1
|
Zhou H, Deng XW. Intron Retention, an Orchestrated Program of Gene Expression Regulation. Bioessays 2025; 47:e202400248. [PMID: 39950398 DOI: 10.1002/bies.202400248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/01/2025] [Accepted: 02/03/2025] [Indexed: 03/25/2025]
Abstract
Intron retention (IR), a well-conserved form of alternative splicing, is widespread among eukaryotic organisms. It serves as an orchestrated program for regulating gene expression. A previously reported role of IR is to induce intron-retained transcript (IRT) degradation via the nonsense-mediated mRNA decay (NMD) pathway, resulting in the downregulation of gene expression. However, accumulating evidence indicates that most IRTs are detained in the nucleus, and thus, IR can downregulate gene expression through the storage of IRTs in the nucleus. Although the importance of IRTs in gene expression regulation is well established, the detailed mechanisms remain unclear. Here, we propose a potential model to explain how IRTs are retained in the nucleus and respond to environmental changes or developmental transitions. Plenty of future studies are still ahead of us to fully dissect the biological function of IR and the underlying mechanisms.
Collapse
Affiliation(s)
- Hua Zhou
- Laboratory of Plant and Environment Interaction Study, Tsientang Institute for Advanced Study, Hangzhou, China
| | - Xing Wang Deng
- Laboratory of Plant and Environment Interaction Study, Tsientang Institute for Advanced Study, Hangzhou, China
- Peking-Tsinghua Center for Life Sciences, School of Advanced Agriculture Sciences and School of Life Sciences, Peking University, Beijing, China
| |
Collapse
|
2
|
Yu S, Wan J, Xu T, Zhang J, Cao L, Liu J, Liu H, Ren X, Yang Z. A gene expression atlas of Nicotiana tabacum across various tissues at transcript resolution. FRONTIERS IN PLANT SCIENCE 2025; 16:1500654. [PMID: 39980486 PMCID: PMC11841470 DOI: 10.3389/fpls.2025.1500654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 01/20/2025] [Indexed: 02/22/2025]
Abstract
Alternative splicing (AS) expands the transcriptome diversity by selectively splicing exons and introns from pre-mRNAs to generate different protein isoforms. This mechanism is widespread in eukaryotes and plays a crucial role in development, environmental adaptation, and stress resistance. In this study, we collected 599 tobacco RNA-seq datasets from 35 projects. 207,689 transcripts were identified in this study, of which 35,519 were annotated in the reference genome, while 172,170 transcripts were newly annotated. Additionally, tissue-specific analysis revealed 4,585 transcripts that were uniquely expressed in different tissues, highlighting the complexity and specialization of tobacco gene expression. The analysis of AS events (ASEs) across different tissues showed significant variability in the expression levels of ASE-derived transcripts, with some of these transcripts being associated with stress resistance, such as the geranyl diphosphate synthase (GGPPS). Moreover, we identified 21,763 splicing quantitative trait locus (sQTLs), which were enriched in genes involved in biological processes such as histone acetylation. Furthermore, sQTLs involved genes related to plant hormone signal transduction, terpenoid backbone biosynthesis, and other resistance pathways. These findings not only reveal the diversity of gene expression in tobacco but also provide new insights and strategies for improving tobacco quality and resistance.
Collapse
Affiliation(s)
- Shizhou Yu
- Molecular Genetics Key Laboratory of China Tobacco, Guizhou Academy of Tobacco Science, Guiyang, China
| | - Jufen Wan
- Molecular Genetics Key Laboratory of China Tobacco, Guizhou Academy of Tobacco Science, Guiyang, China
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, China
| | - Tenghang Xu
- Molecular Genetics Key Laboratory of China Tobacco, Guizhou Academy of Tobacco Science, Guiyang, China
- College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Jie Zhang
- Molecular Genetics Key Laboratory of China Tobacco, Guizhou Academy of Tobacco Science, Guiyang, China
| | - Linggai Cao
- Molecular Genetics Key Laboratory of China Tobacco, Guizhou Academy of Tobacco Science, Guiyang, China
| | - Jie Liu
- Molecular Genetics Key Laboratory of China Tobacco, Guizhou Academy of Tobacco Science, Guiyang, China
| | - Hongfeng Liu
- Guiyang Branch Company of Guizhou Tobacco Company, Guiyang, China
| | - Xueliang Ren
- Molecular Genetics Key Laboratory of China Tobacco, Guizhou Academy of Tobacco Science, Guiyang, China
| | - Zhixiao Yang
- Molecular Genetics Key Laboratory of China Tobacco, Guizhou Academy of Tobacco Science, Guiyang, China
| |
Collapse
|
3
|
Zhang T, Yu X, Liu D, Zhu D, Yi Q. Genome-wide identification, expression pattern and interacting protein analysis of INDETERMINATE DOMAIN (IDD) gene family in Phalaenopsis equestris. PeerJ 2024; 12:e18073. [PMID: 39346067 PMCID: PMC11438434 DOI: 10.7717/peerj.18073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/19/2024] [Indexed: 10/01/2024] Open
Abstract
The plant-specific INDETERMINATE DOMAIN (IDD) gene family is important for plant growth and development. However, a comprehensive analysis of the IDD family in orchids is limited. Based on the genome data of Phalaenopsis equestris, the IDD gene family was identified and analyzed by bioinformatics methods in this study. Ten putative P. equestris IDD genes (PeIDDs) were characterized and phylogenetically classified into two groups according to their full amino acid sequences. Protein motifs analysis revealed that overall structures of PeIDDs in the same group were relatively conserved. Its promoter regions harbored a large number of responsive elements, including light responsive, abiotic stress responsive elements, and plant hormone cis-acting elements. The transcript level of PeIDD genes under cold and drought conditions, and by exogenous auxin (NAA) and abscisic acid (ABA) treatments further confirmed that most PeIDDs responded to various conditions and might play essential roles under abiotic stresses and hormone responses. In addition, distinct expression profiles in different tissues/organs suggested that PeIDDs might be involved in various development processes. Furthermore, the prediction of protein-protein interactions (PPIs) revealed some PeIDDs (PeIDD3 or PeIDD5) might function via cooperating with chromatin remodeling factors. The results of this study provided a reference for further understanding the function of PeIDDs.
Collapse
Affiliation(s)
- Ting Zhang
- College of Bioengineering, Jingchu University of Technology, Jingmen, Hubei, China
- Hubei Engineering Research Center for Specialty Flowers Biological Breeding, Jingchu University of Technology, Jingmen, Hubei, China
| | - Xin Yu
- College of Bioengineering, Jingchu University of Technology, Jingmen, Hubei, China
| | - Da Liu
- College of Bioengineering, Jingchu University of Technology, Jingmen, Hubei, China
| | - Deyan Zhu
- College of Bioengineering, Jingchu University of Technology, Jingmen, Hubei, China
- Hubei Engineering Research Center for Specialty Flowers Biological Breeding, Jingchu University of Technology, Jingmen, Hubei, China
| | - Qingping Yi
- College of Bioengineering, Jingchu University of Technology, Jingmen, Hubei, China
- Hubei Engineering Research Center for Specialty Flowers Biological Breeding, Jingchu University of Technology, Jingmen, Hubei, China
| |
Collapse
|
4
|
Kozaki A. INDETERMINATE DOMAIN Transcription Factors in Crops: Plant Architecture, Disease Resistance, Stress Response, Flowering, and More. Int J Mol Sci 2024; 25:10277. [PMID: 39408609 PMCID: PMC11476729 DOI: 10.3390/ijms251910277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
INDETERMINATE DOMAIN (IDD) genes encode plant-specific transcription factors containing a conserved IDD domain with four zinc finger motifs. Previous studies on Arabidopsis IDDs (AtIDDs) have demonstrated that these genes play roles in diverse physiological and developmental processes, including plant architecture, seed and root development, flowering, stress responses, and hormone signaling. Recent studies have revealed important functions of IDDs from rice and maize, especially in regulating leaf differentiation, which is related to the evolution of C4 leaves from C3 leaves. Moreover, IDDs in crops are involved in the regulation of agriculturally important traits, including disease and stress resistance, seed development, and flowering. Thus, IDDs are valuable targets for breeding manipulation. This review explores the role of IDDs in plant development, environmental responses, and evolution, which provides idea for agricultural application.
Collapse
Affiliation(s)
- Akiko Kozaki
- Graduate School of Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka 422-8021, Japan;
- Department of Biological Science, Faculty of Science, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka 422-8021, Japan
- Course of Bioscience, Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka 422-8021, Japan
| |
Collapse
|
5
|
Pang H, Dai X, Yan X, Liu Y, Li Q. C2H2 zinc finger protein PagIDD15A regulates secondary wall thickening and lignin biosynthesis in poplar. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 346:112159. [PMID: 38901779 DOI: 10.1016/j.plantsci.2024.112159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/14/2024] [Accepted: 06/11/2024] [Indexed: 06/22/2024]
Abstract
Wood production is largely determined by the activity of cambial cell proliferation, and the secondary cell wall (SCW) thickening of xylem cells determines the wood property. In this study, we identified an INDETERMINATE DOMAIN (IDD) type C2H2 zinc finger transcription factor PagIDD15A as a regulator of wood formation in Populus alba × Populus glandulosa. Downregulation of PagIDD15A expression by RNA interference (RNAi) inhibited xylem development and xylem cell secondary wall thickening. RNA-seq analysis showed that PagPAL1, PagCCR2 and PagCCoAOMT1 were downregulated in the differentiating xylem of the PagIDD15A-RNAi transgenic plants, showing that PagIDD15A may regulate SCW biosynthesis through inhibiting lignin biosynthesis. The downregulation of PagVND6-B2, PagMYB10 and PagMYC4 and upregulation of PagWRKY12 in the differentiating xylem of RNAi transgenic plants suggest that PagIDD15A may also regulate these transcription factor (TF) genes to affect SCW thickening. RT-qPCR analysis in the phloem-cambium of RNAi transgenic demonstrates that PagIDD15A may regulate the expression of the genes associated with cell proliferation, including, PagSHR (SHORTROOT), PagSCR (SCARECROW), PagCYCD3;1 (CYCLIN D3;1) and PagSMR4 (SIAMESE-RELATED4), to affect the cambial activity. This study provides the knowledge of the IDD-type C2H2 zinc finger protein in regulating wood formation.
Collapse
Affiliation(s)
- Hongying Pang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
| | - Xinren Dai
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
| | - Xiaojing Yan
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
| | - Yingli Liu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China.
| | - Quanzi Li
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China.
| |
Collapse
|
6
|
Dhatterwal P, Sharma N, Prasad M. Decoding the functionality of plant transcription factors. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4745-4759. [PMID: 38761104 DOI: 10.1093/jxb/erae231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/16/2024] [Indexed: 05/20/2024]
Abstract
Transcription factors (TFs) intricately govern cellular processes and responses to external stimuli by modulating gene expression. TFs help plants to balance the trade-off between stress tolerance and growth, thus ensuring their long-term survival in challenging environments. Understanding the factors and mechanisms that define the functionality of plant TFs is of paramount importance for unravelling the intricate regulatory networks governing development, growth, and responses to environmental stimuli in plants. This review provides a comprehensive understanding of these factors and mechanisms defining the activity of TFs. Understanding the dynamic nature of TFs has practical implications for modern molecular breeding programmes, as it provides insights into how to manipulate gene expression to optimize desired traits in crops. Moreover, recent studies also report the functional duality of TFs, highlighting their ability to switch between activation and repression modes; this represents an important mechanism for attuning gene expression. Here we discuss what the possible reasons for the dual nature of TFs are and how this duality instructs the cell fate decision during development, and fine-tunes stress responses in plants, enabling them to adapt to various environmental challenges.
Collapse
Affiliation(s)
| | | | - Manoj Prasad
- National Institute of Plant Genome Research, New Delhi, India
- Department of Genetics, University of Delhi South Campus, New Delhi, India
- Department of Plant Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
7
|
Wu H, Zhang R, Diao X. Genome-Wide Characterization and Haplotypic Variation Analysis of the IDD Gene Family in Foxtail Millet ( Setaria italica). Int J Mol Sci 2024; 25:8804. [PMID: 39201492 PMCID: PMC11354513 DOI: 10.3390/ijms25168804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/01/2024] [Accepted: 07/09/2024] [Indexed: 09/02/2024] Open
Abstract
The indeterminate domain proteins (IDD proteins) play essential roles in the growth and development of various plant tissues and organs across different developmental stages, but members of this gene family have not yet been characterized in foxtail millet (Setaria italica). To have a comprehensive understanding of the IDD gene family in foxtail millet, we performed a genome-wide characterization and haplotypic variation analysis of the IDD gene family in foxtail millet. In this study, sixteen IDD genes were identified across the reference genome of Yugu1, a foxtail millet cultivar. Phylogenetic analysis revealed that the Setaria italica IDD (SiIDD) proteins were clustered into four groups together with IDD proteins from Arabidopsis thaliana (dicot) and Oryza sativa (monocot). Conserved protein motif and gene structure analyses revealed that the closely clustered SiIDD genes were highly conserved within each subgroup. Furthermore, chromosomal location analysis showed that the SiIDD genes were unevenly distributed on nine chromosomes of foxtail millet and shared collinear relationships with IDD genes of other grass species. Transcriptional analysis revealed that the SiIDD genes differed greatly in their expression patterns, and paralogous genes shared similar expression patterns. In addition, superior haplotypes for two SiIDD genes (SiIDD8 and SiIDD14) were identified to correlate with traits of early heading date, and high thousand seed weight and molecular markers were designed for SiIDD8 and SiIDD14 to distinguish different haplotypes for breeding. Taken together, the results of this study provide useful information for further functional investigation of SiIDD genes, and the superior haplotypes of SiIDD8 and SiIDD14 will be particularly beneficial for improving heading date and yield of foxtail millet in breeding programs.
