1
|
Shin YZ, Yum YA, Bae ES, Jarhad DB, Aswar VR, Tripathi SK, Kwon EJ, Kim YJ, Kim M, Lee SK, Jeong LS, Cha HJ. Targeting HASPIN in gemcitabine-resistant pancreatic cancer cells by lead optimization of thioadenosine analogue. Biomed Pharmacother 2025; 188:118135. [PMID: 40378773 DOI: 10.1016/j.biopha.2025.118135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/19/2025] [Accepted: 05/05/2025] [Indexed: 05/19/2025] Open
Abstract
Despite multiple kinase inhibitors having been developed for cancer therapy, mitotic kinases remain difficult to target with small molecules due to severe adverse effects on proliferating normal cells. Recently, HASPIN, a mitotic kinase responsible for histone H3 phosphorylation, has emerged as a promising cancer-specific target. In this study, we synthesized a novel thioadenosine analogue, LJ5157, based on the structure of the previously developed HASPIN inhibitor LJ4827. In silico transcriptome analysis of pancreatic cancer patient data from The Cancer Genome Atlas identified HASPIN as not only a cancer-specific target but also a potential key player in overcoming gemcitabine resistance. To evaluate the therapeutic potential of LJ5157, we tested its efficacy in pancreatic cancer cells, particularly gemcitabine-resistant Panc-1 (GR) cells. The inhibitor exhibited potent anti-cancer activity, effectively suppressing the growth of GR cells, which showed more dysregulated cell cycle progression and greater proportion of polyploid cells compared to wild-type Panc-1 cells. Furthermore, it demonstrated superior efficacy in reducing the mitotic population of polyploid GR cells, which correlated with significant tumor growth inhibition in a GR-cell-derived xenograft model. Further optimization of LJ4827 led to development of LJ5242, an analogue with enhanced selectivity for HASPIN and improved cell cycle inhibitory potency. These findings highlight HASPIN inhibition as a promising strategy for targeting chemoresistant pancreatic cancer and further identify thioadenosine as a valuable pharmacophore for developing clinically viable HASPIN inhibitors.
Collapse
Affiliation(s)
- Yoon-Ze Shin
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Yun A Yum
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Eun Seo Bae
- Natural Products Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Dnyandev B Jarhad
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Vikas R Aswar
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | | | - Eun-Ji Kwon
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Yun-Jeong Kim
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Minjae Kim
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Sang Kook Lee
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea; Natural Products Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Lak-Shin Jeong
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea; Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea; Future Medicine Co., Ltd, Seongnam, Gyeonggi-do, Republic of Korea.
| | - Hyuk-Jin Cha
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea; Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Oladipo KH, Parish JL. De-regulation of aurora kinases by oncogenic HPV; implications in cancer development and treatment. Tumour Virus Res 2025; 19:200314. [PMID: 39923999 DOI: 10.1016/j.tvr.2025.200314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 02/11/2025] Open
Abstract
Human papillomaviruses (HPVs) cause diseases ranging from benign warts to invasive cancers. HPVs are the cause of almost all cervical cancers and a sub-set of other epithelial malignancies including head and neck cancers, specifically within the oropharynx. The oncogenic properties of HPV are largely mediated through the viral oncoproteins E6 and E7, which disrupt many cellular pathways to drive uncontrolled cell proliferation. One family of proteins targeted by HPV is the Aurora kinase family. Aurora kinases are serine/threonine kinases including Aurora kinase A (AURKA), B (AURKB), and C (AURKC) which are often dysregulated in many cancer types, including HPV driven cancers. All three family members play essential roles in mitotic regulation and accurate cell division. The deregulation of Aurora kinases by HPV infection highlights their potential as therapeutic targets in HPV-associated malignancies. Targeting Aurora kinase activity, in combination with current HPV therapies, may provide new avenues for treating HPV-induced cancers and reducing the burden of HPV-related diseases. Combinatorial inhibition targets distinct but overlapping functions of these kinases, thereby reducing the potential for cancer cells to develop resistance. This broad impact emphasizes the capability for Aurora kinase inhibitors not only as anti-mitotic agents but also as modulators of multiple oncogenic pathways. This review explores the combinatorial effects of Aurora kinase inhibition, offering insights into novel therapeutic strategies for the treatment of HPV-driven cancers.
Collapse
Affiliation(s)
- Kemi Hannah Oladipo
- Department of Cancer and Genomic Sciences, College of Medicine and Health, University of Birmingham, Birmingham, United Kingdom; National Institute for Health and Care Research (NIHR) Birmingham Biomedical Research Centre, Birmingham, United Kingdom.
| | - Joanna L Parish
- Department of Cancer and Genomic Sciences, College of Medicine and Health, University of Birmingham, Birmingham, United Kingdom; National Institute for Health and Care Research (NIHR) Birmingham Biomedical Research Centre, Birmingham, United Kingdom.
| |
Collapse
|
3
|
Wong LH, Tremethick DJ. Multifunctional histone variants in genome function. Nat Rev Genet 2025; 26:82-104. [PMID: 39138293 DOI: 10.1038/s41576-024-00759-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2024] [Indexed: 08/15/2024]
Abstract
Histones are integral components of eukaryotic chromatin that have a pivotal role in the organization and function of the genome. The dynamic regulation of chromatin involves the incorporation of histone variants, which can dramatically alter its structural and functional properties. Contrary to an earlier view that limited individual histone variants to specific genomic functions, new insights have revealed that histone variants exert multifaceted roles involving all aspects of genome function, from governing patterns of gene expression at precise genomic loci to participating in genome replication, repair and maintenance. This conceptual change has led to a new understanding of the intricate interplay between chromatin and DNA-dependent processes and how this connection translates into normal and abnormal cellular functions.
Collapse
Affiliation(s)
- Lee H Wong
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - David J Tremethick
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capial Territory, Australia.
| |
Collapse
|
4
|
Sato Y, Habara M, Hanaki S, Masaki T, Tomiyasu H, Miki Y, Sakurai M, Morimoto M, Kobayashi D, Miyamoto T, Shimada M. Calcineurin-mediated dephosphorylation stabilizes E2F1 protein by suppressing binding of the FBXW7 ubiquitin ligase subunit. Proc Natl Acad Sci U S A 2024; 121:e2414618121. [PMID: 39361641 PMCID: PMC11474076 DOI: 10.1073/pnas.2414618121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 08/26/2024] [Indexed: 10/05/2024] Open
Abstract
The transcription factor E2F1 serves as a regulator of the cell cycle and promotes cell proliferation. It is highly expressed in cancer tissues and contributes to their malignant transformation. Degradation by the ubiquitin-proteasome system may help to prevent such overexpression of E2F1 and thereby to suppress carcinogenesis. A detailed understanding of the mechanisms underlying E2F1 degradation may therefore inform the development of new cancer treatments. We here identified SCFFBXW7 as a ubiquitin ligase for E2F1 by comprehensive analysis. We found that phosphorylation of E2F1 at serine-403 promotes its binding to FBXW7 (F-box/WD repeat-containing protein 7) followed by its ubiquitination and degradation. Furthermore, calcineurin, a Ca2+/calmodulin-dependent serine-threonine phosphatase, was shown to stabilize E2F1 by mediating its dephosphorylation at serine-403 and thereby preventing FBXW7 binding. Treatment of cells with Ca2+ channel blockers resulted in downregulation of both E2F1 protein and the expression of E2F1 target genes, whereas treatment with the Ca2+ ionophore ionomycin induced upregulation of E2F1. Finally, the calcineurin inhibitor FK506 attenuated xenograft tumor growth in mice in association with downregulation of E2F1 in the tumor tissue. Impairment of the balance between the opposing actions of FBXW7 and calcineurin in the regulation of E2F1 abundance may therefore play an important role in carcinogenesis.
Collapse
Affiliation(s)
- Yuki Sato
- Department of Veterinary Biochemistry, Yamaguchi University, Yamaguchi753-8511, Japan
| | - Makoto Habara
- Department of Veterinary Biochemistry, Yamaguchi University, Yamaguchi753-8511, Japan
| | - Shunsuke Hanaki
- Department of Veterinary Biochemistry, Yamaguchi University, Yamaguchi753-8511, Japan
| | - Takahiro Masaki
- Department of Veterinary Biochemistry, Yamaguchi University, Yamaguchi753-8511, Japan
| | - Haruki Tomiyasu
- Department of Veterinary Biochemistry, Yamaguchi University, Yamaguchi753-8511, Japan
| | - Yosei Miki
- Department of Veterinary Biochemistry, Yamaguchi University, Yamaguchi753-8511, Japan
| | - Masashi Sakurai
- Department of Veterinary Pathology, Yamaguchi University, Yamaguchi753-8511, Japan
| | - Masahiro Morimoto
- Department of Veterinary Pathology, Yamaguchi University, Yamaguchi753-8511, Japan
| | - Daigo Kobayashi
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Yamaguchi University, Ube, Yamaguchi 755-8505, Japan
| | - Tatsuo Miyamoto
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Yamaguchi University, Ube, Yamaguchi 755-8505, Japan
- Division of Advanced Genome Editing Therapy Research, Research Institute for Cell Design Medical Science, Yamaguchi University, Ube, Yamaguchi 755-8505, Japan
| | - Midori Shimada
- Department of Veterinary Biochemistry, Yamaguchi University, Yamaguchi753-8511, Japan
- Department of Molecular Biology, Graduate School of Medicine, Nagoya University, Nagoya, Aichi 466-8550, Japan
| |
Collapse
|
5
|
Tanaka H, Matsuyama S, Ohta T, Kakazu K, Fujita K, Fukuhara S, Soda T, Miyagawa Y, Tsujimura A. The Natural HASPIN Inhibitor Coumestrol Suppresses Intestinal Polyp Development, Cachexia, and Hypogonadism in a Mouse Model of Familial Adenomatous Polyposis ( ApcMin/+). BIOLOGY 2024; 13:736. [PMID: 39336163 PMCID: PMC11428679 DOI: 10.3390/biology13090736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/28/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024]
Abstract
(1) Background: HASPIN kinase is involved in regulating spindle function and chromosome segregation, as well as phosphorylating histone H3 at Thr3 in mitotic cells. Several HASPIN inhibitors suppress cancer cell proliferation. It was recently reported that coumestrol from bean sprouts inhibits HASPIN, and a cultivation method for bean sprouts containing large amounts of coumestrol has been established. Here, we showed the effects of bean sprout ingestion on intestinal polyp development, cachexia, and hypogonadism in a mouse model of familial adenomatous polyposis (ApcMin/+). (2) Methods: ApcMin/+ mice were randomized into control and treatment groups. Mice in the control group were given the standard diet, while those in the treatment group were given the same standard diet with the addition of 15% bean sprouts. Treatments were commenced at 7 weeks old and analyses were performed at 12 weeks old. (3) Results: ingesting bean sprouts suppressed the development of intestinal polyps, cachexia, and hypogonadism, and also increased serum levels of testosterone in male wild-type and ApcMin/+ mice. (4) Conclusions: ingesting bean sprouts helps prevent cancer and increases serum levels of testosterone in a mouse model. These results are expected to be applicable to humans.
