1
|
Noell CR, Ma TC, Jiang R, McKinley SA, Hancock WO. DNA tensiometer reveals catch-bond detachment kinetics of kinesin-1, -2 and -3. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.03.626575. [PMID: 39677767 PMCID: PMC11642903 DOI: 10.1101/2024.12.03.626575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Bidirectional cargo transport by kinesin and dynein is essential for cell viability and defects are linked to neurodegenerative diseases. Computational modeling suggests that the load-dependent off-rate is the strongest determinant of which motor 'wins' a kinesin-dynein tug-of-war, and optical tweezer experiments find that the load-dependent detachment sensitivity of transport kinesins is kinesin-3 > kinesin-2 > kinesin-1. However, in reconstituted kinesin-dynein pairs vitro, all three kinesin families compete nearly equally well against dynein. Modeling and experiments have confirmed that vertical forces inherent to the large trapping beads enhance kinesin-1 dissociation rates. In vivo, vertical forces are expected to range from negligible to dominant, depending on cargo and microtubule geometries. To investigate the detachment and reattachment kinetics of kinesin-1, 2 and 3 motors against loads oriented parallel to the microtubule, we created a DNA tensiometer comprising a DNA entropic spring attached to the microtubule on one end and a motor on the other. Kinesin dissociation rates at stall were slower than detachment rates during unloaded runs, and the complex reattachment kinetics were consistent with a weakly-bound 'slip' state preceding detachment. Kinesin-3 behaviors under load suggested that long KIF1A run lengths result from the concatenation of multiple short runs connected by diffusive episodes. Stochastic simulations were able to recapitulate the load-dependent detachment and reattachment kinetics for all three motors and provide direct comparison of key transition rates between families. These results provide insight into how kinesin-1, -2 and -3 families transport cargo in complex cellular geometries and compete against dynein during bidirectional transport.
Collapse
Affiliation(s)
- Crystal R. Noell
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Tzu-Chen Ma
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Rui Jiang
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Scott A. McKinley
- Department of Mathematics, Tulane University, New Orleans, Louisiana, USA
| | - William O. Hancock
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania, USA
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
2
|
He W, Dong S, Zeng Q. Functional Nucleic Acid Nanostructures for Mitochondrial Targeting: The Basis of Customized Treatment Strategies. Molecules 2025; 30:1025. [PMID: 40076250 PMCID: PMC11902231 DOI: 10.3390/molecules30051025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/09/2025] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
Mitochondria, as vital organelles, play a central role in subcellular research and biomedical innovation. Although functional nucleic acid (FNA) nanostructures have witnessed remarkable progress across numerous biological applications, strategies specifically tailored to target mitochondria for molecular imaging and therapeutic interventions remain scarce. This review delves into the latest advancements in leveraging FNA nanostructures for mitochondria-specific imaging and cancer therapy. Initially, we explore the creation of FNA-based biosensors localized to mitochondria, enabling the real-time detection and visualization of critical molecules essential for mitochondrial function. Subsequently, we examine developments in FNA nanostructures aimed at mitochondrial-targeted cancer treatments, including modular FNA nanodevices for the precise delivery of therapeutic agents and programmable FNA nanostructures for disrupting mitochondrial processes. Emphasis is placed on elucidating the chemical principles underlying the design of mitochondrial-specific FNA nanotechnology for diverse biomedical uses. Lastly, we address the unresolved challenges and outline prospective directions, with the goal of advancing the field and encouraging the creation of sophisticated FNA tools for both academic inquiry and clinical applications centered on mitochondria.
Collapse
Affiliation(s)
- Wanchong He
- School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252059, China
| | | | - Qinghua Zeng
- School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252059, China
| |
Collapse
|
3
|
Wang X, Dong J, Gao M, Wang Y, Hou F, Wang J, Li Y, Wang Z. Radial mechanical properties of deoxyribonucleic acid molecules. NANOTECHNOLOGY 2024; 36:085101. [PMID: 39660784 DOI: 10.1088/1361-6528/ad9930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/02/2024] [Indexed: 12/12/2024]
Abstract
Given the small diameter of deoxyribonucleic acid (DNA), the difficulty in studying its radial mechanical properties laid in the challenge of applying a precise and controlled small force. In this work, the radial mechanical properties of DNA were measured in the AFM. DNA adhesion properties were analyzed through force-distance curves and adhesion images. The adhesion force values applied on DNA obtained from the force-distance curves were consistent with those obtained from the adhesion images. The Young's modulus of DNA was determined by collecting the data of indentation depth and the force applied on DNA and using the Hertz model for calculation. At the same compression speed, the Young's moduli increased with increasing forces, but exhibited a nonlinear growth. This reflected the complex stress-strain behavior of DNA. The impact of speeds on mechanical properties of DNA was explored. Higher speed resulted in greater Young's moduli and adhesion. This study not only deepens the understanding the mechanical properties of DNA, but also provides a strategy for investigating the mechanical properties of other thin and soft materials.
Collapse
Affiliation(s)
- Xia Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
- Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute of Changchun University of Science and Technology, Zhongshan 528437, People's Republic of China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
| | - Jianjun Dong
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
- Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute of Changchun University of Science and Technology, Zhongshan 528437, People's Republic of China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
| | - Mingyan Gao
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
- Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute of Changchun University of Science and Technology, Zhongshan 528437, People's Republic of China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
| | - Ying Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
- Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute of Changchun University of Science and Technology, Zhongshan 528437, People's Republic of China
| | - Fengyan Hou
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
- Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute of Changchun University of Science and Technology, Zhongshan 528437, People's Republic of China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
| | - Jingyu Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
- Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute of Changchun University of Science and Technology, Zhongshan 528437, People's Republic of China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
| | - Ye Li
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
- Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute of Changchun University of Science and Technology, Zhongshan 528437, People's Republic of China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
| | - Zuobin Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
- Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute of Changchun University of Science and Technology, Zhongshan 528437, People's Republic of China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
- JR3CN & IRAC, University of Bedfordshire, Luton LU1 3JU, United Kingdom
| |
Collapse
|
4
|
de Jonge JJ, Graw A, Kargas V, Batters C, Montanarella AF, O'Loughlin T, Johnson C, Arden SD, Warren AJ, Geeves MA, Kendrick-Jones J, Zaccai NR, Kröss M, Veigel C, Buss F. Motor domain phosphorylation increases nucleotide exchange and turns MYO6 into a faster and stronger motor. Nat Commun 2024; 15:6716. [PMID: 39112473 PMCID: PMC11306250 DOI: 10.1038/s41467-024-49898-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/20/2024] [Indexed: 08/10/2024] Open
Abstract
Myosin motors perform many fundamental functions in eukaryotic cells by providing force generation, transport or tethering capacity. Motor activity control within the cell involves on/off switches, however, few examples are known of how myosins regulate speed or processivity and fine-tune their activity to a specific cellular task. Here, we describe a phosphorylation event for myosins of class VI (MYO6) in the motor domain, which accelerates its ATPase activity leading to a 4-fold increase in motor speed determined by actin-gliding assays, single molecule mechanics and stopped flow kinetics. We demonstrate that the serine/threonine kinase DYRK2 phosphorylates MYO6 at S267 in vitro. Single-molecule optical-tweezers studies at low load reveal that S267-phosphorylation results in faster nucleotide-exchange kinetics without change in the working stroke of the motor. The selective increase in stiffness of the acto-MYO6 complex when proceeding load-dependently into the nucleotide-free rigor state demonstrates that S267-phosphorylation turns MYO6 into a stronger motor. Finally, molecular dynamic simulations of the nucleotide-free motor reveal an alternative interaction network within insert-1 upon phosphorylation, suggesting a molecular mechanism, which regulates insert-1 positioning, turning the S267-phosphorylated MYO6 into a faster motor.
Collapse
Affiliation(s)
- Janeska J de Jonge
- Cambridge Institute for Medical Research, Department of Clinical Biochemistry, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge, CB2 0XY, UK
| | - Andreas Graw
- Department of Cellular Physiology, Biomedical Centre (BMC), Ludwig-Maximilians-Universität München, Grosshadernerstrasse 9, 82152, Planegg-Martinsried, Germany
- Centre for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Schellingstrasse 4, 80799, München, Germany
| | - Vasileios Kargas
- Cambridge Institute for Medical Research, Department of Clinical Biochemistry, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge, CB2 0XY, UK
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Christopher Batters
- Cambridge Institute for Medical Research, Department of Clinical Biochemistry, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge, CB2 0XY, UK
- Department of Cellular Physiology, Biomedical Centre (BMC), Ludwig-Maximilians-Universität München, Grosshadernerstrasse 9, 82152, Planegg-Martinsried, Germany
- Centre for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Schellingstrasse 4, 80799, München, Germany
| | - Antonino F Montanarella
- Department of Cellular Physiology, Biomedical Centre (BMC), Ludwig-Maximilians-Universität München, Grosshadernerstrasse 9, 82152, Planegg-Martinsried, Germany
- Centre for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Schellingstrasse 4, 80799, München, Germany
| | - Tom O'Loughlin
- Cambridge Institute for Medical Research, Department of Clinical Biochemistry, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge, CB2 0XY, UK
| | - Chloe Johnson
- Cambridge Institute for Medical Research, Department of Clinical Biochemistry, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge, CB2 0XY, UK
| | - Susan D Arden
- Cambridge Institute for Medical Research, Department of Clinical Biochemistry, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge, CB2 0XY, UK
| | - Alan J Warren
- Cambridge Institute for Medical Research, Department of Clinical Biochemistry, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge, CB2 0XY, UK
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | | | - John Kendrick-Jones
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
| | - Nathan R Zaccai
- Cambridge Institute for Medical Research, Department of Clinical Biochemistry, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge, CB2 0XY, UK
| | - Markus Kröss
- Department of Cellular Physiology, Biomedical Centre (BMC), Ludwig-Maximilians-Universität München, Grosshadernerstrasse 9, 82152, Planegg-Martinsried, Germany
- Centre for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Schellingstrasse 4, 80799, München, Germany
| | - Claudia Veigel
- Department of Cellular Physiology, Biomedical Centre (BMC), Ludwig-Maximilians-Universität München, Grosshadernerstrasse 9, 82152, Planegg-Martinsried, Germany.
