1
|
Larose A, Miller CCJ, Mórotz GM. The lemur tail kinase family in neuronal function and disfunction in neurodegenerative diseases. Cell Mol Life Sci 2024; 81:447. [PMID: 39520508 PMCID: PMC11550312 DOI: 10.1007/s00018-024-05480-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 09/12/2024] [Accepted: 10/12/2024] [Indexed: 11/16/2024]
Abstract
The complex neuronal architecture and the long distance of synapses from the cell body require precisely orchestrated axonal and dendritic transport processes to support key neuronal functions including synaptic signalling, learning and memory formation. Protein phosphorylation is a major regulator of both intracellular transport and synaptic functions. Some kinases and phosphatases such as cyclin dependent kinase-5 (cdk5)/p35, glycogen synthase kinase-3β (GSK3β) and protein phosphatase-1 (PP1) are strongly involved in these processes. A primary pathological hallmark of neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis/frontotemporal dementia, is synaptic degeneration together with disrupted intracellular transport. One attractive possibility is that alterations to key kinases and phosphatases may underlie both synaptic and axonal transport damages. The brain enriched lemur tail kinases (LMTKs, formerly known as lemur tyrosine kinases) are involved in intracellular transport and synaptic functions, and are also centrally placed in cdk5/p35, GSK3β and PP1 signalling pathways. Loss of LMTKs is documented in major neurodegenerative diseases and thus can contribute to pathological defects in these disorders. However, whilst function of their signalling partners became clearer in modulating both synaptic signalling and axonal transport progress has only recently been made around LMTKs. In this review, we describe this progress with a special focus on intracellular transport, synaptic functions and neurodegenerative diseases.
Collapse
Affiliation(s)
- Angelique Larose
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Nagyvárad tér 4, Budapest, H-1089, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
| | - Christopher C J Miller
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 125 Coldharbour Lane Camberwell, London, SE5 9RX, UK.
| | - Gábor M Mórotz
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Nagyvárad tér 4, Budapest, H-1089, Hungary.
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
2
|
Pardo L, Norman JC. Targeting the secretory program of 3q-amplified lung cancers. J Clin Invest 2024; 134:e181798. [PMID: 40047887 PMCID: PMC11178543 DOI: 10.1172/jci181798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2025] Open
Abstract
Designing strategies to target cell proliferation has been a priority of cancer researchers for decades. However, targeting the secretory programs of transformed cells can influence other cancer features such as cell survival, migration, and communication with the tumor stroma. In this issue of the JCI, Tan and colleagues describe functional cooperativity between the Golgi-resident proteins Golgi integral membrane protein 4 (GOLIM4) and ATPase secretory pathway Ca2+ transporting 1 (ATP2C1) in the coordination of a secretory program in 3q-amplified cancers. Targeting these tumors with manganese (Mn2+) promoted GOLIM4 degradation and imposed a secretory blockade that impaired tumor progression and stromal cell recruitment in mice. These findings highlight the secretory program as a therapeutic target in 3q-amplified malignancies and provide a promising strategy to treat tumor progression.
Collapse
Affiliation(s)
- Luis Pardo
- Cancer Research UK Scotland Institute, Glasgow, United Kingdom
| | - Jim C. Norman
- Cancer Research UK Scotland Institute, Glasgow, United Kingdom
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
3
|
Bhattacharya S, Sarker S, Das S, Ahir M, Chattopadhyay S, Ghosh S, Adhikary A. microRNA-205 represses breast cancer metastasis by perturbing the rab coupling protein [RCP]-mediated integrin β1 recycling on the membrane. Apoptosis 2024; 29:191-209. [PMID: 37945815 DOI: 10.1007/s10495-023-01912-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2023] [Indexed: 11/12/2023]
Abstract
During cancer cell invasion, integrin undergoes constant endo/exocytic trafficking. It has been found that the recycling ability of integrin β1 through Rab11-controlled long loop pathways is directly associated with cancer invasion. Previous studies showed that gain-of-function mutant p53 regulates the Rab-coupling protein [RCP]-mediated integrin β1 recycling by inactivating tumor suppressor TAp63. So, we were interested to investigate the involvement of miR-205 in this process. In the current study first, we evaluated that the lower expression of miR-205 in MDA-MB-231 cell line is associated with high motility and invasiveness. Further investigation corroborated that miR-205 directly targets RCP resulting in attenuated RCP-mediated integrin β1 recycling. Overexpression of TAp63 validates our in vitro findings. To appraise the anti-metastatic role of miR-205, we developed two in vivo experimental models- xenograft-chick embryo and xenograft-immunosuppressed BALB/c mice. Our in vivo results support the negative effect of miR-205 on metastasis. Therefore, these findings advocate the tumor suppressor activity of miR-205 in breast cancer cells and suggest that in the future development of miR-205-targeting RNAi therapeutics could be a smart alternative approach to prevent the metastatic fate of the disease.
Collapse
Affiliation(s)
- Saurav Bhattacharya
- Centre for Research in Nanoscience and Nanotechnology, Technology Campus, University of Calcutta, JD-2, Sector-III, Salt Lake, Kolkata, 700106, West Bengal, India
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - Sushmita Sarker
- Centre for Research in Nanoscience and Nanotechnology, Technology Campus, University of Calcutta, JD-2, Sector-III, Salt Lake, Kolkata, 700106, West Bengal, India
| | - Shaswati Das
- Centre for Research in Nanoscience and Nanotechnology, Technology Campus, University of Calcutta, JD-2, Sector-III, Salt Lake, Kolkata, 700106, West Bengal, India
| | - Manisha Ahir
- Centre for Research in Nanoscience and Nanotechnology, Technology Campus, University of Calcutta, JD-2, Sector-III, Salt Lake, Kolkata, 700106, West Bengal, India
- Baylor College of Medicine, Houston, TX, USA
| | - Sreya Chattopadhyay
- Department of Physiology, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata, 700009, West Bengal, India
| | - Swatilekha Ghosh
- Amity Institute of Biotechnology, Amity University, Kolkata. Major Arterial Road [South-East], Action Area II, Newtown, Kolkata, 700135, West Bengal, India
| | - Arghya Adhikary
- Department of Life science & Bio-technology, Jadavpur University, Kolkata, West Bengal, India.
| |
Collapse
|
4
|
Abstract
Evidence implicating Eph receptor tyrosine kinases and their ephrin ligands (that together make up the 'Eph system') in cancer development and progression has been accumulating since the discovery of the first Eph receptor approximately 35 years ago. Advances in the past decade and a half have considerably increased the understanding of Eph receptor-ephrin signalling mechanisms in cancer and have uncovered intriguing new roles in cancer progression and drug resistance. This Review focuses mainly on these more recent developments. I provide an update on the different mechanisms of Eph receptor-ephrin-mediated cell-cell communication and cell autonomous signalling, as well as on the interplay of the Eph system with other signalling systems. I further discuss recent advances in elucidating how the Eph system controls tumour expansion, invasiveness and metastasis, supports cancer stem cells, and drives therapy resistance. In addition to functioning within cancer cells, the Eph system also mediates the reciprocal communication between cancer cells and cells of the tumour microenvironment. The involvement of the Eph system in tumour angiogenesis is well established, but recent findings also demonstrate roles in immune cells, cancer-associated fibroblasts and the extracellular matrix. Lastly, I discuss strategies under evaluation for therapeutic targeting of Eph receptors-ephrins in cancer and conclude with an outlook on promising future research directions.
Collapse
Affiliation(s)
- Elena B Pasquale
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
5
|
Phatak P, Burrows WM, Creed TM, Youssef M, Lee G, Donahue JM. MiR-214-3p targets Ras-related protein 14 (RAB14) to inhibit cellular migration and invasion in esophageal Cancer cells. BMC Cancer 2022; 22:1265. [PMID: 36471277 PMCID: PMC9721009 DOI: 10.1186/s12885-022-10304-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 11/10/2022] [Indexed: 12/07/2022] Open
Abstract
BACKGROUND MicroRNA (miR)-214-3p is emerging as an important tumor suppressor in esophageal cancer. In this study, we examined the interaction between miR-214-3p and RAB14, a membrane trafficking protein shown to exert oncogenic functions in other malignancies, in esophageal cancer cells. METHODS Studies were performed in a human esophageal epithelial cell line and a panel of esophageal cancer cell lines, as well in human specimens. MiR-214-3p expression was measured by digital PCR. Biotinylated RNA pull-down and luciferase reporter assays assessed binding. The xCELLigence RTCA system measured cell migration and invasion in real time. A lentiviral expression vector was used to create an esophageal cancer cell line stably expressing miR-214-3p. RESULTS MiR-214-3p expression was decreased in esophageal cancer cell lines and human specimens compared to non-malignant controls. RAB14 mRNA stability and protein expression were decreased following miR-214-3p overexpression. Binding between miR-214-3p and RAB14 mRNA was observed. Either forced expression of miR-214-3p or RAB14 silencing led to a marked decrease in cellular migration and invasion. Esophageal cancer cells stably expressing miR-214-3p demonstrated decreased growth in a subcutaneous murine model. CONCLUSIONS These results further support the tumor-suppressive role of miR-214-3p in esophageal cancer cells by demonstrating its ability to regulate RAB14 expression.
Collapse
Affiliation(s)
- Pornima Phatak
- grid.280808.a0000 0004 0419 1326Birmingham Veterans Affairs Medical Center, Birmingham, AL USA ,grid.265892.20000000106344187Department of Surgery, University of Alabama at Birmingham, Birmingham, AL USA ,grid.280711.d0000 0004 0419 6661Baltimore Veterans Affairs Medical Center, Baltimore, MD USA
| | - Whitney M. Burrows
- grid.411024.20000 0001 2175 4264Department of Surgery, University of Maryland School of Medicine, Baltimore, MD USA
| | - Timothy Michael Creed
- grid.411024.20000 0001 2175 4264Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD USA
| | - Mariam Youssef
- grid.265892.20000000106344187Department of Pathology, University of Alabama at Birmingham, Birmingham, AL USA
| | - Goo Lee
- grid.265892.20000000106344187Department of Pathology, University of Alabama at Birmingham, Birmingham, AL USA
| | - James M. Donahue
- grid.280808.a0000 0004 0419 1326Birmingham Veterans Affairs Medical Center, Birmingham, AL USA ,grid.265892.20000000106344187Department of Surgery, University of Alabama at Birmingham, Birmingham, AL USA ,grid.280711.d0000 0004 0419 6661Baltimore Veterans Affairs Medical Center, Baltimore, MD USA
| |
Collapse
|
6
|
Rathan-Kumar S, Roland JT, Momoh M, Goldstein A, Lapierre LA, Manning E, Mitchell L, Norman J, Kaji I, Goldenring JR. Rab11FIP1-deficient mice develop spontaneous inflammation and show increased susceptibility to colon damage. Am J Physiol Gastrointest Liver Physiol 2022; 323:G239-G254. [PMID: 35819177 PMCID: PMC9423785 DOI: 10.1152/ajpgi.00042.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/23/2022] [Accepted: 06/29/2022] [Indexed: 01/31/2023]
Abstract
The small GTPase, Rab11a, regulates vesicle trafficking and cell polarity in epithelial cells through interaction with Rab11 family-interacting proteins (Rab11-FIPs). We hypothesized that deficiency of Rab11-FIP1 would affect mucosal integrity in the intestine. Global Rab11FIP1 knockout (KO) mice were generated by deletion of the second exon. Pathology of intestinal tissues was analyzed by immunostaining of colonic sections and RNA-sequencing of isolated colonic epithelial cells. A low concentration of dextran sodium sulfate (DSS, 2%) was added to drinking water for 5 days, and injury score was compared between Rab11FIP1 KO, Rab11FIP2 KO, and heterozygous littermates. Rab11FIP1 KO mice showed normal fertility and body weight gain. More frequent lymphoid patches and infiltration of macrophages and neutrophils were identified in Rab11FIP1 KO mice before the development of rectal prolapse compared with control mice. The population of trefoil factor 3 (TFF3)-positive goblet cells was significantly lower, and the ratio of proliferative to nonproliferative cells was higher in Rab11FIP1 KO colons. Transcription signatures indicated that Rab11FIP1 deletion downregulated genes that mediate stress tolerance response, whereas genes mediating the response to infection were significantly upregulated, consistent with the inflammatory responses in the steady state. Lack of Rab11FIP1 also resulted in abnormal accumulation of subapical vesicles in colonocytes and the internalization of transmembrane mucin, MUC13, with Rab14. After DSS treatment, Rab11FIP1 KO mice showed greater body weight loss and more severe mucosal damage than those in heterozygous littermates. These findings suggest that Rab11FIP1 is important for cytoprotection mechanisms and for the maintenance of colonic mucosal integrity.NEW & NOTEWORTHY Although Rab11FIP1 is important in membrane trafficking in epithelial cells, the gastrointestinal phenotype of Rab11FIP1 knockout (KO) mice had never been reported. This study demonstrated that Rab11FIP1 loss induces mistrafficking of Rab14 and MUC13 and decreases in colonic goblet cells, resulting in impaired mucosal integrity.