Collapse
Affiliation(s)
- Hongpo Wu
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utlization of Ministry of Agriculture and Rural Affairs and State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.W.); (R.Z.)
| | - Renliang Zhang
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utlization of Ministry of Agriculture and Rural Affairs and State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.W.); (R.Z.)
| | - Xianmin Diao
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utlization of Ministry of Agriculture and Rural Affairs and State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.W.); (R.Z.)
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453500, China
| |
Collapse
|
8
|
Chen L, Dong G, Song H, Xin J, Su Y, Cheng W, Yang M, Sun H. Unveiling the molecular dynamics of low temperature preservation in postharvest lotus seeds: a transcriptomic perspective. BMC PLANT BIOLOGY 2024; 24:755. [PMID: 39107750 PMCID: PMC11304646 DOI: 10.1186/s12870-024-05468-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND Postharvest quality deterioration poses a significant challenge to the commercial value of fresh lotus seeds. Low temperature storage is widely employed as the primary method for preserving postharvest lotus seeds during storage and transportation. RESULTS This approach effectively extends the storage life of lotus seeds, resulting in distinct physiological changes compared to room temperature storage, including a notable reduction in starch, protein, H2O2, and MDA content. Here, we conducted RNA-sequencing to generate global transcriptome profiles of postharvest lotus seeds stored under room or low temperature conditions. Principal component analysis (PCA) revealed that gene expression in postharvest lotus seeds demonstrated less variability during low temperature storage in comparison to room temperature storage. A total of 14,547 differentially expressed genes (DEGs) associated with various biological processes such as starch and sucrose metabolism, energy metabolism, and plant hormone signaling response were identified. Notably, the expression levels of DEGs involved in ABA signaling were significantly suppressed in contrast to room temperature storage. Additionally, nine weighted gene co-expression network analysis (WGCNA)-based gene molecular modules were identified, providing insights into the co-expression relationship of genes during postharvest storage. CONCLUSION Our findings illuminate transcriptional differences in postharvest lotus seeds between room and low temperature storage, offering crucial insights into the molecular mechanisms of low temperature preservation in lotus seeds.
Collapse
Affiliation(s)
- Lin Chen
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | | | - Heyun Song
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jia Xin
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanyan Su
- Amway (China) Botanical R&D Centre, Wuxi, 214145, China
| | - Wei Cheng
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Mei Yang
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.
| | - Heng Sun
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.
| |
Collapse
|
9
|
Xu Z, Xiao Y, Guo J, Lv Z, Chen W. Relevance and regulation of alternative splicing in plant secondary metabolism: current understanding and future directions. HORTICULTURE RESEARCH 2024; 11:uhae173. [PMID: 39135731 PMCID: PMC11317897 DOI: 10.1093/hr/uhae173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/14/2024] [Indexed: 08/15/2024]
Abstract
The secondary metabolism of plants is an essential life process enabling organisms to navigate various stages of plant development and cope with ever-changing environmental stresses. Secondary metabolites, abundantly found in nature, possess significant medicinal value. Among the regulatory mechanisms governing these metabolic processes, alternative splicing stands out as a widely observed post-transcriptional mechanism present in multicellular organisms. It facilitates the generation of multiple mRNA transcripts from a single gene by selecting different splicing sites. Selective splicing events in plants are widely induced by various signals, including external environmental stress and hormone signals. These events ultimately regulate the secondary metabolic processes and the accumulation of essential secondary metabolites in plants by influencing the synthesis of primary metabolites, hormone metabolism, biomass accumulation, and capillary density. Simultaneously, alternative splicing plays a crucial role in enhancing protein diversity and the abundance of the transcriptome. This paper provides a summary of the factors inducing alternative splicing events in plants and systematically describes the progress in regulating alternative splicing with respect to different secondary metabolites, including terpenoid, phenolic compounds, and nitrogen-containing compounds. Such elucidation offers critical foundational insights for understanding the role of alternative splicing in regulating plant metabolism and presents novel avenues and perspectives for bioengineering.
Collapse
Affiliation(s)
- Zihan Xu
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ying Xiao
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jinlin Guo
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611103, China
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611103, China
| | - Zongyou Lv
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wansheng Chen
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| |
Collapse
|
10
|
Luo L, Zheng Y, Li X, Chen Q, Yang D, Gu Z, Yang Y, Yang Y, Kong X, Yang Y. ICE1 interacts with IDD14 to transcriptionally activate QQS to increase pollen germination and viability. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1801-1819. [PMID: 38940322 DOI: 10.1111/jipb.13725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/23/2024] [Indexed: 06/29/2024]
Abstract
In flowering plants, sexual reproductive success depends on the production of viable pollen grains. However, the mechanisms by which QUA QUINE STARCH (QQS) regulates pollen development and how transcriptional activators facilitate the transcription of QQS in this process remain poorly understood. Here, we demonstrate that INDUCER OF CBF EXPRESSION 1 (ICE1), a basic helix-loop-helix (bHLH) transcription factor, acts as a key transcriptional activator and positively regulates QQS expression to increase pollen germination and viability in Arabidopsis thaliana by interacting with INDETERMINATE DOMAIN14 (IDD14). In our genetic and biochemical experiments, overexpression of ICE1 greatly promoted both the activation of QQS and high pollen viability mediated by QQS. IDD14 additively enhanced ICE1 function by promoting the binding of ICE1 to the QQS promoter. In addition, mutation of ICE1 significantly repressed QQS expression; the impaired function of QQS and the abnormal anther dehiscence jointly affected pollen development of the ice1-2 mutant. Our results also showed that the enhancement of pollen activity by ICE1 depends on QQS. Furthermore, QQS interacted with CUT1, the key enzyme for long-chain lipid biosynthesis. This interaction both promoted CUT1 activity and regulated pollen lipid metabolism, ultimately determining pollen hydration and fertility. Our results not only provide new insights into the key function of QQS in promoting pollen development by regulating pollen lipid metabolism, but also elucidate the mechanism that facilitates the transcription of QQS in this vital developmental process.
Collapse
Affiliation(s)
- Landi Luo
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Chinese Academy of Sciences, Xishuangbanna, 666303, China
- Germplasm Bank of Wild Species, Yunnan Key Laboratory for Crop Wild Relatives Omics, Kunming Institute of Botany, The Chinese Academy of Sciences, Kunming, 650201, China
| | - Yan Zheng
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Chinese Academy of Sciences, Xishuangbanna, 666303, China
- Germplasm Bank of Wild Species, Yunnan Key Laboratory for Crop Wild Relatives Omics, Kunming Institute of Botany, The Chinese Academy of Sciences, Kunming, 650201, China
| | - Xieshengyang Li
- Germplasm Bank of Wild Species, Yunnan Key Laboratory for Crop Wild Relatives Omics, Kunming Institute of Botany, The Chinese Academy of Sciences, Kunming, 650201, China
- School of Agriculture, Yunnan University, Kunming, 650091, China
| | - Qian Chen
- Germplasm Bank of Wild Species, Yunnan Key Laboratory for Crop Wild Relatives Omics, Kunming Institute of Botany, The Chinese Academy of Sciences, Kunming, 650201, China
| | - Danni Yang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Chinese Academy of Sciences, Xishuangbanna, 666303, China
- Germplasm Bank of Wild Species, Yunnan Key Laboratory for Crop Wild Relatives Omics, Kunming Institute of Botany, The Chinese Academy of Sciences, Kunming, 650201, China
| | - Zhijia Gu
- Germplasm Bank of Wild Species, Yunnan Key Laboratory for Crop Wild Relatives Omics, Kunming Institute of Botany, The Chinese Academy of Sciences, Kunming, 650201, China
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, The Chinese Academy of Sciences, Kunming, 650201, China
| | - Ya Yang
- Germplasm Bank of Wild Species, Yunnan Key Laboratory for Crop Wild Relatives Omics, Kunming Institute of Botany, The Chinese Academy of Sciences, Kunming, 650201, China
| | - Yunqiang Yang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Chinese Academy of Sciences, Xishuangbanna, 666303, China
- Germplasm Bank of Wild Species, Yunnan Key Laboratory for Crop Wild Relatives Omics, Kunming Institute of Botany, The Chinese Academy of Sciences, Kunming, 650201, China
| | - Xiangxiang Kong
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Chinese Academy of Sciences, Xishuangbanna, 666303, China
- Germplasm Bank of Wild Species, Yunnan Key Laboratory for Crop Wild Relatives Omics, Kunming Institute of Botany, The Chinese Academy of Sciences, Kunming, 650201, China
| | - Yongping Yang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Chinese Academy of Sciences, Xishuangbanna, 666303, China
- Germplasm Bank of Wild Species, Yunnan Key Laboratory for Crop Wild Relatives Omics, Kunming Institute of Botany, The Chinese Academy of Sciences, Kunming, 650201, China
| |
Collapse
|
11
|
Kjer-Hansen P, Weatheritt RJ. The function of alternative splicing in the proteome: rewiring protein interactomes to put old functions into new contexts. Nat Struct Mol Biol 2023; 30:1844-1856. [PMID: 38036695 DOI: 10.1038/s41594-023-01155-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 10/17/2023] [Indexed: 12/02/2023]
Abstract
Alternative splicing affects more than 95% of multi-exon genes in the human genome. These changes affect the proteome in a myriad of ways. Here, we review our understanding of the breadth of these changes from their effect on protein structure to their influence on interactions. These changes encompass effects on nucleic acid binding in the nucleus to protein-carbohydrate interactions in the extracellular milieu, altering interactions involving all major classes of biological molecules. Protein isoforms have profound influences on cellular and tissue physiology, for example, by shaping neuronal connections, enhancing insulin secretion by pancreatic beta cells and allowing for alternative viral defense strategies in stem cells. More broadly, alternative splicing enables repurposing proteins from one context to another and thereby contributes to both the evolution of new traits as well as the creation of disease-specific interactomes that drive pathological phenotypes. In this Review, we highlight this universal character of alternative splicing as a central regulator of protein function with implications for almost every biological process.
Collapse
Affiliation(s)
- Peter Kjer-Hansen
- EMBL Australia, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.
- St. Vincent Clinical School, University of New South Wales, Darlinghurst, New South Wales, Australia.
| | - Robert J Weatheritt
- EMBL Australia, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
12
|
Rawat A, Völz R, Sheikh A, Mariappan KG, Kim SK, Rayapuram N, Alwutayd KM, Alidrissi LK, Benhamed M, Blilou I, Hirt H. Salinity stress-induced phosphorylation of INDETERMINATE-DOMAIN 4 (IDD4) by MPK6 regulates plant growth adaptation in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2023; 14:1265687. [PMID: 37881611 PMCID: PMC10595144 DOI: 10.3389/fpls.2023.1265687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 09/25/2023] [Indexed: 10/27/2023]
Abstract
The INDETERMINATE DOMAIN (IDD) family belongs to a group of plant-specific transcription factors that coordinates plant growth/development and immunity. However, the function and mode of action of IDDs during abiotic stress, such as salt, are poorly understood. We used idd4 transgenic lines and screened them under salt stress to find the involvement of IDD4 in salinity stress tolerance The genetic disruption of IDD4 increases salt-tolerance, characterized by sustained plant growth, improved Na+/K+ ratio, and decreased stomatal density/aperture. Yet, IDD4 overexpressing plants were hypersensitive to salt-stress with an increase in stomatal density and pore size. Transcriptomic and ChIP-seq analyses revealed that IDD4 directly controls an important set of genes involved in abiotic stress/salinity responses. Interestingly, using anti-IDD4-pS73 antibody we discovered that IDD4 is specifically phosphorylated at serine-73 by MPK6 in vivo under salinity stress. Analysis of plants expressing the phospho-dead and phospho-mimicking IDD4 versions proved that phosphorylation of IDD4 plays a crucial role in plant transcriptional reprogramming of salt-stress genes. Altogether, we show that salt stress adaption involves MPK6 phosphorylation of IDD4 thereby regulating IDD4 DNA-binding and expression of target genes.
