluble misfolded proteins under normal growth conditions, the autophagy-lysosomal/vacuolar protein degradation machinery is activated under stress conditions to remove long-lived proteins in the forms of aggregates, either soluble or insoluble, in the cytoplasm and damaged organelles. Recent discoveries suggested an integrative function of these two seemly independent systems for maintaining the proteome homeostasis. One such integration is represented by their reciprocal degradation, in which the small 76-amino acid peptide, ubiquitin, plays an important role as the central signaling hub. In this review, we summarized the current knowledge about the activity control of proteasome and autophagosome at their structural organization, biophysical states, and turnover levels from yeast and mammals to plants. Through comprehensive literature studies, we presented puzzling questions that are awaiting to be solved and proposed exciting new research directions that may shed light on the molecular mechanisms underlying the biological function of protein degradation.
Collapse
Affiliation(s)
- Peifeng Yu
- Department of Environmental and Plant Biology, Ohio University, Athens, OH 45701, USA
- Interdisciplinary Program in Molecular and Cellular Biology, Ohio University, Athens, OH 45701, USA
| | - Zhihua Hua
- Department of Environmental and Plant Biology, Ohio University, Athens, OH 45701, USA
- Interdisciplinary Program in Molecular and Cellular Biology, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
23
|
Targeting immunoproteasome in neurodegeneration: A glance to the future. Pharmacol Ther 2023; 241:108329. [PMID: 36526014 DOI: 10.1016/j.pharmthera.2022.108329] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022]
Abstract
The immunoproteasome is a specialized form of proteasome equipped with modified catalytic subunits that was initially discovered to play a pivotal role in MHC class I antigen processing and immune system modulation. However, over the last years, this proteolytic complex has been uncovered to serve additional functions unrelated to antigen presentation. Accordingly, it has been proposed that immunoproteasome synergizes with canonical proteasome in different cell types of the nervous system, regulating neurotransmission, metabolic pathways and adaptation of the cells to redox or inflammatory insults. Hence, studying the alterations of immunoproteasome expression and activity is gaining research interest to define the dynamics of neuroinflammation as well as the early and late molecular events that are likely involved in the pathogenesis of a variety of neurological disorders. Furthermore, these novel functions foster the perspective of immunoproteasome as a potential therapeutic target for neurodegeneration. In this review, we provide a brain and retina-wide overview, trying to correlate present knowledge on structure-function relationships of immunoproteasome with the variety of observed neuro-modulatory functions.
Collapse
|
24
|
Anderson RT, Bradley TA, Smith DM. Hyperactivation of the proteasome in Caenorhabditis elegans protects against proteotoxic stress and extends lifespan. J Biol Chem 2022; 298:102415. [PMID: 36007615 PMCID: PMC9486566 DOI: 10.1016/j.jbc.2022.102415] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Virtually all age-related neurodegenerative diseases (NDs) can be characterized by the accumulation of proteins inside and outside the cell that are thought to significantly contribute to disease pathogenesis. One of the cell’s primary systems for the degradation of misfolded/damaged proteins is the ubiquitin proteasome system (UPS), and its impairment is implicated in essentially all NDs. Thus, upregulating this system to combat NDs has garnered a great deal of interest in recent years. Various animal models have focused on stimulating 26S activity and increasing 20S proteasome levels, but thus far, none have targeted intrinsic activation of the 20S proteasome itself. Therefore, we constructed an animal model that endogenously expresses a hyperactive, open gate proteasome in Caenorhabditis elegans. The gate-destabilizing mutation that we introduced into the nematode germline yielded a viable nematode population with enhanced proteasomal activity, including peptide, unstructured protein, and ubiquitin-dependent degradation activities. We determined these nematodes showed a significantly increased lifespan and substantial resistance to oxidative and proteotoxic stress but a significant decrease in fecundity. Our results show that introducing a constitutively active proteasome into a multicellular organism is feasible and suggests targeting the proteasome gating mechanism as a valid approach for future age-related disease research efforts in mammals.
Collapse
Affiliation(s)
- Raymond T Anderson
- Department of Biochemistry, West Virginia University School of Medicine, 64 Medical Center Dr., Morgantown, WV 26506
| | - Thomas A Bradley
- Department of Biochemistry, West Virginia University School of Medicine, 64 Medical Center Dr., Morgantown, WV 26506
| | - David M Smith
- Department of Biochemistry, West Virginia University School of Medicine, 64 Medical Center Dr., Morgantown, WV 26506.
| |
Collapse
|
25
|
Thomas TA, Smith DM. Proteasome activator 28γ (PA28γ) allosterically activates trypsin-like proteolysis by binding to the α-ring of the 20S proteasome. J Biol Chem 2022; 298:102140. [PMID: 35714770 PMCID: PMC9287138 DOI: 10.1016/j.jbc.2022.102140] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 11/21/2022] Open
Abstract
Proteasome activator 28γ (PA28γ/REGγ) is a member of the 11S family of proteasomal regulators that is constitutively expressed in the nucleus and implicated in various diseases, including certain cancers and systemic lupus erythematosus. Despite years of investigation, how PA28γ functions to stimulate proteasomal protein degradation remains unclear. Alternative hypotheses have been proposed for the molecular mechanism of PA28γ, including the following: (1) substrate selection, (2) allosteric upregulation of the trypsin-like (T-L) site, (3) allosteric inhibition of the chymotrypsin-like (CT-L) and caspase-like (C-L) sites, (4) conversion of the CT-L or C-L sites to new T-L sites, and (5) gate opening alone or in combination with a previous hypothesis. Here, by mechanistically decoupling gating effects from active site effects, we unambiguously demonstrate that WT PA28γ allosterically activates the T-L site. We show PA28γ binding increases the Kcat/Km by 13-fold for T-L peptide substrates while having little-to-no effect on hydrolysis kinetics for CT-L or C-L substrates. Furthermore, mutagenesis and domain swaps of PA28γ reveal that it does not select for T-L peptide substrates through either the substrate entry pore or the distal intrinsically disordered region. We also show that a previously reported point mutation can functionally switch PA28γ from a T-L activating to a gate-opening activator in a mutually exclusive fashion. Finally, using cryogenic electron microscopy, we visualized the PA28γ-proteasome complex at 4.3 Å and confirmed its expected quaternary structure. The results of this study provide unambiguous evidence that PA28γ can function by binding the 20S proteasome to allosterically activate the T-L proteolytic site.