Collapse
Affiliation(s)
- Sudiksha Rathan-Kumar
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Joseph T Roland
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Michael Momoh
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Anna Goldstein
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Lynne A Lapierre
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Elizabeth Manning
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Louise Mitchell
- Cancer Research UK Beatson Institute, Glasgow, Scotland, United Kingdom
| | - Jim Norman
- Cancer Research UK Beatson Institute, Glasgow, Scotland, United Kingdom
| | - Izumi Kaji
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - James R Goldenring
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
- Nashville Veterans Affairs Medical Center, Nashville, Tennessee
| |
Collapse
|
7
|
Wang C, Zhang S, Ma B, Fu Y, Luo Y. TP53 mutations upregulate RCP expression via Sp1/3 to drive lung cancer progression. Oncogene 2022; 41:2357-2371. [PMID: 35256783 DOI: 10.1038/s41388-022-02260-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/11/2022] [Accepted: 02/18/2022] [Indexed: 11/10/2022]
Abstract
Mutant p53 (mtp53) can exert cancer-promoting activities via "gain-of-function", which has become a popular research target. Although lots of researchers focus on the tumor-suppressor role for p53, the regulation of mutant p53 remains unknown. Here, we report a mechanism by which mtp53 regulate the transcription of Rab coupling protein (RCP) to influence lung cancer behavior. First, we show that RCP is specifically expressed at high levels in lung cancer tissues and cells, and RCP knockout suppresses tumor growth and metastasis. Further mass spectrometry and functional analysis identify that Sp1, Sp3 and Stat3 are the transcriptional activators of RCP. Moreover, p53 is involved in modulating RCP expression in an Sp1/3 dependent manner. Mechanistically, in contrast to wild-type p53 suppression of RCP transcription by decreasing Sp1/3 proteins, TP53 mutations have changed on Sp1/3 expression via "loss-of-function". Surprisingly, the DNA contact mutants of p53 further robustly enhance their binding ability with Sp1/3 to drive RCP expression through the "gain-of-function" activity. Collectively, we reveal a mechanism by which p53 regulating the transcription of RCP to influence lung cancer progression, which provides new insights for treating p53 mutant lung cancer.
Collapse
Affiliation(s)
- Caihong Wang
- Beijing Institute of Tropical Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
- The National Engineering Research Center for Protein Technology, Tsinghua University, Beijing, 100084, China
- Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing, 100084, China
| | - Shaosen Zhang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
- The National Engineering Research Center for Protein Technology, Tsinghua University, Beijing, 100084, China
- Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing, 100084, China
- Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Boyuan Ma
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
- The National Engineering Research Center for Protein Technology, Tsinghua University, Beijing, 100084, China
- Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing, 100084, China
| | - Yan Fu
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
- The National Engineering Research Center for Protein Technology, Tsinghua University, Beijing, 100084, China
- Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing, 100084, China
| | - Yongzhang Luo
- School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- The National Engineering Research Center for Protein Technology, Tsinghua University, Beijing, 100084, China.
- Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
8
|
Yonehara K, Zhou Y, Takahashi JI, Yokoyama S, Tomihara K, Noguchi M, Sakurai H. RSK-Mediated Non-canonical Activation of EphA2 by Tamoxifen. Biol Pharm Bull 2022; 45:162-168. [PMID: 35110502 DOI: 10.1248/bpb.b21-00567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The long-term administration of tamoxifen to estrogen receptor α (ERα)-positive breast cancer patients is an established treatment that reduces mortality and recurrence. However, resistance to tamoxifen and an increased risk of endometrial cancer may occur; therefore, the mechanisms by which tamoxifen causes these adverse effects warrant further study. Tamoxifen has been shown to activate mitogen-activated protein kinase (MAPK) in an ERα-independent manner; therefore, we investigated its effects on the MAPK-mediated non-canonical activation of EphA2, a critical event regulating cell migration. Tamoxifen at slightly higher concentrations induced the rapid phosphorylation of EphA2 at Ser-897 via the MAPK/extracellular signal-regulated kinase (ERK) kinase (MEK)-ERK-ribosomal S6 kinases (RSK) pathway in HeLa cells. In addition, tamoxifen significantly enhanced the migration ability of ERα-negative MDA-MB-231 breast cancer cells in RSK- and EphA2-dependent manners. Phosphorylated EphA2 was internalized and re-localized to the plasma membrane, including lamellipodia, in an RSK-dependent manner. Collectively, the present results provide novel insights into the tumor-promoting activity of tamoxifen.
Collapse
Affiliation(s)
- Keisuke Yonehara
- Department of Cancer Cell Biology, Faculty of Pharmaceutical Sciences, University of Toyama.,Department of Oral and Maxillofacial Surgery, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama
| | - Yue Zhou
- Department of Cancer Cell Biology, Faculty of Pharmaceutical Sciences, University of Toyama
| | - Jun-Ichiro Takahashi
- Department of Cancer Cell Biology, Faculty of Pharmaceutical Sciences, University of Toyama
| | - Satoru Yokoyama
- Department of Cancer Cell Biology, Faculty of Pharmaceutical Sciences, University of Toyama
| | - Kei Tomihara
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama
| | - Makoto Noguchi
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama
| | - Hiroaki Sakurai
- Department of Cancer Cell Biology, Faculty of Pharmaceutical Sciences, University of Toyama
| |
Collapse
|
9
|
von Grabowiecki Y, Phatak V, Aschauer L, Muller PAJ. Rab11-FIP1/RCP Functions as a Major Signalling Hub in the Oncogenic Roles of Mutant p53 in Cancer. Front Oncol 2021; 11:804107. [PMID: 35757381 PMCID: PMC9231559 DOI: 10.3389/fonc.2021.804107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/03/2021] [Indexed: 12/22/2022] Open
Abstract
Rab11-FIP1 is a Rab effector protein that is involved in endosomal recycling and trafficking of various molecules throughout the endocytic compartments of the cell. The consequence of this can be increased secretion or increased membrane expression of those molecules. In general, expression of Rab11-FIP1 coincides with more tumourigenic and metastatic cell behaviour. Rab11-FIP1 can work in concert with oncogenes such as mutant p53, but has also been speculated to be an oncogene in its own right. In this perspective, we will discuss and speculate upon our observations that mutant p53 promotes Rab11-FIP1 function to not only promote invasive behaviour, but also chemoresistance by regulating a multitude of different proteins.
Collapse
Affiliation(s)
- Yannick von Grabowiecki
- Tumour Suppressors Group, Cancer Research United Kingdom (UK) Manchester Institute, The University of Manchester, Macclesfield, United Kingdom
| | - Vinaya Phatak
- Medical Research Council (MRC) Toxicology Unit, Cambridge, United Kingdom
- Avacta Life Sciences, Cambridge, United Kingdom
| | - Lydia Aschauer
- Medical Research Council (MRC) Toxicology Unit, Cambridge, United Kingdom
- Orbit Discovery, Oxford, United Kingdom
| | - Patricia A. J. Muller
- Tumour Suppressors Group, Cancer Research United Kingdom (UK) Manchester Institute, The University of Manchester, Macclesfield, United Kingdom
- Department of Biosciences, Faculty of Science, Durham University, Durham, United Kingdom
- *Correspondence: Patricia A. J. Muller,
| |
Collapse
|
10
|
Marco S, Neilson M, Moore M, Perez-Garcia A, Hall H, Mitchell L, Lilla S, Blanco GR, Hedley A, Zanivan S, Norman JC. Nuclear-capture of endosomes depletes nuclear G-actin to promote SRF/MRTF activation and cancer cell invasion. Nat Commun 2021; 12:6829. [PMID: 34819513 PMCID: PMC8613289 DOI: 10.1038/s41467-021-26839-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/21/2021] [Indexed: 11/09/2022] Open
Abstract
Signals are relayed from receptor tyrosine kinases (RTKs) at the cell surface to effector systems in the cytoplasm and nucleus, and coordination of this process is important for the execution of migratory phenotypes, such as cell scattering and invasion. The endosomal system influences how RTK signalling is coded, but the ways in which it transmits these signals to the nucleus to influence gene expression are not yet clear. Here we show that hepatocyte growth factor, an activator of MET (an RTK), promotes Rab17- and clathrin-dependent endocytosis of EphA2, another RTK, followed by centripetal transport of EphA2-positive endosomes. EphA2 then mediates physical capture of endosomes on the outer surface of the nucleus; a process involving interaction between the nuclear import machinery and a nuclear localisation sequence in EphA2's cytodomain. Nuclear capture of EphA2 promotes RhoG-dependent phosphorylation of the actin-binding protein, cofilin to oppose nuclear import of G-actin. The resulting depletion of nuclear G-actin drives transcription of Myocardin-related transcription factor (MRTF)/serum-response factor (SRF)-target genes to implement cell scattering and the invasive behaviour of cancer cells.
Collapse
Affiliation(s)
- Sergi Marco
- CRUK Beatson Institute, Glasgow, G61 1BD, Scotland, UK
| | | | | | - Arantxa Perez-Garcia
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, Scotland, UK
| | - Holly Hall
- CRUK Beatson Institute, Glasgow, G61 1BD, Scotland, UK
| | | | - Sergio Lilla
- CRUK Beatson Institute, Glasgow, G61 1BD, Scotland, UK
| | | | - Ann Hedley
- CRUK Beatson Institute, Glasgow, G61 1BD, Scotland, UK
| | - Sara Zanivan
- CRUK Beatson Institute, Glasgow, G61 1BD, Scotland, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, Scotland, UK
| | - Jim C Norman
- CRUK Beatson Institute, Glasgow, G61 1BD, Scotland, UK.
