1
|
Ponndara S, Kortebi M, Boccard F, Bury‐Moné S, Lioy VS. Principles of bacterial genome organization, a conformational point of view. Mol Microbiol 2025; 123:195-205. [PMID: 38922728 PMCID: PMC11894783 DOI: 10.1111/mmi.15290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
Bacterial chromosomes are large molecules that need to be highly compacted to fit inside the cells. Chromosome compaction must facilitate and maintain key biological processes such as gene expression and DNA transactions (replication, recombination, repair, and segregation). Chromosome and chromatin 3D-organization in bacteria has been a puzzle for decades. Chromosome conformation capture coupled to deep sequencing (Hi-C) in combination with other "omics" approaches has allowed dissection of the structural layers that shape bacterial chromosome organization, from DNA topology to global chromosome architecture. Here we review the latest findings using Hi-C and discuss the main features of bacterial genome folding.
Collapse
Affiliation(s)
- Sokrich Ponndara
- Institute for Integrative Biology of the Cell (I2BC)Université Paris‐Saclay, CEA, CNRSGif‐sur‐YvetteFrance
| | - Mounia Kortebi
- Institute for Integrative Biology of the Cell (I2BC)Université Paris‐Saclay, CEA, CNRSGif‐sur‐YvetteFrance
| | - Frédéric Boccard
- Institute for Integrative Biology of the Cell (I2BC)Université Paris‐Saclay, CEA, CNRSGif‐sur‐YvetteFrance
| | - Stéphanie Bury‐Moné
- Institute for Integrative Biology of the Cell (I2BC)Université Paris‐Saclay, CEA, CNRSGif‐sur‐YvetteFrance
| | - Virginia S. Lioy
- Institute for Integrative Biology of the Cell (I2BC)Université Paris‐Saclay, CEA, CNRSGif‐sur‐YvetteFrance
| |
Collapse
|
2
|
Marinov GK, Doughty B, Kundaje A, Greenleaf WJ. The chromatin landscape of the histone-possessing Bacteriovorax bacteria. Genome Res 2025; 35:109-123. [PMID: 39572228 PMCID: PMC11789641 DOI: 10.1101/gr.279418.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 11/19/2024] [Indexed: 01/24/2025]
Abstract
Histone proteins have traditionally been thought to be restricted to eukaryotes and most archaea, with eukaryotic nucleosomal histones deriving from their archaeal ancestors. In contrast, bacteria lack histones as a rule. However, histone proteins have recently been identified in a few bacterial clades, most notably the phylum Bdellovibrionota, and these histones have been proposed to exhibit a range of divergent features compared with histones in archaea and eukaryotes. However, no functional genomic studies of the properties of Bdellovibrionota chromatin have been carried out. In this work, we map the landscape of chromatin accessibility, active transcription, and three-dimensional (3D) genome organization in a member of Bdellovibrionota (a Bacteriovorax strain). We find that, similar to what is observed in some archaea and in eukaryotes with compact genomes such as yeast, Bacteriovorax chromatin is characterized by preferential accessibility around promoter regions. Similar to eukaryotes, chromatin accessibility in Bacteriovorax positively correlates with gene expression. Mapping active transcription through single-strand DNA (ssDNA) profiling revealed that unlike in yeast, but similar to the state of mammalian and fly promoters, Bacteriovorax promoters exhibit very strong polymerase pausing. Finally, similar to that of other bacteria without histones, the Bacteriovorax genome exists in a 3D configuration organized by the parABS system along the axis defined by replication origin and termination regions. These results provide a foundation for understanding the chromatin biology of the unique Bdellovibrionota bacteria and the functional diversity in chromatin organization across the tree of life.
Collapse
Affiliation(s)
- Georgi K Marinov
- Department of Genetics, Stanford University, Stanford, California 94305, USA;
| | - Benjamin Doughty
- Department of Genetics, Stanford University, Stanford, California 94305, USA
| | - Anshul Kundaje
- Department of Genetics, Stanford University, Stanford, California 94305, USA
- Department of Computer Science, Stanford University, Stanford, California 94305, USA
| | - William J Greenleaf
- Department of Genetics, Stanford University, Stanford, California 94305, USA
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, California 94305, USA
- Department of Applied Physics, Stanford University, Stanford, California 94305, USA
- Arc Institute, Palo Alto, California 94304, USA
| |
Collapse
|
3
|
Qiu QT, Zhang CY, Gao ZP, Ma BG. Spatial chromosome organization and adaptation of the radiation-resistant extremophile Deinococcus radiodurans. J Biol Chem 2025; 301:108068. [PMID: 39667503 PMCID: PMC11758949 DOI: 10.1016/j.jbc.2024.108068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/21/2024] [Accepted: 12/05/2024] [Indexed: 12/14/2024] Open
Abstract
Radiation-resistant Deinococcus radiodurans is an extremophilic microorganism capable of withstanding high levels of ionizing radiation and chemical mutagens. It possesses remarkable DNA repair capability and serves as a model organism for studying stress resistance mechanisms. However, our understanding of the spatial chromosome organization of this species remains limited. In this study, we employed chromosome conformation capture (3C) technology to determine the 3D genome structure of D. radiodurans and to further investigate the changes of chromosome conformation induced by ultraviolet (UV) irradiation. We observed that UV irradiation reduced short-range chromosome interactions, and smaller chromosomal interaction domains (CIDs) merged to form larger CIDs. Integrating transcriptomic data analysis, we found that the majority of upregulated differentially expressed genes were significantly enriched near specific CID boundaries. Specifically, we comprehensively elucidated that the nucleoid-associated protein DrEbfC as a global regulatory factor for gene expression, may modulate the efficiency of relevant metabolic pathways by altering the local chromosome structure, thereby influencing the physiological state of the bacterium. Overall, our study revealed the chromosome conformations of D. radiodurans under different conditions and offered valuable insights into the molecular response mechanism of this extremophile to survival stresses.
Collapse
Affiliation(s)
- Qin-Tian Qiu
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Cai-Yun Zhang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Zhi-Peng Gao
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Bin-Guang Ma
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
4
|
Szalay MF, Majchrzycka B, Jerković I, Cavalli G, Ibrahim DM. Evolution and function of chromatin domains across the tree of life. Nat Struct Mol Biol 2024; 31:1824-1837. [PMID: 39592879 DOI: 10.1038/s41594-024-01427-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 10/17/2024] [Indexed: 11/28/2024]
Abstract
The genome of all organisms is spatially organized to function efficiently. The advent of genome-wide chromatin conformation capture (Hi-C) methods has revolutionized our ability to probe the three-dimensional (3D) organization of genomes across diverse species. In this Review, we compare 3D chromatin folding from bacteria and archaea to that in mammals and plants, focusing on topology at the level of gene regulatory domains. In doing so, we consider systematic similarities and differences that hint at the origin and evolution of spatial chromatin folding and its relation to gene activity. We discuss the universality of spatial chromatin domains in all kingdoms, each encompassing one to several genes. We also highlight differences between organisms and suggest that similar features in Hi-C matrices do not necessarily reflect the same biological process or function. Furthermore, we discuss the evolution of domain boundaries and boundary-forming proteins, which indicates that structural maintenance of chromosome (SMC) proteins and the transcription machinery are the ancestral sculptors of the genome. Architectural proteins such as CTCF serve as clade-specific determinants of genome organization. Finally, studies in many non-model organisms show that, despite the ancient origin of 3D chromatin folding and its intricate link to gene activity, evolution tolerates substantial changes in genome organization.
Collapse
Affiliation(s)
| | - Blanka Majchrzycka
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Center for Regenerative Therapies, Berlin, Germany
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Ivana Jerković
- Institute of Human Genetics, CNRS and Univ. Montpellier, Montpellier, France
| | - Giacomo Cavalli
- Institute of Human Genetics, CNRS and Univ. Montpellier, Montpellier, France.
| | - Daniel M Ibrahim
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Center for Regenerative Therapies, Berlin, Germany.
- Max Planck Institute for Molecular Genetics, Berlin, Germany.
| |
Collapse
|
5
|
Frutos-Grilo E, Ana Y, Gonzalez-de Miguel J, Cardona-I-Collado M, Rodriguez-Arce I, Serrano L. Bacterial live therapeutics for human diseases. Mol Syst Biol 2024; 20:1261-1281. [PMID: 39443745 PMCID: PMC11612307 DOI: 10.1038/s44320-024-00067-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/19/2024] [Accepted: 09/12/2024] [Indexed: 10/25/2024] Open
Abstract
The genomic revolution has fueled rapid progress in synthetic and systems biology, opening up new possibilities for using live biotherapeutic products (LBP) to treat, attenuate or prevent human diseases. Among LBP, bacteria-based therapies are particularly promising due to their ability to colonize diverse human tissues, modulate the immune system and secrete or deliver complex biological products. These bacterial LBP include engineered pathogenic species designed to target specific diseases, and microbiota species that promote microbial balance and immune system homeostasis, either through local administration or the gut-body axes. This review focuses on recent advancements in preclinical and clinical trials of bacteria-based LBP, highlighting both on-site and long-reaching strategies.
Collapse
Affiliation(s)
- Elisabet Frutos-Grilo
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Yamile Ana
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Javier Gonzalez-de Miguel
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Marcel Cardona-I-Collado
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Irene Rodriguez-Arce
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.
| | - Luis Serrano
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.
- ICREA, Pg. Lluis Companys 23, Barcelona, Spain.
| |
Collapse
|
6
|
Liu LM, Sun CY, Xi YC, Lu XH, Yong CW, Li SQ, Sun QW, Wang XW, Mao YZ, Chen W, Jiang HB. A global transcriptional activator involved in the iron homeostasis in cyanobacteria. SCIENCE ADVANCES 2024; 10:eadl6428. [PMID: 38959319 PMCID: PMC11221513 DOI: 10.1126/sciadv.adl6428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/30/2024] [Indexed: 07/05/2024]
Abstract
Cyanobacteria use a series of adaptation strategies and a complicated regulatory network to maintain intracellular iron (Fe) homeostasis. Here, a global activator named IutR has been identified through three-dimensional chromosome organization and transcriptome analysis in a model cyanobacterium Synechocystis sp. PCC 6803. Inactivation of all three homologous IutR-encoding genes resulted in an impaired tolerance of Synechocystis to Fe deficiency and loss of the responses of Fe uptake-related genes to Fe-deplete conditions. Protein-promoter interaction assays confirmed the direct binding of IutR with the promoters of genes related to Fe uptake, and chromatin immunoprecipitation sequencing analysis further revealed that in addition to Fe uptake, IutR could regulate many other physiological processes involved in intracellular Fe homeostasis. These results proved that IutR is an important transcriptional activator, which is essential for cyanobacteria to induce Fe-deficiency response genes. This study provides in-depth insights into the complicated Fe-deficient signaling network and the molecular mechanism of cyanobacteria adaptation to Fe-deficient environments.
