1
|
Huang Y, Chen Z, Deng W, Jiang Y, Pan Y, Yuan Z, Hu H, Wu Y, Hu Y. CHCHD2 rescues the mitochondrial dysfunction in iPSC-derived neurons from patient with Mohr-Tranebjaerg syndrome. Cell Death Dis 2025; 16:173. [PMID: 40075073 PMCID: PMC11903874 DOI: 10.1038/s41419-025-07472-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 02/04/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025]
Abstract
Mohr-Tranebjaerg syndrome (MTS) is a rare X-linked recessive neurodegenerative disorder caused by mutations in the Translocase of Inner Mitochondrial Membrane 8A (TIMM8A) gene, which encodes TIMM8a, a protein localized to the mitochondrial intermembrane space (IMS). The pathophysiology of MTS remains poorly understood. To investigate the molecular mechanisms underlying MTS, we established induced pluripotent stem cells (iPSCs) from a male MTS patient carrying a novel TIMM8A mutation (c.225-229del, p.Q75fs95*), referred to as MTS-iPSCs. To generate an isogenic control, we introduced the same mutation into healthy control iPSCs (CTRL-iPSCs) using the Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated protein 9 (CRISPR/Cas9), resulting in mutant iPSCs (MUT-iPSCs). We differentiated the three iPSC lines into neurons and evaluated their mitochondrial function and neuronal development. Both MTS- and MUT-iPSCs exhibited impaired neuronal differentiation, characterized by smaller somata, fewer branches, and shorter neurites in iPSC-derived neurons. Additionally, these neurons showed increased susceptibility to apoptosis under stress conditions, as indicated by elevated levels of cytochrome c and cleaved caspase-3. Mitochondrial function analysis revealed reduced protein levels and activity of complex IV, diminished ATP synthesis, and increased reactive oxygen species (ROS) generation in MTS- and MUT-neurons. Furthermore, transmission electron microscopy revealed mitochondrial fragmentation in MTS-neurons. RNA sequencing identified differentially expressed genes (DEGs) involved in axonogenesis, synaptic activity, and apoptosis-related pathways. Among these DEGs, coiled-coil-helix-coiled-coil-helix domain-containing 2 (CHCHD2), which encodes a mitochondrial IMS protein essential for mitochondrial homeostasis, was significantly downregulated in MTS-neurons. Western blot analysis confirmed decreased CHCHD2 protein levels in both MTS- and MUT-neurons. Overexpression of CHCHD2 rescued mitochondrial dysfunction and promoted neurite elongation in MTS-neurons, suggesting that CHCHD2 acts as a downstream effector of TIMM8a in the pathogenesis of MTS. In summary, loss-of-function of TIMM8a leads to a downstream reduction in CHCHD2 levels, collectively impairing neurogenesis by disrupting mitochondrial homeostasis. TIMM8a mutation (p.Q75fs95*) leads to mitochondrial dysfunction and neuronal defects in iPSC-derived neurons from patient with Mohr-Tranebjaerg syndrome, which are rescued by overexpression of CHCHD2. TIMM8a translocase of inner mitochondrial membrane 8a, CHCHD2 coiled-coil-helix-coiled-coil-helix domain-containing protein 2, MTS Mohr-Tranebjaerg syndrome, I mitochondrial complex I, II mitochondrial complex II, III mitochondrial complex III, IV mitochondrial complex IV, Q coenzyme Q10, Cyt c cytochrome c.
Collapse
Affiliation(s)
- Yihua Huang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Institute of Brain Disease, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zirui Chen
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Institute of Brain Disease, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weiling Deng
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Institute of Brain Disease, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yawei Jiang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Institute of Brain Disease, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yue Pan
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Institute of Brain Disease, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhirong Yuan
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Institute of Brain Disease, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hailiang Hu
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Yongming Wu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
- Institute of Brain Disease, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Yafang Hu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
- Institute of Brain Disease, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
2
|
Liu T, Wu H, Wei J. Molecular insights into Parkinson's disease and type 2 diabetes mellitus: Metformin's role and genetic pathways explored. Exp Neurol 2025; 385:115137. [PMID: 39798693 DOI: 10.1016/j.expneurol.2025.115137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/26/2024] [Accepted: 01/03/2025] [Indexed: 01/15/2025]
Abstract
Background To explore whether there is a bidirectional relationship between Parkinson's disease (PD) and type 2 diabetes mellitus (T2DM), study the common pathogenic mechanisms, screen relevant genes involved in the pathological process, and predict the potential targets of metformin (Met), so as to develop new therapeutic strategies. Method A two-sample Mendelian randomization (MR) analysis was conducted to analyze the correlation between PD and T2DM. Common confounding genes identified in both PD and T2DM datasets were subjected to GO and KEGG analysis, PPI network analysis, and Hub gene identification. qPCR was used to verify the expression of hub genes in an animal model of T2DM complicated with PD. Subsequently, the analysis focused on whether metformin alleviates the behavioral and pathological manifestations of PD aggravated by T2DM. The intersection of metformin with T2DM and PD targets was identified, and the core targets and signaling pathways were analyzed. Finally, molecular docking analysis was performed between metformin and core proteins to identify the docking sites. Result Through MR analysis, a positive correlation between PD and T2DM was identified, indicating a mutual causal relationship. The hub genes RAC1, TPM2, MGA, and DENND3 are up-regulated in animal models of T2DM with PD. Met targets intersecting with T2DM and PD were analyzed, revealing 17 and 21 intersecting genes respectively, involved in various pathways related to oxidative stress, immune, and inflammation. PPI analysis identified hub genes for T2DM (MMP9, NCF1, CYCS, EIF4E, SOD2) and PD (GFAP, VIM, MOCOS, EIF1, TH, ACTA2, CDC42). Animal models validated the expression of these genes and pathways. Molecular docking analysis explored Met's binding sites on proteins, with lower binding energies indicating greater stability. Conclusion This study contributes to a deeper understanding of the co pathogenesis of PD and T2DM, and provides new insights into the role of metformin in this disease.
Collapse
Affiliation(s)
- Tingting Liu
- Institute for Brain Sciences Research, Center for Translational Neurourology, Huaihe Hospital of Henan University, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Haojie Wu
- Institute for Brain Sciences Research, Center for Translational Neurourology, Huaihe Hospital of Henan University, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Jianshe Wei
- Institute for Brain Sciences Research, Center for Translational Neurourology, Huaihe Hospital of Henan University, School of Life Sciences, Henan University, Kaifeng 475004, China.
| |
Collapse
|
3
|
Merghany RM, El-Sawi SA, Naser AFA, Ezzat SM, Moustafa SFA, Meselhy MR. A comprehensive review of natural compounds and their structure-activity relationship in Parkinson's disease: exploring potential mechanisms. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:2229-2258. [PMID: 39392484 PMCID: PMC11920337 DOI: 10.1007/s00210-024-03462-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/15/2024] [Indexed: 10/12/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the progressive loss of dopamine-producing cells in the Substantia nigra region of the brain. Complementary and alternative medicine approaches have been utilized as adjuncts to conventional therapies for managing the symptoms and progression of PD. Natural compounds have gained attention for their potential neuroprotective effects and ability to target various pathways involved in the pathogenesis of PD. This comprehensive review aims to provide an in-depth analysis of the molecular targets and mechanisms of natural compounds in various experimental models of PD. This review will also explore the structure-activity relationship (SAR) of these compounds and assess the clinical studies investigating the impact of these natural compounds on individuals with PD. The insights shared in this review have the potential to pave the way for the development of innovative therapeutic strategies and interventions for PD.
Collapse
Affiliation(s)
- Rana M Merghany
- Department of Pharmacognosy, National Research Centre, 33 El-Buhouth Street, Cairo, 12622, Egypt.
| | - Salma A El-Sawi
- Department of Pharmacognosy, National Research Centre, 33 El-Buhouth Street, Cairo, 12622, Egypt
| | - Asmaa F Aboul Naser
- Department of Therapeutic Chemistry, National Research Centre, 33 El Buhouth St, Cairo, 12622, Egypt
| | - Shahira M Ezzat
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, 12451, Egypt
| | - Sherifa F A Moustafa
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt
| | - Meselhy R Meselhy
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt.
| |
Collapse
|
4
|
Gao G, Shi Y, Deng HX, Krainc D. Dysregulation of mitochondrial α-ketoglutarate dehydrogenase leads to elevated lipid peroxidation in CHCHD2-linked Parkinson's disease models. Nat Commun 2025; 16:1982. [PMID: 40011434 PMCID: PMC11865444 DOI: 10.1038/s41467-025-57142-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 02/12/2025] [Indexed: 02/28/2025] Open
Abstract
Dysregulation of mitochondrial function has been implicated in Parkinson's disease (PD), but the role of mitochondrial metabolism in disease pathogenesis remains to be elucidated. Using an unbiased metabolomic analysis of purified mitochondria, we identified alterations in α-ketoglutarate dehydrogenase (KGDH) pathway upon loss of PD-linked CHCHD2 protein. KGDH, a rate-limiting enzyme complex in the tricarboxylic acid cycle, was decreased in CHCHD2-deficient male mouse brains and human dopaminergic neurons. This deficiency of KGDH led to elevated α-ketoglutarate and increased lipid peroxidation. Treatment of CHCHD2-deficient dopaminergic neurons with lipoic acid, a KGDH cofactor and antioxidant agent, resulted in decreased levels of lipid peroxidation and phosphorylated α-synuclein. CHCHD10, a close homolog of CHCHD2 that is primarily linked to amyotrophic lateral sclerosis/frontotemporal dementia, did not affect the KGDH pathway or lipid peroxidation. Together, these results identify KGDH metabolic pathway as a targetable mitochondrial mechanism for correction of increased lipid peroxidation and α-synuclein in Parkinson's disease.
Collapse
Affiliation(s)
- Ge Gao
- Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Yong Shi
- Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Han-Xiang Deng
- Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Dimitri Krainc
- Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
5
|
Guan X, Li H, Zhang L, Zhi H. Mechanisms of mitochondrial damage-associated molecular patterns associated with inflammatory response in cardiovascular diseases. Inflamm Res 2025; 74:18. [PMID: 39806203 DOI: 10.1007/s00011-025-01993-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/25/2024] [Accepted: 01/02/2025] [Indexed: 01/16/2025] Open
Abstract
Cardiovascular diseases (CVDs) continue to be a substantial global healthcare burden despite considerable progress in therapies. The inflammatory response during the progression of CVD has attracted considerable attention. Mitochondria serve as the principal energy source for the heart. In cardiovascular illnesses, mitochondrial homeostasis is disrupted, accompanied by structural and functional impairments. During mitochondrial stress or injury, mitochondrial damage-associated molecular patterns (mtDAMPs), such as mitochondrial DNA, cardiolipin, N-formyl peptide, and adenosine triphosphate, are released to activate pattern recognition receptors and trigger immunological responses. Inflammatory responses mediated by mtDAMPs substantially contribute to the pathophysiology of cardiovascular illnesses. In this review, we discuss the molecular mechanisms by which different mtDAMPs control the inflammatory response, address the pathological consequences of mtDAMPs in inducing or exacerbating the inflammatory response in CVDs, and summarize potential therapeutic targets in relevant experimental studies. Preventing or reducing mtDAMP release may play a role in CVD progression by alleviating the inflammatory response.
Collapse
Affiliation(s)
- Xiuju Guan
- School of Graduate Studies, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Haitao Li
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, People's Republic of China
| | - Lijuan Zhang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, People's Republic of China.
| | - Hongwei Zhi
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, People's Republic of China.
| |
Collapse
|
6
|
Wang F, Liu X, Chen M, Xu X, Yang Y, Xu Q, Zhu H, Xu A, Pouladi MA, Xu X. Neuroprotective role of CHCHD2 in Parkinson's disease: Insights into the GPX4-related ferroptosis pathway. Free Radic Biol Med 2025; 226:348-363. [PMID: 39566750 DOI: 10.1016/j.freeradbiomed.2024.11.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/29/2024] [Accepted: 11/18/2024] [Indexed: 11/22/2024]
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disease, characterized by pathogenesis involving mitochondrial dysfunction, oxidative stress, and ferroptosis. Unfortunately, there are currently no effective interventions to slow down the progression of PD. The mitochondrial protein coiled-coil-helix-coiled-coil-helix domain containing 2 (CHCHD2), which is implicated in neurodegeneration and serves as a biomarker for PD, has been reported to have neuroprotective effects against oxidative stress, but the potential molecular mechanisms involved remain elusive. In this study, we uncovered a critical mechanism by which CHCHD2 protected neuronal cells against oxidative stress with the ferroptosis pathway playing a pivotal role, as determined through tandem mass tags (TMT)-based proteomic analysis. The overexpression of CHCHD2 was observed to enhance cell viability, reduce levels of lipid peroxidation and reactive oxygen species (ROS), and upregulate the expression of the ferroptosis negative regulatory protein Glutathione peroxidase 4 (GPX4) in PD cells. Conversely, CHCHD2 knockdown led to reduced cell viability, elevated lipid peroxidation, and a decreased expression of GPX4. Additionally, CHCHD2 overexpression ameliorated motor function impairment, reduced α-synuclein levels, and mitigated dopaminergic (DA) neuron loss in the substantia nigra and striatum of PD mice. Importantly, we show that the inhibitory effect of CHCHD2 on ferroptosis in PD is related to the GPX4 signaling pathway. In summary, our study elucidates the neuroprotective role of CHCHD2 in regulating the GPX4-related ferroptosis pathway in PD, providing new targets and ideas for future PD drug development and therapy.