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, Scotland, UK.
| |
Collapse
|
11
|
Rab11-FIP1 and Rab11-FIP5 Regulate pIgR/pIgA Transcytosis through TRIM21-Mediated Polyubiquitination. Int J Mol Sci 2021; 22:ijms221910466. [PMID: 34638806 PMCID: PMC8508952 DOI: 10.3390/ijms221910466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 01/01/2023] Open
Abstract
Polymeric immunoglobulin receptor (pIgR)-mediated polymeric immunoglobulin A (pIgA) transcytosis across mucosal epithelial cells plays an essential role in mucosal immunity. The general trafficking process has been well investigated, yet the elaborate regulatory mechanisms remain enigmatic. We identified a new pIgR interacting protein, the Rab11 effector Rab11-FIP1. Rab11-FIP1 and Rab11-FIP5 knockdown additively impaired pIgA transcytosis in both polarized and incompletely polarized cells. Moreover, Rab11-FIP1 and Rab11-FIP5 knockdown exhibited more significant inhibitory effects on pIgA transcytosis in incompletely polarized cells than in polarized cells. Interestingly, the trafficking process of pIgA in incompletely polarized cells is distinct from that in polarized cells. In incompletely polarized cells, the endocytic pIgR/pIgA was first transported from the basolateral plasma membrane to the vicinity of the centrosome where Rab11-FIP1 and Rab11-FIP5 bound to it, before the Rab11a-positive endosomes containing pIgR/pIgA, Rab11-FIP1 and Rab11-FIP5 were further transported to the apical plasma membrane via Golgi apparatus. During the trafficking process, TRIM21 mediated the K11-linked polyubiquitination of Rab11-FIP1 and the K6-linked polyubiquitination of Rab11-FIP5 to promote their activation and pIgA transcytosis. This study indicates that polyubiquitinated Rab11-FIP1 and Rab11-FIP5 mediated by TRIM21 cooperatively facilitate pIgA transcytosis and provides new insights into the intracellular trafficking process of pIgA in incompletely polarized cells.
Collapse
|
12
|
Ditsiou A, Gagliano T, Samuels M, Vella V, Tolias C, Giamas G. The multifaceted role of lemur tyrosine kinase 3 in health and disease. Open Biol 2021; 11:210218. [PMID: 34582708 PMCID: PMC8478525 DOI: 10.1098/rsob.210218] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
In the last decade, LMTK3 (lemur tyrosine kinase 3) has emerged as an important player in breast cancer, contributing to the advancement of disease and the acquisition of resistance to therapy through a strikingly complex set of mechanisms. Although the knowledge of its physiological function is largely limited to receptor trafficking in neurons, there is mounting evidence that LMTK3 promotes oncogenesis in a wide variety of cancers. Recent studies have broadened our understanding of LMTK3 and demonstrated its importance in numerous signalling pathways, culminating in the identification of a potent and selective LMTK3 inhibitor. Here, we review the roles of LMTK3 in health and disease and discuss how this research may be used to develop novel therapeutics to advance cancer treatment.
Collapse
Affiliation(s)
- Angeliki Ditsiou
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, JMS Building, Falmer, Brighton BN1 9QG, UK
| | - Teresa Gagliano
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, JMS Building, Falmer, Brighton BN1 9QG, UK,Department of Medicine, University of Udine, Piazzale Kolbe 4, Udine 33100, Italy
| | - Mark Samuels
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, JMS Building, Falmer, Brighton BN1 9QG, UK
| | - Viviana Vella
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, JMS Building, Falmer, Brighton BN1 9QG, UK
| | - Christos Tolias
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, JMS Building, Falmer, Brighton BN1 9QG, UK,Department of Neurosurgery, Royal Sussex County Hospital, Brighton and Sussex University Hospitals (BSUH) NHS Trust, Millennium Building, Brighton BN2 5BE, UK
| | - Georgios Giamas
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, JMS Building, Falmer, Brighton BN1 9QG, UK
| |
Collapse
|
13
|
Hill W, Zaragkoulias A, Salvador-Barbero B, Parfitt GJ, Alatsatianos M, Padilha A, Porazinski S, Woolley TE, Morton JP, Sansom OJ, Hogan C. EPHA2-dependent outcompetition of KRASG12D mutant cells by wild-type neighbors in the adult pancreas. Curr Biol 2021; 31:2550-2560.e5. [PMID: 33891893 PMCID: PMC8231095 DOI: 10.1016/j.cub.2021.03.094] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 02/15/2021] [Accepted: 03/29/2021] [Indexed: 12/22/2022]
Abstract
As we age, our tissues are repeatedly challenged by mutational insult, yet cancer occurrence is a relatively rare event. Cells carrying cancer-causing genetic mutations compete with normal neighbors for space and survival in tissues. However, the mechanisms underlying mutant-normal competition in adult tissues and the relevance of this process to cancer remain incompletely understood. Here, we investigate how the adult pancreas maintains tissue health in vivo following sporadic expression of oncogenic Kras (KrasG12D), the key driver mutation in human pancreatic cancer. We find that when present in tissues in low numbers, KrasG12D mutant cells are outcompeted and cleared from exocrine and endocrine compartments in vivo. Using quantitative 3D tissue imaging, we show that before being cleared, KrasG12D cells lose cell volume, pack into round clusters, and E-cadherin-based cell-cell adhesions decrease at boundaries with normal neighbors. We identify EphA2 receptor as an essential signal in the clearance of KrasG12D cells from exocrine and endocrine tissues in vivo. In the absence of functional EphA2, KrasG12D cells do not alter cell volume or shape, E-cadherin-based cell-cell adhesions increase and KrasG12D cells are retained in tissues. The retention of KRasG12D cells leads to the early appearance of premalignant pancreatic intraepithelial neoplasia (PanINs) in tissues. Our data show that adult pancreas tissues remodel to clear KrasG12D cells and maintain tissue health. This study provides evidence to support a conserved functional role of EphA2 in Ras-driven cell competition in epithelial tissues and suggests that EphA2 is a novel tumor suppressor in pancreatic cancer.
Collapse
Affiliation(s)
- William Hill
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK
| | - Andreas Zaragkoulias
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK
| | - Beatriz Salvador-Barbero
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK
| | - Geraint J Parfitt
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK; School of Optometry & Vision Sciences, Cardiff University, Maindy Road, Cardiff CF24 4HQ, UK
| | - Markella Alatsatianos
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK
| | - Ana Padilha
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK
| | - Sean Porazinski
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK; Faculty of Medicine, St Vincent's Clinical School, University of New South Wales, Sydney, Australia
| | - Thomas E Woolley
- School of Mathematics, Cardiff University, Senghennydd Road, Cardiff CF24 4AG, UK
| | - Jennifer P Morton
- CRUK Beatson Institute, Glasgow G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Owen J Sansom
- CRUK Beatson Institute, Glasgow G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Catherine Hogan
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK.
| |
Collapse
|
14
|
Zhang S, Wang C, Ma B, Xu M, Xu S, Liu J, Tian Y, Fu Y, Luo Y. Mutant p53 Drives Cancer Metastasis via RCP-Mediated Hsp90α Secretion. Cell Rep 2021; 32:107879. [PMID: 32640214 DOI: 10.1016/j.celrep.2020.107879] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/10/2020] [Accepted: 06/17/2020] [Indexed: 01/26/2023] Open
Abstract
Mutant p53 (mutp53) loses its tumor suppressor properties but gains oncogenic functions of driving malignancy. However, it remains largely unknown how mutp53 drives cancer metastasis. Here, we show that wild-type p53 (WTp53) suppresses the secretion of heat shock protein 90-alpha (Hsp90α), whereas mutp53 enhances Hsp90α vesicular trafficking and exosome-mediated secretion. Long-term delivery of an antibody that blocks extracellular Hsp90α (eHsp90α) function extends the survival of p53-/- mice and attenuates the invasiveness of p53 mutant tumors. Furthermore, mass spectrometry and functional analysis identified a critical role for Rab coupling protein (RCP) in mutp53-induced Hsp90α secretion. RCP knockdown decreases eHsp90α levels and inhibits malignant progression. Notably, recombinant Hsp90α re-introduction markedly rescues the impaired migration and invasion abilities caused by RCP depletion. Taken together, these findings elucidate the molecular mechanisms by which mutp53 executes oncogenic activities via its downstream RCP-mediated Hsp90α secretion and a strategy to treat human cancers expressing mutp53 proteins.
Collapse
Affiliation(s)
- Shaosen Zhang
- Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084, China; The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing 100084, China
| | - Caihong Wang
- Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084, China; The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing 100084, China
| | - Boyuan Ma
- Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084, China; The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing 100084, China
| | - Min Xu
- Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084, China; The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing 100084, China
| | - Siran Xu
- Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084, China; The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing 100084, China
| | - Jie Liu
- Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084, China; The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing 100084, China
| | - Yang Tian
- Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084, China; The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing 100084, China
| | - Yan Fu
- Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084, China; The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing 100084, China
| | - Yongzhang Luo
- Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084, China; The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
15
|
Fu Y, Ricciardiello F, Yang G, Qiu J, Huang H, Xiao J, Cao Z, Zhao F, Liu Y, Luo W, Chen G, You L, Chiaradonna F, Zheng L, Zhang T. The Role of Mitochondria in the Chemoresistance of Pancreatic Cancer Cells. Cells 2021; 10:497. [PMID: 33669111 PMCID: PMC7996512 DOI: 10.3390/cells10030497] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/16/2021] [Accepted: 02/14/2021] [Indexed: 02/06/2023] Open
Abstract
The first-line chemotherapies for patients with unresectable pancreatic cancer (PC) are 5-fluorouracil (5-FU) and gemcitabine therapy. However, due to chemoresistance the prognosis of patients with PC has not been significantly improved. Mitochondria are essential organelles in eukaryotes that evolved from aerobic bacteria. In recent years, many studies have shown that mitochondria play important roles in tumorigenesis and may act as chemotherapeutic targets in PC. In addition, according to recent studies, mitochondria may play important roles in the chemoresistance of PC by affecting apoptosis, metabolism, mtDNA metabolism, and mitochondrial dynamics. Interfering with some of these factors in mitochondria may improve the sensitivity of PC cells to chemotherapeutic agents, such as gemcitabine, making mitochondria promising targets for overcoming chemoresistance in PC.
Collapse
Affiliation(s)
- Yibo Fu
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (Y.F.); (G.Y.); (J.Q.); (H.H.); (J.X.); (Z.C.); (F.Z.); (Y.L.); (W.L.); (G.C.); (L.Y.)
| | - Francesca Ricciardiello
- Department of Biotechnology and Bioscience, University of Milano Bicocca, 20126 Milano, Italy;
| | - Gang Yang
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (Y.F.); (G.Y.); (J.Q.); (H.H.); (J.X.); (Z.C.); (F.Z.); (Y.L.); (W.L.); (G.C.); (L.Y.)
| | - Jiangdong Qiu
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (Y.F.); (G.Y.); (J.Q.); (H.H.); (J.X.); (Z.C.); (F.Z.); (Y.L.); (W.L.); (G.C.); (L.Y.)
| | - Hua Huang
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (Y.F.); (G.Y.); (J.Q.); (H.H.); (J.X.); (Z.C.); (F.Z.); (Y.L.); (W.L.); (G.C.); (L.Y.)
| | - Jianchun Xiao
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (Y.F.); (G.Y.); (J.Q.); (H.H.); (J.X.); (Z.C.); (F.Z.); (Y.L.); (W.L.); (G.C.); (L.Y.)
| | - Zhe Cao
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (Y.F.); (G.Y.); (J.Q.); (H.H.); (J.X.); (Z.C.); (F.Z.); (Y.L.); (W.L.); (G.C.); (L.Y.)
| | - Fangyu Zhao
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (Y.F.); (G.Y.); (J.Q.); (H.H.); (J.X.); (Z.C.); (F.Z.); (Y.L.); (W.L.); (G.C.); (L.Y.)
| | - Yueze Liu
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (Y.F.); (G.Y.); (J.Q.); (H.H.); (J.X.); (Z.C.); (F.Z.); (Y.L.); (W.L.); (G.C.); (L.Y.)
| | - Wenhao Luo
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (Y.F.); (G.Y.); (J.Q.); (H.H.); (J.X.); (Z.C.); (F.Z.); (Y.L.); (W.L.); (G.C.); (L.Y.)
| | - Guangyu Chen
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (Y.F.); (G.Y.); (J.Q.); (H.H.); (J.X.); (Z.C.); (F.Z.); (Y.L.); (W.L.); (G.C.); (L.Y.)
| | - Lei You
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (Y.F.); (G.Y.); (J.Q.); (H.H.); (J.X.); (Z.C.); (F.Z.); (Y.L.); (W.L.); (G.C.); (L.Y.)
| | - Ferdinando Chiaradonna
- Department of Biotechnology and Bioscience, University of Milano Bicocca, 20126 Milano, Italy;
| | - Lianfang Zheng
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China;
| | - Taiping Zhang
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (Y.F.); (G.Y.); (J.Q.); (H.H.); (J.X.); (Z.C.); (F.Z.); (Y.L.); (W.L.); (G.C.); (L.Y.)
- Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
16
|
Phatak V, von Grabowiecki Y, Janus J, Officer L, Behan C, Aschauer L, Pinon L, Mackay H, Zanivan S, Norman JC, Kelly M, Le Quesne J, Muller PAJ. Mutant p53 promotes RCP-dependent chemoresistance coinciding with increased delivery of P-glycoprotein to the plasma membrane. Cell Death Dis 2021; 12:207. [PMID: 33627632 PMCID: PMC7904762 DOI: 10.1038/s41419-021-03497-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 02/03/2023]
Abstract
TP53 is the most frequently mutated gene in cancers. Mutations lead to loss of p53 expression or expression of a mutant protein. Mutant p53 proteins commonly lose wild-type function, but can also acquire novel functions in promoting metastasis and chemoresistance. Previously, we uncovered a role for Rab-coupling protein (RCP) in mutant p53-dependent invasion. RCP promotes endosomal recycling and signalling of integrins and receptor tyrosine kinases. In a screen to identify novel RCP-interacting proteins, we discovered P-glycoprotein (P-gp). Thus, we hypothesised that mutant p53 could promote chemoresistance through RCP-dependent recycling of P-gp. The interaction between RCP and P-gp was verified endogenously and loss of RCP or mutant p53 rendered cells more sensitive to cisplatin and etoposide. In mutant p53 cells we detected an RCP-dependent delivery of P-gp to the plasma membrane upon drug treatment and decreased retention of P-gp substrates. A co-localisation of P-gp and RCP was seen in mutant p53 cells, but not in p53-null cells upon chemotherapeutic exposure. In conclusion, mutant p53 expression enhanced co-localisation of P-gp and RCP to allow for rapid delivery of P-gp to the plasma membrane and increased resistance to chemotherapeutics.
Collapse
Affiliation(s)
- Vinaya Phatak
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
- Avacta Life Sciences, Cambridge, UK
| | | | - Justyna Janus
- Centre for Core Biotechnology Services, University of Leicester, Leicester, UK
| | - Leah Officer
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Caron Behan
- Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
| | - Lydia Aschauer
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Lucia Pinon
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Hannah Mackay
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Sara Zanivan
- Cancer Research UK, Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Jim C Norman
- Cancer Research UK, Beatson Institute, Glasgow, UK
| | - Michael Kelly
- Centre for Core Biotechnology Services, University of Leicester, Leicester, UK
| | - John Le Quesne
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
- Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| | - Patricia A J Muller
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK.
- Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK.
| |
Collapse
|
17
|
Gibieža P, Peterman E, Hoffman HK, Van Engeleburg S, Skeberdis VA, Prekeris R. Rab14/MACF2 complex regulates endosomal targeting during cytokinesis. Mol Biol Cell 2021; 32:554-566. [PMID: 33566684 PMCID: PMC8101466 DOI: 10.1091/mbc.e20-09-0607] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Abscission is a complex cellular process that is required for mitotic division. It is well established that coordinated and localized changes in actin and microtubule dynamics are vital for cytokinetic ring formation, as well as establishment of the abscission site. Actin cytoskeleton reorganization during abscission would not be possible without the interplay between Rab11- and Rab35-containing endosomes and their effector proteins, whose roles in regulating endocytic pathways at the cleavage furrow have now been studied extensively. Here, we identified Rab14 as a novel regulator of cytokinesis. We demonstrate that depletion of Rab14 causes either cytokinesis failure or significantly prolongs division time. We show that Rab14 contributes to the efficiency of recruiting Rab11-endosomes to the thin intracellular bridge (ICB) microtubules and that Rab14 knockout leads to inhibition of actin clearance at the abscission site. Finally, we demonstrate that Rab14 binds to microtubule minus-end interacting MACF2/CAMSAP3 complex and that this binding affects targeting of endosomes to the ICB microtubules. Collectively, our data identified Rab14 and MACF2/CAMSAP3 as proteins that regulate actin depolymerization and endosome targeting during cytokinesis.
Collapse
Affiliation(s)
- Paulius Gibieža
- Laboratory of Cell Culture, Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas LT-50162, Lithuania
| | - Eric Peterman
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical, Campus, Aurora, CO 80045
| | - Huxley K Hoffman
- Department of Biological Sciences 20208, Denver University, Denver, CO
| | | | - Vytenis Arvydas Skeberdis
- Laboratory of Cell Culture, Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas LT-50162, Lithuania
| | - Rytis Prekeris
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical, Campus, Aurora, CO 80045
| |
Collapse
|
18
|
Tang Q, Lento A, Suzuki K, Efe G, Karakasheva T, Long A, Giroux V, Islam M, Wileyto EP, Klein‐Szanto AJ, Nakagawa H, Bass A, Rustgi AK. Rab11-FIP1 mediates epithelial-mesenchymal transition and invasion in esophageal cancer. EMBO Rep 2021; 22:e48351. [PMID: 33403789 PMCID: PMC7857540 DOI: 10.15252/embr.201948351] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 11/27/2020] [Accepted: 12/07/2020] [Indexed: 12/14/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is the most common subtype of esophageal cancer worldwide. The most commonly mutated gene in ESCC is TP53. Using a combinatorial genetic and carcinogenic approach, we generate a novel mouse model of ESCC expressing either mutant or null p53 and show that mutant p53 exhibits enhanced tumorigenic properties and displays a distinct genomic profile. Through RNA-seq analysis, we identify several endocytic recycling genes, including Rab Coupling Protein (Rab11-FIP1), which are significantly downregulated in mutant p53 tumor cells. In 3-dimensional (3D) organoid models, genetic knockdown of Rab11-FIP1 results in increased organoid size. Loss of Rab11-FIP1 increases tumor cell invasion in part through mutant p53 but also in an independent manner. Furthermore, loss of Rab11-FIP1 in human ESCC cell lines decreases E-cadherin expression and increases mesenchymal lineage-specific markers, suggesting induction of epithelial-mesenchymal transition (EMT). Rab11-FIP1 regulates EMT through direct inhibition of Zeb1, a key EMT transcriptional factor. Our novel findings reveal that Rab11-FIP1 regulates organoid formation, tumor cell invasion, and EMT.
Collapse
Affiliation(s)
- Qiaosi Tang
- Abramson Cancer CenterPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
- Herbert Irving Comprehensive Cancer CenterDivision of Digestive and Liver DiseasesDepartment of MedicineColumbia UniversityNew YorkNYUSA
| | - Ashley Lento
- Abramson Cancer CenterPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Kensuke Suzuki
- Herbert Irving Comprehensive Cancer CenterDivision of Digestive and Liver DiseasesDepartment of MedicineColumbia UniversityNew YorkNYUSA
| | - Gizem Efe
- Herbert Irving Comprehensive Cancer CenterDivision of Digestive and Liver DiseasesDepartment of MedicineColumbia UniversityNew YorkNYUSA
| | - Tatiana Karakasheva
- Gastrointestinal Epithelium Modeling ProgramDivision of Gastroenterology, Hepatology and NutritionChildren’s Hospital of PhiladelphiaPhiladelphiaPAUSA
| | - Apple Long
- Abramson Cancer CenterPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Véronique Giroux
- Department of Anatomy and Cell BiologyFaculty of Medicine and Health SciencesUniversité de SherbrookeSherbrookeQCCanada
| | - Mirazul Islam
- Department of Cell and Developmental BiologyVanderbilt UniversityNashvilleTNUSA
| | - E Paul Wileyto
- Abramson Cancer CenterPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
- Department of Biostatistics and EpidemiologyUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Andres J Klein‐Szanto
- Department of Pathology and Cancer Biology ProgramFox Chase Cancer CenterPhiladelphiaPAUSA
| | - Hiroshi Nakagawa
- Herbert Irving Comprehensive Cancer CenterDivision of Digestive and Liver DiseasesDepartment of MedicineColumbia UniversityNew YorkNYUSA
| | - Adam Bass
- Department of Medical OncologyDana‐Farber Cancer InstituteHarvard Medical SchoolBostonMAUSA
| | - Anil K Rustgi
- Herbert Irving Comprehensive Cancer CenterDivision of Digestive and Liver DiseasesDepartment of MedicineColumbia UniversityNew YorkNYUSA
| |
Collapse
|
19
|
Yoon J, Garo J, Lee M, Sun J, Hwang YS, Daar IO. Rab11fip5 regulates telencephalon development via ephrinB1 recycling. Development 2021; 148:dev196527. [PMID: 33462110 PMCID: PMC7875491 DOI: 10.1242/dev.196527] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/25/2020] [Indexed: 12/12/2022]
Abstract
Rab11 family-interacting protein 5 (Rab11fip5) is an adaptor protein that binds to the small GTPase Rab11, which has an important function in endosome recycling and trafficking of cellular proteins to the plasma membrane. Rab11fip5 is involved in many cellular processes, such as cytoskeleton rearrangement, iron uptake and exocytosis in neuroendocrine cells, and is also known as a candidate gene for autism-spectrum disorder. However, the role of Rab11fip5 during early embryonic development is not clearly understood. In this study, we identified Rab11fip5 as a protein that interacts with ephrinB1, a transmembrane ligand for Eph receptors. The PDZ binding motif in ephrinB1 and the Rab-binding domain in Rab11fip5 are necessary for their interaction in a complex. EphrinB1 and Rab11fip5 display overlapping expression in the telencephalon of developing amphibian embryos. The loss of Rab11fip5 function causes a reduction in telencephalon size and a decrease in the expression level of ephrinB1. Moreover, morpholino oligonucleotide-mediated knockdown of Rab11fip5 decreases cell proliferation in the telencephalon. The overexpression of ephrinB1 rescues these defects, suggesting that ephrinB1 recycling by the Rab11/Rab11fip5 complex is crucial for proper telencephalon development.
Collapse
Affiliation(s)
- Jaeho Yoon
- Cancer and Developmental Biology Laboratory (CDBL), Center for Cancer Research (CCR) - Frederick, National Cancer Institute, Frederick, MD 21702, USA
| | - Jerlin Garo
- Cancer and Developmental Biology Laboratory (CDBL), Center for Cancer Research (CCR) - Frederick, National Cancer Institute, Frederick, MD 21702, USA
| | - Moonsup Lee
- Cancer and Developmental Biology Laboratory (CDBL), Center for Cancer Research (CCR) - Frederick, National Cancer Institute, Frederick, MD 21702, USA
| | - Jian Sun
- Cancer and Developmental Biology Laboratory (CDBL), Center for Cancer Research (CCR) - Frederick, National Cancer Institute, Frederick, MD 21702, USA
| | - Yoo-Seok Hwang
- Cancer and Developmental Biology Laboratory (CDBL), Center for Cancer Research (CCR) - Frederick, National Cancer Institute, Frederick, MD 21702, USA
| | - Ira O Daar
- Cancer and Developmental Biology Laboratory (CDBL), Center for Cancer Research (CCR) - Frederick, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|
20
|
He Y, Kan W, Li Y, Hao Y, Huang A, Gu H, Wang M, Wang Q, Chen J, Sun Z, Liu M, Chen Y, Yi Z. A potent and selective small molecule inhibitor of myoferlin attenuates colorectal cancer progression. Clin Transl Med 2021; 11:e289. [PMID: 33634965 PMCID: PMC7868085 DOI: 10.1002/ctm2.289] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 12/30/2022] Open
Abstract
As a pivotal vesicular trafficking protein, Myoferlin (MYOF) has become an attractive target for cancer therapy. However, the roles of MYOF in colorectal cancer invasion remain enigmatic, and MYOF-targeted therapy in this malignancy has not been explored. In the present study, we provided the first functional evidence that MYOF promoted the cell invasion of colorectal cancer. Furthermore, we identified a novel small molecule inhibitor of MYOF (named YQ456) that showed high binding affinity to MYOF (KD = 37 nM) and excellent anti-invasion capability (IC50 = 110 nM). YQ456 was reported for the first time to interfere with the interactions between MYOF and Ras-associated binding (Rab) proteins at low nanomolar levels. This interference disrupted several vesicle trafficking processes, including lysosomal degradation, exosome secretion, and mitochondrial dynamics. Further, YQ456 exhibited excellent inhibitory effects on the growth and invasiveness of colorectal cancer. As the first attempt, the anticancer efficacy of YQ456 in the patient-derived xenograft (PDX) mouse model indicated that targeting MYOF may serve as a novel and practical therapeutic approach for colorectal cancer.
