1
|
Peretto L, D'angiolillo C, Ferraresi P, Balestra D, Pinotti M. Rescue of a panel of Hemophilia A-causing 5'ss splicing mutations by unique Exon-specific U1snRNA variants. Mol Med 2025; 31:121. [PMID: 40148820 PMCID: PMC11948882 DOI: 10.1186/s10020-025-01176-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 03/18/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND Aberrant mRNA splicing is a well-established pathogenic mechanism for human disease, but its real impact is hardly predictable and underestimated. Splicing can be therefore modulated for therapeutic purposes, and splicing-switching molecules are in clinics for some diseases. Here, conscious that over 10% of all pathogenic mutations occurs at 5'ss, we aimed at characterizing and rescuing nine 5'ss mutations in three models of defective F8 exons whose skipping would lead to factor VIII (FVIII) deficiency (Hemophilia A), the most frequent coagulation factor disorder. METHODS HEK293T cells were transfected with F8 minigene variants, alone or with engineered U1 small nuclear RNAs (U1snRNAs), and splicing patterns analysed via RT-PCR. RESULTS All 5'ss mutations induced exon skipping, and the proportion of correct transcripts, not predictable by computational analysis, was consistent with residual FVIII levels in patients. For each exon we identified a unique engineered U1snRNAs, either compensatory or Exon Specific (ExSpeU1), able to rescue all mutations. Overall, ExSpeU1s were more effective than compensatory U1snRNAs, particularly in the defective exons 6 and 22. CONCLUSIONS Data highlight the importance of splicing assays to elucidate genotype-phenotype relationships and proved the correction efficacy of ExSpeU1s for each targeted defective F8 exon, thus expanding their translational potential for HA.
Collapse
Affiliation(s)
- Laura Peretto
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, 44121, Italy
| | - Claudia D'angiolillo
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, 44121, Italy
| | - Paolo Ferraresi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, 44121, Italy
| | - Dario Balestra
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, 44121, Italy.
| | - Mirko Pinotti
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, 44121, Italy
| |
Collapse
|
2
|
Peruzzo P, Bergamin N, Bon M, Cappelli S, Longo A, Goina E, Stuani C, Buratti E, Dardis A. Rescue of common and rare exon 2 skipping variants of the GAA gene using modified U1 snRNA. Mol Med 2025; 31:45. [PMID: 39905333 PMCID: PMC11796170 DOI: 10.1186/s10020-025-01090-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 01/16/2025] [Indexed: 02/06/2025] Open
Abstract
BACKGROUND Pompe disease (PD) is an autosomal recessive lysosomal storage disorder caused by the deficient activity of acid alpha glucosidase (GAA) enzyme due to mutations in the GAA gene. As a result, undigested glycogen accumulates within lysosomes causing their dysfunction. From a clinical point of view, the disease can be classified in infantile-onset (IO) and late-onset (LO) forms. The common GAA c.-32-13T>G variant, found in 40-70% of LO-PD alleles, is a leaky splicing mutation interfering with the correct GAA exon 2 recognition by the spliceosome leading to the production of non-functional GAA transcripts. In this study, we used modified, GAA-tailored U1 snRNAs to correct the aberrant splicing determined by the c.-32-13T>G and other GAA exon 2-skipping mutations. METHODS A set of constructs expressing 5 different engineered U1 snRNAs was generated. A functional splicing assay using a GAA hybrid minigene carrying different variants known to affect GAA exon 2 splicing was used to test the effect of engineered U1 snRNAs on exon 2 inclusion. The effect on endogenously expressed GAA transcript and GAA enzymatic activity was assessed by transfecting patient-derived fibroblasts bearing the common c.-32-13T>G with the best performing modified U1 snRNA. RESULTS Modified U1-3, U1+1 and U1+6 snRNAs were all able to increase, in a dose-dependent manner, the inclusion of exon 2 within the transcript derived from the GAA minigene harbouring the c.-32-13T>G variant. The U1+1 was the most effective one (2,5 fold increase). Moreover, U1+1 snRNA partially rescued the correct splicing of GAA minigenes harbouring mutations that affect the 3'ss (c.-32-3C>G, c.-32-2A>G) and the 5'ss (c.546G>A, c.546G>C, c.546G>T). Notably, the treatment of patient-derived fibroblasts carrying the c.-32-13T>G mutation with the U1+1 snRNA increased the amount of normal GAA mRNA by 1,8 fold and the GAA enzymatic activity by 70%. CONCLUSIONS we provide the proof-of-concept for the use of modified GAA-tailored U1 snRNAs, designed to potentiate the recognition of the GAA exon 2 5'ss, as therapeutic tools to correct the aberrant transcripts carrying variants that affect exon 2 splicing, including the common c.-32-13T>G variant.
Collapse
Affiliation(s)
- Paolo Peruzzo
- Regional Coordinator Centre for Rare Diseases, University Hospital of Udine, P. Le Santa Maria Della Misericordi 15, 33100, Udine, Italy
| | - Natascha Bergamin
- Regional Coordinator Centre for Rare Diseases, University Hospital of Udine, P. Le Santa Maria Della Misericordi 15, 33100, Udine, Italy
| | - Martina Bon
- Regional Coordinator Centre for Rare Diseases, University Hospital of Udine, P. Le Santa Maria Della Misericordi 15, 33100, Udine, Italy
| | - Sara Cappelli
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Area Science Park, Trieste, Italy
| | - Alessandra Longo
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Area Science Park, Trieste, Italy
| | - Elisa Goina
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Area Science Park, Trieste, Italy
| | - Cristiana Stuani
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Area Science Park, Trieste, Italy
| | - Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Area Science Park, Trieste, Italy
| | - Andrea Dardis
- Regional Coordinator Centre for Rare Diseases, University Hospital of Udine, P. Le Santa Maria Della Misericordi 15, 33100, Udine, Italy.
| |
Collapse
|
3
|
Tseng CC, Obeng EA. RNA splicing as a therapeutic target in myelodysplastic syndromes. Semin Hematol 2024; 61:431-441. [PMID: 39542752 DOI: 10.1053/j.seminhematol.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 10/18/2024] [Indexed: 11/17/2024]
Abstract
Myelodysplastic syndromes (MDS) represent a heterogeneous group of hematological disorders and are more commonly found in people over the age of 60. MDS patients exhibit peripheral blood cytopenias and carry an increased risk of disease progression to acute myeloid leukemia (AML). Splicing factor mutations (including genes SF3B1, SRSF2, U2AF1, and ZRSR2) are early events identified in more than 50% of MDS cases. These mutations cause aberrant pre-mRNA splicing and impact MDS pathophysiology. Emerging evidence shows that splicing factor-mutant cells are more sensitive to perturbations targeting the spliceosome, aberrantly spliced genes and/or their regulated molecular pathways. This review summarizes current therapeutic strategies and ongoing efforts targeting splicing factor mutations for the treatment of MDS.
Collapse
Affiliation(s)
- Chun-Chih Tseng
- Division of Molecular Oncology, Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN
| | - Esther A Obeng
- Division of Molecular Oncology, Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN.
| |
Collapse
|
4
|
Schmok JC, Yeo GW. Strategies for programmable manipulation of alternative splicing. Curr Opin Genet Dev 2024; 89:102272. [PMID: 39471777 DOI: 10.1016/j.gde.2024.102272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/26/2024] [Accepted: 10/03/2024] [Indexed: 11/01/2024]
Abstract
Alternative splicing (AS) plays a pivotal role in protein diversity and mRNA maturation. Programmable control of targeted AS events is of longstanding interest in RNA biology, promising correction of dysregulated splicing in disease and discovery of AS events. This review explores four main strategies for programmable splicing manipulation: (1) inhibiting splicing signals with antisense oligonucleotides (ASOs), exemplified by therapies approved by the U.S. Food and Drug Administration, (2) applying DNA-targeting clustered regularly interspaced short palindromic repeats systems to edit splicing signals, (3) using synthetic splicing factors, including synthetic proteins and ribonucleoproteins, inspired by natural RNA-binding proteins, and (4) guiding endogenous splicing machinery with bifunctional ASOs and engineered small nuclear RNAs. While ASOs remain clinically prominent, emerging technologies aim for broad, scalable, durable, and precise splicing modulation, holding promise for transformative advancements in RNA biology and therapeutic interventions.
Collapse
Affiliation(s)
- Jonathan C Schmok
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA; Sanford Stem Cell Institute Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA; Sanford Stem Cell Institute Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA; UCSD Center for RNA Technologies and Therapeutics, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
5
|
Ottesen EW, Singh NN, Seo J, Singh RN. U1 snRNA interactions with deep intronic sequences regulate splicing of multiple exons of spinal muscular atrophy genes. Front Neurosci 2024; 18:1412893. [PMID: 39086841 PMCID: PMC11289892 DOI: 10.3389/fnins.2024.1412893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/02/2024] [Indexed: 08/02/2024] Open
Abstract
Introduction The U1 small nuclear RNA (snRNA) forms ribonucleoprotein particles (RNPs) such as U1 snRNP and U1-TAF15 snRNP. U1 snRNP is one of the most studied RNPs due to its critical role in pre-mRNA splicing in defining the 5' splice site (5'ss) of every exon through direct interactions with sequences at exon/intron junctions. Recent reports support the role of U1 snRNP in all steps of transcription, namely initiation, elongation, and termination. Functions of U1-TAF15 snRNP are less understood, though it associates with the transcription machinery and may modulate pre-mRNA splicing by interacting with the 5'ss and/or 5'ss-like sequences within the pre-mRNA. An anti-U1 antisense oligonucleotide (ASO) that sequesters the 5' end of U1 snRNA inhibits the functions of U1 snRNP, including transcription and splicing. However, it is not known if the inhibition of U1 snRNP influences post-transcriptional regulation of pre-mRNA splicing through deep intronic sequences. Methods We examined the effect of an anti-U1 ASO that sequesters the 5' end of U1 snRNA on transcription and splicing of all internal exons of the spinal muscular atrophy (SMA) genes, SMN1 and SMN2. Our study was enabled by the employment of a multi-exon-skipping detection assay (MESDA) that discriminates against prematurely terminated transcripts. We employed an SMN2 super minigene to determine if anti-U1 ASO differently affects splicing in the context of truncated introns. Results We observed substantial skipping of multiple internal exons of SMN1 and SMN2 triggered by anti-U1 treatment. Suggesting a role for U1 snRNP in interacting with deep intronic sequences, early exons of the SMN2 super minigene with truncated introns were resistant to anti-U1 induced skipping. Consistently, overexpression of engineered U1 snRNAs targeting the 5'ss of early SMN1 and SMN2 exons did not prevent exon skipping caused by anti-U1 treatment. Discussion Our results uncover a unique role of the U1 snRNA-associated RNPs in splicing regulation executed through deep intronic sequences. Findings are significant for developing novel therapies for SMA based on deep intronic targets.
Collapse
Affiliation(s)
| | | | | | - Ravindra N. Singh
- Department of Biomedical Sciences, Iowa State University, Ames, IA, United States
| |
Collapse
|
6
|
Shi W, Tang J, Xiang J. Therapeutic strategies for aberrant splicing in cancer and genetic disorders. Clin Genet 2024; 105:345-354. [PMID: 38165092 DOI: 10.1111/cge.14478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/12/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Accurate pre-mRNA splicing is essential for proper protein translation; however, aberrant splicing is commonly observed in the context of cancer and genetic disorders. Notably, in genetic diseases, these splicing abnormalities often play a pivotal role. Substantial challenges persist in accurately identifying and classifying disease-induced aberrant splicing, as well as in development of targeted therapeutic strategies. In this review, we examine prevalent forms of aberrant splicing and explore potential therapeutic approaches aimed at addressing these splicing-related diseases. This summary contributes to a deeper understanding of the complexities about aberrant splicing and provide a foundation for the development of effective therapeutic interventions in the field of genetic disorders and cancer.