Collapse
Affiliation(s)
- Fang Wang
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, 613 Huangpu Avenue West, Guangzhou, Guangdong, 510632, China; Clinical Neuroscience Institute, Jinan University, 613 Huangpu Avenue West, Guangzhou, Guangdong, 510632, China
| | - Xuanzhuo Liu
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, 613 Huangpu Avenue West, Guangzhou, Guangdong, 510632, China; Clinical Neuroscience Institute, Jinan University, 613 Huangpu Avenue West, Guangzhou, Guangdong, 510632, China; Department of Neurology, Taihe Hospital of Shiyan, Affiliated Hospital of Hubei Medical University, Shiyan, 442000, China
| | - Mingyi Chen
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, 613 Huangpu Avenue West, Guangzhou, Guangdong, 510632, China; Clinical Neuroscience Institute, Jinan University, 613 Huangpu Avenue West, Guangzhou, Guangdong, 510632, China
| | - Xiaoxin Xu
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, 613 Huangpu Avenue West, Guangzhou, Guangdong, 510632, China; Clinical Neuroscience Institute, Jinan University, 613 Huangpu Avenue West, Guangzhou, Guangdong, 510632, China
| | - Ying Yang
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, 613 Huangpu Avenue West, Guangzhou, Guangdong, 510632, China; Clinical Neuroscience Institute, Jinan University, 613 Huangpu Avenue West, Guangzhou, Guangdong, 510632, China
| | - Qiuhong Xu
- Department of Plastic Surgery, The First Affiliated Hospital, Jinan University, 613 Huangpu Avenue West, Guangzhou, Guangdong, 510632, China
| | - Huili Zhu
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, 613 Huangpu Avenue West, Guangzhou, Guangdong, 510632, China
| | - Anding Xu
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, 613 Huangpu Avenue West, Guangzhou, Guangdong, 510632, China; Clinical Neuroscience Institute, Jinan University, 613 Huangpu Avenue West, Guangzhou, Guangdong, 510632, China
| | - Mahmoud A Pouladi
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Djavad Mowafaghian Centre for Brain Health, Edwin S. H. Leong Centre for Healthy Aging, Faculty of Medicine, University of British Columbia, BritishColumbia Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Xiaohong Xu
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, 613 Huangpu Avenue West, Guangzhou, Guangdong, 510632, China; Clinical Neuroscience Institute, Jinan University, 613 Huangpu Avenue West, Guangzhou, Guangdong, 510632, China.
| |
Collapse
|
7
|
Hattori N, Sato S. Mitochondrial dysfunction in Parkinson's disease. J Neural Transm (Vienna) 2024; 131:1415-1428. [PMID: 39585446 DOI: 10.1007/s00702-024-02863-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/05/2024] [Indexed: 11/26/2024]
Abstract
The exact cause of nigral cell death in Parkinson's disease (PD) is still unknown. However, research on MPTP-induced experimental parkinsonism has significantly advanced our understanding. In this model, it is widely accepted that mitochondrial respiratory failure is the primary mechanism of cell death. Studies have shown that a toxic metabolite of MPTP inhibits Complex I and alpha-ketoglutarate dehydrogenase activities in mitochondria. Since then, many research groups have focused on mitochondrial dysfunction in PD, identifying deficiencies in Complex I or III in PD patients' brains, skeletal muscle, and platelets. There is some debate about the decline in mitochondrial function in peripheral organs. However, since α-synuclein, the main component protein of Lewy bodies, accumulates in peripheral organs, it is reasonable to consider PD a systemic disease. Additionally, mutant mitochondrial DNA with a 4,977 base pair deletion has been found in the brains of PD patients, suggesting that age-related accumulation of deleted mtDNA is accelerated in the striatum and may contribute to the pathophysiology of PD. While the cause of PD remains unknown, mitochondrial dysfunction is undoubtedly a factor in cell death in PD. In addition, the causative gene for familial PD, parkin (now PRKN), and PTEN-induced putative kinase 1 (PINK1), both gene products are also involved in mitochondrial quality control. Moreover, we have successfully isolated and identified CHCHD2, which is involved in the mitochondrial electron transfer system. There is no doubt that mitochondrial dysfunction contributes to cell death in PD.
Collapse
Affiliation(s)
- Nobutaka Hattori
- Department of Neurology, Faculty of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo, Tokyo, 113-8421, Japan.
- Neurodegenerative Disorders Collaborative Laboratory, RIKEN Center for Brain Science, 2-1-Hirosawa, Wako-Shi, Saitama, 351-0198, Japan.
| | - Shigeto Sato
- Department of Neurology, Faculty of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo, Tokyo, 113-8421, Japan
- Center for Biomedical Research Resources, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo, Tokyo, 113-8421, Japan
| |
Collapse
|
8
|
Yanagisawa S, Kamei T, Shimada A, Gladyck S, Aras S, Hüttemann M, Grossman LI, Kubo M. Resonance Raman spectral analysis of the heme site structure of cytochrome c oxidase with its positive regulator CHCHD2. J Inorg Biochem 2024; 260:112673. [PMID: 39094247 DOI: 10.1016/j.jinorgbio.2024.112673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/10/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024]
Abstract
Cytochrome c oxidase (CcO) reduces O2, pumps protons in the mitochondrial respiratory chain, and is essential for oxygen consumption in the cell. The coiled-coil-helix-coiled-coil-helix domain-containing 2 (CHCHD2; also known as mitochondrial nuclear retrograde regulator 1 [MNRR1], Parkinson's disease 22 [PARK22] and aging-associated gene 10 protein [AAG10]) is a protein that binds to CcO from the intermembrane space and positively regulates the activity of CcO. Despite the importance of CHCHD2 in mitochondrial function, the mechanism of action of CHCHD2 and structural information regarding its binding to CcO remain unknown. Here, we utilized visible resonance Raman spectroscopy to investigate the structural changes around the hemes in CcO in the reduced and CO-bound states upon CHCHD2 binding. We found that CHCHD2 has a significant impact on the structure of CcO in the reduced state. Mapping of the heme peripheries that result in Raman spectral changes in the structure of CcO highlighted helices IX and X near the hemes as sites where CHCHD2 takes action. Part of helix IX is exposed in the intermembrane space, whereas helix X, located between both hemes, may play a key role in proton uptake to a proton-loading site in the reduced state for proton pumping. Taken together, our results suggested that CHCHD2 binds near helix IX and induces a structural change in helix X, accelerating proton uptake.
Collapse
Affiliation(s)
| | - Takuto Kamei
- Graduate School of Science, University of Hyogo, Hyogo 678-1297, Japan
| | - Atsuhiro Shimada
- Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan
| | - Stephanie Gladyck
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Siddhesh Aras
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Lawrence I Grossman
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Minoru Kubo
- Graduate School of Science, University of Hyogo, Hyogo 678-1297, Japan.
| |
Collapse
|
9
|
Ren YL, Jiang Z, Wang JY, He Q, Li SX, Gu XJ, Qi YR, Zhang M, Yang WJ, Cao B, Li JY, Wang Y, Chen YP. Loss of CHCHD2 Stability Coordinates with C1QBP/CHCHD2/CHCHD10 Complex Impairment to Mediate PD-Linked Mitochondrial Dysfunction. Mol Neurobiol 2024; 61:7968-7988. [PMID: 38453793 DOI: 10.1007/s12035-024-04090-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/23/2024] [Indexed: 03/09/2024]
Abstract
Novel CHCHD2 mutations causing C-terminal truncation and interrupted CHCHD2 protein stability in Parkinson's disease (PD) patients were previously found. However, there is limited understanding of the underlying mechanism and impact of subsequent CHCHD2 loss-of-function on PD pathogenesis. The current study further identified the crucial motif (aa125-133) responsible for diminished CHCHD2 expression and the molecular interplay within the C1QBP/CHCHD2/CHCHD10 complex to regulate mitochondrial functions. Specifically, CHCHD2 deficiency led to decreased neural cell viability and mitochondrial structural and functional impairments, paralleling the upregulation of autophagy under cellular stresses. Meanwhile, as a binding partner of CHCHD2, C1QBP was found to regulate the stability of CHCHD2 and CHCHD10 proteins to maintain the integrity of the C1QBP/CHCHD2/CHCHD10 complex. Moreover, C1QBP-silenced neural cells displayed severe cell death phenotype along with mitochondrial damage that initiated a significant mitophagy process. Taken together, the evidence obtained from our in vitro and in vivo studies emphasized the critical role of CHCHD2 in regulating mitochondria functions via coordination among CHCHD2, CHCHD10, and C1QBP, suggesting the potential mechanism by which CHCHD2 function loss takes part in the progression of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yan-Lin Ren
- Department of Pathophysiology, West China College of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Zheng Jiang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Institute of Brain Science and Brain-Inspired Technology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jia-Yi Wang
- Department of Pathophysiology, West China College of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Qin He
- Department of Nuclear Medicine, West China Hospital of Sichuan University, No.37. Guoxue AlleySichuan Province, 610041, Chengdu, People's Republic of China
| | - Si-Xu Li
- Department of Pathophysiology, West China College of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xiao-Jing Gu
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yang-Ran Qi
- Department of Pathophysiology, West China College of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Min Zhang
- Department of Pathophysiology, West China College of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Wen-Jie Yang
- Department of Pathophysiology, West China College of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Bei Cao
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Institute of Brain Science and Brain-Inspired Technology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jing-Yu Li
- Department of Pathophysiology, West China College of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China.
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Yi Wang
- Department of Pathophysiology, West China College of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Yong-Ping Chen
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
- Institute of Brain Science and Brain-Inspired Technology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
10
|
Takemori C, Koyanagi-Aoi M, Fukumoto T, Kunisada M, Wakamatsu K, Ito S, Hosaka C, Takeuchi S, Kubo A, Aoi T, Nishigori C. Revealing the UV response of melanocytes in xeroderma pigmentosum group A using patient-derived induced pluripotent stem cells. J Dermatol Sci 2024; 115:111-120. [PMID: 39033075 DOI: 10.1016/j.jdermsci.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 04/16/2024] [Accepted: 06/14/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND Xeroderma pigmentosum (XP) is characterized by photosensitivity that causes pigmentary disorder and predisposition to skin cancers on sunlight-exposed areas due to DNA repair deficiency. Patients with XP group A (XP-A) develop freckle-like pigmented maculae and depigmented maculae within a year unless strict sun-protection is enforced. Although it is crucial to study pigment cells (melanocytes: MCs) as disease target cells, establishing MCs in primary cultures is challenging. OBJECTIVE Elucidation of the disease pathogenesis by comparison between MCs differentiated from XP-A induced pluripotent stem cells (iPSCs) and healthy control iPSCs on the response to UV irradiation. METHODS iPSCs were established from a XP-A fibroblasts and differentiated into MCs. Differences in gene expression profiles between XP-A-iPSC-derived melanocytes (XP-A-iMCs) and Healthy control iPSC-derived MCs (HC-iMCs) were analyzed 4 and 12 h after irradiation with 30 or 150 J/m2 of UV-B using microarray analysis. RESULTS XP-A-iMCs expressed SOX10, MITF, and TYR, and showed melanin synthesis. Further, XP-A-iMCs showed reduced DNA repair ability. Gene expression profile between XP-A-iMCs and HC-iMCs revealed that, numerous gene probes that were specifically upregulated or downregulated in XP-A-iMCs after 150-J/m2 of UV-B irradiation did not return to basal levels. Of note that apoptotic pathways were highly upregulated at 150 J/m2 UV exposure in XP-A-iMCs, and cytokine-related pathways were upregulated even at 30 J/m2 UV exposure. CONCLUSION We revealed for the first time that cytokine-related pathways were upregulated even at low-dose UV exposure in XP-A-iMCs. Disease-specific iPSCs are useful to elucidate the disease pathogenesis and develop treatment strategies of XP.
Collapse
Affiliation(s)
- Chihiro Takemori
- Division of Dermatology, Department of Internal Related, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Michiyo Koyanagi-Aoi
- Division of Stem Cell Medicine, Graduate School of Medicine, Kobe University, Kobe, Japan; Division of Advanced Medical Science, Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan; Center for Human Resource development for Regenerative Medicine, Kobe University Hospital, Kobe, Japan
| | - Takeshi Fukumoto
- Division of Dermatology, Department of Internal Related, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Makoto Kunisada
- Division of Dermatology, Department of Internal Related, Graduate School of Medicine, Kobe University, Kobe, Japan; Department of Dermatology, Hyogo Prefectural Harima-Himeji General Medical Center, Himeji, Japan
| | - Kazumasa Wakamatsu
- Institute for Melanin Chemistry, Fujita Health University, Toyoake, Japan
| | - Shosuke Ito
- Institute for Melanin Chemistry, Fujita Health University, Toyoake, Japan
| | - Chieko Hosaka
- Division of Dermatology, Department of Internal Related, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Seiji Takeuchi
- Division of Dermatology, Department of Internal Related, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Akiharu Kubo
- Division of Dermatology, Department of Internal Related, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Takashi Aoi
- Division of Stem Cell Medicine, Graduate School of Medicine, Kobe University, Kobe, Japan; Division of Advanced Medical Science, Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan; Center for Human Resource development for Regenerative Medicine, Kobe University Hospital, Kobe, Japan.
| | - Chikako Nishigori
- Division of Dermatology, Department of Internal Related, Graduate School of Medicine, Kobe University, Kobe, Japan; Division of Advanced Medical Science, Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan.
| |
Collapse
|
11
|
Liao SC, Kano K, Phanse S, Nguyen M, Margolis E, Fu Y, Meng J, Moutaoufik MT, Chatterton Z, Aoki H, Simms J, Hsieh I, Suteja F, Sei Y, Huang EJ, McAvoy K, Manfredi G, Halliday G, Babu M, Nakamura K. CHCHD2 mutant mice display mitochondrial protein accumulation and disrupted energy metabolism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.30.610586. [PMID: 39257750 PMCID: PMC11384018 DOI: 10.1101/2024.08.30.610586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Mutations in the mitochondrial cristae protein CHCHD2 lead to a late-onset autosomal dominant form of Parkinson's disease (PD) which closely resembles idiopathic PD, providing the opportunity to gain new insights into the mechanisms of mitochondrial dysfunction contributing to PD. To begin to address this, we used CRISPR genome-editing to generate CHCHD2 T61I point mutant mice. CHCHD2 T61I mice had normal viability, and had only subtle motor deficits with no signs of premature dopaminergic (DA) neuron degeneration. Nonetheless, CHCHD2 T61I mice exhibited robust molecular changes in the brain including increased CHCHD2 insolubility, accumulation of CHCHD2 protein preferentially in the substantia nigra (SN), and elevated levels of α-synuclein. Metabolic analyses revealed an increase in glucose metabolism through glycolysis relative to the TCA cycle with increased respiratory exchange ratio, and immune-electron microscopy revelated disrupted mitochondria in DA neurons. Moreover, spatial genomics revealed decreased expression of mitochondrial complex I and III respiratory chain proteins, while proteomics revealed increased respiratory chain and other mitochondrial protein-protein interactions. As such, the CHCHD2 T61I point-mutation mice exhibit robust mitochondrial disruption and a consequent metabolic shift towards glycolysis. These findings thus establish CHCHD2 T61I mice as a new model for mitochondrial-based PD, and implicate disrupted respiratory chain function as a likely causative driver.