Collapse
Affiliation(s)
- Yuan He
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational MedicineShanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghai200241P.R. China
- Joint Center for Translational MedicineSouthern Medical University Affiliated Fengxian HospitalShanghai201499P.R. China
| | - Weiqiong Kan
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational MedicineShanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghai200241P.R. China
| | - Yunqi Li
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational MedicineShanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghai200241P.R. China
| | - Yun Hao
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational MedicineShanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghai200241P.R. China
| | - Anling Huang
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational MedicineShanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghai200241P.R. China
| | - Haijun Gu
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational MedicineShanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghai200241P.R. China
| | - Minna Wang
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational MedicineShanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghai200241P.R. China
| | - Qingqing Wang
- Joint Center for Translational MedicineSouthern Medical University Affiliated Fengxian HospitalShanghai201499P.R. China
| | - Jinlian Chen
- Joint Center for Translational MedicineSouthern Medical University Affiliated Fengxian HospitalShanghai201499P.R. China
| | - Zhenliang Sun
- Joint Center for Translational MedicineSouthern Medical University Affiliated Fengxian HospitalShanghai201499P.R. China
| | - Mingyao Liu
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational MedicineShanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghai200241P.R. China
| | - Yihua Chen
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational MedicineShanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghai200241P.R. China
| | - Zhengfang Yi
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational MedicineShanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghai200241P.R. China
- Joint Center for Translational MedicineSouthern Medical University Affiliated Fengxian HospitalShanghai201499P.R. China
| |
Collapse
|
21
|
Ferro E, Bosia C, Campa CC. RAB11-Mediated Trafficking and Human Cancers: An Updated Review. BIOLOGY 2021; 10:biology10010026. [PMID: 33406725 PMCID: PMC7823896 DOI: 10.3390/biology10010026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/15/2020] [Accepted: 12/30/2020] [Indexed: 12/12/2022]
Abstract
Simple Summary The small GTPase RAB11 is a master regulator of both vesicular trafficking and membrane dynamic defining the surface proteome of cellular membranes. As a consequence, the alteration of RAB11 activity induces changes in both the sensory and the transduction apparatuses of cancer cells leading to tumor progression and invasion. Here, we show that this strictly depends on RAB11′s ability to control the sorting of signaling receptors from endosomes. Therefore, RAB11 is a potential therapeutic target over which to develop future therapies aimed at dampening the acquisition of aggressive traits by cancer cells. Abstract Many disorders block and subvert basic cellular processes in order to boost their progression. One protein family that is prone to be altered in human cancers is the small GTPase RAB11 family, the master regulator of vesicular trafficking. RAB11 isoforms function as membrane organizers connecting the transport of cargoes towards the plasma membrane with the assembly of autophagic precursors and the generation of cellular protrusions. These processes dramatically impact normal cell physiology and their alteration significantly affects the survival, progression and metastatization as well as the accumulation of toxic materials of cancer cells. In this review, we discuss biological mechanisms ensuring cargo recognition and sorting through a RAB11-dependent pathway, a prerequisite to understand the effect of RAB11 alterations in human cancers.
Collapse
Affiliation(s)
- Elsi Ferro
- Department of Applied Science and Technology, Politecnico di Torino, 24 Corso Duca degli Abruzzi, 10129 Turin, Italy; (E.F.); (C.B.)
- Italian Institute for Genomic Medicine, c/o IRCCS, Str. Prov. le 142, km 3.95, 10060 Candiolo, Italy
| | - Carla Bosia
- Department of Applied Science and Technology, Politecnico di Torino, 24 Corso Duca degli Abruzzi, 10129 Turin, Italy; (E.F.); (C.B.)
- Italian Institute for Genomic Medicine, c/o IRCCS, Str. Prov. le 142, km 3.95, 10060 Candiolo, Italy
| | - Carlo C. Campa
- Department of Applied Science and Technology, Politecnico di Torino, 24 Corso Duca degli Abruzzi, 10129 Turin, Italy; (E.F.); (C.B.)
- Italian Institute for Genomic Medicine, c/o IRCCS, Str. Prov. le 142, km 3.95, 10060 Candiolo, Italy
- Correspondence:
| |
Collapse
|
22
|
Khan I, Steeg PS. Endocytosis: a pivotal pathway for regulating metastasis. Br J Cancer 2021; 124:66-75. [PMID: 33262521 PMCID: PMC7782782 DOI: 10.1038/s41416-020-01179-8] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/30/2020] [Accepted: 11/04/2020] [Indexed: 12/16/2022] Open
Abstract
A potentially important aspect in the regulation of tumour metastasis is endocytosis. This process consists of internalisation of cell-surface receptors via pinocytosis, phagocytosis or receptor-mediated endocytosis, the latter of which includes clathrin-, caveolae- and non-clathrin or caveolae-mediated mechanisms. Endocytosis then progresses through several intracellular compartments for sorting and routing of cargo, ending in lysosomal degradation, recycling back to the cell surface or secretion. Multiple endocytic proteins are dysregulated in cancer and regulate tumour metastasis, particularly migration and invasion. Importantly, four metastasis suppressor genes function in part by regulating endocytosis, namely, the NME, KAI, MTSS1 and KISS1 pathways. Data on metastasis suppressors identify a new point of dysregulation operative in tumour metastasis, alterations in signalling through endocytosis. This review will focus on the multicomponent process of endocytosis affecting different steps of metastasis and how metastatic-suppressor genes use endocytosis to suppress metastasis.
Collapse
Affiliation(s)
- Imran Khan
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA.
| | - Patricia S Steeg
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| |
Collapse
|
23
|
Ditsiou A, Cilibrasi C, Simigdala N, Papakyriakou A, Milton-Harris L, Vella V, Nettleship JE, Lo JH, Soni S, Smbatyan G, Ntavelou P, Gagliano T, Iachini MC, Khurshid S, Simon T, Zhou L, Hassell-Hart S, Carter P, Pearl LH, Owen RL, Owens RJ, Roe SM, Chayen NE, Lenz HJ, Spencer J, Prodromou C, Klinakis A, Stebbing J, Giamas G. The structure-function relationship of oncogenic LMTK3. SCIENCE ADVANCES 2020; 6:6/46/eabc3099. [PMID: 33188023 PMCID: PMC7673765 DOI: 10.1126/sciadv.abc3099] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 09/30/2020] [Indexed: 05/10/2023]
Abstract
Elucidating signaling driven by lemur tyrosine kinase 3 (LMTK3) could help drug development. Here, we solve the crystal structure of LMTK3 kinase domain to 2.1Å resolution, determine its consensus motif and phosphoproteome, unveiling in vitro and in vivo LMTK3 substrates. Via high-throughput homogeneous time-resolved fluorescence screen coupled with biochemical, cellular, and biophysical assays, we identify a potent LMTK3 small-molecule inhibitor (C28). Functional and mechanistic studies reveal LMTK3 is a heat shock protein 90 (HSP90) client protein, requiring HSP90 for folding and stability, while C28 promotes proteasome-mediated degradation of LMTK3. Pharmacologic inhibition of LMTK3 decreases proliferation of cancer cell lines in the NCI-60 panel, with a concomitant increase in apoptosis in breast cancer cells, recapitulating effects of LMTK3 gene silencing. Furthermore, LMTK3 inhibition reduces growth of xenograft and transgenic breast cancer mouse models without displaying systemic toxicity at effective doses. Our data reinforce LMTK3 as a druggable target for cancer therapy.
Collapse
Affiliation(s)
- Angeliki Ditsiou
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Chiara Cilibrasi
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Nikiana Simigdala
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Athanasios Papakyriakou
- Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos," 15341 Athens, Greece
| | - Leanne Milton-Harris
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Viviana Vella
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Joanne E Nettleship
- Division of Structural Biology, University of Oxford, The Wellcome Centre for Human Genetics Headington, Oxford OX3 7BN, UK
- Protein Production UK, Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot OX11 0FA, UK
| | - Jae Ho Lo
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Shivani Soni
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Goar Smbatyan
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Panagiota Ntavelou
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Teresa Gagliano
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Maria Chiara Iachini
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Sahir Khurshid
- Faculty of Medicine, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College, Sir Alexander Fleming Building, South Kensington Campus, London SW7 2AZ, UK
| | - Thomas Simon
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Lihong Zhou
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Science Park Road, Falmer, Brighton BN1 9RQ, UK
| | - Storm Hassell-Hart
- Department of Chemistry, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QJ, UK
| | - Philip Carter
- Faculty of Medicine, Department of Surgery and Cancer, Imperial College, London W12 0NN, UK
| | - Laurence H Pearl
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Science Park Road, Falmer, Brighton BN1 9RQ, UK
| | - Robin L Owen
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - Raymond J Owens
- Division of Structural Biology, University of Oxford, The Wellcome Centre for Human Genetics Headington, Oxford OX3 7BN, UK
- Protein Production UK, Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot OX11 0FA, UK
- The Rosalind Franklin Institute, Harwell Campus, Didcot OX11 0FA, UK
| | - S Mark Roe
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Science Park Road, Falmer, Brighton BN1 9RQ, UK
| | - Naomi E Chayen
- Faculty of Medicine, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College, Sir Alexander Fleming Building, South Kensington Campus, London SW7 2AZ, UK
| | - Heinz-Josef Lenz
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - John Spencer
- Department of Chemistry, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QJ, UK
| | - Chrisostomos Prodromou
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Apostolos Klinakis
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Justin Stebbing
- Faculty of Medicine, Department of Surgery and Cancer, Imperial College, London W12 0NN, UK
| | - Georgios Giamas
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK.
| |
Collapse
|
24
|
O’Sullivan MJ, Lindsay AJ. The Endosomal Recycling Pathway-At the Crossroads of the Cell. Int J Mol Sci 2020; 21:ijms21176074. [PMID: 32842549 PMCID: PMC7503921 DOI: 10.3390/ijms21176074] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/17/2020] [Accepted: 08/21/2020] [Indexed: 12/14/2022] Open
Abstract
The endosomal recycling pathway lies at the heart of the membrane trafficking machinery in the cell. It plays a central role in determining the composition of the plasma membrane and is thus critical for normal cellular homeostasis. However, defective endosomal recycling has been linked to a wide range of diseases, including cancer and some of the most common neurological disorders. It is also frequently subverted by many diverse human pathogens in order to successfully infect cells. Despite its importance, endosomal recycling remains relatively understudied in comparison to the endocytic and secretory transport pathways. A greater understanding of the molecular mechanisms that support transport through the endosomal recycling pathway will provide deeper insights into the pathophysiology of disease and will likely identify new approaches for their detection and treatment. This review will provide an overview of the normal physiological role of the endosomal recycling pathway, describe the consequences when it malfunctions, and discuss potential strategies for modulating its activity.