Collapse
Affiliation(s)
- Wenhua Shi
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Hunan Key laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jingqun Tang
- Hunan Key laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Juanjuan Xiang
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Hunan Key laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
7
|
Gonçalves M, Santos JI, Coutinho MF, Matos L, Alves S. Development of Engineered-U1 snRNA Therapies: Current Status. Int J Mol Sci 2023; 24:14617. [PMID: 37834063 PMCID: PMC10572768 DOI: 10.3390/ijms241914617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Splicing of pre-mRNA is a crucial regulatory stage in the pathway of gene expression. The majority of human genes that encode proteins undergo alternative pre-mRNA splicing and mutations that affect splicing are more prevalent than previously thought. Targeting aberrant RNA(s) may thus provide an opportunity to correct faulty splicing and potentially treat numerous genetic disorders. To that purpose, the use of engineered U1 snRNA (either modified U1 snRNAs or exon-specific U1s-ExSpeU1s) has been applied as a potentially therapeutic strategy to correct splicing mutations, particularly those affecting the 5' splice-site (5'ss). Here we review and summarize a vast panoply of studies that used either modified U1 snRNAs or ExSpeU1s to mediate gene therapeutic correction of splicing defects underlying a considerable number of genetic diseases. We also focus on the pre-clinical validation of these therapeutic approaches both in vitro and in vivo, and summarize the main obstacles that need to be overcome to allow for their successful translation to clinic practice in the future.
Collapse
Affiliation(s)
- Mariana Gonçalves
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, INSA I.P., Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal; (M.G.); (J.I.S.); (M.F.C.); (L.M.)
- Center for the Study of Animal Science, Institute of Sciences, Technologies and Agro-Environment, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences, AL4AnimalS, Faculty of Veterinary Medicine, University of Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, Inov4Agro, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Juliana Inês Santos
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, INSA I.P., Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal; (M.G.); (J.I.S.); (M.F.C.); (L.M.)
- Center for the Study of Animal Science, Institute of Sciences, Technologies and Agro-Environment, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences, AL4AnimalS, Faculty of Veterinary Medicine, University of Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Maria Francisca Coutinho
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, INSA I.P., Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal; (M.G.); (J.I.S.); (M.F.C.); (L.M.)
- Center for the Study of Animal Science, Institute of Sciences, Technologies and Agro-Environment, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences, AL4AnimalS, Faculty of Veterinary Medicine, University of Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Liliana Matos
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, INSA I.P., Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal; (M.G.); (J.I.S.); (M.F.C.); (L.M.)
- Center for the Study of Animal Science, Institute of Sciences, Technologies and Agro-Environment, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences, AL4AnimalS, Faculty of Veterinary Medicine, University of Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Sandra Alves
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, INSA I.P., Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal; (M.G.); (J.I.S.); (M.F.C.); (L.M.)
- Center for the Study of Animal Science, Institute of Sciences, Technologies and Agro-Environment, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences, AL4AnimalS, Faculty of Veterinary Medicine, University of Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| |
Collapse
|
8
|
Ottesen EW, Singh NN, Luo D, Kaas B, Gillette B, Seo J, Jorgensen H, Singh RN. Diverse targets of SMN2-directed splicing-modulating small molecule therapeutics for spinal muscular atrophy. Nucleic Acids Res 2023; 51:5948-5980. [PMID: 37026480 PMCID: PMC10325915 DOI: 10.1093/nar/gkad259] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 03/13/2023] [Accepted: 03/28/2023] [Indexed: 04/08/2023] Open
Abstract
Designing an RNA-interacting molecule that displays high therapeutic efficacy while retaining specificity within a broad concentration range remains a challenging task. Risdiplam is an FDA-approved small molecule for the treatment of spinal muscular atrophy (SMA), the leading genetic cause of infant mortality. Branaplam is another small molecule which has undergone clinical trials. The therapeutic merit of both compounds is based on their ability to restore body-wide inclusion of Survival Motor Neuron 2 (SMN2) exon 7 upon oral administration. Here we compare the transcriptome-wide off-target effects of these compounds in SMA patient cells. We captured concentration-dependent compound-specific changes, including aberrant expression of genes associated with DNA replication, cell cycle, RNA metabolism, cell signaling and metabolic pathways. Both compounds triggered massive perturbations of splicing events, inducing off-target exon inclusion, exon skipping, intron retention, intron removal and alternative splice site usage. Our results of minigenes expressed in HeLa cells provide mechanistic insights into how these molecules targeted towards a single gene produce different off-target effects. We show the advantages of combined treatments with low doses of risdiplam and branaplam. Our findings are instructive for devising better dosing regimens as well as for developing the next generation of small molecule therapeutics aimed at splicing modulation.
Collapse
Affiliation(s)
- Eric W Ottesen
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Natalia N Singh
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Diou Luo
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Bailey Kaas
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Benjamin J Gillette
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Joonbae Seo
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Hannah J Jorgensen
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Ravindra N Singh
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
9
|
Rogalska ME, Vivori C, Valcárcel J. Regulation of pre-mRNA splicing: roles in physiology and disease, and therapeutic prospects. Nat Rev Genet 2023; 24:251-269. [PMID: 36526860 DOI: 10.1038/s41576-022-00556-8] [Citation(s) in RCA: 97] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2022] [Indexed: 12/23/2022]
Abstract
The removal of introns from mRNA precursors and its regulation by alternative splicing are key for eukaryotic gene expression and cellular function, as evidenced by the numerous pathologies induced or modified by splicing alterations. Major recent advances have been made in understanding the structures and functions of the splicing machinery, in the description and classification of physiological and pathological isoforms and in the development of the first therapies for genetic diseases based on modulation of splicing. Here, we review this progress and discuss important remaining challenges, including predicting splice sites from genomic sequences, understanding the variety of molecular mechanisms and logic of splicing regulation, and harnessing this knowledge for probing gene function and disease aetiology and for the design of novel therapeutic approaches.
Collapse
Affiliation(s)
- Malgorzata Ewa Rogalska
- Genome Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Claudia Vivori
- Genome Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
- The Francis Crick Institute, London, UK
| | - Juan Valcárcel
- Genome Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
10
|
Morelli KH, Smargon AA, Yeo GW. Programmable macromolecule-based RNA-targeting therapies to treat human neurological disorders. RNA (NEW YORK, N.Y.) 2023; 29:489-497. [PMID: 36693761 PMCID: PMC10019361 DOI: 10.1261/rna.079519.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Disruptions in RNA processing play critical roles in the pathogenesis of neurological diseases. In this Perspective, we discuss recent progress in the development of RNA-targeting therapeutic modalities. We focus on progress, limitations, and opportunities in a new generation of therapies engineered from RNA binding proteins and other endogenous RNA regulatory macromolecules to treat human neurological disorders.
Collapse
Affiliation(s)
- Kathryn H Morelli
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California 92093, USA
- Stem Cell Program, University of California San Diego, La Jolla, California 92093, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, California 92039, USA
| | - Aaron A Smargon
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California 92093, USA
- Stem Cell Program, University of California San Diego, La Jolla, California 92093, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, California 92039, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California 92093, USA
- Stem Cell Program, University of California San Diego, La Jolla, California 92093, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, California 92039, USA
| |
Collapse
|
11
|
Abstract
Dysregulated RNA splicing is a molecular feature that characterizes almost all tumour types. Cancer-associated splicing alterations arise from both recurrent mutations and altered expression of trans-acting factors governing splicing catalysis and regulation. Cancer-associated splicing dysregulation can promote tumorigenesis via diverse mechanisms, contributing to increased cell proliferation, decreased apoptosis, enhanced migration and metastatic potential, resistance to chemotherapy and evasion of immune surveillance. Recent studies have identified specific cancer-associated isoforms that play critical roles in cancer cell transformation and growth and demonstrated the therapeutic benefits of correcting or otherwise antagonizing such cancer-associated mRNA isoforms. Clinical-grade small molecules that modulate or inhibit RNA splicing have similarly been developed as promising anticancer therapeutics. Here, we review splicing alterations characteristic of cancer cell transcriptomes, dysregulated splicing's contributions to tumour initiation and progression, and existing and emerging approaches for targeting splicing for cancer therapy. Finally, we discuss the outstanding questions and challenges that must be addressed to translate these findings into the clinic.
Collapse
Affiliation(s)
- Robert K Bradley
- Computational Biology Program, Public Health Sciences Division and Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
| | - Olga Anczuków
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA.
| |
Collapse
|
12
|
Counteracting the Common Shwachman-Diamond Syndrome-Causing SBDS c.258+2T>C Mutation by RNA Therapeutics and Base/Prime Editing. Int J Mol Sci 2023; 24:ijms24044024. [PMID: 36835434 PMCID: PMC9962285 DOI: 10.3390/ijms24044024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 02/19/2023] Open
Abstract
Shwachman-Diamond syndrome (SDS) represents one of the most common inherited bone marrow failure syndromes and is mainly caused by SBDS gene mutations. Only supportive treatments are available, with hematopoietic cell transplantation required when marrow failure occurs. Among all causative mutations, the SBDS c.258+2T>C variant at the 5' splice site (ss) of exon 2 is one of the most frequent. Here, we investigated the molecular mechanisms underlying aberrant SBDS splicing and showed that SBDS exon 2 is dense in splicing regulatory elements and cryptic splice sites, complicating proper 5'ss selection. Studies ex vivo and in vitro demonstrated that the mutation alters splicing, but it is also compatible with tiny amounts of correct transcripts, which would explain the survival of SDS patients. Moreover, for the first time for SDS, we explored a panel of correction approaches at the RNA and DNA levels and provided experimental evidence that the mutation effect can be partially counteracted by engineered U1snRNA, trans-splicing, and base/prime editors, ultimately leading to correctly spliced transcripts (from barely detectable to 2.5-5.5%). Among them, we propose DNA editors that, by stably reverting the mutation and potentially conferring positive selection to bone-marrow cells, could lead to the development of an innovative SDS therapy.
Collapse
|
13
|
Rogalska ME, Vafiadaki E, Erpapazoglou Z, Haghighi K, Green L, Mantzoros CS, Hajjar RJ, Tranter M, Karakikes I, Kranias EG, Stillitano F, Kafasla P, Sanoudou D. Isoform changes of action potential regulators in the ventricles of arrhythmogenic phospholamban-R14del humanized mouse hearts. Metabolism 2023; 138:155344. [PMID: 36375644 DOI: 10.1016/j.metabol.2022.155344] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/30/2022] [Accepted: 11/01/2022] [Indexed: 11/13/2022]
Abstract
Arrhythmogenic cardiomyopathy (ACM) is characterized by life-threatening ventricular arrhythmias and sudden cardiac death and affects hundreds of thousands of patients worldwide. The deletion of Arginine 14 (p.R14del) in the phospholamban (PLN) gene has been implicated in the pathogenesis of ACM. PLN is a key regulator of sarcoplasmic reticulum (SR) Ca2+ cycling and cardiac contractility. Despite global gene and protein expression studies, the molecular mechanisms of PLN-R14del ACM pathogenesis remain unclear. Using a humanized PLN-R14del mouse model and human induced pluripotent stem cell derived cardiomyocytes (iPSC-CMs), we investigated the transcriptome-wide mRNA splicing changes associated with the R14del mutation. We identified >200 significant alternative splicing (AS) events and distinct AS profiles were observed in the right (RV) and left (LV) ventricles in PLN-R14del compared to WT mouse hearts. Enrichment analysis of the AS events showed that the most affected biological process was associated with "cardiac cell action potential", specifically in the RV. We found that splicing of 2 key genes, Trpm4 and Camk2d, which encode proteins regulating calcium homeostasis in the heart, were altered in PLN-R14del mouse hearts and human iPSC-CMs. Bioinformatical analysis pointed to the tissue-specific splicing factors Srrm4 and Nova1 as likely upstream regulators of the observed splicing changes in the PLN-R14del cardiomyocytes. Our findings suggest that aberrant splicing may affect Ca2+-homeostasis in the heart, contributing to the increased risk of arrythmogenesis in PLN-R14del ACM.