Collapse
Affiliation(s)
- Ling-Mei Liu
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
- School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| | - Chuan-Yu Sun
- School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| | - Yi-Cao Xi
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Xiao-Hui Lu
- School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| | - Cheng-Wen Yong
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Shuang-Qing Li
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Qiao-Wei Sun
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Xin-Wei Wang
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - You-Zhi Mao
- Wuhan Frasergen Bioinformatics Co. Ltd., Wuhan, Hubei, China
| | - Weizhong Chen
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Hai-Bo Jiang
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
- School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, China
| |
Collapse
|
7
|
Hustmyer CM, Landick R. Bacterial chromatin proteins, transcription, and DNA topology: Inseparable partners in the control of gene expression. Mol Microbiol 2024; 122:81-112. [PMID: 38847475 PMCID: PMC11260248 DOI: 10.1111/mmi.15283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 06/15/2024]
Abstract
DNA in bacterial chromosomes is organized into higher-order structures by DNA-binding proteins called nucleoid-associated proteins (NAPs) or bacterial chromatin proteins (BCPs). BCPs often bind to or near DNA loci transcribed by RNA polymerase (RNAP) and can either increase or decrease gene expression. To understand the mechanisms by which BCPs alter transcription, one must consider both steric effects and the topological forces that arise when DNA deviates from its fully relaxed double-helical structure. Transcribing RNAP creates DNA negative (-) supercoils upstream and positive (+) supercoils downstream whenever RNAP and DNA are unable to rotate freely. This (-) and (+) supercoiling generates topological forces that resist forward translocation of DNA through RNAP unless the supercoiling is constrained by BCPs or relieved by topoisomerases. BCPs also may enhance topological stress and overall can either inhibit or aid transcription. Here, we review current understanding of how RNAP, BCPs, and DNA topology interplay to control gene expression.
Collapse
Affiliation(s)
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin-Madison
- Department of Bacteriology, University of Wisconsin-Madison
| |
Collapse
|
8
|
Chen M, Wu B, Huang Y, Wang W, Zheng Y, Shabbir S, Liu P, Dai Y, Xia M, Hu G, He M. Transcription factor shapes chromosomal conformation and regulates gene expression in bacterial adaptation. Nucleic Acids Res 2024; 52:5643-5657. [PMID: 38716861 PMCID: PMC11162768 DOI: 10.1093/nar/gkae318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 04/09/2024] [Accepted: 04/24/2024] [Indexed: 06/11/2024] Open
Abstract
Genomic mutations allow bacteria to adapt rapidly to adverse stress environments. The three-dimensional conformation of the genome may also play an important role in transcriptional regulation and environmental adaptation. Here, using chromosome conformation capture, we investigate the high-order architecture of the Zymomonas mobilis chromosome in response to genomic mutation and ambient stimuli (acetic acid and furfural, derived from lignocellulosic hydrolysate). We find that genomic mutation only influences the local chromosome contacts, whereas stress of acetic acid and furfural restrict the long-range contacts and significantly change the chromosome organization at domain scales. Further deciphering the domain feature unveils the important transcription factors, Ferric uptake regulator (Fur) proteins, which act as nucleoid-associated proteins to promote long-range (>200 kb) chromosomal communications and regulate the expression of genes involved in stress response. Our work suggests that ubiquitous transcription factors in prokaryotes mediate chromosome organization and regulate stress-resistance genes in bacterial adaptation.
Collapse
Affiliation(s)
- Mao Chen
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs; Chengdu 610041, PR China
- Graduate School of Chinese Academy of Agricultural Sciences; Beijing 100081, PR China
| | - Bo Wu
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs; Chengdu 610041, PR China
| | - Yuhuan Huang
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs; Chengdu 610041, PR China
- Graduate School of Chinese Academy of Agricultural Sciences; Beijing 100081, PR China
| | - Weiting Wang
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs; Chengdu 610041, PR China
| | - Yudi Zheng
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs; Chengdu 610041, PR China
- Graduate School of Chinese Academy of Agricultural Sciences; Beijing 100081, PR China
| | - Samina Shabbir
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs; Chengdu 610041, PR China
| | - Panting Liu
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs; Chengdu 610041, PR China
| | - Yonghua Dai
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs; Chengdu 610041, PR China
| | - Mengli Xia
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs; Chengdu 610041, PR China
| | - Guoquan Hu
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs; Chengdu 610041, PR China
| | - Mingxiong He
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs; Chengdu 610041, PR China
| |
Collapse
|
9
|
Tišma M, Bock FP, Kerssemakers J, Antar H, Japaridze A, Gruber S, Dekker C. Direct observation of a crescent-shape chromosome in expanded Bacillus subtilis cells. Nat Commun 2024; 15:2737. [PMID: 38548820 PMCID: PMC10979009 DOI: 10.1038/s41467-024-47094-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/14/2024] [Indexed: 04/01/2024] Open
Abstract
Bacterial chromosomes are folded into tightly regulated three-dimensional structures to ensure proper transcription, replication, and segregation of the genetic information. Direct visualization of chromosomal shape within bacterial cells is hampered by cell-wall confinement and the optical diffraction limit. Here, we combine cell-shape manipulation strategies, high-resolution fluorescence microscopy techniques, and genetic engineering to visualize the shape of unconfined bacterial chromosome in real-time in live Bacillus subtilis cells that are expanded in volume. We show that the chromosomes predominantly exhibit crescent shapes with a non-uniform DNA density that is increased near the origin of replication (oriC). Additionally, we localized ParB and BsSMC proteins - the key drivers of chromosomal organization - along the contour of the crescent chromosome, showing the highest density near oriC. Opening of the BsSMC ring complex disrupted the crescent chromosome shape and instead yielded a torus shape. These findings help to understand the threedimensional organization of the chromosome and the main protein complexes that underlie its structure.
Collapse
Affiliation(s)
- Miloš Tišma
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, Netherlands
| | - Florian Patrick Bock
- Department of Fundamental Microbiology (DMF), Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Jacob Kerssemakers
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, Netherlands
| | - Hammam Antar
- Department of Fundamental Microbiology (DMF), Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Aleksandre Japaridze
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, Netherlands
| | - Stephan Gruber
- Department of Fundamental Microbiology (DMF), Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, Netherlands.
| |
Collapse
|
10
|
Zhang H, Shao C, Wang J, Chu Y, Xiao J, Kang Y, Zhang Z. Combined Study of Gene Expression and Chromosome Three-Dimensional Structure in Escherichia coli During Growth Process. Curr Microbiol 2024; 81:122. [PMID: 38530471 DOI: 10.1007/s00284-024-03640-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 02/13/2024] [Indexed: 03/28/2024]
Abstract
The chromosome structure of different bacteria has its unique organization pattern, which plays an important role in maintaining the spatial location relationship between genes and regulating gene expression. Conversely, transcription also plays a global role in regulating the three-dimensional structure of bacterial chromosomes. Therefore, we combine RNA-Seq and Hi-C technology to explore the relationship between chromosome structure changes and transcriptional regulation in E. coli at different growth stages. Transcriptome analysis indicates that E. coli synthesizes many ribosomes and peptidoglycan in the exponential phase. In contrast, E. coli undergoes more transcriptional regulation and catabolism during the stationary phase, reflecting its adaptability to changes in environmental conditions during growth. Analyzing the Hi-C data shows that E. coli has a higher frequency of global chromosomal interaction in the exponential phase and more defined chromosomal interaction domains (CIDs). Still, the long-distance interactions at the replication termination region are lower than in the stationary phase. Combining transcriptome and Hi-C data analysis, we conclude that highly expressed genes are more likely to be distributed in CID boundary regions during the exponential phase. At the same time, most high-expression genes distributed in the CID boundary regions are ribosomal gene clusters, forming clearer CID boundaries during the exponential phase. The three-dimensional structure of chromosome and expression pattern is altered during the growth of E. coli from the exponential phase to the stationary phase, clarifying the synergy between the two regulatory aspects.
Collapse
Affiliation(s)
- Hao Zhang
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Changjun Shao
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Jian Wang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Yanan Chu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Jingfa Xiao
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Kang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
| | - Zhewen Zhang
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
| |
Collapse
|
11
|
Liu T, Qiu QT, Hua KJ, Ma BG. Chromosome structure modeling tools and their evaluation in bacteria. Brief Bioinform 2024; 25:bbae044. [PMID: 38385874 PMCID: PMC10883143 DOI: 10.1093/bib/bbae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/31/2023] [Accepted: 01/22/2024] [Indexed: 02/23/2024] Open
Abstract
The three-dimensional (3D) structure of bacterial chromosomes is crucial for understanding chromosome function. With the growing availability of high-throughput chromosome conformation capture (3C/Hi-C) data, the 3D structure reconstruction algorithms have become powerful tools to study bacterial chromosome structure and function. It is highly desired to have a recommendation on the chromosome structure reconstruction tools to facilitate the prokaryotic 3D genomics. In this work, we review existing chromosome 3D structure reconstruction algorithms and classify them based on their underlying computational models into two categories: constraint-based modeling and thermodynamics-based modeling. We briefly compare these algorithms utilizing 3C/Hi-C datasets and fluorescence microscopy data obtained from Escherichia coli and Caulobacter crescentus, as well as simulated datasets. We discuss current challenges in the 3D reconstruction algorithms for bacterial chromosomes, primarily focusing on software usability. Finally, we briefly prospect future research directions for bacterial chromosome structure reconstruction algorithms.
Collapse
Affiliation(s)
- Tong Liu
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Qin-Tian Qiu
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Kang-Jian Hua
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Bin-Guang Ma
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
12
|
Gilbert BR, Luthey-Schulten Z. Replicating Chromosomes in Whole-Cell Models of Bacteria. Methods Mol Biol 2024; 2819:625-653. [PMID: 39028527 DOI: 10.1007/978-1-0716-3930-6_29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Computational models of cells cannot be considered complete unless they include the most fundamental process of life, the replication of genetic material. In a recent study, we presented a computational framework to model systems of replicating bacterial chromosomes as polymers at 10 bp resolution with Brownian dynamics. This approach was used to investigate changes in chromosome organization during replication and extend the applicability of an existing whole-cell model (WCM) for a genetically minimal bacterium, JCVI-syn3A, to the entire cell cycle. To achieve cell-scale chromosome structures that are realistic, we modeled the chromosome as a self-avoiding homopolymer with bending and torsional stiffnesses that capture the essential mechanical properties of dsDNA in Syn3A. Additionally, the polymer interacts with ribosomes distributed according to cryo-electron tomograms of Syn3A. The polymer model was further augmented by computational models of loop extrusion by structural maintenance of chromosomes (SMC) protein complexes and topoisomerase action, and the modeling and analysis of multi-fork replication states.
Collapse
Affiliation(s)
- Benjamin R Gilbert
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Zaida Luthey-Schulten
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- NSF Science and Technology Center for Quantitative Cell Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
13
|
Hoareau M, Gerges E, Crémazy FGE. Shedding Light on Bacterial Chromosome Structure: Exploring the Significance of 3C-Based Approaches. Methods Mol Biol 2024; 2819:3-26. [PMID: 39028499 DOI: 10.1007/978-1-0716-3930-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The complex architecture of DNA within living organisms is essential for maintaining the genetic information that dictates their functions and characteristics. Among the many complexities of genetic material organization, the folding and arrangement of DNA into chromosomes play a critical role in regulating gene expression, replication, and other essential cellular processes. Bacteria, despite their apparently simple cellular structure, exhibit a remarkable level of chromosomal organization that influences their adaptability and survival in diverse environments. Understanding the three-dimensional arrangement of bacterial chromosomes has long been a challenge due to technical limitations, but the development of Chromosome Conformation Capture (3C) methods revolutionized our ability to explore the hierarchical structure and the dynamics of bacterial genomes. Here, we review the major advances in the field of bacterial chromosome structure using 3C technology over the past decade.