Collapse
Affiliation(s)
- Anamika Rawat
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Ronny Völz
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Arsheed Sheikh
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Kiruthiga G. Mariappan
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Soon-Kap Kim
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Naganand Rayapuram
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Khairiah M. Alwutayd
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Louai K. Alidrissi
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Moussa Benhamed
- Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Orsay, France
| | - Ikram Blilou
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Heribert Hirt
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| |
Collapse
|
13
|
Zhao Y, Tu J, Wang H, Xu Y, Wu F. Transcriptomic and targeted metabolomic unravelling the molecular mechanism of sugar metabolism regulating heteroblastic changes in Pinus massoniana seedlings. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108029. [PMID: 37722284 DOI: 10.1016/j.plaphy.2023.108029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/01/2023] [Accepted: 09/08/2023] [Indexed: 09/20/2023]
Abstract
Pine seedling leaf characteristics show a distinct transition from primary to secondary needles, known as heteroblastic change. However, the underlying regulatory mechanism is poorly understood. The molecular mechanism of sugar metabolism involved in regulating heteroblastic changes in Pinus massoniana seedlings was investigated via transcriptomics and targeted metabolomics. The results identified 12 kinds of sugar metabolites in the foliage. Three types of sugar accumulated at the highest levels: sucrose, glucose and fructose. Compared to seedlings with only primary needles (PN), the contents of these soluble sugars were lower in seedlings with developing secondary needle buds (SNB). RNA-seq analysis highlighted 1086 DEGs between PN and SNB seedlings, revealing significant enrichment in KEGG pathways including starch and sucrose metabolism, plant hormone signal transduction and amino sugar and nucleic acid sugar metabolism. Combined transcriptomic and metabolomic analysis revealed that HK, MDH, and ATPase could potentially enhance sugar availability by stimulating the glycolytic/TCA cycle and oxidative phosphorylation. These processes may lead to a reduced sugar content in the foliage of SNB seedlings. We also identified 72 transcription factors, among which the expression levels of MYB, WRKY, NAC and C2H2 family genes were closely related to those of DEGs in the sugar metabolism pathway. In addition, we identified alternative splicing (AS) events in one NAC gene leading to two isoforms, PmNAC5L and PmNAC5S. PmNAC5L was significantly upregulated, while PmNAC5S was significantly downregulated in SNB seedlings. Overall, our results provide new insights into how sugar metabolism is involved in regulating heteroblastic changes in pine seedlings.
Collapse
Affiliation(s)
- Yuanxiang Zhao
- Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang, 550025, China; College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Jingjing Tu
- Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang, 550025, China; College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Haoyun Wang
- Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang, 550025, China; College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Yingying Xu
- Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang, 550025, China; College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Feng Wu
- Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang, 550025, China; College of Forestry, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
14
|
Wang S, Wu H, Zhao Y, Wang L, Guan X, Zhao T. Mapping intron retention events contributing to complex traits using splice quantitative trait locus. PLANT METHODS 2023; 19:72. [PMID: 37480119 PMCID: PMC10362629 DOI: 10.1186/s13007-023-01048-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 07/03/2023] [Indexed: 07/23/2023]
Abstract
BACKGROUND Alternative splicing (AS) of mRNA plays an important roles in transcriptome diversity, involving regulation of plant growth and stress response. Understanding the variation of AS events underlying GWAS loci in a crop population can provide insight into the molecular mechanisms of complex agronomic traits. To date, genome-wide association studies relating AS events to agronomic traits have rarely been conducted at the population level in crops. RESULTS Here, a pipeline was constructed to identify candidate AS events related to complex traits. Firstly, ovule transcriptome data were used to characterize intron retention (IR), the predominant type of AS in plants, on a genome-wide scale. This was done in a natural population consisting of 279 upland cotton lines. Secondly, splice quantitative trait locus (sQTL) analysis was carried out, which yielded a total of 2295 sQTLs involving 1607 genes. Of these, 14.25% (n = 427) were cis-regulatory loci. Integration with expression quantitative trait loci (eQTL) revealed that 53 (21.4%) cis-sGenes were regulated by both cis-sQTLs and cis-eQTLs. Finally, co-localization analysis integrated with GWAS loci in this population showed 32 cis-QTLs to be co-located with genetic regulatory loci related to fiber yield and quality traits, indicating that sQTLs are likely to participate in regulating cotton fiber yield and quality. An in-depth evaluation confirmed that differences in the IR rates of sQTL-regulated candidate genes such as GhLRRK1 and GhGC1 are associated with lint percentage (LP), which has potential in breeding applications. CONCLUSION This study provides a clue that AS of mRNA has an impact on crop yield, along with functional sQTLs are new genetic resources for cotton precision breeding.
Collapse
Affiliation(s)
- Siyuan Wang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 300058, China
| | - Hongyu Wu
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 300058, China
| | - Yongyan Zhao
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 300058, China
- Hainan Institute of Zhejiang University, Building 11, Yonyou Industrial Park, Yazhou Bay Science and Technology City, Yazhou District, Sanya, 572025, Hainan, China
| | - Luyao Wang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 300058, China
- Hainan Institute of Zhejiang University, Building 11, Yonyou Industrial Park, Yazhou Bay Science and Technology City, Yazhou District, Sanya, 572025, Hainan, China
| | - Xueying Guan
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 300058, China.
- Hainan Institute of Zhejiang University, Building 11, Yonyou Industrial Park, Yazhou Bay Science and Technology City, Yazhou District, Sanya, 572025, Hainan, China.
| | - Ting Zhao
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 300058, China.
- Hainan Institute of Zhejiang University, Building 11, Yonyou Industrial Park, Yazhou Bay Science and Technology City, Yazhou District, Sanya, 572025, Hainan, China.
| |
Collapse
|
15
|
Timofeyenko K, Kanavalau D, Alexiou P, Kalyna M, Růžička K. Catsnap: a user-friendly algorithm for determining the conservation of protein variants reveals extensive parallelisms in the evolution of alternative splicing. THE NEW PHYTOLOGIST 2023; 238:1722-1732. [PMID: 36751910 PMCID: PMC10952736 DOI: 10.1111/nph.18799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Understanding the evolutionary conservation of complex eukaryotic transcriptomes significantly illuminates the physiological relevance of alternative splicing (AS). Examining the evolutionary depth of a given AS event with ordinary homology searches is generally challenging and time-consuming. Here, we present Catsnap, an algorithmic pipeline for assessing the conservation of putative protein isoforms generated by AS. It employs a machine learning approach following a database search with the provided pair of protein sequences. We used the Catsnap algorithm for analyzing the conservation of emerging experimentally characterized alternative proteins from plants and animals. Indeed, most of them are conserved among other species. Catsnap can detect the conserved functional protein isoforms regardless of the AS type by which they are generated. Notably, we found that while the primary amino acid sequence is maintained, the type of AS determining the inclusion or exclusion of protein regions varies throughout plant phylogenetic lineages in these proteins. We also document that this phenomenon is less seen among animals. In sum, our algorithm highlights the presence of unexpectedly frequent hotspots where protein isoforms recurrently arise to carry physiologically relevant functions. The user web interface is available at https://catsnap.cesnet.cz/.
Collapse
Affiliation(s)
- Ksenia Timofeyenko
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental BotanyCzech Academy of Sciences165 02Prague 6Czech Republic
- Functional Genomics and Proteomics of Plants and National Centre for Biomolecular ResearchMasaryk University625 00BrnoCzech Republic
| | | | - Panagiotis Alexiou
- Central European Institute of TechnologyMasaryk University625 00BrnoCzech Republic
| | - Maria Kalyna
- Department of Applied Genetics and Cell Biology, Institute of Molecular Plant BiologyUniversity of Natural Resources and Life Sciences (BOKU)1190ViennaAustria
| | - Kamil Růžička
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental BotanyCzech Academy of Sciences165 02Prague 6Czech Republic
| |
Collapse
|
16
|
Feng X, Yu Q, Zeng J, He X, Ma W, Ge L, Liu W. Comprehensive Analysis of the INDETERMINATE DOMAIN (IDD) Gene Family and Their Response to Abiotic Stress in Zea mays. Int J Mol Sci 2023; 24:ijms24076185. [PMID: 37047154 PMCID: PMC10094743 DOI: 10.3390/ijms24076185] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Transcription factors (TFs) are important regulators of numerous gene expressions due to their ability to recognize and combine cis-elements in the promoters of target genes. The INDETERMINATE DOMAIN (IDD) gene family belongs to a subfamily of C2H2 zinc finger proteins and has been identified only in terrestrial plants. Nevertheless, little study has been reported concerning the genome-wide analysis of the IDD gene family in maize. In total, 22 ZmIDD genes were identified, which can be distributed on 8 chromosomes in maize. On the basis of evolutionary relationships and conserved motif analysis, ZmIDDs were categorized into three clades (1, 2, and 3), each owning 4, 6, and 12 genes, respectively. We analyzed the characteristics of gene structure and found that 3 of the 22 ZmIDD genes do not contain an intron. Cis-element analysis of the ZmIDD promoter showed that most ZmIDD genes possessed at least one ABRE or MBS cis-element, and some ZmIDD genes owned the AuxRR-core, TCA-element, TC-rich repeats, and LTR cis-element. The Ka:Ks ratio of eight segmentally duplicated gene pairs demonstrated that the ZmIDD gene families had undergone a purifying selection. Then, the transcription levels of ZmIDDs were analyzed, and they showed great differences in diverse tissues as well as abiotic stresses. Furthermore, regulatory networks were constructed through the prediction of ZmIDD-targeted genes and miRNAs, which can inhibit the transcription of ZmIDDs. In total, 6 ZmIDDs and 22 miRNAs were discovered, which can target 180 genes and depress the expression of 9 ZmIDDs, respectively. Taken together, the results give us valuable information for studying the function of ZmIDDs involved in plant development and climate resilience in maize.
Collapse
|
17
|
Hussain SS, Abbas M, Abbas S, Wei M, El-Sappah AH, Sun Y, Li Y, Ragauskas AJ, Li Q. Alternative splicing: transcriptional regulatory network in agroforestry. FRONTIERS IN PLANT SCIENCE 2023; 14:1158965. [PMID: 37123829 PMCID: PMC10132464 DOI: 10.3389/fpls.2023.1158965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 03/13/2023] [Indexed: 05/03/2023]
Abstract
Alternative splicing (AS) in plants plays a key role in regulating the expression of numerous transcripts from a single gene in a regulatory pathway. Variable concentrations of growth regulatory hormones and external stimuli trigger alternative splicing to switch among different growth stages and adapt to environmental stresses. In the AS phenomenon, a spliceosome causes differential transcriptional modifications in messenger RNA (mRNAs), resulting in partial or complete retention of one or more introns as compared to fully spliced mRNA. Differentially expressed proteins translated from intron-retaining messenger RNA (mRNAir) perform vital functions in the feedback mechanism. At the post-transcriptional level, AS causes the remodeling of transcription factors (TFs) by the addition or deletion of binding domains to activate and/or repress transcription. In this study, we have summarized the specific role of AS in the regulation of gene expression through repression and activation of the transcriptional regulatory network under external stimuli and switch among developmental stages.
Collapse
Affiliation(s)
- Syed Sarfaraz Hussain
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
| | - Manzar Abbas
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Sammar Abbas
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Mingke Wei
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
| | - Ahmed H. El-Sappah
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, Sichuan, China
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Yuhan Sun
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yun Li
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- *Correspondence: Yun Li, ; Arthur J. Ragauskas, ; Quanzi Li,
| | - Arthur J. Ragauskas
- Department of Forestry, Wildlife, and Fisheries, Center for Renewable Carbon, University of Tennessee Institute of Agriculture, Knoxville, TN, United States
- Joint Institute for Biological Science, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Department of Chemical and Biomolecular Engineering, The University of Tennessee-Knoxville, Knoxville, TN, United States
- *Correspondence: Yun Li, ; Arthur J. Ragauskas, ; Quanzi Li,
| | - Quanzi Li
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- *Correspondence: Yun Li, ; Arthur J. Ragauskas, ; Quanzi Li,
| |
Collapse
|
18
|
Du S, Cai Y, Qiu S, Hao Y, Tian K, Zou Z, Luo L. Metabolic Profiling of Oryza sativa L. Triggered by Chilling Stress Using Ultraperformance Liquid Chromatography Coupled with Quadrupole/Time-of-Flight Mass Spectrometry (UPLC-QTOF-MS) with Transcriptome Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15703-15714. [PMID: 36473722 DOI: 10.1021/acs.jafc.2c05949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Low temperature, a major abiotic stress, often causes molecular changes in crops, which leads to metabolic disturbances and probably affects crop yield. In this study, chilling stress induced distinct metabolic profiles associated with transcriptome regulation, exhibiting great metabolic differences between Qiutianxiaoting (japonica) and 93-11 (indica). In total, 41 and 58 differential metabolites were screened and identified in Qiutianxiaoting and 93-11, respectively. Five key metabolites were screened in response to chilling stress, which were involved or related to different metabolic pathways. Moreover, starch and sucrose metabolism, aminoacyl-tRNA biosynthesis, and phenylpropanoid biosynthesis were significantly enriched in Qiutianxiaoting to maintain cellular homeostasis. Aminoacyl-tRNA biosynthesis and antioxidation metabolism were significantly enriched in 93-11, but disorders of the metabolome and transcriptome occurred at recovery stage. The results could provide some useful information for in-depth understanding of cold-resistant mechanisms, as well as reference for the selection and breeding of rice varieties.