Collapse
Affiliation(s)
- Malgorzata E Rogalska
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain
| | - Elizabeth Vafiadaki
- Molecular Biology Division, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Zoi Erpapazoglou
- Institute for Fundamental Biomedical Research, B.S.R.C. "Alexander Fleming", 16672 Athens, Greece
| | - Kobra Haghighi
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Lisa Green
- Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Christos S Mantzoros
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Section of Endocrinology, Boston VA Healthcare System, Harvard Medical School, Boston, MA 02215, USA
| | | | - Michael Tranter
- Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Ioannis Karakikes
- Department of Cardiothoracic Surgery and Cardiovascular Institute, Stanford University School of Medicine, 240 Pasteur Dr, Stanford, CA 94304, USA
| | - Evangelia G Kranias
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Francesca Stillitano
- Division Heart and Lung, Department of Cardiology, University Medical Center Utrecht, 3584, CX, Utrecht, the Netherlands
| | - Panagiota Kafasla
- Institute for Fundamental Biomedical Research, B.S.R.C. "Alexander Fleming", 16672 Athens, Greece
| | - Despina Sanoudou
- Molecular Biology Division, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece; Clinical Genomics and Pharmacogenomics Unit, 4(th) Department of Internal Medicine, Attikon Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| |
Collapse
|
14
|
Rozza R, Janoš P, Spinello A, Magistrato A. Role of computational and structural biology in the development of small-molecule modulators of the spliceosome. Expert Opin Drug Discov 2022; 17:1095-1109. [PMID: 35983696 DOI: 10.1080/17460441.2022.2114452] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION RNA splicing is a pivotal step of eukaryotic gene expression during which the introns are excised from the precursor (pre-)RNA and the exons are joined together to form mature RNA products (i.e a protein-coding mRNA or long non-coding (lnc)RNAs). The spliceosome, a complex ribonucleoprotein machine, performs pre-RNA splicing with extreme precision. Deregulated splicing is linked to cancer, genetic, and neurodegenerative diseases. Hence, the discovery of small-molecules targeting core spliceosome components represents an appealing therapeutic opportunity. AREA COVERED Several atomic-level structures of the spliceosome and distinct splicing-modulators bound to its protein/RNA components have been solved. Here, we review recent advances in the discovery of small-molecule splicing-modulators, discuss opportunities and challenges for their therapeutic applicability, and showcase how structural data and/or all-atom simulations can illuminate key facets of their mechanism, thus contributing to future drug-discovery campaigns. EXPERT OPINION This review highlights the potential of modulating pre-RNA splicing with small-molecules, and anticipates how the synergy of computer and wet-lab experiments will enrich our understanding of splicing regulation/deregulation mechanisms. This information will aid future structure-based drug-discovery efforts aimed to expand the currently limited portfolio of selective splicing-modulators.
Collapse
Affiliation(s)
- Riccardo Rozza
- National Research Council of Italy, Institute of Materials-foundry (CNR-IOM) C/o SISSA, Trieste, Italy
| | - Pavel Janoš
- National Research Council of Italy, Institute of Materials-foundry (CNR-IOM) C/o SISSA, Trieste, Italy
| | - Angelo Spinello
- Department of Biological, Chemical and Pharmaceutical Sciences, University of Palermo, Palermo, Italy
| | - Alessandra Magistrato
- National Research Council of Italy, Institute of Materials-foundry (CNR-IOM) C/o SISSA, Trieste, Italy
| |
Collapse
|
15
|
Hatch ST, Smargon AA, Yeo GW. Engineered U1 snRNAs to modulate alternatively spliced exons. Methods 2022; 205:140-148. [PMID: 35764245 PMCID: PMC11185844 DOI: 10.1016/j.ymeth.2022.06.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/30/2022] [Accepted: 06/23/2022] [Indexed: 10/17/2022] Open
Abstract
Alternative splicing accounts for a considerable portion of transcriptomic diversity, as most protein-coding genes are spliced into multiple mRNA isoforms. However, errors in splicing patterns can give rise to mis-splicing with pathological consequences, such as the congenital diseases familial dysautonomia, Duchenne muscular dystrophy, and spinal muscular atrophy. Small nuclear RNA (snRNA) components of the U snRNP family have been proposed as a therapeutic modality for the treatment of mis-splicing. U1 snRNAs offer great promise, with prior studies demonstrating in vivo efficacy, suggesting additional preclinical development is merited. Improvements in enabling technologies, including screening methodologies, gene delivery vectors, and relevant considerations from gene editing approaches justify further advancement of U1 snRNA as a therapeutic and research tool. With the goal of providing a user-friendly protocol, we compile and demonstrate a methodological toolkit for sequence-specific targeted perturbation of alternatively spliced pre-mRNA with engineered U1 snRNAs. We observe robust modulation of endogenous pre-mRNA transcripts targeted in two contrasting splicing contexts, SMN2 exon 7 and FAS exon 6, exhibiting the utility and applicability of engineered U1 snRNA to both inclusion and exclusion of targeted exons. We anticipate that these demonstrations will contribute to the usability of U1 snRNA in investigating splicing modulation in eukaryotic cells, increasing accessibility to the broader research community.
Collapse
Affiliation(s)
- Samuel T Hatch
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA; Stem Cell Program, University of California San Diego, Sanford Consortium for Regenerative Medicine, La Jolla, USA; Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA; Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Aaron A Smargon
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA; Stem Cell Program, University of California San Diego, Sanford Consortium for Regenerative Medicine, La Jolla, USA; Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA; Stem Cell Program, University of California San Diego, Sanford Consortium for Regenerative Medicine, La Jolla, USA; Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA; Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
16
|
Rescue of a familial dysautonomia mouse model by AAV9-Exon-specific U1 snRNA. Am J Hum Genet 2022; 109:1534-1548. [PMID: 35905737 PMCID: PMC9388384 DOI: 10.1016/j.ajhg.2022.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/30/2022] [Indexed: 02/06/2023] Open
Abstract
Familial dysautonomia (FD) is a currently untreatable, neurodegenerative disease caused by a splicing mutation (c.2204+6T>C) that causes skipping of exon 20 of the elongator complex protein 1 (ELP1) pre-mRNA. Here, we used adeno-associated virus serotype 9 (AAV9-U1-FD) to deliver an exon-specific U1 (ExSpeU1) small nuclear RNA, designed to cause inclusion of ELP1 exon 20 only in those cells expressing the target pre-mRNA, in a phenotypic mouse model of FD. Postnatal systemic and intracerebral ventricular treatment in these mice increased the inclusion of ELP1 exon 20. This also augmented the production of functional protein in several tissues including brain, dorsal root, and trigeminal ganglia. Crucially, the treatment rescued most of the FD mouse mortality before one month of age (89% vs 52%). There were notable improvements in ataxic gait as well as renal (serum creatinine) and cardiac (ejection fraction) functions. RNA-seq analyses of dorsal root ganglia from treated mice and human cells overexpressing FD-ExSpeU1 revealed only minimal global changes in gene expression and splicing. Overall then, our data prove that AAV9-U1-FD is highly specific and will likely be a safe and effective therapeutic strategy for this debilitating disease.
Collapse
|
17
|
Sequence-specific RNA recognition by an RGG motif connects U1 and U2 snRNP for spliceosome assembly. Proc Natl Acad Sci U S A 2022; 119:2114092119. [PMID: 35101980 PMCID: PMC8833184 DOI: 10.1073/pnas.2114092119] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2021] [Indexed: 01/14/2023] Open
Abstract
In mammals, the structural basis for the interaction between U1 and U2 small nuclear ribonucleoproteins (snRNPs) during the early steps of splicing is still elusive. The binding of the ubiquitin-like (UBL) domain of SF3A1 to the stem-loop 4 of U1 snRNP (U1-SL4) contributes to this interaction. Here, we determined the 3D structure of the complex between the UBL of SF3A1 and U1-SL4 RNA. Our crystallography, NMR spectroscopy, and cross-linking mass spectrometry data show that SF3A1-UBL recognizes, sequence specifically, the GCG/CGC RNA stem and the apical UUCG tetraloop of U1-SL4. In vitro and in vivo mutational analyses support the observed intermolecular contacts and demonstrate that the carboxyl-terminal arginine-glycine-glycine-arginine (RGGR) motif of SF3A1-UBL binds sequence specifically by inserting into the RNA major groove. Thus, the characterization of the SF3A1-UBL/U1-SL4 complex expands the repertoire of RNA binding domains and reveals the capacity of RGG/RG motifs to bind RNA in a sequence-specific manner.
Collapse
|
18
|
Sacchetto C, Peretto L, Baralle F, Maestri I, Tassi F, Bernardi F, van de Graaf SFJ, Pagani F, Pinotti M, Balestra D. OTC intron 4 variations mediate pathogenic splicing patterns caused by the c.386G>A mutation in humans and spf ash mice, and govern susceptibility to RNA-based therapies. Mol Med 2021; 27:157. [PMID: 34906067 PMCID: PMC8670272 DOI: 10.1186/s10020-021-00418-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/30/2021] [Indexed: 12/01/2022] Open
Abstract
Background Aberrant splicing is a common outcome in the presence of exonic or intronic variants that might hamper the intricate network of interactions defining an exon in a specific gene context. Therefore, the evaluation of the functional, and potentially pathological, role of nucleotide changes remains one of the major challenges in the modern genomic era. This aspect has also to be taken into account during the pre-clinical evaluation of innovative therapeutic approaches in animal models of human diseases. This is of particular relevance when developing therapeutics acting on splicing, an intriguing and expanding research area for several disorders. Here, we addressed species-specific splicing mechanisms triggered by the OTC c.386G>A mutation, relatively frequent in humans, leading to Ornithine TransCarbamylase Deficiency (OTCD) in patients and spfash mice, and its differential susceptibility to RNA therapeutics based on engineered U1snRNA. Methods Creation and co-expression of engineered U1snRNAs with human and mouse minigenes, either wild-type or harbouring different nucleotide changes, in human (HepG2) and mouse (Hepa1-6) hepatoma cells followed by analysis of splicing pattern. RNA pulldown studies to evaluate binding of specific splicing factors. Results Comparative nucleotide analysis suggested a role for the intronic +10-11 nucleotides, and pull-down assays showed that they confer preferential binding to the TIA1 splicing factor in the mouse context, where TIA1 overexpression further increases correct splicing. Consistently, the splicing profile of the human minigene with mouse +10-11 nucleotides overlapped that of mouse minigene, and restored responsiveness to TIA1 overexpression and to compensatory U1snRNA. Swapping the human +10-11 nucleotides into the mouse context had opposite effects. Moreover, the interplay between the authentic and the adjacent cryptic 5′ss in the human OTC dictates pathogenic mechanisms of several OTCD-causing 5′ss mutations, and only the c.386+5G>A change, abrogating the cryptic 5′ss, was rescuable by engineered U1snRNA. Conclusions Subtle intronic variations explain species-specific OTC splicing patterns driven by the c.386G>A mutation, and the responsiveness to engineered U1snRNAs, which suggests careful elucidation of molecular mechanisms before proposing translation of tailored therapeutics from animal models to humans. Supplementary Information The online version contains supplementary material available at 10.1186/s10020-021-00418-9.
Collapse
Affiliation(s)
- Claudia Sacchetto
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 74, 44121, Ferrara, Italy.,Department of Molecular Genetics, University of Maastricht, Maastricht, The Netherlands
| | - Laura Peretto
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 74, 44121, Ferrara, Italy
| | | | - Iva Maestri
- Department of Translational Medicine and for Romagna, Pathology Unit of Pathologic Anatomy, Histology and Cytology, University of Ferrara, Ferrara, Italy
| | - Francesca Tassi
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 74, 44121, Ferrara, Italy
| | - Francesco Bernardi
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 74, 44121, Ferrara, Italy
| | - Stan F J van de Graaf
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology and Metabolism, Academic Medical Center, Amsterdam, The Netherlands
| | - Franco Pagani
- Human Molecular Genetics, ICGEB - International Center for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Mirko Pinotti
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 74, 44121, Ferrara, Italy.
| | - Dario Balestra
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 74, 44121, Ferrara, Italy.
| |
Collapse
|
19
|
Jüschke C, Klopstock T, Catarino CB, Owczarek-Lipska M, Wissinger B, Neidhardt J. Autosomal dominant optic atrophy: A novel treatment for OPA1 splice defects using U1 snRNA adaption. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:1186-1197. [PMID: 34853716 PMCID: PMC8604756 DOI: 10.1016/j.omtn.2021.10.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 06/03/2021] [Accepted: 10/19/2021] [Indexed: 11/15/2022]
Abstract
Autosomal dominant optic atrophy (ADOA) is frequently caused by mutations in the optic atrophy 1 (OPA1) gene, with haploinsufficiency being the major genetic pathomechanism. Almost 30% of the OPA1-associated cases suffer from splice defects. We identified a novel OPA1 mutation, c.1065+5G>A, in patients with ADOA. In patient-derived fibroblasts, the mutation led to skipping of OPA1 exon 10, reducing the OPA1 protein expression by approximately 50%. We developed a molecular treatment to correct the splice defect in OPA1 using engineered U1 splice factors retargeted to different locations in OPA1 exon 10 or intron 10. The strongest therapeutic effect was detected when U1 binding was engineered to bind to intron 10 at position +18, a position predicted by bioinformatics to be a promising binding site. We were able to significantly silence the effect of the mutation (skipping of exon 10) and simultaneously increase the expression level of normal transcripts. Retargeting U1 to the canonical splice donor site did not lead to a detectable splice correction. This proof-of-concept study indicates for the first time the feasibility of splice mutation correction as a treatment option for ADOA. Increasing the amount of correctly spliced OPA1 transcripts may suffice to overcome the haploinsufficiency.