Collapse
Affiliation(s)
- Marion Hoareau
- Université Paris-Saclay, UVSQ, Inserm, Infection et inflammation, Montigny-Le-Bretonneux, France
| | - Elias Gerges
- Université Paris-Saclay, UVSQ, Inserm, Infection et inflammation, Montigny-Le-Bretonneux, France
| | - Frédéric G E Crémazy
- Université Paris-Saclay, UVSQ, Inserm, Infection et inflammation, Montigny-Le-Bretonneux, France.
| |
Collapse
|
14
|
Li Y, Gong N, Zhou L, Yang Z, Zhang H, Gu Y, Ma J, Ju J. OSMAC-Based Discovery and Biosynthetic Gene Clusters Analysis of Secondary Metabolites from Marine-Derived Streptomyces globisporus SCSIO LCY30. Mar Drugs 2023; 22:21. [PMID: 38248647 PMCID: PMC10817512 DOI: 10.3390/md22010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 12/25/2023] [Accepted: 12/26/2023] [Indexed: 01/23/2024] Open
Abstract
The one strain many compounds (OSMAC) strategy is an effective method for activating silent gene clusters by cultivating microorganisms under various conditions. The whole genome sequence of the marine-derived strain Streptomyces globisporus SCSIO LCY30 revealed that it contains 30 biosynthetic gene clusters (BGCs). By using the OSMAC strategy, three types of secondary metabolites were activated and identified, including three angucyclines, mayamycin A (1), mayamycin B (2), and rabolemycin (3); two streptophenazines (streptophenazin O (4) and M (5)); and a macrolide dimeric dinactin (6), respectively. The biosynthetic pathways of the secondary metabolites in these three families were proposed based on the gene function prediction and structural information. The bioactivity assays showed that angucycline compounds 1-3 exhibited potent antitumor activities against 11 human cancer cell lines and antibacterial activities against a series of Gram-positive bacteria. Mayamycin (1) selectively exhibited potent cytotoxicity activity against triple-negative breast cancer (TNBC) cell lines such as MDA-MB-231, MDA-MB-468, and Bt-549, with IC50 values of 0.60-2.22 μM.
Collapse
Affiliation(s)
- Yanqing Li
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, RNAM Center for Marine Microbiology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 110039, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Naying Gong
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Laboratory Medicine, Guangdong Medical University, Dongguan 523808, China (H.Z.)
| | - Le Zhou
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, RNAM Center for Marine Microbiology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Zhijie Yang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, RNAM Center for Marine Microbiology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 110039, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Hua Zhang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Laboratory Medicine, Guangdong Medical University, Dongguan 523808, China (H.Z.)
| | - Yucheng Gu
- Syngenta Jealott’s Hill International Research Centre, Bracknell RG42 6EY, Berkshire, UK
| | - Junying Ma
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, RNAM Center for Marine Microbiology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 110039, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Jianhua Ju
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, RNAM Center for Marine Microbiology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 110039, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| |
Collapse
|
15
|
Goodsell DS, Autin L. Integrative modeling of JCVI-Syn3A nucleoids with a modular approach. Curr Res Struct Biol 2023; 7:100121. [PMID: 38221989 PMCID: PMC10784680 DOI: 10.1016/j.crstbi.2023.100121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/16/2024] Open
Abstract
A lattice-based method is presented for creating 3D models of entire bacterial nucleoids integrating ultrastructural information cryoelectron tomography, genomic and proteomic data, and experimental atomic structures of biomolecules and assemblies. The method is used to generate models of the minimal genome bacterium JCVI-Syn3A, producing a series of models that test hypotheses about transcription, condensation, and overall distribution of the genome. Lattice models are also used to generate atomic models of an entire JCVI-Syn3A cell.
Collapse
Affiliation(s)
- David S. Goodsell
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Research Collaboratory for Structural Bioinformatics Protein Data and Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Ludovic Autin
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| |
Collapse
|
16
|
Marinov GK, Doughty B, Kundaje A, Greenleaf WJ. The landscape of the histone-organized chromatin of Bdellovibrionota bacteria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.30.564843. [PMID: 37961278 PMCID: PMC10634947 DOI: 10.1101/2023.10.30.564843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Histone proteins have traditionally been thought to be restricted to eukaryotes and most archaea, with eukaryotic nucleosomal histones deriving from their archaeal ancestors. In contrast, bacteria lack histones as a rule. However, histone proteins have recently been identified in a few bacterial clades, most notably the phylum Bdellovibrionota, and these histones have been proposed to exhibit a range of divergent features compared to histones in archaea and eukaryotes. However, no functional genomic studies of the properties of Bdellovibrionota chromatin have been carried out. In this work, we map the landscape of chromatin accessibility, active transcription and three-dimensional genome organization in a member of Bdellovibrionota (a Bacteriovorax strain). We find that, similar to what is observed in some archaea and in eukaryotes with compact genomes such as yeast, Bacteriovorax chromatin is characterized by preferential accessibility around promoter regions. Similar to eukaryotes, chromatin accessibility in Bacteriovorax positively correlates with gene expression. Mapping active transcription through single-strand DNA (ssDNA) profiling revealed that unlike in yeast, but similar to the state of mammalian and fly promoters, Bacteriovorax promoters exhibit very strong polymerase pausing. Finally, similar to that of other bacteria without histones, the Bacteriovorax genome exists in a three-dimensional (3D) configuration organized by the parABS system along the axis defined by replication origin and termination regions. These results provide a foundation for understanding the chromatin biology of the unique Bdellovibrionota bacteria and the functional diversity in chromatin organization across the tree of life.
Collapse
Affiliation(s)
- Georgi K Marinov
- Department of Genetics, Stanford University, Stanford, California 94305, USA
| | - Benjamin Doughty
- Department of Genetics, Stanford University, Stanford, California 94305, USA
| | - Anshul Kundaje
- Department of Genetics, Stanford University, Stanford, California 94305, USA
- Department of Computer Science, Stanford University, Stanford, California 94305, USA
| | - William J Greenleaf
- Department of Genetics, Stanford University, Stanford, California 94305, USA
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, California 94305, USA
- Department of Applied Physics, Stanford University, Stanford, California 94305, USA
- Arc Institute, Palo Alto, California, USA
| |
Collapse
|
17
|
Gilbert BR, Thornburg ZR, Brier TA, Stevens JA, Grünewald F, Stone JE, Marrink SJ, Luthey-Schulten Z. Dynamics of chromosome organization in a minimal bacterial cell. Front Cell Dev Biol 2023; 11:1214962. [PMID: 37621774 PMCID: PMC10445541 DOI: 10.3389/fcell.2023.1214962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 07/10/2023] [Indexed: 08/26/2023] Open
Abstract
Computational models of cells cannot be considered complete unless they include the most fundamental process of life, the replication and inheritance of genetic material. By creating a computational framework to model systems of replicating bacterial chromosomes as polymers at 10 bp resolution with Brownian dynamics, we investigate changes in chromosome organization during replication and extend the applicability of an existing whole-cell model (WCM) for a genetically minimal bacterium, JCVI-syn3A, to the entire cell-cycle. To achieve cell-scale chromosome structures that are realistic, we model the chromosome as a self-avoiding homopolymer with bending and torsional stiffnesses that capture the essential mechanical properties of dsDNA in Syn3A. In addition, the conformations of the circular DNA must avoid overlapping with ribosomes identitied in cryo-electron tomograms. While Syn3A lacks the complex regulatory systems known to orchestrate chromosome segregation in other bacteria, its minimized genome retains essential loop-extruding structural maintenance of chromosomes (SMC) protein complexes (SMC-scpAB) and topoisomerases. Through implementing the effects of these proteins in our simulations of replicating chromosomes, we find that they alone are sufficient for simultaneous chromosome segregation across all generations within nested theta structures. This supports previous studies suggesting loop-extrusion serves as a near-universal mechanism for chromosome organization within bacterial and eukaryotic cells. Furthermore, we analyze ribosome diffusion under the influence of the chromosome and calculate in silico chromosome contact maps that capture inter-daughter interactions. Finally, we present a methodology to map the polymer model of the chromosome to a Martini coarse-grained representation to prepare molecular dynamics models of entire Syn3A cells, which serves as an ultimate means of validation for cell states predicted by the WCM.
Collapse
Affiliation(s)
- Benjamin R. Gilbert
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Zane R. Thornburg
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Troy A. Brier
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Jan A. Stevens
- Molecular Dynamics Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Fabian Grünewald
- Molecular Dynamics Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - John E. Stone
- NVIDIA Corporation, Santa Clara, CA, United States
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Siewert J. Marrink
- Molecular Dynamics Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Zaida Luthey-Schulten
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- NSF Center for the Physics of Living Cells, Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
18
|
Mazzolini R, Rodríguez-Arce I, Fernández-Barat L, Piñero-Lambea C, Garrido V, Rebollada-Merino A, Motos A, Torres A, Grilló MJ, Serrano L, Lluch-Senar M. Engineered live bacteria suppress Pseudomonas aeruginosa infection in mouse lung and dissolve endotracheal-tube biofilms. Nat Biotechnol 2023; 41:1089-1098. [PMID: 36658340 PMCID: PMC10421741 DOI: 10.1038/s41587-022-01584-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 10/21/2022] [Indexed: 01/21/2023]
Abstract
Engineered live bacteria could provide a new modality for treating lung infections, a major cause of mortality worldwide. In the present study, we engineered a genome-reduced human lung bacterium, Mycoplasma pneumoniae, to treat ventilator-associated pneumonia, a disease with high hospital mortality when associated with Pseudomonas aeruginosa biofilms. After validating the biosafety of an attenuated M. pneumoniae chassis in mice, we introduced four transgenes into the chromosome by transposition to implement bactericidal and biofilm degradation activities. We show that this engineered strain has high efficacy against an acute P. aeruginosa lung infection in a mouse model. In addition, we demonstrated that the engineered strain could dissolve biofilms formed in endotracheal tubes of patients with ventilator-associated pneumonia and be combined with antibiotics targeting the peptidoglycan layer to increase efficacy against Gram-positive and Gram-negative bacteria. We expect our M. pneumoniae-engineered strain to be able to treat biofilm-associated infections in the respiratory tract.
Collapse
Affiliation(s)
- Rocco Mazzolini
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
- Pulmobiotics Ltd, Barcelona, Spain
| | - Irene Rodríguez-Arce
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
- Institute of Agrobiotechnology, CSIC-Navarra Government, Navarra, Spain
| | - Laia Fernández-Barat
- Cellex Laboratory, CibeRes, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain
- Department of Pneumology, Thorax Institute, Hospital Clinic of Barcelona, SpainICREA, Barcelona, Spain
| | - Carlos Piñero-Lambea
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
- Pulmobiotics Ltd, Barcelona, Spain
| | - Victoria Garrido
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
- Institute of Agrobiotechnology, CSIC-Navarra Government, Navarra, Spain
| | - Agustín Rebollada-Merino
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
- Department of Internal Medicine and Animal Surgery, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| | - Anna Motos
- Cellex Laboratory, CibeRes, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain
- Department of Pneumology, Thorax Institute, Hospital Clinic of Barcelona, SpainICREA, Barcelona, Spain
| | - Antoni Torres
- Cellex Laboratory, CibeRes, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain
- Department of Pneumology, Thorax Institute, Hospital Clinic of Barcelona, SpainICREA, Barcelona, Spain
| | | | - Luis Serrano
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain.