Collapse
Affiliation(s)
- Shangguang Du
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China
- School of Life Sciences, Nanchang Normal University, Nanchang 330031, China
| | - Yali Cai
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Shengrong Qiu
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Yingbin Hao
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Kaili Tian
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Zhengrong Zou
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China
| | - Liping Luo
- College of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| |
Collapse
|
19
|
Liu J, Shu D, Tan Z, Ma M, Guo N, Gao S, Duan G, Kuai B, Hu Y, Li S, Cui D. The Arabidopsis IDD14 transcription factor interacts with bZIP-type ABFs/AREBs and cooperatively regulates ABA-mediated drought tolerance. THE NEW PHYTOLOGIST 2022; 236:929-942. [PMID: 35842794 DOI: 10.1111/nph.18381] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
The INDETERMINATE DOMAIN (IDD) transcription factors mediate various aspects of plant growth and development. We previously reported that an Arabidopsis IDD subfamily regulates spatial auxin accumulation, and thus organ morphogenesis and gravitropic responses. However, its functions in stress responses are not well defined. Here, we use a combination of physiological, biochemical, molecular, and genetic approaches to provide evidence that the IDD14 cooperates with basic leucine zipper-type binding factors/ABA-responsive element (ABRE)-binding proteins (ABRE-binding factors (ABFs)/AREBs) in ABA-mediated drought tolerance. idd14-1D, a gain-of-function mutant of IDD14, exhibits decreased leaf water loss and improved drought tolerance, whereas inactivation of IDD14 in idd14-1 results in increased transpiration and reduced drought tolerance. Altered IDD14 expression affects ABA sensitivity and ABA-mediated stomatal closure. IDD14 can physically interact with ABF1-4 and subsequently promote their transcriptional activities. Moreover, ectopic expression and mutation of ABFs could, respectively, suppress and enhance plant sensitivity to drought stress in the idd14-1 mutant. Our results demonstrate that IDD14 forms a functional complex with ABFs and positively regulates drought-stress responses, thus revealing a previously unidentified role of IDD14 in ABA signaling and drought responses.
Collapse
Affiliation(s)
- Jing Liu
- School of Life Sciences, Qilu Normal University, Jinan, 250200, China
| | - Defeng Shu
- School of Life Sciences, Qilu Normal University, Jinan, 250200, China
| | - Zilong Tan
- School of Life Sciences, Qilu Normal University, Jinan, 250200, China
| | - Mei Ma
- School of Life Sciences, Qilu Normal University, Jinan, 250200, China
| | - Ning Guo
- School of Life Sciences, Qilu Normal University, Jinan, 250200, China
- School of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Shan Gao
- School of Life Sciences, Qilu Normal University, Jinan, 250200, China
| | - Guangyou Duan
- School of Life Sciences, Qilu Normal University, Jinan, 250200, China
| | - Benke Kuai
- State Key Laboratory of Genetic Engineering and Fudan Center for Genetic Diversity and Designing Agriculture, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yuxin Hu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Shipeng Li
- School of Life Sciences, Qilu Normal University, Jinan, 250200, China
| | - Dayong Cui
- School of Life Sciences, Qilu Normal University, Jinan, 250200, China
- School of Life Sciences, Shandong Normal University, Jinan, 250014, China
| |
Collapse
|
20
|
Yang L, Yang L, Zhao C, Liu J, Tong C, Zhang Y, Cheng X, Jiang H, Shen J, Xie M, Liu S. Differential alternative splicing genes and isoform co-expression networks of Brassica napus under multiple abiotic stresses. FRONTIERS IN PLANT SCIENCE 2022; 13:1009998. [PMID: 36311064 PMCID: PMC9608124 DOI: 10.3389/fpls.2022.1009998] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Alternative splicing (AS) is an important regulatory process that affects plant development and stress responses by greatly increasing the complexity of transcriptome and proteome. To understand how the AS landscape of B. napus changes in response to abiotic stresses, we investigated 26 RNA-seq libraries, including control and treatments with cold, dehydration, salt, and abscisic acid (ABA) at two different time points, to perform comparative alternative splicing analysis. Apparently, AS events increased under all stresses except dehydration for 1 h, and intron retention was the most common AS mode. In addition, a total of 357 differential alternative splicing (DAS) genes were identified under four abiotic stresses, among which 81 DAS genes existed in at least two stresses, and 276 DAS genes were presented under only one stress. A weighted gene co-expression network analysis (WGCNA) based on the splicing isoforms, rather than the genes, pinpointed out 23 co-expression modules associated with different abiotic stresses. Among them, a number of significant hub genes were also found to be DAS genes, which encode key isoforms involved in responses to single stress or multiple stresses, including RNA-binding proteins, transcription factors, and other important genes, such as RBP45C, LHY, MYB59, SCL30A, RS40, MAJ23.10, and DWF4. The splicing isoforms of candidate genes identified in this study could be a valuable resource for improving tolerance of B. napus against multiple abiotic stresses.
Collapse
Affiliation(s)
- Lingli Yang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Li Yang
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
- Biosystematics Group, Wageningen University and Research, Wageningen, Netherlands
| | - Chuanji Zhao
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Jie Liu
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Chaobo Tong
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Yuanyuan Zhang
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xiaohui Cheng
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Huifang Jiang
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Meili Xie
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Shengyi Liu
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
21
|
Llinas RJ, Xiong JQ, Clark NM, Burkhart SE, Bartel B. An Arabidopsis pre-RNA processing8a (prp8a) missense allele restores splicing of a subset of mis-spliced mRNAs. PLANT PHYSIOLOGY 2022; 189:2175-2192. [PMID: 35608297 PMCID: PMC9342983 DOI: 10.1093/plphys/kiac221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 04/19/2022] [Indexed: 06/15/2023]
Abstract
Eukaryotic precursor mRNAs often harbor noncoding introns that must be removed prior to translation. Accurate splicing of precursor messenger RNA depends on placement and assembly of small nuclear ribonucleoprotein (snRNP) sub-complexes of the spliceosome. Yeast (Saccharomyces cerevisiae) studies established a role in splice-site selection for PRE-RNA PROCESSING8 (PRP8), a conserved spliceosome scaffolding protein of the U5 snRNP. However, analogous splice-site selection studies in multicellular eukaryotes are lacking. Such studies are crucial for a comprehensive understanding of alternative splicing, which is extensive in plants and animals but limited in yeast. In this work, we describe an Arabidopsis (Arabidopsis thaliana) prp8a mutant that modulates splice-site selection. We isolated prp8a-14 from a screen for suppressors of pex14-6, which carries a splice-site mutation in the PEROXIN14 (PEX14) peroxisome biogenesis gene. To elucidate Arabidopsis PRP8A function in spliceosome fidelity, we combined prp8a-14 with various pex14 splice-site mutations and monitored the double mutants for physiological and molecular consequences of dysfunctional and functional peroxisomes that correspond to impaired and recovered splicing, respectively. prp8a-14 restored splicing and PEX14 function to alleles with mutations in the exonic guanine of the 5'-splice site but did not restore splicing or function to alleles with mutations in the intronic guanine of 5'- or 3'-splice sites. We used RNA-seq to reveal the systemic impact of prp8a-14 and found hundreds of differentially spliced transcripts and thousands of transcripts with significantly altered levels. Among differentially spliced transcripts, prp8a-14 significantly altered 5'- and 3'-splice-site utilization to favor sites resulting in shorter introns. This study provides a genetic platform for probing splicing in plants and hints at a role for plant PRP8 in splice-site selection.
Collapse
Affiliation(s)
- Roxanna J Llinas
- Department of Biosciences, Rice University, Houston, Texas 77005, USA
| | | | - Natalie M Clark
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50011, USA
| | - Sarah E Burkhart
- Department of Biosciences, Rice University, Houston, Texas 77005, USA
| | | |
Collapse
|
22
|
He J, Yao L, Pecoraro L, Liu C, Wang J, Huang L, Gao W. Cold stress regulates accumulation of flavonoids and terpenoids in plants by phytohormone, transcription process, functional enzyme, and epigenetics. Crit Rev Biotechnol 2022:1-18. [PMID: 35848841 DOI: 10.1080/07388551.2022.2053056] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Plants make different defense mechanisms in response to different environmental stresses. One common way is to produce secondary metabolites. Temperature is the main environmental factor that regulates plant secondary metabolites, especially flavonoids and terpenoids. Stress caused by temperature decreasing to 4-10 °C is conducive to the accumulation of flavonoids and terpenoids. However, the accumulation mechanism under cold stress still lacks a systematic explanation. In this review, we summarize three aspects of cold stress promoting the accumulation of flavonoids and terpenoids in plants, that is, by affecting (1) the content of endogenous plant hormones, especially jasmonic acid and abscisic acid; (2) the expression level and activity of important transcription factors, such as bHLH and MYB families. This aspect also includes post-translational modification of transcription factors caused by cold stress; (3) key enzyme genes expression and activity in the biosynthesis pathway, in addition, the rate-limiting enzyme and glycosyltransferases genes are responsive to cold stress. The systematic understanding of cold stress regulates flavonoids, and terpenoids will contribute to the future research of genetic engineering breeding, metabolism regulation, glycosyltransferases mining, and plant synthetic biology.
Collapse
Affiliation(s)
- Junping He
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou, China.,School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Lu Yao
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou, China.,School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Lorenzo Pecoraro
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou, China.,School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Changxiao Liu
- Tianjin Pharmaceutical Research Institute, Tianjin, China
| | - Juan Wang
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou, China.,School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Luqi Huang
- National Resource Center for Chinese Meteria Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wenyuan Gao
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou, China.,School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
23
|
Alternative Splicing and Its Roles in Plant Metabolism. Int J Mol Sci 2022; 23:ijms23137355. [PMID: 35806361 PMCID: PMC9266299 DOI: 10.3390/ijms23137355] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 01/02/2023] Open
Abstract
Plant metabolism, including primary metabolism such as tricarboxylic acid cycle, glycolysis, shikimate and amino acid pathways as well as specialized metabolism such as biosynthesis of phenolics, alkaloids and saponins, contributes to plant survival, growth, development and interactions with the environment. To this end, these metabolic processes are tightly and finely regulated transcriptionally, post-transcriptionally, translationally and post-translationally in response to different growth and developmental stages as well as the constantly changing environment. In this review, we summarize and describe the current knowledge of the regulation of plant metabolism by alternative splicing, a post-transcriptional regulatory mechanism that generates multiple protein isoforms from a single gene by using alternative splice sites during splicing. Numerous genes in plant metabolism have been shown to be alternatively spliced under different developmental stages and stress conditions. In particular, alternative splicing serves as a regulatory mechanism to fine-tune plant metabolism by altering biochemical activities, interaction and subcellular localization of proteins encoded by splice isoforms of various genes.
Collapse
|
24
|
Full-Length Transcriptome Sequencing Reveals the Impact of Cold Stress on Alternative Splicing in Quinoa. Int J Mol Sci 2022; 23:ijms23105724. [PMID: 35628539 PMCID: PMC9144462 DOI: 10.3390/ijms23105724] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 02/04/2023] Open
Abstract
Quinoa is a cold-resistant and nutrient-rich crop. To decipher the cold stress response of quinoa, the full-length transcriptomes of the cold-resistant quinoa variety CRQ64 and the cold-sensitive quinoa variety CSQ5 were compared. We identified 55,389 novel isoforms and 6432 novel genes in these transcriptomes. Under cold stress, CRQ64 had more differentially expressed genes (DEGs) and differentially alternative splicing events compared to non-stress conditions than CSQ5. DEGs that were specifically present only in CRQ64 were significantly enriched in processes which contribute to osmoregulation and ROS homeostasis in plants, such as sucrose metabolism and phenylpropanoid biosynthesis. More genes with differential alternative splicing under cold stress were enriched in peroxidase functions in CRQ64. In total, 5988 transcription factors and 2956 long non-coding RNAs (LncRNAs) were detected in this dataset. Many of these had altered expression patterns under cold stress compared to non-stress conditions. Our transcriptome results demonstrate that CRQ64 undergoes a wider stress response than CSQ5 under cold stress. Our results improved the annotation of the quinoa genome and provide new insight into the mechanisms of cold resistance in quinoa.
Collapse
|
25
|
Liu XX, Guo QH, Xu WB, Liu P, Yan K. Rapid Regulation of Alternative Splicing in Response to Environmental Stresses. FRONTIERS IN PLANT SCIENCE 2022; 13:832177. [PMID: 35310672 PMCID: PMC8931528 DOI: 10.3389/fpls.2022.832177] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Plants overcome the changing environmental conditions through diverse strategies and complex regulations. In addition to direct regulation of gene transcription, alternative splicing (AS) also acts as a crucial regulatory mechanism to cope with various stresses. Generating from the same pre-mRNA, AS events allow rapid adjustment of the abundance and function of key stress-response components. Mounting evidence has indicated the close link between AS and plant stress response. However, the mechanisms on how environmental stresses trigger AS are far from understood. The advancing high-throughput sequencing technologies have been providing useful information, whereas genetic approaches have also yielded remarkable phenotypic evidence for AS control of stress responses. It is important to study how stresses trigger AS events for both fundamental science and applications. We review current understanding of stress-responsive AS in plants and discuss research challenges for the near future, including regulation of splicing factors, epigenetic modifications, the shared targets of splice isoforms, and the stress-adjusting ratios between splicing variants.
Collapse
Affiliation(s)
- Xiao-Xiao Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Qian-Huan Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Wei-Bo Xu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Peng Liu
- Donald Danforth Plant Science Center, St. Louis, MO, United States
| | - Kang Yan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| |
Collapse
|
26
|
Kashkan I, Timofeyenko K, Růžička K. How alternative splicing changes the properties of plant proteins. QUANTITATIVE PLANT BIOLOGY 2022; 3:e14. [PMID: 37077961 PMCID: PMC10095807 DOI: 10.1017/qpb.2022.9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 05/01/2022] [Accepted: 05/03/2022] [Indexed: 05/03/2023]
Abstract
Most plant primary transcripts undergo alternative splicing (AS), and its impact on protein diversity is a subject of intensive investigation. Several studies have uncovered various mechanisms of how particular protein splice isoforms operate. However, the common principles behind the AS effects on protein function in plants have rarely been surveyed. Here, on the selected examples, we highlight diverse tissue expression patterns, subcellular localization, enzymatic activities, abilities to bind other molecules and other relevant features. We describe how the protein isoforms mutually interact to underline their intriguing roles in altering the functionality of protein complexes. Moreover, we also discuss the known cases when these interactions have been placed inside the autoregulatory loops. This review is particularly intended for plant cell and developmental biologists who would like to gain inspiration on how the splice variants encoded by their genes of interest may coordinately work.