Collapse
|
25
|
Kim JY, Cho KH, Jeong BY, Park CG, Lee HY. Zeb1 for RCP-induced oral cancer cell invasion and its suppression by resveratrol. Exp Mol Med 2020; 52:1152-1163. [PMID: 32728068 PMCID: PMC8080807 DOI: 10.1038/s12276-020-0474-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/29/2020] [Accepted: 06/15/2020] [Indexed: 12/22/2022] Open
Abstract
Rab coupling protein (RCP) is upregulated in head and neck squamous cell carcinoma (HNSCC) and is correlated with the progression and survival of patients. However, the role of RCP in one of the aggressive types of HNSCC, oral squamous cell carcinoma (OSCC), remains elusive. In the present study, we identified the important role of Zeb1 in RCP-induced OSCC epithelial-to-mesenchymal transition (EMT) and invasion. RCP induces Zeb1 expression, and silencing Zeb1 expression significantly inhibits RCP-induced OSCC invasion. In addition, Zeb1 upregulates MT1-MMP expression to promote OSCC EMT and invasion. Furthermore, we observed that the β1 integrin/EGFR/β-catenin signaling cascade mediates RCP-induced Zeb1 expression to promote OSCC invasion. Notably, we provide evidence that resveratrol (REV) strongly inhibits RCP-induced Zeb1 expression through blocking β1 integrin endosome recycling and EGFR activation, leading to suppression of RCP-induced OSCC invasion, demonstrating the important role of RCP in OSCC invasion and its reversion by REV. Collectively, the present study provides evidence for the first time that RCP aggravates OSCC invasion through increasing Zeb1 expression and subsequently upregulating MT1-MMP expression and that this process is reversed by REV, providing novel biomarkers and indicating the therapeutic potential of REV in OSCC. Resveratrol, a naturally occurring compound present in grape skins, peanuts, and blueberries, reduces the ability of oral squamous cell carcinoma (OSCC) cells to spread to other parts of the body. Over half a million new cases of OSCC are diagnosed each year, and spread beyond the mouth is the most common cause of death. Hoi Young Lee at Konyang University, Daejon, Republic of Korea, and co-workers investigated whether a protein called RCP, which increases the invasiveness of many but not all types of cancer, is implicated in aggressive spread of OSCC. They found that RCP does increase the invasiveness of OSCC. Resveratrol is known to suppress the spread of many cancers, and strongly curtailed the spread of OSCC by blocking RCP activity. These results shed light on OSCC invasiveness, and offer a potential new treatment.
Collapse
Affiliation(s)
- Jin Young Kim
- Department of Pharmacology, College of Medicine, Konyang University, Daejeon, Republic of Korea
| | - Kyung Hwa Cho
- Department of Pharmacology, College of Medicine, Konyang University, Daejeon, Republic of Korea
| | - Bo Young Jeong
- Department of Pharmacology, College of Medicine, Konyang University, Daejeon, Republic of Korea
| | - Chang Gyo Park
- Department of Pharmacology, College of Medicine, Konyang University, Daejeon, Republic of Korea
| | - Hoi Young Lee
- Department of Pharmacology, College of Medicine, Konyang University, Daejeon, Republic of Korea.
| |
Collapse
|
26
|
Ortiz MA, Michaels H, Molina B, Toenjes S, Davis J, Marconi GD, Hecht D, Gustafson JL, Piedrafita FJ, Nefzi A. Discovery of cyclic guanidine-linked sulfonamides as inhibitors of LMTK3 kinase. Bioorg Med Chem Lett 2020; 30:127108. [PMID: 32192797 DOI: 10.1016/j.bmcl.2020.127108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 12/19/2022]
Abstract
Lemur tyrosine kinase 3 (LMTK3) is oncogenic in various cancers. In breast cancer, LMTK3 phosphorylates and modulates the activity of estrogen receptor-α (ERα) and is essential for the growth of ER-positive cells. LMTK3 is highly expressed in ER-negative breast cancer cells, where it promotes invasion via integrin β1. LMTK3 abundance and/or high nuclear expression have been linked to shorter disease free and overall survival time in a variety of cancers, supporting LMTK3 as a potential target for anticancer drug development. We sought to identify small molecule inhibitors of LMTK3 with the ultimate goal to pharmacologically validate this kinase as a novel target in cancer. We used a homogeneous time resolve fluorescence (HTRF) assay to screen a collection of mixture-based combinatorial chemical libraries containing over 18 million compounds. We identified several cyclic guanidine-linked sulfonamides with sub-micromolar activity and evaluated their binding mode using a 3D homology model of the LMTK3 KD.
Collapse
Affiliation(s)
- Maria A Ortiz
- Donald P. Shiley BioScience Center, San Diego State University, San Diego, CA, United States
| | - Heather Michaels
- Torrey Pines Institute for Molecular Studies, Port Saint Lucie, FL, United States
| | - Brandon Molina
- Donald P. Shiley BioScience Center, San Diego State University, San Diego, CA, United States
| | - Sean Toenjes
- San Diego State University, Department of Chemistry and Biochemistry, San Diego, CA, United States
| | - Jennifer Davis
- Torrey Pines Institute for Molecular Studies, Port Saint Lucie, FL, United States
| | - Guya Diletta Marconi
- Department of Medical, Oral and Biotechnological Sciences, University G. d'Annunzio, Cheti-Pescara, Via dei vestini, 31, Italy
| | - David Hecht
- Southwestern College, Department of Chemistry, Chula Vista, CA, United States
| | - Jeffrey L Gustafson
- San Diego State University, Department of Chemistry and Biochemistry, San Diego, CA, United States
| | - F Javier Piedrafita
- Donald P. Shiley BioScience Center, San Diego State University, San Diego, CA, United States.
| | - Adel Nefzi
- Torrey Pines Institute for Molecular Studies, Port Saint Lucie, FL, United States; Florida International University, Miami, FL, United States.
| |
Collapse
|
27
|
Xiao F, Zhang P, Wang Y, Tian Y, James M, Huang CC, Wang L, Wang L. Single-nucleotide polymorphism rs13426236 contributes to an increased prostate cancer risk via regulating MLPH splicing variant 4. Mol Carcinog 2020; 59:45-55. [PMID: 31659808 PMCID: PMC7219604 DOI: 10.1002/mc.23127] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 10/07/2019] [Accepted: 10/09/2019] [Indexed: 12/20/2022]
Abstract
A prostate cancer risk single-nucleotide polymorphism (SNP), rs13426236, is significantly associated with melanophilin (MLPH) expression. To functionally characterize role of the rs13426236 in prostate cancer, we first performed splicing-specific expression quantitative trait loci analysis and refined the significant association of rs13426236 allele G with an increased expression of MLPH splicing transcript variant 4 (V4) (P = 7.61E-5) but not other protein-coding variants (V1-V3) (P > .05). We then performed an allele-specific reporter assay to determine if SNP-containing sequences functioned as an active enhancer. Compared to allele A, allele G of rs13426236 showed significantly higher luciferase activity on the promoter of the splicing transcript V4 (P < .03) but not on the promoter of transcript V1 (P > .05) in two prostate cancer cell lines (DU145 and 22Rv1). Cell transfection assays showed stronger effect of transcript V4 than V1 on promoting cell proliferation, invasion, and antiapoptotic activities. RNA profiling analysis demonstrated that transcript V4 overexpression caused significant expression changes in glycosylation/glycoprotein and metal-binding gene ontology pathways (FDR < 0.01). We also found that both transcripts V4 and V1 were significantly upregulated in prostate adenocarcinoma (P ≤ 2.49E-6) but only transcript V4 upregulation was associated with poor recurrence-free survival (P = .028, hazard ratio = 1.63, 95% confidence interval = 1.05-2.42) in The Cancer Genome Atlas data. This study provides strong evidence showing that prostate cancer risk SNP rs13426236 upregulates expression of MLPH transcript V4, which may function as a candidate oncogene in prostate cancer.
Collapse
Affiliation(s)
- Fankai Xiao
- Henan Key Laboratory for Cancer Research, The First Affiliated Hospital of Zhengzhou University, 40 Daxue Road, Zhengzhou, Henan 450052, China
- Department of Pathology, MCW Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, USA
| | - Peng Zhang
- Department of Pathology, MCW Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, USA
| | - Yuan Wang
- Department of Pathology, MCW Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, USA
| | - Yijun Tian
- Department of Pathology, MCW Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, USA
| | - Michael James
- Department of Surgery, MCW Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, USA
| | - Chiang-Ching Huang
- Department of Biostatistics, University of Wisconsin, Milwaukee, Wisconsin 53201, USA
| | - Lidong Wang
- Henan Key Laboratory for Cancer Research, The First Affiliated Hospital of Zhengzhou University, 40 Daxue Road, Zhengzhou, Henan 450052, China
| | - Liang Wang
- Department of Pathology, MCW Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, USA
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
| |
Collapse
|
28
|
Alqaeisoom N, Qian C, Arachchige D, Colvin RA, Holub JM. Inhibiting Phosphorylation of Tau (τ) Proteins at Ser262 Using Peptide-Based R1 Domain Mimetics. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-018-9689-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Conway JRW, Herrmann D, Evans TRJ, Morton JP, Timpson P. Combating pancreatic cancer with PI3K pathway inhibitors in the era of personalised medicine. Gut 2019; 68:742-758. [PMID: 30396902 PMCID: PMC6580874 DOI: 10.1136/gutjnl-2018-316822] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 10/02/2018] [Accepted: 10/04/2018] [Indexed: 12/16/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is among the most deadly solid tumours. This is due to a generally late-stage diagnosis of a primarily treatment-refractory disease. Several large-scale sequencing and mass spectrometry approaches have identified key drivers of this disease and in doing so highlighted the vast heterogeneity of lower frequency mutations that make clinical trials of targeted agents in unselected patients increasingly futile. There is a clear need for improved biomarkers to guide effective targeted therapies, with biomarker-driven clinical trials for personalised medicine becoming increasingly common in several cancers. Interestingly, many of the aberrant signalling pathways in PDAC rely on downstream signal transduction through the mitogen-activated protein kinase and phosphoinositide 3-kinase (PI3K) pathways, which has led to the development of several approaches to target these key regulators, primarily as combination therapies. The following review discusses the trend of PDAC therapy towards molecular subtyping for biomarker-driven personalised therapies, highlighting the key pathways under investigation and their relationship to the PI3K pathway.