Collapse
Affiliation(s)
- Szu-Chi Liao
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA
- Department of Nutritional Sciences & Toxicology, University of California Berkeley, Berkeley, CA
- Endocrinology Graduate Program, University of California Berkeley, Berkeley, CA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
| | - Kohei Kano
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
| | - Sadhna Phanse
- Department of Biochemistry, University of Regina, Regina, Saskatchewan, Canada
| | - Mai Nguyen
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA
| | - Elyssa Margolis
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA
- Neuroscience Graduate Program, University of California San Francisco, San Francisco, CA
| | - YuHong Fu
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
- Brain and Mind Centre & Faculty of Medicine and Health School of Medical Sciences, University of Sydney, Sydney, Australia
| | - Jonathan Meng
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA
| | | | - Zac Chatterton
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
- Brain and Mind Centre & Faculty of Medicine and Health School of Medical Sciences, University of Sydney, Sydney, Australia
| | - Hiroyuki Aoki
- Department of Biochemistry, University of Regina, Regina, Saskatchewan, Canada
| | - Jeffrey Simms
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA
| | - Ivy Hsieh
- Department of Pathology, University of California San Francisco, San Francisco, CA
| | - Felecia Suteja
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
- Brain and Mind Centre & Faculty of Medicine and Health School of Medical Sciences, University of Sydney, Sydney, Australia
| | - Yoshitaka Sei
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA
| | - Eric J. Huang
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA
- Neuroscience Graduate Program, University of California San Francisco, San Francisco, CA
- Department of Pathology, University of California San Francisco, San Francisco, CA
- Biomedical Sciences Graduate Program, University of California San Francisco, San Francisco, CA
| | - Kevin McAvoy
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| | - Giovanni Manfredi
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| | - Glenda Halliday
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
- Brain and Mind Centre & Faculty of Medicine and Health School of Medical Sciences, University of Sydney, Sydney, Australia
| | - Mohan Babu
- Department of Biochemistry, University of Regina, Regina, Saskatchewan, Canada
| | - Ken Nakamura
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA
- Neuroscience Graduate Program, University of California San Francisco, San Francisco, CA
- Biomedical Sciences Graduate Program, University of California San Francisco, San Francisco, CA
| |
Collapse
|
12
|
Lisowski P, Lickfett S, Rybak-Wolf A, Menacho C, Le S, Pentimalli TM, Notopoulou S, Dykstra W, Oehler D, López-Calcerrada S, Mlody B, Otto M, Wu H, Richter Y, Roth P, Anand R, Kulka LAM, Meierhofer D, Glazar P, Legnini I, Telugu NS, Hahn T, Neuendorf N, Miller DC, Böddrich A, Polzin A, Mayatepek E, Diecke S, Olzscha H, Kirstein J, Ugalde C, Petrakis S, Cambridge S, Rajewsky N, Kühn R, Wanker EE, Priller J, Metzger JJ, Prigione A. Mutant huntingtin impairs neurodevelopment in human brain organoids through CHCHD2-mediated neurometabolic failure. Nat Commun 2024; 15:7027. [PMID: 39174523 PMCID: PMC11341898 DOI: 10.1038/s41467-024-51216-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 08/01/2024] [Indexed: 08/24/2024] Open
Abstract
Expansion of the glutamine tract (poly-Q) in the protein huntingtin (HTT) causes the neurodegenerative disorder Huntington's disease (HD). Emerging evidence suggests that mutant HTT (mHTT) disrupts brain development. To gain mechanistic insights into the neurodevelopmental impact of human mHTT, we engineered male induced pluripotent stem cells to introduce a biallelic or monoallelic mutant 70Q expansion or to remove the poly-Q tract of HTT. The introduction of a 70Q mutation caused aberrant development of cerebral organoids with loss of neural progenitor organization. The early neurodevelopmental signature of mHTT highlighted the dysregulation of the protein coiled-coil-helix-coiled-coil-helix domain containing 2 (CHCHD2), a transcription factor involved in mitochondrial integrated stress response. CHCHD2 repression was associated with abnormal mitochondrial morpho-dynamics that was reverted upon overexpression of CHCHD2. Removing the poly-Q tract from HTT normalized CHCHD2 levels and corrected key mitochondrial defects. Hence, mHTT-mediated disruption of human neurodevelopment is paralleled by aberrant neurometabolic programming mediated by dysregulation of CHCHD2, which could then serve as an early interventional target for HD.
Collapse
Affiliation(s)
- Pawel Lisowski
- Quantitative Stem Cell Biology, Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Department of Psychiatry and Psychotherapy, Neuropsychiatry and Laboratory of Molecular Psychiatry, Charité - Universitätsmedizin, Berlin, Germany
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Jastrzebiec n/Warsaw, Poland
| | - Selene Lickfett
- Faculty of Mathematics and Natural Sciences, Heinrich Heine University, Düsseldorf, Germany
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
- Institute of Anatomy II, Heinrich-Heine-University, Düsseldorf, Germany
| | - Agnieszka Rybak-Wolf
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Organoid Platform, Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| | - Carmen Menacho
- Faculty of Mathematics and Natural Sciences, Heinrich Heine University, Düsseldorf, Germany
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Stephanie Le
- Faculty of Mathematics and Natural Sciences, Heinrich Heine University, Düsseldorf, Germany
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Tancredi Massimo Pentimalli
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Laboratory for Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
- Charité - Universitätsmedizin, Berlin, Germany
| | - Sofia Notopoulou
- Institute of Applied Biosciences (INAB), Centre For Research and Technology Hellas (CERTH), Thessaloniki, Greece
| | - Werner Dykstra
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht, The Netherlands
| | - Daniel Oehler
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty and University Hospital Düsseldorf, Cardiovascular Research Institute Düsseldorf (CARID), Düsseldorf, Germany
| | | | - Barbara Mlody
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Centogene, Rostock, Germany
| | - Maximilian Otto
- Quantitative Stem Cell Biology, Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Haijia Wu
- Institute of Molecular Medicine, Medical School, Hamburg, Germany
| | | | - Philipp Roth
- Quantitative Stem Cell Biology, Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Ruchika Anand
- Institute of Biochemistry and Molecular Biology I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Linda A M Kulka
- Institute of Physiological Chemistry, Martin-Luther-University, Halle-Wittenberg, Germany
| | - David Meierhofer
- Quantitative RNA Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Petar Glazar
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Laboratory for Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
- Quantitative RNA Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Ivano Legnini
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Laboratory for Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
- Human Technopole, Milan, Italy
| | - Narasimha Swamy Telugu
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Tobias Hahn
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Nancy Neuendorf
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Duncan C Miller
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Annett Böddrich
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Amin Polzin
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty and University Hospital Düsseldorf, Cardiovascular Research Institute Düsseldorf (CARID), Düsseldorf, Germany
| | - Ertan Mayatepek
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Sebastian Diecke
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Berlin, Germany
| | - Heidi Olzscha
- Institute of Molecular Medicine, Medical School, Hamburg, Germany
- Institute of Physiological Chemistry, Martin-Luther-University, Halle-Wittenberg, Germany
| | - Janine Kirstein
- Cell Biology, University of Bremen, Bremen, Germany
- Leibniz Institute on Aging - Fritz-Lipmann Institute, Jena, Germany
| | - Cristina Ugalde
- Instituto de Investigación Hospital 12 de Octubre (i + 12), Madrid, Spain
- Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Spyros Petrakis
- Institute of Applied Biosciences (INAB), Centre For Research and Technology Hellas (CERTH), Thessaloniki, Greece
| | - Sidney Cambridge
- Institute of Anatomy II, Heinrich-Heine-University, Düsseldorf, Germany
- Dr. Senckenberg Anatomy, Anatomy II, Goethe-University, Frankfurt, Germany
| | - Nikolaus Rajewsky
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Laboratory for Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Berlin, Germany
- NeuroCure Cluster of Excellence, Berlin, Germany
- National Center for Tumor Diseases (NCT), German Cancer Consortium (DKTK), Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Ralf Kühn
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Erich E Wanker
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Josef Priller
- Department of Psychiatry and Psychotherapy, Neuropsychiatry and Laboratory of Molecular Psychiatry, Charité - Universitätsmedizin, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Department of Psychiatry and Psychotherapy; School of Medicine and Health, Technical University of Munich and German Center for Mental Health (DZPG), Munich, Germany
- University of Edinburgh and UK Dementia Research Institute, Edinburgh, UK
| | - Jakob J Metzger
- Quantitative Stem Cell Biology, Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany.
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.
| | - Alessandro Prigione
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany.
| |
Collapse
|
13
|
Ikeda A, Meng H, Taniguchi D, Mio M, Funayama M, Nishioka K, Yoshida M, Li Y, Yoshino H, Inoshita T, Shiba-Fukushima K, Okubo Y, Sakurai T, Amo T, Aiba I, Saito Y, Saito Y, Murayama S, Atsuta N, Nakamura R, Tohnai G, Izumi Y, Morita M, Tamura A, Kano O, Oda M, Kuwabara S, Yamashita T, Sone J, Kaji R, Sobue G, Imai Y, Hattori N. CHCHD2 P14L, found in amyotrophic lateral sclerosis, exhibits cytoplasmic mislocalization and alters Ca 2+ homeostasis. PNAS NEXUS 2024; 3:pgae319. [PMID: 39131911 PMCID: PMC11316225 DOI: 10.1093/pnasnexus/pgae319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/22/2024] [Indexed: 08/13/2024]
Abstract
CHCHD2 and CHCHD10, linked to Parkinson's disease and amyotrophic lateral sclerosis-frontotemporal dementia (ALS), respectively, are mitochondrial intermembrane proteins that form a heterodimer. This study aimed to investigate the impact of the CHCHD2 P14L variant, implicated in ALS, on mitochondrial function and its subsequent effects on cellular homeostasis. The missense variant of CHCHD2, P14L, found in a cohort of patients with ALS, mislocalized CHCHD2 to the cytoplasm, leaving CHCHD10 in the mitochondria. Drosophila lacking the CHCHD2 ortholog exhibited mitochondrial degeneration. In contrast, human CHCHD2 P14L, but not wild-type human CHCHD2, failed to suppress this degeneration, suggesting that P14L is a pathogenic variant. The mitochondrial Ca2+ buffering capacity was reduced in Drosophila neurons expressing human CHCHD2 P14L. The altered Ca2+-buffering phenotype was also observed in cultured human neuroblastoma SH-SY5Y cells expressing CHCHD2 P14L. In these cells, transient elevation of cytoplasmic Ca2+ facilitated the activation of calpain and caspase-3, accompanied by the processing and insolubilization of TDP-43. These observations suggest that CHCHD2 P14L causes abnormal Ca2+ dynamics and TDP-43 aggregation, reflecting the pathophysiology of ALS.
Collapse
Affiliation(s)
- Aya Ikeda
- Department of Neurology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Hongrui Meng
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
- Department of Research for Parkinson's Disease, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Daisuke Taniguchi
- Department of Neurology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Muneyo Mio
- Department of Neurology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Manabu Funayama
- Department of Neurology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
- Center for Genomic and Regenerative Medicine, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Kenya Nishioka
- Department of Neurology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Mari Yoshida
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Aichi 480-1195, Japan
| | - Yuanzhe Li
- Department of Neurology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Hiroyo Yoshino
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Tsuyoshi Inoshita
- Department of Neurology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Kahori Shiba-Fukushima
- Department of Drug Development for Parkinson's Disease, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Yohei Okubo
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Takashi Sakurai
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Taku Amo
- Department of Applied Chemistry, National Defense Academy, Yokosuka, Kanagawa 239-8686, Japan
| | - Ikuko Aiba
- Department of Neurology, NHO Higashinagoya National Hospital, Meito-ku, Nagoya, Aichi 465-8620, Japan
| | - Yufuko Saito
- Department of Neurology, NHO Higashinagoya National Hospital, Meito-ku, Nagoya, Aichi 465-8620, Japan
| | - Yuko Saito
- Brain Bank for Aging Research (Department of Neuropathology), Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo 173-0015, Japan
| | - Shigeo Murayama
- Brain Bank for Aging Research (Department of Neuropathology), Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo 173-0015, Japan
- Brain Bank for Neurodevelopmental, Neurological and Psychiatric Disorders, United Graduate School of Child Development, Osaka University, Osaka 565-0871, Japan
| | - Naoki Atsuta
- Department of Neurology, Aichi Medical University School of Medicine, Nagakute, Aichi 480-1195, Japan
| | - Ryoichi Nakamura
- Department of Neurology, Aichi Medical University School of Medicine, Nagakute, Aichi 480-1195, Japan
| | - Genki Tohnai
- Division of ALS Research, Aichi Medical University School of Medicine, Nagakute, Aichi 480-1195, Japan
| | - Yuishin Izumi
- Department of Neurology, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8503, Japan
| | - Mitsuya Morita
- Division of Neurology, Department of Internal Medicine, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan
| | - Asako Tamura
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Osamu Kano
- Department of Neurology, Toho University Faculty of Medicine, Ota-ku, Tokyo 143-8541, Japan
| | - Masaya Oda
- Department of Neurology, Vihara Hananosato Hospital, Miyoshi, Hiroshima 728-0001, Japan
| | - Satoshi Kuwabara
- Department of Neurology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan
| | - Toru Yamashita
- Department of Neurology, Okayama University Graduate School of Medicine, Kita-ku, Okayama 700-8558, Japan
| | - Jun Sone
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Aichi 480-1195, Japan
| | - Ryuji Kaji
- Department of Clinical Neuroscience, Tokushima University, Tokushima 770-8503, Japan
| | - Gen Sobue
- Aichi Medical University, Nagakute, Aichi 480-1195, Japan
| | - Yuzuru Imai
- Department of Neurology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
- Department of Research for Parkinson's Disease, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
- Department of Research for Parkinson's Disease, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
- Department of Drug Development for Parkinson's Disease, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
- Neurodegenerative Disorders Collaborative Laboratory, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
| |
Collapse
|
14
|
Duan X, Wang H, Cao Z, Su N, Wang Y, Zheng Y. Deficiency of ValRS-m Causes Male Infertility in Drosophila melanogaster. Int J Mol Sci 2024; 25:7489. [PMID: 39000597 PMCID: PMC11242588 DOI: 10.3390/ijms25137489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/25/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024] Open
Abstract
Drosophila spermatogenesis involves the renewal of germline stem cells, meiosis of spermatocytes, and morphological transformation of spermatids into mature sperm. We previously demonstrated that Ocnus (ocn) plays an essential role in spermatogenesis. The ValRS-m (Valyl-tRNA synthetase, mitochondrial) gene was down-regulated in ocn RNAi testes. Here, we found that ValRS-m-knockdown induced complete sterility in male flies. The depletion of ValRS-m blocked mitochondrial behavior and ATP synthesis, thus inhibiting the transition from spermatogonia to spermatocytes, and eventually, inducing the accumulation of spermatogonia during spermatogenesis. To understand the intrinsic reason for this, we further conducted transcriptome-sequencing analysis for control and ValRS-m-knockdown testes. The differentially expressed genes (DEGs) between these two groups were selected with a fold change of ≥2 or ≤1/2. Compared with the control group, 4725 genes were down-regulated (dDEGs) and 2985 genes were up-regulated (uDEGs) in the ValRS-m RNAi group. The dDEGs were mainly concentrated in the glycolytic pathway and pyruvate metabolic pathway, and the uDEGs were primarily related to ribosomal biogenesis. A total of 28 DEGs associated with mitochondria and 6 meiosis-related genes were verified to be suppressed when ValRS-m was deficient. Overall, these results suggest that ValRS-m plays a wide and vital role in mitochondrial behavior and spermatogonia differentiation in Drosophila.