Collapse
Affiliation(s)
- Ivan Kashkan
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czech Republic
- Functional Genomics and Proteomics of Plants, Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, Brno62500, Czech Republic
| | - Ksenia Timofeyenko
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czech Republic
- Functional Genomics and Proteomics of Plants, Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, Brno62500, Czech Republic
| | - Kamil Růžička
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czech Republic
- Author for correspondence: K. Růžička, E-mail:
| |
Collapse
|
27
|
Louadi Z, Elkjaer ML, Klug M, Lio CT, Fenn A, Illes Z, Bongiovanni D, Baumbach J, Kacprowski T, List M, Tsoy O. Functional enrichment of alternative splicing events with NEASE reveals insights into tissue identity and diseases. Genome Biol 2021; 22:327. [PMID: 34857024 PMCID: PMC8638120 DOI: 10.1186/s13059-021-02538-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/10/2021] [Indexed: 01/27/2023] Open
Abstract
Alternative splicing (AS) is an important aspect of gene regulation. Nevertheless, its role in molecular processes and pathobiology is far from understood. A roadblock is that tools for the functional analysis of AS-set events are lacking. To mitigate this, we developed NEASE, a tool integrating pathways with structural annotations of protein-protein interactions to functionally characterize AS events. We show in four application cases how NEASE can identify pathways contributing to tissue identity and cell type development, and how it highlights splicing-related biomarkers. With a unique view on AS, NEASE generates unique and meaningful biological insights complementary to classical pathways analysis.
Collapse
Affiliation(s)
- Zakaria Louadi
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
- Institute for Computational Systems Biology, University of Hamburg, Notkestrasse 9, 22607, Hamburg, Germany
| | - Maria L Elkjaer
- Department of Neurology, Odense University Hospital, Odense, Denmark
- Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Melissa Klug
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
- Department of Internal Medicine I, School of Medicine, University hospital rechts der Isar, Technical University of Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Chit Tong Lio
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
- Institute for Computational Systems Biology, University of Hamburg, Notkestrasse 9, 22607, Hamburg, Germany
| | - Amit Fenn
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
- Institute for Computational Systems Biology, University of Hamburg, Notkestrasse 9, 22607, Hamburg, Germany
| | - Zsolt Illes
- Department of Neurology, Odense University Hospital, Odense, Denmark
- Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Dario Bongiovanni
- Department of Internal Medicine I, School of Medicine, University hospital rechts der Isar, Technical University of Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
- Department of Cardiovascular Medicine, Humanitas Clinical and Research Center IRCCS and Humanitas University, Rozzano, Milan, Italy
| | - Jan Baumbach
- Institute for Computational Systems Biology, University of Hamburg, Notkestrasse 9, 22607, Hamburg, Germany
- Institute of Mathematics and Computer Science, University of Southern Denmark, Campusvej 55, 5000, Odense, Denmark
| | - Tim Kacprowski
- Division Data Science in Biomedicine, Peter L. Reichertz Institute for Medical Informatics of Technische Universität Braunschweig and Hannover Medical School, Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), TU Braunschweig, Braunschweig, Germany
| | - Markus List
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354, Freising, Germany.
| | - Olga Tsoy
- Institute for Computational Systems Biology, University of Hamburg, Notkestrasse 9, 22607, Hamburg, Germany.
| |
Collapse
|
28
|
He B, Meng L, Tang L, Qi W, Hu F, Lv Y, Song W. The Landscape of Alternative Splicing Regulating Potassium Use Efficiency in Nicotiana tabacum. FRONTIERS IN PLANT SCIENCE 2021; 12:774829. [PMID: 34858465 PMCID: PMC8630638 DOI: 10.3389/fpls.2021.774829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/19/2021] [Indexed: 06/01/2023]
Abstract
Alternative splicing (AS) occurs extensively in eukaryotes as an essential mechanism for regulating transcriptome complexity and diversity, but the AS landscape regulating potassium (K) use efficiency in plants is unclear. In this study, we performed high-throughput transcriptome sequencing of roots and shoots from allopolyploid Nicotiana tabacum under K+ deficiency. Preliminary physiological analysis showed that root system architecture was dramatically changed due to potassium deficiency and that IAA content was significantly reduced in root and shoot. AS analysis showed that a total of 28,179 genes exhibited 54,457 AS events, and 1,510 and 1,732 differentially alternatively spliced (DAS) events were identified in shoots and roots under low K+ stress. Nevertheless, only 120 DAS events occurred in both shoots and roots, implying that most DAS events were tissue-specific. Both in shoot and the root, the proportion of DAS genes in differentially expressed (DE) genes equaled that in non-DE genes, which indicated that AS might play a unique regulatory role in response to low potassium. Gene ontology analysis further indicated that transcription regulation and AS modulation worked independently in response to low K+ stress in tobacco, as their target biological processes were different. Totally 45 DAS transcription factors (TFs) were found, which were involved in 18 TF families. Five Auxin response factor (ARF) TFs were significantly DAS in root, suggesting that response to auxin was probably subject to AS regulation in the tobacco root. Our study shows that AS variation occurs extensively and has a particular regulatory mechanism under K+ deficiency in tobacco. The study also links changes in root system architecture with the changes in AS of ARF TFs, which implied the functional significance of these AS events for root growth and architecture.
Collapse
Affiliation(s)
- Bing He
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
- Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Lin Meng
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Lina Tang
- Tobacco Science Research Institute, Fujian Tobacco Monopoly Administration, Fuzhou, China
| | - Weicong Qi
- Excellence and Innovation Center, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Fengqin Hu
- Excellence and Innovation Center, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yuanda Lv
- Excellence and Innovation Center, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Wenjing Song
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| |
Collapse
|
29
|
John S, Olas JJ, Mueller-Roeber B. Regulation of alternative splicing in response to temperature variation in plants. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6150-6163. [PMID: 34028544 PMCID: PMC8483784 DOI: 10.1093/jxb/erab232] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/21/2021] [Indexed: 05/08/2023]
Abstract
Plants have evolved numerous molecular strategies to cope with perturbations in environmental temperature, and to adjust growth and physiology to limit the negative effects of extreme temperature. One of the strategies involves alternative splicing of primary transcripts to encode alternative protein products or transcript variants destined for degradation by nonsense-mediated decay. Here, we review how changes in environmental temperature-cold, heat, and moderate alterations in temperature-affect alternative splicing in plants, including crops. We present examples of the mode of action of various temperature-induced splice variants and discuss how these alternative splicing events enable favourable plant responses to altered temperatures. Finally, we point out unanswered questions that should be addressed to fully utilize the endogenous mechanisms in plants to adjust their growth to environmental temperature. We also indicate how this knowledge might be used to enhance crop productivity in the future.
Collapse
Affiliation(s)
- Sheeba John
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Straße, Haus, Potsdam, Germany
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg, Potsdam, Germany
| | - Justyna Jadwiga Olas
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Straße, Haus, Potsdam, Germany
- Correspondence: or
| | - Bernd Mueller-Roeber
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Straße, Haus, Potsdam, Germany
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg, Potsdam, Germany
- Center of Plant Systems Biology and Biotechnology (CPSBB), Plovdiv, Bulgaria
- Correspondence: or
| |
Collapse
|
30
|
Jiang G, Zhang D, Li Z, Liang H, Deng R, Su X, Jiang Y, Duan X. Alternative splicing of MaMYB16L regulates starch degradation in banana fruit during ripening. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1341-1352. [PMID: 33656245 DOI: 10.1111/jipb.13088] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
The alternative splicing of select genes is an important mechanism to regulate responses to endogenous and environmental signals in plants. However, the role of alternative splicing in regulating fruit ripening remains unclear. Here, we discovered that MaMYB16L, an R1-type MYB transcription factor, undergoes alternative splicing and generates two transcripts, the full-length isoform MaMYB16L and a truncated form MaMYB16S, in banana fruit. During banana fruit ripening, the alternative splicing process intensifies with downregulated MaMYB16L and upregulated MaMYB16S. Moreover, MaMYB16L is a transcriptional repressor that directly binds with the promoters of many genes associated with starch degradation and MaDREB2, a positive ripening regulator, and represses their expression. In contrast, MaMBY16S lacks a DNA-binding domain but competitively combines and forms non-functional heterodimers with functional MaMYB16L. MaMYB16L-MaMYB16S heterodimers decrease the binding capacity and transrepression activity of MaMYB16L. The downregulation of MaMYB16L and the upregulation of MaMYB16S, that is, a decreased ratio of active to non-active isoforms, facilitates the activation of ripening-related genes and thereby promotes fruit ripening. Furthermore, the transient overexpression of MaMYB16S promotes banana fruit ripening, whereas the overexpression of MaMYB16L delays this process. Therefore, the alternative splicing of MaMYB16L might generate a self-controlled regulatory loop to regulate banana fruit ripening.
Collapse
Affiliation(s)
- Guoxiang Jiang
- South China Botanical Garden, the Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Dandan Zhang
- South China Botanical Garden, the Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Zhiwei Li
- South China Botanical Garden, the Chinese Academy of Sciences, Guangzhou, 510650, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hanzhi Liang
- South China Botanical Garden, the Chinese Academy of Sciences, Guangzhou, 510650, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rufang Deng
- South China Botanical Garden, the Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Xinguo Su
- Guangdong AIB Polytechnic, Guangzhou, 510507, China
| | - Yueming Jiang
- South China Botanical Garden, the Chinese Academy of Sciences, Guangzhou, 510650, China
- Center of Economic Botany, Core Botanical Gardens, the Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Xuewu Duan
- South China Botanical Garden, the Chinese Academy of Sciences, Guangzhou, 510650, China
- Center of Economic Botany, Core Botanical Gardens, the Chinese Academy of Sciences, Guangzhou, 510650, China
| |
Collapse
|
31
|
Li Y, Guo Q, Liu P, Huang J, Zhang S, Yang G, Wu C, Zheng C, Yan K. Dual roles of the serine/arginine-rich splicing factor SR45a in promoting and interacting with nuclear cap-binding complex to modulate the salt-stress response in Arabidopsis. THE NEW PHYTOLOGIST 2021; 230:641-655. [PMID: 33421141 DOI: 10.1111/nph.17175] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/23/2020] [Indexed: 05/23/2023]
Abstract
Alternative splicing (AS) is emerging as a critical co-transcriptional regulation for plants in response to environmental stresses. Although multiple splicing factors have been linked to the salt-sensitive signaling network, the molecular mechanism remains unclear. We discovered that a conserved serine/arginine-rich (SR)-like protein, SR45a, as a component of the spliceosome, was involved in post-transcriptional regulation of salinity tolerance in Arabidopsis thaliana. Furthermore, SR45a was required for the AS and messenger RNA (mRNA) maturation of several salt-tolerance genes. Two alternatively spliced variants of SR45a were induced by salt stress, full-length SR45a-1a and the truncated isoform SR45a-1b, respectively. Lines with overexpression of SR45a-1a and SR45a-1b exhibited hypersensitive to salt stress. Our data indicated that SR45a directly interacted with the cap-binding complex (CBC) subunit cap-binding protein 20 (CBP20) which mediated salt-stress responses. Instead of binding to other spliceosome components, SR45a-1b promoted the association of SR45a-1a with CBP20, therefore mediating salt-stress signal transduction pathways. Additionally, the mutations in SR45a and CBP20 led to different salt-stress phenotypes. Together, these results provide the evidence that SR45a-CBP20 acts as a regulatory complex to regulate the plant response to salt stress, through a regulatory mechanism to fine-tune the splicing factors, especially in stressful conditions.
Collapse
Affiliation(s)
- Ying Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Qianhuan Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Peng Liu
- Donald Danforth Plant Science Center, St Louis, MO, 63132, USA
| | - Jinguang Huang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Shizhong Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Guodong Yang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Changai Wu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Chengchao Zheng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Kang Yan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| |
Collapse
|
32
|
Zhang S, Liu H, Yuan L, Li X, Wang L, Xu X, Xie Q. Recognition of CCA1 alternative protein isoforms during temperature acclimation. PLANT CELL REPORTS 2021; 40:421-432. [PMID: 33398474 DOI: 10.1007/s00299-020-02644-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 11/26/2020] [Indexed: 05/14/2023]
Abstract
CCA1α and CCA1β protein variants respond to environmental light and temperature cues, and higher temperature promotes CCA1β protein production and causes its retention detectable in the cytoplasm. CIRCADIAN CLOCK ASSOCIATED1 (CCA1), as the core transcription factor of circadian clock, is involved in the regulation of endogenous circadian rhythm in Arabidopsis. Previous studies have shown that CCA1 consists of two abundant splice variants, fully spliced CCA1α and intron-retaining CCA1β. CCA1β is believed to form a nonfunctional heterodimer with CCA1α and its closed-related homolog LHY. Many studies have established that CCA1β is a transcription product, while how CCA1β protein is produced and how two CCA1 isoforms respond to environmental cues have not been elucidated. In this study, we identified CCA1α and CCA1β protein variants under different photoperiods with warm or cold temperature cycles, respectively. Our results showed that CCA1 protein production is regulated by prolonged light exposure and warm temperature. The protein levels of CCA1α and CCA1β peak in the morning, but the detection of CCA1β is dependent on immunoprecipitation enrichment at 22 °C. Higher temperature of 37 °C promotes CCA1β protein production and causes its retention to be detectable in the cytoplasm. Overall, our results indicate that two splice variants of the CCA1 protein respond to environmental light and temperature signals and may, therefore, maintain the circadian rhythms and give individuals the ability to adapt to environment.
