1
|
Chen Y, Li T, Wang D, Lu B, Chai G, Tian J. Compact multipass-laser-beam antenna for NV sensor sensitivity enhancement. OPTICS EXPRESS 2023; 31:33123-33131. [PMID: 37859099 DOI: 10.1364/oe.499861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/08/2023] [Indexed: 10/21/2023]
Abstract
Large-area, highly uniform microwave field radiation and efficient excitation of fluorescence are the key to achieving high sensitivity sensing of the NV (nitrogen-vacancy) magnetometer. In this paper, we report a compact multipass-laser-beam antenna for NV ensemble color centers sensing. The antenna not only provides a tridimensional uniform magnetic field, but also can be used for efficient excitation of the NV fluorescence. The optimal size of the antenna and the angle of laser incidence are determined by the multi-physics field simulation software COMSOL. For an equivalent excitation power, the designed structure increases the path length of the excitation beam by up to three orders of magnitude, up to the level of m, compared to the conventional direct beam mode. Finally, this method increased the sensitivity by a factor of 60 realized a magnetic field sensitivity of 2.8 nT/√Hz in the range of 10-100 Hz. This work provides an experimental method for the design of integrated NV magnetometers.
Collapse
|
2
|
Hei XL, Li PB, Pan XF, Nori F. Enhanced Tripartite Interactions in Spin-Magnon-Mechanical Hybrid Systems. PHYSICAL REVIEW LETTERS 2023; 130:073602. [PMID: 36867822 DOI: 10.1103/physrevlett.130.073602] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Coherent tripartite interactions among degrees of freedom of completely different nature are instrumental for quantum information and simulation technologies, but they are generally difficult to realize and remain largely unexplored. Here, we predict a tripartite coupling mechanism in a hybrid setup comprising a single nitrogen-vacancy (NV) center and a micromagnet. We propose to realize direct and strong tripartite interactions among single NV spins, magnons, and phonons via modulating the relative motion between the NV center and the micromagnet. Specifically, by introducing a parametric drive (two-phonon drive) to modulate the mechanical motion (such as the center-of-mass motion of a NV spin in diamond trapped in an electrical trap or a levitated micromagnet in a magnetic trap), we can obtain a tunable and strong spin-magnon-phonon coupling at the single quantum level, with up to 2 orders of magnitude enhancement for the tripartite coupling strength. This enables, for example, tripartite entanglement among solid-state spins, magnons, and mechanical motions in quantum spin-magnonics-mechanics with realistic experimental parameters. This protocol can be readily implemented with the well-developed techniques in ion traps or magnetic traps and could pave the way for general applications in quantum simulations and information processing based on directly and strongly coupled tripartite systems.
Collapse
Affiliation(s)
- Xin-Lei Hei
- Ministry of Education Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Peng-Bo Li
- Ministry of Education Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
- Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan
| | - Xue-Feng Pan
- Ministry of Education Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Franco Nori
- Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan
- RIKEN Center for Quantum Computing (RQC), 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
- Physics Department, University of Michigan, Ann Arbor, Michigan 48109-1040, USA
| |
Collapse
|
3
|
Chen Y, Li T, Chai G, Wang D, Lu B, Guo A, Tian J. Enhancing Spin-Based Sensor Sensitivity by Avoiding Microwave Field Inhomogeneity of NV Defect Ensemble. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3938. [PMID: 36432224 PMCID: PMC9693443 DOI: 10.3390/nano12223938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/29/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
The behavior of the magnetic field sensitivity of nitrogen-vacancy (NV) centers as a function of microwave power and the inhomogeneous distribution of MW fields was systematically studied. An optimal structure for exciting spin structures by MW signals was designed using two parallel loop antennas. The volume of the homogeneous regions was approximately 42 mm3, and the associated diameter of the diamond reached up to 5.2 mm with 1016 NV sensors. Based on this structure, the detection contrast and voltage fluctuation of an optically detected magnetic resonance (ODMR) signal were optimized, and the sensitivity was improved to 5 nT/√Hz. In addition, a pulse sequence was presented to fully eliminate the MW broadening. The magnetic field sensitivity was improved by approximately one order of magnitude as the π-pulse duration was increased to its coherence time. This offers a useful way to improve the sensitivity of spin-based sensors.