Collapse
Affiliation(s)
- Hiromitsu Tanaka
- Faculty of Pharmaceutical Sciences, Nagasaki International University, Sasebo 859-3298, Nagasaki, Japan
| | - Shunsuke Matsuyama
- Faculty of Pharmaceutical Sciences, Nagasaki International University, Sasebo 859-3298, Nagasaki, Japan
| | - Tomoe Ohta
- Faculty of Pharmaceutical Sciences, Nagasaki International University, Sasebo 859-3298, Nagasaki, Japan
| | - Keisuke Kakazu
- Faculty of Pharmaceutical Sciences, Nagasaki International University, Sasebo 859-3298, Nagasaki, Japan
| | - Kazutoshi Fujita
- Department of Urology, Kindai University Faculty of Medicine, Osakasayama 589-8511, Osaka, Japan
| | - Shinichiro Fukuhara
- Department of Urology, Osaka University Graduate School of Medicine, Suita 565-0871, Osaka, Japan
| | - Tetsuji Soda
- Department of Urology, Osaka Central Hospital, Kita-ku, Osaka 530-0001, Japan
| | - Yasushi Miyagawa
- Department of Urology, Osaka University Graduate School of Medicine, Suita 565-0871, Osaka, Japan
- Department of Urology, Sumitomo Hospital, Kita-ku, Osaka 530-0005, Japan
| | - Akira Tsujimura
- Department of Urology, Juntendo University Urayasu Hospital, Chiba 279-0021, Japan
| |
Collapse
|
6
|
Li F, Wang X, Zhang J, Jing X, Zhou J, Jiang Q, Cao L, Cai S, Miao J, Tong D, Shyy JYJ, Huang C. AURKB/CDC37 complex promotes clear cell renal cell carcinoma progression via phosphorylating MYC and constituting an AURKB/E2F1-positive feedforward loop. Cell Death Dis 2024; 15:427. [PMID: 38890303 PMCID: PMC11189524 DOI: 10.1038/s41419-024-06827-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/20/2024]
Abstract
As the second most common malignant tumor in the urinary system, renal cell carcinoma (RCC) is imperative to explore its early diagnostic markers and therapeutic targets. Numerous studies have shown that AURKB promotes tumor development by phosphorylating downstream substrates. However, the functional effects and regulatory mechanisms of AURKB on clear cell renal cell carcinoma (ccRCC) progression remain largely unknown. In the current study, we identified AURKB as a novel key gene in ccRCC progression based on bioinformatics analysis. Meanwhile, we observed that AURKB was highly expressed in ccRCC tissue and cell lines and knockdown AURKB in ccRCC cells inhibit cell proliferation and migration in vitro and in vivo. Identified CDC37 as a kinase molecular chaperone for AURKB, which phenocopy AURKB in ccRCC. AURKB/CDC37 complex mediate the stabilization of MYC protein by directly phosphorylating MYC at S67 and S373 to promote ccRCC development. At the same time, we demonstrated that the AURKB/CDC37 complex activates MYC to transcribe CCND1, enhances Rb phosphorylation, and promotes E2F1 release, which in turn activates AURKB transcription and forms a positive feedforward loop in ccRCC. Collectively, our study identified AURKB as a novel marker of ccRCC, revealed a new mechanism by which the AURKB/CDC37 complex promotes ccRCC by directly phosphorylating MYC to enhance its stability, and first proposed AURKB/E2F1-positive feedforward loop, highlighting AURKB may be a promising therapeutic target for ccRCC.
Collapse
Affiliation(s)
- Fang Li
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University School of Health Science Center, Xi'an, 710301, Shaanxi, China
| | - Xiaofei Wang
- Biomedical Experimental Center, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Jinyuan Zhang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University School of Health Science Center, Xi'an, 710301, Shaanxi, China
| | - Xintao Jing
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University School of Health Science Center, Xi'an, 710301, Shaanxi, China
| | - Jing Zhou
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University School of Health Science Center, Xi'an, 710301, Shaanxi, China
| | - Qiuyu Jiang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University School of Health Science Center, Xi'an, 710301, Shaanxi, China
| | - Li Cao
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University School of Health Science Center, Xi'an, 710301, Shaanxi, China
| | - Shuang Cai
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University School of Health Science Center, Xi'an, 710301, Shaanxi, China
| | - Jiyu Miao
- Department of Hematology, The Second Affiliated Hospital of Xian Jiaotong University, Xi'an, 710004, China
| | - Dongdong Tong
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University School of Health Science Center, Xi'an, 710301, Shaanxi, China.
| | - John Y-J Shyy
- Division of Cardiology, Department of Medicine, University of California, San Diego, CA, USA
| | - Chen Huang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University School of Health Science Center, Xi'an, 710301, Shaanxi, China.
- Biomedical Experimental Center, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
7
|
Tomiyasu H, Habara M, Hanaki S, Sato Y, Miki Y, Shimada M. FOXO1 promotes cancer cell growth through MDM2-mediated p53 degradation. J Biol Chem 2024; 300:107209. [PMID: 38519029 PMCID: PMC11021968 DOI: 10.1016/j.jbc.2024.107209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/07/2024] [Accepted: 03/13/2024] [Indexed: 03/24/2024] Open
Abstract
FOXO1 is a transcription factor and potential tumor suppressor that is negatively regulated downstream of PI3K-PKB/AKT signaling. Paradoxically, FOXO also promotes tumor growth, but the detailed mechanisms behind this role of FOXO are not fully understood. In this study, we revealed a molecular cascade by which the Thr24 residue of FOXO1 is phosphorylated by AKT and is dephosphorylated by calcineurin, which is a Ca2+-dependent protein phosphatase. Curiously, single nucleotide somatic mutations of FOXO1 in cancer occur frequently at and near Thr24. Using a calcineurin inhibitor and shRNA directed against calcineurin, we revealed that calcineurin-mediated dephosphorylation of Thr24 regulates FOXO1 protein stability. We also found that FOXO1 binds to the promoter region of MDM2 and activates transcription, which in turn promotes MDM2-mediated ubiquitination and degradation of p53. FOXO3a and FOXO4 are shown to control p53 activity; however, the significance of FOXO1 in p53 regulation remains largely unknown. Supporting this notion, FOXO1 depletion increased p53 and p21 protein levels in association with the inhibition of cell proliferation. Taken together, these results indicate that FOXO1 is stabilized by calcineurin-mediated dephosphorylation and that FOXO1 supports cancer cell proliferation by promoting MDM2 transcription and subsequent p53 degradation.
Collapse
Affiliation(s)
- Haruki Tomiyasu
- Department of Veterinary Biochemistry, Yamaguchi University, Yamaguchi, Yamaguchi, Japan
| | - Makoto Habara
- Department of Veterinary Biochemistry, Yamaguchi University, Yamaguchi, Yamaguchi, Japan
| | - Shunsuke Hanaki
- Department of Veterinary Biochemistry, Yamaguchi University, Yamaguchi, Yamaguchi, Japan
| | - Yuki Sato
- Department of Veterinary Biochemistry, Yamaguchi University, Yamaguchi, Yamaguchi, Japan
| | - Yosei Miki
- Department of Veterinary Biochemistry, Yamaguchi University, Yamaguchi, Yamaguchi, Japan
| | - Midori Shimada
- Department of Veterinary Biochemistry, Yamaguchi University, Yamaguchi, Yamaguchi, Japan; Department of Molecular Biology, Nagoya University, Graduate School of Medicine, Showa-ku, Nagoya, Japan.
| |
Collapse
|
8
|
Masaki T, Habara M, Hanaki S, Sato Y, Tomiyasu H, Miki Y, Shimada M. Calcineurin-mediated dephosphorylation enhances the stability and transactivation of c-Myc. Sci Rep 2023; 13:13116. [PMID: 37573463 PMCID: PMC10423207 DOI: 10.1038/s41598-023-40412-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023] Open
Abstract
c-Myc, a transcription factor, induces cell proliferation and is often aberrantly or highly expressed in cancers. However, molecular mechanisms underlying this aberrantly high expression remain unclear. Here, we found that intracellular Ca2+ concentration regulates c-Myc oncoprotein stability. We identified that calcineurin, a Ca2+-dependent protein phosphatase, is a positive regulator of c-Myc expression. Calcineurin depletion suppresses c-Myc targeted gene expression and c-Myc degradation. Calcineurin directly dephosphorylates Thr58 and Ser62 in c-Myc, which inhibit binding to the ubiquitin ligase Fbxw7. Mutations within the autoinhibitory domain of calcineurin, most frequently observed in cancer, may increase phosphatase activity, increasing c-Myc transcriptional activity in turn. Notably, calcineurin inhibition with FK506 decreased c-Myc expression with enhanced Thr58 and Ser62 phosphorylation in a mouse xenograft model. Thus, calcineurin can stabilize c-Myc, promoting tumor progression. Therefore, we propose that Ca2+ signaling dysfunction affects cancer-cell proliferation via increased c-Myc stability and that calcineurin inhibition could be a new therapeutic target of c-Myc-overexpressing cancers.
Collapse
Affiliation(s)
- Takahiro Masaki
- Department of Veterinary Biochemistry, Joint Faculty of Veterinary Science, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8511, Japan
| | - Makoto Habara
- Department of Veterinary Biochemistry, Joint Faculty of Veterinary Science, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8511, Japan
| | - Shunsuke Hanaki
- Department of Veterinary Biochemistry, Joint Faculty of Veterinary Science, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8511, Japan
| | - Yuki Sato
- Department of Veterinary Biochemistry, Joint Faculty of Veterinary Science, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8511, Japan
| | - Haruki Tomiyasu
- Department of Veterinary Biochemistry, Joint Faculty of Veterinary Science, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8511, Japan
| | - Yosei Miki
- Department of Veterinary Biochemistry, Joint Faculty of Veterinary Science, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8511, Japan
| | - Midori Shimada
- Department of Veterinary Biochemistry, Joint Faculty of Veterinary Science, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8511, Japan.
| |
Collapse
|
9
|
Kwon EJ, Mashelkar KK, Seo J, Shin YZ, Sung K, Jang SC, Cheon SW, Lee H, Lee HW, Kim G, Han BW, Lee SK, Jeong LS, Cha HJ. In Silico Discovery of 5'-Modified 7-Deoxy-7-ethynyl-4'-thioadenosine as a HASPIN Inhibitor and Its Synergistic Anticancer Effect with the PLK1 Inhibitor. ACS CENTRAL SCIENCE 2023; 9:1140-1149. [PMID: 37396870 PMCID: PMC10311661 DOI: 10.1021/acscentsci.3c00332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Indexed: 07/04/2023]
Abstract
Despite genetic perturbations resulting in embryo lethality for most mitotic kinases, loss of the histone H3 mitotic kinase HASPIN reveals no adverse effect in mice models, establishing HASPIN as a promising target for anticancer therapy. However, developing a HASPIN inhibitor from conventional pharmacophores poses a technical challenge as this atypical kinase shares slight similarities with eukaryotic protein kinases. Chemically modifying a cytotoxic 4'-thioadenosine analogue through high genotoxicity yielded several novel nongenotoxic kinase inhibitors. In silico apporoaches utilizing transcriptomic and chemical similarities with known compounds and KINOMEscan profiles unveiled the HASPIN inhibitor LJ4827. LJ4827's specificity and potency as a HASPIN inhibitor were verified through in vitro kinase assay and X-ray crystallography. HASPIN inhibition by LJ4827 reduced histone H3 phosphorylation and impeded Aurora B recruitment in cancer cell centromeres but not in noncancer cells. Through transcriptome analysis of lung cancer patients, PLK1 was determined as a druggable synergistic partner to complement HASPIN inhibition. Chemical or genetic PLK1 perturbation with LJ4827 effectuated pronounced lung cancer cytotoxicity in vitro and in vivo. Therefore, LJ4827 is a novel anticancer therapeutic for selectively impeding cancer mitosis through potent HASPIN inhibition, and simultaneous HASPIN and PLK1 interference is a promising therapeutic strategy for lung cancer.