- Centre for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Schellingstrasse 4, 80799, München, Germany.
| | - Folma Buss
- Cambridge Institute for Medical Research, Department of Clinical Biochemistry, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge, CB2 0XY, UK.
| |
Collapse
|
5
|
Yuan C, Zhou F, Xu Z, Wu D, Hou P, Yang D, Pan L, Wang P. Functionalized DNA Origami-Enabled Detection of Biomarkers. Chembiochem 2024; 25:e202400227. [PMID: 38700476 DOI: 10.1002/cbic.202400227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/05/2024]
Abstract
Biomarkers are crucial physiological and pathological indicators in the host. Over the years, numerous detection methods have been developed for biomarkers, given their significant potential in various biological and biomedical applications. Among these, the detection system based on functionalized DNA origami has emerged as a promising approach due to its precise control over sensing modules, enabling sensitive, specific, and programmable biomarker detection. We summarize the advancements in biomarker detection using functionalized DNA origami, focusing on strategies for DNA origami functionalization, mechanisms of biomarker recognition, and applications in disease diagnosis and monitoring. These applications are organized into sections based on the type of biomarkers - nucleic acids, proteins, small molecules, and ions - and concludes with a discussion on the advantages and challenges associated with using functionalized DNA origami systems for biomarker detection.
Collapse
Affiliation(s)
- Caiqing Yuan
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200233, China
- Institute of Molecular Medicine, Department of Laboratory Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Fei Zhou
- Institute of Molecular Medicine, Department of Laboratory Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Zhihao Xu
- Institute of Molecular Medicine, Department of Laboratory Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Dunkai Wu
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200233, China
- Institute of Molecular Medicine, Department of Laboratory Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Pengfei Hou
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200233, China
- Institute of Molecular Medicine, Department of Laboratory Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Donglei Yang
- Institute of Molecular Medicine, Department of Laboratory Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Li Pan
- Institute of Molecular Medicine, Department of Laboratory Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Pengfei Wang
- Institute of Molecular Medicine, Department of Laboratory Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| |
Collapse
|
6
|
Lu Z, Tenjimbayashi M, Zhou J, Nakanishi J. Ultimately Adaptive Fluid Interfacial Phospholipid Membranes Unveiled Unanticipated High Cellular Mechanical Work. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403396. [PMID: 38613213 DOI: 10.1002/adma.202403396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Indexed: 04/14/2024]
Abstract
Living cells actively interact biochemically and mechanically with the surrounding extracellular matrices (ECMs) and undergo dramatic morphological and dimensional transitions, concomitantly remodeling ECMs. However, there is no suitable method to quantitatively discuss the contribution of mechanical interactions in such mutually adaptive processes. Herein, a highly deformable "living" cellular scaffold is developed to evaluate overall mechanical energy transfer between cell and ECMs. It is based on the water-perfluorocarbon interface decorated with phospholipids bearing a cell-adhesive ligand and fluorescent tag. The bioinert nature of the phospholipid membranes prevents the formation of solid-like protein nanofilms at the fluid interface, enabling to visualize and quantify cellular mechanical work against the ultimately adaptive model ECM. A new cellular wetting regime is identified, wherein interface deformation proceeds to cell flattening, followed by its eventual restoration. The cellular mechanical work during this adaptive wetting process is one order of magnitude higher than those reported with conventional elastic platforms. The behavior of viscous liquid drops at the air-water interface can simulate cellular adaptive wetting, suggesting that overall viscoelasticity of the cell body predominates the emergent wetting regime and regulates mechanical output. Cellular-force-driven high-energy states on the adaptive platform can be useful for cell fate manipulation.
Collapse
Affiliation(s)
- Zhou Lu
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Mizuki Tenjimbayashi
- Research Center for Materials Nanoarchitectonics (MANA), NIMS, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Junhong Zhou
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Jun Nakanishi
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
- Graduate School of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan
| |
Collapse
|
7
|
Wang K, Huang Q, Elshaer MR, Knorr B, Chaikin P, Zhu G. Tri-state logic computation by activating DNA origami chains. NANOSCALE 2024; 16:11991-11998. [PMID: 38727616 DOI: 10.1039/d3nr06010a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
The invention of DNA nanotechnology has enabled molecular computation as a promising substitute for traditional semiconductors which are limited to two-dimensional architectures and by heating problems resulting from densification. Current studies of logic gates achieved using DNA molecules are predominately focused on two-state operations (AND, OR, etc.); however, realizing tri-state logic (high impedance Z) in DNA computation is understudied. Here we actively fold DNA origami chain-like hinged rods to induce conformational changes that return tri-state logic signals. We use rigid six helix-bundle (6HB) DNA origami to self-assemble a linear trimer chain as a circuit platform with functional single-stranded (ss) DNA near each semi-flexible hinge. The presence or absence of ssDNA enable and input strands allows hybridization to take place at the hinges, activating one fold (0) or two folds (1) from the straight linear geometry (defined as High-Z) of the trimer chain. We design two different tri-state logic gate platforms, buffer and inverter, with corresponding enable/input ssDNA to unambiguously return tri-state signals, characterized by Atomic Force Microscopy (AFM) and/or agarose gel electrophoresis (GEL). Our work on tri-state logic significantly enhances DNA computation beyond the current two-state Boolean logic with both research and industrial applications, including cellular treatments and living matter utilizing the biocompatibility of DNA molecules.
Collapse
Affiliation(s)
- Kun Wang
- Department of Physics, New York University, New York, NY 10003, USA.
| | - Qiuyan Huang
- Department of Chemistry, New York University, New York, NY 10003, USA
| | - Mohammed Ragab Elshaer
- Department of Chemistry, Biochemistry, and Physics, Fairleigh Dickinson University, Madison, NJ 07940, USA
| | - Brian Knorr
- Department of Chemistry, Biochemistry, and Physics, Fairleigh Dickinson University, Madison, NJ 07940, USA
| | - Paul Chaikin
- Department of Physics, New York University, New York, NY 10003, USA.
| | - Guolong Zhu
- Department of Physics, New York University, New York, NY 10003, USA.
- Department of Chemistry, New York University, New York, NY 10003, USA
- Department of Chemistry, Biochemistry, and Physics, Fairleigh Dickinson University, Madison, NJ 07940, USA
| |
Collapse
|
8
|
Huang Y, Chen T, Chen X, Chen X, Zhang J, Liu S, Lu M, Chen C, Ding X, Yang C, Huang R, Song Y. Decoding Biomechanical Cues Based on DNA Sensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310330. [PMID: 38185740 DOI: 10.1002/smll.202310330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/18/2023] [Indexed: 01/09/2024]
Abstract
Biological systems perceive and respond to mechanical forces, generating mechanical cues to regulate life processes. Analyzing biomechanical forces has profound significance for understanding biological functions. Therefore, a series of molecular mechanical techniques have been developed, mainly including single-molecule force spectroscopy, traction force microscopy, and molecular tension sensor systems, which provide indispensable tools for advancing the field of mechanobiology. DNA molecules with a programmable structure and well-defined mechanical characteristics have attached much attention to molecular tension sensors as sensing elements, and are designed for the study of biomechanical forces to present biomechanical information with high sensitivity and resolution. In this work, a comprehensive overview of molecular mechanical technology is presented, with a particular focus on molecular tension sensor systems, specifically those based on DNA. Finally, the future development and challenges of DNA-based molecular tension sensor systems are looked upon.
Collapse
Affiliation(s)
- Yihao Huang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Ting Chen
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Xiaodie Chen
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Ximing Chen
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Jialu Zhang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Sinong Liu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Menghao Lu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Chong Chen
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Xiangyu Ding
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Chaoyong Yang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
- Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Ruiyun Huang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Yanling Song
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| |
Collapse
|
9
|
Karna D, Mano E, Ji J, Kawamata I, Suzuki Y, Mao H. Chemo-mechanical forces modulate the topology dynamics of mesoscale DNA assemblies. Nat Commun 2023; 14:6459. [PMID: 37833326 PMCID: PMC10575982 DOI: 10.1038/s41467-023-41604-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 09/06/2023] [Indexed: 10/15/2023] Open
Abstract
The intrinsic complexity of many mesoscale (10-100 nm) cellular machineries makes it challenging to elucidate their topological arrangement and transition dynamics. Here, we exploit DNA origami nanospring as a model system to demonstrate that tens of piconewton linear force can modulate higher-order conformation dynamics of mesoscale molecular assemblies. By switching between two chemical structures (i.e., duplex and tetraplex DNA) in the junctions of adjacent origami modules, the corresponding stretching or compressing chemo-mechanical stress reversibly flips the backbone orientations of the DNA nanosprings. Both coarse-grained molecular dynamics simulations and atomic force microscopy measurements reveal that such a backbone conformational switch does not alter the right-handed chirality of the nanospring helix. This result suggests that mesoscale helical handedness may be governed by the torque, rather than the achiral orientation, of nanospring backbones. It offers a topology-based caging/uncaging concept to present chemicals in response to environmental cues in solution.
Collapse
Affiliation(s)
- Deepak Karna
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH, 44242, USA
| | - Eriko Mano
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramaki-aza Aoba, Aoba-ku, Sendai, 980-8578, Japan
| | - Jiahao Ji
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH, 44242, USA
| | - Ibuki Kawamata
- Department of Robotics, Graduate School of Engineering, Tohoku University, 6-6-01 Aramaki-aza Aoba, Aoba-ku, Sendai, 980-8579, Japan.
| | - Yuki Suzuki
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramaki-aza Aoba, Aoba-ku, Sendai, 980-8578, Japan.