Collapse
Affiliation(s)
- Shijia Zhang
- Key Laboratory of Molecular and Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Huili Liu
- Key Laboratory of Molecular and Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Li Yuan
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Xiaojing Li
- Key Laboratory of Molecular and Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Lingbao Wang
- Key Laboratory of Molecular and Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Xiaodong Xu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China.
| | - Qiguang Xie
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
33
|
Huang R, Zhou Y, Zhang J, Ji F, Jin F, Fan W, Pei D. Transcriptome Analysis of Walnut ( Juglans regia L.) Embryos Reveals Key Developmental Stages and Genes Involved in Lipid Biosynthesis and Polyunsaturated Fatty Acid Metabolism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:377-396. [PMID: 33373225 DOI: 10.1021/acs.jafc.0c05598] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Walnut (Juglans regia L.) is a widely cultivated woody oilseed tree species, and its embryo is rich in polyunsaturated fatty acids. Thus far, the pathways and essential genes involved in oil biosynthesis in developing walnut embryos remain largely unclear. Our analyses revealed that a mature walnut embryo accumulated 69% oil, in which 71% were polyunsaturated fatty acids with 64% linoleic acid and 7% linolenic acid. RNA sequencing generated 39 384 unigenes in 24 cDNA libraries prepared from walnut embryos collected at 49, 63, 77, 91, 105, 119, 133, and 147 days after pollination (DAP). The principal components analysis (PCA) of samples and cluster analysis of differentially expressed genes (DEGs) showed that the total samples were divided into three main groups: 49 DAP, 63-119 DAP, and 133-147 DAP. We identified 108 unigenes associated with lipid biosynthesis, including 60 unigenes for fatty acid biosynthesis, 33 for triacylglycerol biosynthesis, 7 for oil bodies, and 8 for transcription factors. The expression levels of the genes encoding WRI1, ACCase, ACP, KASII, SAD, FAD2, FAD3, and PDAT were upregulated at 63-119 DAP relative to the levels at 49 DAP. Additionally, the lipid biosynthesis in walnut embryos began to increase while oil contents increased from 15 to 69%. We identified eight SAD, three FAD2, one FAD3, one FAD5, one FAD6, and three FAD7/8 genes. In addition, SAD, FAD2, and FAD3 were highly abundantly expressed in the walnut embryo, and their FPKM values achieved were 834, 2205, and 9038, respectively. High expression levels of FAD2 and FAD3 may be the reason why walnuts are rich in polyunsaturated fatty acids. Subcellular localization confirmed that the JrFAD3 protein played a role in the endoplasmic reticulum rather than the plastid, suggesting that linolenic acid was mainly synthesized in the endoplasmic reticulum. Weighted gene coexpression network analysis (WGCNA) showed that ACP, ENO, VAMP727, and IDD14 were coexpressed with WRI1. Our study provides large-scale and comprehensive transcriptome data of walnut embryo development. These data lay the foundation for the metabolic engineering of walnuts to increase oil contents and modify fatty acid compositions.
Collapse
Affiliation(s)
- Ruimin Huang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Ye Zhou
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Junpei Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Feiyang Ji
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Feng Jin
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Wei Fan
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
| | - Dong Pei
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| |
Collapse
|
34
|
Lim SH, Kim DH, Jung JA, Lee JY. Alternative Splicing of the Basic Helix-Loop-Helix Transcription Factor Gene CmbHLH2 Affects Anthocyanin Biosynthesis in Ray Florets of Chrysanthemum ( Chrysanthemum morifolium). FRONTIERS IN PLANT SCIENCE 2021; 12:669315. [PMID: 34177983 PMCID: PMC8222801 DOI: 10.3389/fpls.2021.669315] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/17/2021] [Indexed: 05/19/2023]
Abstract
Chrysanthemum is an important ornamental crop worldwide. Some white-flowered chrysanthemum cultivars produce red ray florets under natural cultivation conditions, but little is known about how this occurs. We compared the expression of anthocyanin biosynthetic and transcription factor genes between white ray florets and those that turned red based on cultivation conditions to comprehend the underlying mechanism. Significant differences in the expression of CmbHLH2 were detected between the florets of different colors. CmbHLH2 generated two alternatively spliced transcripts, designated CmbHLH2Full and CmbHLH2Short . Compared with CmbHLH2Full , CmbHLH2Short encoded a truncated protein with only a partial MYB-interaction region and no other domains normally present in the full-length protein. Unlike the full-length form, the splicing variant protein CmbHLH2Short localized to the cytoplasm and the nucleus and could not interact with CmMYB6. Additionally, CmbHLH2Short failed to activate anthocyanin biosynthetic genes and induce pigment accumulation in transiently transfected tobacco leaves, whereas CmbHLH2Full promoted both processes when simultaneously expressed with CmMYB6. Co-expressing CmbHLH2Full and CmMYB6 also enhanced the promoter activities of CmCHS and CmDFR. Notably, the Arabidopsis tt8-1 mutant, which lacks red pigmentation in the leaves and seeds, could be complemented by the heterologous expression of CmbHLH2Full, which restored red pigmentation and resulted in red pigmentation in high anthocyanin and proanthocyanidin contents in the leaves and seeds, respectively, whereas expression of CmbHLH2Short did not. Together, these results indicate that CmbHLH2 and CmMYB6 interaction plays a key role in the anthocyanin pigmentation changes of ray florets in chrysanthemum. Our findings highlight alternative splicing as a potential approach to modulate anthocyanin biosynthesis in specific tissues.
Collapse
Affiliation(s)
- Sun-Hyung Lim
- Division of Horticultural Biotechnology, School of Biotechnology, Hankyong National University, Anseong, South Korea
- *Correspondence: Sun-Hyung Lim,
| | - Da-Hye Kim
- Division of Horticultural Biotechnology, School of Biotechnology, Hankyong National University, Anseong, South Korea
- National Academy of Agricultural Science, Rural Development Administration, Jeonju, South Korea
| | - Jae-A. Jung
- Floriculture Research Division, National Institute of Horticultural & Herbal Science, Rural Development Administration, Wanju, South Korea
| | - Jong-Yeol Lee
- National Academy of Agricultural Science, Rural Development Administration, Jeonju, South Korea
- Jong-Yeol Lee,
| |
Collapse
|
35
|
Han SH, Park YJ, Park CM. HOS1 activates DNA repair systems to enhance plant thermotolerance. NATURE PLANTS 2020; 6:1439-1446. [PMID: 33199892 DOI: 10.1038/s41477-020-00809-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 10/16/2020] [Indexed: 05/16/2023]
Abstract
Plants possess an astonishing capability of effectively adapting to a wide range of temperatures, ranging from freezing to near-boiling temperatures1,2. Yet, heat is a critical obstacle to plant survival. The deleterious effects of heat shock on cell function include misfolding of cellular proteins, disruption of cytoskeletons and membranes, and disordering of RNA metabolism and genome integrity3-5. Plants stimulate diverse heat shock response pathways in response to abrupt temperature increases. While it is known that stressful high temperatures disturb genome integrity by causing nucleotide modifications and strand breakages or impeding DNA repair6, it is largely unexplored how plants cope with heat-induced DNA damages. Here, we demonstrated that high expression of osmotically reponsive genes 1 (HOS1) induces thermotolerance by activating DNA repair components. Thermotolerance and DNA repair capacity were substantially reduced in HOS1-deficient mutants, in which thermal induction of genes encoding DNA repair systems, such as the DNA helicase RECQ2, was markedly decreased. Notably, HOS1 proteins were thermostabilized in a heat shock factor A1/heat shock protein 90 (HSP90)-dependent manner. Our data indicate that the thermoresponsive HSP90-HOS1-RECQ2 module contributes to sustaining genome integrity during the acquisition of thermotolerance, providing a distinct molecular link between DNA repair and thermotolerance.
Collapse
Affiliation(s)
- Shin-Hee Han
- Department of Chemistry, Seoul National University, Seoul, Korea
| | - Young-Joon Park
- Department of Chemistry, Seoul National University, Seoul, Korea
| | - Chung-Mo Park
- Department of Chemistry, Seoul National University, Seoul, Korea.
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, Korea.
| |
Collapse
|
36
|
Singh S, Geeta R, Das S. Comparative sequence analysis across Brassicaceae, regulatory diversity in KCS5 and KCS6 homologs from Arabidopsis thaliana and Brassica juncea, and intronic fragment as a negative transcriptional regulator. Gene Expr Patterns 2020; 38:119146. [PMID: 32947048 DOI: 10.1016/j.gep.2020.119146] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/26/2020] [Accepted: 09/08/2020] [Indexed: 11/26/2022]
Abstract
Intra- and epicuticular-waxes primarily comprising of very long chain aliphatic lipid (VLCFA), terpenoids and secondary metabolites such as sterol and flavonoids played a major role in successful colonization of terrestrial ecosystem by aquatic plants and are thus considered as a key evolutionary innovation. The key rate limiting step of Fatty Acid (FA) biosynthesis of condensation/elongation are catalyzed by the enzyme, β-ketoacyl coenzyme A synthase (KCS), part of FAE (Fatty Acid Elongase) complex. KCS6 has been shown to be responsible for elongation using C22 fatty acid as substrate and is considered essential for synthesis of VLCFA for cuticular waxes. Earlier studies have established KCS5 as a close paralog of KCS6 in Arabidopsis thaliana, albeit with non-redundant function. We subsequently established segmental duplication responsible for origin of KCS6-KCS5 paralogy which is exclusive to Brassicaceae. In the present study, we aim to understand impact of duplication on regulatory diversification and evolution, through sequence and functional analysis of cis-regulatory element of KCS5 and KCS6. High level of sequence variation leading to conservation of only the proximal end of the promoter corresponding to the core promoter was observed among Brassicaceae members; such high diversity was also revealed when sliding window analysis revealed only two to three phylogenetic footprints. Profiling of transcription factor binding sites (TFBS) across Brassicaceae shows presence of light, hormone and stress responsive motifs; a few motifs involved in tissue specific expression (Skn-1; endosperm) were also detected. Functional characterization using transcriptional fusion constructs revealed regulatory diversification when promoter activity of homologs from A. thaliana and Brassica juncea were compared. When subjected to 5-Azacytidine, altered promoter activity was observed, implying role of DNA methylation in transcriptional regulation. Finally, investigation of the role of an 87 bp fragment from first intron that is retained in a splice variant, revealed it to be a transcriptional repressor. This is a first report on comparative sequence and functional analysis of transcriptional regulation of KCS5 and KCS6; further studies are required before manipulation of cuticular waxes as a strategy for mitigating stress.
Collapse
Affiliation(s)
- Swati Singh
- Department of Botany, University of Delhi, Delhi, 110007, India
| | - R Geeta
- Department of Botany, University of Delhi, Delhi, 110007, India
| | - Sandip Das
- Department of Botany, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
37
|
Alternative splicing of DSP1 enhances snRNA accumulation by promoting transcription termination and recycle of the processing complex. Proc Natl Acad Sci U S A 2020; 117:20325-20333. [PMID: 32747542 DOI: 10.1073/pnas.2002115117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Small nuclear RNAs (snRNAs) are the basal components of the spliceosome and play crucial roles in splicing. Their biogenesis is spatiotemporally regulated. However, related mechanisms are still poorly understood. Defective in snRNA processing (DSP1) is an essential component of the DSP1 complex that catalyzes plant snRNA 3'-end maturation by cotranscriptional endonucleolytic cleavage of the primary snRNA transcripts (presnRNAs). Here, we show that DSP1 is subjected to alternative splicing in pollens and embryos, resulting in two splicing variants, DSP1α and DSP1β. Unlike DSP1α, DSP1β is not required for presnRNA 3'-end cleavage. Rather, it competes with DSP1α for the interaction with CPSF73-I, the catalytic subunit of the DSP1 complex, which promotes efficient release of CPSF73-I and the DNA-dependent RNA polymerease II (Pol II) from the 3' end of snRNA loci thereby facilitates snRNA transcription termination, resulting in increased snRNA levels in pollens. Taken together, this study uncovers a mechanism that spatially regulates snRNA accumulation.