Collapse
Affiliation(s)
- Taylor A Thomas
- Department of Biochemistry, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia, USA
| | - David M Smith
- Department of Biochemistry, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia, USA; Department of Neuroscience, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia, USA; WVU Rockefeller Neuroscience Institute, Morgantown, West Virginia, USA; WVU Cancer Institute, Morgantown, West Virginia, USA.
| |
Collapse
|
26
|
Abstract
The mechanistic target of rapamycin (mTOR) regulates numerous extracellular and intracellular signals involved in the maintenan-ce of cellular homeostasis and cell growth. mTOR also functions as an endogenous inhibitor of autophagy. Under nutrient-rich conditions, mTOR complex 1 (mTORC1) phosphorylates the ULK1 complex, preventing its activation and subsequent autophagosome formation, while inhibition of mTORC1 using either rapamycin or nutrient deprivation induces autophagy. Autophagy and proteasomal proteolysis provide amino acids necessary for protein translation. Although the connection between mTORC1 and autophagy is well characterized, the association of mTORC1 inhibition with proteasome biogenesis and activity has not been fully elucidated yet. Proteasomes are long-lived cellular organelles. Their spatiotemporal rather than homeostatic regulation could be another adaptive cellular mechanism to respond to starvation. Here, we reviewed several published reports and the latest research from our group to examine the connection between mTORC1 and proteasome. We have also investigated and described the effect of mTORC1 inhibition on proteasome activity using purified proteasomes. Since mTORC1 inhibitors are currently evaluated as treatments for several human diseases, a better understanding of the link between mTORC1 activity and proteasome function is of utmost importance.
Collapse
Affiliation(s)
- Seo Hyeong Park
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Won Hoon Choi
- BK21 FOUR Biomedical Science Program, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Min Jae Lee
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea
| |
Collapse
|
27
|
Staerz SD, Jones CL, Tepe JJ. Design, Synthesis, and Biological Evaluation of Potent 20S Proteasome Activators for the Potential Treatment of α-Synucleinopathies. J Med Chem 2022; 65:6631-6642. [PMID: 35476454 DOI: 10.1021/acs.jmedchem.1c02158] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
While neurodegenerative diseases affect millions of patients worldwide, there are insufficient available therapeutics to halt or slow down the progression of these diseases. A key pathological feature of several neurodegenerative diseases is the oligomerization and aggregation of specific intrinsically disordered proteins (IDPs) creating neuronal deposits, such as Lewy bodies in Parkinson's disease. Clearance of these pathogenic, aggregation-prone IDPs is mediated by the 20S isoform of the human proteasome. Thus, enhancing the 20S proteasome-mediated proteolysis could be a very useful therapeutic pathway to prevent neurotoxicity. Here, we report the successful development of sub-microM 20S proteasome activators based on a phenothiazine scaffold. This class of compounds prevented the accumulation of pathologically relevant IDPs, such as the pathogenic A53T mutated α-synuclein, in vitro and in mammalian cell lines.
Collapse
Affiliation(s)
- Sophia D Staerz
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48823, United States
| | - Corey L Jones
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48823, United States
| | - Jetze J Tepe
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48823, United States
| |
Collapse
|
28
|
Mee Hayes E, Sirvio L, Ye Y. A Potential Mechanism for Targeting Aggregates With Proteasomes and Disaggregases in Liquid Droplets. Front Aging Neurosci 2022; 14:854380. [PMID: 35517053 PMCID: PMC9062979 DOI: 10.3389/fnagi.2022.854380] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/18/2022] [Indexed: 01/26/2023] Open
Abstract
Insoluble protein deposits are hallmarks of neurodegenerative disorders and common forms of dementia. The aberrant aggregation of misfolded proteins involves a complex cascade of events that occur over time, from the cellular to the clinical phase of neurodegeneration. Declining neuronal health through increased cell stress and loss of protein homeostasis (proteostasis) functions correlate with the accumulation of aggregates. On the cellular level, increasing evidence supports that misfolded proteins may undergo liquid-liquid phase separation (LLPS), which is emerging as an important process to drive protein aggregation. Studying, the reverse process of aggregate disassembly and degradation has only recently gained momentum, following reports of enzymes with distinct aggregate-disassembly activities. In this review, we will discuss how the ubiquitin-proteasome system and disaggregation machineries such as VCP/p97 and HSP70 system may disassemble and/or degrade protein aggregates. In addition to their canonically associated functions, these enzymes appear to share a common feature: reversibly assembling into liquid droplets in an LLPS-driven manner. We review the role of LLPS in enhancing the disassembly of aggregates through locally increasing the concentration of these enzymes and their co-proteins together within droplet structures. We propose that such activity may be achieved through the concerted actions of disaggregase machineries, the ubiquitin-proteasome system and their co-proteins, all of which are condensed within transient aggregate-associated droplets (TAADs), ultimately resulting in aggregate clearance. We further speculate that sustained engagement of these enzymatic activities within TAADs will be detrimental to normal cellular functions, where these activities are required. The possibility of facilitating endogenous disaggregation and degradation activities within TAADs potentially represents a novel target for therapeutic intervention to restore protein homeostasis at the early stages of neurodegeneration.
Collapse
Affiliation(s)
- Emma Mee Hayes
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, United Kingdom
- UK Dementia Research Institute at Imperial College London, London, United Kingdom
| | - Liina Sirvio
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, United Kingdom
- UK Dementia Research Institute at Imperial College London, London, United Kingdom
| | - Yu Ye
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, United Kingdom
- UK Dementia Research Institute at Imperial College London, London, United Kingdom
- *Correspondence: Yu Ye,
| |
Collapse
|
29
|
Kim S, Park SH, Choi WH, Lee MJ. Evaluation of Immunoproteasome-Specific Proteolytic Activity Using Fluorogenic Peptide Substrates. Immune Netw 2022; 22:e28. [PMID: 35799704 PMCID: PMC9250865 DOI: 10.4110/in.2022.22.e28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/29/2022] [Accepted: 04/05/2022] [Indexed: 12/01/2022] Open
Abstract
The 26S proteasome irreversibly hydrolyzes polyubiquitylated substrates to maintain protein homeostasis; it also regulates immune responses by generating antigenic peptides. An alternative form of the 26S proteasome is the immunoproteasome, which contains substituted catalytic subunits (β1i/PSMB9, β2i/PSMB10, and β5i/PSMB8) instead of constitutively expressed counterparts (β1/PSMB6, β2/PSMB7, and β5/PSMB5). The immunoproteasome expands the peptide repertoire presented on MHC class I molecules. However, how its activity changes in this context is largely elusive, possibly due to the lack of a standardized methodology to evaluate its specific activity. Here, we describe an assay protocol that measures the immunoproteasome activity of whole-cell lysates using commercially available fluorogenic peptide substrates. Our results showed that the most accurate assessment of immunoproteasome activity could be achieved by combining β5i-targeting substrate Ac-ANW-AMC and immunoproteasome inhibitor ONX-0914. This simple and reliable protocol may contribute to future studies of immunoproteasomes and their pathophysiological roles during viral infection, inflammation, and tumorigenesis.