- Department of Chemistry for Materials, Graduate School of Engineering, Mie University, 1577 Kurimamachiya-Cho, Tsu, 514-8507, Japan.
| | - Hanbin Mao
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH, 44242, USA.
| |
Collapse
|
10
|
Gudimchuk NB, Alexandrova VV. Measuring and modeling forces generated by microtubules. Biophys Rev 2023; 15:1095-1110. [PMID: 37974983 PMCID: PMC10643784 DOI: 10.1007/s12551-023-01161-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/25/2023] [Indexed: 11/19/2023] Open
Abstract
Tubulins are essential proteins, which are conserved across all eukaryotic species. They polymerize to form microtubules, cytoskeletal components of paramount importance for cellular mechanics. The microtubules combine an extraordinarily high flexural rigidity and a non-equilibrium behavior, manifested in their intermittent assembly and disassembly. These chemically fueled dynamics allow microtubules to generate significant pushing and pulling forces at their ends to reposition intracellular organelles, remodel membranes, bear compressive forces, and transport chromosomes during cell division. In this article, we review classical and recent studies, which have allowed the quantification of microtubule-generated forces. The measurements, to which we owe most of the quantitative information about microtubule forces, were carried out in biochemically reconstituted systems in vitro. We also discuss how mathematical and computational modeling has contributed to the interpretations of these results and shaped our understanding of the mechanisms of force production by tubulin polymerization and depolymerization.
Collapse
Affiliation(s)
- Nikita B. Gudimchuk
- Department of Physics, Lomonosov Moscow State University, Moscow, Russia
- Department of Biology, Lomonosov Moscow State University, Moscow, Russia
- Center for Theoretical Problems of Physicochemical Pharmacology, Moscow, Russia
- Pskov State University, Pskov, Russia
| | - Veronika V. Alexandrova
- Department of Physics, Lomonosov Moscow State University, Moscow, Russia
- Department of Biology, Lomonosov Moscow State University, Moscow, Russia
- Center for Theoretical Problems of Physicochemical Pharmacology, Moscow, Russia
| |
Collapse
|
11
|
Matsubara H, Fukunaga H, Saito T, Ikezaki K, Iwaki M. A Programmable DNA Origami Nanospring That Reports Dynamics of Single Integrin Motion, Force Magnitude and Force Orientation in Living Cells. ACS NANO 2023. [PMID: 37394270 PMCID: PMC10373515 DOI: 10.1021/acsnano.2c12545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Mechanical forces are critical for regulating many biological processes such as cell differentiation, proliferation, and death. Probing the continuously changing molecular force through integrin receptors provides insights into the molecular mechanism of rigidity sensing in cells; however, the force information is still limited. Here, we built a coil-shaped DNA origami (DNA nanospring, NS) as a force sensor that reports the dynamic motion of single integrins as well as the magnitude and orientation of the force through integrins in living cells. We monitored the extension with nanometer accuracy and the orientation of the NS linked with a single integrin by the shape of the fluorescence spots. We used acoustic force spectroscopy to estimate the force-extension curve of the NS and determined the force with an ∼10% force error at a broad detectable range from subpicoNewtons (pN) to ∼50 pN. We found single integrins tethered with the NS moved several tens of nanometers, and the contraction and relaxation speeds were load dependent at less than ∼20 pN but robust over ∼20 pN. Fluctuations of the traction force orientation were suppressed with increasing load. Our assay system is a potentially powerful tool for studying mechanosensing at the molecular level.
Collapse
Affiliation(s)
- Hitomi Matsubara
- RIKEN Center for Biosystems Dynamics Research, RIKEN, Suita, Osaka 5650874, Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 5650871, Japan
| | - Hiroki Fukunaga
- RIKEN Center for Biosystems Dynamics Research, RIKEN, Suita, Osaka 5650874, Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 5650871, Japan
| | - Takahiro Saito
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 5650871, Japan
| | - Keigo Ikezaki
- Department of Physics, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 1130033, Japan
| | - Mitsuhiro Iwaki
- RIKEN Center for Biosystems Dynamics Research, RIKEN, Suita, Osaka 5650874, Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 5650871, Japan
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe, Hyogo 6512492, Japan
| |
Collapse
|
12
|
Qian D, Olvera de la Cruz M. Field-driven cluster formation in two-dimensional colloidal binary mixtures. Phys Rev E 2023; 107:044605. [PMID: 37198853 DOI: 10.1103/physreve.107.044605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 03/22/2023] [Indexed: 05/19/2023]
Abstract
We study size- and charge-asymmetric oppositely charged colloids driven by an external electric field. The large particles are connected by harmonic springs, forming a hexagonal-lattice network, while the small particles are free of bonds and exhibit fluidlike motion. We show that this model exhibits a cluster formation pattern when the external driving force exceeds a critical value. The clustering is accompanied with stable wave packets in vibrational motions of the large particles.
Collapse
Affiliation(s)
- Dingwen Qian
- Applied Physics Program, Northwestern University, Evanston, Illinois 60208, USA
| | - Monica Olvera de la Cruz
- Applied Physics Program, Department of Materials Science and Engineering, Department of Chemistry, and Department of Physic and Astronomy, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
13
|
Mills A, Aissaoui N, Finkel J, Elezgaray J, Bellot G. Mechanical DNA Origami to Investigate Biological Systems. Adv Biol (Weinh) 2023; 7:e2200224. [PMID: 36509679 DOI: 10.1002/adbi.202200224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/25/2022] [Indexed: 12/15/2022]
Abstract
The ability to self-assemble DNA nanodevices with programmed structural dynamics that can sense and respond to the local environment can enable transformative applications in fields including mechanobiology and nanomedicine. The responsive function of biomolecules is often driven by alterations in conformational distributions mediated by highly sensitive interactions with the local environment. In this review, the current state-of-the-art in constructing complex DNA geometries with dynamic and mechanical properties to enable a molecular scale force measurement is first summarized. Next, an overview of engineering modular DNA devices that interact with cell surfaces is highlighted detailing examples of mechanosensitive proteins and the force-induced dynamic molecular interaction on the downstream biochemical signaling. Finally, the challenges and an outlook on this promising class of DNA devices acting as nanomachines to operate at a low piconewton range suitable for a majority of biological effects or as hybrid materials to achieve higher tension exertion required for other biological investigations, are discussed.
Collapse
Affiliation(s)
- Allan Mills
- Centre de Biologie Structurale, INSERM, CNRS, Université de Montpellier, Montpellier, 34090, France
| | - Nesrine Aissaoui
- Laboratoire CiTCoM, Faculté de Santé, Université Paris Cité, CNRS, Paris, 75006, France
| | - Julie Finkel
- Centre de Biologie Structurale, INSERM, CNRS, Université de Montpellier, Montpellier, 34090, France
| | - Juan Elezgaray
- CRPP, CNRS, UMR 5031, Université de Bordeaux, Pessac, 33600, France
| | - Gaëtan Bellot
- Centre de Biologie Structurale, INSERM, CNRS, Université de Montpellier, Montpellier, 34090, France
| |
Collapse
|
14
|
Knappe GA, Wamhoff EC, Bathe M. Functionalizing DNA origami to investigate and interact with biological systems. NATURE REVIEWS. MATERIALS 2023; 8:123-138. [PMID: 37206669 PMCID: PMC10191391 DOI: 10.1038/s41578-022-00517-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/11/2022] [Indexed: 05/21/2023]
Abstract
DNA origami has emerged as a powerful method to generate DNA nanostructures with dynamic properties and nanoscale control. These nanostructures enable complex biophysical studies and the fabrication of next-generation therapeutic devices. For these applications, DNA origami typically needs to be functionalized with bioactive ligands and biomacromolecular cargos. Here, we review methods developed to functionalize, purify, and characterize DNA origami nanostructures. We identify remaining challenges, such as limitations in functionalization efficiency and characterization. We then discuss where researchers can contribute to further advance the fabrication of functionalized DNA origami.
Collapse
Affiliation(s)
- Grant A. Knappe
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
- Address correspondence to or
| | - Eike-Christian Wamhoff
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
| | - Mark Bathe
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
- Address correspondence to or
| |
Collapse
|
15
|
Razbin M, Benetatos P. Elasticity of Semiflexible ZigZag Nanosprings with a Point Magnetic Moment. Polymers (Basel) 2022; 15:polym15010044. [PMID: 36616394 PMCID: PMC9823424 DOI: 10.3390/polym15010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/16/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022] Open
Abstract
Kinks can appear along the contour of semiflexible polymers (biopolymers or synthetic ones), and they affect their elasticity and function. A regular sequence of alternating kink defects can form a semiflexible nanospring. In this article, we theoretically analyze the elastic behavior of such a nanospring with a point magnetic dipole attached to one end while the other end is assumed to be grafted to a rigid substrate. The rod-like segments of the nanospring are treated as weakly bending wormlike chains, and the propagator (Green's function) method is used in order to calculate the conformational and elastic properties of this system. We analytically calculate the distribution of orientational and positional fluctuations of the free end, the force-extension relation, as well as the compressional force that such a spring can exert on a planar wall. Our results show how the magnetic interaction affects the elasticity of the semiflexible nanospring. This sensitivity, which is based on the interplay of positional and orientational degrees of freedom, may prove useful in magnetometry or other applications.