Collapse
Affiliation(s)
- Christoph Jüschke
- Human Genetics, Faculty of Medicine and Health Sciences, University of Oldenburg, 26129 Oldenburg, Germany
| | - Thomas Klopstock
- Friedrich-Baur Institute, Department of Neurology, University Hospital, LMU Munich, University of Munich, 80336 Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Claudia B. Catarino
- Friedrich-Baur Institute, Department of Neurology, University Hospital, LMU Munich, University of Munich, 80336 Munich, Germany
| | - Marta Owczarek-Lipska
- Human Genetics, Faculty of Medicine and Health Sciences, University of Oldenburg, 26129 Oldenburg, Germany
- Research Center Neurosensory Science, University of Oldenburg, 26129 Oldenburg, Germany
| | - Bernd Wissinger
- Institute for Ophthalmic Research, Center for Ophthalmology, University of Tübingen, 72076 Tübingen, Germany
| | - John Neidhardt
- Human Genetics, Faculty of Medicine and Health Sciences, University of Oldenburg, 26129 Oldenburg, Germany
- Research Center Neurosensory Science, University of Oldenburg, 26129 Oldenburg, Germany
- Joint Research Training Group of the Faculty of Medicine and Health Sciences, University of Oldenburg, 26129 Oldenburg, Germany and University Medical Center Groningen, 9700 RB Groningen, the Netherlands
- Correspondence: John Neidhardt, Human Genetics, Faculty of Medicine and Health Sciences, University of Oldenburg, Ammerländer Heerstrasse 114-118, 26129 Oldenburg, Germany.
| |
Collapse
|
20
|
Martín E, Vivori C, Rogalska M, Herrero-Vicente J, Valcárcel J. Alternative splicing regulation of cell-cycle genes by SPF45/SR140/CHERP complex controls cell proliferation. RNA (NEW YORK, N.Y.) 2021; 27:1557-1576. [PMID: 34544891 PMCID: PMC8594467 DOI: 10.1261/rna.078935.121] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/11/2021] [Indexed: 06/10/2023]
Abstract
The regulation of pre-mRNA processing has important consequences for cell division and the control of cancer cell proliferation, but the underlying molecular mechanisms remain poorly understood. We report that three splicing factors, SPF45, SR140, and CHERP, form a tight physical and functionally coherent complex that regulates a variety of alternative splicing events, frequently by repressing short exons flanked by suboptimal 3' splice sites. These comprise alternative exons embedded in genes with important functions in cell-cycle progression, including the G2/M key regulator FOXM1 and the spindle regulator SPDL1. Knockdown of either of the three factors leads to G2/M arrest and to enhanced apoptosis in HeLa cells. Promoting the changes in FOXM1 or SPDL1 splicing induced by SPF45/SR140/CHERP knockdown partially recapitulates the effects on cell growth, arguing that the complex orchestrates a program of alternative splicing necessary for efficient cell proliferation.
Collapse
Affiliation(s)
- Elena Martín
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain
| | - Claudia Vivori
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain
| | - Malgorzata Rogalska
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain
| | - Jorge Herrero-Vicente
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain
| | - Juan Valcárcel
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| |
Collapse
|
21
|
Artemyeva-Isman OV, Porter ACG. U5 snRNA Interactions With Exons Ensure Splicing Precision. Front Genet 2021; 12:676971. [PMID: 34276781 PMCID: PMC8283771 DOI: 10.3389/fgene.2021.676971] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 05/12/2021] [Indexed: 11/13/2022] Open
Abstract
Imperfect conservation of human pre-mRNA splice sites is necessary to produce alternative isoforms. This flexibility is combined with the precision of the message reading frame. Apart from intron-termini GU_AG and the branchpoint A, the most conserved are the exon-end guanine and +5G of the intron start. Association between these guanines cannot be explained solely by base-pairing with U1 snRNA in the early spliceosome complex. U6 succeeds U1 and pairs +5G in the pre-catalytic spliceosome, while U5 binds the exon end. Current U5 snRNA reconstructions by CryoEM cannot explain the conservation of the exon-end G. Conversely, human mutation analyses show that guanines of both exon termini can suppress splicing mutations. Our U5 hypothesis explains the mechanism of splicing precision and the role of these conserved guanines in the pre-catalytic spliceosome. We propose: (1) optimal binding register for human exons and U5-the exon junction positioned at U5Loop1 C39|C38; (2) common mechanism for base-pairing of human U5 snRNA with diverse exons and bacterial Ll.LtrB intron with new loci in retrotransposition-guided by base pair geometry; and (3) U5 plays a significant role in specific exon recognition in the pre-catalytic spliceosome. Statistical analyses showed increased U5 Watson-Crick pairs with the 5'exon in the absence of +5G at the intron start. In 5'exon positions -3 and -5, this effect is specific to U5 snRNA rather than U1 snRNA of the early spliceosome. Increased U5 Watson-Crick pairs with 3'exon position +1 coincide with substitutions of the conserved -3C at the intron 3'end. Based on mutation and X-ray evidence, we propose that -3C pairs with U2 G31 juxtaposing the branchpoint and the 3'intron end. The intron-termini pair, formed in the pre-catalytic spliceosome to be ready for transition after branching, and the early involvement of the 3'intron end ensure that the 3'exon contacts U5 in the pre-catalytic complex. We suggest that splicing precision is safeguarded cooperatively by U5, U6, and U2 snRNAs that stabilize the pre-catalytic complex by Watson-Crick base pairing. In addition, our new U5 model explains the splicing effect of exon-start +1G mutations: U5 Watson-Crick pairs with exon +2C/+3G strongly promote exon inclusion. We discuss potential applications for snRNA therapeutics and gene repair by reverse splicing.
Collapse
Affiliation(s)
- Olga V Artemyeva-Isman
- Gene Targeting Group, Centre for Haematology, Department of Immunology and Inflammation, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Andrew C G Porter
- Gene Targeting Group, Centre for Haematology, Department of Immunology and Inflammation, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
22
|
Martelly W, Fellows B, Kang P, Vashisht A, Wohlschlegel JA, Sharma S. Synergistic roles for human U1 snRNA stem-loops in pre-mRNA splicing. RNA Biol 2021; 18:2576-2593. [PMID: 34105434 DOI: 10.1080/15476286.2021.1932360] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
During spliceosome assembly, interactions that bring the 5' and 3' ends of an intron in proximity are critical for the production of mature mRNA. Here, we report synergistic roles for the stem-loops 3 (SL3) and 4 (SL4) of the human U1 small nuclear RNA (snRNA) in maintaining the optimal U1 snRNP function, and formation of cross-intron contact with the U2 snRNP. We find that SL3 and SL4 bind distinct spliceosomal proteins and combining a U1 snRNA activity assay with siRNA-mediated knockdown, we demonstrate that SL3 and SL4 act through the RNA helicase UAP56 and the U2 protein SF3A1, respectively. In vitro analysis using UV crosslinking and splicing assays indicated that SL3 likely promotes the SL4-SF3A1 interaction leading to enhancement of A complex formation and pre-mRNA splicing. Overall, these results highlight the vital role of the distinct contacts of SL3 and SL4 in bridging the pre-mRNA bound U1 and U2 snRNPs during the early steps of human spliceosome assembly.
Collapse
Affiliation(s)
- William Martelly
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ, USA.,School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Bernice Fellows
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ, USA
| | - Paul Kang
- Department of Epidemiology and Biostatistics, Mel and Enid Zuckerman College of Public Health-Phoenix, University of Arizona, Phoenix, AZ, USA
| | - Ajay Vashisht
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - James A Wohlschlegel
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Shalini Sharma
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ, USA
| |
Collapse
|
23
|
Wu P, Zhang M, Webster NJG. Alternative RNA Splicing in Fatty Liver Disease. Front Endocrinol (Lausanne) 2021; 12:613213. [PMID: 33716968 PMCID: PMC7953061 DOI: 10.3389/fendo.2021.613213] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/13/2021] [Indexed: 12/12/2022] Open
Abstract
Alternative RNA splicing is a process by which introns are removed and exons are assembled to construct different RNA transcript isoforms from a single pre-mRNA. Previous studies have demonstrated an association between dysregulation of RNA splicing and a number of clinical syndromes, but the generality to common disease has not been established. Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease affecting one-third of adults worldwide, increasing the risk of cirrhosis and hepatocellular carcinoma (HCC). In this review we focus on the change in alternative RNA splicing in fatty liver disease and the role for splicing regulation in disease progression.
Collapse
Affiliation(s)
- Panyisha Wu
- Department of Medicine, Division of Endocrinology and Metabolism, University of California San Diego, La Jolla, CA, United States
| | - Moya Zhang
- University of California Los Angeles, Los Angeles, CA, United States
| | - Nicholas J. G. Webster
- VA San Diego Healthcare System, San Diego, CA, United States
- Department of Medicine, Division of Endocrinology and Metabolism, University of California San Diego, La Jolla, CA, United States
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
24
|
Splicing mutations in inherited retinal diseases. Prog Retin Eye Res 2021. [DOI: 10.1016/j.preteyeres.2020.100874
expr 921883647 + 833887994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
25
|
An Exon-Specific Small Nuclear U1 RNA (ExSpeU1) Improves Hepatic OTC Expression in a Splicing-Defective spf/ ash Mouse Model of Ornithine Transcarbamylase Deficiency. Int J Mol Sci 2020; 21:ijms21228735. [PMID: 33228018 PMCID: PMC7699343 DOI: 10.3390/ijms21228735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 11/22/2022] Open
Abstract
OTC splicing mutations are generally associated with the severest and early disease onset of ornithine transcarbamylase deficiency (OTCD), the most common urea cycle disorder. Noticeably, splicing defects can be rescued by spliceosomal U1snRNA variants, which showed their efficacy in cellular and animal models. Here, we challenged an U1snRNA variant in the OTCD mouse model (spf/ash) carrying the mutation c.386G > A (p.R129H), also reported in OTCD patients. It is known that the R129H change does not impair protein function but affects pre-mRNA splicing since it is located within the 5′ splice site. Through in vitro studies, we identified an Exon Specific U1snRNA (ExSpeU1O3) that targets an intronic region downstream of the defective exon 4 and rescues exon inclusion. The adeno-associated virus (AAV8)-mediated delivery of the ExSpeU1O3 to mouse hepatocytes, although in the presence of a modest transduction efficiency, led to increased levels of correct OTC transcripts (from 6.1 ± 1.4% to 17.2 ± 4.5%, p = 0.0033). Consistently, this resulted in increased liver expression of OTC protein, as demonstrated by Western blotting (~3 fold increase) and immunostaining. Altogether data provide the early proof-of-principle of the efficacy of ExSpeU1 in the spf/ash mouse model and encourage further studies to assess the potential of RNA therapeutics for OTCD caused by aberrant splicing.