Collapse
Affiliation(s)
- Eun-Ji Kwon
- College
of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | | | - Juhee Seo
- College
of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Yoon-Ze Shin
- College
of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Kisu Sung
- College
of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Sung Chul Jang
- College
of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
- Natural Products
Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Sang Won Cheon
- College
of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Haeseung Lee
- College
of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
- Research
Institute for Drug Development, Pusan National
University, Busan 46241, Republic
of Korea
| | - Hyuk Woo Lee
- Future
Medicine Company, Limited, Seongnam, Gyeonggi-do 13449, Republic of Korea
| | - Gyudong Kim
- College
of Pharmacy, and Research Institute of Drug Development, Chonnam National University, Gwangju 61469, Republic of Korea
| | - Byung Woo Han
- College
of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
- Research
Institute of Pharmaceutical Sciences, Seoul
National University, Seoul 08826, Republic
of Korea
| | - Sang Kook Lee
- College
of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
- Natural Products
Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Lak Shin Jeong
- College
of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
- Research
Institute of Pharmaceutical Sciences, Seoul
National University, Seoul 08826, Republic
of Korea
- Future
Medicine Company, Limited, Seongnam, Gyeonggi-do 13449, Republic of Korea
| | - Hyuk-Jin Cha
- College
of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
- Research
Institute of Pharmaceutical Sciences, Seoul
National University, Seoul 08826, Republic
of Korea
| |
Collapse
|
10
|
Tanaka H, Matsushita H, Tokuhiro K, Fukunari A, Ando Y. Ingestion of Soybean Sprouts Containing a HASPIN Inhibitor Improves Condition in a Mouse Model of Alzheimer's Disease. BIOLOGY 2023; 12:biology12020320. [PMID: 36829593 PMCID: PMC9953708 DOI: 10.3390/biology12020320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023]
Abstract
The MATP/tau protein is hyperphosphorylated in Alzheimer's patients. Therefore, research into the regulation of tau protein phosphorylation is important for understanding Alzheimer's disease. HASPIN is a serine/threonine kinase that is expressed in various cells. To examine whether HASPIN is involved in the onset of Alzheimer's disease through tau protein phosphorylation, we investigated the effects of a diet including soybean sprouts rich in the HASPIN inhibitor coumestrol in a mouse model of Alzheimer's disease (5xFAD). The results showed that HASPIN was expressed in the hippocampus and phosphorylated tau protein, while the ingestion of soybean sprouts containing coumestrol suppressed the development of spatial cognitive dysfunction in 5xFAD. These results indicate that HASPIN may be one of the target molecules for the repression of tau phosphorylation in the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Hiromitsu Tanaka
- Faculty of Pharmaceutical Sciences, Nagasaki International University, 2825-7 Huis Ten Bosch, Sasebo 859-3298, Japan
- Correspondence:
| | - Hiroaki Matsushita
- Faculty of Pharmaceutical Sciences, Nagasaki International University, 2825-7 Huis Ten Bosch, Sasebo 859-3298, Japan
| | - Keizo Tokuhiro
- Department of Genome Editing, Institute of Biomedical Science, Kansai Medical University, Hirakata City 573-1191, Japan
| | - Atsushi Fukunari
- Faculty of Pharmaceutical Sciences, Nagasaki International University, 2825-7 Huis Ten Bosch, Sasebo 859-3298, Japan
| | - Yukio Ando
- Faculty of Pharmaceutical Sciences, Nagasaki International University, 2825-7 Huis Ten Bosch, Sasebo 859-3298, Japan
| |
Collapse
|
11
|
Masaki T, Habara M, Shibutani S, Hanaki S, Sato Y, Tomiyasu H, Shimada M. Dephosphorylation of the EGFR protein by calcineurin at serine 1046/1047 enhances its stability. Biochem Biophys Res Commun 2023; 641:84-92. [PMID: 36525928 DOI: 10.1016/j.bbrc.2022.12.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
The epidermal growth factor receptor (EGFR) is highly expressed or abnormally activated in several types of cancers, such as lung and colorectal cancers. Inhibitors that suppress the tyrosine kinase activity of EGFR have been used in the treatment of lung cancer. However, resistance to these inhibitors has become an issue in cancer treatment, and the development of new therapies that inhibit EGFR is desired. We found that calcineurin, a Ca2+/calmodulin-activated serine/threonine phosphatase, is a novel regulator of EGFR. Inhibition of calcineurin by FK506 treatment or calcineurin depletion promoted EGFR degradation in cancer cells. In addition, we found that calcineurin dephosphorylates EGFR at serine (S)1046/1047, which in turn stabilizes EGFR. Furthermore, in human colon cancer cells transplanted into mice, the inhibition of calcineurin by FK506 decreased EGFR expression. These results indicate that calcineurin stabilizes EGFR by dephosphorylating S1046/1047 and promotes tumor growth. These findings suggest that calcineurin may be a new therapeutic target for cancers with high EGFR expression or activation.
Collapse
Affiliation(s)
- Takahiro Masaki
- Department of Veterinary Biochemistry, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, Yamaguchi, 753-8511, Japan
| | - Makoto Habara
- Department of Veterinary Biochemistry, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, Yamaguchi, 753-8511, Japan
| | - Shusaku Shibutani
- Department of Veterinary Hygiene, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, Yamaguchi, 753-8511, Japan
| | - Shunsuke Hanaki
- Department of Veterinary Biochemistry, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, Yamaguchi, 753-8511, Japan
| | - Yuki Sato
- Department of Veterinary Biochemistry, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, Yamaguchi, 753-8511, Japan
| | - Haruki Tomiyasu
- Department of Veterinary Biochemistry, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, Yamaguchi, 753-8511, Japan
| | - Midori Shimada
- Department of Veterinary Biochemistry, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, Yamaguchi, 753-8511, Japan.
| |
Collapse
|
12
|
Tanaka H, Tokuhiro K. A Haspin promoter element induces tissue-specific methylation of a transcription region and the regulation of gene expression in mouse ova. CELL JOURNAL 2022; 24:552-554. [PMID: 36274209 PMCID: PMC9594865 DOI: 10.22074/cellj.2022.8444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Indexed: 12/04/2022]
Abstract
HASPIN is a nuclear serine-threonine kinase originally identified in the mouse testis. Its 193 bp DNA promoter element (hereafter, 193PE) regulates bidirectional, synchronous gene expression in the germ cells of male mice. Recent studies have shown that Haspin is also expressed in trace amounts in somatic cells; HASPIN also functions in oocytes. Haspin expression is regulated by the tissue-specific methylation of Haspin genomic DNA regions, including somatic cells. This study investigated relationship between 193PE and DNA methylation by examining methylation status of transgenic mice carrying 193PE and a reporter gene. In somatic (liver) cells carrying the reporter gene, 193PE induced methylation as well as trace expression of the reporter gene. In the testis, 193PE induced hypomethylation and intense reporter gene expression. Expression of HASPIN in an egg was assessed using human chorionic gonadotrophin to induce ovulation in female transgenic mice. The results showed that 193PE induced tissue-specific methylation, which resulted in reporter gene expression in a mouse egg.
Collapse
Affiliation(s)
- Hiromitsu Tanaka
- Labaratory of Molecular Biology, Faculty of Pharmaceutical Sciences, Nagasaki International University, 2825-7 Huis Ten Bosch,
Sasebo, Nagasaki, Japan,*Corresponding Addresses:Labaratory of Molecular BiologyFaculty of Pharmaceutical SciencesNagasaki International UniversityHuis Ten BoschSaseboNagasakiJapan
| | - Keizo Tokuhiro
- Department of Genome Editing, Institute of Biomedical Science, Kansai Medical University, Shin-machi, Hirakata City, Osaka, Japan
| |
Collapse
|
13
|
Maeda N, Tsuchida J, Nishimune Y, Tanaka H. Analysis of Ser/Thr Kinase HASPIN-Interacting Proteins in the Spermatids. Int J Mol Sci 2022; 23:ijms23169060. [PMID: 36012324 PMCID: PMC9409403 DOI: 10.3390/ijms23169060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/30/2022] Open
Abstract
HASPIN is predominantly expressed in spermatids, and plays an important role in cell division in somatic and meiotic cells through histone H3 phosphorylation. The literature published to date has suggested that HASPIN may play multiple roles in cells. Here, 10 gene products from the mouse testis cDNA library that interact with HASPIN were isolated using the two-hybrid system. Among them, CENPJ/CPAP, KPNA6/importin alpha 6, and C1QBP/HABP1 were analyzed in detail for their interactions with HASPIN, with HASPIN phosphorylated C1QBP as the substrate. The results indicated that HASPIN is involved in spermatogenesis through the phosphorylation of C1QBP in spermatids, and also may be involved in the formation of centrosomes.