- Universitat Pompeu Fabra, Barcelona, Spain.
- ICREA, Barcelona, Spain.
| | - Maria Lluch-Senar
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain.
- Pulmobiotics Ltd, Barcelona, Spain.
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Sant Cugat del Vallès, Spain.
| |
Collapse
|
19
|
Burgos R, Garcia-Ramallo E, Shaw D, Lluch-Senar M, Serrano L. Development of a Serum-Free Medium To Aid Large-Scale Production of Mycoplasma-Based Therapies. Microbiol Spectr 2023; 11:e0485922. [PMID: 37097155 PMCID: PMC10269708 DOI: 10.1128/spectrum.04859-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 04/03/2023] [Indexed: 04/26/2023] Open
Abstract
To assist in the advancement of the large-scale production of safe Mycoplasma vaccines and other Mycoplasma-based therapies, we developed a culture medium free of animal serum and other animal components for Mycoplasma pneumoniae growth. By establishing a workflow method to systematically test different compounds and concentrations, we provide optimized formulations capable of supporting serial passaging and robust growth reaching 60 to 70% of the biomass obtained in rich medium. Global transcriptomic and proteomic analysis showed minor physiological changes upon cell culture in the animal component-free medium, supporting its suitability for the production of M. pneumoniae-based therapies. The major contributors to growth performance were found to be glucose as a carbon source, glycerol, cholesterol, and phospholipids as a source of fatty acids. Bovine serum albumin or cyclodextrin (in the animal component-free medium) were required as lipid carriers to prevent lipid toxicity. Connaught Medical Research Laboratories medium (CMRL) used to simplify medium preparation as a source of amino acids, nucleotide precursors, vitamins, and other cofactors could be substituted by cysteine. In fact, the presence of protein hydrolysates such as yeastolate or peptones was found to be essential and preferred over free amino acids, except for the cysteine. Supplementation of nucleotide precursors and vitamins is not strictly necessary in the presence of yeastolate, suggesting that this animal origin-free hydrolysate serves as an efficient source for these compounds. Finally, we adapted the serum-free medium formulation to support growth of Mycoplasma hyopneumoniae, a swine pathogen for which inactivated whole-cell vaccines are available. IMPORTANCE Mycoplasma infections have a significant negative impact on both livestock production and human health. Vaccination is often the first option to control disease and alleviate the economic impact that some Mycoplasma infections cause on milk production, weight gain, and animal health. The fastidious nutrient requirements of these bacteria, however, challenges the industrial production of attenuated or inactivated whole-cell vaccines, which depends on the use of animal serum and other animal raw materials. Apart from their clinical relevance, some Mycoplasma species have become cellular models for systems and synthetic biology, owing to the small size of their genomes and the absence of a cell wall, which offers unique opportunities for the secretion and delivery of biotherapeutics. This study proposes medium formulations free of serum and animal components with the potential of supporting large-scale production upon industrial optimization, thus contributing to the development of safe vaccines and other Mycoplasma-based therapies.
Collapse
Affiliation(s)
- Raul Burgos
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Eva Garcia-Ramallo
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Daniel Shaw
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Maria Lluch-Senar
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Pulmobiotics Ltd., Barcelona, Spain
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Sant Cugat del Vallès, Spain
| | - Luis Serrano
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- ICREA, Barcelona, Spain
| |
Collapse
|
20
|
Taylor L, Walsh S, Ashton A, Varga N, Kapoor S, George C, Jagannath A. The Mycoplasma hyorhinis genome displays differential chromatin accessibility. Heliyon 2023; 9:e17362. [PMID: 37389046 PMCID: PMC10300207 DOI: 10.1016/j.heliyon.2023.e17362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/09/2023] [Accepted: 06/14/2023] [Indexed: 07/01/2023] Open
Abstract
Whilst the regulation of chromatin accessibility and its effect on gene expression have been well studied in eukaryotic species, the role of chromatin dynamics and 3D organisation in genome reduced bacteria remains poorly understood [1,2]. In this study we profiled the accessibility of the Mycoplasma hyorhinis genome, these data were collected fortuitously as part of an experiment where ATAC-Seq was conducted on mycoplasma, contaminated mammalian cells. We found a differential and highly reproducible chromatin accessibility landscape, with regions of increased accessibility corresponding to genes important for the bacteria's life cycle and infectivity. Furthermore, accessibility in general correlated with transcriptionally active genes as profiled by RNA-Seq, but peaks of high accessibility were also seen in non-coding and intergenic regions, which could contribute to the topological organisation of the genome. However, changes in transcription induced by starvation or application of the RNA polymerase inhibitor rifampicin did not themselves change the accessibility profile, which confirms that the differential accessibility is inherently a property of the genome, and not a consequence of its function. These results together show that differential chromatin accessibility is a key feature of the regulation of gene expression in bacteria.
Collapse
Affiliation(s)
- Lewis Taylor
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, New Biochemistry Building, , South Parks Road, Oxford, OX1 3QU, UK
| | - Steven Walsh
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, New Biochemistry Building, , South Parks Road, Oxford, OX1 3QU, UK
| | - Anna Ashton
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, New Biochemistry Building, , South Parks Road, Oxford, OX1 3QU, UK
| | - Norbert Varga
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, New Biochemistry Building, , South Parks Road, Oxford, OX1 3QU, UK
| | - Sejal Kapoor
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, New Biochemistry Building, , South Parks Road, Oxford, OX1 3QU, UK
| | - Charlotte George
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Aarti Jagannath
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, New Biochemistry Building, , South Parks Road, Oxford, OX1 3QU, UK
| |
Collapse
|
21
|
Deng L, Zhao Z, Liu L, Zhong Z, Xie W, Zhou F, Xu W, Zhang Y, Deng Z, Sun Y. Dissection of 3D chromosome organization in Streptomyces coelicolor A3(2) leads to biosynthetic gene cluster overexpression. Proc Natl Acad Sci U S A 2023; 120:e2222045120. [PMID: 36877856 PMCID: PMC10242723 DOI: 10.1073/pnas.2222045120] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/08/2023] [Indexed: 03/08/2023] Open
Abstract
The soil-dwelling filamentous bacteria, Streptomyces, is widely known for its ability to produce numerous bioactive natural products. Despite many efforts toward their overproduction and reconstitution, our limited understanding of the relationship between the host's chromosome three dimension (3D) structure and the yield of the natural products escaped notice. Here, we report the 3D chromosome organization and its dynamics of the model strain, Streptomyces coelicolor, during the different growth phases. The chromosome undergoes a dramatic global structural change from primary to secondary metabolism, while some biosynthetic gene clusters (BGCs) form special local structures when highly expressed. Strikingly, transcription levels of endogenous genes are found to be highly correlated to the local chromosomal interaction frequency as defined by the value of the frequently interacting regions (FIREs). Following the criterion, an exogenous single reporter gene and even complex BGC can achieve a higher expression after being integrated into the chosen loci, which may represent a unique strategy to activate or enhance the production of natural products based on the local chromosomal 3D organization.
Collapse
Affiliation(s)
- Liang Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan University, Wuhan430071, China
| | - Zhihu Zhao
- Department of Protein Engineering, Beijing Institute of Biotechnology, Beijing100071, China
| | - Lin Liu
- Epigenetic Division, Wuhan Frasergen Bioinformatics Co., Ltd., Wuhan430075, China
| | - Zhiyu Zhong
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan University, Wuhan430071, China
| | - Wenxinyu Xie
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan University, Wuhan430071, China
| | - Fan Zhou
- Epigenetic Division, Wuhan Frasergen Bioinformatics Co., Ltd., Wuhan430075, China
| | - Wei Xu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan University, Wuhan430071, China
| | - Yubo Zhang
- Animal Functional Genomics Group, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen518120, China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan University, Wuhan430071, China
| | - Yuhui Sun
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan University, Wuhan430071, China
| |
Collapse
|
22
|
Huang YF, Liu L, Wang F, Yuan XW, Chen HC, Liu ZF. High-Resolution 3D Genome Map of Brucella Chromosomes in Exponential and Stationary Phases. Microbiol Spectr 2023; 11:e0429022. [PMID: 36847551 PMCID: PMC10100373 DOI: 10.1128/spectrum.04290-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/02/2023] [Indexed: 03/01/2023] Open
Abstract
The three-dimensional (3D) genome structure of an organism or cell is highly relevant to its biological activities, but the availability of 3D genome information for bacteria, especially intracellular pathogens, is still limited. Here, we used Hi-C (high-throughput chromosome conformation capture) technology to determine the 3D chromosome structures of exponential- and stationary-phase Brucella melitensis at a 1-kb resolution. We observed that the contact heat maps of the two B. melitensis chromosomes contain a prominent diagonal and a secondary diagonal. Then, 79 chromatin interaction domains (CIDs) were detected at an optical density at 600 nm (OD600) of 0.4 (exponential phase), with the longest CID being 106 kb and the shortest being 12 kb. Moreover, we obtained 49,363 significant cis-interaction loci and 59,953 significant trans-interaction loci. Meanwhile, 82 CIDs of B. melitensis at an OD600 of 1.5 (stationary phase) were detected, with the longest CID being 94 kb and the shortest being 16 kb. In addition, 25,965 significant cis-interaction loci and 35,938 significant trans-interaction loci were obtained in this phase. Furthermore, we found that as the B. melitensis cells grew from the logarithmic to the plateau phase, the frequency of short-range interactions increased, while that of long-range interactions decreased. Finally, combined analysis of 3D genome and whole-genome transcriptome (RNA-seq) data revealed that the strength of short-range interactions in Chr1 is specifically and strongly correlated with gene expression. Overall, our study provides a global view of the chromatin interactions in the B. melitensis chromosomes, which will serve as a resource for further study of the spatial regulation of gene expression in Brucella. IMPORTANCE The spatial structure of chromatin plays important roles in normal cell functions and in the regulation of gene expression. Three-dimensional genome sequencing has been performed in many mammals and plants, but the availability of such data for bacteria, especially intracellular pathogens, is still limited. Approximately 10% of sequenced bacterial genomes contain more than one replicon. However, how multiple replicons are organized within bacterial cells, how they interact, and whether these interactions help to maintain or segregate these multipartite genomes are unresolved issues. Brucella is a Gram-negative, facultative intracellular, and zoonotic bacterium. Except for Brucella suis biovar 3, Brucella species have two chromosomes. Here, we applied Hi-C technology to determine the 3D genome structures of exponential- and stationary-phase Brucella melitensis chromosomes at a 1-kb resolution. Combined analysis of the 3D genome and RNA-seq data indicated that the strength of short-range interactions in B. melitensis Chr1 is specifically and strongly correlated with gene expression. Our study provides a resource to achieve a deeper understanding of the spatial regulation of gene expression in Brucella.