Collapse
|
4
|
Mathur N, Mukherjee A, Gao X, Luo J, McCullian BA, Li T, Vamivakas AN, Fuchs GD. Excited-state spin-resonance spectroscopy of V
B
−
defect centers in hexagonal boron nitride. Nat Commun 2022; 13:3233. [PMID: 35680866 PMCID: PMC9184587 DOI: 10.1038/s41467-022-30772-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/14/2022] [Indexed: 11/17/2022] Open
Abstract
The recently discovered spin-active boron vacancy (V B − ) defect center in hexagonal boron nitride (hBN) has high contrast optically-detected magnetic resonance (ODMR) at room-temperature, with a spin-triplet ground-state that shows promise as a quantum sensor. Here we report temperature-dependent ODMR spectroscopy to probe spin within the orbital excited-state. Our experiments determine the excited-state spin Hamiltonian, including a room-temperature zero-field splitting of 2.1 GHz and a g-factor similar to that of the ground-state. We confirm that the resonance is associated with spin rotation in the excited-state using pulsed ODMR measurements, and we observe Zeeman-mediated level anti-crossings in both the orbital ground- and excited-state. Our observation of a single set of excited-state spin-triplet resonance from 10 to 300 K is suggestive of symmetry-lowering of the defect system from D3h to C2v. Additionally, the excited-state ODMR has strong temperature dependence of both contrast and transverse anisotropy splitting, enabling promising avenues for quantum sensing.
Collapse
Affiliation(s)
- Nikhil Mathur
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY USA
| | | | - Xingyu Gao
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN USA
| | - Jialun Luo
- Department of Physics, Cornell University, Ithaca, NY USA
| | | | - Tongcang Li
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN USA
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN USA
| | - A. Nick Vamivakas
- The Institute of Optics, University of Rochester, Rochester, NY USA
- Materials Science, University of Rochester, Rochester, NY USA
- Department of Physics and Astronomy, University of Rochester, Rochester, NY USA
- Center for Coherence and Quantum Optics, University of Rochester, Rochester, NY USA
| | - Gregory D. Fuchs
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY USA
- Kavli Institute at Cornell for Nanoscale Science, Ithaca, NY USA
| |
Collapse
|
5
|
Hernández-Mínguez A, Poshakinskiy AV, Hollenbach M, Santos PV, Astakhov GV. Acoustically induced coherent spin trapping. SCIENCE ADVANCES 2021; 7:eabj5030. [PMID: 34714672 PMCID: PMC8555898 DOI: 10.1126/sciadv.abj5030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/10/2021] [Indexed: 06/13/2023]
Abstract
Spin centers are promising qubits for quantum technologies. Here, we show that the acoustic manipulation of spin qubits in their electronic excited state provides an approach for coherent spin control inaccessible so far. We demonstrate a giant interaction between the strain field of a surface acoustic wave (SAW) and the excited-state spin of silicon vacancies in silicon carbide, which is about two orders of magnitude stronger than in the ground state. The simultaneous spin driving in the ground and excited states with the same SAW leads to the trapping of the spin along a direction given by the frequency detuning from the corresponding spin resonances. The coherence of the spin-trapped states becomes only limited by relaxation processes intrinsic to the ground state. The coherent acoustic manipulation of spins in the ground and excited state provides new opportunities for efficient on-chip quantum information protocols and coherent sensing.