Collapse
Affiliation(s)
- Xin Duan
- School of Life Sciences, Central China Normal University, Wuhan 430079, China; (X.D.); (H.W.); (Z.C.); (Y.W.)
| | - Haolin Wang
- School of Life Sciences, Central China Normal University, Wuhan 430079, China; (X.D.); (H.W.); (Z.C.); (Y.W.)
| | - Zhixian Cao
- School of Life Sciences, Central China Normal University, Wuhan 430079, China; (X.D.); (H.W.); (Z.C.); (Y.W.)
| | - Na Su
- School of Life Sciences, Shanghai Normal University, Shanghai 200234, China;
| | - Yufeng Wang
- School of Life Sciences, Central China Normal University, Wuhan 430079, China; (X.D.); (H.W.); (Z.C.); (Y.W.)
| | - Ya Zheng
- School of Life Sciences, Shanghai Normal University, Shanghai 200234, China;
| |
Collapse
|
15
|
Toshima T, Yagi M, Do Y, Hirai H, Kunisaki Y, Kang D, Uchiumi T. Mitochondrial translation failure represses cholesterol gene expression via Pyk2-Gsk3β-Srebp2 axis. Life Sci Alliance 2024; 7:e202302423. [PMID: 38719751 PMCID: PMC11079605 DOI: 10.26508/lsa.202302423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024] Open
Abstract
Neurodegenerative diseases and other age-related disorders are closely associated with mitochondrial dysfunction. We previously showed that mice with neuron-specific deficiency of mitochondrial translation exhibit leukoencephalopathy because of demyelination. Reduced cholesterol metabolism has been associated with demyelinating diseases of the brain such as Alzheimer's disease. However, the molecular mechanisms involved and relevance to the pathogenesis remained unknown. In this study, we show that inhibition of mitochondrial translation significantly reduced expression of the cholesterol synthase genes and degraded their sterol-regulated transcription factor, sterol regulatory element-binding protein 2 (Srebp2). Furthermore, the phosphorylation of Pyk2 and Gsk3β was increased in the white matter of p32cKO mice. We observed that Pyk2 inhibitors reduced the phosphorylation of Gsk3β and that GSK3β inhibitors suppressed degradation of the transcription factor Srebp2. The Pyk2-Gsk3β axis is involved in the ubiquitination of Srebp2 and reduced expression of cholesterol gene. These results suggest that inhibition of mitochondrial translation may be a causative mechanism of neurodegenerative diseases of aging. Improving the mitochondrial translation or effectiveness of Gsk3β inhibitors is a potential therapeutic strategy for leukoencephalopathy.
Collapse
Affiliation(s)
- Takahiro Toshima
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University, Fukuoka, Japan
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Mikako Yagi
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University, Fukuoka, Japan
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yura Do
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University, Fukuoka, Japan
| | - Haruka Hirai
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University, Fukuoka, Japan
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuya Kunisaki
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University, Fukuoka, Japan
| | - Dongchon Kang
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University, Fukuoka, Japan
- Kashiigaoka Rehabilitation Hospital, Fukuoka, Japan
- Department of Medical Laboratory Science, Faculty of Health Sciences, Junshin Gakuen University, Fukuoka, Japan
| | - Takeshi Uchiumi
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University, Fukuoka, Japan
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
16
|
Hattori N, Funayama M, Imai Y, Hatano T. Pathogenesis of Parkinson's disease: from hints from monogenic familial PD to biomarkers. J Neural Transm (Vienna) 2024; 131:709-719. [PMID: 38478097 DOI: 10.1007/s00702-024-02747-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 06/22/2024]
Abstract
Twenty-five years have passed since the causative gene for familial Parkinson's disease (PD), Parkin (now PRKN), was identified in 1998; PRKN is the most common causative gene in young-onset PD. Parkin encodes a ubiquitin-protein ligase, and Parkin is involved in mitophagy, a type of macroautophagy, in concert with PTEN-induced kinase 1 (PINK1). Both gene products are also involved in mitochondrial quality control. Among the many genetic PD-causing genes discovered, discovering PRKN as a cause of juvenile-onset PD has significantly impacted other neurodegenerative disorders. This is because the involvement of proteolytic systems has been suggested as a common mechanism in neurodegenerative diseases in which inclusion body formation is observed. The discovery of the participation of PRKN in PD has brought attention to the involvement of the proteolytic system in neurodegenerative diseases. Our research group has successfully isolated and identified CHCHD2, which is involved in the mitochondrial electron transfer system, and prosaposin (PSAP), which is involved in the lysosomal system, in this Parkin mechanism. Hereditary PD is undoubtedly an essential clue to solitary PD, and at least 25 or so genes and loci have been reported so far. This number of genes indicates that PD is a very diverse group of diseases. Currently, the diagnosis of PD is based on clinical symptoms and imaging studies. Although highly accurate diagnostic criteria have been published, early diagnosis is becoming increasingly important in treatment strategies for neurodegenerative diseases. Here, we also describe biomarkers that our group is working on.
Collapse
Affiliation(s)
- Nobutaka Hattori
- Department of Neurology, Faculty of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo, Tokyo, 113-8421, Japan.
- Research Institute for Diseases of Old Age, Graduate School of Medicine, Juntendo University, Tokyo, 113-8421, Japan.
- Center for Genomic and Regenerative Medicine, Graduate School of Medicine, Juntendo University, Tokyo, 113-8421, Japan.
- Department of Research for Parkinson's Disease, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan.
- Neurodegenerative Disorders Collaborative Laboratory, RIKEN Center for Brain Science, 2-1-Hirosawa, Wako-shi, Saitama, 351-0198, Japan.
| | - Manabu Funayama
- Department of Neurology, Faculty of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo, Tokyo, 113-8421, Japan
- Research Institute for Diseases of Old Age, Graduate School of Medicine, Juntendo University, Tokyo, 113-8421, Japan
- Center for Genomic and Regenerative Medicine, Graduate School of Medicine, Juntendo University, Tokyo, 113-8421, Japan
| | - Yuzuru Imai
- Department of Neurology, Faculty of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo, Tokyo, 113-8421, Japan
- Department of Research for Parkinson's Disease, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Taku Hatano
- Department of Neurology, Faculty of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo, Tokyo, 113-8421, Japan
| |
Collapse
|
17
|
Ropert B, Gallrein C, Schumacher B. DNA repair deficiencies and neurodegeneration. DNA Repair (Amst) 2024; 138:103679. [PMID: 38640601 DOI: 10.1016/j.dnarep.2024.103679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/03/2024] [Accepted: 04/11/2024] [Indexed: 04/21/2024]
Abstract
Neurodegenerative diseases are the second most prevalent cause of death in industrialized countries. Alzheimer's Disease is the most widespread and also most acknowledged form of dementia today. Together with Parkinson's Disease they account for over 90 % cases of neurodegenerative disorders caused by proteopathies. Far less known are the neurodegenerative pathologies in DNA repair deficiency syndromes. Such diseases like Cockayne - or Werner Syndrome are described as progeroid syndromes - diseases that cause the premature ageing of the affected persons, and there are clear implications of such diseases in neurologic dysfunction and degeneration. In this review, we aim to draw the attention on commonalities between proteopathy-associated neurodegeneration and neurodegeneration caused by DNA repair defects and discuss how mitochondria are implicated in the development of both disorder classes. Furthermore, we highlight how nematodes are a valuable and indispensable model organism to study conserved neurodegenerative processes in a fast-forward manner.
Collapse
Affiliation(s)
- Baptiste Ropert
- Institute for Genome Stability in Aging and Disease, Medical Faculty, University and University Hospital of Cologne, Joseph-Stelzmann-Str. 26, Cologne 50931, Germany; Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Str. 26, Cologne 50931, Germany
| | - Christian Gallrein
- Institute for Genome Stability in Aging and Disease, Medical Faculty, University and University Hospital of Cologne, Joseph-Stelzmann-Str. 26, Cologne 50931, Germany; Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Str. 26, Cologne 50931, Germany; Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Beutenbergstraße 11, Jena 07745, Germany
| | - Björn Schumacher
- Institute for Genome Stability in Aging and Disease, Medical Faculty, University and University Hospital of Cologne, Joseph-Stelzmann-Str. 26, Cologne 50931, Germany; Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Str. 26, Cologne 50931, Germany.
| |
Collapse
|
18
|
Bhore N, Bogacki EC, O'Callaghan B, Plun-Favreau H, Lewis PA, Herbst S. Common genetic risk for Parkinson's disease and dysfunction of the endo-lysosomal system. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220517. [PMID: 38368938 PMCID: PMC10874702 DOI: 10.1098/rstb.2022.0517] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 10/18/2023] [Indexed: 02/20/2024] Open
Abstract
Parkinson's disease is a progressive neurological disorder, characterized by prominent movement dysfunction. The past two decades have seen a rapid expansion of our understanding of the genetic basis of Parkinson's, initially through the identification of monogenic forms and, more recently, through genome-wide association studies identifying common risk variants. Intriguingly, a number of cellular pathways have emerged from these analysis as playing central roles in the aetiopathogenesis of Parkinson's. In this review, the impact of data deriving from genome-wide analyses for Parkinson's upon our functional understanding of the disease will be examined, with a particular focus on examples of endo-lysosomal and mitochondrial dysfunction. The challenges of moving from a genetic to a functional understanding of common risk variants for Parkinson's will be discussed, with a final consideration of the current state of the genetic architecture of the disorder. This article is part of a discussion meeting issue 'Understanding the endo-lysosomal network in neurodegeneration'.
Collapse
Affiliation(s)
- Noopur Bhore
- Comparative Biomedical Sciences, Royal Veterinary College, University of London, London NW1 0TU, UK
- Neurodegenerative Diseases, UCL Queen Square Institute of Neurology, University of London, London WC1N 3BG, UK
| | - Erin C. Bogacki
- Comparative Biomedical Sciences, Royal Veterinary College, University of London, London NW1 0TU, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Benjamin O'Callaghan
- Neurodegenerative Diseases, UCL Queen Square Institute of Neurology, University of London, London WC1N 3BG, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Helene Plun-Favreau
- Neurodegenerative Diseases, UCL Queen Square Institute of Neurology, University of London, London WC1N 3BG, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Patrick A. Lewis
- Comparative Biomedical Sciences, Royal Veterinary College, University of London, London NW1 0TU, UK
- Neurodegenerative Diseases, UCL Queen Square Institute of Neurology, University of London, London WC1N 3BG, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Susanne Herbst
- Comparative Biomedical Sciences, Royal Veterinary College, University of London, London NW1 0TU, UK
- Neurodegenerative Diseases, UCL Queen Square Institute of Neurology, University of London, London WC1N 3BG, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| |
Collapse
|
19
|
Liang H, Ma Z, Zhong W, Liu J, Sugimoto K, Chen H. Regulation of mitophagy and mitochondrial function: Natural compounds as potential therapeutic strategies for Parkinson's disease. Phytother Res 2024; 38:1838-1862. [PMID: 38356178 DOI: 10.1002/ptr.8156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/16/2024]
Abstract
Mitochondrial damage is associated with the development of Parkinson's disease (PD), indicating that mitochondrial-targeted treatments could hold promise as disease-modifying approaches for PD. Notably, natural compounds have demonstrated the ability to modulate mitochondrial-related processes. In this review article, we discussed the possible neuroprotective mechanisms of natural compounds against PD in modulating mitophagy and mitochondrial function. A comprehensive literature search on natural compounds related to the treatment of PD by regulating mitophagy and mitochondrial function was conducted from PubMed, Web of Science and Chinese National Knowledge Infrastructure databases from their inception until April 2023. We summarize recent advancements in mitophagy's molecular mechanisms, including upstream and downstream processes, and its relationship with PD-related genes or proteins. Importantly, we highlight how natural compounds can therapeutically regulate various mitochondrial processes through multiple targets and pathways to alleviate oxidative stress, neuroinflammation, Lewy's body aggregation and apoptosis, which are key contributors to PD pathogenesis. Unlike the single-target strategy of modern medicine, natural compounds provide neuroprotection against PD by modulating various mitochondrial-related processes, including ameliorating mitophagy by targeting the PINK1/parkin pathway, the NIX/BNIP3 pathway, and autophagosome formation (i.e., LC3 and p62). Given the prevalence of mitochondrial damage in various neurodegenerative diseases, exploring the exact mechanism of natural compounds on mitophagy and mitochondrial dysfunction could shed light on the development of highly effective disease-modifying or adjuvant therapies targeting PD and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Hao Liang
- Department of Acupuncture, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
| | - Zhenwang Ma
- Department of Acupuncture, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
| | - Wei Zhong
- Department of Rheumatology and Immunology, Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, China
| | - Jia Liu
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
| | - Kazuo Sugimoto
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
| | - Hong Chen
- Department of Acupuncture, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
- Department of TCM Geriatric, Southern Medical University, Guangzhou, China
| |
Collapse
|
20
|
Zhou Z, Arroum T, Luo X, Kang R, Lee YJ, Tang D, Hüttemann M, Song X. Diverse functions of cytochrome c in cell death and disease. Cell Death Differ 2024; 31:387-404. [PMID: 38521844 PMCID: PMC11043370 DOI: 10.1038/s41418-024-01284-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 03/13/2024] [Accepted: 03/18/2024] [Indexed: 03/25/2024] Open
Abstract
The redox-active protein cytochrome c is a highly positively charged hemoglobin that regulates cell fate decisions of life and death. Under normal physiological conditions, cytochrome c is localized in the mitochondrial intermembrane space, and its distribution can extend to the cytosol, nucleus, and extracellular space under specific pathological or stress-induced conditions. In the mitochondria, cytochrome c acts as an electron carrier in the electron transport chain, facilitating adenosine triphosphate synthesis, regulating cardiolipin peroxidation, and influencing reactive oxygen species dynamics. Upon cellular stress, it can be released into the cytosol, where it interacts with apoptotic peptidase activator 1 (APAF1) to form the apoptosome, initiating caspase-dependent apoptotic cell death. Additionally, following exposure to pro-apoptotic compounds, cytochrome c contributes to the survival of drug-tolerant persister cells. When translocated to the nucleus, it can induce chromatin condensation and disrupt nucleosome assembly. Upon its release into the extracellular space, cytochrome c may act as an immune mediator during cell death processes, highlighting its multifaceted role in cellular biology. In this review, we explore the diverse structural and functional aspects of cytochrome c in physiological and pathological responses. We summarize how posttranslational modifications of cytochrome c (e.g., phosphorylation, acetylation, tyrosine nitration, and oxidation), binding proteins (e.g., HIGD1A, CHCHD2, ITPR1, and nucleophosmin), and mutations (e.g., G41S, Y48H, and A51V) affect its function. Furthermore, we provide an overview of the latest advanced technologies utilized for detecting cytochrome c, along with potential therapeutic approaches related to this protein. These strategies hold tremendous promise in personalized health care, presenting opportunities for targeted interventions in a wide range of conditions, including neurodegenerative disorders, cardiovascular diseases, and cancer.