Collapse
|
26
|
Nguyen Quang N, Goudey S, Ségéral E, Mohammad A, Lemoine S, Blugeon C, Versapuech M, Paillart JC, Berlioz-Torrent C, Emiliani S, Gallois-Montbrun S. Dynamic nanopore long-read sequencing analysis of HIV-1 splicing events during the early steps of infection. Retrovirology 2020; 17:25. [PMID: 32807178 PMCID: PMC7433067 DOI: 10.1186/s12977-020-00533-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/07/2020] [Indexed: 12/14/2022] Open
Abstract
Background Alternative splicing is a key step in Human Immunodeficiency Virus type 1 (HIV-1) replication that is tightly regulated both temporally and spatially. More than 50 different transcripts can be generated from a single HIV-1 unspliced pre-messenger RNA (pre-mRNA) and a balanced proportion of unspliced and spliced transcripts is critical for the production of infectious virions. Understanding the mechanisms involved in the regulation of viral RNA is therefore of potential therapeutic interest. However, monitoring the regulation of alternative splicing events at a transcriptome-wide level during cell infection is challenging. Here we used the long-read cDNA sequencing developed by Oxford Nanopore Technologies (ONT) to explore in a quantitative manner the complexity of the HIV-1 transcriptome regulation in infected primary CD4+ T cells. Results ONT reads mapping to the viral genome proved sufficiently long to span all possible splice junctions, even distant ones, and to be assigned to a total of 150 exon combinations. Fifty-three viral RNA isoforms, including 14 new ones were further considered for quantification. Relative levels of viral RNAs determined by ONT sequencing showed a high degree of reproducibility, compared favourably to those produced in previous reports and highly correlated with quantitative PCR (qPCR) data. To get further insights into alternative splicing regulation, we then compiled quantifications of splice site (SS) usage and transcript levels to build “splice trees”, a quantitative representation of the cascade of events leading to the different viral isoforms. This approach allowed visualizing the complete rewiring of SS usages upon perturbation of SS D2 and its impact on viral isoform levels. Furthermore, we produced the first dynamic picture of the cascade of events occurring between 12 and 24 h of viral infection. In particular, our data highlighted the importance of non-coding exons in viral RNA transcriptome regulation. Conclusion ONT sequencing is a convenient and reliable strategy that enabled us to grasp the dynamic of the early splicing events modulating the viral RNA landscape in HIV-1 infected cells.
Collapse
Affiliation(s)
- Nam Nguyen Quang
- Institut Cochin, INSERM, CNRS, Université de Paris, 75014, Paris, France
| | - Sophie Goudey
- Institut Cochin, INSERM, CNRS, Université de Paris, 75014, Paris, France
| | - Emmanuel Ségéral
- Institut Cochin, INSERM, CNRS, Université de Paris, 75014, Paris, France
| | - Ammara Mohammad
- Genomic Facility, Institut de Biologie de l'ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERM, Université PSL, 75005, Paris, France
| | - Sophie Lemoine
- Genomic Facility, Institut de Biologie de l'ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERM, Université PSL, 75005, Paris, France
| | - Corinne Blugeon
- Genomic Facility, Institut de Biologie de l'ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERM, Université PSL, 75005, Paris, France
| | - Margaux Versapuech
- Institut Cochin, INSERM, CNRS, Université de Paris, 75014, Paris, France
| | - Jean-Christophe Paillart
- CNRS, Architecture et Réactivité de l'ARN, UPR 9002, IBMC, Université de Strasbourg, Strasbourg, France
| | | | - Stéphane Emiliani
- Institut Cochin, INSERM, CNRS, Université de Paris, 75014, Paris, France.
| | | |
Collapse
|
27
|
Erkelenz S, Poschmann G, Ptok J, Müller L, Schaal H. Profiling of cis- and trans-acting factors supporting noncanonical splice site activation. RNA Biol 2020; 18:118-130. [PMID: 32693676 DOI: 10.1080/15476286.2020.1798111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Recently, by combining transcriptomics with functional splicing reporter assays we were able to identify GT > GC > TT as the three highest ranked dinucleotides of human 5' splice sites (5'ss). Here, we have extended our investigations to the proteomic characterization of nuclear proteins that bind to canonical and noncanonical 5'ss. Surprisingly, we found that U1 snRNP binding to functional 5'ss sequences prevented components of the DNA damage response (DDR) from binding to the RNA, suggesting a close link between spliceosome arrangement and genome stability. We demonstrate that all tested noncanonical 5'ss sequences are bona-fide targets of the U2-type spliceosome and are bound by U1 snRNP, including U1-C, in the presence of splicing enhancers. The quantity of precipitated U1-C protein was similar for all noncanonical 5'ss dinucleotides, so that the highly different 5'ss usage was likely due to a later step after early U1 snRNP binding. In addition, we show that an internal GT at positions +5/+6 can be advantageous for splicing at position +1 of noncanonical splice sites. Likewise, and in agreement with previous observations, splicing inactive U1 snRNP binding sites could serve as splicing enhancers, which may also explain the higher abundance of U1 snRNPs compared to other U snRNPs. Finally, we observe that an arginine-serine (RS)-rich domain recruitment to stem loop I of the U1 snRNA is functionally sufficient to promote exon-definition and upstream 3'ss activation.
Collapse
Affiliation(s)
- Steffen Erkelenz
- Institute of Virology, Medical Faculty, Heinrich Heine University Düsseldorf , Düsseldorf, Germany.,Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne , Cologne, Germany
| | - Gereon Poschmann
- Molecular Proteomics Laboratory, BMFZ, Universitätsklinikum Düsseldorf , Düsseldorf, Germany
| | - Johannes Ptok
- Institute of Virology, Medical Faculty, Heinrich Heine University Düsseldorf , Düsseldorf, Germany
| | - Lisa Müller
- Institute of Virology, Medical Faculty, Heinrich Heine University Düsseldorf , Düsseldorf, Germany
| | - Heiner Schaal
- Institute of Virology, Medical Faculty, Heinrich Heine University Düsseldorf , Düsseldorf, Germany
| |
Collapse
|
28
|
Splicing mutations in inherited retinal diseases. Prog Retin Eye Res 2020; 80:100874. [PMID: 32553897 DOI: 10.1016/j.preteyeres.2020.100874] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 05/30/2020] [Accepted: 05/31/2020] [Indexed: 12/15/2022]
Abstract
Mutations which induce aberrant transcript splicing represent a distinct class of disease-causing genetic variants in retinal disease genes. Such mutations may either weaken or erase regular splice sites or create novel splice sites which alter exon recognition. While mutations affecting the canonical GU-AG dinucleotides at the splice donor and splice acceptor site are highly predictive to cause a splicing defect, other variants in the vicinity of the canonical splice sites or those affecting additional cis-acting regulatory sequences within exons or introns are much more difficult to assess or even to recognize and require additional experimental validation. Splicing mutations are unique in that the actual outcome for the transcript (e.g. exon skipping, pseudoexon inclusion, intron retention) and the encoded protein can be quite different depending on the individual mutation. In this article, we present an overview on the current knowledge about and impact of splicing mutations in inherited retinal diseases. We introduce the most common sub-classes of splicing mutations including examples from our own work and others and discuss current strategies for the identification and validation of splicing mutations, as well as therapeutic approaches, open questions, and future perspectives in this field of research.
Collapse
|
29
|
Balestra D, Scalet D, Ferrarese M, Lombardi S, Ziliotto N, C. Croes C, Petersen N, Bosma P, Riccardi F, Pagani F, Pinotti M, van de Graaf SFJ. A Compensatory U1snRNA Partially Rescues FAH Splicing and Protein Expression in a Splicing-Defective Mouse Model of Tyrosinemia Type I. Int J Mol Sci 2020; 21:E2136. [PMID: 32244944 PMCID: PMC7139742 DOI: 10.3390/ijms21062136] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 03/18/2020] [Indexed: 02/07/2023] Open
Abstract
The elucidation of aberrant splicing mechanisms, frequently associated with disease has led to the development of RNA therapeutics based on the U1snRNA, which is involved in 5' splice site (5'ss) recognition. Studies in cellular models have demonstrated that engineered U1snRNAs can rescue different splicing mutation types. However, the assessment of their correction potential in vivo is limited by the scarcity of animal models with the targetable splicing defects. Here, we challenged the U1snRNA in the FAH5961SB mouse model of hepatic fumarylacetoacetate hydrolase (FAH) deficiency (Hereditary Tyrosinemia type I, HT1) due to the FAH c.706G>A splicing mutation. Through minigene expression studies we selected a compensatory U1snRNA (U1F) that was able to rescue this mutation. Intriguingly, adeno-associated virus-mediated delivery of U1F (AAV8-U1F), but not of U1wt, partially rescued FAH splicing in mouse hepatocytes. Consistently, FAH protein was detectable only in the liver of AAV8-U1F treated mice, which displayed a slightly prolonged survival. Moreover, RNA sequencing revealed the negligible impact of the U1F on the splicing profile and overall gene expression, thus pointing toward gene specificity. These data provide early in vivo proof-of-principle of the correction potential of compensatory U1snRNAs in HTI and encourage further optimization on a therapeutic perspective, and translation to other splicing-defective forms of metabolic diseases.
Collapse
Affiliation(s)
- Dario Balestra
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (D.S.); (M.F.); (S.L.); (N.Z.); (M.P.)
| | - Daniela Scalet
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (D.S.); (M.F.); (S.L.); (N.Z.); (M.P.)
| | - Mattia Ferrarese
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (D.S.); (M.F.); (S.L.); (N.Z.); (M.P.)
| | - Silvia Lombardi
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (D.S.); (M.F.); (S.L.); (N.Z.); (M.P.)
| | - Nicole Ziliotto
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (D.S.); (M.F.); (S.L.); (N.Z.); (M.P.)
| | - Chrystal C. Croes
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (C.C.C.); (N.P.); (P.B.); (S.F.J.v.d.G.)
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology and Metabolism, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Naomi Petersen
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (C.C.C.); (N.P.); (P.B.); (S.F.J.v.d.G.)
| | - Piter Bosma
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (C.C.C.); (N.P.); (P.B.); (S.F.J.v.d.G.)
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology and Metabolism, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Federico Riccardi
- Human Molecular Genetics, International Centre for Genetic Engineering and Biotechnology, 34149 Trieste, Italy; (F.R.); (F.P.)
| | - Franco Pagani
- Human Molecular Genetics, International Centre for Genetic Engineering and Biotechnology, 34149 Trieste, Italy; (F.R.); (F.P.)
| | - Mirko Pinotti
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (D.S.); (M.F.); (S.L.); (N.Z.); (M.P.)
- LTTA, University of Ferrara, 44121 Ferrara, Italy
| | - Stan F. J. van de Graaf
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (C.C.C.); (N.P.); (P.B.); (S.F.J.v.d.G.)
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology and Metabolism, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
30
|
Donadon I, Bussani E, Riccardi F, Licastro D, Romano G, Pianigiani G, Pinotti M, Konstantinova P, Evers M, Lin S, Rüegg MA, Pagani F. Rescue of spinal muscular atrophy mouse models with AAV9-Exon-specific U1 snRNA. Nucleic Acids Res 2019; 47:7618-7632. [PMID: 31127278 PMCID: PMC6698663 DOI: 10.1093/nar/gkz469] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 05/10/2019] [Accepted: 05/16/2019] [Indexed: 12/12/2022] Open
Abstract
Spinal Muscular Atrophy results from loss-of-function mutations in SMN1 but correcting aberrant splicing of SMN2 offers hope of a cure. However, current splice therapy requires repeated infusions and is expensive. We previously rescued SMA mice by promoting the inclusion of a defective exon in SMN2 with germline expression of Exon-Specific U1 snRNAs (ExspeU1). Here we tested viral delivery of SMN2 ExspeU1s encoded by adeno-associated virus AAV9. Strikingly the virus increased SMN2 exon 7 inclusion and SMN protein levels and rescued the phenotype of mild and severe SMA mice. In the severe mouse, the treatment improved the neuromuscular function and increased the life span from 10 to 219 days. ExspeU1 expression persisted for 1 month and was effective at around one five-hundredth of the concentration of the endogenous U1snRNA. RNA-seq analysis revealed our potential drug rescues aberrant SMA expression and splicing profiles, which are mostly related to DNA damage, cell-cycle control and acute phase response. Vastly overexpressing ExspeU1 more than 100-fold above the therapeutic level in human cells did not significantly alter global gene expression or splicing. These results indicate that AAV-mediated delivery of a modified U1snRNP particle may be a novel therapeutic option against SMA.