Collapse
Affiliation(s)
- Alberto Hernández-Mínguez
- Paul-Drude-Institut für Festkörperelektronik, Leibniz-Institut im Forschungsverbund Berlin e.V., Hausvogteiplatz 5-7, 10117 Berlin, Germany
| | | | - Michael Hollenbach
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, Bautzner Landstrasse 400, 01328 Dresden, Germany
- Technische Universität Dresden, 01062 Dresden, Germany
| | - Paulo V. Santos
- Paul-Drude-Institut für Festkörperelektronik, Leibniz-Institut im Forschungsverbund Berlin e.V., Hausvogteiplatz 5-7, 10117 Berlin, Germany
| | - Georgy V. Astakhov
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, Bautzner Landstrasse 400, 01328 Dresden, Germany
| |
Collapse
|
6
|
Zalalutdinov MK, Robinson JT, Fonseca JJ, LaGasse SW, Pandey T, Lindsay LR, Reinecke TL, Photiadis DM, Culbertson JC, Cress CD, Houston BH. Acoustic cavities in 2D heterostructures. Nat Commun 2021; 12:3267. [PMID: 34075055 PMCID: PMC8169679 DOI: 10.1038/s41467-021-23359-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 04/16/2021] [Indexed: 11/10/2022] Open
Abstract
Two-dimensional (2D) materials offer unique opportunities in engineering the ultrafast spatiotemporal response of composite nanomechanical structures. In this work, we report on high frequency, high quality factor (Q) 2D acoustic cavities operating in the 50-600 GHz frequency (f) range with f × Q up to 1 × 1014. Monolayer steps and material interfaces expand cavity functionality, as demonstrated by building adjacent cavities that are isolated or strongly-coupled, as well as a frequency comb generator in MoS2/h-BN systems. Energy dissipation measurements in 2D cavities are compared with attenuation derived from phonon-phonon scattering rates calculated using a fully microscopic ab initio approach. Phonon lifetime calculations extended to low frequencies (<1 THz) and combined with sound propagation analysis in ultrathin plates provide a framework for designing acoustic cavities that approach their fundamental performance limit. These results provide a pathway for developing platforms employing phonon-based signal processing and for exploring the quantum nature of phonons.
Collapse
Affiliation(s)
| | | | - Jose J Fonseca
- NRC Postdoctoral Fellow at Naval Research Laboratory, Washington, DC, USA
| | - Samuel W LaGasse
- NRC Postdoctoral Fellow at Naval Research Laboratory, Washington, DC, USA
| | | | - Lucas R Lindsay
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | | | | | | | - Cory D Cress
- US Naval Research Laboratory, Washington, DC, USA
| | | |
Collapse
|
7
|
Li PB, Zhou Y, Gao WB, Nori F. Enhancing Spin-Phonon and Spin-Spin Interactions Using Linear Resources in a Hybrid Quantum System. PHYSICAL REVIEW LETTERS 2020; 125:153602. [PMID: 33095609 DOI: 10.1103/physrevlett.125.153602] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
Hybrid spin-mechanical setups offer a versatile platform for quantum science and technology, but improving the spin-phonon as well as the spin-spin couplings of such systems remains a crucial challenge. Here, we propose and analyze an experimentally feasible and simple method for exponentially enhancing the spin-phonon and the phonon-mediated spin-spin interactions in a hybrid spin-mechanical setup, using only linear resources. Through modulating the spring constant of the mechanical cantilever with a time-dependent pump, we can acquire a tunable and nonlinear (two-phonon) drive to the mechanical mode, thus amplifying the mechanical zero-point fluctuations and directly enhancing the spin-phonon coupling. This method allows the spin-mechanical system to be driven from the weak-coupling regime to the strong-coupling regime, and even the ultrastrong coupling regime. In the dispersive regime, this method gives rise to a large enhancement of the phonon-mediated spin-spin interactions between distant solid-state spins, typically two orders of magnitude larger than that without modulation. As an example, we show that the proposed scheme can apply to generating entangled states of multiple spins with high fidelities even in the presence of large dissipations.