Collapse
Affiliation(s)
- Zhuan Zhou
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Tasnim Arroum
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, 48201, USA
| | - Xu Luo
- Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Yong J Lee
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, 48201, USA.
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI, 48201, USA.
| | - Xinxin Song
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
21
|
Liu X, Wang F, Fan X, Chen M, Xu X, Xu Q, Zhu H, Xu A, Pouladi MA, Xu X. CHCHD2 up-regulation in Huntington disease mediates a compensatory protective response against oxidative stress. Cell Death Dis 2024; 15:126. [PMID: 38341417 PMCID: PMC10858906 DOI: 10.1038/s41419-024-06523-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 01/27/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
Huntington disease (HD) is a neurodegenerative disease caused by the abnormal expansion of a polyglutamine tract resulting from a mutation in the HTT gene. Oxidative stress has been identified as a significant contributing factor to the development of HD and other neurodegenerative diseases, and targeting anti-oxidative stress has emerged as a potential therapeutic approach. CHCHD2 is a mitochondria-related protein involved in regulating cell migration, anti-oxidative stress, and anti-apoptosis. Although CHCHD2 is highly expressed in HD cells, its specific role in the pathogenesis of HD remains uncertain. We postulate that the up-regulation of CHCHD2 in HD models represents a compensatory protective response against mitochondrial dysfunction and oxidative stress associated with HD. To investigate this hypothesis, we employed HD mouse striatal cells and human induced pluripotent stem cells (hiPSCs) as models to examine the effects of CHCHD2 overexpression (CHCHD2-OE) or knockdown (CHCHD2-KD) on the HD phenotype. Our findings demonstrate that CHCHD2 is crucial for maintaining cell survival in both HD mouse striatal cells and hiPSCs-derived neurons. Our study demonstrates that CHCHD2 up-regulation in HD serves as a compensatory protective response against oxidative stress, suggesting a potential anti-oxidative strategy for the treatment of HD.
Collapse
Affiliation(s)
- Xuanzhuo Liu
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, 613 Huangpu Avenue West, Guangzhou, Guangdong, 510632, China
- Clinical Neuroscience Institute, Jinan University, 613 Huangpu Avenue West, Guangzhou, Guangdong, 510632, China
- Department of Neurology, Taihe Hospital of Shiyan, Affiliated Hospital of Hubei Medical University, Shiyan, 442000, China
| | - Fang Wang
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, 613 Huangpu Avenue West, Guangzhou, Guangdong, 510632, China
- Clinical Neuroscience Institute, Jinan University, 613 Huangpu Avenue West, Guangzhou, Guangdong, 510632, China
| | - Xinman Fan
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, 613 Huangpu Avenue West, Guangzhou, Guangdong, 510632, China
- Clinical Neuroscience Institute, Jinan University, 613 Huangpu Avenue West, Guangzhou, Guangdong, 510632, China
| | - Mingyi Chen
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, 613 Huangpu Avenue West, Guangzhou, Guangdong, 510632, China
- Clinical Neuroscience Institute, Jinan University, 613 Huangpu Avenue West, Guangzhou, Guangdong, 510632, China
| | - Xiaoxin Xu
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, 613 Huangpu Avenue West, Guangzhou, Guangdong, 510632, China
- Clinical Neuroscience Institute, Jinan University, 613 Huangpu Avenue West, Guangzhou, Guangdong, 510632, China
| | - Qiuhong Xu
- Department of Plastic Surgery, The First Affiliated Hospital, Jinan University, 613 Huangpu Avenue West, Guangzhou, Guangdong, 510632, China
| | - Huili Zhu
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, 613 Huangpu Avenue West, Guangzhou, Guangdong, 510632, China
| | - Anding Xu
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, 613 Huangpu Avenue West, Guangzhou, Guangdong, 510632, China
- Clinical Neuroscience Institute, Jinan University, 613 Huangpu Avenue West, Guangzhou, Guangdong, 510632, China
| | - Mahmoud A Pouladi
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Djavad Mowafaghian Centre for Brain Health, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, V5Z 4H4, Canada.
| | - Xiaohong Xu
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, 613 Huangpu Avenue West, Guangzhou, Guangdong, 510632, China.
- Clinical Neuroscience Institute, Jinan University, 613 Huangpu Avenue West, Guangzhou, Guangdong, 510632, China.
| |
Collapse
|
22
|
Izquierdo-Villalba I, Mirra S, Manso Y, Parcerisas A, Rubio J, Del Valle J, Gil-Bea FJ, Ulloa F, Herrero-Lorenzo M, Verdaguer E, Benincá C, Castro-Torres RD, Rebollo E, Marfany G, Auladell C, Navarro X, Enríquez JA, López de Munain A, Soriano E, Aragay AM. A mammalian-specific Alex3/Gα q protein complex regulates mitochondrial trafficking, dendritic complexity, and neuronal survival. Sci Signal 2024; 17:eabq1007. [PMID: 38320000 DOI: 10.1126/scisignal.abq1007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 01/16/2024] [Indexed: 02/08/2024]
Abstract
Mitochondrial dynamics and trafficking are essential to provide the energy required for neurotransmission and neural activity. We investigated how G protein-coupled receptors (GPCRs) and G proteins control mitochondrial dynamics and trafficking. The activation of Gαq inhibited mitochondrial trafficking in neurons through a mechanism that was independent of the canonical downstream PLCβ pathway. Mitoproteome analysis revealed that Gαq interacted with the Eutherian-specific mitochondrial protein armadillo repeat-containing X-linked protein 3 (Alex3) and the Miro1/Trak2 complex, which acts as an adaptor for motor proteins involved in mitochondrial trafficking along dendrites and axons. By generating a CNS-specific Alex3 knockout mouse line, we demonstrated that Alex3 was required for the effects of Gαq on mitochondrial trafficking and dendritic growth in neurons. Alex3-deficient mice had altered amounts of ER stress response proteins, increased neuronal death, motor neuron loss, and severe motor deficits. These data revealed a mammalian-specific Alex3/Gαq mitochondrial complex, which enables control of mitochondrial trafficking and neuronal death by GPCRs.
Collapse
Affiliation(s)
| | - Serena Mirra
- Department of Cell Biology, Physiology and Immunology, and Institute of Neurosciences, University of Barcelona, Barcelona 08028, Spain
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona 08028, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBER-CIBERNED), ISCIII, Madrid 28031, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Raras (CIBER-CIBERER), ISCIII, Madrid 28031, Spain
- Institut de Biomedicina- Institut de Recerca Sant Joan de Déu (IBUB-IRSJD), Universitat de Barcelona, Barcelona 08028, Spain
| | - Yasmina Manso
- Department of Cell Biology, Physiology and Immunology, and Institute of Neurosciences, University of Barcelona, Barcelona 08028, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBER-CIBERNED), ISCIII, Madrid 28031, Spain
| | - Antoni Parcerisas
- Department of Cell Biology, Physiology and Immunology, and Institute of Neurosciences, University of Barcelona, Barcelona 08028, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBER-CIBERNED), ISCIII, Madrid 28031, Spain
- Biosciences Department, Faculty of Sciences, Technology and Engineering, University of Vic, Central University of Catalonia (UVic-UCC); and Tissue Repair and Regeneration Laboratory (TR2Lab), Institut de Recerca i Innovació en Ciències de la Vida i de la Salut a la Catalunya Central (IRIS-CC), 08500 Vic, Spain
| | - Javier Rubio
- Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Barcelona 08028, Spain
| | - Jaume Del Valle
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBER-CIBERNED), ISCIII, Madrid 28031, Spain
- Department of Cell Biology, Physiology and Immunology, and Institute of Neurosciences, Universitat Autonoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - Francisco J Gil-Bea
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBER-CIBERNED), ISCIII, Madrid 28031, Spain
- Neurosciences Area, Biodonostia Health Research Institute, San Sebastián 20014, Spain
| | - Fausto Ulloa
- Department of Cell Biology, Physiology and Immunology, and Institute of Neurosciences, University of Barcelona, Barcelona 08028, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBER-CIBERNED), ISCIII, Madrid 28031, Spain
| | - Marina Herrero-Lorenzo
- Department of Cell Biology, Physiology and Immunology, and Institute of Neurosciences, University of Barcelona, Barcelona 08028, Spain
| | - Ester Verdaguer
- Department of Cell Biology, Physiology and Immunology, and Institute of Neurosciences, University of Barcelona, Barcelona 08028, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBER-CIBERNED), ISCIII, Madrid 28031, Spain
| | - Cristiane Benincá
- Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Barcelona 08028, Spain
| | - Rubén D Castro-Torres
- Department of Cell Biology, Physiology and Immunology, and Institute of Neurosciences, University of Barcelona, Barcelona 08028, Spain
| | - Elena Rebollo
- Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Barcelona 08028, Spain
| | - Gemma Marfany
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona 08028, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Raras (CIBER-CIBERER), ISCIII, Madrid 28031, Spain
- Institut de Biomedicina- Institut de Recerca Sant Joan de Déu (IBUB-IRSJD), Universitat de Barcelona, Barcelona 08028, Spain
| | - Carme Auladell
- Department of Cell Biology, Physiology and Immunology, and Institute of Neurosciences, University of Barcelona, Barcelona 08028, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBER-CIBERNED), ISCIII, Madrid 28031, Spain
| | - Xavier Navarro
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBER-CIBERNED), ISCIII, Madrid 28031, Spain
- Department of Cell Biology, Physiology and Immunology, and Institute of Neurosciences, Universitat Autonoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - José A Enríquez
- Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain
- Centro de Investigación Biomédica en Red en Fragilidad y Envejecimiento Saludable (CIBER-CIBERFES), Madrid 28031, Spain
| | - Adolfo López de Munain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBER-CIBERNED), ISCIII, Madrid 28031, Spain
- Neurosciences Area, Biodonostia Health Research Institute, San Sebastián 20014, Spain
- Neurology Department, Donostia University Hospital, San Sebastián 20014, Spain
| | - Eduardo Soriano
- Department of Cell Biology, Physiology and Immunology, and Institute of Neurosciences, University of Barcelona, Barcelona 08028, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBER-CIBERNED), ISCIII, Madrid 28031, Spain
| | - Anna M Aragay
- Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Barcelona 08028, Spain
| |
Collapse
|
23
|
Luo S, Wang D, Zhang Z. Post-translational modification and mitochondrial function in Parkinson's disease. Front Mol Neurosci 2024; 16:1329554. [PMID: 38273938 PMCID: PMC10808367 DOI: 10.3389/fnmol.2023.1329554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 12/21/2023] [Indexed: 01/27/2024] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease with currently no cure. Most PD cases are sporadic, and about 5-10% of PD cases present a monogenic inheritance pattern. Mutations in more than 20 genes are associated with genetic forms of PD. Mitochondrial dysfunction is considered a prominent player in PD pathogenesis. Post-translational modifications (PTMs) allow rapid switching of protein functions and therefore impact various cellular functions including those related to mitochondria. Among the PD-associated genes, Parkin, PINK1, and LRRK2 encode enzymes that directly involved in catalyzing PTM modifications of target proteins, while others like α-synuclein, FBXO7, HTRA2, VPS35, CHCHD2, and DJ-1, undergo substantial PTM modification, subsequently altering mitochondrial functions. Here, we summarize recent findings on major PTMs associated with PD-related proteins, as enzymes or substrates, that are shown to regulate important mitochondrial functions and discuss their involvement in PD pathogenesis. We will further highlight the significance of PTM-regulated mitochondrial functions in understanding PD etiology. Furthermore, we emphasize the potential for developing important biomarkers for PD through extensive research into PTMs.