Collapse
Affiliation(s)
- Sumin Kim
- Department of Biochemistry & Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 03080, Korea
- BK21 FOUR Biomedical Science Program, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Seo Hyeong Park
- Department of Biochemistry & Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 03080, Korea
- BK21 FOUR Biomedical Science Program, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Won Hoon Choi
- Department of Biochemistry & Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea
- BK21 FOUR Biomedical Science Program, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Min Jae Lee
- Department of Biochemistry & Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 03080, Korea
| |
Collapse
|
30
|
George DE, Tepe JJ. Advances in Proteasome Enhancement by Small Molecules. Biomolecules 2021; 11:1789. [PMID: 34944433 PMCID: PMC8699248 DOI: 10.3390/biom11121789] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/23/2021] [Accepted: 11/26/2021] [Indexed: 01/11/2023] Open
Abstract
The proteasome system is a large and complex molecular machinery responsible for the degradation of misfolded, damaged, and redundant cellular proteins. When proteasome function is impaired, unwanted proteins accumulate, which can lead to several diseases including age-related and neurodegenerative diseases. Enhancing proteasome-mediated substrate degradation with small molecules may therefore be a valuable strategy for the treatment of various neurodegenerative diseases such as Parkinson's, Alzheimer's, and Huntington's diseases. In this review, we discuss the structure of proteasome and how proteasome's proteolytic activity is associated with aging and various neurodegenerative diseases. We also summarize various classes of compounds that are capable of enhancing, directly or indirectly, proteasome-mediated protein degradation.
Collapse
Affiliation(s)
| | - Jetze J. Tepe
- Department of Chemistry and Pharmacology & Toxicology, Michigan State University, East Lansing, MI 48824, USA;
| |
Collapse
|
31
|
Concept and application of circulating proteasomes. Exp Mol Med 2021; 53:1539-1546. [PMID: 34707192 PMCID: PMC8568939 DOI: 10.1038/s12276-021-00692-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/27/2021] [Accepted: 09/06/2021] [Indexed: 12/26/2022] Open
Abstract
Proteostasis is primarily a function of protein synthesis and degradation. Although the components and processes involved in intracellular proteostasis have been studied extensively, it is apparent that extracellular proteostasis is equitably crucial for the viability of organisms. The 26S proteasome, a unique ATP-dependent proteolytic complex in eukaryotic cells, contributes to the majority of intracellular proteolysis. Accumulating evidence suggests the presence of intact 20S proteasomes in the circulatory system (c-proteasomes), and similar to other plasma proteins, the levels of these c-proteasomes may vary, potentially reflecting specific pathophysiological conditions. Under normal conditions, the concentration of c-proteasomes has been reported to be in the range of ~0.2-2 μg/mL, which is ~2-4-fold lower than that of functional plasma proteins but markedly higher than that of signaling proteins. The characterization of c-proteasomes, such as their origin, structure, role, and clearance, has been delayed mainly due to technical limitations. In this review, we summarize the current perspectives pertaining to c-proteasomes, focusing on the methodology, including our experimental understanding. We believe that once the pathological relevance of c-proteasomes is revealed, these unique components may be utilized in the diagnosis and prognosis of diverse human diseases.
Collapse
|
32
|
Bonea D, Noureddine J, Gazzarrini S, Zhao R. Oxidative and salt stresses alter the 26S proteasome holoenzyme and associated protein profiles in Arabidopsis thaliana. BMC PLANT BIOLOGY 2021; 21:486. [PMID: 34696730 PMCID: PMC8543921 DOI: 10.1186/s12870-021-03234-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 09/29/2021] [Indexed: 05/13/2023]
Abstract
BACKGROUND The 26S proteasome, canonically composed of multi-subunit 19S regulatory (RP) and 20S core (CP) particles, is crucial for cellular proteostasis. Proteasomes are re-modeled, activated, or re-localized and this regulation is critical for plants in response to environmental stresses. The proteasome holoenzyme assembly and dissociation are therefore highly dynamic in vivo. However, the stoichiometric changes of the plant proteasomes and how proteasome associated chaperones vary under common abiotic stresses have not been systematically studied. RESULTS Here, we studied the impact of abiotic stresses on proteasome structure, activity, and interacting partners in Arabidopsis thaliana. We analyzed available RNA expression data and observed that expressions of proteasome coding genes varied substantially under stresses; however, the protein levels of a few key subunits did not change significantly within 24 h. Instead, a switch in the predominant proteasome complex, from 26S to 20S, occurs under oxidative or salt stress. Oxidative stress also reduced the cellular ATP content and the association of HSP70-family proteins to the 20S proteasome, but enhanced the activity of cellular free form CP. Salt stress, on the other hand, did not affect cellular ATP level, but caused subtle changes in proteasome subunit composition and impacted bindings of assembly chaperones. Analyses of an array of T-DNA insertional mutant lines highlighted important roles for several putative assembly chaperones in seedling establishment and stress sensitivity. We also observed that knockout of PBAC1, one of the α-ring assembly chaperones, resulted in reduced germination and tearing of the seed coat following sterilization. CONCLUSIONS Our study revealed an evolutionarily conserved mechanism of proteasome regulation during oxidative stress, involving dynamic regulation of the holoenzyme formation and associated regulatory proteins, and we also identified a novel role of the PBAC1 proteasome assembly chaperone in seed coat development.
Collapse
Affiliation(s)
- Diana Bonea
- Department of Biological Sciences, University of Toronto, 1265 Military Trail, Toronto, ON M1C 1A4 Canada
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON M5S 3G5 Canada
| | - Jenan Noureddine
- Department of Biological Sciences, University of Toronto, 1265 Military Trail, Toronto, ON M1C 1A4 Canada
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON M5S 3G5 Canada
| | - Sonia Gazzarrini
- Department of Biological Sciences, University of Toronto, 1265 Military Trail, Toronto, ON M1C 1A4 Canada
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON M5S 3G5 Canada
| | - Rongmin Zhao
- Department of Biological Sciences, University of Toronto, 1265 Military Trail, Toronto, ON M1C 1A4 Canada
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON M5S 3G5 Canada
| |
Collapse
|
33
|
Tundo GR, Sbardella D, Oddone F, Kudriaeva AA, Lacal PM, Belogurov AA, Graziani G, Marini S. At the Cutting Edge against Cancer: A Perspective on Immunoproteasome and Immune Checkpoints Modulation as a Potential Therapeutic Intervention. Cancers (Basel) 2021; 13:4852. [PMID: 34638337 PMCID: PMC8507813 DOI: 10.3390/cancers13194852] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 01/22/2023] Open
Abstract
Immunoproteasome is a noncanonical form of proteasome with enzymological properties optimized for the generation of antigenic peptides presented in complex with class I MHC molecules. This enzymatic property makes the modulation of its activity a promising area of research. Nevertheless, immunotherapy has emerged as a front-line treatment of advanced/metastatic tumors providing outstanding improvement of life expectancy, even though not all patients achieve a long-lasting clinical benefit. To enhance the efficacy of the currently available immunotherapies and enable the development of new strategies, a broader knowledge of the dynamics of antigen repertoire processing by cancer cells is needed. Therefore, a better understanding of the role of immunoproteasome in antigen processing and of the therapeutic implication of its modulation is mandatory. Studies on the potential crosstalk between proteasome modulators and immune checkpoint inhibitors could provide novel perspectives and an unexplored treatment option for a variety of cancers.
Collapse
Affiliation(s)
| | | | | | - Anna A. Kudriaeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.A.K.)
| | - Pedro M. Lacal
- Laboratory of Molecular Oncology, IDI-IRCCS, 00167 Rome, Italy;
| | - Alexey A. Belogurov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.A.K.)
- Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow, Russia
| | - Grazia Graziani
- Laboratory of Molecular Oncology, IDI-IRCCS, 00167 Rome, Italy;
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Stefano Marini
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, 00133 Rome, Italy;
| |
Collapse
|
34
|
Yun Y, Lee SY, Choi WH, Park JC, Lee DH, Kim YK, Lee JH, Lee JY, Lee MJ, Kim YH. Proteasome Activity in the Plasma as a Novel Biomarker in Mild Cognitive Impairment with Chronic Tinnitus. J Alzheimers Dis 2021; 78:195-205. [PMID: 32955464 PMCID: PMC7683073 DOI: 10.3233/jad-200728] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Although the existence of proteasomes in human blood, termed circulating proteasomes (c-proteasomes), has been reported previously, their origin and pathophysiological functions remain largely unknown. OBJECTIVE Given that c-proteasome activity was significantly reduced in Alzheimer's disease model mice and relatively high frequency of mild cognitive impairment (MCI) is accompanied by chronic tinnitus in aged patients, we examined whether c-proteasome activity in human plasma was associated with cognitive function in patients with chronic tinnitus. METHODS c-Proteasome activity in the plasma of tinnitus patients (N = 55) was measured with fluorogenic reporter substrate, suc-LLVY-AMC. To assess MCI, the Montreal Cognitive Assessment was conducted with a cut-off score of 22/23. All patients underwent audiological and psychoacoustic analyses. Levels of c-proteasomes, Aβ42, and Aβ40 were measured using ELISA, and their association with c-proteasome activity was evaluated. RESULTS The activity of circulating proteasomes was significantly lower in patients with chronic tinnitus and MCI (p = 0.042), whereas activities of other plasma enzymes showed little correlation. In addition, c-proteasome activity was negatively associated with the level of plasma Aβ and was directly dependent on its own concentration in the plasma of patients with chronic tinnitus. CONCLUSION Our current work provides a new perspective for understanding the potential relationship between circulating proteasomes in the plasma and cognitive dysfunction, suggesting a novel, non-invasive biomarker in the context of MCI diagnosis.
Collapse
Affiliation(s)
- Yejin Yun
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Korea
| | - Sang-Yeon Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seoul, Korea
| | - Won Hoon Choi
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Korea
| | - Jong-Chan Park
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Korea.,Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Dong Han Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Konkuk University Medical Center, Seoul, Korea
| | - Yun Kyung Kim
- Center for Neuro-Medicine, Brain Science Institute, Korea Institute of Science and Technology, Seoul, Korea
| | - Jung Hoon Lee
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Korea.,Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Jun-Young Lee
- Department of Psychiatry and Neuroscience Research Institute, Seoul National University College of Medicine, Boramae Medical Center, Seoul, Korea
| | - Min Jae Lee
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Korea.,Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Young Ho Kim
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Boramae Medical Center, Seoul, Korea
| |
Collapse
|
35
|
Fuchs ACD, Alva V, Lupas AN. An astonishing wealth of new proteasome homologs. Bioinformatics 2021; 37:4694-4703. [PMID: 34323935 PMCID: PMC8665760 DOI: 10.1093/bioinformatics/btab558] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/02/2021] [Accepted: 07/28/2021] [Indexed: 11/21/2022] Open
Abstract
Motivation The proteasome is the main proteolytic machine for targeted protein degradation in archaea and eukaryotes. While some bacteria also possess the proteasome, most of them contain a simpler and more specialized homolog, the heat shock locus V protease. In recent years, three further homologs of the proteasome core subunits have been characterized in prokaryotes: Anbu, BPH and connectase. With the inclusion of these members, the family of proteasome-like proteins now exhibits a range of architectural and functional forms, from the canonical proteasome, a barrel-shaped protease without pronounced intrinsic substrate specificity, to the monomeric connectase, a highly specific protein ligase. Results We employed systematic sequence searches to show that we have only seen the tip of the iceberg so far and that beyond the hitherto known proteasome homologs lies a wealth of distantly related, uncharacterized homologs. We describe a total of 22 novel proteasome homologs in bacteria and archaea. Using sequence and structure analysis, we analyze their evolutionary history and assess structural differences that may modulate their function. With this initial description, we aim to stimulate the experimental investigation of these novel proteasome-like family members. Availability and implementation The protein sequences in this study are searchable in the MPI Bioinformatics Toolkit (https://toolkit.tuebingen.mpg.de) with ProtBLAST/PSI-BLAST and with HHpred (database ‘proteasome_homologs’). The following data are available at https://data.mendeley.com/datasets/t48yhff7hs/3: (i) sequence alignments for each proteasome-like homolog, (ii) the coordinates for their structural models and (iii) a cluster-map file, which can be navigated interactively in CLANS and gives direct access to all the sequences in this study. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Adrian C D Fuchs
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Vikram Alva
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Andrei N Lupas
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| |
Collapse
|
36
|
Jeon JH, Oh TR, Park S, Huh S, Kim JH, Mai BK, Lee JH, Kim SH, Lee MJ. The Antipsychotic Drug Clozapine Suppresses the RGS4 Polyubiquitylation and Proteasomal Degradation Mediated by the Arg/N-Degron Pathway. Neurotherapeutics 2021; 18:1768-1782. [PMID: 33884581 PMCID: PMC8608952 DOI: 10.1007/s13311-021-01039-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2021] [Indexed: 02/04/2023] Open
Abstract
Although diverse antipsychotic drugs have been developed for the treatment of schizophrenia, most of their mechanisms of action remain elusive. Regulator of G-protein signaling 4 (RGS4) has been reported to be linked, both genetically and functionally, with schizophrenia and is a physiological substrate of the arginylation branch of the N-degron pathway (Arg/N-degron pathway). Here, we show that the atypical antipsychotic drug clozapine significantly inhibits proteasomal degradation of RGS4 proteins without affecting their transcriptional expression. In addition, the levels of Arg- and Phe-GFP (artificial substrates of the Arg/N-degron pathway) were significantly elevated by clozapine treatment. In silico computational model suggested that clozapine may interact with active sites of N-recognin E3 ubiquitin ligases. Accordingly, treatment with clozapine resulted in reduced polyubiquitylation of RGS4 and Arg-GFP in the test tube and in cultured cells. Clozapine attenuated the activation of downstream effectors of G protein-coupled receptor signaling, such as MEK1 and ERK1, in HEK293 and SH-SY5Y cells. Furthermore, intraperitoneal injection of clozapine into rats significantly stabilized the endogenous RGS4 protein in the prefrontal cortex. Overall, these results reveal an additional therapeutic mechanism of action of clozapine: this drug posttranslationally inhibits the degradation of Arg/N-degron substrates, including RGS4. These findings imply that modulation of protein post-translational modifications, in particular the Arg/N-degron pathway, may be a novel molecular therapeutic strategy against schizophrenia.
Collapse
Affiliation(s)
- Jun Hyoung Jeon
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Tae Rim Oh
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Seoyoung Park
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, 03080, Korea
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Sunghoo Huh
- Biomedical Research Institute, Seoul National University Hospital, Seoul, 03080, Korea
| | - Ji Hyeon Kim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Binh Khanh Mai
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Jung Hoon Lee
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, 03080, Korea
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Se Hyun Kim
- Biomedical Research Institute, Seoul National University Hospital, Seoul, 03080, Korea.