Collapse
Affiliation(s)
- Irving Donadon
- Human Molecular Genetics, International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy
| | - Erica Bussani
- Human Molecular Genetics, International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy
| | - Federico Riccardi
- Human Molecular Genetics, International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy
| | - Danilo Licastro
- CBM S.c.r.l., Area Science Park, 34149 Basovizza, Trieste, Italy
| | - Giulia Romano
- Human Molecular Genetics, International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy
| | - Giulia Pianigiani
- Human Molecular Genetics, International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy
| | - Mirko Pinotti
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| | - Pavlina Konstantinova
- Department of Research & Development, uniQure biopharma B.V., Amsterdam, The Netherlands
| | - Melvin Evers
- Department of Research & Development, uniQure biopharma B.V., Amsterdam, The Netherlands
| | - Shuo Lin
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Markus A Rüegg
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Franco Pagani
- Human Molecular Genetics, International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy
| |
Collapse
|
31
|
Campagne S, Boigner S, Rüdisser S, Moursy A, Gillioz L, Knörlein A, Hall J, Ratni H, Cléry A, Allain FHT. Structural basis of a small molecule targeting RNA for a specific splicing correction. Nat Chem Biol 2019; 15:1191-1198. [PMID: 31636429 PMCID: PMC7617061 DOI: 10.1038/s41589-019-0384-5] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 09/07/2019] [Indexed: 12/24/2022]
Abstract
Splicing modifiers promoting SMN2 exon 7 inclusion have the potential to treat spinal muscular atrophy, the leading genetic cause of infantile death. These small molecules are SMN2 exon 7 selective and act during the early stages of spliceosome assembly. Here, we show at atomic resolution how the drug selectively promotes the recognition of the weak 5' splice site of SMN2 exon 7 by U1 snRNP. The solution structure of the RNA duplex formed following 5' splice site recognition in the presence of the splicing modifier revealed that the drug specifically stabilizes a bulged adenine at this exon-intron junction and converts the weak 5' splice site of SMN2 exon 7 into a stronger one. The small molecule acts as a specific splicing enhancer cooperatively with the splicing regulatory network. Our investigations uncovered a novel concept for gene-specific alternative splicing correction that we coined 5' splice site bulge repair.
Collapse
Affiliation(s)
- Sébastien Campagne
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland.
| | - Sarah Boigner
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Simon Rüdisser
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
- Biomolecular NMR Spectroscopy Platform, ETH Zurich, Zurich, Switzerland
| | - Ahmed Moursy
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Laurent Gillioz
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Anna Knörlein
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Jonathan Hall
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Hasane Ratni
- F. Hoffmann-La Roche Ltd, Pharma Research & Early Development, Roche Innovation Center, Basel, Switzerland
| | - Antoine Cléry
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Frédéric H-T Allain
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
32
|
Ottesen EW, Luo D, Seo J, Singh NN, Singh RN. Human Survival Motor Neuron genes generate a vast repertoire of circular RNAs. Nucleic Acids Res 2019; 47:2884-2905. [PMID: 30698797 PMCID: PMC6451121 DOI: 10.1093/nar/gkz034] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 01/08/2019] [Accepted: 01/14/2019] [Indexed: 12/12/2022] Open
Abstract
Circular RNAs (circRNAs) perform diverse functions, including the regulation of transcription, translation, peptide synthesis, macromolecular sequestration and trafficking. Inverted Alu repeats capable of forming RNA:RNA duplexes that bring splice sites together for backsplicing are known to facilitate circRNA generation. However, higher limits of circRNAs produced by a single Alu-rich gene are currently not predictable due to limitations of amplification and analyses. Here, using a tailored approach, we report a surprising diversity of exon-containing circRNAs generated by the Alu-rich Survival Motor Neuron (SMN) genes that code for SMN, an essential multifunctional protein in humans. We show that expression of the vast repertoire of SMN circRNAs is universal. Several of the identified circRNAs harbor novel exons derived from both intronic and intergenic sequences. A comparison with mouse Smn circRNAs underscored a clear impact of primate-specific Alu elements on shaping the overall repertoire of human SMN circRNAs. We show the role of DHX9, an RNA helicase, in splicing regulation of several SMN exons that are preferentially incorporated into circRNAs. Our results suggest self- and cross-regulation of biogenesis of various SMN circRNAs. These findings bring a novel perspective towards a better understanding of SMN gene function.
Collapse
Affiliation(s)
- Eric W Ottesen
- Iowa State University, Biomedical Sciences, Ames, IA 50011, USA
| | - Diou Luo
- Iowa State University, Biomedical Sciences, Ames, IA 50011, USA
| | - Joonbae Seo
- Iowa State University, Biomedical Sciences, Ames, IA 50011, USA
| | - Natalia N Singh
- Iowa State University, Biomedical Sciences, Ames, IA 50011, USA
| | | |
Collapse
|
33
|
Del Corpo O, Goguen RP, Malard CMG, Daher A, Colby-Germinario S, Scarborough RJ, Gatignol A. A U1i RNA that Enhances HIV-1 RNA Splicing with an Elongated Recognition Domain Is an Optimal Candidate for Combination HIV-1 Gene Therapy. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 18:815-830. [PMID: 31734561 PMCID: PMC6861678 DOI: 10.1016/j.omtn.2019.10.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/27/2019] [Accepted: 10/12/2019] [Indexed: 11/30/2022]
Abstract
U1 interference (U1i) RNAs can be designed to correct splicing defects and target pathogenic RNA, such as HIV-1 RNA. In this study, we show that U1i RNAs that enhance HIV-1 RNA splicing are more effective at inhibiting HIV-1 production compared to top U1i RNAs that inhibit polyadenylation of HIV-1 RNA. A U1i RNA was also identified targeting a site upstream of the first splice acceptor site in the Gag coding region that was effective at inhibiting HIV-1 production. U1-T6, which enhanced HIV-1 RNA splicing, was superior to an antiviral short hairpin RNA (shRNA) currently in clinical trials. To increase specificity, the recognition domain of U1-T6 was elongated by 3–6 nt. The elongated molecules inhibited HIV-1 production from different HIV-1 strains, including one with a mismatch in the target site. These results suggest that lengthening the recognition domain can enhance the specificity of U1i RNAs for their intended target sites while at the same time allowing them to tolerate single mismatch mutations. Overall, our results demonstrate that U1-T6 with an elongated recognition domain inhibits HIV-1 production and has both the efficacy and specificity to be a promising candidate for HIV-1 gene therapy.
Collapse
Affiliation(s)
- Olivier Del Corpo
- Lady Davis Institute for Medical Research, Montréal, QC H3T 1E2, Canada; Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, QC H3A 0G4, Canada
| | - Ryan P Goguen
- Lady Davis Institute for Medical Research, Montréal, QC H3T 1E2, Canada; Department of Microbiology and Immunology, McGill University, Montréal, QC H3A 0G4, Canada
| | - Camille M G Malard
- Lady Davis Institute for Medical Research, Montréal, QC H3T 1E2, Canada; Department of Microbiology and Immunology, McGill University, Montréal, QC H3A 0G4, Canada
| | - Aïcha Daher
- Lady Davis Institute for Medical Research, Montréal, QC H3T 1E2, Canada
| | | | - Robert J Scarborough
- Lady Davis Institute for Medical Research, Montréal, QC H3T 1E2, Canada; Department of Microbiology and Immunology, McGill University, Montréal, QC H3A 0G4, Canada.
| | - Anne Gatignol
- Lady Davis Institute for Medical Research, Montréal, QC H3T 1E2, Canada; Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, QC H3A 0G4, Canada; Department of Microbiology and Immunology, McGill University, Montréal, QC H3A 0G4, Canada.
| |
Collapse
|
34
|
Balestra D, Maestri I, Branchini A, Ferrarese M, Bernardi F, Pinotti M. An Altered Splicing Registry Explains the Differential ExSpeU1-Mediated Rescue of Splicing Mutations Causing Haemophilia A. Front Genet 2019; 10:974. [PMID: 31649737 PMCID: PMC6796300 DOI: 10.3389/fgene.2019.00974] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/12/2019] [Indexed: 12/12/2022] Open
Abstract
The exon recognition and removal of introns (splicing) from pre-mRNA is a crucial step in the gene expression flow. The process is very complex and therefore susceptible to derangements. Not surprisingly, a significant and still underestimated proportion of disease-causing mutations affects splicing, with those occurring at the 5’ splice site (5’ss) being the most severe ones. This led to the development of a correction approach based on variants of the spliceosomal U1snRNA, which has been proven on splicing mutations in several cellular and mouse models of human disease. Since the alternative splicing mechanisms are strictly related to the sequence context of the exon, we challenged the U1snRNA-mediated strategy in the singular model of the exon 5 of coagulation factor (F)VIII gene (F8) in which the authentic 5’ss is surrounded by various cryptic 5’ss. This scenario is further complicated in the presence of nucleotide changes associated with FVIII deficiency (Haemophilia A), which weaken the authentic 5’ss and create/strengthen cryptic 5’ss. We focused on the splicing mutations (c.602-32A > G, c.602-10T > G, c.602G > A, c.655G > A, c.667G > A, c.669A > G, c.669A > T, c.670G > T, c.670+1G > T, c.670+1G > A, c.670+2T > G, c.670+5G > A, and c.670+6T > C) found in patients with severe to mild Haemophilia A. Minigenes expression studies demonstrated that all mutations occurring within the 5’ss, both intronic or exonic, lead to aberrant transcripts arising from the usage of two cryptic intronic 5’ss at positions c.670+64 and c.670+176. For most of them, the observed proportion of correct transcripts is in accordance with the coagulation phenotype of patients. In co-transfection experiments, we identified a U1snRNA variant targeting an intronic region downstream of the defective exon (Exon Specific U1snRNA, U1sh7) capable to re-direct usage of the proper 5’ss (∼80%) for several mutations. However, deep investigation of rescued transcripts from +1 and +2 variants revealed only the usage of adjacent cryptic 5’ss, leading to frameshifted transcript forms. These data demonstrate that a single ExSpeU1 can efficiently rescue different mutations in the F8 exon 5, and provide the first evidence of the applicability of the U1snRNA-based approach to Haemophilia A.
Collapse
Affiliation(s)
- Dario Balestra
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Iva Maestri
- Department of Experimental and Diagnostic Medicine, University of Ferrara, Ferrara, Italy
| | - Alessio Branchini
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Mattia Ferrarese
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Francesco Bernardi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Mirko Pinotti
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
35
|
Coutinho MF, Matos L, Santos JI, Alves S. RNA Therapeutics: How Far Have We Gone? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1157:133-177. [PMID: 31342441 DOI: 10.1007/978-3-030-19966-1_7] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In recent years, the RNA molecule became one of the most promising targets for therapeutic intervention. Currently, a large number of RNA-based therapeutics are being investigated both at the basic research level and in late-stage clinical trials. Some of them are even already approved for treatment. RNA-based approaches can act at pre-mRNA level (by splicing modulation/correction using antisense oligonucleotides or U1snRNA vectors), at mRNA level (inhibiting gene expression by siRNAs and antisense oligonucleotides) or at DNA level (by editing mutated sequences through the use of CRISPR/Cas). Other RNA approaches include the delivery of in vitro transcribed (IVT) mRNA or the use of oligonucleotides aptamers. Here we review these approaches and their translation into clinics trying to give a brief overview also on the difficulties to its application as well as the research that is being done to overcome them.
Collapse
Affiliation(s)
- Maria Francisca Coutinho
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, Porto, Portugal
| | - Liliana Matos
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, Porto, Portugal
| | - Juliana Inês Santos
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, Porto, Portugal
| | - Sandra Alves
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, Porto, Portugal.
| |
Collapse
|
36
|
Balestra D, Giorgio D, Bizzotto M, Fazzari M, Ben Zeev B, Pinotti M, Landsberger N, Frasca A. Splicing Mutations Impairing CDKL5 Expression and Activity Can be Efficiently Rescued by U1snRNA-Based Therapy. Int J Mol Sci 2019; 20:ijms20174130. [PMID: 31450582 PMCID: PMC6747535 DOI: 10.3390/ijms20174130] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/19/2019] [Accepted: 08/22/2019] [Indexed: 12/26/2022] Open
Abstract
Mutations in the CDKL5 gene lead to an incurable rare neurological condition characterized by the onset of seizures in the first weeks of life and severe intellectual disability. Replacement gene or protein therapies could represent intriguing options, however, their application may be inhibited by the recent demonstration that CDKL5 is dosage sensitive. Conversely, correction approaches acting on pre-mRNA splicing would preserve CDKL5 physiological regulation. Since ~15% of CDKL5 pathogenic mutations are candidates to affect splicing, we evaluated the capability of variants of the spliceosomal U1 small nuclear RNA (U1snRNA) to correct mutations affecting +1 and +5 nucleotides at the 5′ donor splice site and predicted to cause exon skipping. Our results show that CDKL5 minigene variants expressed in mammalian cells are a valid approach to assess CDKL5 splicing pattern. The expression of engineered U1snRNA effectively rescued mutations at +5 but not at the +1 nucleotides. Importantly, we proved that U1snRNA-mediated splicing correction fully restores CDKL5 protein synthesis, subcellular distribution and kinase activity. Eventually, by correcting aberrant splicing of an exogenously expressed splicing-competent CDKL5 transgene, we provided insights on the morphological rescue of CDKL5 null neurons, reporting the first proof-of-concept of the therapeutic value of U1snRNA-mediated CDKL5 splicing correction.