Collapse
Affiliation(s)
- Shishi Luo
- Institute for Future Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Key Laboratory of Rare Pediatric Diseases, Ministry of Education, Hengyang, Hunan, China
- The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China
| | - Danling Wang
- Institute for Future Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Key Laboratory of Rare Pediatric Diseases, Ministry of Education, Hengyang, Hunan, China
- The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China
| | - Zhuohua Zhang
- Institute for Future Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Key Laboratory of Rare Pediatric Diseases, Ministry of Education, Hengyang, Hunan, China
- Institute of Molecular Precision Medicine, Xiangya Hospital, Key Laboratory of Molecular Precision Medicine of Hunan Province and Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan, China
| |
Collapse
|
24
|
Lounas A, Breton Y, Lebrun A, Laflamme I, Vernoux N, Savage J, Tremblay MÈ, Pelletier M, Germain M, Richard FJ. The follicle-stimulating hormone triggers rapid changes in mitochondrial structure and function in porcine cumulus cells. Sci Rep 2024; 14:436. [PMID: 38172520 PMCID: PMC10764925 DOI: 10.1038/s41598-023-50586-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024] Open
Abstract
Oocyte maturation is a key process during which the female germ cell undergoes resumption of meiosis and completes its preparation for embryonic development including cytoplasmic and epigenetic maturation. The cumulus cells directly surrounding the oocyte are involved in this process by transferring essential metabolites, such as pyruvate, to the oocyte. This process is controlled by cyclic adenosine monophosphate (cAMP)-dependent mechanisms recruited downstream of follicle-stimulating hormone (FSH) signaling in cumulus cells. As mitochondria have a critical but poorly understood contribution to this process, we defined the effects of FSH and high cAMP concentrations on mitochondrial dynamics and function in porcine cumulus cells. During in vitro maturation (IVM) of cumulus-oocyte complexes (COCs), we observed an FSH-dependent mitochondrial elongation shortly after stimulation that led to mitochondrial fragmentation 24 h later. Importantly, mitochondrial elongation was accompanied by decreased mitochondrial activity and a switch to glycolysis. During a pre-IVM culture step increasing intracellular cAMP, mitochondrial fragmentation was prevented. Altogether, the results demonstrate that FSH triggers rapid changes in mitochondrial structure and function in COCs involving cAMP.
Collapse
Affiliation(s)
- Amel Lounas
- Centre de recherche en reproduction, développement et santé intergénérationnelle (CRDSI), Département des sciences animales, Faculté des Sciences de l'agriculture et de l'alimentation, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Yann Breton
- Centre de recherche du CHU de Québec-Université Laval, Axe Maladies infectieuses et immunitaires, Département de microbiologie-infectiologie et d'immunologie, Faculté de médecine, Université Laval, Québec, QC, G1V4G2, Canada
| | - Ariane Lebrun
- Centre de recherche en reproduction, développement et santé intergénérationnelle (CRDSI), Département des sciences animales, Faculté des Sciences de l'agriculture et de l'alimentation, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Isabelle Laflamme
- Centre de recherche en reproduction, développement et santé intergénérationnelle (CRDSI), Département des sciences animales, Faculté des Sciences de l'agriculture et de l'alimentation, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Nathalie Vernoux
- Centre de recherche du CHU de Québec-Université Laval, Axe Neurosciences, Département de médecine moléculaire, Université Laval, Québec, QC, G1V 4G2, Canada
| | - Julie Savage
- Centre de recherche du CHU de Québec-Université Laval, Axe Neurosciences, Département de médecine moléculaire, Université Laval, Québec, QC, G1V 4G2, Canada
| | - Marie-Ève Tremblay
- Centre de recherche du CHU de Québec-Université Laval, Axe Neurosciences, Département de médecine moléculaire, Université Laval, Québec, QC, G1V 4G2, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, V8W 2Y2, Canada
| | - Martin Pelletier
- Centre de recherche du CHU de Québec-Université Laval, Axe Maladies infectieuses et immunitaires, Département de microbiologie-infectiologie et d'immunologie, Faculté de médecine, Université Laval, Québec, QC, G1V4G2, Canada
| | - Marc Germain
- Département de biologie médicale, Université du Québec à Trois-Rivières, Québec, G8Z 4M3, Canada
| | - François J Richard
- Centre de recherche en reproduction, développement et santé intergénérationnelle (CRDSI), Département des sciences animales, Faculté des Sciences de l'agriculture et de l'alimentation, Université Laval, Québec, QC, G1V 0A6, Canada.
| |
Collapse
|
25
|
Chen X, Lin Y, Zhang Z, Tang Y, Ye P, Dai W, Zhang W, Liu H, Peng G, Huang S, Qiu J, Guo W, Zhu X, Wu Z, Kuang Y, Xu P, Zhou M. CHCHD2 Thr61Ile mutation impairs F1F0-ATPase assembly in in vitro and in vivo models of Parkinson's disease. Neural Regen Res 2024; 19:196-204. [PMID: 37488867 PMCID: PMC10479855 DOI: 10.4103/1673-5374.378010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 03/08/2023] [Accepted: 04/17/2023] [Indexed: 07/26/2023] Open
Abstract
Mitochondrial dysfunction is a significant pathological alteration that occurs in Parkinson's disease (PD), and the Thr61Ile (T61I) mutation in coiled-coil helix coiled-coil helix domain containing 2 (CHCHD2), a crucial mitochondrial protein, has been reported to cause Parkinson's disease. F1F0-ATPase participates in the synthesis of cellular adenosine triphosphate (ATP) and plays a central role in mitochondrial energy metabolism. However, the specific roles of wild-type (WT) CHCHD2 and T61I-mutant CHCHD2 in regulating F1F0-ATPase activity in Parkinson's disease, as well as whether CHCHD2 or CHCHD2 T61I affects mitochondrial function through regulating F1F0-ATPase activity, remain unclear. Therefore, in this study, we expressed WT CHCHD2 and T61I-mutant CHCHD2 in an MPP+-induced SH-SY5Y cell model of PD. We found that CHCHD2 protected mitochondria from developing MPP+-induced dysfunction. Under normal conditions, overexpression of WT CHCHD2 promoted F1F0-ATPase assembly, while T61I-mutant CHCHD2 appeared to have lost the ability to regulate F1F0-ATPase assembly. In addition, mass spectrometry and immunoprecipitation showed that there was an interaction between CHCHD2 and F1F0-ATPase. Three weeks after transfection with AAV-CHCHD2 T61I, we intraperitoneally injected 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine into mice to establish an animal model of chronic Parkinson's disease and found that exogenous expression of the mutant protein worsened the behavioral deficits and dopaminergic neurodegeneration seen in this model. These findings suggest that WT CHCHD2 can alleviate mitochondrial dysfunction in PD by maintaining F1F0-ATPase structure and function.
Collapse
Affiliation(s)
- Xiang Chen
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Yuwan Lin
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Zhiling Zhang
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Yuting Tang
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Panghai Ye
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Wei Dai
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Wenlong Zhang
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Hanqun Liu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Guoyou Peng
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Shuxuan Huang
- Department of Neurology, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Jiewen Qiu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Wenyuan Guo
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Xiaoqin Zhu
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Zhuohua Wu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Yaoyun Kuang
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Pingyi Xu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Miaomiao Zhou
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
26
|
Yamanaka T, Matsui H. Modeling familial and sporadic Parkinson's disease in small fishes. Dev Growth Differ 2024; 66:4-20. [PMID: 37991125 DOI: 10.1111/dgd.12904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/26/2023] [Accepted: 11/16/2023] [Indexed: 11/23/2023]
Abstract
The establishment of animal models for Parkinson's disease (PD) has been challenging. Nevertheless, once established, they will serve as valuable tools for elucidating the causes and pathogenesis of PD, as well as for developing new strategies for its treatment. Following the recent discovery of a series of PD causative genes in familial cases, teleost fishes, including zebrafish and medaka, have often been used to establish genetic PD models because of their ease of breeding and gene manipulation, as well as the high conservation of gene orthologs. Some of the fish lines can recapitulate PD phenotypes, which are often more pronounced than those in rodent genetic models. In addition, a new experimental teleost fish, turquoise killifish, can be used as a sporadic PD model, because it spontaneously manifests age-dependent PD phenotypes. Several PD fish models have already made significant contributions to the discovery of novel PD pathological features, such as cytosolic leakage of mitochondrial DNA and pathogenic phosphorylation in α-synuclein. Therefore, utilizing various PD fish models with distinct degenerative phenotypes will be an effective strategy for identifying emerging facets of PD pathogenesis and therapeutic modalities.
Collapse
Affiliation(s)
- Tomoyuki Yamanaka
- Department of Neuroscience of Disease, Brain Research Institute, Niigata University, Niigata, Japan
| | - Hideaki Matsui
- Department of Neuroscience of Disease, Brain Research Institute, Niigata University, Niigata, Japan
| |
Collapse
|
27
|
Choong CJ, Mochizuki H. Involvement of Mitochondria in Parkinson's Disease. Int J Mol Sci 2023; 24:17027. [PMID: 38069350 PMCID: PMC10707101 DOI: 10.3390/ijms242317027] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Mitochondrial dysregulation, such as mitochondrial complex I deficiency, increased oxidative stress, perturbation of mitochondrial dynamics and mitophagy, has long been implicated in the pathogenesis of PD. Initiating from the observation that mitochondrial toxins cause PD-like symptoms and mitochondrial DNA mutations are associated with increased risk of PD, many mutated genes linked to familial forms of PD, including PRKN, PINK1, DJ-1 and SNCA, have also been found to affect the mitochondrial features. Recent research has uncovered a much more complex involvement of mitochondria in PD. Disruption of mitochondrial quality control coupled with abnormal secretion of mitochondrial contents to dispose damaged organelles may play a role in the pathogenesis of PD. Furthermore, due to its bacterial ancestry, circulating mitochondrial DNAs can function as damage-associated molecular patterns eliciting inflammatory response. In this review, we summarize and discuss the connection between mitochondrial dysfunction and PD, highlighting the molecular triggers of the disease process, the intra- and extracellular roles of mitochondria in PD as well as the therapeutic potential of mitochondrial transplantation.
Collapse
Affiliation(s)
| | - Hideki Mochizuki
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita 565-0871, Osaka, Japan;
| |
Collapse
|
28
|
Lumibao JC, Haak PL, Kolossov VL, Chen JWE, Stutchman J, Ruiz A, Sivaguru M, Sarkaria JN, Harley BA, Steelman AJ, Gaskins HR. CHCHD2 mediates glioblastoma cell proliferation, mitochondrial metabolism, hypoxia‑induced invasion and therapeutic resistance. Int J Oncol 2023; 63:117. [PMID: 37654190 PMCID: PMC10546377 DOI: 10.3892/ijo.2023.5565] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/09/2023] [Indexed: 09/02/2023] Open
Abstract
Glioblastoma (GBM) is the most common and malignant primary brain tumor affecting adults and remains incurable. The mitochondrial coiled‑coil‑helix‑coiled‑coil‑helix domain‑containing protein 2 (CHCHD2) has been demonstrated to mediate mitochondrial respiration, nuclear gene expression and cell migration; however, evidence of this in GBM is lacking. In the present study, it was hypothesized that CHCHD2 may play a functional role in U87 GBM cells expressing the constitutively active epidermal growth factor receptor variant III (EGFRvIII). The amplification of the CHCHD2 gene was found to be associated with a decreased patient overall and progression‑free survival. The CHCHD2 mRNA levels were increased in high‑vs. low‑grade glioma, IDH‑wt GBMs, and in tumor vs. non‑tumor tissue. Additionally, CHCHD2 protein expression was greatest in invasive, EGFRvIII‑expressing patient‑derived samples. The CRISPR‑Cas9‑mediated knockout of CHCHD2 in EGFRvIII‑expressing U87 cells resulted in an altered mitochondrial respiration and glutathione status, in decreased cell growth and invasion under both normoxic and hypoxic conditions, and in an enhanced sensitivity to cytotoxic agents. CHCHD2 was distributed in both the mitochondria and nuclei of U87 and U87vIII cells, and the U87vIII cells exhibited a greater nuclear expression of CHCHD2 compared to isogenic U87 cells. Incubation under hypoxic conditions, serum starvation and the reductive unfolding of CHCHD2 induced the nuclear accumulation of CHCHD2 in both cell lines. Collectively, the findings of the present study indicate that CHCHD2 mediates a variety of GBM characteristics, and highlights mitonuclear retrograde signaling as a pathway of interest in GBM cell biology.
Collapse
Affiliation(s)
- Jan C. Lumibao
- Carl R. Woese Institute for Genomic Biology
- Division of Nutritional Sciences and
| | - Payton L. Haak
- Carl R. Woese Institute for Genomic Biology
- Department of Animal Sciences and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801
| | | | - Jee-Wei Emily Chen
- Carl R. Woese Institute for Genomic Biology
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801
| | | | | | | | - Jann N. Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905
| | - Brendan A.C. Harley
- Carl R. Woese Institute for Genomic Biology
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Pathobiology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Andrew J. Steelman
- Carl R. Woese Institute for Genomic Biology
- Division of Nutritional Sciences and
- Department of Animal Sciences and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Pathobiology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Biomedical and Translational Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - H. Rex Gaskins
- Carl R. Woese Institute for Genomic Biology
- Division of Nutritional Sciences and
- Department of Animal Sciences and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Pathobiology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Biomedical and Translational Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
29
|
Yang K, Zeng L, Zeng J, Deng Y, Wang S, Xu H, He Q, Yuan M, Luo Y, Ge A, Ge J. Research progress in the molecular mechanism of ferroptosis in Parkinson's disease and regulation by natural plant products. Ageing Res Rev 2023; 91:102063. [PMID: 37673132 DOI: 10.1016/j.arr.2023.102063] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/25/2023] [Accepted: 09/01/2023] [Indexed: 09/08/2023]
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder of the central nervous system after Alzheimer's disease. The current understanding of PD focuses mainly on the loss of dopamine neurons in the substantia nigra region of the midbrain, which is attributed to factors such as oxidative stress, alpha-synuclein aggregation, neuroinflammation, and mitochondrial dysfunction. These factors together contribute to the PD phenotype. Recent studies on PD pathology have introduced a new form of cell death known as ferroptosis. Pathological changes closely linked with ferroptosis have been seen in the brain tissues of PD patients, including alterations in iron metabolism, lipid peroxidation, and increased levels of reactive oxygen species. Preclinical research has demonstrated the neuroprotective qualities of certain iron chelators, antioxidants, Fer-1, and conditioners in Parkinson's disease. Natural plant products have shown significant potential in balancing ferroptosis-related factors and adjusting their expression levels. Therefore, it is vital to understand the mechanisms by which natural plant products inhibit ferroptosis and relieve PD symptoms. This review provides a comprehensive look at ferroptosis, its role in PD pathology, and the mechanisms underlying the therapeutic effects of natural plant products focused on ferroptosis. The insights from this review can serve as useful references for future research on novel ferroptosis inhibitors and lead compounds for PD treatment.