Collapse
Affiliation(s)
- Mohammadhosein Razbin
- Department of Energy Engineering and Physics, Amirkabir University of Technology, Tehran 14588, Iran
- Correspondence: (M.R.); (P.B.)
| | - Panayotis Benetatos
- Department of Physics, Kyungpook National University, 80 Daehakro, Bukgu, Daegu 41566, Republic of Korea
- Correspondence: (M.R.); (P.B.)
| |
Collapse
|
16
|
Shahhosseini M, Beshay PE, Akbari E, Roki N, Lucas CR, Avendano A, Song JW, Castro CE. Multiplexed Detection of Molecular Interactions with DNA Origami Engineered Cells in 3D Collagen Matrices. ACS APPLIED MATERIALS & INTERFACES 2022; 14:55307-55319. [PMID: 36509424 PMCID: PMC9785045 DOI: 10.1021/acsami.2c07971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 09/29/2022] [Indexed: 06/17/2023]
Abstract
The interactions of cells with signaling molecules present in their local microenvironment maintain cell proliferation, differentiation, and spatial organization and mediate progression of diseases such as metabolic disorders and cancer. Real-time monitoring of the interactions between cells and their extracellular ligands in a three-dimensional (3D) microenvironment can inform detection and understanding of cell processes and the development of effective therapeutic agents. DNA origami technology allows for the design and fabrication of biocompatible and 3D functional nanodevices via molecular self-assembly for various applications including molecular sensing. Here, we report a robust method to monitor live cell interactions with molecules in their surrounding environment in a 3D tissue model using a microfluidic device. We used a DNA origami cell sensing platform (CSP) to detect two specific nucleic acid sequences on the membrane of B cells and dendritic cells. We further demonstrated real-time detection of biomolecules with the DNA sensing platform on the surface of dendritic cells in a 3D microfluidic tissue model. Our results establish the integration of live cells with membranes engineered with DNA nanodevices into microfluidic chips as a highly capable biosensor approach to investigate subcellular interactions in physiologically relevant 3D environments under controlled biomolecular transport.
Collapse
Affiliation(s)
- Melika Shahhosseini
- Department
of Mechanical and Aerospace Engineering, The Ohio State University, 201 West 19th Avenue, Columbus, Ohio 43210, United States
| | - Peter E. Beshay
- Department
of Mechanical and Aerospace Engineering, The Ohio State University, 201 West 19th Avenue, Columbus, Ohio 43210, United States
| | - Ehsan Akbari
- Biophysics
Graduate Program, The Ohio State University, Columbus, Ohio 43210, United States
| | - Niksa Roki
- Department
of Mechanical and Aerospace Engineering, The Ohio State University, 201 West 19th Avenue, Columbus, Ohio 43210, United States
- Comprehensive
Cancer Center, The Ohio State University, Columbus, Ohio 43210 United States
| | - Christopher R. Lucas
- Department
of Mechanical and Aerospace Engineering, The Ohio State University, 201 West 19th Avenue, Columbus, Ohio 43210, United States
- Comprehensive
Cancer Center, The Ohio State University, Columbus, Ohio 43210 United States
| | - Alex Avendano
- Department
of Biomedical Engineering, The Ohio State
University, Columbus, Ohio 43210, United States
| | - Jonathan W. Song
- Department
of Mechanical and Aerospace Engineering, The Ohio State University, 201 West 19th Avenue, Columbus, Ohio 43210, United States
- Comprehensive
Cancer Center, The Ohio State University, Columbus, Ohio 43210 United States
| | - Carlos E. Castro
- Department
of Mechanical and Aerospace Engineering, The Ohio State University, 201 West 19th Avenue, Columbus, Ohio 43210, United States
- Biophysics
Graduate Program, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
17
|
Shukla S, Troitskaia A, Swarna N, Maity BK, Tjioe M, Bookwalter CS, Trybus KM, Chemla YR, Selvin PR. High-throughput force measurement of individual kinesin-1 motors during multi-motor transport. NANOSCALE 2022; 14:12463-12475. [PMID: 35980233 PMCID: PMC9983033 DOI: 10.1039/d2nr01701f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Molecular motors often work in teams to move a cellular cargo. Yet measuring the forces exerted by each motor is challenging. Using a sensor made with denatured ssDNA and multi-color fluorescence, we measured picoNewtons of forces and nanometer distances exerted by individual constrained kinesin-1 motors acting together while driving a common microtubule in vitro. We find that kinesins primarily exerted less than 1 pN force, even while the microtubule is bypassing artificial obstacles of 20-100 nanometer size. Occasionally, individual forces increase upon encountering obstacles, although at other times they do not, with the cargo continuing in a directional manner. Our high-throughput technique, which can measure forces by many motors simultaneously, is expected to be useful for many different types of molecular motors.
Collapse
Affiliation(s)
- Saurabh Shukla
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.
| | - Alice Troitskaia
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Nikhila Swarna
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Barun Kumar Maity
- Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Marco Tjioe
- Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Carol S Bookwalter
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT, USA
| | - Kathleen M Trybus
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT, USA
| | - Yann R Chemla
- Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Paul R Selvin
- Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
18
|
Thermoresponsive Polymer Assemblies: From Molecular Design to Theranostics Application. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Xie C, Hu Y, Chen Z, Chen K, Pan L. Tuning curved DNA origami structures through mechanical design and chemical adducts. NANOTECHNOLOGY 2022; 33:405603. [PMID: 35772292 DOI: 10.1088/1361-6528/ac7d62] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
The bending and twisting of DNA origami structures are important features for controlling the physical properties of DNA nanodevices. It has not been fully explored yet how to finely tune the bending and twisting of curved DNA structures. Traditional tuning of the curved DNA structures was limited to controlling the in-plane-bending angle through varying the numbers of base pairs of deletions and insertions. Here, we developed two tuning strategies of curved DNA origami structures fromin silicoandin vitroaspects.In silico, the out-of-plane bending and twisting angles of curved structures were introduced, and were tuned through varying the patterns of base pair deletions and insertions.In vitro, a chemical adduct (ethidium bromide) was applied to dynamically tune a curved spiral. The 3D structural conformations, like chirality, of the curved DNA structures were finely tuned through these two strategies. The simulation and TEM results demonstrated that the patterns of base pair insertions and deletions and chemical adducts could effectively tune the bending and twisting of curved DNA origami structures. These strategies expand the programmable accuracy of curved DNA origami structures and have potential in building efficient dynamic functional nanodevices.
Collapse
Affiliation(s)
- Chun Xie
- Key Laboratory of Image Information Processing and Intelligent Control of Education Ministry of China, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yingxin Hu
- College of Information Science and Technology, Shijiazhuang Tiedao University, Shijiazhuang, People's Republic of China
| | - Zhekun Chen
- Key Laboratory of Image Information Processing and Intelligent Control of Education Ministry of China, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Kuiting Chen
- Key Laboratory of Image Information Processing and Intelligent Control of Education Ministry of China, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Linqiang Pan
- Key Laboratory of Image Information Processing and Intelligent Control of Education Ministry of China, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| |
Collapse
|
20
|
Molecular sensors for detection of tumor-stroma crosstalk. Adv Cancer Res 2022; 154:47-91. [PMID: 35459472 DOI: 10.1016/bs.acr.2022.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In most solid tumors, malignant cells coexist with non-cancerous host tissue comprised of a variety of extracellular matrix components and cell types, notably fibroblasts, immune cells, and endothelial cells. It is becoming increasingly evident that the non-cancerous host tissue, often referred to as the tumor stroma or the tumor microenvironment, wields tremendous influence in the proliferation, survival, and metastatic ability of cancer cells. The tumor stroma has an active biological role in the transmission of signals, such as growth factors and chemokines that activate oncogenic signaling pathways by autocrine and paracrine mechanisms. Moreover, the constituents of the stroma define the mechanical properties and the physical features of solid tumors, which influence cancer progression and response to therapy. Inspired by the emerging importance of tumor-stroma crosstalk and oncogenic physical forces, numerous biosensors, or advanced imaging and analysis techniques have been developed and applied to investigate complex and challenging questions in cancer research. These techniques facilitate measurements and biological readouts at scales ranging from subcellular to tissue-level with unprecedented level of spatial and temporal precision. Here we examine the application of biosensor technology for studying the complex and dynamic multiscale interactions of the tumor-host system.
Collapse
|
21
|
Abstract
Cellular processes and functions can be regulated by mechanical forces. Nanodevices that can measure and manipulate these forces are critical tools in chemical and cellular biology. Synthetic DNA oligonucleotides have been used to develop a wide range of powerful nanodevices due to their programmable nature and precise and predictable self-assembly. In recent years, various types of DNA-based mechanical nanodevices have been engineered for studying molecular-level forces. With the help of these nanodevices, our understanding of cellular responses to physical forces has been significantly advanced. In this article, we have reviewed some recent developments in DNA-based mechanical sensors and regulators for application in the characterization of cellular biomechanics and the manipulation of cellular morphology, motion and other functions. The design principles discussed in this article can be further used to inspire other types of powerful DNA-based mechanical nanodevices.
Collapse
Affiliation(s)
- Qian Tian
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA.
| | - Puspam Keshri
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA.
| | - Mingxu You
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA.
| |
Collapse
|
22
|
Watanabe M, Tokutake T, Harada A, Kaminaga M. Coil Formation of a Silicone String Using UV-Ozone Treatment. ACS OMEGA 2022; 7:11363-11370. [PMID: 35415360 PMCID: PMC8992247 DOI: 10.1021/acsomega.2c00475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Microcoils are used in various mechanical devices. However, existing methods for producing microcoils from polymers often require expensive equipment. In this study, microcoils were prepared using a cost-effective and simple method. The material used was silicone, which is a biocompatible polymeric material. Silicone was solidified inside glass capillaries to form thin, straight strings with a diameter of 140 μm. The string was then transformed to a coil shape by oxidation using UV-ozone treatment while it was prestretched and pretwisted. The resilience force from the prestretching and pretwisting forces caused the string to bend and twist, respectively. As a result of the combination of these deformation modes, a coil was formed. As an application of the coils, an actuator was prepared, which repeatedly transforms between straight and coiled shapes. The actuation was caused by the swelling/deswelling of silicone with hexane. A large strain of 54% was obtained.