Collapse
Affiliation(s)
- Naoko Maeda
- Department of Science for Laboratory Animal Experimentation, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita 565-0871, Osaka, Japan
| | - Junji Tsuchida
- Department of Science for Laboratory Animal Experimentation, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita 565-0871, Osaka, Japan
| | - Yoshitake Nishimune
- Department of Science for Laboratory Animal Experimentation, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita 565-0871, Osaka, Japan
| | - Hiromitsu Tanaka
- Faculty of Pharmaceutical Sciences, Nagasaki International University, 2825-7 Huis Ten Bosch, Sasebo 859-3298, Nagasaki, Japan
- Correspondence: ; Tel./Fax: +81-956-20-5651
| |
Collapse
|
14
|
I B, López-Jiménez P, Mena I, Viera A, Page J, González-Martínez J, Maestre C, Malumbres M, Suja JA, Gómez R. Haspin participates in AURKB recruitment to centromeres and contributes to chromosome congression in male mouse meiosis. J Cell Sci 2022; 135:275954. [PMID: 35694956 DOI: 10.1242/jcs.259546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 06/06/2022] [Indexed: 11/20/2022] Open
Abstract
Chromosome segregation requires that centromeres properly attach to spindle microtubules. This essential step regulates the accuracy of cell division and therefore must be precisely regulated. One of the main centromeric regulatory signaling pathways is the Haspin-H3T3ph-chromosomal passenger complex (CPC) cascade, which is responsible for the recruitment of the CPC to the centromeres. In mitosis, Haspin kinase phosphorylates histone H3 at threonine 3 (H3T3ph), an essential epigenetic mark that recruits the CPC, whose catalytic component is Aurora B kinase. However, the centromeric Haspin-H3T3ph-CPC pathway remains largely uncharacterized in mammalian male meiosis. We have analyzed Haspin functions by either its chemical inhibition in cultured spermatocytes using LDN-192960, or the ablation of Haspin gene in Haspin-/-. Our studies suggest that Haspin kinase activity is required for proper chromosome congression during both meiotic divisions and for the recruitment of Aurora B and kinesin MCAK to meiotic centromeres. However, the absence of H3T3ph histone mark does not alter Borealin and SGO2 centromeric localization. These results add new and relevant information regarding the regulation of the Haspin-H3T3ph-CPC pathway and centromere function during meiosis.
Collapse
Affiliation(s)
- Berenguer I
- Cell Biology Unit, Department of Biology, Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain
| | - P López-Jiménez
- Cell Biology Unit, Department of Biology, Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain
| | - I Mena
- Cell Biology Unit, Department of Biology, Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain
| | - A Viera
- Cell Biology Unit, Department of Biology, Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain
| | - J Page
- Cell Biology Unit, Department of Biology, Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain
| | - J González-Martínez
- Cell Division and Cancer group, Spanish National Cancer Research Centre (CNIO), 29029 Madrid, Spain
| | - C Maestre
- Cell Division and Cancer group, Spanish National Cancer Research Centre (CNIO), 29029 Madrid, Spain
| | - M Malumbres
- Cell Division and Cancer group, Spanish National Cancer Research Centre (CNIO), 29029 Madrid, Spain
| | - J A Suja
- Cell Biology Unit, Department of Biology, Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain
| | - R Gómez
- Cell Biology Unit, Department of Biology, Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain
| |
Collapse
|
15
|
Macaraeg J, Reinhard I, Ward M, Carmeci D, Stanaway M, Moore A, Hagmann E, Brown K, Wynne DJ. Genetic analysis of C. elegans Haspin-like genes shows that hasp-1 plays multiple roles in the germline. Biol Open 2022; 11:275645. [PMID: 35678140 PMCID: PMC9277076 DOI: 10.1242/bio.059277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 06/06/2022] [Indexed: 11/20/2022] Open
Abstract
Haspin is a histone kinase that promotes error-free chromosome segregation by recruiting the Chromosomal Passenger Complex (CPC) to mitotic and meiotic chromosomes. Haspin remains less well studied than other M-phase kinases and the models explaining Haspin function have been developed primarily in mitotic cells. Here, we generate strains containing new conditional or nonsense mutations in the C. elegans Haspin homologs hasp-1 and hasp-2 and characterize their phenotypes. We show that hasp-1 is responsible for all predicted functions of Haspin and that loss of function of hasp-1 using classical and conditional alleles produces defects in germline stem cell proliferation, spermatogenesis, and confirms its role in oocyte meiosis. Genetic analysis suggests hasp-1 acts downstream of the Polo-like kinase plk-2 and shows synthetic interactions between hasp-1 and two genes expected to promote recruitment of the CPC by a parallel pathway that depends on the kinase Bub1. This work adds to the growing understanding of Haspin function by characterizing a variety of roles in an intact animal.
Collapse
Affiliation(s)
- Jommel Macaraeg
- University of Portland, 5000 N Willamette Blvd. Portland, OR, 97203, USA
| | - Isaac Reinhard
- University of Portland, 5000 N Willamette Blvd. Portland, OR, 97203, USA
| | - Matthew Ward
- University of Portland, 5000 N Willamette Blvd. Portland, OR, 97203, USA
| | - Danielle Carmeci
- University of Portland, 5000 N Willamette Blvd. Portland, OR, 97203, USA
| | - Madison Stanaway
- University of Portland, 5000 N Willamette Blvd. Portland, OR, 97203, USA
| | - Amy Moore
- University of Portland, 5000 N Willamette Blvd. Portland, OR, 97203, USA
| | - Ethan Hagmann
- University of Portland, 5000 N Willamette Blvd. Portland, OR, 97203, USA
| | - Katherine Brown
- University of Portland, 5000 N Willamette Blvd. Portland, OR, 97203, USA
| | - David J Wynne
- University of Portland, 5000 N Willamette Blvd. Portland, OR, 97203, USA
| |
Collapse
|
16
|
Tanaka H, Nishida-Fukuda H, Wada M, Tokuhiro K, Matsushita H, Ando Y. Inhibitory Effect of the HASPIN Inhibitor CHR-6494 on BxPC-3-Luc, A Luciferase-Expressing Pancreatic Cancer Cell Line. CELL JOURNAL 2022; 24:212-214. [PMID: 35674022 PMCID: PMC9124445 DOI: 10.22074/cellj.2022.7796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/12/2021] [Indexed: 11/04/2022]
Abstract
HASPIN acts in chromosome segregation via histone phosphorylation. Recently, HASPIN inhibitors have been shown to suppress growth of various cancer cells. Pancreatic cancer has no symptom in the early stages and may progress before detection. So, the 5-year survival rate is low. Here, we reported that administration of the HASPIN inhibitor, CHR-6494, to mice bearing pancreatic BxPC-3-Luc cancer cells significantly suppressed growth of BxPC-3-Luc cells. CHR-6494 might be a useful agent for treating pancreatic cancer.
Collapse
Affiliation(s)
- Hiromitsu Tanaka
- Faculty of Pharmaceutical Sciences, Nagasaki International University, Huis Ten Bosch, Sasebo, Nagasaki, Japan,Faculty of Pharmaceutical SciencesNagasaki International UniversityHuis Ten BoschSaseboNagasakiJapan
| | - Hisayo Nishida-Fukuda
- Department of Genome Editing, Institute of Biomedical Science, Kansai Medical University, Shin-machi, Hirakata City, Osaka, Japan
| | - Morimasa Wada
- Faculty of Pharmaceutical Sciences, Nagasaki International University, Huis Ten Bosch, Sasebo, Nagasaki, Japan
| | - Keizo Tokuhiro
- Department of Genome Editing, Institute of Biomedical Science, Kansai Medical University, Shin-machi, Hirakata City, Osaka, Japan
| | - Hiroaki Matsushita
- Faculty of Pharmaceutical Sciences, Nagasaki International University, Huis Ten Bosch, Sasebo, Nagasaki, Japan
| | - Yukio Ando
- Faculty of Pharmaceutical Sciences, Nagasaki International University, Huis Ten Bosch, Sasebo, Nagasaki, Japan
| |
Collapse
|
17
|
Roles and regulation of Haspin kinase and its impact on carcinogenesis. Cell Signal 2022; 93:110303. [DOI: 10.1016/j.cellsig.2022.110303] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/04/2022] [Accepted: 03/04/2022] [Indexed: 01/15/2023]
|
18
|
Merighi A, Gionchiglia N, Granato A, Lossi L. The Phosphorylated Form of the Histone H2AX (γH2AX) in the Brain from Embryonic Life to Old Age. Molecules 2021; 26:7198. [PMID: 34885784 PMCID: PMC8659122 DOI: 10.3390/molecules26237198] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/25/2021] [Accepted: 11/25/2021] [Indexed: 12/12/2022] Open
Abstract
The γ phosphorylated form of the histone H2AX (γH2AX) was described more than 40 years ago and it was demonstrated that phosphorylation of H2AX was one of the first cellular responses to DNA damage. Since then, γH2AX has been implicated in diverse cellular functions in normal and pathological cells. In the first part of this review, we will briefly describe the intervention of H2AX in the DNA damage response (DDR) and its role in some pivotal cellular events, such as regulation of cell cycle checkpoints, genomic instability, cell growth, mitosis, embryogenesis, and apoptosis. Then, in the main part of this contribution, we will discuss the involvement of γH2AX in the normal and pathological central nervous system, with particular attention to the differences in the DDR between immature and mature neurons, and to the significance of H2AX phosphorylation in neurogenesis and neuronal cell death. The emerging picture is that H2AX is a pleiotropic molecule with an array of yet not fully understood functions in the brain, from embryonic life to old age.
Collapse
Affiliation(s)
| | | | | | - Laura Lossi
- Department of Veterinary Sciences, University of Turin, I-10095 Grugliasco, Italy; (A.M.); (N.G.); (A.G.)
| |
Collapse
|
19
|
Calcineurin regulates the stability and activity of estrogen receptor α. Proc Natl Acad Sci U S A 2021; 118:2114258118. [PMID: 34711683 DOI: 10.1073/pnas.2114258118] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 08/27/2021] [Indexed: 12/14/2022] Open
Abstract
Estrogen receptor α (ER-α) mediates estrogen-dependent cancer progression and is expressed in most breast cancer cells. However, the molecular mechanisms underlying the regulation of the cellular abundance and activity of ER-α remain unclear. We here show that the protein phosphatase calcineurin regulates both ER-α stability and activity in human breast cancer cells. Calcineurin depletion or inhibition down-regulated the abundance of ER-α by promoting its polyubiquitination and degradation. Calcineurin inhibition also promoted the binding of ER-α to the E3 ubiquitin ligase E6AP, and calcineurin mediated the dephosphorylation of ER-α at Ser294 in vitro. Moreover, the ER-α (S294A) mutant was more stable and activated the expression of ER-α target genes to a greater extent compared with the wild-type protein, whereas the extents of its interaction with E6AP and polyubiquitination were attenuated. These results suggest that the phosphorylation of ER-α at Ser294 promotes its binding to E6AP and consequent degradation. Calcineurin was also found to be required for the phosphorylation of ER-α at Ser118 by mechanistic target of rapamycin complex 1 and the consequent activation of ER-α in response to β-estradiol treatment. Our study thus indicates that calcineurin controls both the stability and activity of ER-α by regulating its phosphorylation at Ser294 and Ser118 Finally, the expression of the calcineurin A-α gene (PPP3CA) was associated with poor prognosis in ER-α-positive breast cancer patients treated with tamoxifen or other endocrine therapeutic agents. Calcineurin is thus a promising target for the development of therapies for ER-α-positive breast cancer.