Collapse
Affiliation(s)
- Kailin Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China; Hunan Academy of Chinese Medicine, Changsha, Hunan, China.
| | - Liuting Zeng
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China.
| | - Jinsong Zeng
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Ying Deng
- People's Hospital of Ningxiang City, Ningxiang, China
| | - Shanshan Wang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Hao Xu
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Qi He
- People's Hospital of Ningxiang City, Ningxiang, China
| | - Mengxia Yuan
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou University Medical College, Shantou, China
| | - Yanfang Luo
- The Central Hospital of Shaoyang, Shaoyang, China
| | - Anqi Ge
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jinwen Ge
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China; Hunan Academy of Chinese Medicine, Changsha, Hunan, China.
| |
Collapse
|
30
|
Torii S, Arakawa S, Sato S, Ishikawa K, Taniguchi D, Sakurai HT, Honda S, Hiraoka Y, Ono M, Akamatsu W, Hattori N, Shimizu S. Involvement of casein kinase 1 epsilon/delta (Csnk1e/d) in the pathogenesis of familial Parkinson's disease caused by CHCHD2. EMBO Mol Med 2023; 15:e17451. [PMID: 37578019 PMCID: PMC10493588 DOI: 10.15252/emmm.202317451] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 08/15/2023] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder that results from the loss of dopaminergic neurons. Mutations in coiled-coil-helix-coiled-coil-helix domain containing 2 (CHCHD2) gene cause a familial form of PD with α-Synuclein aggregation, and we here identified the pathogenesis of the T61I mutation, the most common disease-causing mutation of CHCHD2. In Neuro2a cells, CHCHD2 is in mitochondria, whereas the T61I mutant (CHCHD2T61I ) is mislocalized in the cytosol. CHCHD2T61l then recruits casein kinase 1 epsilon/delta (Csnk1e/d), which phosphorylates neurofilament and α-Synuclein, forming cytosolic aggresomes. In vivo, both Chchd2T61I knock-in and transgenic mice display neurodegenerative phenotypes and aggresomes containing Chchd2T61I , Csnk1e/d, phospho-α-Synuclein, and phospho-neurofilament in their dopaminergic neurons. Similar aggresomes were observed in a postmortem PD patient brain and dopaminergic neurons generated from patient-derived iPS cells. Importantly, a Csnk1e/d inhibitor substantially suppressed the phosphorylation of neurofilament and α-Synuclein. The Csnk1e/d inhibitor also suppressed the cellular damage in CHCHD2T61I -expressing Neuro2a cells and dopaminergic neurons generated from patient-derived iPS cells and improved the neurodegenerative phenotypes of Chchd2T61I mutant mice. These results indicate that Csnk1e/d is involved in the pathogenesis of PD caused by the CHCHD2T61I mutation.
Collapse
Affiliation(s)
- Satoru Torii
- Department of Pathological Cell Biology, Medical Research InstituteTokyo Medical and Dental University (TMDU)TokyoJapan
| | - Satoko Arakawa
- Department of Pathological Cell Biology, Medical Research InstituteTokyo Medical and Dental University (TMDU)TokyoJapan
| | - Shigeto Sato
- Department of Neurology, School of MedicineJuntendo UniversityTokyoJapan
| | - Kei‐ichi Ishikawa
- Department of Neurology, School of MedicineJuntendo UniversityTokyoJapan
- Center for Genomic and Regenerative Medicine, School of MedicineJuntendo UniversityTokyoJapan
| | - Daisuke Taniguchi
- Department of Neurology, School of MedicineJuntendo UniversityTokyoJapan
| | - Hajime Tajima Sakurai
- Department of Pathological Cell Biology, Medical Research InstituteTokyo Medical and Dental University (TMDU)TokyoJapan
| | - Shinya Honda
- Department of Pathological Cell Biology, Medical Research InstituteTokyo Medical and Dental University (TMDU)TokyoJapan
| | - Yuuichi Hiraoka
- Laboratory of Molecular Neuroscience, Medical Research InstituteTokyo Medical and Dental University (TMDU)TokyoJapan
- Laboratory of Genome Editing for Biomedical Research, Medical Research InstituteTokyo Medical and Dental University (TMDU)TokyoJapan
| | - Masaya Ono
- Department of Clinical ProteomicsNational Cancer Center Research InstituteTokyoJapan
| | - Wado Akamatsu
- Center for Genomic and Regenerative Medicine, School of MedicineJuntendo UniversityTokyoJapan
| | - Nobutaka Hattori
- Department of Neurology, School of MedicineJuntendo UniversityTokyoJapan
| | - Shigeomi Shimizu
- Department of Pathological Cell Biology, Medical Research InstituteTokyo Medical and Dental University (TMDU)TokyoJapan
| |
Collapse
|
31
|
Kuyateh O, Obbard DJ. Viruses in Laboratory Drosophila and Their Impact on Host Gene Expression. Viruses 2023; 15:1849. [PMID: 37766256 PMCID: PMC10537266 DOI: 10.3390/v15091849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/18/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Drosophila melanogaster has one of the best characterized antiviral immune responses among invertebrates. However, relatively few easily transmitted natural virus isolates are available, and so many Drosophila experiments have been performed using artificial infection routes and artificial host-virus combinations. These may not reflect natural infections, especially for subtle phenotypes such as gene expression. Here, to explore the laboratory virus community and to better understand how natural virus infections induce changes in gene expression, we have analysed seven publicly available D. melanogaster transcriptomic sequencing datasets that were originally sequenced for projects unrelated to virus infection. We have found ten known viruses-including five that have not been experimentally isolated-but no previously unknown viruses. Our analysis of host gene expression revealed that numerous genes were differentially expressed in flies that were naturally infected with a virus. For example, flies infected with nora virus showed patterns of gene expression consistent with intestinal vacuolization and possible host repair via the upd3 JAK/STAT pathway. We also found marked sex differences in virus-induced differential gene expression. Our results show that natural virus infection in laboratory Drosophila does indeed induce detectable changes in gene expression, suggesting that this may form an important background condition for experimental studies in the laboratory.
Collapse
Affiliation(s)
- Oumie Kuyateh
- Institute of Ecology and Evolution, University of Edinburgh, Ashworth Laboratories, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK;
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Darren J. Obbard
- Institute of Ecology and Evolution, University of Edinburgh, Ashworth Laboratories, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK;
| |
Collapse
|
32
|
Li L, Wu Y, Dai K, Wang Q, Ye S, Shi Q, Chen Z, Huang YC, Zhao W, Li L. The CHCHD2/Sirt1 corepressors involve in G9a-mediated regulation of RNase H1 expression to control R-loop. CELL INSIGHT 2023; 2:100112. [PMID: 37388553 PMCID: PMC10300302 DOI: 10.1016/j.cellin.2023.100112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/25/2023] [Accepted: 05/28/2023] [Indexed: 07/01/2023]
Abstract
R-loops are regulators of many cellular processes and are threats to genome integrity. Therefore, understanding the mechanisms underlying the regulation of R-loops is important. Inspired by the findings on RNase H1-mediated R-loop degradation or accumulation, we focused our interest on the regulation of RNase H1 expression. In the present study, we report that G9a positively regulates RNase H1 expression to boost R-loop degradation. CHCHD2 acts as a repressive transcription factor that inhibits the expression of RNase H1 to promote R-loop accumulation. Sirt1 interacts with CHCHD2 and deacetylates it, which functions as a corepressor that suppresses the expression of downstream target gene RNase H1. We also found that G9a methylated the promoter of RNase H1, inhibiting the binding of CHCHD2 and Sirt1. In contrast, when G9a was knocked down, recruitment of CHCHD2 and Sirt1 to the RNase H1 promoter increased, which co-inhibited RNase H1 transcription. Furthermore, knockdown of Sirt1 led to binding of G9a to the RNase H1 promoter. In summary, we demonstrated that G9a regulates RNase H1 expression to maintain the steady-state balance of R-loops by suppressing the recruitment of CHCHD2/Sirt1 corepressors to the target gene promoter.
Collapse
|
33
|
Ng EL, Reed AL, O'Connell CB, Alder NN. Using Live Cell STED Imaging to Visualize Mitochondrial Inner Membrane Ultrastructure in Neuronal Cell Models. J Vis Exp 2023:10.3791/65561. [PMID: 37458423 PMCID: PMC11067429 DOI: 10.3791/65561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023] Open
Abstract
Mitochondria play many essential roles in the cell, including energy production, regulation of Ca2+ homeostasis, lipid biosynthesis, and production of reactive oxygen species (ROS). These mitochondria-mediated processes take on specialized roles in neurons, coordinating aerobic metabolism to meet the high energy demands of these cells, modulating Ca2+ signaling, providing lipids for axon growth and regeneration, and tuning ROS production for neuronal development and function. Mitochondrial dysfunction is therefore a central driver in neurodegenerative diseases. Mitochondrial structure and function are inextricably linked. The morphologically complex inner membrane with structural infolds called cristae harbors many molecular systems that perform the signature processes of the mitochondrion. The architectural features of the inner membrane are ultrastructural and therefore, too small to be visualized by traditional diffraction-limited resolved microscopy. Thus, most insights on mitochondrial ultrastructure have come from electron microscopy on fixed samples. However, emerging technologies in super-resolution fluorescence microscopy now provide resolution down to tens of nanometers, allowing visualization of ultrastructural features in live cells. Super-resolution imaging therefore offers an unprecedented ability to directly image fine details of mitochondrial structure, nanoscale protein distributions, and cristae dynamics, providing fundamental new insights that link mitochondria to human health and disease. This protocol presents the use of stimulated emission depletion (STED) super-resolution microscopy to visualize the mitochondrial ultrastructure of live human neuroblastoma cells and primary rat neurons. This procedure is organized into five sections: (1) growth and differentiation of the SH-SY5Y cell line, (2) isolation, plating, and growth of primary rat hippocampal neurons, (3) procedures for staining cells for live STED imaging, (4) procedures for live cell STED experiments using a STED microscope for reference, and (5) guidance for segmentation and image processing using examples to measure and quantify morphological features of the inner membrane.
Collapse
Affiliation(s)
- Emery L Ng
- Center for Open Research Resources and Equipment, University of Connecticut
| | - Ashley L Reed
- Department of Molecular and Cell Biology, University of Connecticut
| | | | - Nathan N Alder
- Department of Molecular and Cell Biology, University of Connecticut;
| |
Collapse
|
34
|
Fan L, Zhang S, Li X, Hu Z, Yang J, Zhang S, Zheng H, Su Y, Luo H, Liu X, Fan Y, Sun H, Zhang Z, Miao J, Song B, Xia Z, Shi C, Mao C, Xu Y. CHCHD2 p.Thr61Ile knock-in mice exhibit motor defects and neuropathological features of Parkinson's disease. Brain Pathol 2023; 33:e13124. [PMID: 36322611 PMCID: PMC10154378 DOI: 10.1111/bpa.13124] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/07/2022] [Indexed: 05/04/2023] Open
Abstract
The p.Thr61Ile (p.T61I) mutation in coiled-coil-helix-coiled-coil-helix domain containing 2 (CHCHD2) was deemed a causative factor in Parkinson's disease (PD). However, the pathomechanism of the CHCHD2 p.T61I mutation in PD remains unclear. Few existing mouse models of CHCHD2-related PD completely reproduce the features of PD, and no transgenic or knock-in (KI) mouse models of CHCHD2 mutations have been reported. In the present study, we generated a novel CHCHD2 p.T61I KI mouse model, which exhibited accelerated mortality, progressive motor deficits, and dopaminergic (DA) neurons loss with age, accompanied by the accumulation and aggregation of α-synuclein and p-α-synuclein in the brains of the mutant mice. The mitochondria of mouse brains and induced pluripotent stem cells (iPSCs)-derived DA neurons carrying the CHCHD2 p.T61I mutation exhibited aberrant morphology and impaired function. Mechanistically, proteomic and RNA sequencing analysis revealed that p.T61I mutation induced mitochondrial dysfunction in aged mice likely through repressed insulin-degrading enzyme (IDE) expression, resulting in the degeneration of the nervous system. Overall, this CHCHD2 p.T61I KI mouse model recapitulated the crucial clinical and neuropathological aspects of patients with PD and provided a novel tool for understanding the pathogenic mechanism and therapeutic interventions of CHCHD2-related PD.