Collapse
Affiliation(s)
- Dario Balestra
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| | - Domenico Giorgio
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20090 Milan, Italy
| | - Matteo Bizzotto
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20090 Milan, Italy
| | - Maria Fazzari
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20090 Milan, Italy
| | - Bruria Ben Zeev
- Pediatric Neurology Unit, Edmond and Lily Safra Pediatric Hospital, Sheba Medical Center and Sackler School of Medicine, Tel Aviv University, 61000 Tel Aviv, Israel
| | - Mirko Pinotti
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| | - Nicoletta Landsberger
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20090 Milan, Italy.
| | - Angelisa Frasca
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20090 Milan, Italy.
| |
Collapse
|
37
|
Singh NN, Singh RN. How RNA structure dictates the usage of a critical exon of spinal muscular atrophy gene. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:194403. [PMID: 31323435 DOI: 10.1016/j.bbagrm.2019.07.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 07/09/2019] [Indexed: 12/17/2022]
Abstract
Role of RNA structure in pre-mRNA splicing has been implicated for several critical exons associated with genetic disorders. However, much of the structural studies linked to pre-mRNA splicing regulation are limited to terminal stem-loop structures (hairpins) sequestering splice sites. In few instances, role of long-distance interactions is implicated as the major determinant of splicing regulation. With the recent surge of reports of circular RNA (circRNAs) generated by backsplicing, role of Alu-associated RNA structures formed by long-range interactions are taking central stage. Humans contain two nearly identical copies of Survival Motor Neuron (SMN) genes, SMN1 and SMN2. Deletion or mutation of SMN1 coupled with the inability of SMN2 to compensate for the loss of SMN1 due to exon 7 skipping causes spinal muscular atrophy (SMA), one of the leading genetic diseases of children. In this review, we describe how structural elements formed by both local and long-distance interactions are being exploited to modulate SMN2 exon 7 splicing as a potential therapy for SMA. We also discuss how Alu-associated secondary structure modulates generation of a vast repertoire of SMN circRNAs. This article is part of a Special Issue entitled: RNA structure and splicing regulation edited by Francisco Baralle, Ravindra Singh and Stefan Stamm.
Collapse
Affiliation(s)
- Natalia N Singh
- Department of Biomedical Science, Iowa State University, Ames, IA 50011, United States of America
| | - Ravindra N Singh
- Department of Biomedical Science, Iowa State University, Ames, IA 50011, United States of America.
| |
Collapse
|
38
|
Balestra D, Branchini A. Molecular Mechanisms and Determinants of Innovative Correction Approaches in Coagulation Factor Deficiencies. Int J Mol Sci 2019; 20:ijms20123036. [PMID: 31234407 PMCID: PMC6627357 DOI: 10.3390/ijms20123036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/07/2019] [Accepted: 06/18/2019] [Indexed: 02/07/2023] Open
Abstract
Molecular strategies tailored to promote/correct the expression and/or processing of defective coagulation factors would represent innovative therapeutic approaches beyond standard substitutive therapy. Here, we focus on the molecular mechanisms and determinants underlying innovative approaches acting at DNA, mRNA and protein levels in inherited coagulation factor deficiencies, and in particular on: (i) gene editing approaches, which have permitted intervention at the DNA level through the specific recognition, cleavage, repair/correction or activation of target sequences, even in mutated gene contexts; (ii) the rescue of altered pre-mRNA processing through the engineering of key spliceosome components able to promote correct exon recognition and, in turn, the synthesis and secretion of functional factors, as well as the effects on the splicing of missense changes affecting exonic splicing elements; this section includes antisense oligonucleotide- or siRNA-mediated approaches to down-regulate target genes; (iii) the rescue of protein synthesis/function through the induction of ribosome readthrough targeting nonsense variants or the correction of folding defects caused by amino acid substitutions. Overall, these approaches have shown the ability to rescue the expression and/or function of potentially therapeutic levels of coagulation factors in different disease models, thus supporting further studies in the future aimed at evaluating the clinical translatability of these new strategies.
Collapse
Affiliation(s)
- Dario Balestra
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy.
| | - Alessio Branchini
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy.
| |
Collapse
|
39
|
Lee B, Kim YR, Kim SJ, Goh SH, Kim JH, Oh SK, Baek JI, Kim UK, Lee KY. Modified U1 snRNA and antisense oligonucleotides rescue splice mutations in SLC26A4 that cause hereditary hearing loss. Hum Mutat 2019; 40:1172-1180. [PMID: 31033086 DOI: 10.1002/humu.23774] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 04/15/2019] [Accepted: 04/23/2019] [Indexed: 11/11/2022]
Abstract
One of most important factors for messenger RNA (mRNA) transcription is the spliceosomal component U1 small nuclear RNA (snRNA), which recognizes 5' splicing donor sites at specific regions in pre-mRNA. Mutations in these sites disrupt U1 snRNA binding and cause abnormal splicing. In this study, we investigated mutations at splice sites in SLC26A4 (HGNC 8818), one of the major causative genes of hearing loss, which may result in the synthesis of abnormal pendrin, the channel protein encoded by the gene. Seventeen SLC26A4 variants with mutations in the U1 snRNA binding sites were assessed by minigene splicing assays, and 11 were found to result in abnormal splicing. Interestingly, eight of the 11 pathogenic mutations were intronic, suggesting the importance of conserved sequences at the intronic splice site. The application of modified U1 snRNA effectively rescued the abnormal splicing for most of these mutations. Although three were cryptic mutations, they were rescued by cotransfection of modified U1 snRNA and modified antisense oligonucleotides. Our results demonstrate the important role of snRNA in SLC26A4 mutations, suggesting the therapeutic potential of modified U1 snRNA and antisense oligonucleotides for neutralizing the pathogenic effect of the splice-site mutations that may result in hearing loss.
Collapse
Affiliation(s)
- Byeonghyeon Lee
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea.,BK21 Plus KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Ye-Ri Kim
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea.,BK21 Plus KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Sang-Joo Kim
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea.,BK21 Plus KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Sung-Ho Goh
- Therapeutic Target Discovery Branch, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Jong-Heun Kim
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea.,BK21 Plus KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Se-Kyung Oh
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Republic of Korea
| | - Jeong-In Baek
- Department of Aroma-Applied Industry, Daegu Haany University, Gyeongsan, Republic of Korea
| | - Un-Kyung Kim
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea.,BK21 Plus KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Kyu-Yup Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
40
|
Singh RN, Singh NN. A novel role of U1 snRNP: Splice site selection from a distance. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:634-642. [PMID: 31042550 DOI: 10.1016/j.bbagrm.2019.04.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 04/15/2019] [Accepted: 04/18/2019] [Indexed: 12/23/2022]
Abstract
Removal of introns by pre-mRNA splicing is fundamental to gene function in eukaryotes. However, understanding the mechanism by which exon-intron boundaries are defined remains a challenging endeavor. Published reports support that the recruitment of U1 snRNP at the 5'ss marked by GU dinucleotides defines the 5'ss as well as facilitates 3'ss recognition through cross-exon interactions. However, exceptions to this rule exist as U1 snRNP recruited away from the 5'ss retains the capability to define the splice site, where the cleavage takes place. Independent reports employing exon 7 of Survival Motor Neuron (SMN) genes suggest a long-distance effect of U1 snRNP on splice site selection upon U1 snRNP recruitment at target sequences with or without GU dinucleotides. These findings underscore that sequences distinct from the 5'ss may also impact exon definition if U1 snRNP is recruited to them through partial complementarity with the U1 snRNA. In this review we discuss the expanded role of U1 snRNP in splice-site selection due to U1 ability to be recruited at more sites than predicted solely based on GU dinucleotides.
Collapse
Affiliation(s)
- Ravindra N Singh
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States of America.
| | - Natalia N Singh
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States of America
| |
Collapse
|
41
|
Can multiscale simulations unravel the function of metallo-enzymes to improve knowledge-based drug discovery? Future Med Chem 2019; 11:771-791. [DOI: 10.4155/fmc-2018-0495] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Metallo-enzymes are a large class of biomolecules promoting specialized chemical reactions. Quantum-classical quantum mechanics/molecular mechanics molecular dynamics, describing the metal site at quantum mechanics level, while accounting for the rest of system at molecular mechanics level, has an accessible time-scale limited by its computational cost. Hence, it must be integrated with classical molecular dynamics and enhanced sampling simulations to disentangle the functions of metallo-enzymes. In this review, we provide an overview of these computational methods and their capabilities. In particular, we will focus on some systems such as CYP19A1 a Fe-dependent enzyme involved in estrogen biosynthesis, and on Mg2+-dependent DNA/RNA processing enzymes/ribozymes and the spliceosome, a protein-directed ribozyme. This information may guide the discovery of drug-like molecules and genetic manipulation tools.
Collapse
|
42
|
DeNicola AB, Tang Y. Therapeutic approaches to treat human spliceosomal diseases. Curr Opin Biotechnol 2019; 60:72-81. [PMID: 30772756 DOI: 10.1016/j.copbio.2019.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 01/02/2019] [Indexed: 02/06/2023]
Abstract
Mutated RNA splicing machinery drives many human diseases and is a promising therapeutic target for engineering and small molecule therapy. In the case of mutations in individual genes that cause them to be incorrectly spliced, engineered splicing factors can be introduced to correct splicing of these aberrant transcripts and reduce the effects of the disease phenotype. Mutations that occur in certain splicing factor genes themselves have been implicated in many cancers, particularly myelodysplastic syndromes. Small molecules that target splicing factors have been developed as therapies to preferentially induce apoptosis in these cancer cells. Specifically, drugs targeting the splicing factor SF3B1 have led to recent clinical trials. Here, we review the role of alternative splicing in disease, approaches to rescue incorrect splicing using engineered splicing factors, and small molecule splicing inhibitors developed to treat hematological cancers.
Collapse
Affiliation(s)
- Anthony B DeNicola
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, United States.
| | - Yi Tang
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, United States
| |
Collapse
|
43
|
Scalet D, Maestri I, Branchini A, Bernardi F, Pinotti M, Balestra D. Disease-causing variants of the conserved +2T of 5' splice sites can be rescued by engineered U1snRNAs. Hum Mutat 2018; 40:48-52. [PMID: 30408273 DOI: 10.1002/humu.23680] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/26/2018] [Accepted: 11/05/2018] [Indexed: 12/14/2022]
Abstract
The ability of variants of the spliceosomal U1snRNA to rescue splicing has been proven in several human disease models, but not for nucleotide changes at the conserved GT nucleotide of 5' splice sites (5'ss), frequent and associated with severe phenotypes. Here, we focused on variants at the 5'ss of F9 intron 3, leading to factor IX (FIX) deficiency (hemophilia B). Through minigene expression, we demonstrated that all changes induce complete exon 3 skipping, which explains the associated hemophilia B phenotype. Interestingly, engineered U1snRNAs remarkably increased the proportion of correct transcripts in the presence of the c.277+4A>G (∼60%) and also c.277+2T>C mutation (∼20%). Expression of splicing-competent cDNA constructs indicated that the splicing rescue produces an appreciable increase of secreted FIX protein levels. These data provide the first experimental evidence that even part of variants at the conserved 5'ss +2T nucleotide can be rescued, thus expanding the applicability of this U1snRNA-based approach.
Collapse
Affiliation(s)
- Daniela Scalet
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Iva Maestri
- Department of Experimental and Diagnostic Medicine, University of Ferrara, Ferrara, Italy
| | - Alessio Branchini
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Francesco Bernardi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Mirko Pinotti
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Dario Balestra
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
44
|
Editors T. Program and Book of the 15th Interuniversity Institute of Myology Meeting - Assisi (Italy), 2018. Eur J Transl Myol 2018; 28:7927. [PMID: 30662694 PMCID: PMC6317144 DOI: 10.4081/ejtm.2018.7927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 11/12/2018] [Indexed: 11/24/2022] Open
Abstract
Not available.