Collapse
|
20
|
Distinct roles of haspin in stem cell division and male gametogenesis. Sci Rep 2021; 11:19901. [PMID: 34615946 PMCID: PMC8494884 DOI: 10.1038/s41598-021-99307-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/17/2021] [Indexed: 02/05/2023] Open
Abstract
The kinase haspin phosphorylates histone H3 at threonine-3 (H3T3ph) during mitosis. H3T3ph provides a docking site for the Chromosomal Passenger Complex at the centromere, enabling correction of erratic microtubule-chromosome contacts. Although this mechanism is operational in all dividing cells, haspin-null mice do not exhibit developmental anomalies, apart from aberrant testis architecture. Investigating this problem, we show here that mouse embryonic stem cells that lack or overexpress haspin, albeit prone to chromosome misalignment during metaphase, can still divide, expand and differentiate. RNA sequencing reveals that haspin dosage affects severely the expression levels of several genes that are involved in male gametogenesis. Consistent with a role in testis-specific expression, H3T3ph is detected not only in mitotic spermatogonia and meiotic spermatocytes, but also in non-dividing cells, such as haploid spermatids. Similarly to somatic cells, the mark is erased in the end of meiotic divisions, but re-installed during spermatid maturation, subsequent to methylation of histone H3 at lysine-4 (H3K4me3) and arginine-8 (H3R8me2). These serial modifications are particularly enriched in chromatin domains containing histone H3 trimethylated at lysine-27 (H3K27me3), but devoid of histone H3 trimethylated at lysine-9 (H3K9me3). The unique spatio-temporal pattern of histone H3 modifications implicates haspin in the epigenetic control of spermiogenesis.
Collapse
|
21
|
HASPIN kinase inhibitor CHR-6494 suppresses intestinal polyp development, cachexia, and hypogonadism in Apcmin/+ mice. Eur J Cancer Prev 2021; 29:481-485. [PMID: 31833958 PMCID: PMC7531494 DOI: 10.1097/cej.0000000000000562] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
HASPIN has been identified as a nuclear Ser/Thr kinase specifically expressed in haploid germ cells. HASPIN kinase inhibitors were recently isolated, and their antitumor activity reported. Colorectal cancer occurs with high incidence worldwide. In this study, we examined whether HASPIN inhibitor CHR-6494 suppresses cancer progression in ApcMin/+ mice, a familial colon tumor disease model. Mice were treated by intraperitoneal injection of CHR-6494 for 50 days. Following the treatment period, intestinal polyps were counted and testosterone and spermatogenesis levels were observed. Intraperitoneal administration of CHR-6494 significantly inhibited intestinal polyp development and recovered body weight in ApcMin/+ mice. Although spermatogenesis was inhibited with increasing age in ApcMin/+ mice, CHR-6494 significantly improved blood testosterone levels and spermatogenesis. Our results suggest that HASPIN inhibitors may be useful as anti-cancer agents and for the treatment of hypogonadism in colorectal cancer patients.
Collapse
|
22
|
Pérez-Fidalgo JA, Gambardella V, Pineda B, Burgues O, Piñero O, Cervantes A. Aurora kinases in ovarian cancer. ESMO Open 2021; 5:e000718. [PMID: 33087400 PMCID: PMC7580081 DOI: 10.1136/esmoopen-2020-000718] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 07/06/2020] [Accepted: 07/11/2020] [Indexed: 01/18/2023] Open
Abstract
Aurora kinases (AURK) are key regulators of the mitotic spindle formation. AURK is frequently overexpressed in ovarian cancer and this overexpression has been frequently associated with prognosis in these tumours. Interestingly, AURK have been shown to interact with DNA repair mechanisms and other cell cycle regulators. These functions have brought light to Aurora family as a potential target for anticancer therapy. In the last years, two clinical trials with different AURK inhibitors have shown activity in epithelial and clear-cell ovarian cancer. Although there is a lack of predictive factors of AURK inhibition activity, recent trials have identified some candidates. This review will focus in the functions of the AURK family, its role as prognostic factor in epithelial ovarian cancer and potential clinical implications.
Collapse
Affiliation(s)
- J Alejandro Pérez-Fidalgo
- Department of Medical Oncology, Hospital Clinico Universitario of Valencia, Biomedical Research Institute, INCLIVA, CIBERONC and University of Valencia, Valencia, Spain.
| | - Valentina Gambardella
- Department of Medical Oncology, Hospital Clinico Universitario of Valencia, Biomedical Research Institute, INCLIVA, CIBERONC and University of Valencia, Valencia, Spain
| | - Begoña Pineda
- Department of Physiology, Hospital Clinico Universitario of Valencia, Biomedical Research Institute INCLIVA, CIBERONC and University of Valencia, Valencia, Spain
| | - Octavio Burgues
- Department of Pathology, Hospital Clinico Universitario Valencai, Valencia, Spain
| | - Oscar Piñero
- Department of Gynaecology, Hospital Clinico Universitario of Valencia, Valencia, Spain
| | - Andrés Cervantes
- Department of Medical Oncology, Hospital Clinico Universitario of Valencia, Biomedical Research Institute INCLIVA, CIBERONC and University of Valencia, Valencia, Spain
| |
Collapse
|
23
|
Aurora B Tension Sensing Mechanisms in the Kinetochore Ensure Accurate Chromosome Segregation. Int J Mol Sci 2021; 22:ijms22168818. [PMID: 34445523 PMCID: PMC8396173 DOI: 10.3390/ijms22168818] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 11/29/2022] Open
Abstract
The accurate segregation of chromosomes is essential for the survival of organisms and cells. Mistakes can lead to aneuploidy, tumorigenesis and congenital birth defects. The spindle assembly checkpoint ensures that chromosomes properly align on the spindle, with sister chromatids attached to microtubules from opposite poles. Here, we review how tension is used to identify and selectively destabilize incorrect attachments, and thus serves as a trigger of the spindle assembly checkpoint to ensure fidelity in chromosome segregation. Tension is generated on properly attached chromosomes as sister chromatids are pulled in opposing directions but resisted by centromeric cohesin. We discuss the role of the Aurora B kinase in tension-sensing and explore the current models for translating mechanical force into Aurora B-mediated biochemical signals that regulate correction of chromosome attachments to the spindle.
Collapse
|
24
|
Tanaka H, Tsujimura A. Pervasiveness of intronless genes expressed in haploid germ cell differentiation. Reprod Med Biol 2021; 20:255-259. [PMID: 34262392 PMCID: PMC8254168 DOI: 10.1002/rmb2.12385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/25/2021] [Accepted: 03/28/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND cDNA libraries derived from the brain and testis contain genes that encode almost all proteins. The brain is composed of various differentiated cells, and the testis also contains various differentiated cells, such as germ cells, and somatic cells that support germ cell differentiation, such as Sertoli and Leydig cells. Many genes appear to be expressed due to tissue complexity. METHODS The Genome Project has sequenced the entire genomes of humans and mice. Recent research using new gene analysis technologies has found that many genes are expressed specifically in male germ cells. MAIN FINDINGS RESULTS Functional intronless genes are significantly enriched in haploid germ cell-specific genes. CONCLUSION Functional intronless genes associated with fertility are more likely to be inherited in haploid germ cells than in somatic cells.
Collapse
Affiliation(s)
- Hiromitsu Tanaka
- Lab. of Molecular BiologyFaculty of Pharmaceutical SciencesNagasaki International UniversitySaseboJapan
| | - Akira Tsujimura
- Department of UrologyJuntendo University HospitalUrayasuJapan
| |
Collapse
|
25
|
Maeda K, Habara M, Kawaguchi M, Matsumoto H, Hanaki S, Masaki T, Sato Y, Matsuyama H, Kunieda K, Nakagawa H, Shimada M. FKBP51 and FKBP52 regulate androgen receptor dimerization and proliferation in prostate cancer cells. Mol Oncol 2021; 16:940-956. [PMID: 34057812 PMCID: PMC8847985 DOI: 10.1002/1878-0261.13030] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/23/2021] [Accepted: 05/28/2021] [Indexed: 11/09/2022] Open
Abstract
The growth of prostate cancer is dependent on the androgen receptor (AR), which serves as a ligand-specific transcription factor. Although two immunophilins, FKBP51 and FKBP52, are known to regulate AR activity, the precise mechanism remains unclear. We found that depletion of either FKBP51 or FKBP52 reduced AR dimer formation, chromatin binding, and phosphorylation, suggesting defective AR signaling. Furthermore, the peptidyl-prolyl cis/trans isomerase activity of FKBP51 was found to be required for AR dimer formation and cancer cell growth. Treatment of prostate cancer cells with FK506, which binds to the FK1 domain of FKBPs, or with MJC13, an inhibitor of FKBP52-AR signaling, also inhibited AR dimer formation. Finally, elevated expression of FKBP52 was associated with a higher rate of prostate-specific antigen recurrence in patients with prostate cancer. Collectively, these results suggest that FKBP51 and FKBP52 might be promising targets for prostate cancer treatment through the inhibition of AR dimer formation.
Collapse
Affiliation(s)
- Keisuke Maeda
- Department of Biochemistry, Joint Faculty of Veterinary Science, Yamaguchi University, Japan
| | - Makoto Habara
- Department of Biochemistry, Joint Faculty of Veterinary Science, Yamaguchi University, Japan
| | | | - Hiroaki Matsumoto
- Department of Urology, Graduate School of Medicine, Yamaguchi University, Ube, Japan
| | - Shunsuke Hanaki
- Department of Biochemistry, Joint Faculty of Veterinary Science, Yamaguchi University, Japan
| | - Takahiro Masaki
- Department of Biochemistry, Joint Faculty of Veterinary Science, Yamaguchi University, Japan
| | - Yuki Sato
- Department of Biochemistry, Joint Faculty of Veterinary Science, Yamaguchi University, Japan
| | - Hideyasu Matsuyama
- Department of Urology, Graduate School of Medicine, Yamaguchi University, Ube, Japan
| | - Kazuki Kunieda
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Japan
| | - Hidehiko Nakagawa
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Japan
| | - Midori Shimada
- Department of Biochemistry, Joint Faculty of Veterinary Science, Yamaguchi University, Japan
| |
Collapse
|
26
|
Hanaki S, Habara M, Shimada M. UV-induced activation of ATR is mediated by UHRF2. Genes Cells 2021; 26:447-454. [PMID: 33848395 DOI: 10.1111/gtc.12851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/09/2021] [Accepted: 04/09/2021] [Indexed: 11/27/2022]
Abstract
UHRF1 (Ubiquitin-like with PHD and ring finger domains 1) regulates DNA methylation and histone modifications and plays a key role in cell proliferation and the DNA damage response. However, the function of UHRF2, a paralog of UHRF1, in the DNA damage response remains largely unknown. Here, we show that UHRF2 is essential for maintaining cell viability after UV irradiation, as well as for the proliferation of cancer cells. UHRF2 was found to physically interact with ATR in a DNA damage-dependent manner through UHRF2's TTD domain. In addition, phosphorylation of threonine at position 1989, which is required for UV-induced activation of ATR, was impaired in cells depleted of UHRF2, suggesting that UHRF2 is essential in ATR activation. In conclusion, these results suggest a new regulatory mechanism of ATR activation mediated by UHRF2.