Collapse
Affiliation(s)
- Yong-Fang Huang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Lin Liu
- Wuhan Frasergen Bioinformatics Co., Ltd., Wuhan, Hubei, China
| | - Fei Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xin-Wei Yuan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Huan-Chun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zheng-Fei Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
23
|
Wasim A, Gupta A, Bera P, Mondal J. Interpretation of organizational role of proteins on E. coli nucleoid via Hi-C integrated model. Biophys J 2023; 122:63-81. [PMID: 36435970 PMCID: PMC9822802 DOI: 10.1016/j.bpj.2022.11.2938] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/23/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022] Open
Abstract
Several proteins in Escherichia coli work together to maintain the complex organization of its chromosome. However, the individual roles of these so-called nucleoid-associated proteins (NAPs) in chromosome architectures are not well characterized. Here, we quantitatively dissect the organizational roles of Heat Unstable (HU), a ubiquitous protein in E. coli and MatP, an NAP specifically binding to the Ter macrodomain of the chromosome. Toward this end, we employ a polymer physics-based computer model of wild-type chromosome and their HU- and MatP-devoid counterparts by incorporating their respective experimentally derived Hi-C contact matrix, cell dimensions, and replication status of the chromosome commensurate with corresponding growth conditions. Specifically, our model for the HU-devoid chromosome corroborates well with the microscopy observation of compaction of chromosome at short genomic range but diminished long-range interactions, justifying precedent hypothesis of segregation defect upon HU removal. Control simulations point out that the change in cell dimension and chromosome content in the process of HU removal holds the key to the observed differences in chromosome architecture between wild-type and HU-devoid cells. On the other hand, simulation of MatP-devoid chromosome led to locally enhanced contacts between Ter and its flanking macrodomains, consistent with previous recombination assay experiments and MatP's role in insulation of the Ter macrodomain from the rest of the chromosome. However, the simulation indicated no change in matS sites' localization. Rather, a set of designed control simulations showed that insulation of Ter is not caused by bridging of distant matS sites, also lending credence to a recent mobility experiment on various loci of the E. coli chromosome. Together, the investigations highlight the ability of an integrative model of the bacterial genome in elucidating the role of NAPs and in reconciling multiple experimental observations.
Collapse
Affiliation(s)
- Abdul Wasim
- Tata Institute of Fundamental Research, Hyderabad, India
| | - Ankit Gupta
- Tata Institute of Fundamental Research, Hyderabad, India
| | - Palash Bera
- Tata Institute of Fundamental Research, Hyderabad, India
| | | |
Collapse
|
24
|
Joyeux M. Models of topological barriers and molecular motors of bacterial DNA. MOLECULAR SIMULATION 2022. [DOI: 10.1080/08927022.2022.2120626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Marc Joyeux
- Laboratoire Interdisciplinaire de Physique, CNRS and Université Grenoble Alpes, Grenoble, France
| |
Collapse
|
25
|
Malhotra N, Seshasayee ASN. Replication-Dependent Organization Constrains Positioning of Long DNA Repeats in Bacterial Genomes. Genome Biol Evol 2022; 14:6625829. [PMID: 35776426 PMCID: PMC9297083 DOI: 10.1093/gbe/evac102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2022] [Indexed: 01/29/2023] Open
Abstract
Bacterial genome organization is primarily driven by chromosomal replication from a single origin of replication. However, chromosomal rearrangements, which can disrupt such organization, are inevitable in nature. Long DNA repeats are major players mediating rearrangements, large and small, via homologous recombination. Since changes to genome organization affect bacterial fitness-and more so in fast-growing than slow-growing bacteria-and are under selection, it is reasonable to expect that genomic positioning of long DNA repeats is also under selection. To test this, we identified identical DNA repeats of at least 100 base pairs across ∼6,000 bacterial genomes and compared their distribution in fast- and slow-growing bacteria. We found that long identical DNA repeats are distributed in a non-random manner across bacterial genomes. Their distribution differs in the overall number, orientation, and proximity to the origin of replication, between fast- and slow-growing bacteria. We show that their positioning-which might arise from a combination of the processes that produce repeats and selection on rearrangements that recombination between repeat elements might cause-permits less disruption to the replication-dependent genome organization of bacteria compared with random suggesting it as a major constraint to positioning of long DNA repeats.
Collapse
|
26
|
Relationship between the Chromosome Structural Dynamics and Gene Expression—A Chicken and Egg Dilemma? Microorganisms 2022; 10:microorganisms10050846. [PMID: 35630292 PMCID: PMC9144111 DOI: 10.3390/microorganisms10050846] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 04/14/2022] [Indexed: 02/06/2023] Open
Abstract
Prokaryotic transcription was extensively studied over the last half-century. A great deal of data has been accumulated regarding the control of gene expression by transcription factors regulating their target genes by binding at specific DNA sites. However, there is a significant gap between the mechanistic description of transcriptional control obtained from in vitro biochemical studies and the complexity of transcriptional regulation in the context of the living cell. Indeed, recent studies provide ample evidence for additional levels of complexity pertaining to the regulation of transcription in vivo, such as, for example, the role of the subcellular localization and spatial organization of different molecular components involved in the transcriptional control and, especially, the role of chromosome configurational dynamics. The question as to how the chromosome is dynamically reorganized under the changing environmental conditions and how this reorganization is related to gene expression is still far from being clear. In this article, we focus on the relationships between the chromosome structural dynamics and modulation of gene expression during bacterial adaptation. We argue that spatial organization of the bacterial chromosome is of central importance in the adaptation of gene expression to changing environmental conditions and vice versa, that gene expression affects chromosome dynamics.
Collapse
|
27
|
Broto A, Gaspari E, Miravet-Verde S, Dos Santos VAPM, Isalan M. A genetic toolkit and gene switches to limit Mycoplasma growth for biosafety applications. Nat Commun 2022; 13:1910. [PMID: 35393441 PMCID: PMC8991246 DOI: 10.1038/s41467-022-29574-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 03/24/2022] [Indexed: 12/18/2022] Open
Abstract
Mycoplasmas have exceptionally streamlined genomes and are strongly adapted to their many hosts, which provide them with essential nutrients. Owing to their relative genomic simplicity, Mycoplasmas have been used to develop chassis for biotechnological applications. However, the dearth of robust and precise toolkits for genomic manipulation and tight regulation has hindered any substantial advance. Herein we describe the construction of a robust genetic toolkit for M. pneumoniae, and its successful deployment to engineer synthetic gene switches that control and limit Mycoplasma growth, for biosafety containment applications. We found these synthetic gene circuits to be stable and robust in the long-term, in the context of a minimal cell. With this work, we lay a foundation to develop viable and robust biosafety systems to exploit a synthetic Mycoplasma chassis for live attenuated vectors for therapeutic applications.
Collapse
Affiliation(s)
- Alicia Broto
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Erika Gaspari
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, the Netherlands
- European & Developing Countries Clinical Trials Partnership (EDCTP), The Hague, The Netherlands
| | - Samuel Miravet-Verde
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, 08003, Barcelona, Spain
| | - Vitor A P Martins Dos Santos
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, the Netherlands
- LifeGlimmer GmbH, Berlin, Germany
| | - Mark Isalan
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
28
|
Maritan M, Autin L, Karr J, Covert MW, Olson AJ, Goodsell DS. Building Structural Models of a Whole Mycoplasma Cell. J Mol Biol 2022; 434:167351. [PMID: 34774566 PMCID: PMC8752489 DOI: 10.1016/j.jmb.2021.167351] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 02/01/2023]
Abstract
Building structural models of entire cells has been a long-standing cross-discipline challenge for the research community, as it requires an unprecedented level of integration between multiple sources of biological data and enhanced methods for computational modeling and visualization. Here, we present the first 3D structural models of an entire Mycoplasma genitalium (MG) cell, built using the CellPACK suite of computational modeling tools. Our model recapitulates the data described in recent whole-cell system biology simulations and provides a structural representation for all MG proteins, DNA and RNA molecules, obtained by combining experimental and homology-modeled structures and lattice-based models of the genome. We establish a framework for gathering, curating and evaluating these structures, exposing current weaknesses of modeling methods and the boundaries of MG structural knowledge, and visualization methods to explore functional characteristics of the genome and proteome. We compare two approaches for data gathering, a manually-curated workflow and an automated workflow that uses homologous structures, both of which are appropriate for the analysis of mesoscale properties such as crowding and volume occupancy. Analysis of model quality provides estimates of the regularization that will be required when these models are used as starting points for atomic molecular dynamics simulations.
Collapse
Affiliation(s)
- Martina Maritan
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037 USA. https://twitter.com/MartinaMaritan
| | - Ludovic Autin
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037 USA. https://twitter.com/grinche
| | - Jonathan Karr
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Markus W Covert
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Arthur J Olson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037 USA
| | - David S Goodsell
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037 USA; RCSB Protein Data Bank and Institute for Quantitative Biomedicine, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA.
| |
Collapse
|
29
|
Dugar G, Hofmann A, Heermann DW, Hamoen LW. A chromosomal loop anchor mediates bacterial genome organization. Nat Genet 2022; 54:194-201. [PMID: 35075232 DOI: 10.1038/s41588-021-00988-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 11/19/2021] [Indexed: 12/22/2022]
Abstract
Nucleoprotein complexes play an integral role in genome organization of both eukaryotes and prokaryotes. Apart from their role in locally structuring and compacting DNA, several complexes are known to influence global organization by mediating long-range anchored chromosomal loop formation leading to spatial segregation of large sections of DNA. Such megabase-range interactions are ubiquitous in eukaryotes, but have not been demonstrated in prokaryotes. Here, using a genome-wide sedimentation-based approach, we found that a transcription factor, Rok, forms large nucleoprotein complexes in the bacterium Bacillus subtilis. Using chromosome conformation capture and live-imaging of DNA loci, we show that these complexes robustly interact with each other over large distances. Importantly, these Rok-dependent long-range interactions lead to anchored chromosomal loop formation, thereby spatially isolating large sections of DNA, as previously observed for insulator proteins in eukaryotes.
Collapse
Affiliation(s)
- Gaurav Dugar
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands.
| | - Andreas Hofmann
- Institute for Theoretical Physics, Heidelberg University, Heidelberg, Germany
| | - Dieter W Heermann
- Institute for Theoretical Physics, Heidelberg University, Heidelberg, Germany
| | - Leendert W Hamoen
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
30
|
Galyamina MA, Zubov AI, Ladygina VG, Li AV, Matyushkina DS, Pobeguts OV, Fisunov GY. Comparative Proteomic Analysis of the Mycoplasma gallisepticum Nucleoid Fraction before and after Infection. Bull Exp Biol Med 2022; 172:336-340. [PMID: 35001316 DOI: 10.1007/s10517-022-05388-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Indexed: 11/26/2022]
Abstract
Mycoplasma gallisepticum belongs to the class Mollicutes and induces severe chronic respiratory disease in chickens. It lacks the cell wall and contains a very small genome and, accordingly, a reduced set of regulatory proteins. It is assumed that one of the regulatory mechanisms in mycoplasmas may be the dynamics of the spatial organization of the chromosome. M. gallisepticum has only two known nucleoid-associated (NAP) histone-like proteins (Hup_1 and Hup_2). To search for new potential NAP that may play a role in the infection process, we isolated nucleoid fractions from M. gallisepticum cells before and after infection of HD3 chicken erythroblast cell line and performed a comparative proteomic analysis of these fractions. We identified several potential NAP that included the components of the terminal organelle and adhesion, VlhA antigen, NADH oxidase, and PykF pyruvate kinase.