Collapse
|
23
|
Beshay PE, Cortes-Medina MG, Menyhert MM, Song JW. The biophysics of cancer: emerging insights from micro- and nanoscale tools. ADVANCED NANOBIOMED RESEARCH 2022; 2:2100056. [PMID: 35156093 PMCID: PMC8827905 DOI: 10.1002/anbr.202100056] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cancer is a complex and dynamic disease that is aberrant both biologically and physically. There is growing appreciation that physical abnormalities with both cancer cells and their microenvironment that span multiple length scales are important drivers for cancer growth and metastasis. The scope of this review is to highlight the key advancements in micro- and nano-scale tools for delineating the cause and consequences of the aberrant physical properties of tumors. We focus our review on three important physical aspects of cancer: 1) solid mechanical properties, 2) fluid mechanical properties, and 3) mechanical alterations to cancer cells. Beyond posing physical barriers to the delivery of cancer therapeutics, these properties are also known to influence numerous biological processes, including cancer cell invasion and migration leading to metastasis, and response and resistance to therapy. We comment on how micro- and nanoscale tools have transformed our fundamental understanding of the physical dynamics of cancer progression and their potential for bridging towards future applications at the interface of oncology and physical sciences.
Collapse
Affiliation(s)
- Peter E Beshay
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210
| | | | - Miles M Menyhert
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210
| | - Jonathan W Song
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
24
|
Keya JJ, Akter M, Kabir AMR, Ishii S, Kakugo A. Fabrication of Artificial Muscle from Microtubules, Kinesins, and DNA Origami Nanostructures. Methods Mol Biol 2022; 2430:231-240. [PMID: 35476336 DOI: 10.1007/978-1-0716-1983-4_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Fabrication of molecular devices using biomolecules through biomimetic approaches has witnessed a surge in interest in recent years. DNA a versatile programmable material offers an opportunity to realize complicated operations through the designing of various nanostructures such as DNA origami. Here we describe the methods to use DNA origami for the self-assembly of the biomolecular motor system, microtubule (MT)-kinesin. A rodlike DNA origami motif facilitates the self-assembly of MTs into asters. A smooth muscle like molecular contraction system could be realized following the method where DNA mediated self-assembly of MTs permits dynamic contraction in the presence of kinesins through an energy dissipative process.
Collapse
Affiliation(s)
| | - Mousumi Akter
- Faculty of Science, Hokkaido University, Sapporo, Japan
| | | | - Satsuki Ishii
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan
| | - Akira Kakugo
- Faculty of Science, Hokkaido University, Sapporo, Japan.
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
25
|
Xu Z, Huang Y, Yin H, Zhu X, Tian Y, Min Q. DNA origami-based protein manipulation systems: From function regulation to biological application. Chembiochem 2021; 23:e202100597. [PMID: 34958167 DOI: 10.1002/cbic.202100597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/18/2021] [Indexed: 11/07/2022]
Abstract
Proteins directly participate in tremendous physiological processes and mediate a variety of cellular functions. However, precise manipulation of proteins with predefined relative position and stoichiometry for understanding protein-protein interactions and guiding cellular behaviors are still challenging. With superior programmability of DNA molecules, DNA origami technology is able to construct arbitrary nanostructures that can accurately control the arrangement of proteins with various functionalities to solve these problems. Herein, starting from the classification of DNA origami nanostructures and the category of assembled proteins, we summarize the existing DNA origami-based protein manipulation systems (PMSs), review the advances on the regulation of their functions, and discuss their applications in cellular behavior modulation and disease therapy. Moreover, the limitations and potential directions of DNA origami-based PMSs are also presented, which may offer guidance for rational construction and ingenious application.
Collapse
Affiliation(s)
- Ziqi Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Yide Huang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Hao Yin
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Xurong Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Ye Tian
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Qianhao Min
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
26
|
Morzy D, Joshi H, Sandler SE, Aksimentiev A, Keyser UF. Membrane Activity of a DNA-Based Ion Channel Depends on the Stability of Its Double-Stranded Structure. NANO LETTERS 2021; 21:9789-9796. [PMID: 34767378 DOI: 10.1021/acs.nanolett.1c03791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
DNA nanotechnology has emerged as a promising method for designing spontaneously inserting and fully controllable synthetic ion channels. However, both insertion efficiency and stability of existing DNA-based membrane channels leave much room for improvement. Here, we demonstrate an approach to overcoming the unfavorable DNA-lipid interactions that hinder the formation of a stable transmembrane pore. Our all-atom MD simulations and experiments show that the insertion-driving cholesterol modifications can cause fraying of terminal base pairs of nicked DNA constructs, distorting them when embedded in a lipid bilayer. Importantly, we show that DNA nanostructures with no backbone discontinuities form more stable conductive pores and insert into membranes with a higher efficiency than the equivalent nicked constructs. Moreover, lack of nicks allows design and maintenance of membrane-spanning helices in a tilted orientation within the lipid bilayer. Thus, reducing the conformational degrees of freedom of the DNA nanostructures enables better control over their function as synthetic ion channels.
Collapse
Affiliation(s)
- Diana Morzy
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, United Kingdom
| | - Himanshu Joshi
- Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois 61801, United States
| | - Sarah E Sandler
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, United Kingdom
| | - Aleksei Aksimentiev
- Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, Illinois 61801, United States
| | - Ulrich F Keyser
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, United Kingdom
| |
Collapse
|
27
|
Abstract
Invention of DNA origami has transformed the fabrication and application of biological nanomaterials. In this review, we discuss DNA origami nanoassemblies according to their four fundamental mechanical properties in response to external forces: elasticity, pliability, plasticity and stability. While elasticity and pliability refer to reversible changes in structures and associated properties, plasticity shows irreversible variation in topologies. The irreversible property is also inherent in the disintegration of DNA nanoassemblies, which is manifested by its mechanical stability. Disparate DNA origami devices in the past decade have exploited the mechanical regimes of pliability, elasticity, and plasticity, among which plasticity has shown its dominating potential in biomechanical and physiochemical applications. On the other hand, the mechanical stability of the DNA origami has been used to understand the mechanics of the assembly and disassembly of DNA nano-devices. At the end of this review, we discuss the challenges and future development of DNA origami nanoassemblies, again, from these fundamental mechanical perspectives.
Collapse
Affiliation(s)
- Jiahao Ji
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH, 44240, USA.
| | - Deepak Karna
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH, 44240, USA.
| | - Hanbin Mao
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH, 44240, USA.
| |
Collapse
|
28
|
Obtaining Precise Molecular Information via DNA Nanotechnology. MEMBRANES 2021; 11:membranes11090683. [PMID: 34564500 PMCID: PMC8466356 DOI: 10.3390/membranes11090683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/28/2021] [Accepted: 08/30/2021] [Indexed: 11/17/2022]
Abstract
Precise characterization of biomolecular information such as molecular structures or intermolecular interactions provides essential mechanistic insights into the understanding of biochemical processes. As the resolution of imaging-based measurement techniques improves, so does the quantity of molecular information obtained using these methodologies. DNA (deoxyribonucleic acid) molecule have been used to build a variety of structures and dynamic devices on the nanoscale over the past 20 years, which has provided an accessible platform to manipulate molecules and resolve molecular information with unprecedented precision. In this review, we summarize recent progress related to obtaining precise molecular information using DNA nanotechnology. After a brief introduction to the development and features of structural and dynamic DNA nanotechnology, we outline some of the promising applications of DNA nanotechnology in structural biochemistry and in molecular biophysics. In particular, we highlight the use of DNA nanotechnology in determination of protein structures, protein-protein interactions, and molecular force.
Collapse
|
29
|
Marcucci L, Fukunaga H, Yanagida T, Iwaki M. The Synergic Role of Actomyosin Architecture and Biased Detachment in Muscle Energetics: Insights in Cross Bridge Mechanism Beyond the Lever-Arm Swing. Int J Mol Sci 2021; 22:ijms22137037. [PMID: 34210098 PMCID: PMC8269045 DOI: 10.3390/ijms22137037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 02/04/2023] Open
Abstract
Muscle energetics reflects the ability of myosin motors to convert chemical energy into mechanical energy. How this process takes place remains one of the most elusive questions in the field. Here, we combined experimental measurements of in vitro sliding velocity based on DNA-origami built filaments carrying myosins with different lever arm length and Monte Carlo simulations based on a model which accounts for three basic components: (i) the geometrical hindrance, (ii) the mechano-sensing mechanism, and (iii) the biased kinetics for stretched or compressed motors. The model simulations showed that the geometrical hindrance due to acto-myosin spatial mismatching and the preferential detachment of compressed motors are synergic in generating the rapid increase in the ATP-ase rate from isometric to moderate velocities of contraction, thus acting as an energy-conservation strategy in muscle contraction. The velocity measurements on a DNA-origami filament that preserves the motors’ distribution showed that geometrical hindrance and biased detachment generate a non-zero sliding velocity even without rotation of the myosin lever-arm, which is widely recognized as the basic event in muscle contraction. Because biased detachment is a mechanism for the rectification of thermal fluctuations, in the Brownian-ratchet framework, we predict that it requires a non-negligible amount of energy to preserve the second law of thermodynamics. Taken together, our theoretical and experimental results elucidate less considered components in the chemo-mechanical energy transduction in muscle.
Collapse
Affiliation(s)
- Lorenzo Marcucci
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
- Center for Biosystems Dynamics Research, RIKEN, Suita 5650874, Japan; (T.Y.); (M.I.)
- Correspondence:
| | - Hiroki Fukunaga
- Graduate School of Frontier Biosciences, Osaka University, Suita 5650871, Japan;
| | - Toshio Yanagida
- Center for Biosystems Dynamics Research, RIKEN, Suita 5650874, Japan; (T.Y.); (M.I.)