- Department of Psychiatry, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, 03080, Korea.
| | - Min Jae Lee
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, 03080, Korea.
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, 03080, Korea.
| |
Collapse
|
37
|
Chronic pain susceptibility is associated with anhedonic behavior and alterations in the accumbal ubiquitin-proteasome system. Pain 2021; 162:1722-1731. [PMID: 33449505 DOI: 10.1097/j.pain.0000000000002192] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 12/30/2020] [Indexed: 12/18/2022]
Abstract
ABSTRACT It remains unknown why on similar acute/subacute painful conditions, pain persists in some individuals while in others it resolves. Genetic factors, mood, and functional alterations, particularly involving the mesolimbic network, seem to be key. To explore potential susceptibility or resistance factors, we screened a large population of rats with a peripheral neuropathy and we isolated a small subset (<15%) that presented high thresholds (HTs) to mechanical allodynia (reduced pain manifestation). The phenotype was sustained over 12 weeks and was associated with higher hedonic behavior when compared with low-threshold (LT) subjects. The nucleus accumbens of HT and LT animals were isolated for proteomic analysis by Sequential Window Acquisition of All Theoretical Mass Spectra. Two hundred seventy-nine proteins displayed different expression between LT and HT animals or subjects. Among several protein families, the proteasome pathway repeatedly emerged in gene ontology enrichment and KEGG analyses. Several alpha and beta 20S proteasome subunits were increased in LT animals when compared with HT animals (eg, PSMα1, PSMα2, and PSMβ5). On the contrary, UBA6, an upstream ubiquitin-activating enzyme, was decreased in LT animals. Altogether these observations are consistent with an overactivation of the accumbal proteasome pathway in animals that manifest pain and depressive-like behaviors after a neuropathic injury. All the proteomic data are available through ProteomeXchange with identifier PXD022478.
Collapse
|
38
|
Proteasome in action: substrate degradation by the 26S proteasome. Biochem Soc Trans 2021; 49:629-644. [PMID: 33729481 PMCID: PMC8106498 DOI: 10.1042/bst20200382] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 12/16/2022]
Abstract
Ubiquitination is the major criteria for the recognition of a substrate-protein by the 26S proteasome. Additionally, a disordered segment on the substrate — either intrinsic or induced — is critical for proteasome engagement. The proteasome is geared to interact with both of these substrate features and prepare it for degradation. To facilitate substrate accessibility, resting proteasomes are characterised by a peripheral distribution of ubiquitin receptors on the 19S regulatory particle (RP) and a wide-open lateral surface on the ATPase ring. In this substrate accepting state, the internal channel through the ATPase ring is discontinuous, thereby obstructing translocation of potential substrates. The binding of the conjugated ubiquitin to the ubiquitin receptors leads to contraction of the 19S RP. Next, the ATPases engage the substrate at a disordered segment, energetically unravel the polypeptide and translocate it towards the 20S catalytic core (CP). In this substrate engaged state, Rpn11 is repositioned at the pore of the ATPase channel to remove remaining ubiquitin modifications and accelerate translocation. C-termini of five of the six ATPases insert into corresponding lysine-pockets on the 20S α-ring to complete 20S CP gate opening. In the resulting substrate processing state, the ATPase channel is fully contiguous with the translocation channel into the 20S CP, where the substrate is proteolyzed. Complete degradation of a typical ubiquitin-conjugate takes place over a few tens of seconds while hydrolysing tens of ATP molecules in the process (50 kDa/∼50 s/∼80ATP). This article reviews recent insight into biochemical and structural features that underlie substrate recognition and processing by the 26S proteasome.
Collapse
|
39
|
Structural Insights into Substrate Recognition and Processing by the 20S Proteasome. Biomolecules 2021; 11:biom11020148. [PMID: 33498876 PMCID: PMC7910952 DOI: 10.3390/biom11020148] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 01/18/2021] [Accepted: 01/21/2021] [Indexed: 12/12/2022] Open
Abstract
Four decades of proteasome research have yielded extensive information on ubiquitin-dependent proteolysis. The archetype of proteasomes is a 20S barrel-shaped complex that does not rely on ubiquitin as a degradation signal but can degrade substrates with a considerable unstructured stretch. Since roughly half of all proteasomes in most eukaryotic cells are free 20S complexes, ubiquitin-independent protein degradation may coexist with ubiquitin-dependent degradation by the highly regulated 26S proteasome. This article reviews recent advances in our understanding of the biochemical and structural features that underlie the proteolytic mechanism of 20S proteasomes. The two outer α-rings of 20S proteasomes provide a number of potential docking sites for loosely folded polypeptides. The binding of a substrate can induce asymmetric conformational changes, trigger gate opening, and initiate its own degradation through a protease-driven translocation mechanism. Consequently, the substrate translocates through two additional narrow apertures augmented by the β-catalytic active sites. The overall pulling force through the two annuli results in a protease-like unfolding of the substrate and subsequent proteolysis in the catalytic chamber. Although both proteasomes contain identical β-catalytic active sites, the differential translocation mechanisms yield distinct peptide products. Nonoverlapping substrate repertoires and product outcomes rationalize cohabitation of both proteasome complexes in cells.
Collapse
|
40
|
Zhao Y, Zhai Q, Liu H, Xi X, Chen S, Liu D. TRIM16 Promotes Osteogenic Differentiation of Human Periodontal Ligament Stem Cells by Modulating CHIP-Mediated Degradation of RUNX2. Front Cell Dev Biol 2021; 8:625105. [PMID: 33490087 PMCID: PMC7817816 DOI: 10.3389/fcell.2020.625105] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 11/30/2020] [Indexed: 01/09/2023] Open
Abstract
Bone regeneration is the ultimate goal of periodontal therapies, in which osteogenic differentiation of human periodontal ligament stem cells plays a critical role. The tripartite motif (TRIM)16, an E3 ubiquitin ligase, is downregulated in periodontal tissues of patients with periodontitis, while the role of TRIM16 in the osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs) is largely unknown. Firstly, we found that TRIM16 was increased throughout the osteogenic media induced differentiation of hPDLSCs. Then overexpression plasmids and specific short-hairpin RNAs (shRNAs) were constructed to manipulate the expression of target molecules. TRIM16 significantly promoted alkaline phosphatase activity, mineralized nodule formation, and positively regulated the expression of osteo-specific markers RUNX2, COL1A1 and OCN except the mRNA of RUNX2. Mechanistically, TRIM16 serves as a pivotal factor that stabilizes RUNX2 protein levels by decreasing CHIP-mediated K48-linked ubiquitination degradation of the RUNX2 protein. This study identified a novel mechanism of TRIM16 in regulating stability of the RUNX2 protein, which promoted the osteogenic differentiation of hPDLSCs. TRIM16 may be a potential target of stem cell based-bone regeneration for periodontal therapies.