Collapse
Affiliation(s)
- M A Galyamina
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical-Biological Agency of Russia, Moscow, Russia.
| | - A I Zubov
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical-Biological Agency of Russia, Moscow, Russia
| | - V G Ladygina
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical-Biological Agency of Russia, Moscow, Russia
| | - A V Li
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical-Biological Agency of Russia, Moscow, Russia
| | - D S Matyushkina
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical-Biological Agency of Russia, Moscow, Russia
| | - O V Pobeguts
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical-Biological Agency of Russia, Moscow, Russia
| | - G Yu Fisunov
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical-Biological Agency of Russia, Moscow, Russia
| |
Collapse
|
31
|
Fisunov GY, Zubov AI, Pobeguts OV, Varizhuk AM, Galyamina MA, Evsyutina DV, Semashko TA, Manuvera VA, Kovalchuk SI, Ziganshin RK, Barinov NA, Klinov DV, Govorun VM. The Dynamics of Mycoplasma gallisepticum Nucleoid Structure at the Exponential and Stationary Growth Phases. Front Microbiol 2021; 12:753760. [PMID: 34867875 PMCID: PMC8637272 DOI: 10.3389/fmicb.2021.753760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/18/2021] [Indexed: 11/13/2022] Open
Abstract
The structure and dynamics of bacterial nucleoids play important roles in regulating gene expression. Bacteria of class Mollicutes and, in particular, mycoplasmas feature extremely reduced genomes. They lack multiple structural proteins of the nucleoid, as well as regulators of gene expression. We studied the organization of Mycoplasma gallisepticum nucleoids in the stationary and exponential growth phases at the structural and protein levels. The growth phase transition results in the structural reorganization of M. gallisepticum nucleoid. In particular, it undergoes condensation and changes in the protein content. The observed changes corroborate with the previously identified global rearrangement of the transcriptional landscape in this bacterium during the growth phase transition. In addition, we identified that the glycolytic enzyme enolase functions as a nucleoid structural protein in this bacterium. It is capable of non-specific DNA binding and can form fibril-like complexes with DNA.
Collapse
Affiliation(s)
- Gleb Y Fisunov
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Alexander I Zubov
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Olga V Pobeguts
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Anna M Varizhuk
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Mariya A Galyamina
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Daria V Evsyutina
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Tatiana A Semashko
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Valentin A Manuvera
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Sergey I Kovalchuk
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Rustam K Ziganshin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Nicolay A Barinov
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Dmitry V Klinov
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Vadim M Govorun
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| |
Collapse
|
32
|
Di Stefano M, Nützmann HW. Modeling the 3D genome of plants. Nucleus 2021; 12:65-81. [PMID: 34057011 PMCID: PMC8168717 DOI: 10.1080/19491034.2021.1927503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/29/2021] [Accepted: 05/05/2021] [Indexed: 12/11/2022] Open
Abstract
Chromosomes are the carriers of inheritable traits and define cell function and development. This is not only based on the linear DNA sequence of chromosomes but also on the additional molecular information they are associated with, including the transcription machinery, histone modifications, and their three-dimensional folding. The synergistic application of experimental approaches and computer simulations has helped to unveil how these organizational layers of the genome interplay in various organisms. However, such multidisciplinary approaches are still rarely explored in the plant kingdom. Here, we provide an overview of our current knowledge on plant 3D genome organization and review recent efforts to integrate cutting-edge experiments from microscopy and next-generation sequencing approaches with theoretical models. Building on these recent approaches, we propose possible avenues to extend the application of theoretical modeling in the characterization of the 3D genome organization in plants.
Collapse
Affiliation(s)
- Marco Di Stefano
- Institute of Human Genetics, Centre National de la Recherche Scientifique, University of Montpellier, Montpellier, France
| | - Hans-Wilhelm Nützmann
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK
| |
Collapse
|
33
|
Isolation of Nucleoid Fraction from Mycoplasma gallisepticum Cells with Synchronized Cell Division. Bull Exp Biol Med 2021; 171:760-763. [PMID: 34705179 DOI: 10.1007/s10517-021-05311-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Indexed: 10/20/2022]
Abstract
It is assumed that unknown mechanisms can be involved in adaptation Mycoplasma gallisepticum to unfavorable factors, one of these can be local rearrangements of the structure and spatial organization of the chromosome. To study these mechanisms, we obtained a culture of M. gallisepticum with synchronized division and isolated the nucleoid fraction from this culture by the method of mild cell lysis and centrifugation in a sucrose gradient. Liquid chromatography-mass spectrometry analysis of the proteome showed that in comparison with the cell lysate, the nucleoid fraction was enriched with DNA-binding proteins. This analysis will help to find new nucleoid-associated proteins and to study their dynamics, distribution, and their role during infection and under stress conditions.
Collapse
|
34
|
Matteau D, Rodrigue S. An engineered Mycoplasma pneumoniae to fight Staphylococcus aureus. Mol Syst Biol 2021; 17:e10574. [PMID: 34612591 PMCID: PMC8493562 DOI: 10.15252/msb.202110574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 08/05/2021] [Indexed: 11/09/2022] Open
Abstract
Bacterial infections are commonly treated with antimicrobials, but the rise of multi-drug resistance and the presence of biofilms can compromise treatment efficacy. Recently, new approaches using live bacteria or engineered microorganisms have gained attention in the fight against several diseases. In their recent work, Lluch-Senar and colleagues (Garrido et al, 2021) genetically modified the lung pathogen Mycoplasma pneumoniae to attenuate its virulence and secrete antibiofilm and bactericidal enzymes. Their strategy successfully altered a Staphylococcus aureus biofilm on catheters implanted in mice, providing an additional demonstration of the potential of genetically engineered microorganisms as therapeutic agents.
Collapse
Affiliation(s)
- Dominick Matteau
- Département de BiologieUniversité de SherbrookeSherbrookeQCCanada
| | | |
Collapse
|
35
|
The spatial position effect: synthetic biology enters the era of 3D genomics. Trends Biotechnol 2021; 40:539-548. [PMID: 34607694 DOI: 10.1016/j.tibtech.2021.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 11/23/2022]
Abstract
Microbial cell factories are critical to achieving green biomanufacturing. A position effect occurs when a synthetic gene circuit is expressed from different positions in the chassis strain genome. Here, we propose the concept of the 'spatial position effect,' which uses technologies in 3D genomics to reveal the spatial structure characteristics of the 3D genome of the chassis. On this basis, we propose to rationally design the integration sites of synthetic gene circuits, use reporter genes for preliminary screening, and integrate synthetic gene circuits into promising sites for further experiments. This approach can produce stable and efficient chassis strains for green biomanufacturing. The proposed spatial position effect brings synthetic biology into the era of 3D genomics.
Collapse
|
36
|
Spatial rearrangement of the Streptomyces venezuelae linear chromosome during sporogenic development. Nat Commun 2021; 12:5222. [PMID: 34471115 PMCID: PMC8410768 DOI: 10.1038/s41467-021-25461-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 08/12/2021] [Indexed: 12/13/2022] Open
Abstract
Bacteria of the genus Streptomyces have a linear chromosome, with a core region and two ‘arms’. During their complex life cycle, these bacteria develop multi-genomic hyphae that differentiate into chains of exospores that carry a single copy of the genome. Sporulation-associated cell division requires chromosome segregation and compaction. Here, we show that the arms of Streptomyces venezuelae chromosomes are spatially separated at entry to sporulation, but during sporogenic cell division they are closely aligned with the core region. Arm proximity is imposed by segregation protein ParB and condensin SMC. Moreover, the chromosomal terminal regions are organized into distinct domains by the Streptomyces-specific HU-family protein HupS. Thus, as seen in eukaryotes, there is substantial chromosomal remodelling during the Streptomyces life cycle, with the chromosome undergoing rearrangements from an ‘open’ to a ‘closed’ conformation. Streptomyces bacteria have a linear chromosome and a complex life cycle, including development of multi-genomic hyphae that differentiate into mono-genomic exospores. Here, Szafran et al. show that the chromosome of Streptomyces venezuelae undergoes substantial remodelling during sporulation, from an ‘open’ to a ‘closed’ conformation.
Collapse
|
37
|
Zubov A, Ladygina V, Kovalchuk S, Ziganshin R, Galyamina M, Pobeguts O, Fisunov G. Data on nucleoid-associated proteins isolated from Mycoplasma gallisepticum after intracellular infection. Data Brief 2021; 38:107289. [PMID: 34458519 PMCID: PMC8379615 DOI: 10.1016/j.dib.2021.107289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/29/2021] [Accepted: 08/12/2021] [Indexed: 11/18/2022] Open
Abstract
Mycoplasma gallisepticum (M. gallisepticum) belongs to the class of Mollicutes. It causes chronic respiratory disease in avian species. It is characterized by lack of cell wall and reduced genome size. As a result of genome reduction, M. gallisepticum has a limited variety of DNA-binding proteins (DBP) and transcription factors. Consequently, the diversity of DNA-binding proteins and transcription factors (TF) in M. gallisepticum is limited in comparison with related bacteria such as Bacillus subtilis. Studies have shown, however, that mycoplasmas demonstrate a wide range of differential expression of genes in response to various stress factors, which promotes effective adaptation to unfavorable conditions. We assume that in the case of mycoplasmas, which are characterized by a combination of the reduction of known gene expression regulation systems and a high adaptive potential, the coordination of gene expression can be provided due to local changes in the structure and spatial organization of the chromosome. The study of the dynamic changes of the proteomic profile of M. gallisepticum nucleoid may assist in revealing its mechanisms of functioning, regulation of chromosome organization and stress adaptation including its changes upon invasion of the host cells.
Collapse
Affiliation(s)
- A.I. Zubov
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russian Federation
- Corresponding author.
| | - V.G. Ladygina
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russian Federation
| | - S.I. Kovalchuk
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Federation
| | - R.H. Ziganshin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Federation
| | - M.A. Galyamina
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russian Federation
| | - O.V. Pobeguts
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russian Federation
| | - G.Y. Fisunov
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russian Federation
| |
Collapse
|
38
|
Abstract
Since the nucleoid was isolated from bacteria in the 1970s, two fundamental questions emerged and are still in the spotlight: how bacteria organize their chromosomes to fit inside the cell and how nucleoid organization enables essential biological processes. During the last decades, knowledge of bacterial chromosome organization has advanced considerably, and today, such chromosomes are considered to be highly organized and dynamic structures that are shaped by multiple factors in a multiscale manner. Here we review not only the classical well-known factors involved in chromosome organization but also novel components that have recently been shown to dynamically shape the 3D structuring of the bacterial genome. We focus on the different functional elements that control short-range organization and describe how they collaborate in the establishment of the higher-order folding and disposition of the chromosome. Recent advances have opened new avenues for a deeper understanding of the principles and mechanisms of chromosome organization in bacteria. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Virginia S Lioy
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France;
| | - Ivan Junier
- Université Grenoble Alpes, CNRS, TIMC-IMAG, 38000 Grenoble, France
| | - Frédéric Boccard
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France;
| |
Collapse
|
39
|
Jerkovic I, Cavalli G. Understanding 3D genome organization by multidisciplinary methods. Nat Rev Mol Cell Biol 2021; 22:511-528. [PMID: 33953379 DOI: 10.1038/s41580-021-00362-w] [Citation(s) in RCA: 197] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2021] [Indexed: 02/03/2023]
Abstract
Understanding how chromatin is folded in the nucleus is fundamental to understanding its function. Although 3D genome organization has been historically difficult to study owing to a lack of relevant methodologies, major technological breakthroughs in genome-wide mapping of chromatin contacts and advances in imaging technologies in the twenty-first century considerably improved our understanding of chromosome conformation and nuclear architecture. In this Review, we discuss methods of 3D genome organization analysis, including sequencing-based techniques, such as Hi-C and its derivatives, Micro-C, DamID and others; microscopy-based techniques, such as super-resolution imaging coupled with fluorescence in situ hybridization (FISH), multiplex FISH, in situ genome sequencing and live microscopy methods; and computational and modelling approaches. We describe the most commonly used techniques and their contribution to our current knowledge of nuclear architecture and, finally, we provide a perspective on up-and-coming methods that open possibilities for future major discoveries.