Collapse
|
38
|
Prochetto S, Reinheimer R. Step by step evolution of Indeterminate Domain (IDD) transcriptional regulators: from algae to angiosperms. ANNALS OF BOTANY 2020; 126:85-101. [PMID: 32206771 PMCID: PMC7304464 DOI: 10.1093/aob/mcaa052] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 03/19/2020] [Indexed: 06/10/2023]
Abstract
INTRODUCTION The Indeterminate Domain (IDD) proteins are a plant-specific subclass of C2H2 Zinc Finger transcription factors. Some of these transcription factors play roles in diverse aspects of plant metabolism and development, but the function of most of IDD genes is unknown and the molecular evolution of the subfamily has not been explored in detail. METHODS In this study, we mined available genome sequences of green plants (Viridiplantae) to reconstruct the phylogeny and then described the motifs/expression patterns of IDD genes. KEY RESULTS We identified the complete set of IDD genes of 16 Streptophyta genomes. We found that IDD and its sister clade STOP arose by a duplication at the base of Streptophyta. Once on land, the IDD genes duplicated extensively, giving rise to at least ten lineages. Some of these lineages were lost in extant non-vascular plants and gymnosperms, but all of them were retained in angiosperms, duplicating profoundly in dicots and monocots and acquiring, at the same time, surprising heterogeneity in their C-terminal regions and expression patterns. CONCLUSIONS IDDs were present in the last common ancestor of Streptophyta. On land, IDDs duplicated extensively, leading to ten lineages. Later, IDDs were recruited by angiosperms where they diversified greatly in number, C-terminal and expression patterns. Interestingly, such diversification occurred during the evolution of novel traits of the plant body. This study provides a solid framework of the orthology relationships of green land plant IDD transcription factors, thus increasing the accuracy of orthologue identification in model and non-model species and facilitating the identification of agronomically important genes related to plant metabolism and development.
Collapse
Affiliation(s)
- Santiago Prochetto
- Fellow of Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina (CONICET), FBCB, Santa Fe, Argentina
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, CONICET, FBCB, Santa Fe, Argentina
| | - Renata Reinheimer
- Member of Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina (CONICET), FBCB, Santa Fe, Argentinaand
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, CONICET, FBCB, Santa Fe, Argentina
| |
Collapse
|
39
|
Gene Regulation via the Combination of Transcription Factors in the INDETERMINATE DOMAIN and GRAS Families. Genes (Basel) 2020; 11:genes11060613. [PMID: 32498388 PMCID: PMC7349898 DOI: 10.3390/genes11060613] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/30/2020] [Accepted: 06/01/2020] [Indexed: 12/29/2022] Open
Abstract
INDETERMINATE DOMAIN (IDD) family proteins are plant-specific transcription factors. Some Arabidopsis IDD (AtIDD) proteins regulate the expression of SCARECROW (SCR) by interacting with GRAS family transcription factors SHORT-ROOT (SHR) and SCR, which are involved in root tissue formation. Some AtIDD proteins regulate genes involved in the synthesis (GA3ox1) or signaling (SCL3) of gibberellic acid (GA) by interacting with DELLA proteins, a subfamily of the GRAS family. We analyzed the DNA binding properties and protein–protein interactions of select AtIDD proteins. We also investigated the transcriptional activity of the combination of AtIDD and GRAS proteins (AtIDD proteins combined with SHR and SCR or with REPRESSOR of ga1-3 (RGA)) on the promoters of SCR,SCL3, and GA3ox1 by conducting a transient assay using Arabidopsis culture cells. Our results showed that the SCR promoter could be activated by the IDD and RGA complexes and that the SCL3 and GA3ox1 promoters could be activated by the IDD, SHR, and SCR complexes, indicating the possibility that these complexes regulate and consequently coordinate the expression of genes involved in GA synthesis (GA3ox1), GA signaling (SCL3), and root formation (SCR).
Collapse
|
40
|
Man J, Gallagher JP, Bartlett M. Structural evolution drives diversification of the large LRR-RLK gene family. THE NEW PHYTOLOGIST 2020; 226:1492-1505. [PMID: 31990988 PMCID: PMC7318236 DOI: 10.1111/nph.16455] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 01/19/2020] [Indexed: 05/11/2023]
Abstract
●Cells are continuously exposed to chemical signals that they must discriminate between and respond to appropriately. In embryophytes, the leucine-rich repeat receptor-like kinases (LRR-RLKs) are signal receptors critical in development and defense. LRR-RLKs have diversified to hundreds of genes in many plant genomes. Although intensively studied, a well-resolved LRR-RLK gene tree has remained elusive. ●To resolve the LRR-RLK gene tree, we developed an improved gene discovery method based on iterative hidden Markov model searching and phylogenetic inference. We used this method to infer complete gene trees for each of the LRR-RLK subclades and reconstructed the deepest nodes of the full gene family. ●We discovered that the LRR-RLK gene family is even larger than previously thought, and that protein domain gains and losses are prevalent. These structural modifications, some of which likely predate embryophyte diversification, led to misclassification of some LRR-RLK variants as members of other gene families. Our work corrects this misclassification. ●Our results reveal ongoing structural evolution generating novel LRR-RLK genes. These new genes are raw material for the diversification of signaling in development and defense. Our methods also enable phylogenetic reconstruction in any large gene family.
Collapse
Affiliation(s)
- Jarrett Man
- Biology DepartmentUniversity of Massachusetts Amherst611 North Pleasant Street, 221 Morrill 3AmherstMA01003USA
| | - Joseph P. Gallagher
- Biology DepartmentUniversity of Massachusetts Amherst611 North Pleasant Street, 221 Morrill 3AmherstMA01003USA
| | - Madelaine Bartlett
- Biology DepartmentUniversity of Massachusetts Amherst611 North Pleasant Street, 221 Morrill 3AmherstMA01003USA
| |
Collapse
|
41
|
Cramer GR, Cochetel N, Ghan R, Destrac-Irvine A, Delrot S. A sense of place: transcriptomics identifies environmental signatures in Cabernet Sauvignon berry skins in the late stages of ripening. BMC PLANT BIOLOGY 2020; 20:41. [PMID: 31992236 PMCID: PMC6986057 DOI: 10.1186/s12870-020-2251-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 01/14/2020] [Indexed: 05/29/2023]
Abstract
BACKGROUND Grape berry ripening is influenced by climate, the main component of the "terroir" of a place. Light and temperature are major factors in the vineyard that affect berry development and fruit metabolite composition. RESULTS To better understand the effect of "place" on transcript abundance during the late stages of berry ripening, Cabernet Sauvignon berries grown in Bordeaux and Reno were compared at similar sugar levels (19 to 26 °Brix (total soluble solids)). Day temperatures were warmer and night temperatures were cooler in Reno. °Brix was lower in Bordeaux berries compared to Reno at maturity levels considered optimum for harvest. RNA-Seq analysis identified 5528 differentially expressed genes between Bordeaux and Reno grape skins at 22°Brix. Weighted Gene Coexpression Network Analysis for all expressed transcripts for all four °Brix levels measured indicated that the majority (75%) of transcript expression differed significantly between the two locations. Top gene ontology categories for the common transcript sets were translation, photosynthesis, DNA metabolism and catabolism. Top gene ontology categories for the differentially expressed genes at 22°Brix involved response to stimulus, biosynthesis and response to stress. Some differentially expressed genes encoded terpene synthases, cell wall enzymes, kinases, transporters, transcription factors and photoreceptors. Most circadian clock genes had higher transcript abundance in Bordeaux. Bordeaux berries had higher transcript abundance with differentially expressed genes associated with seed dormancy, light, auxin, ethylene signaling, powdery mildew infection, phenylpropanoid, carotenoid and terpenoid metabolism, whereas Reno berries were enriched with differentially expressed genes involved in water deprivation, cold response, ABA signaling and iron homeostasis. CONCLUSIONS Transcript abundance profiles in the berry skins at maturity were highly dynamic. RNA-Seq analysis identified a smaller (25% of total) common core set of ripening genes that appear not to depend on rootstock, vineyard management, plant age, soil and climatic conditions. Much of the gene expression differed between the two locations and could be associated with multiple differences in environmental conditions that may have affected the berries in the two locations; some of these genes may be potentially controlled in different ways by the vinegrower to adjust final berry composition and reach a desired result.
Collapse
Affiliation(s)
- Grant R. Cramer
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557 USA
| | - Noé Cochetel
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557 USA
| | - Ryan Ghan
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557 USA
| | - Agnès Destrac-Irvine
- UMR Ecophysiology and Grape Functional Genomics, Institut des Sciences de la Vigne et du Vin, University of Bordeaux, Villenave d’Ornon, France
| | - Serge Delrot
- UMR Ecophysiology and Grape Functional Genomics, Institut des Sciences de la Vigne et du Vin, University of Bordeaux, Villenave d’Ornon, France
| |
Collapse
|
42
|
Wang YY, Xiong F, Ren QP, Wang XL. Regulation of flowering transition by alternative splicing: the role of the U2 auxiliary factor. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:751-758. [PMID: 31605606 DOI: 10.1093/jxb/erz416] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 09/06/2019] [Indexed: 05/03/2023]
Abstract
Flowering transition is regulated by complex genetic networks in response to endogenous and environmental signals. Pre-mRNA splicing is an essential step for the post-transcriptional regulation of gene expression. Alternative splicing of key flowering genes has been investigated in detail over the past decade. However, few splicing factors have been identified as being involved in flowering transition. Human heterodimeric splicing factor U2 snRNP auxiliary factor (U2AF) consists of two subunits, U2AF35 and U2AF65, and functions in 3' splice site recognition in mRNA splicing. Recent studies reveal that Arabidopsis U2AF65a/b and U2AF35a/b play important roles in the splicing of key flowering genes. We summarize recent advances in research on splicing-regulated flowering transition by focusing on the role of Arabidopsis U2AF in the splicing of key flowering-related genes at ambient temperature and in the abscisic acid signaling pathways.
Collapse
Affiliation(s)
- Yu-Yi Wang
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, China
| | - Feng Xiong
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, China
| | - Qiu-Ping Ren
- College of Agronomy, Liaocheng University, Liaocheng, China
| | - Xiu-Ling Wang
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, China
| |
Collapse
|
43
|
Tang Z, Cao X, Zhang Y, Jiang J, Qiao D, Xu H, Cao Y. Two splice variants of the DsMEK1 mitogen-activated protein kinase kinase (MAPKK) are involved in salt stress regulation in Dunaliella salina in different ways. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:147. [PMID: 32843896 PMCID: PMC7439689 DOI: 10.1186/s13068-020-01786-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/24/2020] [Indexed: 05/13/2023]
Abstract
BACKGROUND Dunaliella salina can produce glycerol under salt stress, and this production can quickly adapt to changes in external salt concentration. Notably, glycerol is an ideal energy source. In recent years, it has been reported that the mitogen-activated protein kinase cascade pathway plays an important role in regulating salt stress, and in Dunaliella tertiolecta DtMAPK can regulate glycerol synthesis under salt stress. Therefore, it is highly important to study the relationship between the MAPK cascade pathway and salt stress in D. salina and modify it to increase the production of glycerol. RESULTS In our study, we identified and analysed the alternative splicing of DsMEK1 (DsMEK1-X1, DsMEK1-X2) from the unicellular green alga D. salina. DsMEK1-X1 and DsMEK1-X2 were both localized in the cytoplasm. qRT-PCR assays showed that DsMEK1-X2 was induced by salt stress. Overexpression of DsMEK1-X2 revealed a higher increase rate of glycerol production compared to the control and DsMEK1-X1-oe under salt stress. Under salt stress, the expression of DsGPDH2/3/5/6 increased in DsMEK1-X2-oe strains compared to the control. This finding indicated that DsMEK1-X2 was involved in the regulation of DsGPDH expression and glycerol overexpression under salt stress. Overexpression of DsMEK1-X1 increased the proline content and reduced the MDA content under salt stress, and DsMEK1-X1 was able to regulate oxidative stress; thus, we hypothesized that DsMEK1-X1 could reduce oxidative damage under salt stress. Yeast two-hybrid analysis showed that DsMEK1-X2 could interact with DsMAPKKK1/2/3/9/10/17 and DsMAPK1; however, DsMEK1-X1 interacted with neither upstream MAPKKK nor downstream MAPK. DsMEK1-X2-oe transgenic lines increased the expression of DsMAPKKK1/3/10/17 and DsMAPK1, and DsMEK1-X2-RNAi lines decreased the expression of DsMAPKKK2/10/17. DsMEK1-X1-oe transgenic lines did not exhibit increased gene expression, except for DsMAPKKK9. CONCLUSION Our findings demonstrate that DsMEK1-X1 and DsMEK1-X2 can respond to salt stress by two different pathways. The DsMEK1-X1 response to salt stress reduces oxidative damage; however, the DsMAPKKK1/2/3/9/10/17-DsMEK1-X2-DsMAPK1 cascade is involved in the regulation of DsGPDH expression and thus glycerol synthesis under salt stress.
Collapse
Affiliation(s)
- Ziyi Tang
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065 China
| | - Xiyue Cao
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065 China
| | - Yiping Zhang
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065 China
| | - Jia Jiang
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065 China
| | - Dairong Qiao
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065 China
| | - Hui Xu
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065 China
| | - Yi Cao
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065 China
| |
Collapse
|
44
|
Zhang J, Li L, Huang L, Zhang M, Chen Z, Zheng Q, Zhao H, Chen X, Jiang M, Tan M. Maize NAC-domain retained splice variants act as dominant negatives to interfere with the full-length NAC counterparts. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 289:110256. [PMID: 31623792 DOI: 10.1016/j.plantsci.2019.110256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 09/03/2019] [Accepted: 09/05/2019] [Indexed: 05/20/2023]
Abstract
The plant-specific NAC transcription factors play diverse roles in various stress signaling. Alternative splicing is particularly prevalent in plants under stress. However, the investigation of cadmium (Cd) on the differential expression of the splice variants of NACs is in its infancy. Here, we identified three Cd-induced intron retention splice NAC variants which only contained the canonical NAC domain, designated as nacDomains, derived from three Cd-upregulated maize NACs. Subcellular localization analysis indicated that both nacDomain and its full-length NAC counterpart co-localized in the nucleus as manifested in the BiFC assay, thus implied that nacDomains and their corresponding NACs form heterodimers through the identical NAC domain. Further chimeric reporter/effector transient expression assay and Cd-tolerance assay in tobacco leaves collectively indicated that nacDomain-NAC heterodimers were involved in the regulation of NAC function. The results obtained here were in accordance with the model of dominant negative, which suggested that nacDomain act as the dominant negative to antagonize the regulation of NAC on its target gene expression and the Cd-tolerance function performance of NAC transcription factor. These findings proposed a novel insight into understanding the molecular mechanisms of Cd response in plants.