Collapse
Affiliation(s)
- Yi Zhao
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Qiaoli Zhai
- Center of Translational Medicine, Zibo Central Hospital, Shandong, China
| | - Hong Liu
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Xun Xi
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Shuai Chen
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Dongxu Liu
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| |
Collapse
|
41
|
Chen M, Huang N, Liu J, Huang J, Shi J, Jin F. AMPK: A bridge between diabetes mellitus and Alzheimer's disease. Behav Brain Res 2020; 400:113043. [PMID: 33307136 DOI: 10.1016/j.bbr.2020.113043] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 11/21/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023]
Abstract
The pathogenesis and etiology of diabetes mellitus (DM) and Alzheimer's disease (AD) share many common cellular and molecular themes. Recently, a growing body of research has shown that AMP-activated protein kinase (AMPK), a biomolecule that regulates energy balance and glucose and lipid metabolism, plays key roles in DM and AD. In this review, we summarize the relevant research on the roles of AMPK in DM and AD, including its functions in gluconeogenesis and insulin resistance (IR) and its relationships with amyloid β-protein (Aβ), Tau and AMPK activators. In DM, AMPK is involved in the regulation of glucose metabolism and IR. AMPK is closely related to gluconeogenesis, which can not only be activated by the upstream kinases liver kinase B1 (LKB1), transforming growth factor β-activated kinase 1 (TAK1), and Ca2+/calmodulin-dependent protein kinase kinase β (CaMKKβ) but also regulate the downstream kinases glucose-6-phosphatase (G-6-Pase) and phosphoenolpyruvate carboxy kinase (PEPCK), thereby affecting gluconeogenesis and ameliorating DM. Moreover, AMPK can regulate glucose transporter 4 (GLUT4) and free fatty acids to improve IR. In AD, AMPK can ameliorate abnormal brain energy metabolism, not only by reduces Aβ deposition through β-secretase but also reduces tau hyperphosphorylation through sirtuin 1 (SIRT1) and protein phosphatase 2A (PP2A). Therefore, AMPK is a bridge between DM and AD.
Collapse
Affiliation(s)
- Meixiang Chen
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of the Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Nanqu Huang
- National Drug Clinical Trial Institution, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China
| | - Ju Liu
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of the Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Juan Huang
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of the Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jingshan Shi
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of the Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Feng Jin
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of the Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China.
| |
Collapse
|
42
|
Tian T, McLean JW, Wilson JA, Wilson SM. Examination of genetic and pharmacological tools to study the proteasomal deubiquitinating enzyme ubiquitin-specific protease 14 in the nervous system. J Neurochem 2020; 156:309-323. [PMID: 32901953 DOI: 10.1111/jnc.15180] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 12/24/2022]
Abstract
Strategies for enhancing protein degradation have been proposed for treating neurological diseases associated with a decline in proteasome activity. A proteasomal deubiquitinating enzyme that controls substrate entry into proteasomes, ubiquitin-specific protease 14 (USP14), is an attractive candidate for therapies that modulate proteasome activity. This report tests the validity of genetic and pharmacological tools to study USP14's role in regulating protein abundance. Although previous studies implicated USP14 in the degradation of microtubule associate protein tau, tar DNA binding protein, and prion protein, the levels of these proteins were similar in our neurons cultured from wild type and USP14-deficient mice. Neither loss nor over-expression of USP14 affected the levels of these proteins in mice, implying that modifying the amount of USP14 is not sufficient to alter their steady-state levels. However, neuronal over-expression of a catalytic mutant of USP14 showed that manipulating USP14's ubiquitin-hydrolase activity altered the levels of specific proteins in vivo. Although pharmacological inhibitors of USP14's ubiquitin-hydrolase activity reduced microtubule associate protein tau, tar DNA binding protein, and prion protein in culture, the effect was similar in wild type and USP14-deficient neurons, thus impacting their use for specifically evaluating USP14 in a therapeutic manner. While examining how targeting USP14 may affect other proteins in vivo, this report showed that fatty acid synthase, v-rel reticuloendotheliosis viral oncogene homolog, CTNNB1, and synaptosome associated protein 23 are reduced in USP14-deficient mice; however, loss of USP14 differentially altered the levels of these proteins in the liver and brain. As such, it is critical to more thoroughly examine how inhibiting USP14 alters protein abundance to determine if targeting USP14 will be a beneficial strategy for treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Tina Tian
- Department of Neurobiology, Evelyn F. McKnight Brain Institute, Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - John W McLean
- Department of Neurobiology, Evelyn F. McKnight Brain Institute, Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Julie A Wilson
- Department of Neurobiology, Evelyn F. McKnight Brain Institute, Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Scott M Wilson
- Department of Neurobiology, Evelyn F. McKnight Brain Institute, Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
43
|
Pentaminomycins C-E: Cyclic Pentapeptides as Autophagy Inducers from a Mealworm Beetle Gut Bacterium. Microorganisms 2020; 8:microorganisms8091390. [PMID: 32927831 PMCID: PMC7565604 DOI: 10.3390/microorganisms8091390] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/08/2020] [Accepted: 09/08/2020] [Indexed: 01/04/2023] Open
Abstract
Pentaminomycins C–E (1–3) were isolated from the culture of the Streptomyces sp. GG23 strain from the guts of the mealworm beetle, Tenebrio molitor. The structures of the pentaminomycins were determined to be cyclic pentapeptides containing a modified amino acid, N5-hydroxyarginine, based on 1D and 2D NMR and mass spectroscopic analyses. The absolute configurations of the amino acid residues were assigned using Marfey’s method and bioinformatics analysis of their nonribosomal peptide biosynthetic gene cluster (BGC). Detailed analysis of the BGC enabled us to propose that the structural variations in 1–3 originate from the low specificity of the adenylation domain in the nonribosomal peptide synthetase (NRPS) module 1, and indicate that macrocyclization can be catalyzed noncanonically by penicillin binding protein (PBP)-type TE. Furthermore, pentaminomycins C and D (1 and 2) showed significant autophagy-inducing activities and were cytoprotective against oxidative stress in vitro.
Collapse
|
44
|
Tundo GR, Sbardella D, Santoro AM, Coletta A, Oddone F, Grasso G, Milardi D, Lacal PM, Marini S, Purrello R, Graziani G, Coletta M. The proteasome as a druggable target with multiple therapeutic potentialities: Cutting and non-cutting edges. Pharmacol Ther 2020; 213:107579. [PMID: 32442437 PMCID: PMC7236745 DOI: 10.1016/j.pharmthera.2020.107579] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 05/05/2020] [Indexed: 01/10/2023]
Abstract
Ubiquitin Proteasome System (UPS) is an adaptable and finely tuned system that sustains proteostasis network under a large variety of physiopathological conditions. Its dysregulation is often associated with the onset and progression of human diseases; hence, UPS modulation has emerged as a promising new avenue for the development of treatments of several relevant pathologies, such as cancer and neurodegeneration. The clinical interest in proteasome inhibition has considerably increased after the FDA approval in 2003 of bortezomib for relapsed/refractory multiple myeloma, which is now used in the front-line setting. Thereafter, two other proteasome inhibitors (carfilzomib and ixazomib), designed to overcome resistance to bortezomib, have been approved for treatment-experienced patients, and a variety of novel inhibitors are currently under preclinical and clinical investigation not only for haematological malignancies but also for solid tumours. However, since UPS collapse leads to toxic misfolded proteins accumulation, proteasome is attracting even more interest as a target for the care of neurodegenerative diseases, which are sustained by UPS impairment. Thus, conceptually, proteasome activation represents an innovative and largely unexplored target for drug development. According to a multidisciplinary approach, spanning from chemistry, biochemistry, molecular biology to pharmacology, this review will summarize the most recent available literature regarding different aspects of proteasome biology, focusing on structure, function and regulation of proteasome in physiological and pathological processes, mostly cancer and neurodegenerative diseases, connecting biochemical features and clinical studies of proteasome targeting drugs.