Collapse
Affiliation(s)
- Peng-Bo Li
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
- Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan
| | - Yuan Zhou
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
- School of Science, Hubei University of Automotive Technology, Shiyan 442002, China
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Wei-Bo Gao
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Franco Nori
- Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-1040, USA
| |
Collapse
|
8
|
Chen XY, Yin ZQ. High-precision gravimeter based on a nano-mechanical resonator hybrid with an electron spin. OPTICS EXPRESS 2018; 26:31577-31588. [PMID: 30650741 DOI: 10.1364/oe.26.031577] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/03/2018] [Indexed: 06/09/2023]
Abstract
We show that the gravitational acceleration can be measured with the matter-wave Ramsey interferometry, by using a nitrogen-vacancy center coupled to a nano-mechanical resonator. We propose two experimental methods to realize the similar Hamiltonian, by using either a cantilever resonator or a trapped nanoparticle. The scheme is robust against the thermal noise, and could be realized at the temperature much higher than the quantum regime. The effects of decoherence on the interferometry fringe visibility is calculated, considering both the mechanical motional decay and dephasing of the nitrogen-vacancy center. In addition, we demonstrate that under the various sources of random and systematic noises, our gravimeter can be made on-chip and achieve a high measurement of precision. Under experimental feasible parameters, the proposed gravimeter could achieve 10-10 relative precision.
Collapse
|
9
|
Chen HY, MacQuarrie ER, Fuchs GD. Orbital State Manipulation of a Diamond Nitrogen-Vacancy Center Using a Mechanical Resonator. PHYSICAL REVIEW LETTERS 2018; 120:167401. [PMID: 29756908 DOI: 10.1103/physrevlett.120.167401] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Indexed: 06/08/2023]
Abstract
We study the resonant optical transitions of a single nitrogen-vacancy (NV) center that is coherently dressed by a strong mechanical drive. Using a gigahertz-frequency diamond mechanical resonator that is strain coupled to a NV center's orbital states, we demonstrate coherent Raman sidebands out to the ninth order and orbital-phonon interactions that mix the two excited-state orbital branches. These interactions are spectroscopically revealed through a multiphonon Rabi splitting of the orbital branches which scales as a function of resonator driving amplitude and is successfully reproduced in a quantum model. Finally, we discuss the application of mechanical driving to engineering NV-center orbital states.
Collapse
Affiliation(s)
- H Y Chen
- Cornell University, Ithaca, New York 14853, USA
| | | | - G D Fuchs
- Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
10
|
Bray K, Kato H, Previdi R, Sandstrom R, Ganesan K, Ogura M, Makino T, Yamasaki S, Magyar AP, Toth M, Aharonovich I. Single crystal diamond membranes for nanoelectronics. NANOSCALE 2018; 10:4028-4035. [PMID: 29431820 DOI: 10.1039/c7nr09097h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Single crystal, nanoscale diamond membranes are highly sought after for a variety of applications including nanophotonics, nanoelectronics and quantum information science. However, so far, the availability of conductive diamond membranes has remained an unreachable goal. In this work we present a complete nanofabrication methodology for engineering high aspect ratio, electrically active single crystal diamond membranes. The membranes have large lateral directions, exceeding ∼500 × 500 μm2 and are only several hundreds of nanometers thick. We further realize vertical single crystal p-n junctions made from the diamond membranes that exhibit onset voltages of ∼10 V and a current of several mA. Moreover, we deterministically introduce optically active color centers into the membranes, and demonstrate for the first time a single crystal nanoscale diamond LED. The robust and scalable approach to engineer the electrically active single crystal diamond membranes offers new pathways for advanced nanophotonic, nanoelectronic and optomechanical devices employing diamond.