- Graduate School of Frontier Biosciences, Osaka University, Suita 5650871, Japan;
- Center for Information and Neural Networks, NICT, Suita 5650871, Japan
| | - Mitsuhiro Iwaki
- Center for Biosystems Dynamics Research, RIKEN, Suita 5650874, Japan; (T.Y.); (M.I.)
- Graduate School of Frontier Biosciences, Osaka University, Suita 5650871, Japan;
| |
Collapse
|
30
|
Kong G, Xiong M, Liu L, Hu L, Meng HM, Ke G, Zhang XB, Tan W. DNA origami-based protein networks: from basic construction to emerging applications. Chem Soc Rev 2021; 50:1846-1873. [PMID: 33306073 DOI: 10.1039/d0cs00255k] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Natural living systems are driven by delicate protein networks whose functions are precisely controlled by many parameters, such as number, distance, orientation, and position. Focusing on regulation rather than just imitation, the construction of artificial protein networks is important in many research areas, including biomedicine, synthetic biology and chemical biology. DNA origami, sophisticated nanostructures with rational design, can offer predictable, programmable, and addressable scaffolds for protein assembly with nanometer precision. Recently, many interdisciplinary efforts have achieved the precise construction of DNA origami-based protein networks, and their emerging application in many areas. To inspire more fantastic research and applications, herein we highlight the applicability and potentiality of DNA origami-based protein networks. After a brief introduction to the development and features of DNA origami, some important factors for the precise construction of DNA origami-based protein networks are discussed, including protein-DNA conjugation methods, networks with different patterns and the controllable parameters in the networks. The discussion then focuses on the emerging application of DNA origami-based protein networks in several areas, including enzymatic reaction regulation, sensing, bionics, biophysics, and biomedicine. Finally, current challenges and opportunities in this research field are discussed.
Collapse
Affiliation(s)
- Gezhi Kong
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China.
| | - Mengyi Xiong
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China.
| | - Lu Liu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China.
| | - Ling Hu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China.
| | - Hong-Min Meng
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, China
| | - Guoliang Ke
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China.
| | - Xiao-Bing Zhang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China.
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China.
| |
Collapse
|
31
|
Karna D, Pan W, Pandey S, Suzuki Y, Mao H. Mechanochemical properties of DNA origami nanosprings revealed by force jumps in optical tweezers. NANOSCALE 2021; 13:8425-8430. [PMID: 33908965 PMCID: PMC8170849 DOI: 10.1039/d0nr08605c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
By incorporating pH responsive i-motif elements, we have constructed DNA origami nanosprings that respond to pH changes in the environment. Using an innovative force jump approach in optical tweezers, we have directly measured the spring constants and dynamic recoiling responses of the DNA nanosprings under different forces. These DNA nanosprings exhibited 3 times slower recoiling rates compared to duplex DNA backbones. In addition, we observed two distinct force regions which show different spring constants. In the entropic region below 2 pN, a spring constant of ∼0.03 pN nm-1 was obtained, whereas in the enthalpic region above 2 pN, the nanospring was 17 times stronger (0.5 pN nm-1). The force jump gave a more accurate measurement on nanospring constants compared to regular force ramping approaches, which only yielded an average spring constant in a specific force range. Compared to the reported DNA origami nanosprings with a completely different design, our nanospring is up to 50 times stiffer. The drastic increase in the spring constant and the pH responsive feature allow more robust applications of these nanosprings in many mechanobiological processes.
Collapse
Affiliation(s)
- Deepak Karna
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, USA.
| | | | | | | | | |
Collapse
|
32
|
DNA Nanodevices as Mechanical Probes of Protein Structure and Function. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11062802] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
DNA nanotechnology has reported a wide range of structurally tunable scaffolds with precise control over their size, shape and mechanical properties. One promising application of these nanodevices is as probes for protein function or determination of protein structure. In this perspective we cover several recent examples in this field, including determining the effect of ligand spacing and multivalency on cell activation, applying forces at the nanoscale, and helping to solve protein structure by cryo-EM. We also highlight some future directions in the chemistry necessary for integrating proteins with DNA nanoscaffolds, as well as opportunities for computational modeling of hybrid protein-DNA nanomaterials.
Collapse
|
33
|
Abstract
Structural DNA nanotechnology is a pioneering biotechnology that presents the opportunity to engineer DNA-based hardware that will mediate a profound interface to the nanoscale. To date, an enormous library of shaped 3D DNA nanostructures have been designed and assembled. Moreover, recent research has demonstrated DNA nanostructures that are not only static but can exhibit specific dynamic motion. DNA nanostructures have thus garnered significant research interest as a template for pursuing shape and motion-dependent nanoscale phenomena. Potential applications have been explored in many interdisciplinary areas spanning medicine, biosensing, nanofabrication, plasmonics, single-molecule chemistry, and facilitating biophysical studies. In this review, we begin with a brief overview of general and versatile design techniques for 3D DNA nanostructures as well as some techniques and studies that have focused on improving the stability of DNA nanostructures in diverse environments, which is pivotal for its reliable utilization in downstream applications. Our main focus will be to compile a wide body of existing research on applications of 3D DNA nanostructures that demonstrably rely on the versatility of their mechanical design. Furthermore, we frame reviewed applications into three primary categories, namely encapsulation, surface templating, and nanomechanics, that we propose to be archetypal shape- or motion-related functions of DNA nanostructures found in nanoscience applications. Our intent is to identify core concepts that may define and motivate specific directions of progress in this field as we conclude the review with some perspectives on the future.
Collapse
|
34
|
Abstract
DNA origami enables the bottom-up construction of chemically addressable, nanoscale objects with user-defined shapes and tailored functionalities. As such, not only can DNA origami objects be used to improve existing experimental methods in biophysics, but they also open up completely new avenues of exploration. In this review, we discuss basic biophysical concepts that are relevant for prospective DNA origami users. We summarize biochemical strategies for interfacing DNA origami with biomolecules of interest. We describe various applications of DNA origami, emphasizing the added value or new biophysical insights that can be generated: rulers and positioning devices, force measurement and force application devices, alignment supports for structural analysis for biomolecules in cryogenic electron microscopy and nuclear magnetic resonance, probes for manipulating and interacting with lipid membranes, and programmable nanopores. We conclude with some thoughts on so-far little explored opportunities for using DNA origami in more complex environments such as the cell or even organisms.
Collapse
Affiliation(s)
- Wouter Engelen
- Physik Department, Technische Universität München, 85748 Garching bei München, Germany;
| | - Hendrik Dietz
- Physik Department, Technische Universität München, 85748 Garching bei München, Germany;
| |
Collapse
|
35
|
|
36
|
Liu Y, Cheng J, Fan S, Ge H, Luo T, Tang L, Ji B, Zhang C, Cui D, Ke Y, Song J. Modular Reconfigurable DNA Origami: From Two-Dimensional to Three-Dimensional Structures. Angew Chem Int Ed Engl 2020; 59:23277-23282. [PMID: 32894584 DOI: 10.1002/anie.202010433] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Indexed: 12/12/2022]
Abstract
DNA origami enables the manipulation of objects at nanoscale, and demonstrates unprecedented versatility for fabricating both static and dynamic nanostructures. In this work, we introduce a new strategy for transferring modular reconfigurable DNA nanostructures from two-dimensional to three-dimensional. A 2D DNA sheet could be modularized into connected parts (e.g., two, three, and four parts in this work), which can be independently transformed between two conformations with a few DNA "trigger" strands. More interestingly, the transformation of the connected 2D modules can lead to the controlled, resettable structural conversion of a 2D sheet to a 3D architecture, due to the constraints induced by the connections between the 2D modules. This new approach can provide an efficient mean for constructing programmable, higher-order, and complex DNA objects, as well as sophisticated dynamic substrates for various applications.
Collapse
Affiliation(s)
- Yan Liu
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jin Cheng
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Sisi Fan
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Huan Ge
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tao Luo
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Linlin Tang
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Bin Ji
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chuan Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Daxiang Cui
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yonggang Ke
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 30322, Atlanta, GA, USA
| | - Jie Song
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.,Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, The Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| |
Collapse
|
37
|
Saran R, Wang Y, Li ITS. Mechanical Flexibility of DNA: A Quintessential Tool for DNA Nanotechnology. SENSORS (BASEL, SWITZERLAND) 2020; 20:E7019. [PMID: 33302459 PMCID: PMC7764255 DOI: 10.3390/s20247019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/04/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023]
Abstract
The mechanical properties of DNA have enabled it to be a structural and sensory element in many nanotechnology applications. While specific base-pairing interactions and secondary structure formation have been the most widely utilized mechanism in designing DNA nanodevices and biosensors, the intrinsic mechanical rigidity and flexibility are often overlooked. In this article, we will discuss the biochemical and biophysical origin of double-stranded DNA rigidity and how environmental and intrinsic factors such as salt, temperature, sequence, and small molecules influence it. We will then take a critical look at three areas of applications of DNA bending rigidity. First, we will discuss how DNA's bending rigidity has been utilized to create molecular springs that regulate the activities of biomolecules and cellular processes. Second, we will discuss how the nanomechanical response induced by DNA rigidity has been used to create conformational changes as sensors for molecular force, pH, metal ions, small molecules, and protein interactions. Lastly, we will discuss how DNA's rigidity enabled its application in creating DNA-based nanostructures from DNA origami to nanomachines.