Collapse
Affiliation(s)
- G R Tundo
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy.
| | | | - A M Santoro
- CNR, Institute of Crystallography, Catania, Italy
| | - A Coletta
- Department of Chemistry, University of Aarhus, Aarhus, Denmark
| | - F Oddone
- IRCCS-Fondazione Bietti, Rome, Italy
| | - G Grasso
- Department of Chemical Sciences, University of Catania, Catania, Italy
| | - D Milardi
- CNR, Institute of Crystallography, Catania, Italy
| | - P M Lacal
- Laboratory of Molecular Oncology, IDI-IRCCS, Rome, Italy
| | - S Marini
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - R Purrello
- Department of Chemical Sciences, University of Catania, Catania, Italy
| | - G Graziani
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.
| | - M Coletta
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
45
|
Docosahexaenoic Acid, a Potential Treatment for Sarcopenia, Modulates the Ubiquitin-Proteasome and the Autophagy-Lysosome Systems. Nutrients 2020; 12:nu12092597. [PMID: 32859116 PMCID: PMC7551806 DOI: 10.3390/nu12092597] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 12/14/2022] Open
Abstract
One of the characteristic features of aging is the progressive loss of muscle mass, a nosological syndrome called sarcopenia. It is also a pathologic risk factor for many clinically adverse outcomes in older adults. Therefore, delaying the loss of muscle mass, through either boosting muscle protein synthesis or slowing down muscle protein degradation using nutritional supplements could be a compelling strategy to address the needs of the world’s aging population. Here, we review the recently identified properties of docosahexaenoic acid (DHA). It was shown to delay muscle wasting by stimulating intermediate oxidative stress and inhibiting proteasomal degradation of muscle proteins. Both the ubiquitin–proteasome and the autophagy–lysosome systems are modulated by DHA. Collectively, growing evidence indicates that DHA is a potent pharmacological agent that could improve muscle homeostasis. Better understanding of cellular proteolytic systems associated with sarcopenia will allow us to identify novel therapeutic interventions, such as omega-3 polyunsaturated fatty acids, to treat this disease.
Collapse
|
46
|
Aggresomal sequestration and STUB1-mediated ubiquitylation during mammalian proteaphagy of inhibited proteasomes. Proc Natl Acad Sci U S A 2020; 117:19190-19200. [PMID: 32723828 PMCID: PMC7430983 DOI: 10.1073/pnas.1920327117] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The ubiquitin–proteasome system and autophagy are two major intracellular proteolytic pathways, and both remove misfolded and proteotoxic proteins from eukaryotic cells. This study describes the detailed regulatory pathway of proteasome degradation by autophagy for its own quality control. We discovered that a portion of inhibited proteasomes is actively sequestered into the aggresome, an insoluble fraction of the mammalian cell. The aggresome functions as a triage point for proteasome recovery and autophagic degradation. This mainly distinguishes proteasome quality control in mammals from that in other organisms. STUB1/CHIP E3 Ub ligase has a critical role in targeting inhibited proteasomes into the aggresome. These results provide strong insights into protein catabolism in various pathological conditions originating from impaired proteasomes. The 26S proteasome, a self-compartmentalized protease complex, plays a crucial role in protein quality control. Multiple levels of regulatory systems modulate proteasomal activity for substrate hydrolysis. However, the destruction mechanism of mammalian proteasomes is poorly understood. We found that inhibited proteasomes are sequestered into the insoluble aggresome via HDAC6- and dynein-mediated transport. These proteasomes colocalized with the autophagic receptor SQSTM1 and cleared through selective macroautophagy, linking aggresomal segregation to autophagic degradation. This proteaphagic pathway was counterbalanced with the recovery of proteasomal activity and was critical for reducing cellular proteasomal stress. Changes in associated proteins and polyubiquitylation on inhibited 26S proteasomes participated in the targeting mechanism to the aggresome and autophagosome. The STUB1 E3 Ub ligase specifically ubiquitylated purified human proteasomes in vitro, mainly via Lys63-linked chains. Genetic and chemical inhibition of STUB1 activity significantly impaired proteasome processing and reduced resistance to proteasomal stress. These data demonstrate that aggresomal sequestration is the crucial upstream event for proteasome quality control and overall protein homeostasis in mammals.
Collapse
|
47
|
Hinze L, Labrosse R, Degar J, Han T, Schatoff EM, Schreek S, Karim S, McGuckin C, Sacher JR, Wagner F, Stanulla M, Yuan C, Sicinska E, Giannakis M, Ng K, Dow LE, Gutierrez A. Exploiting the Therapeutic Interaction of WNT Pathway Activation and Asparaginase for Colorectal Cancer Therapy. Cancer Discov 2020; 10:1690-1705. [PMID: 32703769 DOI: 10.1158/2159-8290.cd-19-1472] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 06/16/2020] [Accepted: 07/20/2020] [Indexed: 12/09/2022]
Abstract
Colorectal cancer is driven by mutations that activate canonical WNT/β-catenin signaling, but inhibiting WNT has significant on-target toxicity, and there are no approved therapies targeting dominant oncogenic drivers. We recently found that activating a β-catenin-independent branch of WNT signaling that inhibits GSK3-dependent protein degradation induces asparaginase sensitivity in drug-resistant leukemias. To test predictions from our model, we turned to colorectal cancer because these cancers can have WNT-activating mutations that function either upstream (i.e., R-spondin fusions) or downstream (APC or β-catenin mutations) of GSK3, thus allowing WNT/β-catenin and WNT-induced asparaginase sensitivity to be unlinked genetically. We found that asparaginase had little efficacy in APC or β-catenin-mutant colorectal cancer, but was profoundly toxic in the setting of R-spondin fusions. Pharmacologic GSK3α inhibition was sufficient for asparaginase sensitization in APC or β-catenin-mutant colorectal cancer, but not in normal intestinal progenitors. Our findings demonstrate that WNT-induced therapeutic vulnerabilities can be exploited for colorectal cancer therapy. SIGNIFICANCE: Solid tumors are thought to be asparaginase-resistant via de novo asparagine synthesis. In leukemia, GSK3α-dependent protein degradation, a catabolic amino acid source, mediates asparaginase resistance. We found that asparaginase is profoundly toxic to colorectal cancers with WNT-activating mutations that inhibit GSK3. Aberrant WNT activation can provide a therapeutic vulnerability in colorectal cancer.See related commentary by Davidsen and Sullivan, p. 1632.This article is highlighted in the In This Issue feature, p. 1611.