Collapse
Affiliation(s)
- Kerem Bray
- School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Rigutti L, Venturi L, Houard J, Normand A, Silaeva EP, Borz M, Malykhin SA, Obraztsov AN, Vella A. Optical Contactless Measurement of Electric Field-Induced Tensile Stress in Diamond Nanoscale Needles. NANO LETTERS 2017; 17:7401-7409. [PMID: 29095635 DOI: 10.1021/acs.nanolett.7b03222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The application of a high electrostatic field at the apex of monocrystalline diamond nanoscale needles induces an energy splitting of the photoluminescence lines of color centers. In particular, the splitting of the zero-phonon line of the neutral nitrogen-vacancy complex (NV0) has been studied within a laser-assisted tomographic atom probe equipped with an in situ microphotoluminescence bench. The measured quadratic dependence of the energy splitting on the applied voltage corresponds to the stress generated on the metal-like apex surface by the electrostatic field. Tensile stress up to 7 GPa has thus been measured in the proximity of the needle apex. Furthermore, the stress scales along the needle shank inversely proportionally to its axial cross section. We demonstrate thus a method for contactless piezo-spectroscopy of nanoscale systems by electrostatic field regulation for the study of their mechanical properties. These results also provide an experimental confirmation to the models of dielectrics surface metallization under high electrostatic field.
Collapse
Affiliation(s)
- L Rigutti
- Groupe de Physique des Matériaux, Normandie Univ, UNIROUEN, INSA Rouen, CNRS , 76000 Rouen, France
| | - L Venturi
- Groupe de Physique des Matériaux, Normandie Univ, UNIROUEN, INSA Rouen, CNRS , 76000 Rouen, France
| | - J Houard
- Groupe de Physique des Matériaux, Normandie Univ, UNIROUEN, INSA Rouen, CNRS , 76000 Rouen, France
| | - A Normand
- Groupe de Physique des Matériaux, Normandie Univ, UNIROUEN, INSA Rouen, CNRS , 76000 Rouen, France
| | - E P Silaeva
- Groupe de Physique des Matériaux, Normandie Univ, UNIROUEN, INSA Rouen, CNRS , 76000 Rouen, France
| | - M Borz
- Groupe de Physique des Matériaux, Normandie Univ, UNIROUEN, INSA Rouen, CNRS , 76000 Rouen, France
| | - S A Malykhin
- Department of Physics and Mathematics, University of Eastern Finland , Joensuu 80101, Finland
- Department of Physics, M V Lomonosov Moscow State University , Moscow 119991, Russia
| | - A N Obraztsov
- Department of Physics and Mathematics, University of Eastern Finland , Joensuu 80101, Finland
- Department of Physics, M V Lomonosov Moscow State University , Moscow 119991, Russia
| | - A Vella
- Groupe de Physique des Matériaux, Normandie Univ, UNIROUEN, INSA Rouen, CNRS , 76000 Rouen, France
| |
Collapse
|
12
|
Wang RX, Cai K, Yin ZQ, Long GL. Quantum memory and non-demolition measurement of single phonon state with nitrogen-vacancy centers ensemble. OPTICS EXPRESS 2017; 25:30149-30161. [PMID: 29221048 DOI: 10.1364/oe.25.030149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 11/06/2017] [Indexed: 06/07/2023]
Abstract
In a diamond, the mechanical vibration-induced strain can lead to interaction between the mechanical mode and the nitrogen-vacancy (NV) centers. In this work, we propose to utilize the strain-induced coupling for the quantum non-demolition (QND) single phonon measurement and memory in a diamond. The single phonon in a diamond mechanical resonator can be perfectly absorbed and emitted by the NV centers ensemble (NVE) with adiabatically tuning the microwave driving. An optical laser drives the NVE to the excited states, which have much larger coupling strength to the mechanical mode. By adiabatically eliminating the excited states under large detuning limit, the effective coupling between the mechanical mode and the NVE can be used for QND measurement of the single phonon state. Under realistic experimental conditions, we numerically simulate the scheme. It is found that the fidelity of the absorbing and emitting process can reach a much high value. The overlap between the input and the output phonon shapes can reach 98.57%.
Collapse
|