Collapse
Affiliation(s)
- Runjhun Saran
- Department of Chemistry, Biochemistry and Molecular Biology, Irving K. Barber Faculty of Science, The University of British Columbia, Kelowna, BC V1V1V7, Canada;
| | - Yong Wang
- Department of Physics, Materials Science and Engineering Program, Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Isaac T. S. Li
- Department of Chemistry, Biochemistry and Molecular Biology, Irving K. Barber Faculty of Science, The University of British Columbia, Kelowna, BC V1V1V7, Canada;
| |
Collapse
|
38
|
Liu Y, Cheng J, Fan S, Ge H, Luo T, Tang L, Ji B, Zhang C, Cui D, Ke Y, Song J. Modular Reconfigurable DNA Origami: From Two‐Dimensional to Three‐Dimensional Structures. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010433] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Yan Liu
- Institute of Nano Biomedicine and Engineering Department of Instrument Science and Engineering School of Electronic Information and Electrical Engineering Shanghai Jiao Tong University Shanghai 200240 China
| | - Jin Cheng
- Institute of Nano Biomedicine and Engineering Department of Instrument Science and Engineering School of Electronic Information and Electrical Engineering Shanghai Jiao Tong University Shanghai 200240 China
| | - Sisi Fan
- Institute of Nano Biomedicine and Engineering Department of Instrument Science and Engineering School of Electronic Information and Electrical Engineering Shanghai Jiao Tong University Shanghai 200240 China
| | - Huan Ge
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 China
| | - Tao Luo
- Institute of Nano Biomedicine and Engineering Department of Instrument Science and Engineering School of Electronic Information and Electrical Engineering Shanghai Jiao Tong University Shanghai 200240 China
| | - Linlin Tang
- Institute of Nano Biomedicine and Engineering Department of Instrument Science and Engineering School of Electronic Information and Electrical Engineering Shanghai Jiao Tong University Shanghai 200240 China
| | - Bin Ji
- Institute of Nano Biomedicine and Engineering Department of Instrument Science and Engineering School of Electronic Information and Electrical Engineering Shanghai Jiao Tong University Shanghai 200240 China
| | - Chuan Zhang
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 China
| | - Daxiang Cui
- Institute of Nano Biomedicine and Engineering Department of Instrument Science and Engineering School of Electronic Information and Electrical Engineering Shanghai Jiao Tong University Shanghai 200240 China
| | - Yonggang Ke
- Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University 30322 Atlanta GA USA
| | - Jie Song
- Institute of Nano Biomedicine and Engineering Department of Instrument Science and Engineering School of Electronic Information and Electrical Engineering Shanghai Jiao Tong University Shanghai 200240 China
- Institute of Cancer and Basic Medicine (IBMC) Chinese Academy of Sciences The Cancer Hospital of the University of Chinese Academy of Sciences Hangzhou Zhejiang 310022 China
| |
Collapse
|
39
|
Mohammad Mirzaei N, Fok PW. Simple model of atherosclerosis in cylindrical arteries: impact of anisotropic growth on Glagov remodeling. MATHEMATICAL MEDICINE AND BIOLOGY-A JOURNAL OF THE IMA 2020; 38:59-82. [PMID: 32814945 DOI: 10.1093/imammb/dqaa011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 07/08/2020] [Accepted: 07/21/2020] [Indexed: 01/14/2023]
Abstract
In 1987, Seymour Glagov observed that arteries went through a two-stage remodeling process as a result of plaque growth: first, a compensatory phase where the lumen area remains approximately constant and second, an encroachment phase where the lumen area decreases over time. In this paper, we investigate the effect of growth anisotropy on Glagov remodeling in five different cases: pure radial, pure circumferential, pure axial, isotropic and general anisotropic growth where the elements of the growth tensor are chosen to minimize the total energy. We suggest that the nature of anisotropy is inclined towards the growth direction that requires the least amount of energy. Our framework is the theory of morphoelasticity on an axisymmetric arterial domain. For each case, we explore their specific effect on the Glagov curves. For the latter two cases, we also provide the changes in collagen fiber orientation and length in the intima, media and adventitia. In addition, we compare the total energy produced by growth in radial, circumferential and axial direction and deduce that using a radially dominant anisotropic growth leads to lower strain energy than isotropic growth.
Collapse
Affiliation(s)
| | - Pak-Wing Fok
- Department of Mathematical Sciences, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
40
|
|
41
|
Abstract
At the nanoscale, pushing, pulling, and shearing forces drive biochemical processes in development and remodeling as well as in wound healing and disease progression. Research in the field of mechanobiology investigates not only how these loads affect biochemical signaling pathways but also how signaling pathways respond to local loading by triggering mechanical changes such as regional stiffening of a tissue. This feedback between mechanical and biochemical signaling is increasingly recognized as fundamental in embryonic development, tissue morphogenesis, cell signaling, and disease pathogenesis. Historically, the interdisciplinary field of mechanobiology has been driven by the development of technologies for measuring and manipulating cellular and molecular forces, with each new tool enabling vast new lines of inquiry. In this review, we discuss recent advances in the manufacturing and capabilities of molecular-scale force and strain sensors. We also demonstrate how DNA nanotechnology has been critical to the enhancement of existing techniques and to the development of unique capabilities for future mechanosensor assembly. DNA is a responsive and programmable building material for sensor fabrication. It enables the systematic interrogation of molecular biomechanics with forces at the 1- to 200-pN scale that are needed to elucidate the fundamental means by which cells and proteins transduce mechanical signals.
Collapse
Affiliation(s)
- Susana M. Beltrán
- Department of Mechanical Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania
| | - Marvin J. Slepian
- Department of Medicine and Sarver Heart Center, University
of Arizona, Tucson
- Department of Biomedical Engineering, University of
Arizona, Tucson
- Department of Materials Science and Engineering, University
of Arizona, Tucson
| | - Rebecca E. Taylor
- Department of Mechanical Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania
- Department of Biomedical Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania
- Department of Electrical and Computer Engineering, Carnegie
Mellon University, Pittsburgh, Pennsylvania
| |
Collapse
|
42
|
Darley E, Singh JKD, Surace NA, Wickham SFJ, Baker MAB. The Fusion of Lipid and DNA Nanotechnology. Genes (Basel) 2019; 10:E1001. [PMID: 31816934 PMCID: PMC6947036 DOI: 10.3390/genes10121001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/18/2019] [Accepted: 11/26/2019] [Indexed: 01/06/2023] Open
Abstract
Lipid membranes form the boundary of many biological compartments, including organelles and cells. Consisting of two leaflets of amphipathic molecules, the bilayer membrane forms an impermeable barrier to ions and small molecules. Controlled transport of molecules across lipid membranes is a fundamental biological process that is facilitated by a diverse range of membrane proteins, including ion-channels and pores. However, biological membranes and their associated proteins are challenging to experimentally characterize. These challenges have motivated recent advances in nanotechnology towards building and manipulating synthetic lipid systems. Liposomes-aqueous droplets enclosed by a bilayer membrane-can be synthesised in vitro and used as a synthetic model for the cell membrane. In DNA nanotechnology, DNA is used as programmable building material for self-assembling biocompatible nanostructures. DNA nanostructures can be functionalised with hydrophobic chemical modifications, which bind to or bridge lipid membranes. Here, we review approaches that combine techniques from lipid and DNA nanotechnology to engineer the topography, permeability, and surface interactions of membranes, and to direct the fusion and formation of liposomes. These approaches have been used to study the properties of membrane proteins, to build biosensors, and as a pathway towards assembling synthetic multicellular systems.
Collapse
Affiliation(s)
- Es Darley
- School of Biotechnology and Biomolecular Science, UNSW Sydney, Kensington 2052, Australia;
| | - Jasleen Kaur Daljit Singh
- School of Chemistry, University of Sydney, Camperdown 2006, Australia; (J.K.D.S.); (N.A.S.)
- School of Chemical and Biomolecular Engineering, University of Sydney, Camperdown 2006, Australia
- Sydney Nanoscience Institute, University of Sydney, Camperdown 2006, Australia
| | - Natalie A. Surace
- School of Chemistry, University of Sydney, Camperdown 2006, Australia; (J.K.D.S.); (N.A.S.)
| | - Shelley F. J. Wickham
- School of Chemistry, University of Sydney, Camperdown 2006, Australia; (J.K.D.S.); (N.A.S.)
- Sydney Nanoscience Institute, University of Sydney, Camperdown 2006, Australia
- School of Physics, University of Sydney, Camperdown 2006, Australia
| | - Matthew A. B. Baker
- School of Biotechnology and Biomolecular Science, UNSW Sydney, Kensington 2052, Australia;
- CSIRO Synthetic Biology Future Science Platform, GPO Box 2583, Brisbane, QLD 4001, Australia
| |
Collapse
|
43
|
Molecular scaffolds: when DNA becomes the hardware for single-molecule investigations. Curr Opin Chem Biol 2019; 53:192-203. [DOI: 10.1016/j.cbpa.2019.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 09/21/2019] [Accepted: 09/24/2019] [Indexed: 01/14/2023]
|
44
|
Fujita K, Ohmachi M, Ikezaki K, Yanagida T, Iwaki M. Direct visualization of human myosin II force generation using DNA origami-based thick filaments. Commun Biol 2019; 2:437. [PMID: 31799438 PMCID: PMC6881340 DOI: 10.1038/s42003-019-0683-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 11/07/2019] [Indexed: 11/08/2022] Open
Abstract
The sarcomere, the minimal mechanical unit of muscle, is composed of myosins, which self-assemble into thick filaments that interact with actin-based thin filaments in a highly-structured lattice. This complex imposes a geometric restriction on myosin in force generation. However, how single myosins generate force within the restriction remains elusive and conventional synthetic filaments do not recapitulate the symmetric bipolar filaments in sarcomeres. Here we engineered thick filaments using DNA origami that incorporate human muscle myosin to directly visualize the motion of the heads during force generation in a restricted space. We found that when the head diffuses, it weakly interacts with actin filaments and then strongly binds preferentially to the forward region as a Brownian ratchet. Upon strong binding, the two-step lever-arm swing dominantly halts at the first step and occasionally reverses direction. Our results illustrate the usefulness of our DNA origami-based assay system to dissect the mechanistic details of motor proteins.