Collapse
Affiliation(s)
- Shunsuke Hanaki
- Department of Veterinary Biochemistry, Yamaguchi University, Yamaguchi City, Japan
| | - Makoto Habara
- Department of Veterinary Biochemistry, Yamaguchi University, Yamaguchi City, Japan
| | - Midori Shimada
- Department of Veterinary Biochemistry, Yamaguchi University, Yamaguchi City, Japan
| |
Collapse
|
27
|
Nishida-Fukuda H, Tokuhiro K, Ando Y, Matsushita H, Wada M, Tanaka H. Evaluation of the antiproliferative effects of the HASPIN inhibitor CHR-6494 in breast cancer cell lines. PLoS One 2021; 16:e0249912. [PMID: 33852630 PMCID: PMC8046223 DOI: 10.1371/journal.pone.0249912] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 03/26/2021] [Indexed: 12/22/2022] Open
Abstract
HASPIN is a serine/threonine kinase that regulates mitosis by phosphorylating histone H3 at threonine 3. The expression levels of HASPIN in various cancers are associated with tumor malignancy and poor survival, suggesting that HASPIN inhibition may suppress cancer growth. As HASPIN mRNA levels are elevated in human breast cancer tissues compared with adjacent normal tissues, we examined the growth-suppressive effects of CHR-6494, a potent HASPIN inhibitor, in breast cancer cell lines in vitro and in vivo. We found that HASPIN was expressed in breast cancer cells of all molecular subtypes, as well as in immortalized mammary epithelial cells. HASPIN expression levels appeared to be correlated with the cell growth rate but not the molecular subtype of breast cancer. CHR-6494 exhibited potent antiproliferative effects against breast cancer cell lines and immortalized mammary epithelial cells in vitro, but failed to inhibit the growth of MDA-MB-231 xenografted tumors under conditions that have significant effects in a colorectal cancer model. These results imply that CHR-6494 does have antiproliferative effects in some situations, and further drug screening efforts are anticipated to identify more potent and selective HASPIN inhibition for use as an anticancer agent in breast cancer patients.
Collapse
Affiliation(s)
- Hisayo Nishida-Fukuda
- Department of Genome Editing, Institute of Biomedical Science, Kansai Medical University, Hirakata City, Osaka, Japan
- * E-mail: (HT); (HNF)
| | - Keizo Tokuhiro
- Department of Genome Editing, Institute of Biomedical Science, Kansai Medical University, Hirakata City, Osaka, Japan
| | - Yukio Ando
- Faculty of Pharmaceutical Sciences, Nagasaki International University, Sasebo, Nagasaki, Japan
| | - Hiroaki Matsushita
- Faculty of Pharmaceutical Sciences, Nagasaki International University, Sasebo, Nagasaki, Japan
| | - Morimasa Wada
- Faculty of Pharmaceutical Sciences, Nagasaki International University, Sasebo, Nagasaki, Japan
| | - Hiromitsu Tanaka
- Faculty of Pharmaceutical Sciences, Nagasaki International University, Sasebo, Nagasaki, Japan
- * E-mail: (HT); (HNF)
| |
Collapse
|
28
|
Suzuki N, Johmura Y, Wang TW, Migita T, Wu W, Noguchi R, Yamaguchi K, Furukawa Y, Nakamura S, Miyoshi I, Yoshimori T, Ohta T, Nakanishi M. TP53/p53-FBXO22-TFEB controls basal autophagy to govern hormesis. Autophagy 2021; 17:3776-3793. [PMID: 33706682 DOI: 10.1080/15548627.2021.1897961] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Preconditioning with a mild stressor such as fasting is a promising way to reduce severe side effects from subsequent chemo- or radiotherapy. However, the underlying mechanisms have been largely unexplored. Here, we demonstrate that the TP53/p53-FBXO22-TFEB (transcription factor EB) axis plays an essential role in this process through upregulating basal macroautophagy/autophagy. Mild stress-activated TP53 transcriptionally induced FBXO22, which in turn ubiquitinated KDM4B (lysine-specific demethylase 4B) complexed with MYC-NCOR1 suppressors for degradation, leading to transcriptional induction of TFEB. Upregulation of autophagy-related genes by increased TFEB dramatically enhanced autophagic activity and cell survival upon following a severe stressor. Mitogen-induced AKT1 activation counteracted this process through the phosphorylation of KDM4B, which inhibited FBXO22-mediated ubiquitination. Additionally, fbxo22-/- mice died within 10 h of birth, and their mouse embryonic fibroblasts (MEFs) showed a lowered basal autophagy, whereas FBXO22-overexpressing mice were resistant to chemotherapy. Taken together, these results suggest that TP53 upregulates basal autophagy through the FBXO22-TFEB axis, which governs the hormetic effect in chemotherapy.Abbreviations: BBC3/PUMA: BCL2 binding component 3; CDKN1A/p21: cyclin dependent kinase inhibitor 1A; ChIP-seq: chromatin immunoprecipitation followed by sequencing; DDB2: damage specific DNA binding protein 2; DRAM: DNA damage regulated autophagy modulator; ESR/ER: estrogen receptor 1; FMD: fasting mimicking diet; HCQ: hydroxychloroquine; KDM4B: lysine-specific demethylase 4B; MAP1LC3/LC3: microtubule associated protein 1 light chain 3 alpha; MEFs: mouse embryonic fibroblasts; MTOR: mechanistic target of rapamycin kinase; NCOR1: nuclear receptor corepressor 1; SCF: SKP1-CUL-F-box protein; SQSTM1: sequestosome 1; TFEB: transcription factor EB.
Collapse
Affiliation(s)
- Narumi Suzuki
- Division of Cancer Cell Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Yoshikazu Johmura
- Division of Cancer Cell Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Teh-Wei Wang
- Division of Cancer Cell Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Toshiro Migita
- Division of Cancer Cell Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Wenwen Wu
- Department of Translational Oncology, St. Marianna University Graduate School of Medicine, Kawasaki, Japan
| | - Rei Noguchi
- Division of Clinical Genome Research, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Kiyoshi Yamaguchi
- Division of Clinical Genome Research, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Yoichi Furukawa
- Division of Clinical Genome Research, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Shuhei Nakamura
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Ichiro Miyoshi
- Department of Laboratory Animal Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tamotsu Yoshimori
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Tomohiko Ohta
- Department of Translational Oncology, St. Marianna University Graduate School of Medicine, Kawasaki, Japan
| | - Makoto Nakanishi
- Division of Cancer Cell Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| |
Collapse
|
29
|
Huang M, Feng X, Su D, Wang G, Wang C, Tang M, Paulucci-Holthauzen A, Hart T, Chen J. Genome-wide CRISPR screen uncovers a synergistic effect of combining Haspin and Aurora kinase B inhibition. Oncogene 2020; 39:4312-4322. [PMID: 32300176 PMCID: PMC7291820 DOI: 10.1038/s41388-020-1296-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 04/03/2020] [Accepted: 04/06/2020] [Indexed: 12/25/2022]
Abstract
Aurora kinases are a family of serine/threonine kinases vital for cell division. Because of the overexpression of Aurora kinases in a broad range of cancers and their important roles in mitosis, inhibitors targeting Aurora kinases have attracted attention in cancer therapy. VX-680 is an effective pan-Aurora kinase inhibitor; however, its clinical efficacy was not satisfying. In this study, we performed CRISPR/Cas9 screens to identify genes whose depletion shows synthetic lethality with VX-680. The top hit from these screens was GSG2 (also known as Haspin), a serine/threonine kinase that phosphorylates histone H3 at Thr-3 during mitosis. Moreover, both Haspin knockout and Haspin inhibitor-treated HCT116 cells were hypersensitive to VX-680. Furthermore, we showed that the synthetic lethal interaction between Haspin depletion and VX-680 was mediated by the inhibition of Haspin with Aurora kinase B (AURKB), but not with Aurora kinase A (AURKA). Strikingly, combined inhibition of Haspin and AURKB had a better efficacy than single-agent treatment in both head and neck squamous cell carcinoma and non-small cell lung cancer. Taken together, our findings have uncovered a synthetic lethal interaction between AURKB and Haspin, which provides a strong rationale for this combination therapy for cancer patients.
Collapse
Affiliation(s)
- Min Huang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xu Feng
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Dan Su
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Gang Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Chao Wang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Mengfan Tang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | | | - Traver Hart
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Junjie Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
30
|
Schmitz ML, Higgins JMG, Seibert M. Priming chromatin for segregation: functional roles of mitotic histone modifications. Cell Cycle 2020; 19:625-641. [PMID: 31992120 DOI: 10.1080/15384101.2020.1719585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Posttranslational modifications (PTMs) of histone proteins are important for various cellular processes including regulation of gene expression and chromatin structure, DNA damage response and chromosome segregation. Here we comprehensively review mitotic histone PTMs, in particular phosphorylations, and discuss their interplay and functions in the control of dynamic protein-protein interactions as well as their contribution to centromere and chromosome structure and function during cell division. Histone phosphorylations can create binding sites for mitotic regulators such as the chromosomal passenger complex, which is required for correction of erroneous spindle attachments and chromosome bi-orientation. Other histone PTMs can alter the structural properties of nucleosomes and the accessibility of chromatin. Epigenetic marks such as lysine methylations are maintained during mitosis and may also be important for mitotic transcription as well as bookmarking of transcriptional states to ensure the transmission of gene expression programs through cell division. Additionally, histone phosphorylation can dissociate readers of methylated histones without losing epigenetic information. Through all of these processes, mitotic histone PTMs play a functional role in priming the chromatin for faithful chromosome segregation and preventing genetic instability, one of the characteristic hallmarks of cancer cells.
Collapse
Affiliation(s)
- M Lienhard Schmitz
- Institute of Biochemistry, Medical Faculty, Member of the German Center for Lung Research, Justus-Liebig-University, Giessen, Germany
| | - Jonathan M G Higgins
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Markus Seibert
- Institute of Biochemistry, Medical Faculty, Member of the German Center for Lung Research, Justus-Liebig-University, Giessen, Germany
| |
Collapse
|
31
|
AURKB promotes gastric cancer progression via activation of CCND1 expression. Aging (Albany NY) 2020; 12:1304-1321. [PMID: 31982864 PMCID: PMC7053608 DOI: 10.18632/aging.102684] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 12/25/2019] [Indexed: 01/21/2023]
Abstract
Aurora kinase B (AURKB) triggers the phosphorylation of serine 10 on histone H3 (H3S10ph), which is important for chromosome condensation and cytokinesis during mitosis in mammals. However, how exactly AURKB controls cell cycle and contributes to tumorigenesis as an oncoprotein under pathological conditions remains largely unknown. Here, we report that AURKB promotes gastric cancer cell proliferation in vitro and in vivo. Silencing AURKB expression inhibits gastric cell proliferation and arrests the cell cycle in G2/M phase. We demonstrate that cyclin D1 (CCND1) is a direct downstream target of AURKB that plays a key role in gastric cancer cell proliferation. AURKB is able to activate the expression of CCND1 through mediating H3S10ph in the promoter of the CCND1 gene. Furthermore, we show that AZD1152, a specific inhibitor of AURKB, can suppress the expression of CCND1 in the gastric cancer cells and inhibit cell proliferation in vitro and in vivo. Importantly, we found that high AURKB and CCND1 expression levels are correlated with shorter overall survival of gastric cancer patients. This study demonstrates that AURKB promotes gastric tumorigenesis potentially through epigenetically activating CCND1 expression, suggesting AURKB as a promising therapeutic target in gastric cancer.