Collapse
Affiliation(s)
- The Editors
- Interuniversity Institute of Myology (IIM), Rome, Italy
| |
Collapse
|
45
|
Donadon I, Pinotti M, Rajkowska K, Pianigiani G, Barbon E, Morini E, Motaln H, Rogelj B, Mingozzi F, Slaugenhaupt SA, Pagani F. Exon-specific U1 snRNAs improve ELP1 exon 20 definition and rescue ELP1 protein expression in a familial dysautonomia mouse model. Hum Mol Genet 2018; 27:2466-2476. [PMID: 29701768 PMCID: PMC6030917 DOI: 10.1093/hmg/ddy151] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/12/2018] [Accepted: 04/16/2018] [Indexed: 12/30/2022] Open
Abstract
Familial dysautonomia (FD) is a rare genetic disease with no treatment, caused by an intronic point mutation (c.2204+6T>C) that negatively affects the definition of exon 20 in the elongator complex protein 1 gene (ELP1 also known as IKBKAP). This substitution modifies the 5' splice site and, in combination with regulatory splicing factors, induces different levels of exon 20 skipping, in various tissues. Here, we evaluated the therapeutic potential of a novel class of U1 snRNA molecules, exon-specific U1s (ExSpeU1s), in correcting ELP1 exon 20 recognition. Lentivirus-mediated expression of ELP1-ExSpeU1 in FD fibroblasts improved ELP1 splicing and protein levels. We next focused on a transgenic mouse model that recapitulates the same tissue-specific mis-splicing seen in FD patients. Intraperitoneal delivery of ELP1-ExSpeU1s-adeno-associated virus particles successfully increased the production of full-length human ELP1 transcript and protein. This splice-switching class of molecules is the first to specifically correct the ELP1 exon 20 splicing defect. Our data provide proof of principle of ExSpeU1s-adeno-associated virus particles as a novel therapeutic strategy for FD.
Collapse
Affiliation(s)
- Irving Donadon
- Human Molecular Genetics Laboratory, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Mirko Pinotti
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Katarzyna Rajkowska
- Human Molecular Genetics Laboratory, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Giulia Pianigiani
- Human Molecular Genetics Laboratory, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | | | - Elisabetta Morini
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
| | - Helena Motaln
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Boris Rogelj
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
- Biomedical Research Institute BRIS, Ljubljana, Slovenia
| | - Federico Mingozzi
- Genethon and INSERM U951, Evry, France
- University Pierre and Marie Curie and INSERM U974, Paris, France
| | - Susan A Slaugenhaupt
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
| | - Franco Pagani
- Human Molecular Genetics Laboratory, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| |
Collapse
|
46
|
Yanaizu M, Sakai K, Tosaki Y, Kino Y, Satoh JI. Small nuclear RNA-mediated modulation of splicing reveals a therapeutic strategy for a TREM2 mutation and its post-transcriptional regulation. Sci Rep 2018; 8:6937. [PMID: 29720600 PMCID: PMC5931963 DOI: 10.1038/s41598-018-25204-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/17/2018] [Indexed: 12/30/2022] Open
Abstract
Loss-of-function mutations in TREM2 cause Nasu-Hakola disease (NHD), a rare genetic disease characterized by early-onset dementia with leukoencephalopathy and bone cysts. An NHD-associated mutation, c.482 + 2 T > C, disrupts the splice donor site of intron 3 and causes aberrant skipping of exon 3, resulting in the loss of full-length TREM2 protein. Here, we examined the efficacy of artificial U1 and U7 small nuclear RNAs (snRNAs) designed to enhance exon 3 inclusion. Using mutant TREM2 minigenes, we found that some modified U1, but not U7, snRNAs enhanced exon 3 inclusion and restored TREM2 protein expression. Unexpectedly, we found that exon 3 of wild-type TREM2 is an alternative exon, whose skipping leads to reduced expression of the full-length protein. Indeed, TREM2 protein levels were modulated by modified snRNAs that either promoted or repressed exon 3 inclusion. The splice donor site flanking exon 3 was predicted to be weak, which may explain both the alternative splicing of exon 3 under normal conditions and complete exon skipping when the c.482 + 2 T > C mutation was present. Collectively, our snRNA-based approaches provide a potential therapeutic strategy for NHD-associated mis-splicing and novel insights into the post-transcriptional regulation of TREM2.
Collapse
Affiliation(s)
- Motoaki Yanaizu
- Department of Bioinformatics and Molecular Neuropathology, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose-shi, Tokyo, 204-8588, Japan
| | - Kenji Sakai
- Department of Bioinformatics and Molecular Neuropathology, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose-shi, Tokyo, 204-8588, Japan
| | - Youhei Tosaki
- Department of Bioinformatics and Molecular Neuropathology, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose-shi, Tokyo, 204-8588, Japan
| | - Yoshihiro Kino
- Department of Bioinformatics and Molecular Neuropathology, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose-shi, Tokyo, 204-8588, Japan.
| | - Jun-Ichi Satoh
- Department of Bioinformatics and Molecular Neuropathology, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose-shi, Tokyo, 204-8588, Japan
| |
Collapse
|
47
|
Martínez-Pizarro A, Dembic M, Pérez B, Andresen BS, Desviat LR. Intronic PAH gene mutations cause a splicing defect by a novel mechanism involving U1snRNP binding downstream of the 5' splice site. PLoS Genet 2018; 14:e1007360. [PMID: 29684050 PMCID: PMC5933811 DOI: 10.1371/journal.pgen.1007360] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 05/03/2018] [Accepted: 04/11/2018] [Indexed: 11/18/2022] Open
Abstract
Phenylketonuria (PKU), one of the most common inherited diseases of amino acid metabolism, is caused by mutations in the phenylalanine hydroxylase (PAH) gene. Recently, PAH exon 11 was identified as a vulnerable exon due to a weak 3’ splice site, with different exonic mutations affecting exon 11 splicing through disruption of exonic splicing regulatory elements. In this study, we report a novel intron 11 regulatory element, which is involved in exon 11 splicing, as revealed by the investigated pathogenic effect of variants c.1199+17G>A and c.1199+20G>C, identified in PKU patients. Both mutations cause exon 11 skipping in a minigene system. RNA binding assays indicate that binding of U1snRNP70 to this intronic region is disrupted, concomitant with a slightly increased binding of inhibitors hnRNPA1/2. We have investigated the effect of deletions and point mutations, as well as overexpression of adapted U1snRNA to show that this splicing regulatory motif is important for regulation of correct splicing at the natural 5’ splice site. The results indicate that U1snRNP binding downstream of the natural 5’ splice site determines efficient exon 11 splicing, thus providing a basis for development of therapeutic strategies to correct PAH exon 11 splicing mutations. In this work, we expand the functional effects of non-canonical intronic U1 snRNP binding by showing that it may enhance exon definition and that, consequently, intronic mutations may cause exon skipping by a novel mechanism, where they disrupt stimulatory U1 snRNP binding close to the 5’ splice site. Notably, our results provide further understanding of the reported therapeutic effect of exon specific U1 snRNA for splicing mutations in disease. Splicing defects constitute a major cause of human disease. Mutations affecting conserved splicing sequences at exon-intron junctions are easily recognized as possibly pathogenic, whereas variants in exonic or intronic regions are difficult to classify without functional evidence provided by transcript analysis or in vitro analysis using minigenes. In this work, we sought out to study the pathogenicity of two novel intronic PAH variants identified in phenylketonuria patients. Both mutations resulted in exon skipping in minigenes. We demonstrate that U1snRNP70 binds to the intronic region and that this binding is abolished in the mutant sequences. Correction of the splicing defect was achieved using modified U1 snRNA perfectly complementary to each of the mutant sequences. The results extend the repertoire of natural U1 snRNP cellular functions by including its role as splicing enhancer via binding downstream of the natural 5’ splice site. In addition, our results correlate with the described therapeutic effect of modified U1snRNP for splicing mutations in different genes, thus having a significant impact in the development of specific therapies for splicing defects.
Collapse
Affiliation(s)
- Ainhoa Martínez-Pizarro
- Centro de Biología Molecular Severo Ochoa UAM-CSIC, CEDEM, CIBERER, IdiPaz, Universidad Autónoma, Madrid, Spain
| | - Maja Dembic
- Department of Biochemistry and Molecular Biology and the Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | - Belén Pérez
- Centro de Biología Molecular Severo Ochoa UAM-CSIC, CEDEM, CIBERER, IdiPaz, Universidad Autónoma, Madrid, Spain
| | - Brage S. Andresen
- Department of Biochemistry and Molecular Biology and the Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
- * E-mail: (BSA); (LRD)
| | - Lourdes R. Desviat
- Centro de Biología Molecular Severo Ochoa UAM-CSIC, CEDEM, CIBERER, IdiPaz, Universidad Autónoma, Madrid, Spain
- * E-mail: (BSA); (LRD)
| |
Collapse
|
48
|
Gómez-Gaviro MV, Desco M. The Paracrine Neural Stem Cell Niche: New Actors in the Play. CURRENT STEM CELL REPORTS 2018. [DOI: 10.1007/s40778-018-0112-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
49
|
Impact, Characterization, and Rescue of Pre-mRNA Splicing Mutations in Lysosomal Storage Disorders. Genes (Basel) 2018; 9:genes9020073. [PMID: 29415500 PMCID: PMC5852569 DOI: 10.3390/genes9020073] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/19/2018] [Accepted: 01/31/2018] [Indexed: 11/16/2022] Open
Abstract
Lysosomal storage disorders (LSDs) represent a group of more than 50 severe metabolic diseases caused by the deficiency of specific lysosomal hydrolases, activators, carriers, or lysosomal integral membrane proteins, leading to the abnormal accumulation of substrates within the lysosomes. Numerous mutations have been described in each disease-causing gene; among them, about 5-19% affect the pre-mRNA splicing process. In the last decade, several strategies to rescue/increase normal splicing of mutated transcripts have been developed and LSDs represent excellent candidates for this type of approach: (i) most of them are inherited in an autosomic recessive manner and patients affected by late-onset (LO) phenotypes often retain a fair amount of residual enzymatic activity; thus, even a small recovery of normal splicing may be beneficial in clinical settings; (ii) most LSDs still lack effective treatments or are currently treated with extremely expensive approaches; (iii) in few LSDs, a single splicing mutation accounts for up to 40-70% of pathogenic alleles. At present, numerous preclinical studies support the feasibility of reverting the pathological phenotype by partially rescuing splicing defects in LSDs. This review provides an overview of the impact of splicing mutations in LSDs and the related therapeutic approaches currently under investigation in these disorders.
Collapse
|
50
|
Singh NN, Del Rio-Malewski JB, Luo D, Ottesen EW, Howell MD, Singh RN. Activation of a cryptic 5' splice site reverses the impact of pathogenic splice site mutations in the spinal muscular atrophy gene. Nucleic Acids Res 2017; 45:12214-12240. [PMID: 28981879 PMCID: PMC5716214 DOI: 10.1093/nar/gkx824] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 09/06/2017] [Indexed: 01/08/2023] Open
Abstract
Spinal muscular atrophy (SMA) is caused by deletions or mutations of the Survival Motor Neuron 1 (SMN1) gene coupled with predominant skipping of SMN2 exon 7. The only approved SMA treatment is an antisense oligonucleotide that targets the intronic splicing silencer N1 (ISS-N1), located downstream of the 5' splice site (5'ss) of exon 7. Here, we describe a novel approach to exon 7 splicing modulation through activation of a cryptic 5'ss (Cr1). We discovered the activation of Cr1 in transcripts derived from SMN1 that carries a pathogenic G-to-C mutation at the first position (G1C) of intron 7. We show that Cr1-activating engineered U1 snRNAs (eU1s) have the unique ability to reprogram pre-mRNA splicing and restore exon 7 inclusion in SMN1 carrying a broad spectrum of pathogenic mutations at both the 3'ss and 5'ss of the exon 7. Employing a splicing-coupled translation reporter, we demonstrate that mRNAs generated by an eU1-induced activation of Cr1 produce full-length SMN. Our findings underscore a wider role for U1 snRNP in splicing regulation and reveal a novel approach for the restoration of SMN exon 7 inclusion for a potential therapy of SMA.
Collapse
Affiliation(s)
- Natalia N Singh
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - José Bruno Del Rio-Malewski
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA.,Interdepartmental Genetics and Genomics Program, Iowa State University, Ames, IA 50011, USA
| | - Diou Luo
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Eric W Ottesen
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Matthew D Howell
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Ravindra N Singh
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA.,Interdepartmental Genetics and Genomics Program, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|