Collapse
Affiliation(s)
- Keisuke Fujita
- RIKEN Center for Biosystems Dynamics Research, RIKEN, Osaka, Japan
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Masashi Ohmachi
- RIKEN Center for Biosystems Dynamics Research, RIKEN, Osaka, Japan
| | | | - Toshio Yanagida
- RIKEN Center for Biosystems Dynamics Research, RIKEN, Osaka, Japan
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
- Center for Information and Neural Networks, NICT, Osaka, Japan
| | - Mitsuhiro Iwaki
- RIKEN Center for Biosystems Dynamics Research, RIKEN, Osaka, Japan
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
- AMED-PRIME, Japan Agency for Medical Research and Development, Tokyo, Japan
| |
Collapse
|
45
|
Robert-Paganin J, Pylypenko O, Kikuti C, Sweeney HL, Houdusse A. Force Generation by Myosin Motors: A Structural Perspective. Chem Rev 2019; 120:5-35. [PMID: 31689091 DOI: 10.1021/acs.chemrev.9b00264] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Generating force and movement is essential for the functions of cells and organisms. A variety of molecular motors that can move on tracks within cells have evolved to serve this role. How these motors interact with their tracks and how that, in turn, leads to the generation of force and movement is key to understanding the cellular roles that these motor-track systems serve. This review is focused on the best understood of these systems, which is the molecular motor myosin that moves on tracks of filamentous (F-) actin. The review highlights both the progress and the limits of our current understanding of how force generation can be controlled by F-actin-myosin interactions. What has emerged are insights they may serve as a framework for understanding the design principles of a number of types of molecular motors and their interactions with their tracks.
Collapse
Affiliation(s)
- Julien Robert-Paganin
- Structural Motility , UMR 144 CNRS/Curie Institute , 26 rue d'ulm , 75258 Paris cedex 05 , France
| | - Olena Pylypenko
- Structural Motility , UMR 144 CNRS/Curie Institute , 26 rue d'ulm , 75258 Paris cedex 05 , France
| | - Carlos Kikuti
- Structural Motility , UMR 144 CNRS/Curie Institute , 26 rue d'ulm , 75258 Paris cedex 05 , France
| | - H Lee Sweeney
- Department of Pharmacology & Therapeutics and the Myology Institute , University of Florida College of Medicine , PO Box 100267, Gainesville , Florida 32610-0267 , United States
| | - Anne Houdusse
- Structural Motility , UMR 144 CNRS/Curie Institute , 26 rue d'ulm , 75258 Paris cedex 05 , France
| |
Collapse
|
46
|
Lee AJ, Wälti C. DNA nanostructures: A versatile lab-bench for interrogating biological reactions. Comput Struct Biotechnol J 2019; 17:832-842. [PMID: 31316727 PMCID: PMC6611922 DOI: 10.1016/j.csbj.2019.06.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/05/2019] [Accepted: 06/11/2019] [Indexed: 01/10/2023] Open
Abstract
At its inception DNA nanotechnology was conceived as a tool for spatially arranging biological molecules in a programmable and deterministic way to improve their interrogation. To date, DNA nanotechnology has provided a versatile toolset of nanostructures and functional devices to augment traditional single molecule investigation approaches - including atomic force microscopy - by isolating, arranging and contextualising biological systems at the single molecule level. This review explores the state-of-the-art of DNA-based nanoscale tools employed to enhance and tune the interrogation of biological reactions, the study of spatially distributed pathways, the visualisation of enzyme interactions, the application and detection of forces to biological systems, and biosensing platforms.
Collapse
Affiliation(s)
- Andrew J. Lee
- Bioelectronics, The Pollard Institute, School of Electronic & Electrical Engineering, University of Leeds, LS2 9JT, United Kingdom
| | | |
Collapse
|
47
|
Matsuda K, Kabir AMR, Akamatsu N, Saito A, Ishikawa S, Matsuyama T, Ditzer O, Islam MS, Ohya Y, Sada K, Konagaya A, Kuzuya A, Kakugo A. Artificial Smooth Muscle Model Composed of Hierarchically Ordered Microtubule Asters Mediated by DNA Origami Nanostructures. NANO LETTERS 2019; 19:3933-3938. [PMID: 31037942 DOI: 10.1021/acs.nanolett.9b01201] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
DNA has been well-known for its applications in programmable self-assembly of materials. Nonetheless, utility of DNA origami, which offers more opportunity to realize complicated operations, has been very limited. Here we report self-assembly of a biomolecular motor system, microtubule-kinesin mediated by DNA origami nanostructures. We demonstrate that a rodlike DNA origami motif facilitates self-assembly of microtubules into asters. A smooth-muscle like molecular contraction system has also been realized using the DNA origami in which self-assembled microtubules exhibited fast and dynamic contraction in the presence of kinesins through an energy dissipative process. This work provides potential nanotechnological applications of DNA and biomolecular motor proteins.
Collapse
Affiliation(s)
| | | | - Naohide Akamatsu
- Department of Chemistry and Materials Engineering , Kansai University , Osaka 564-8680 , Japan
| | | | - Shumpei Ishikawa
- Department of Chemistry and Materials Engineering , Kansai University , Osaka 564-8680 , Japan
| | - Tsuyoshi Matsuyama
- Department of Chemistry and Materials Engineering , Kansai University , Osaka 564-8680 , Japan
| | - Oliver Ditzer
- Faculty of Chemistry and Food Chemistry , Technische Universität Dresden , Prüfungsamt, 01062 Dresden , Germany
| | - Md Sirajul Islam
- Organization for Research and Development of Innovative Science and Technology , Kansai University , Osaka 564-8680 , Japan
| | - Yuichi Ohya
- Department of Chemistry and Materials Engineering , Kansai University , Osaka 564-8680 , Japan
- Organization for Research and Development of Innovative Science and Technology , Kansai University , Osaka 564-8680 , Japan
| | | | - Akihiko Konagaya
- Department of Computational Intelligence and Systems Science , Tokyo Institute of Technology , Kanagawa 226-8502 , Japan
| | - Akinori Kuzuya
- Department of Chemistry and Materials Engineering , Kansai University , Osaka 564-8680 , Japan
- Organization for Research and Development of Innovative Science and Technology , Kansai University , Osaka 564-8680 , Japan
| | | |
Collapse
|
48
|
Directing curli polymerization with DNA origami nucleators. Nat Commun 2019; 10:1395. [PMID: 30918257 PMCID: PMC6437208 DOI: 10.1038/s41467-019-09369-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 03/07/2019] [Indexed: 01/16/2023] Open
Abstract
The physiological or pathological formation of fibrils often relies on molecular-scale nucleators that finely control the kinetics and structural features. However, mechanistic understanding of how protein nucleators mediate fibril formation in cells remains elusive. Here, we develop a CsgB-decorated DNA origami (CB-origami) to mimic protein nucleators in Escherichia coli biofilm that direct curli polymerization. We show that CB-origami directs curli subunit CsgA monomers to form oligomers and then accelerates fibril formation by increasing the proliferation rate of primary pathways. Fibrils grow either out from (departure mode) or towards the nucleators (arrival mode), implying two distinct roles of CsgB: as nucleation sites and as trap sites to capture growing nanofibrils in vicinity. Curli polymerization follows typical stop-and-go dynamics but exhibits a higher instantaneous elongation rate compared with independent fibril growth. This origami nucleator thus provides an in vitro platform for mechanistically probing molecular nucleation and controlling directional fibril polymerization for bionanotechnology.
Collapse
|
49
|
Abstract
The predictable nature of DNA interactions enables the programmable assembly of highly advanced 2D and 3D DNA structures of nanoscale dimensions. The access to ever larger and more complex structures has been achieved through decades of work on developing structural design principles. Concurrently, an increased focus has emerged on the applications of DNA nanostructures. In its nature, DNA is chemically inert and nanostructures based on unmodified DNA mostly lack function. However, functionality can be obtained through chemical modification of DNA nanostructures and the opportunities are endless. In this review, we discuss methodology for chemical functionalization of DNA nanostructures and provide examples of how this is being used to create functional nanodevices and make DNA nanostructures more applicable. We aim to encourage researchers to adopt chemical modifications as part of their work in DNA nanotechnology and inspire chemists to address current challenges and opportunities within the field.
Collapse
Affiliation(s)
- Mikael Madsen
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry , Aarhus University , Gustav Wieds Vej 14 , DK - 8000 Aarhus C, Denmark
| | - Kurt V Gothelf
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry , Aarhus University , Gustav Wieds Vej 14 , DK - 8000 Aarhus C, Denmark
| |
Collapse
|
50
|
Switchable DNA-origami nanostructures that respond to their environment and their applications. Biophys Rev 2018; 10:1283-1293. [PMID: 30280371 DOI: 10.1007/s12551-018-0462-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 09/18/2018] [Indexed: 12/22/2022] Open
Abstract
Structural DNA nanotechnology, in which Watson-Crick base pairing drives the formation of self-assembling nanostructures, has rapidly expanded in complexity and functionality since its inception in 1981. DNA nanostructures can now be made in arbitrary three-dimensional shapes and used to scaffold many other functional molecules such as proteins, metallic nanoparticles, polymers, fluorescent dyes and small molecules. In parallel, the field of dynamic DNA nanotechnology has built DNA circuits, motors and switches. More recently, these two areas have begun to merge-to produce switchable DNA nanostructures, which change state in response to their environment. In this review, we summarise switchable DNA nanostructures into two major classes based on response type: molecular actuation triggered by local chemical changes such as pH or concentration and external actuation driven by light, electric or magnetic fields. While molecular actuation has been well explored, external actuation of DNA nanostructures is a relatively new area that allows for the remote control of nanoscale devices. We discuss recent applications for DNA nanostructures where switching is used to perform specific functions-such as opening a capsule to deliver a molecular payload to a target cell. We then discuss challenges and future directions towards achieving synthetic nanomachines with complexity on the level of the protein machinery in living cells.
Collapse
|