Collapse
|
32
|
Haspin-dependent and independent effects of the kinase inhibitor 5-Iodotubercidin on self-renewal and differentiation. Sci Rep 2020; 10:232. [PMID: 31937797 PMCID: PMC6959359 DOI: 10.1038/s41598-019-54350-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 11/08/2019] [Indexed: 01/08/2023] Open
Abstract
The kinase Haspin phosphorylates histone H3 at threonine-3 (H3T3ph), creating a docking site for the Chromosomal Passenger Complex (CPC). CPC plays a pivotal role in preventing chromosome misalignment. Here, we have examined the effects of 5-Iodotubercidin (5-ITu), a commonly used Haspin inhibitor, on self-renewal and differentiation of mouse embryonic stem cells (ESCs). Treatment with low concentrations of 5-ITu eliminates the H3T3ph mark during mitosis, but does not affect the mode or the outcome of self-renewal divisions. Interestingly, 5-ITu causes sustained accumulation of p53, increases markedly the expression of histone genes and results in reversible upregulation of the pluripotency factor Klf4. However, the properties of 5-ITu treated cells are distinct from those observed in Haspin-knockout cells generated by CRISPR/Cas9 genome editing, suggesting “off-target” effects. Continuous exposure to 5-ITu allows modest expansion of the ESC population and growth of embryoid bodies, but release from the drug after an initial treatment aborts embryoid body or teratoma formation. The data reveal an unusual robustness of ESCs against mitotic perturbants and suggest that the lack of H3T3ph and the “off-target” effects of 5-ITu can be partially compensated by changes in expression program or accumulation of suppressor mutations.
Collapse
|
33
|
Lin E, Li Z, Huang Y, Ru G, He P. High Dosages of Equine Chorionic Gonadotropin Exert Adverse Effects on the Developmental Competence of IVF-Derived Mouse Embryos and Cause Oxidative Stress-Induced Aneuploidy. Front Cell Dev Biol 2020; 8:609290. [PMID: 33634101 PMCID: PMC7900142 DOI: 10.3389/fcell.2020.609290] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/21/2020] [Indexed: 02/05/2023] Open
Abstract
Gonadotropins play vital roles in the regulation of female reproductive ability and fertility. Our study aimed to determine the effects of superovulation induced by increasing doses of equine chorionic gonadotropin [eCG; also referred to as pregnant mare serum gonadotropin (PMSG)] on the developmental competence of mouse embryos and on aneuploidy formation during in vitro fertilization (IVF). eCG dose-dependently enhanced the oocyte yield from each mouse. Administration of 15 IU eCG significantly reduced the fertilization rate and the formation of four-cell embryos and blastocysts and increased the risk of chromosome aneuploidy. The IVF-derived blastocysts in the 15 IU eCG treatment group had the fewest total cells, inner cell mass (ICM) cells and trophectoderm (TE) cells. Moreover, more blastocysts and fewer apoptotic cells were observed in the 0, 5, and 10 IU eCG treatment groups than in the 15 IU eCG treatment group. We also investigated reactive oxygen species (ROS) levels and variations in several variables: mitochondrial membrane potential (MMP); active mitochondria; mitochondrial superoxide production; adenosine triphosphate (ATP) content; spindle structures; chromosome karyotypes; microfilament distribution; and the expression of Aurora B [an important component of the chromosomal passenger complex (CPC)], the spindle assembly checkpoint (SAC) protein mitotic arrest deficient 2 like 1 (MAD2L1), and the DNA damage response (DDR) protein γH2AX. Injection of 15 IU eCG increased ROS levels, rapidly reduced MMP, increased active mitochondria numbers and mitochondrial superoxide production, reduced ATP content, increased abnormal spindle formation rates, and induced abnormalities in chromosome number and microfilament distribution, suggesting that a high dose of eCG might alter developmental competence and exert negative effects on IVF-obtained mouse embryos. Additionally, the appearance of γH2AX and the significantly increased expression of Aurora B and MAD2L1 suggested that administration of relatively high doses of eCG caused Aurora B-mediated SAC activation triggered by ROS-induced DNA damage in early mouse IVF-derived embryos for self-correction of aneuploidy formation. These findings improve our understanding of the application of gonadotropins and provide a theoretical basis for gonadotropin treatment.
Collapse
|
34
|
Overexpression of Trypanosoma cruzi High Mobility Group B protein (TcHMGB) alters the nuclear structure, impairs cytokinesis and reduces the parasite infectivity. Sci Rep 2019; 9:192. [PMID: 30655631 PMCID: PMC6336821 DOI: 10.1038/s41598-018-36718-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 11/21/2018] [Indexed: 12/28/2022] Open
Abstract
Kinetoplastid parasites, included Trypanosoma cruzi, the causal agent of Chagas disease, present a unique genome organization and gene expression. Although they control gene expression mainly post-transcriptionally, chromatin accessibility plays a fundamental role in transcription initiation control. We have previously shown that High Mobility Group B protein from Trypanosoma cruzi (TcHMGB) can bind DNA in vitro. Here, we show that TcHMGB also acts as an architectural protein in vivo, since the overexpression of this protein induces changes in the nuclear structure, mainly the reduction of the nucleolus and a decrease in the heterochromatin:euchromatin ratio. Epimastigote replication rate was markedly reduced presumably due to a delayed cell cycle progression with accumulation of parasites in G2/M phase and impaired cytokinesis. Some functions involved in pathogenesis were also altered in TcHMGB-overexpressing parasites, like the decreased efficiency of trypomastigotes to infect cells in vitro, the reduction of intracellular amastigotes replication and the number of released trypomastigotes. Taken together, our results suggest that the TcHMGB protein is a pleiotropic player that controls cell phenotype and it is involved in key cellular processes.
Collapse
|
35
|
Yu JJ, Pi WS, Cao Y, Peng AF, Cao ZY, Liu JM, Huang SH, Liu ZL, Zhang W. Let-7a inhibits osteosarcoma cell growth and lung metastasis by targeting Aurora-B. Cancer Manag Res 2018; 10:6305-6315. [PMID: 30568492 PMCID: PMC6267740 DOI: 10.2147/cmar.s185090] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Purpose Accumulating studies showed that the expression of microRNAs (miRNAs) was dysregulated in osteosarcoma (OS). In this study, we sought to investigate the effect of let-7a on OS progression and its potential molecular mechanism. Patients and methods Quantitative real-time PCR (qRT-PCR) was performed to evaluate the expression level of let-7a and Aurora-B (AURKB) in OS tissues and cells. The OS cells were treated with let-7a mimic, let7a inhibitor, negative mimic and Lv-AURKB combined with let-7a. The ability of cell proliferation, migration and invasion was measured using Cell Counting Kit-8 (CCK-8) and wound-healing and transwell invasion assays. The protein of AURKB, NF-κβp65, MMP2 and MMP9 was measured by Western blot analysis. Xenograft model was performed to investigate the effects of let-7a on tumor growth and metastasis. The lung metastasis was measured by counting the metastatic node using H&E staining. Results Let-7a expression was significantly underexpressed in OS cell lines and tissues compared with human osteoblast cell lines, hFOB1.19, and adjacent normal bone tissues. Exogenous let-7a inhibited the viability, migratory and invasive ability of OS cells in vitro. In addition, the overexpression of AURKB in OS cells could partly rescue let-7a-mediated tumor inhibition. Also, the overexpression of let-7a inhibited OS cell growth and lung metastasis in vivo. Furthermore, the results showed that let-7a could decrease the expression of NF-κβp65, MMP2 and MMP9 proteins by targeting AURKB in OS cells. Conclusion Let-7a inhibits the malignant phenotype of OS cells by targeting AURKB at least partially. Targeting let-7a and AURKB/NF-κβ may be a novel therapeutic strategy for the treatment of OS.
Collapse
Affiliation(s)
- Jing-Jing Yu
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China,
| | - Wen-Sen Pi
- Department of Orthopedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China,
| | - Yuan Cao
- Department of Medical Imaging, The First Clinical Medical School of Nanchang University, Nanchang 330006, People's Republic of China
| | - Ai-Fen Peng
- College of Humanities, Jiangxi University of Traditional Chinese Medicine, Nanchang 330001, People's Republic of China
| | - Zhi-Yuan Cao
- Department of Orthopedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China,
| | - Jia-Ming Liu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China,
| | - Shan-Hu Huang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China,
| | - Zhi-Li Liu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China,
| | - Wei Zhang
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China,
| |
Collapse
|
36
|
Johmura Y, Maeda I, Suzuki N, Wu W, Goda A, Morita M, Yamaguchi K, Yamamoto M, Nagasawa S, Kojima Y, Tsugawa K, Inoue N, Miyoshi Y, Osako T, Akiyama F, Maruyama R, Inoue JI, Furukawa Y, Ohta T, Nakanishi M. Fbxo22-mediated KDM4B degradation determines selective estrogen receptor modulator activity in breast cancer. J Clin Invest 2018; 128:5603-5619. [PMID: 30418174 DOI: 10.1172/jci121679] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 09/27/2018] [Indexed: 12/22/2022] Open
Abstract
The agonistic/antagonistic biocharacter of selective estrogen receptor modulators (SERMs) can have therapeutic advantages, particularly in the case of premenopausal breast cancers. Although the contradictory effects of these modulators have been studied in terms of crosstalk between the estrogen receptor α (ER) and coactivator dynamics and growth factor signaling, the molecular basis of these mechanisms is still obscure. We identify a series of regulatory mechanisms controlling cofactor dynamics on ER and SERM function, whose activities require F-box protein 22 (Fbxo22). Skp1, Cullin1, F-box-containing complex (SCFFbxo22) ubiquitylated lysine demethylase 4B (KDM4B) complexed with tamoxifen-bound (TAM-bound) ER, whose degradation released steroid receptor coactivator (SRC) from ER. Depletion of Fbxo22 resulted in ER-dependent transcriptional activation via transactivation function 1 (AF1) function, even in the presence of SERMs. In living cells, TAM released SRC and KDM4B from ER in a Fbxo22-dependent manner. SRC release by TAM required Fbxo22 on almost all ER-SRC-bound enhancers and promoters. TAM failed to prevent the growth of Fbxo22-depleted, ER-positive breast cancers both in vitro and in vivo. Clinically, a low level of Fbxo22 in tumor tissues predicted a poorer outcome in ER-positive/human epidermal growth factor receptor type 2-negative (HER2-negative) breast cancers with high hazard ratios, independently of other markers such as Ki-67 and node status. We propose that the level of Fbxo22 in tumor tissues defines a new subclass of ER-positive breast cancers for which SCFFbxo22-mediated KDM4B degradation in patients can be a therapeutic target for the next generation of SERMs.