Collapse
Affiliation(s)
- Ivana Jerkovic
- Institute of Human Genetics, CNRS, University of Montpellier, Montpellier, France
| | - Giacomo Cavalli
- Institute of Human Genetics, CNRS, University of Montpellier, Montpellier, France.
| |
Collapse
|
40
|
Gilbert BR, Thornburg ZR, Lam V, Rashid FZM, Glass JI, Villa E, Dame RT, Luthey-Schulten Z. Generating Chromosome Geometries in a Minimal Cell From Cryo-Electron Tomograms and Chromosome Conformation Capture Maps. Front Mol Biosci 2021; 8:644133. [PMID: 34368224 PMCID: PMC8339304 DOI: 10.3389/fmolb.2021.644133] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 05/14/2021] [Indexed: 12/31/2022] Open
Abstract
JCVI-syn3A is a genetically minimal bacterial cell, consisting of 493 genes and only a single 543 kbp circular chromosome. Syn3A’s genome and physical size are approximately one-tenth those of the model bacterial organism Escherichia coli’s, and the corresponding reduction in complexity and scale provides a unique opportunity for whole-cell modeling. Previous work established genome-scale gene essentiality and proteomics data along with its essential metabolic network and a kinetic model of genetic information processing. In addition to that information, whole-cell, spatially-resolved kinetic models require cellular architecture, including spatial distributions of ribosomes and the circular chromosome’s configuration. We reconstruct cellular architectures of Syn3A cells at the single-cell level directly from cryo-electron tomograms, including the ribosome distributions. We present a method of generating self-avoiding circular chromosome configurations in a lattice model with a resolution of 11.8 bp per monomer on a 4 nm cubic lattice. Realizations of the chromosome configurations are constrained by the ribosomes and geometry reconstructed from the tomograms and include DNA loops suggested by experimental chromosome conformation capture (3C) maps. Using ensembles of simulated chromosome configurations we predict chromosome contact maps for Syn3A cells at resolutions of 250 bp and greater and compare them to the experimental maps. Additionally, the spatial distributions of ribosomes and the DNA-crowding resulting from the individual chromosome configurations can be used to identify macromolecular structures formed from ribosomes and DNA, such as polysomes and expressomes.
Collapse
Affiliation(s)
- Benjamin R Gilbert
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Zane R Thornburg
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Vinson Lam
- Division of Biological Sciences, University of California San Diego, San Diego, CA, United States
| | - Fatema-Zahra M Rashid
- Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands.,Center for Microbial Cell Biology, Leiden University, Leiden, Netherlands
| | - John I Glass
- Synthetic Biology Group, J. Craig Venter Institute, La Jolla, CA, United States
| | - Elizabeth Villa
- Division of Biological Sciences, University of California San Diego, San Diego, CA, United States
| | - Remus T Dame
- Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands.,Center for Microbial Cell Biology, Leiden University, Leiden, Netherlands
| | - Zaida Luthey-Schulten
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
41
|
Xu Z, Dixon JR. Genome reconstruction and haplotype phasing using chromosome conformation capture methodologies. Brief Funct Genomics 2021; 19:139-150. [PMID: 31875884 DOI: 10.1093/bfgp/elz026] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 09/06/2019] [Accepted: 09/15/2019] [Indexed: 12/22/2022] Open
Abstract
Genomic analysis of individuals or organisms is predicated on the availability of high-quality reference and genotype information. With the rapidly dropping costs of high-throughput DNA sequencing, this is becoming readily available for diverse organisms and for increasingly large populations of individuals. Despite these advances, there are still aspects of genome sequencing that remain challenging for existing sequencing methods. This includes the generation of long-range contiguity during genome assembly, identification of structural variants in both germline and somatic tissues, the phasing of haplotypes in diploid organisms and the resolution of genome sequence for organisms derived from complex samples. These types of information are valuable for understanding the role of genome sequence and genetic variation on genome function, and numerous approaches have been developed to address them. Recently, chromosome conformation capture (3C) experiments, such as the Hi-C assay, have emerged as powerful tools to aid in these challenges for genome reconstruction. We will review the current use of Hi-C as a tool for aiding in genome sequencing, addressing the applications, strengths, limitations and potential future directions for the use of 3C data in genome analysis. We argue that unique features of Hi-C experiments make this data type a powerful tool to address challenges in genome sequencing, and that future integration of Hi-C data with alternative sequencing assays will facilitate the continuing revolution in genomic analysis and genome sequencing.
Collapse
|
42
|
Wasim A, Gupta A, Mondal J. A Hi-C data-integrated model elucidates E. coli chromosome's multiscale organization at various replication stages. Nucleic Acids Res 2021; 49:3077-3091. [PMID: 33660781 PMCID: PMC8034658 DOI: 10.1093/nar/gkab094] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 01/31/2021] [Accepted: 02/17/2021] [Indexed: 11/13/2022] Open
Abstract
The chromosome of Escherichia coli is riddled with multi-faceted complexity. The emergence of chromosome conformation capture techniques are providing newer ways to explore chromosome organization. Here we combine a beads-on-a-spring polymer-based framework with recently reported Hi-C data for E. coli chromosome, in rich growth condition, to develop a comprehensive model of its chromosome at 5 kb resolution. The investigation focuses on a range of diverse chromosome architectures of E. coli at various replication states corresponding to a collection of cells, individually present in different stages of cell cycle. The Hi-C data-integrated model captures the self-organization of E. coli chromosome into multiple macrodomains within a ring-like architecture. The model demonstrates that the position of oriC is dependent on architecture and replication state of chromosomes. The distance profiles extracted from the model reconcile fluorescence microscopy and DNA-recombination assay experiments. Investigations into writhe of the chromosome model reveal that it adopts helix-like conformation with no net chirality, earlier hypothesized in experiments. A genome-wide radius of gyration map captures multiple chromosomal interaction domains and identifies the precise locations of rrn operons in the chromosome. We show that a model devoid of Hi-C encoded information would fail to recapitulate most genomic features unique to E. coli.
Collapse
Affiliation(s)
- Abdul Wasim
- Tata Institute of Fundamental Research, Centre for Interdisciplinary Sciences, Hyderabad 500046, India
| | - Ankit Gupta
- Tata Institute of Fundamental Research, Centre for Interdisciplinary Sciences, Hyderabad 500046, India
| | - Jagannath Mondal
- Tata Institute of Fundamental Research, Centre for Interdisciplinary Sciences, Hyderabad 500046, India
| |
Collapse
|
43
|
Gaspari E, Koehorst JJ, Frey J, Martins dos Santos VA, Suarez‐Diez M. Galactocerebroside biosynthesis pathways of Mycoplasma species: an antigen triggering Guillain-Barré-Stohl syndrome. Microb Biotechnol 2021; 14:1201-1211. [PMID: 33773097 PMCID: PMC8085918 DOI: 10.1111/1751-7915.13794] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 02/22/2021] [Indexed: 12/18/2022] Open
Abstract
Infection by Mycoplasma pneumoniae has been identified as a preceding factor of Guillain-Barré-Stohl syndrome. The Guillain-Barré-Stohl syndrome is triggered by an immune reaction against the major glycolipids and it has been postulated that M. pneumoniae infection triggers this syndrome due to bacterial production of galactocerebroside. Here, we present an extensive comparison of 224 genome sequences from 104 Mycoplasma species to characterize the genetic determinants of galactocerebroside biosynthesis. Hidden Markov models were used to analyse glycosil transferases, leading to identification of a functional protein domain, termed M2000535 that appears in about a third of the studied genomes. This domain appears to be associated with a potential UDP-glucose epimerase, which converts UDP-glucose into UDP-galactose, a main substrate for the biosynthesis of galactocerebroside. These findings clarify the pathogenic mechanisms underlining the triggering of Guillain-Barré-Stohl syndrome by M. pneumoniae infections.
Collapse
Affiliation(s)
- Erika Gaspari
- Laboratory of Systems and Synthetic BiologyWageningen University & ResearchWageningenthe Netherlands
| | - Jasper J. Koehorst
- Laboratory of Systems and Synthetic BiologyWageningen University & ResearchWageningenthe Netherlands
| | | | - Vitor A.P. Martins dos Santos
- Laboratory of Systems and Synthetic BiologyWageningen University & ResearchWageningenthe Netherlands
- LifeGlimmer GmbHBerlinGermany
| | - Maria Suarez‐Diez
- Laboratory of Systems and Synthetic BiologyWageningen University & ResearchWageningenthe Netherlands
| |
Collapse
|
44
|
Messelink JJB, van Teeseling MCF, Janssen J, Thanbichler M, Broedersz CP. Learning the distribution of single-cell chromosome conformations in bacteria reveals emergent order across genomic scales. Nat Commun 2021; 12:1963. [PMID: 33785756 PMCID: PMC8010069 DOI: 10.1038/s41467-021-22189-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 02/15/2021] [Indexed: 02/01/2023] Open
Abstract
The order and variability of bacterial chromosome organization, contained within the distribution of chromosome conformations, are unclear. Here, we develop a fully data-driven maximum entropy approach to extract single-cell 3D chromosome conformations from Hi-C experiments on the model organism Caulobacter crescentus. The predictive power of our model is validated by independent experiments. We find that on large genomic scales, organizational features are predominantly present along the long cell axis: chromosomal loci exhibit striking long-ranged two-point axial correlations, indicating emergent order. This organization is associated with large genomic clusters we term Super Domains (SuDs), whose existence we support with super-resolution microscopy. On smaller genomic scales, our model reveals chromosome extensions that correlate with transcriptional and loop extrusion activity. Finally, we quantify the information contained in chromosome organization that may guide cellular processes. Our approach can be extended to other species, providing a general strategy to resolve variability in single-cell chromosomal organization.
Collapse
Affiliation(s)
- Joris J B Messelink
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig Maximilian University Munich, Munich, Germany
| | - Muriel C F van Teeseling
- Department of Biology, University of Marburg, Marburg, Germany
- Prokaryotic Cell Biology Group, Department of Microbial Interactions, Institute for Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Jacqueline Janssen
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig Maximilian University Munich, Munich, Germany
| | - Martin Thanbichler
- Department of Biology, University of Marburg, Marburg, Germany
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Chase P Broedersz
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig Maximilian University Munich, Munich, Germany.