Collapse
Affiliation(s)
- Jie Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Liang Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Liping Huang
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan, 528225, China
| | - Manman Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ziyan Chen
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qingsong Zheng
- College of Resources & Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haiyan Zhao
- College of Resources & Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xi Chen
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mingyi Jiang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mingpu Tan
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
45
|
Völz R, Rayapuram N, Hirt H. Phosphorylation regulates the activity of INDETERMINATE-DOMAIN (IDD/BIRD) proteins in response to diverse environmental conditions. PLANT SIGNALING & BEHAVIOR 2019; 14:e1642037. [PMID: 31314681 PMCID: PMC6768238 DOI: 10.1080/15592324.2019.1642037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/01/2019] [Accepted: 06/27/2019] [Indexed: 05/29/2023]
Abstract
INDETERMINATE-DOMAIN proteins (IDDs) belong to a diverse plant-specific family of transcriptional regulators that coordinate distinct functions during plant growth and development. The functions of several of these IDD members are transcriptionally regulated, but so far nothing is known about the regulation at the post-translational level in spite of the fact that post-translational modifications of these proteins have been reported in several large-scale proteomics studies. Recently, we showed that IDD4 is a repressor of basal immunity and its characteristic traits are predominantly determined by the phosphorylation at two distinct phosphorylation sites. This finding prompted us to comprehensively review phosphorylation of the various IDD members from the plethora of phosphoproteomics studies demonstrating the post-translational modification of IDDs at highly conserved sites under various experimental conditions. We reckon that the phosphorylation of IDDs is an underrated mechanistic aspect in their regulation and we postulate their importance in IDD/BIRD functioning.
Collapse
Affiliation(s)
- Ronny Völz
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Department of Agricultural Biotechnology, Center for Fungal Genetic Resources and Plant Immunity Research Center, Seoul National University, Seoul, Korea
| | - Naganand Rayapuram
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Heribert Hirt
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Orsay, France
- University of Vienna, Vienna, Austria
| |
Collapse
|
46
|
Vï Lz R, Kim SK, Mi J, Mariappan KG, Siodmak A, Al-Babili S, Hirt H. A Chimeric IDD4 Repressor Constitutively Induces Immunity in Arabidopsis via the Modulation of Salicylic Acid and Jasmonic Acid Homeostasis. PLANT & CELL PHYSIOLOGY 2019; 60:1536-1555. [PMID: 30989238 DOI: 10.1093/pcp/pcz057] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 04/04/2019] [Indexed: 06/09/2023]
Abstract
INDETERMINATE DOMAIN (IDD)/BIRD proteins belong to a highly conserved plant-specific group of transcription factors with dedicated functions in plant physiology and development. Here, we took advantage of the chimeric repressor gene-silencing technology (CRES-T, SRDX) to widen our view on the role of IDD4/IMPERIAL EAGLE and IDD family members in plant immunity. The hypomorphic idd4SRDX lines are compromised in growth and show a robust autoimmune phenotype. Hormonal measurements revealed the concomitant accumulation of salicylic acid and jasmonic acid suggesting that IDDs are involved in regulating the metabolism of these biotic stress hormones. The analysis of immunity-pathways showed enhanced activation of immune MAP kinase-signaling pathways, the accumulation of hydrogen peroxide and spontaneous programmed cell death. The transcriptome of nonelicited idd4SRDX lines can be aligned to approximately 40% of differentially expressed genes (DEGs) in flg22-treated wild-type plants. The pattern of DEGs implies IDDs as pivotal repressors of flg22-dependent gene induction. Infection experiments showed the increased resistance of idd4SRDX lines to Pseudomonas syringae and Botrytis cinerea implying a function of IDDs in defense adaptation to hemibiotrophs and necrotrophs. Genome-wide IDD4 DNA-binding studies (DAP-SEQ) combined with DEG analysis of idd4SRDX lines identified IDD4-regulated functional gene clusters that contribute to plant growth and development. In summary, we discovered that the expression of idd4SRDX activates a wide range of defense-related traits opening up the possibility to apply idd4SRDX as a powerful tool to stimulate innate immunity in engineered crops.
Collapse
Affiliation(s)
- Ronny Vï Lz
- Division of Biological and Environmental Sciences and Engineering, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Department of Agricultural Biotechnology, Center for Fungal Genetic Resources and Plant Immunity Research Center, Seoul National University, Seoul, Korea
| | - Soon-Kap Kim
- Division of Biological and Environmental Sciences and Engineering, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Jianing Mi
- Division of Biological and Environmental Sciences and Engineering, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Kiruthiga G Mariappan
- Division of Biological and Environmental Sciences and Engineering, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Anna Siodmak
- Division of Biological and Environmental Sciences and Engineering, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Salim Al-Babili
- Division of Biological and Environmental Sciences and Engineering, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Heribert Hirt
- Division of Biological and Environmental Sciences and Engineering, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Universit� Paris-Sud, Universit� Evry, Universit� Paris-Saclay, B�timent 630, Orsay, France
- Max Perutz Laboratories, University of Vienna, Vienna, Austria
| |
Collapse
|
47
|
Qi S, Lin Q, Feng X, Han H, Liu J, Zhang L, Wu S, Le J, Blumwald E, Hua X. IDD16 negatively regulates stomatal initiation via trans-repression of SPCH in Arabidopsis. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1446-1457. [PMID: 30623555 PMCID: PMC6576023 DOI: 10.1111/pbi.13070] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 10/20/2018] [Accepted: 11/23/2018] [Indexed: 05/20/2023]
Abstract
In Arabidopsis, the initiation and proliferation of stomatal lineage cells is controlled by SPEECHLESS (SPCH). Phosphorylation of SPCH at the post-translational level has been reported to regulate stomatal development. Here we report that IDD16 acts as a negative regulator for stomatal initiation by directly regulating SPCH transcription. In Arabidopsis, IDD16 overexpression decreased abaxial stomatal density in a dose-dependent manner. Time course analysis revealed that the initiation of stomatal precursor cells in the IDD16-OE plants was severely inhibited. Consistent with these findings, the transcription of SPCH was greatly repressed in the IDD16-OE plants. In contrast, IDD16-RNAi transgenic line resulted in enhanced stomatal density, suggesting that IDD16 is an intrinsic regulator of stomatal development. ChIP analysis indicated that IDD16 could directly bind to the SPCH promoter. Furthermore, Arabidopsis plants overexpressing IDD16 exhibited significantly increased drought tolerance and higher integrated water use efficiency (WUE) due to reduction in leaf transpiration. Collectively, our results established that IDD16 negatively regulates stomatal initiation via trans-repression of SPCH, and thus provide a practical tool for increasing plant WUE through the manipulation of IDD16 expression.
Collapse
Affiliation(s)
- Shi‐Lian Qi
- Key Laboratory of Plant Resources and Beijing Botanical GardenInstitute of BotanyChinese Academy of SciencesBeijingChina
- College of HorticultureFujian Agriculture and Forestry UniversityFuzhouFujianChina
- University of Chinese Academy of SciencesBeijingChina
| | - Qing‐Fang Lin
- Key Laboratory of Plant Resources and Beijing Botanical GardenInstitute of BotanyChinese Academy of SciencesBeijingChina
- College of Crop ScienceFujian Agriculture and Forestry UniversityFuzhouFujianChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xuan‐Jun Feng
- Key Laboratory of Plant Resources and Beijing Botanical GardenInstitute of BotanyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Hui‐Ling Han
- Key Laboratory of Plant Resources and Beijing Botanical GardenInstitute of BotanyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jie Liu
- Key Laboratory of Plant Resources and Beijing Botanical GardenInstitute of BotanyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Liu Zhang
- College of Life SciencesFujian Agriculture and Forestry UniversityFuzhouFujianChina
| | - Shuang Wu
- College of HorticultureFujian Agriculture and Forestry UniversityFuzhouFujianChina
| | - Jie Le
- Key Laboratory of Plant Molecular PhysiologyCAS Center for Excellence in Molecular Plant SciencesInstitute of BotanyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | | | - Xue‐Jun Hua
- Key Laboratory of Plant Resources and Beijing Botanical GardenInstitute of BotanyChinese Academy of SciencesBeijingChina
- College of Life SciencesZhejiang Sci‐Tech UniversityHangzhouZhejiangChina
| |
Collapse
|
48
|
Kumar M, Le DT, Hwang S, Seo PJ, Kim HU. Role of the INDETERMINATE DOMAIN Genes in Plants. Int J Mol Sci 2019; 20:ijms20092286. [PMID: 31075826 PMCID: PMC6539433 DOI: 10.3390/ijms20092286] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 01/05/2023] Open
Abstract
The INDETERMINATE DOMAIN (IDD) genes comprise a conserved transcription factor family that regulates a variety of developmental and physiological processes in plants. Many recent studies have focused on the genetic characterization of IDD family members and revealed various biological functions, including modulation of sugar metabolism and floral transition, cold stress response, seed development, plant architecture, regulation of hormone signaling, and ammonium metabolism. In this review, we summarize the functions and working mechanisms of the IDD gene family in the regulatory network of metabolism and developmental processes.
Collapse
Affiliation(s)
- Manu Kumar
- Department of Bioindustry and Bioresource Engineering, Plant Engineering Research Institute, Sejong University, Seoul 05006, Korea.
| | - Dung Thi Le
- Department of Bioindustry and Bioresource Engineering, Plant Engineering Research Institute, Sejong University, Seoul 05006, Korea.
| | - Seongbin Hwang
- Department of Bioindustry and Bioresource Engineering, Plant Engineering Research Institute, Sejong University, Seoul 05006, Korea.
| | - Pil Joon Seo
- Department of Chemistry, Seoul National University, Seoul 08826, Korea.
| | - Hyun Uk Kim
- Department of Bioindustry and Bioresource Engineering, Plant Engineering Research Institute, Sejong University, Seoul 05006, Korea.
| |
Collapse
|
49
|
Lee HG, Seo PJ. MYB96 recruits the HDA15 protein to suppress negative regulators of ABA signaling in Arabidopsis. Nat Commun 2019. [PMID: 30979883 DOI: 10.1038/s41467-019-09417-9411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
Unlike activation of target genes in response to abscisic acid (ABA), how MYB96 transcription factor represses ABA-repressible genes to further enhance ABA responses remains unknown. Here, we show MYB96 interacts with the histone modifier HDA15 to suppress negative regulators of early ABA signaling. The MYB96-HDA15 complex co-binds to the promoters of a subset of RHO GTPASE OF PLANTS (ROP) genes, ROP6, ROP10, and ROP11, and represses their expression by removing acetyl groups of histone H3 and H4 from the cognate regions, particularly in the presence of ABA. In support, HDA15-deficient mutants display reduced ABA sensitivity and are susceptible to drought stress with derepression of the ROP genes, as observed in the myb96-1 mutant. Biochemical and genetic analyses show that MYB96 and HDA15 are interdependent in the regulation of ROP suppression. Thus, MYB96 confers maximal ABA sensitivity by regulating both positive and negative regulators of ABA signaling through distinctive molecular mechanisms.
Collapse
Affiliation(s)
- Hong Gil Lee
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Pil Joon Seo
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea.
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
50
|
Lee HG, Seo PJ. MYB96 recruits the HDA15 protein to suppress negative regulators of ABA signaling in Arabidopsis. Nat Commun 2019; 10:1713. [PMID: 30979883 PMCID: PMC6461653 DOI: 10.1038/s41467-019-09417-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 03/06/2019] [Indexed: 12/18/2022] Open
Abstract
Unlike activation of target genes in response to abscisic acid (ABA), how MYB96 transcription factor represses ABA-repressible genes to further enhance ABA responses remains unknown. Here, we show MYB96 interacts with the histone modifier HDA15 to suppress negative regulators of early ABA signaling. The MYB96-HDA15 complex co-binds to the promoters of a subset of RHO GTPASE OF PLANTS (ROP) genes, ROP6, ROP10, and ROP11, and represses their expression by removing acetyl groups of histone H3 and H4 from the cognate regions, particularly in the presence of ABA. In support, HDA15-deficient mutants display reduced ABA sensitivity and are susceptible to drought stress with derepression of the ROP genes, as observed in the myb96-1 mutant. Biochemical and genetic analyses show that MYB96 and HDA15 are interdependent in the regulation of ROP suppression. Thus, MYB96 confers maximal ABA sensitivity by regulating both positive and negative regulators of ABA signaling through distinctive molecular mechanisms. MYB96 can regulate both positive and negative regulators of ABA signaling to maximize plant drought tolerance. Here, the authors show that MYB96 represses expression of ABA negative regulators in Arabidopsis by interacting with HDA15 and promoting histone deacetylation at the cognate regions.
Collapse
Affiliation(s)
- Hong Gil Lee
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Pil Joon Seo
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea. .,Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|