Collapse
Affiliation(s)
- James RW Conway
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Cancer Division, Sydney, New South Wales, Australia
| | - David Herrmann
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Cancer Division, Sydney, New South Wales, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - TR Jeffry Evans
- Cancer Department, Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Jennifer P Morton
- Cancer Department, Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Paul Timpson
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Cancer Division, Sydney, New South Wales, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
30
|
Rab25 and RCP in cancer progression. Arch Pharm Res 2019; 42:101-112. [DOI: 10.1007/s12272-019-01129-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 01/29/2019] [Indexed: 01/10/2023]
|
31
|
Machesky LM. Rab11FIP proteins link endocytic recycling vesicles for cytoskeletal transport and tethering. Biosci Rep 2019; 39:BSR20182219. [PMID: 30622149 PMCID: PMC6356010 DOI: 10.1042/bsr20182219] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 01/05/2019] [Accepted: 01/07/2019] [Indexed: 12/20/2022] Open
Abstract
Regulated trafficking of internalised integrins and growth factor receptors enables polarisation of morphology and motility and enables lumen formation in multicellular structures. Recycling vesicles marked with Rab11 direct internalised cargo back to the plasma membrane to affect biological processes such as polarised trafficking and cancer cell invasion. A recent study by Ji and colleagues, provides insight into how the trafficking protein Rab11FIP2 links with the actin-based motor myo5b and the small GTPase Rab11 to regulate vesicle tethering and transport along actin filaments [1]. The authors used biochemical methods to demonstrate that Rab11a binds directly to the tail of myo5b and that Rab11FIP2 also forms direct interactions with both Rab11a and myo5b tails. These proteins essentially compete for binding to similar regions and thus can regulate the association and activity of each other. Ji and colleagues further demonstrate that Rab11a activates myo5b by binding to its globular tail and relieving a head-tail autoinhibition. Due to differing affinities between Rab11 and myo5b or Rab11FIP2, they propose that Rab11FIP2 mediates the association of myo5b with cargo vesicles, while Rab11a regulates the motor activity of myo5b. The present study thus elucidates how myo5b is regulated by its interactions with Rab11a and Rab11FIP2 and proposes a model for coordination of recycling vesicle tethering and motor activity. The present study has implications for how cells control polarity and motility in health and disease and suggests how Rab11FIP proteins might control motor protein activity and engagement for transport.
Collapse
Affiliation(s)
- Laura M Machesky
- CRUK Beatson Institute and Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow, G61 1BD, U.K.
| |
Collapse
|
32
|
The LMTK-family of kinases: Emerging important players in cell physiology and pathogenesis. Biochim Biophys Acta Mol Basis Dis 2018; 1867:165372. [PMID: 30597196 DOI: 10.1016/j.bbadis.2018.12.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/21/2018] [Accepted: 12/24/2018] [Indexed: 12/11/2022]
Abstract
Lemur Tail (former tyrosine) Kinases (LMTKs) comprise a novel family of regulated serine/threonine specific kinases with three structurally and evolutionary related members. LMTKs exercise a confusing variety of cytosolic functions in cell signalling and membrane trafficking. Moreover, LMTK2 and LMTK3 also reside in the nucleus where they participate in gene transcription/regulation. As a consequence, LMTKs impact cell proliferation and apoptosis, cell growth and differentiation, as well as cell migration. All these fundamental cell behaviours can turn awry, most prominently during neuropathologies and tumour biogenesis. In cancer cells, LMTK levels are often correlated with poor overall prognosis and therapy outcome, not least owned to acquired drug resistance. In brain tissue, LMTKs are highly expressed and have been linked to neuronal and glia cell differentiation and cell homeostasis. For one member of the LMTK-family (LMTK2) a role in cystic fibrosis has been identified. Due to their role in fundamental cell processes, altered LMTK physiology may also warrant a hitherto unappreciated role in other diseases, and expose them as potential valuable drug targets. On the backdrop of a compendium of LMTK cell functions, we hypothesize that the primary role of LMTKs may dwell within the endocytic cargo recycling and/or nuclear receptor transport pathways.
Collapse
|
33
|
Wilson BJ, Allen JL, Caswell PT. Vesicle trafficking pathways that direct cell migration in 3D matrices and in vivo. Traffic 2018; 19:899-909. [PMID: 30054969 PMCID: PMC6282850 DOI: 10.1111/tra.12605] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 07/20/2018] [Accepted: 07/23/2018] [Indexed: 12/13/2022]
Abstract
Cell migration is a vital process in development and disease, and while the mechanisms that control motility are relatively well understood on two-dimensional surfaces, the control of cell migration in three dimensions (3D) and in vivo has only recently begun to be understood. Vesicle trafficking pathways have emerged as a key regulatory element in migration and invasion, with the endocytosis and recycling of cell surface cargos, including growth factor and chemokine receptors, adhesion receptors and membrane-associated proteases, being of major importance. We highlight recent advances in our understanding of how endocytic trafficking controls the availability and local activity of these cargoes to influence the movement of cells in 3D matrix and in developing organisms. In particular, we discuss how endocytic trafficking of different receptor classes spatially restricts signals and activity, usually to the leading edge of invasive cells.
Collapse
Affiliation(s)
- Beverley J. Wilson
- Wellcome Trust Centre for Cell‐Matrix Research, Faculty of Biology, Medicine and HealthUniversity of Manchester, Manchester Academic Health Science CentreManchesterUK
| | - Jennifer L. Allen
- Wellcome Trust Centre for Cell‐Matrix Research, Faculty of Biology, Medicine and HealthUniversity of Manchester, Manchester Academic Health Science CentreManchesterUK
| | - Patrick T. Caswell
- Wellcome Trust Centre for Cell‐Matrix Research, Faculty of Biology, Medicine and HealthUniversity of Manchester, Manchester Academic Health Science CentreManchesterUK
| |
Collapse
|
34
|
Novo D, Heath N, Mitchell L, Caligiuri G, MacFarlane A, Reijmer D, Charlton L, Knight J, Calka M, McGhee E, Dornier E, Sumpton D, Mason S, Echard A, Klinkert K, Secklehner J, Kruiswijk F, Vousden K, Macpherson IR, Blyth K, Bailey P, Yin H, Carlin LM, Morton J, Zanivan S, Norman JC. Mutant p53s generate pro-invasive niches by influencing exosome podocalyxin levels. Nat Commun 2018; 9:5069. [PMID: 30498210 PMCID: PMC6265295 DOI: 10.1038/s41467-018-07339-y] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 10/17/2018] [Indexed: 12/28/2022] Open
Abstract
Mutant p53s (mutp53) increase cancer invasiveness by upregulating Rab-coupling protein (RCP) and diacylglycerol kinase-α (DGKα)-dependent endosomal recycling. Here we report that mutp53-expressing tumour cells produce exosomes that mediate intercellular transfer of mutp53's invasive/migratory gain-of-function by increasing RCP-dependent integrin recycling in other tumour cells. This process depends on mutp53's ability to control production of the sialomucin, podocalyxin, and activity of the Rab35 GTPase which interacts with podocalyxin to influence its sorting to exosomes. Exosomes from mutp53-expressing tumour cells also influence integrin trafficking in normal fibroblasts to promote deposition of a highly pro-invasive extracellular matrix (ECM), and quantitative second harmonic generation microscopy indicates that this ECM displays a characteristic orthogonal morphology. The lung ECM of mice possessing mutp53-driven pancreatic adenocarcinomas also displays increased orthogonal characteristics which precedes metastasis, indicating that mutp53 can influence the microenvironment in distant organs in a way that can support invasive growth.
Collapse
Affiliation(s)
- David Novo
- Beatson Institute for Cancer Research, Glasgow, G61 1BD, Scotland, UK
| | - Nikki Heath
- Beatson Institute for Cancer Research, Glasgow, G61 1BD, Scotland, UK
| | - Louise Mitchell
- Beatson Institute for Cancer Research, Glasgow, G61 1BD, Scotland, UK
| | | | - Amanda MacFarlane
- Beatson Institute for Cancer Research, Glasgow, G61 1BD, Scotland, UK
| | - Dide Reijmer
- Beatson Institute for Cancer Research, Glasgow, G61 1BD, Scotland, UK
| | - Laura Charlton
- School of Engineering, University of Glasgow, Glasgow, G12 8LT, UK
| | - John Knight
- Beatson Institute for Cancer Research, Glasgow, G61 1BD, Scotland, UK
| | - Monika Calka
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Ewan McGhee
- Beatson Institute for Cancer Research, Glasgow, G61 1BD, Scotland, UK
| | - Emmanuel Dornier
- Beatson Institute for Cancer Research, Glasgow, G61 1BD, Scotland, UK
| | - David Sumpton
- Beatson Institute for Cancer Research, Glasgow, G61 1BD, Scotland, UK
| | - Susan Mason
- Beatson Institute for Cancer Research, Glasgow, G61 1BD, Scotland, UK
| | - Arnaud Echard
- Membrane Traffic and Cell Division Lab, Cell Biology and Infection Department, Institut Pasteur, 25-28 rue du Dr Roux, Paris, 75724, France
| | - Kerstin Klinkert
- Membrane Traffic and Cell Division Lab, Cell Biology and Infection Department, Institut Pasteur, 25-28 rue du Dr Roux, Paris, 75724, France
| | - Judith Secklehner
- Beatson Institute for Cancer Research, Glasgow, G61 1BD, Scotland, UK
- Inflammation, Repair & Development, National Heart & Lung Institute, Imperial College London, London, SW7 2AZ, UK
| | - Flore Kruiswijk
- Beatson Institute for Cancer Research, Glasgow, G61 1BD, Scotland, UK
| | - Karen Vousden
- Beatson Institute for Cancer Research, Glasgow, G61 1BD, Scotland, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
- Francis Crick Institute, 1 Midland Road, London, NW1 1ST, UK
| | - Iain R Macpherson
- Beatson Institute for Cancer Research, Glasgow, G61 1BD, Scotland, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Karen Blyth
- Beatson Institute for Cancer Research, Glasgow, G61 1BD, Scotland, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Peter Bailey
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, G611QH, UK
| | - Huabing Yin
- School of Engineering, University of Glasgow, Glasgow, G12 8LT, UK
| | - Leo M Carlin
- Beatson Institute for Cancer Research, Glasgow, G61 1BD, Scotland, UK
- Inflammation, Repair & Development, National Heart & Lung Institute, Imperial College London, London, SW7 2AZ, UK
| | - Jennifer Morton
- Beatson Institute for Cancer Research, Glasgow, G61 1BD, Scotland, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Sara Zanivan
- Beatson Institute for Cancer Research, Glasgow, G61 1BD, Scotland, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Jim C Norman
- Beatson Institute for Cancer Research, Glasgow, G61 1BD, Scotland, UK.
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK.
| |
Collapse
|
35
|
Schoenherr C, Frame MC, Byron A. Trafficking of Adhesion and Growth Factor Receptors and Their Effector Kinases. Annu Rev Cell Dev Biol 2018; 34:29-58. [PMID: 30110558 DOI: 10.1146/annurev-cellbio-100617-062559] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cell adhesion to macromolecules in the microenvironment is essential for the development and maintenance of tissues, and its dysregulation can lead to a range of disease states, including inflammation, fibrosis, and cancer. The biomechanical and biochemical mechanisms that mediate cell adhesion rely on signaling by a range of effector proteins, including kinases and associated scaffolding proteins. The intracellular trafficking of these must be tightly controlled in space and time to enable effective cell adhesion and microenvironmental sensing and to integrate cell adhesion with, and compartmentalize it from, other cellular processes, such as gene transcription, protein degradation, and cell division. Delivery of adhesion receptors and signaling proteins from the plasma membrane to unanticipated subcellular locales is revealing novel biological functions. Here, we review the expected and unexpected trafficking, and sites of activity, of adhesion and growth factor receptors and intracellular kinase partners as we begin to appreciate the complexity and diversity of their spatial regulation.