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
45
|
Protein cleavage influences surface protein presentation in Mycoplasma pneumoniae. Sci Rep 2021; 11:6743. [PMID: 33762641 PMCID: PMC7990945 DOI: 10.1038/s41598-021-86217-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 02/23/2021] [Indexed: 01/31/2023] Open
Abstract
Mycoplasma pneumoniae is a significant cause of pneumonia and post infection sequelae affecting organ sites distant to the respiratory tract are common. It is also a model organism where extensive 'omics' studies have been conducted to gain insight into how minimal genome self-replicating organisms function. An N-terminome study undertaken here identified 4898 unique N-terminal peptides that mapped to 391 (56%) predicted M. pneumoniae proteins. True N-terminal sequences beginning with the initiating methionine (iMet) residue from the predicted Open Reading Frame (ORF) were identified for 163 proteins. Notably, almost half (317; 46%) of the ORFS derived from M. pneumoniae strain M129 are post-translationally modified, presumably by proteolytic processing, because dimethyl labelled neo-N-termini were characterised that mapped beyond the predicted N-terminus. An analysis of the N-terminome describes endoproteolytic processing events predominately targeting tryptic-like sites, though cleavages at negatively charged residues in P1' (D and E) with lysine or serine/alanine in P2' and P3' positions also occurred frequently. Surfaceome studies identified 160 proteins (23% of the proteome) to be exposed on the extracellular surface of M. pneumoniae. The two orthogonal methodologies used to characterise the surfaceome each identified the same 116 proteins, a 72% (116/160) overlap. Apart from lipoproteins, transporters, and adhesins, 93/160 (58%) of the surface proteins lack signal peptides and have well characterised, canonical functions in the cell. Of the 160 surface proteins identified, 134 were also targets of endo-proteolytic processing. These processing events are likely to have profound implications for how the host immune system recognises and responds to M. pneumoniae.
Collapse
|
46
|
Multi-scale architecture of archaeal chromosomes. Mol Cell 2020; 81:473-487.e6. [PMID: 33382983 DOI: 10.1016/j.molcel.2020.12.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 10/15/2020] [Accepted: 11/30/2020] [Indexed: 01/03/2023]
Abstract
Chromosome conformation capture (3C) technologies have identified topologically associating domains (TADs) and larger A/B compartments as two salient structural features of eukaryotic chromosomes. These structures are sculpted by the combined actions of transcription and structural maintenance of chromosomes (SMC) superfamily proteins. Bacterial chromosomes fold into TAD-like chromosomal interaction domains (CIDs) but do not display A/B compartment-type organization. We reveal that chromosomes of Sulfolobus archaea are organized into CID-like topological domains in addition to previously described larger A/B compartment-type structures. We uncover local rules governing the identity of the topological domains and their boundaries. We also identify long-range loop structures and provide evidence of a hub-like structure that colocalizes genes involved in ribosome biogenesis. In addition to providing high-resolution descriptions of archaeal chromosome architectures, our data provide evidence of multiple modes of organization in prokaryotic chromosomes and yield insights into the evolution of eukaryotic chromosome conformation.
Collapse
|
47
|
Burgos R, Weber M, Martinez S, Lluch‐Senar M, Serrano L. Protein quality control and regulated proteolysis in the genome-reduced organism Mycoplasma pneumoniae. Mol Syst Biol 2020; 16:e9530. [PMID: 33320415 PMCID: PMC7737663 DOI: 10.15252/msb.20209530] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 11/04/2020] [Accepted: 11/08/2020] [Indexed: 12/14/2022] Open
Abstract
Protein degradation is a crucial cellular process in all-living systems. Here, using Mycoplasma pneumoniae as a model organism, we defined the minimal protein degradation machinery required to maintain proteome homeostasis. Then, we conditionally depleted the two essential ATP-dependent proteases. Whereas depletion of Lon results in increased protein aggregation and decreased heat tolerance, FtsH depletion induces cell membrane damage, suggesting a role in quality control of membrane proteins. An integrative comparative study combining shotgun proteomics and RNA-seq revealed 62 and 34 candidate substrates, respectively. Cellular localization of substrates and epistasis studies supports separate functions for Lon and FtsH. Protein half-life measurements also suggest a role for Lon-modulated protein decay. Lon plays a key role in protein quality control, degrading misfolded proteins and those not assembled into functional complexes. We propose that regulating complex assembly and degradation of isolated proteins is a mechanism that coordinates important cellular processes like cell division. Finally, by considering the entire set of proteases and chaperones, we provide a fully integrated view of how a minimal cell regulates protein folding and degradation.
Collapse
Affiliation(s)
- Raul Burgos
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Marc Weber
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Sira Martinez
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Maria Lluch‐Senar
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Luis Serrano
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
- ICREABarcelonaSpain
| |
Collapse
|
48
|
Magnitov MD, Kuznetsova VS, Ulianov SV, Razin SV, Tyakht AV. Benchmark of software tools for prokaryotic chromosomal interaction domain identification. Bioinformatics 2020; 36:4560-4567. [PMID: 32492116 PMCID: PMC7653553 DOI: 10.1093/bioinformatics/btaa555] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/26/2020] [Accepted: 05/29/2020] [Indexed: 01/01/2023] Open
Abstract
Motivation The application of genome-wide chromosome conformation capture (3C) methods to prokaryotes provided insights into the spatial organization of their genomes and identified patterns conserved across the tree of life, such as chromatin compartments and contact domains. Prokaryotic genomes vary in GC content and the density of restriction sites along the chromosome, suggesting that these properties should be considered when planning experiments and choosing appropriate software for data processing. Diverse algorithms are available for the analysis of eukaryotic chromatin contact maps, but their potential application to prokaryotic data has not yet been evaluated. Results Here, we present a comparative analysis of domain calling algorithms using available single-microbe experimental data. We evaluated the algorithms’ intra-dataset reproducibility, concordance with other tools and sensitivity to coverage and resolution of contact maps. Using RNA-seq as an example, we showed how orthogonal biological data can be utilized to validate the reliability and significance of annotated domains. We also suggest that in silico simulations of contact maps can be used to choose optimal restriction enzymes and estimate theoretical map resolutions before the experiment. Our results provide guidelines for researchers investigating microbes and microbial communities using high-throughput 3C assays such as Hi-C and 3C-seq. Availability and implementation The code of the analysis is available at https://github.com/magnitov/prokaryotic_cids. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Mikhail D Magnitov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine.,Group of Genome Spatial Organization, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia.,Department of Biological and Medical Physics, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny 141700, Russia
| | - Veronika S Kuznetsova
- Department of Biological and Medical Physics, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny 141700, Russia.,Group of Bioinformatics
| | - Sergey V Ulianov
- Laboratory of Structural and Functional Organization of Chromosomes, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia.,Department of Biology, Moscow State University, Moscow 119234, Russia
| | - Sergey V Razin
- Laboratory of Structural and Functional Organization of Chromosomes, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia.,Department of Biology, Moscow State University, Moscow 119234, Russia
| | - Alexander V Tyakht
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine.,Group of Bioinformatics
| |
Collapse
|
49
|
Yin M, Ye B, Jin Y, Liu L, Zhang Y, Li P, Wang Y, Li Y, Han Y, Shen W, Zhao Z. Changes in Vibrio natriegens Growth Under Simulated Microgravity. Front Microbiol 2020; 11:2040. [PMID: 32983034 PMCID: PMC7483581 DOI: 10.3389/fmicb.2020.02040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 08/03/2020] [Indexed: 01/20/2023] Open
Abstract
The growth rate of bacteria increases under simulated microgravity (SMG) with low-shear force. The next-generation microbial chassis Vibrio natriegens (V. natriegens) is a fast-growing Gram-negative, non-pathogenic bacterium with a generation time of less than 10 min. Screening of a V. natriegens strain with faster growth rate was attempted by 2-week continuous long-term culturing under SMG. However, the rapid growth rate of this strain made it difficult to obtain the desired mutant strain with even more rapid growth. Thus, a mutant with slower growth rate emerged. Multi-omics integration analysis was conducted to explore why this mutant grew more slowly, which might inform us about the molecular mechanisms of rapid growth of V. natriegens instead. The transcriptome data revealed that whereas genes related to mechanical signal transduction and flagellin biogenesis were up-regulated, those involved in adaptive responses, anaerobic and nitrogen metabolism, chromosome segregation and cell vitality were down-regulated. Moreover, genome-wide chromosome conformation capture (Hi-C) results of the slower growth mutant and wide type indicated that SMG-induced great changes of genome 3D organization were highly correlated with differentially expressed genes (DEGs). Meanwhile, whole genome re-sequencing found a significant number of structure variations (SVs) were enriched in regions with lower interaction frequency and down-regulated genes in the slower growth mutant compared with wild type (WT), which might represent a prophage region. Additionally, there was also a decreased interaction frequency in regions associated with well-orchestrated chromosomes replication. These results suggested that SMG might regulate local gene expression by sensing stress changes through conformation changes in the genome region of genes involved in flagellin, adaptability and chromosome segregation, thus followed by alteration of some physiological characteristics and affecting the growth rate and metabolic capacity.
Collapse
Affiliation(s)
- Man Yin
- Beijing Institute of Biotechnology, Beijing, China
| | - Bingyu Ye
- Beijing Institute of Biotechnology, Beijing, China.,College of Life Science, Henan Normal University, Xinxiang, China
| | - Yifei Jin
- Beijing Institute of Biotechnology, Beijing, China
| | - Lin Liu
- Wuhan Frasergen Bioinformatics Co., Ltd., Wuhan, China
| | - Yan Zhang
- Beijing Institute of Biotechnology, Beijing, China
| | - Ping Li
- Beijing Institute of Biotechnology, Beijing, China
| | - Yahao Wang
- Beijing Institute of Biotechnology, Beijing, China
| | - Ye Li
- State Key Laboratory of Pathogen & Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yanping Han
- State Key Laboratory of Pathogen & Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Wenlong Shen
- Beijing Institute of Biotechnology, Beijing, China
| | - Zhihu Zhao
- Beijing Institute of Biotechnology, Beijing, China
| |
Collapse
|
50
|
Takemata N, Samson RY, Bell SD. Physical and Functional Compartmentalization of Archaeal Chromosomes. Cell 2020; 179:165-179.e18. [PMID: 31539494 DOI: 10.1016/j.cell.2019.08.036] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 06/20/2019] [Accepted: 08/21/2019] [Indexed: 01/18/2023]
Abstract
The three-dimensional organization of chromosomes can have a profound impact on their replication and expression. The chromosomes of higher eukaryotes possess discrete compartments that are characterized by differing transcriptional activities. Contrastingly, most bacterial chromosomes have simpler organization with local domains, the boundaries of which are influenced by gene expression. Numerous studies have revealed that the higher-order architectures of bacterial and eukaryotic chromosomes are dependent on the actions of structural maintenance of chromosomes (SMC) superfamily protein complexes, in particular, the near-universal condensin complex. Intriguingly, however, many archaea, including members of the genus Sulfolobus do not encode canonical condensin. We describe chromosome conformation capture experiments on Sulfolobus species. These reveal the presence of distinct domains along Sulfolobus chromosomes that undergo discrete and specific higher-order interactions, thus defining two compartment types. We observe causal linkages between compartment identity, gene expression, and binding of a hitherto uncharacterized SMC superfamily protein that we term "coalescin."
Collapse
Affiliation(s)
- Naomichi Takemata
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, IN, USA; Biology Department, Indiana University, Bloomington, IN, USA
| | - Rachel Y Samson
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, IN, USA
| | - Stephen D Bell
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, IN, USA; Biology Department, Indiana University, Bloomington, IN, USA.
| |
Collapse
|