Collapse
Affiliation(s)
- Laura Hinze
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Roxane Labrosse
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - James Degar
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Teng Han
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York.,Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, New York
| | - Emma M Schatoff
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York.,Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, New York.,Weill Cornell/Rockefeller/Sloan-Kettering Tri-Institutional MD-PhD program, New York, New York
| | - Sabine Schreek
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Salmaan Karim
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Connor McGuckin
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Joshua R Sacher
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| | - Florence Wagner
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| | - Martin Stanulla
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Chen Yuan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Ewa Sicinska
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Marios Giannakis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| | - Kimmie Ng
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Lukas E Dow
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, New York.,Departments of Medicine and Biochemistry, Weill Cornell Medicine, New York, New York
| | - Alejandro Gutierrez
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts. .,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
48
|
Shin S, Kim D, Song JY, Jeong H, Hyeon SJ, Kowall NW, Ryu H, Pae AN, Lim S, Kim YK. Visualization of soluble tau oligomers in TauP301L-BiFC transgenic mice demonstrates the progression of tauopathy. Prog Neurobiol 2020; 187:101782. [PMID: 32105751 DOI: 10.1016/j.pneurobio.2020.101782] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 02/16/2020] [Accepted: 02/21/2020] [Indexed: 11/30/2022]
Abstract
Accumulation of abnormal tau aggregates in the brain is a pathological hallmark of multiple neurodegenerative disorders including Alzheimer's disease. Increasing evidence suggests that soluble tau aggregates play a key role in tau pathology as neurotoxic species causing neuronal cell death and act as prion-like seeds mediating tau propagation. Despite the pathological relevance, there is a paucity of methods to monitor tau oligomerization in the brain. As a tool to monitor tau self-assembly in the brain, we generated a novel tau transgenic mouse, named TauP301L-BiFC. By introducing bimolecular fluorescence complementation technique to human tau containing a P301L mutation, we were able to monitor and quantify tau self-assembly, represented by BiFC fluorescence in the brains of transgenic TauP301L-BiFC mice. TauP301L-BiFC mice showed soluble tau oligomerization from 3 months, showing significantly enriched BiFC fluorescence in the brain. Then, massive tau fragmentation occured at 6 months showing dramatically decreased TauP301L-BiFC fluorescence. The fragmented tau species served as a seed for insoluble tau aggregation. In a result, insoluble TauP301L-BiFC aggregates coaggregated with endogenous mouse tau accumulated in the brain, showing subsequently increased BiFC fluorescence from 9 months. Neuronal degeneration and cognitive deficits were observed from 12 months of age. TauP301L-BiFC mouse model demonstrated that methylene blue reduced the amount of soluble tau oligomers in the brain, resulting in the prevention of cognitive impairments. We assure that TauP301L-BiFC mice are a bona-fide animal tool to monitor pathological tau oligomerization in AD and other tauopathies.
Collapse
Affiliation(s)
- Seulgi Shin
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| | - Dohee Kim
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Ji Yeon Song
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Hyeanjeong Jeong
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Department of Life Sciences, School of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Seung Jae Hyeon
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Neil W Kowall
- Boston University Alzheimer's Disease Center and Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Hoon Ryu
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Boston University Alzheimer's Disease Center and Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Ae Nim Pae
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| | - Sungsu Lim
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.
| | - Yun Kyung Kim
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology (UST), Seoul, 02792, Republic of Korea.
| |
Collapse
|
49
|
The Bewildering Effect of AMPK Activators in Alzheimer's Disease: Review of the Current Evidence. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9895121. [PMID: 32149150 PMCID: PMC7049408 DOI: 10.1155/2020/9895121] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/14/2020] [Accepted: 01/29/2020] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease is a multifactorial neurodegenerative disease characterized by progressive cognitive dysfunction. It is the most common form of dementia. The pathologic hallmarks of the disease include extracellular amyloid plaque, intracellular neurofibrillary tangles, and oxidative stress, to mention some of them. Despite remarkable progress in the understanding of the pathogenesis of the disease, drugs for cure or disease-modifying therapy remain somewhere in the distance. From recent time, the signaling molecule AMPK is gaining enormous attention in the AD drug research. AMPK is a master regulator of cellular energy metabolism, and recent pieces of evidence show that perturbation of its function is highly ascribed in the pathology of AD. Several drugs are known to activate AMPK, but their effect in AD remains to be controversial. In this review, the current shreds of evidence on the effect of AMPK activators in Aβ accumulation, tau aggregation, and oxidative stress are addressed. Positive and negative effects are reported with regard to Aβ and tauopathy but only positive in oxidative stress. We also tried to dissect the molecular interplays where the bewildering effects arise from.
Collapse
|
50
|
Kim JH, Kim A, Yun Y, Park S, Lee JH, Lee YS, Lee MJ. Reduced chronic restraint stress in mice overexpressing hyperactive proteasomes in the forebrain. Mol Brain 2020; 13:4. [PMID: 31931843 PMCID: PMC6958796 DOI: 10.1186/s13041-020-0548-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 01/05/2020] [Indexed: 11/27/2022] Open
Abstract
While chronic restraint stress (CRS) results in depression-like behaviors possibly through oxidative stress in the brain, its molecular etiology and the development of therapeutic strategies remain elusive. Since oxidized proteins can be targeted by the ubiquitin-proteasome system, we investigated whether increased proteasome activity might affect the stress response in mice. Transgenic mice, expressing the N-terminally deleted version of α3 subunit (α3ΔN) of the proteasome, which has been shown to generate open-gated mutant proteasomes, in the forebrain were viable and fertile, but showed higher proteasome activity. After being challenged with CRS for 14 d, the mutant mice with hyperactive proteasomes showed significantly less immobility time in the forced swimming test compared with their wild-type littermates, suggesting that the α3ΔN transgenic mice are resistant to CRS. The accumulation of ER stress markers, such as polyubiquitin conjugates and phospho-IRE1α, was also significantly delayed in the hippocampus of the mutants. Notably, α3ΔN mice exhibited little deficits in other behavioral tasks, suggesting that stress resilience is likely due to the degradation of misfolded proteins by the open-gated proteasomes. These data strongly indicate that not only is the proteasome a critical modulator of stress response in vivo but also a possible therapeutic target for reducing chronic stress.
Collapse
Affiliation(s)
- Ji Hyeon Kim
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, 03080, Korea.,Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Ahbin Kim
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, 03080, Korea.,Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Yejin Yun
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, 03080, Korea.,Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Seoyoung Park
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, 03080, Korea.,Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, 03080, Korea.,Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Jung Hoon Lee
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, 03080, Korea.,Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, 03080, Korea.,Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Yong-Seok Lee
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, 03080, Korea. .,Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Korea. .,Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, 03080, Korea.
| | - Min Jae Lee
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, 03080, Korea. .,Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, 03080, Korea. .,Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, 03080, Korea.
| |
Collapse
|