Collapse
Affiliation(s)
- Christina Schoenherr
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XR, United Kingdom;
| | - Margaret C Frame
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XR, United Kingdom;
| | - Adam Byron
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XR, United Kingdom;
| |
Collapse
|
36
|
Ge J, Ge C. Rab14 overexpression regulates gemcitabine sensitivity through regulation of Bcl-2 and mitochondrial function in pancreatic cancer. Virchows Arch 2018; 474:59-69. [PMID: 30267303 DOI: 10.1007/s00428-018-2455-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 09/05/2018] [Accepted: 09/10/2018] [Indexed: 12/21/2022]
Abstract
Rab family protein Rab14 has been implicated in the development of human cancers. To date, its expression pattern, biological function, and potential mechanism in pancreatic cancer have not been explored. In this study, we analyzed Rab14 expression in 103 cases of pancreatic cancer tissues using immunohistochemistry (IHC) and found that Rab14 was overexpressed in 41/103 cases (39.8%). Rab14 overexpression correlated with the advanced stage. Moreover, elevated Rab14 levels indicated poor prognosis of patients with pancreatic cancers. We used BxPC-3 and Capan-2 respectively for plasmid and siRNA transfection. MTT and colony formation assays showed that Rab14 transfection increased cell proliferation and colony formation in BxPC-3 cells. Rab14 siRNA knockdown inhibits proliferation and colony formation ability in Capan-2 cell line. Cell cycle analysis showed that Rab14 facilitated cell cycle progression. Matrigel invasion assay showed that Rab14 promoted BxPC-3 cell invasion while its depletion inhibited Capan-2 cell invasion. In addition, MTT and AnnexinV/PI analysis demonstrated that overexpression of Rab14 reduced gemcitabine sensitivity which conversely was increased by Rab14 knockdown. We also demonstrated that Rab14 upregulated mitochondrial membrane potential (MMP) while its depletion downregulated MMP during gemcitabine treatment. In addition, western blotting revealed that Rab14 overexpression upregulated cyclin D1, cyclin A, cyclin E, p-Rb, and Bcl-2 and downregulated p21. Rab14 also downregulated caspase3, PARP cleavage, and cytochrome c release. In conclusion, our data indicated that Rab14 was overexpressed in pancreatic cancer and promotes growth and gemcitabine resistance, possibly through regulation of mitochondrial function and Bcl-2.
Collapse
Affiliation(s)
- Jinnian Ge
- Department of General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, 110001, Liaoning Province, China
| | - Chunlin Ge
- Department of General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, 110001, Liaoning Province, China.
| |
Collapse
|
37
|
Stebbing J, Shah K, Lit LC, Gagliano T, Ditsiou A, Wang T, Wendler F, Simon T, Szabó KS, O'Hanlon T, Dean M, Roslani AC, Cheah SH, Lee SC, Giamas G. LMTK3 confers chemo-resistance in breast cancer. Oncogene 2018; 37:3113-3130. [PMID: 29540829 PMCID: PMC5992129 DOI: 10.1038/s41388-018-0197-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 02/12/2018] [Accepted: 02/18/2018] [Indexed: 12/31/2022]
Abstract
Lemur tyrosine kinase 3 (LMTK3) is an oncogenic kinase that is involved in different types of cancer (breast, lung, gastric, colorectal) and biological processes including proliferation, invasion, migration, chromatin remodeling as well as innate and acquired endocrine resistance. However, the role of LMTK3 in response to cytotoxic chemotherapy has not been investigated thus far. Using both 2D and 3D tissue culture models, we found that overexpression of LMTK3 decreased the sensitivity of breast cancer cell lines to cytotoxic (doxorubicin) treatment. In a mouse model we showed that ectopic overexpression of LMTK3 decreases the efficacy of doxorubicin in reducing tumor growth. Interestingly, breast cancer cells overexpressing LMTK3 delayed the generation of double strand breaks (DSBs) after exposure to doxorubicin, as measured by the formation of γH2AX foci. This effect was at least partly mediated by decreased activity of ataxia-telangiectasia mutated kinase (ATM) as indicated by its reduced phosphorylation levels. In addition, our RNA-seq analyses showed that doxorubicin differentially regulated the expression of over 700 genes depending on LMTK3 protein expression levels. Furthermore, these genes were found to promote DNA repair, cell viability and tumorigenesis processes / pathways in LMTK3-overexpressing MCF7 cells. In human cancers, immunohistochemistry staining of LMTK3 in pre- and post-chemotherapy breast tumor pairs from four separate clinical cohorts revealed a significant increase of LMTK3 following both doxorubicin and docetaxel based chemotherapy. In aggregate, our findings show for the first time a contribution of LMTK3 in cytotoxic drug resistance in breast cancer.
Collapse
Affiliation(s)
- Justin Stebbing
- Department of Surgery and Cancer, Division of Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 ONN, UK
| | - Kalpit Shah
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Lei Cheng Lit
- Department of Surgery and Cancer, Division of Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 ONN, UK
- Department of Physiology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Teresa Gagliano
- School of Life Sciences, Department of Biochemistry and Biomedicine, University of Sussex, Brighton, BN1 9QG, UK
| | - Angeliki Ditsiou
- School of Life Sciences, Department of Biochemistry and Biomedicine, University of Sussex, Brighton, BN1 9QG, UK
| | - Tingting Wang
- Cancer Science Institute of Singapore, Centre for Life Sciences, 28 Medical Drive, #02-15, Singapore, Singapore
| | - Franz Wendler
- School of Life Sciences, Department of Biochemistry and Biomedicine, University of Sussex, Brighton, BN1 9QG, UK
| | - Thomas Simon
- School of Life Sciences, Department of Biochemistry and Biomedicine, University of Sussex, Brighton, BN1 9QG, UK
| | - Krisztina Sára Szabó
- School of Life Sciences, Department of Biochemistry and Biomedicine, University of Sussex, Brighton, BN1 9QG, UK
| | - Timothy O'Hanlon
- Cancer Genomics Research Laboratory, National Cancer Institute, Division of Cancer Epidemiology and Genetics, Leidos Biomedical Research Inc., Bethesda, MD, 20892, USA
| | - Michael Dean
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - April Camilla Roslani
- Department of Surgery, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Swee Hung Cheah
- Department of Physiology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Soo-Chin Lee
- Cancer Science Institute of Singapore, Centre for Life Sciences, 28 Medical Drive, #02-15, Singapore, Singapore
| | - Georgios Giamas
- School of Life Sciences, Department of Biochemistry and Biomedicine, University of Sussex, Brighton, BN1 9QG, UK.
| |
Collapse
|
38
|
The EphA2 receptor is activated through induction of distinct, ligand-dependent oligomeric structures. Commun Biol 2018; 1:15. [PMID: 30271902 PMCID: PMC6123813 DOI: 10.1038/s42003-018-0017-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 01/28/2018] [Indexed: 01/19/2023] Open
Abstract
The EphA2 receptor tyrosine kinase is capable of activating multiple diverse signaling pathways with roles in processes such as tissue homeostasis and cancer. EphA2 is known to form activated oligomers in the presence of ephrin-A ligands. Here, we characterize the lateral interactions between full-length EphA2 molecules in the plasma membrane in the presence of three types of ligands (dimeric ephrinA1-Fc, monomeric ephrinA1, and an engineered peptide ligand) as well as in the absence of ligand, using a quantitative FRET technique. The data show that EphA2 forms higher-order oligomers and two different types of dimers that all lead to increased EphA2 tyrosine phosphorylation, which is indicative of increased kinase-dependent signaling. We find that different ligands stabilize conformationally distinct oligomers that are assembled through two different interfaces. Our results suggest that these different oligomeric assemblies could have distinct signaling properties, contributing to the diverse activities of the EphA2 receptor. Deo Singh et al. use Fully Quantified Spectral Imaging-FRET to show that the EphA2 receptor forms dimers or higher order oligomers depending on the type of ligand, and that different ligands stabilize EphA2 dimers through distinct interfaces. These findings may explain how EphA2 activates diverse signaling pathways.
Collapse
|
39
|
Edwards DN, Ngwa VM, Wang S, Shiuan E, Brantley-Sieders DM, Kim LC, Reynolds AB, Chen J. The receptor tyrosine kinase EphA2 promotes glutamine metabolism in tumors by activating the transcriptional coactivators YAP and TAZ. Sci Signal 2017; 10:eaan4667. [PMID: 29208682 PMCID: PMC5819349 DOI: 10.1126/scisignal.aan4667] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Malignant tumors reprogram cellular metabolism to support cancer cell proliferation and survival. Although most cancers depend on a high rate of aerobic glycolysis, many cancer cells also display addiction to glutamine. Glutamine transporters and glutaminase activity are critical for glutamine metabolism in tumor cells. We found that the receptor tyrosine kinase EphA2 activated the TEAD family transcriptional coactivators YAP and TAZ (YAP/TAZ), likely in a ligand-independent manner, to promote glutamine metabolism in cells and mouse models of HER2-positive breast cancer. Overexpression of EphA2 induced the nuclear accumulation of YAP and TAZ and increased the expression of YAP/TAZ target genes. Inhibition of the GTPase Rho or the kinase ROCK abolished EphA2-dependent YAP/TAZ nuclear localization. Silencing YAP or TAZ substantially reduced the amount of intracellular glutamate through decreased expression of SLC1A5 and GLS, respectively, genes that encode proteins that promote glutamine uptake and metabolism. The regulatory DNA elements of both SLC1A5 and GLS contain TEAD binding sites and were bound by TEAD4 in an EphA2-dependent manner. In patient breast cancer tissues, EphA2 expression positively correlated with that of YAP and TAZ, as well as that of GLS and SLC1A5 Although high expression of EphA2 predicted enhanced metastatic potential and poor patient survival, it also rendered HER2-positive breast cancer cells more sensitive to glutaminase inhibition. The findings define a previously unknown mechanism of EphA2-mediated glutaminolysis through YAP/TAZ activation in HER2-positive breast cancer and identify potential therapeutic targets in patients.
Collapse
Affiliation(s)
- Deanna N Edwards
- Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Verra M Ngwa
- Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Shan Wang
- Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Eileen Shiuan
- Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
- Medical Scientist Training Program, Vanderbilt University, Nashville, TN 37232, USA
| | - Dana M Brantley-Sieders
- Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Laura C Kim
- Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Albert B Reynolds
- Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Jin Chen
- Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
- Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Veterans Affairs Medical Center, Tennessee Valley Healthcare System, Nashville, TN 37212, USA
| |
Collapse
|
40
|
Pilling C, Cooper JA. SOCS2 Binds to and Regulates EphA2 through Multiple Mechanisms. Sci Rep 2017; 7:10838. [PMID: 28883622 PMCID: PMC5589800 DOI: 10.1038/s41598-017-11040-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 08/15/2017] [Indexed: 02/08/2023] Open
Abstract
Suppressors of cytokine signaling (SOCS) proteins inhibit signaling by serving as substrate receptors for the Cullin5-RING E3 ubiquitin ligase (CRL5) and through a variety of CRL5-independent mechanisms. CRL5, SOCS2 and SOCS6 are implicated in suppressing transformation of epithelial cells. We identified cell proteins that interact with SOCS2 and SOCS6 using two parallel proteomics techniques: BioID and Flag affinity purification mass spectrometry. The receptor tyrosine kinase ephrin type-A receptor 2 (EphA2) was identified as a SOCS2-interacting protein. SOCS2-EphA2 binding requires the SOCS2 SH2 domain and EphA2 activation loop autophosphorylation, which is stimulated by Ephrin A1 (EfnA1) or by phosphotyrosine phosphatase inhibition. Surprisingly, EfnA1-stimulated EphA2-SOCS2 binding is delayed until EphA2 has been internalized into endosomes. This suggests that SOCS2 binds to EphA2 in the context of endosomal membranes. We also found that SOCS2 overexpression decreases steady state levels of EphA2, consistent with increased EphA2 degradation. This effect is indirect: SOCS2 induces EfnA1 expression, and EfnA1 induces EphA2 down-regulation. Other RTKs have been reported to bind, and be regulated by, over-expressed SOCS proteins. Our data suggest that SOCS protein over-expression may regulate receptor tyrosine kinases through indirect and direct mechanisms.
Collapse
Affiliation(s)
- Carissa Pilling
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, Washington, 98109, USA.,Molecular and Cellular Biology Program, 1959 NE Pacific Street, HSB T-466, University of Washington, Box 357275, Seattle, WA, 98195-7275, USA
| | - Jonathan A Cooper
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, Washington, 98109, USA.
| |
Collapse
|