Collapse
Affiliation(s)
- Yoshikazu Johmura
- Division of Cancer Cell Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Ichiro Maeda
- Department of Pathology St. Marianna University School of Medicine, Kawasaki, Japan
| | - Narumi Suzuki
- Division of Cancer Cell Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Wenwen Wu
- Department of Translational Oncology, St. Marianna University Graduate School of Medicine, Kawasaki, Japan
| | - Atsushi Goda
- Department of Pathology St. Marianna University School of Medicine, Kawasaki, Japan
| | - Mariko Morita
- Division of Clinical Genome Research, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Kiyoshi Yamaguchi
- Division of Clinical Genome Research, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Mizuki Yamamoto
- Division of Cellular and Molecular Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Satoi Nagasawa
- Division of Breast and Endocrine Surgery, Department of Surgery, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Yasuyuki Kojima
- Division of Breast and Endocrine Surgery, Department of Surgery, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Koichiro Tsugawa
- Division of Breast and Endocrine Surgery, Department of Surgery, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Natsuko Inoue
- Division of Breast and Endocrine Surgery, Department of Surgery, Hyogo College of Medicine, Hyogo, Japan
| | - Yasuo Miyoshi
- Division of Breast and Endocrine Surgery, Department of Surgery, Hyogo College of Medicine, Hyogo, Japan
| | - Tomo Osako
- Department of Pathology, The Cancer Institute Hospital, and
| | | | - Reo Maruyama
- Project for Cancer Epigenomics, the Cancer Institute of the Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Jun-Ichiro Inoue
- Division of Cellular and Molecular Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Yoichi Furukawa
- Division of Clinical Genome Research, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Tomohiko Ohta
- Department of Translational Oncology, St. Marianna University Graduate School of Medicine, Kawasaki, Japan
| | - Makoto Nakanishi
- Division of Cancer Cell Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| |
Collapse
|
37
|
Willems E, Dedobbeleer M, Digregorio M, Lombard A, Lumapat PN, Rogister B. The functional diversity of Aurora kinases: a comprehensive review. Cell Div 2018; 13:7. [PMID: 30250494 PMCID: PMC6146527 DOI: 10.1186/s13008-018-0040-6] [Citation(s) in RCA: 263] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 09/05/2018] [Indexed: 02/07/2023] Open
Abstract
Aurora kinases are serine/threonine kinases essential for the onset and progression of mitosis. Aurora members share a similar protein structure and kinase activity, but exhibit distinct cellular and subcellular localization. AurA favors the G2/M transition by promoting centrosome maturation and mitotic spindle assembly. AurB and AurC are chromosome-passenger complex proteins, crucial for chromosome binding to kinetochores and segregation of chromosomes. Cellular distribution of AurB is ubiquitous, while AurC expression is mainly restricted to meiotically-active germ cells. In human tumors, all Aurora kinase members play oncogenic roles related to their mitotic activity and promote cancer cell survival and proliferation. Furthermore, AurA plays tumor-promoting roles unrelated to mitosis, including tumor stemness, epithelial-to-mesenchymal transition and invasion. In this review, we aim to understand the functional interplay of Aurora kinases in various types of human cells, including tumor cells. The understanding of the functional diversity of Aurora kinases could help to evaluate their relevance as potential therapeutic targets in cancer.
Collapse
Affiliation(s)
- Estelle Willems
- 1Laboratory of Nervous System Diseases and Therapy, GIGA-Neuroscience, University of Liège, Avenue Hippocrate, 15, 4000 Liège, Belgium
| | - Matthias Dedobbeleer
- 1Laboratory of Nervous System Diseases and Therapy, GIGA-Neuroscience, University of Liège, Avenue Hippocrate, 15, 4000 Liège, Belgium
| | - Marina Digregorio
- 1Laboratory of Nervous System Diseases and Therapy, GIGA-Neuroscience, University of Liège, Avenue Hippocrate, 15, 4000 Liège, Belgium
| | - Arnaud Lombard
- 1Laboratory of Nervous System Diseases and Therapy, GIGA-Neuroscience, University of Liège, Avenue Hippocrate, 15, 4000 Liège, Belgium.,2Department of Neurosurgery, CHU of Liège, Liège, Belgium
| | - Paul Noel Lumapat
- 1Laboratory of Nervous System Diseases and Therapy, GIGA-Neuroscience, University of Liège, Avenue Hippocrate, 15, 4000 Liège, Belgium.,3Department of Neurology, CHU of Liège, Liège, Belgium
| | - Bernard Rogister
- 1Laboratory of Nervous System Diseases and Therapy, GIGA-Neuroscience, University of Liège, Avenue Hippocrate, 15, 4000 Liège, Belgium.,3Department of Neurology, CHU of Liège, Liège, Belgium
| |
Collapse
|
38
|
Leung JWC, Emery LE, Miller KM. CRISPR/Cas9 Gene Editing of Human Histone H2A Variant H2AX and MacroH2A. Methods Mol Biol 2018; 1832:255-269. [PMID: 30073532 DOI: 10.1007/978-1-4939-8663-7_14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Histone H2A variants play important roles in maintaining the integrity of the genome. For example, the histone variant H2AX is phosphorylated on Ser139 (called γH2AX) at DNA double-strand breaks (DSB) and serves as a signal for the initiation of downstream DNA damage response (DDR) factor recruitment and DNA repair activities within damaged chromatin. For decades, genetic studies in human cells involving DNA damage signaling and repair factors have relied mostly on either knockdown by RNA interference (i.e., shRNA and siRNA) or the use of mouse embryonic fibroblasts derived from knockout (KO) mice. Recent advances in gene editing using ZNF nuclease, TALEN, and CRISPR/Cas9 have allowed the generation of human KO cell lines, allowing genetic models for studying the DDR, including histone H2A variants in human cells. Here, we describe a detailed protocol for generating and verifying KO of H2AX and macroH2A histone H2A variants using CRISPR/Cas9 gene editing in human cancer cell lines. This protocol allows the use and development of genetic systems in human cells to study histone variants and their functions, including within the DDR.
Collapse
Affiliation(s)
- Justin W C Leung
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
- Department of Radiation Oncology, Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Lara E Emery
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
| | - Kyle M Miller
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA.
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
39
|
Hindriksen S, Lens SMA, Hadders MA. The Ins and Outs of Aurora B Inner Centromere Localization. Front Cell Dev Biol 2017; 5:112. [PMID: 29312936 PMCID: PMC5743930 DOI: 10.3389/fcell.2017.00112] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 12/04/2017] [Indexed: 01/12/2023] Open
Abstract
Error-free chromosome segregation is essential for the maintenance of genomic integrity during cell division. Aurora B, the enzymatic subunit of the Chromosomal Passenger Complex (CPC), plays a crucial role in this process. In early mitosis Aurora B localizes predominantly to the inner centromere, a specialized region of chromatin that lies at the crossroads between the inter-kinetochore and inter-sister chromatid axes. Two evolutionarily conserved histone kinases, Haspin and Bub1, control the positioning of the CPC at the inner centromere and this location is thought to be crucial for the CPC to function. However, recent studies sketch a subtler picture, in which not all functions of the CPC require strict confinement to the inner centromere. In this review we discuss the molecular pathways that direct Aurora B to the inner centromere and deliberate if and why this specific localization is important for Aurora B function.
Collapse
Affiliation(s)
- Sanne Hindriksen
- Oncode Institute, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Susanne M A Lens
- Oncode Institute, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Michael A Hadders
- Oncode Institute, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
40
|
Tang A, Gao K, Chu L, Zhang R, Yang J, Zheng J. Aurora kinases: novel therapy targets in cancers. Oncotarget 2017; 8:23937-23954. [PMID: 28147341 PMCID: PMC5410356 DOI: 10.18632/oncotarget.14893] [Citation(s) in RCA: 257] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/17/2017] [Indexed: 02/06/2023] Open
Abstract
Aurora kinases, a family of serine/threonine kinases, consisting of Aurora A (AURKA), Aurora B (AURKB) and Aurora C (AURKC), are essential kinases for cell division via regulating mitosis especially the process of chromosomal segregation. Besides regulating mitosis, Aurora kinases have been implicated in regulating meiosis. The deletion of Aurora kinases could lead to failure of cell division and impair the embryonic development. Overexpression or gene amplification of Aurora kinases has been clarified in a number of cancers. And a growing number of studies have demonstrated that inhibition of Aurora kinases could potentiate the effect of chemotherapies. For the past decades, a series of Aurora kinases inhibitors (AKIs) developed effectively repress the progression and growth of many cancers both in vivo and in vitro, suggesting that Aurora kinases could be a novel therapeutic target. In this review, we'll first briefly present the structure, localization and physiological functions of Aurora kinases in mitosis, then describe the oncogenic role of Aurora kinases in tumorigenesis, we shall finally discuss the outcomes of AKIs combination with conventional therapy.
Collapse
Affiliation(s)
- Anqun Tang
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Jiangsu, China
| | - Keyu Gao
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Jiangsu, China
| | - Laili Chu
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Jiangsu, China
| | - Rui Zhang
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Jiangsu, China
| | - Jing Yang
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Jiangsu, China
| | - Junnian Zheng
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Jiangsu, China.,Department of Oncology, The First Affiliated Hospital, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
41
|
TH2A is phosphorylated at meiotic centromere by Haspin. Chromosoma 2017; 126:769-780. [PMID: 28803373 DOI: 10.1007/s00412-017-0638-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 06/26/2017] [Accepted: 07/17/2017] [Indexed: 01/06/2023]
Abstract
Histone phosphorylation is sometimes associated with mitosis and meiosis. We have recently identified a phosphorylation of the 127th threonine on TH2A (pTH2A), a germ cell-specific H2A variant, in condensed spermatids and mitotic early preimplantation embryos of mice. Here, we further report the existence of pTH2A at the centromeres in metaphase I spermatocytes and oocytes. Moreover, we identified Haspin, a known kinase for the 3rd threonine on H3, is responsible for pTH2A in vivo. In contrast to the severe meiotic defect in oocytes treated with a Haspin inhibitor, pTH2A-deficient mice, in which the 127th threonine was replaced by alanine, maintained the fertility and exhibited no obvious defect in both oocytes and spermatogenesis. Interestingly, pTH2A was significantly decreased in aged oocytes, suggesting that its accumulation is regulated by centromeric cohesins. Collectively, our study proposes a new set of kinase-histone pair at meiotic centromere, which is highly coordinated during meiosis.
Collapse
|
42
|
|
43
|
Affiliation(s)
- Midori Shimada
- a Department of Cell Biology , Graduate School of Medical Sciences, Nagoya City University , Nagoya , Japan
| | - Makoto Nakanishi
- b Division of Cancer Cell Biology, Department of Cancer Biology, Institute of Medical Science, University of Tokyo , Tokyo , Japan
| |
Collapse
|