Collapse
Affiliation(s)
- Liyuan Fan
- Department of NeurologyThe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
- Academy of Medical Sciences of Zhengzhou UniversityZhengzhouChina
- Henan Key Laboratory of Cerebrovascular DiseasesThe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| | - Shuo Zhang
- Department of NeurologyThe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
- Academy of Medical Sciences of Zhengzhou UniversityZhengzhouChina
- Henan Key Laboratory of Cerebrovascular DiseasesThe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| | - Xinwei Li
- Department of NeurologyThe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
- Academy of Medical Sciences of Zhengzhou UniversityZhengzhouChina
- Henan Key Laboratory of Cerebrovascular DiseasesThe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| | - Zhengwei Hu
- Department of NeurologyThe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
- Academy of Medical Sciences of Zhengzhou UniversityZhengzhouChina
- Henan Key Laboratory of Cerebrovascular DiseasesThe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| | - Jing Yang
- Department of NeurologyThe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
- Henan Key Laboratory of Cerebrovascular DiseasesThe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| | - Shuyu Zhang
- Neuro‐Intensive Care UnitThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Huimin Zheng
- Department of NeurologyThe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
- Henan Key Laboratory of Cerebrovascular DiseasesThe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| | - Yun Su
- Department of NeurologyThe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
- Henan Key Laboratory of Cerebrovascular DiseasesThe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| | - Haiyang Luo
- Department of NeurologyThe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
- Henan Key Laboratory of Cerebrovascular DiseasesThe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| | - Xinjing Liu
- Department of NeurologyThe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
- Henan Key Laboratory of Cerebrovascular DiseasesThe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| | - Yu Fan
- Department of NeurologyThe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
- Academy of Medical Sciences of Zhengzhou UniversityZhengzhouChina
- Henan Key Laboratory of Cerebrovascular DiseasesThe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| | - Huifang Sun
- Department of NeurologyThe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
- Academy of Medical Sciences of Zhengzhou UniversityZhengzhouChina
- Henan Key Laboratory of Cerebrovascular DiseasesThe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| | - Zhongxian Zhang
- Sino‐British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Jinxin Miao
- Sino‐British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical SciencesZhengzhou UniversityZhengzhouChina
- Academy of Chinese Medicine ScienceHenan University of Chinese MedicineZhengzhouChina
| | - Bo Song
- Department of NeurologyThe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
- Henan Key Laboratory of Cerebrovascular DiseasesThe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| | - Zongping Xia
- Department of NeurologyThe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
- Henan Key Laboratory of Cerebrovascular DiseasesThe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
- Clinical Systems Biology LaboratoriesZhengzhou UniversityZhengzhouChina
| | - Changhe Shi
- Department of NeurologyThe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
- Henan Key Laboratory of Cerebrovascular DiseasesThe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
- Institute of NeuroscienceZhengzhou UniversityZhengzhouChina
| | - Chengyuan Mao
- Department of NeurologyThe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
- Henan Key Laboratory of Cerebrovascular DiseasesThe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
- Sino‐British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Yuming Xu
- Department of NeurologyThe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
- Henan Key Laboratory of Cerebrovascular DiseasesThe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
- Institute of NeuroscienceZhengzhou UniversityZhengzhouChina
| |
Collapse
|
35
|
Abrishamdar M, Jalali MS, Farbood Y. Targeting Mitochondria as a Therapeutic Approach for Parkinson's Disease. Cell Mol Neurobiol 2023; 43:1499-1518. [PMID: 35951210 PMCID: PMC11412433 DOI: 10.1007/s10571-022-01265-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/21/2022] [Indexed: 11/03/2022]
Abstract
Neurodegeneration is among the most critical challenges that involve modern societies and annually influences millions of patients worldwide. While the pathophysiology of Parkinson's disease (PD) is complicated, the role of mitochondrial is demonstrated. The in vitro and in vivo models and genome-wide association studies in human cases proved that specific genes, including PINK1, Parkin, DJ-1, SNCA, and LRRK2, linked mitochondrial dysfunction with PD. Also, mitochondrial DNA (mtDNA) plays an essential role in the pathophysiology of PD. Targeting mitochondria as a therapeutic approach to inhibit or slow down PD formation and progression seems to be an exciting issue. The current review summarized known mutations associated with both mitochondrial dysfunction and PD. The significance of mtDNA in Parkinson's disease pathogenesis and potential PD therapeutic approaches targeting mitochondrial dysfunction was then discussed.
Collapse
Affiliation(s)
- Maryam Abrishamdar
- Department of Physiology, Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Sadat Jalali
- Department of Physiology, Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Yaghoob Farbood
- Department of Physiology, Medicine Faculty, Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
36
|
Eade KT, Ansell BRE, Giles S, Fallon R, Harkins-Perry S, Nagasaki T, Tzaridis S, Wallace M, Mills EA, Farashi S, Johnson A, Sauer L, Hart B, Diaz-Rubio ME, Bahlo M, Metallo C, Allikmets R, Gantner ML, Bernstein PS, Friedlander M. iPSC-derived retinal pigmented epithelial cells from patients with macular telangiectasia show decreased mitochondrial function. J Clin Invest 2023; 133:e163771. [PMID: 37115691 PMCID: PMC10145939 DOI: 10.1172/jci163771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 03/14/2023] [Indexed: 04/29/2023] Open
Abstract
Patient-derived induced pluripotent stem cells (iPSCs) provide a powerful tool for identifying cellular and molecular mechanisms of disease. Macular telangiectasia type 2 (MacTel) is a rare, late-onset degenerative retinal disease with an extremely heterogeneous genetic architecture, lending itself to the use of iPSCs. Whole-exome sequencing screens and pedigree analyses have identified rare causative mutations that account for less than 5% of cases. Metabolomic surveys of patient populations and GWAS have linked MacTel to decreased circulating levels of serine and elevated levels of neurotoxic 1-deoxysphingolipids (1-dSLs). However, retina-specific, disease-contributing factors have yet to be identified. Here, we used iPSC-differentiated retinal pigmented epithelial (iRPE) cells derived from donors with or without MacTel to screen for novel cell-intrinsic pathological mechanisms. We show that MacTel iRPE cells mimicked the low serine levels observed in serum from patients with MacTel. Through RNA-Seq and gene set enrichment pathway analysis, we determined that MacTel iRPE cells are enriched in cellular stress pathways and dysregulation of central carbon metabolism. Using respirometry and mitochondrial stress testing, we functionally validated that MacTel iRPE cells had a reduction in mitochondrial function that was independent of defects in serine biosynthesis and 1-dSL accumulation. Thus, we identified phenotypes that may constitute alternative disease mechanisms beyond the known serine/sphingolipid pathway.
Collapse
Affiliation(s)
- Kevin T. Eade
- The Lowy Medical Research Institute, La Jolla, California, USA
- Department of Molecular Medicine, The Scripps Research Institute (TSRI), La Jolla, California, USA
| | - Brendan Robert E. Ansell
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Sarah Giles
- The Lowy Medical Research Institute, La Jolla, California, USA
- Department of Molecular Medicine, The Scripps Research Institute (TSRI), La Jolla, California, USA
| | - Regis Fallon
- The Lowy Medical Research Institute, La Jolla, California, USA
- Department of Molecular Medicine, The Scripps Research Institute (TSRI), La Jolla, California, USA
| | - Sarah Harkins-Perry
- The Lowy Medical Research Institute, La Jolla, California, USA
- Department of Molecular Medicine, The Scripps Research Institute (TSRI), La Jolla, California, USA
| | - Takayuki Nagasaki
- Department of Ophthalmology and
- Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
| | - Simone Tzaridis
- The Lowy Medical Research Institute, La Jolla, California, USA
- Department of Molecular Medicine, The Scripps Research Institute (TSRI), La Jolla, California, USA
| | - Martina Wallace
- Institute of Food and Health, School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Elizabeth A. Mills
- The Lowy Medical Research Institute, La Jolla, California, USA
- Department of Molecular Medicine, The Scripps Research Institute (TSRI), La Jolla, California, USA
| | - Samaneh Farashi
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Alec Johnson
- The Lowy Medical Research Institute, La Jolla, California, USA
| | - Lydia Sauer
- Moran Eye Center, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Barbara Hart
- Moran Eye Center, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - M. Elena Diaz-Rubio
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Melanie Bahlo
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Christian Metallo
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Rando Allikmets
- Department of Ophthalmology and
- Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
| | - Marin L. Gantner
- The Lowy Medical Research Institute, La Jolla, California, USA
- Department of Molecular Medicine, The Scripps Research Institute (TSRI), La Jolla, California, USA
| | - Paul S. Bernstein
- Moran Eye Center, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Martin Friedlander
- The Lowy Medical Research Institute, La Jolla, California, USA
- Department of Molecular Medicine, The Scripps Research Institute (TSRI), La Jolla, California, USA
| |
Collapse
|
37
|
Tomar D, Thomas M, Garbincius JF, Kolmetzky DW, Salik O, Jadiya P, Joseph SK, Carpenter AC, Hajnóczky G, Elrod JW. MICU1 regulates mitochondrial cristae structure and function independently of the mitochondrial Ca 2+ uniporter channel. Sci Signal 2023; 16:eabi8948. [PMID: 37098122 PMCID: PMC10388395 DOI: 10.1126/scisignal.abi8948] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 03/30/2023] [Indexed: 04/27/2023]
Abstract
MICU1 is a calcium (Ca2+)-binding protein that regulates the mitochondrial Ca2+ uniporter channel complex (mtCU) and mitochondrial Ca2+ uptake. MICU1 knockout mice display disorganized mitochondrial architecture, a phenotype that is distinct from that of mice with deficiencies in other mtCU subunits and, thus, is likely not explained by changes in mitochondrial matrix Ca2+ content. Using proteomic and cellular imaging techniques, we found that MICU1 localized to the mitochondrial contact site and cristae organizing system (MICOS) and directly interacted with the MICOS components MIC60 and CHCHD2 independently of the mtCU. We demonstrated that MICU1 was essential for MICOS complex formation and that MICU1 ablation resulted in altered cristae organization, mitochondrial ultrastructure, mitochondrial membrane dynamics, and cell death signaling. Together, our results suggest that MICU1 is an intermembrane space Ca2+ sensor that modulates mitochondrial membrane dynamics independently of matrix Ca2+ uptake. This system enables distinct Ca2+ signaling in the mitochondrial matrix and at the intermembrane space to modulate cellular energetics and cell death in a concerted manner.
Collapse
Affiliation(s)
- Dhanendra Tomar
- Cardiovascular Research Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140
| | - Manfred Thomas
- Cardiovascular Research Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140
| | - Joanne F. Garbincius
- Cardiovascular Research Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140
| | - Devin W. Kolmetzky
- Cardiovascular Research Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140
| | - Oniel Salik
- Cardiovascular Research Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140
- Health and Exercise Physiology, Ursinus College, Collegeville, PA 19426, USA
| | - Pooja Jadiya
- Cardiovascular Research Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140
| | - Suresh K. Joseph
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - April C. Carpenter
- Health and Exercise Physiology, Ursinus College, Collegeville, PA 19426, USA
| | - György Hajnóczky
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - John W. Elrod
- Cardiovascular Research Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140
| |
Collapse
|
38
|
Tan C, Ai J, Zhu Y. mTORC1-Dependent Protein and Parkinson's Disease: A Mendelian Randomization Study. Brain Sci 2023; 13:brainsci13040536. [PMID: 37190500 DOI: 10.3390/brainsci13040536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/07/2023] [Accepted: 03/18/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND The mTOR pathway is crucial in controlling the growth, differentiation, and survival of neurons, and its pharmacological targeting has promising potential as a treatment for Parkinson's disease. However, the function of mTORC1 downstream proteins, such as RPS6K, EIF4EBP, EIF-4E, EIF-4G, and EIF4A, in PD development remains unclear. METHODS We performed a Mendelian randomization study to evaluate the causal relationship between mTORC1 downstream proteins and Parkinson's disease. We utilized various MR methods, including inverse-variance-weighted, weighted median, MR-Egger, MR-PRESSO, and MR-RAPS, and conducted sensitivity analyses to identify potential pleiotropy and heterogeneity. RESULTS The genetic proxy EIF4EBP was found to be inversely related to PD risk (OR = 0.79, 95% CI = 0.67-0.92, p = 0.003), with the results from WM, MR-PRESSO, and MR-RAPS being consistent. The plasma protein levels of EIF4G were also observed to show a suggestive protective effect on PD (OR = 0.85, 95% CI = 0.75-0.97, p = 0.014). No clear causal effect was found for the genetically predicted RP-S6K, EIF-4E, and EIF-4A on PD risk. Sensitivity analyses showed no significant imbalanced pleiotropy or heterogeneity, indicating that the MR estimates were robust and independent. CONCLUSION Our unbiased MR study highlights the protective role of serum EIF4EBP levels in PD, suggesting that the pharmacological activation of EIF4EBP activity could be a promising treatment option for PD.
Collapse
Affiliation(s)
- Cheng Tan
- West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jianzhong Ai
- West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ye Zhu
- West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
39
|
Abstract
Parkinson's disease (PD) is clinically, pathologically, and genetically heterogeneous, resisting distillation to a single, cohesive disorder. Instead, each affected individual develops a virtually unique form of Parkinson's syndrome. Clinical manifestations consist of variable motor and nonmotor features, and myriad overlaps are recognized with other neurodegenerative conditions. Although most commonly characterized by alpha-synuclein protein pathology throughout the central and peripheral nervous systems, the distribution varies and other pathologies commonly modify PD or trigger similar manifestations. Nearly all PD is genetically influenced. More than 100 genes or genetic loci have been identified, and most cases likely arise from interactions among many common and rare genetic variants. Despite its complex architecture, insights from experimental genetic dissection coalesce to reveal unifying biological themes, including synaptic, lysosomal, mitochondrial, andimmune-mediated mechanisms of pathogenesis. This emerging understanding of Parkinson's syndrome, coupled with advances in biomarkers and targeted therapies, presages successful precision medicine strategies.
Collapse
Affiliation(s)
- Hui Ye
- Department of Neurology, Baylor College of Medicine, Houston, Texas, USA; ,
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, USA
| | - Laurie A Robak
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA;
| | - Meigen Yu
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA;
| | - Matthew Cykowski
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA;
- Department of Neurology, Houston Methodist Hospital, Houston, Texas, USA
| | - Joshua M Shulman
- Department of Neurology, Baylor College of Medicine, Houston, Texas, USA; ,
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA;
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA;
- Center for Alzheimer's and Neurodegenerative Diseases, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
40
|
Videlock EJ, Hatami A, Zhu C, Kawaguchi R, Chen H, Khan T, Yehya AHS, Stiles L, Joshi S, Hoffman JM, Law KM, Rankin CR, Chang L, Maidment NT, John V, Geschwind DH, Pothoulakis C. Distinct Patterns of Gene Expression Changes in the Colon and Striatum of Young Mice Overexpressing Alpha-Synuclein Support Parkinson's Disease as a Multi-System Process. JOURNAL OF PARKINSON'S DISEASE 2023; 13:1127-1147. [PMID: 37638450 PMCID: PMC10657720 DOI: 10.3233/jpd-223568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/04/2023] [Indexed: 08/29/2023]
Abstract
BACKGROUND Evidence supports a role for the gut-brain axis in Parkinson's disease (PD). Mice overexpressing human wild type α- synuclein (Thy1-haSyn) exhibit slow colonic transit prior to motor deficits, mirroring prodromal constipation in PD. Identifying molecular changes in the gut could provide both biomarkers for early diagnosis and gut-targeted therapies to prevent progression. OBJECTIVE To identify early molecular changes in the gut-brain axis in Thy1-haSyn mice through gene expression profiling. METHODS Gene expression profiling was performed on gut (colon) and brain (striatal) tissue from Thy1-haSyn and wild-type (WT) mice aged 1 and 3 months using 3' RNA sequencing. Analysis included differential expression, gene set enrichment and weighted gene co-expression network analysis (WGCNA). RESULTS At one month, differential expression (Thy1-haSyn vs. WT) of mitochondrial genes and pathways related to PD was discordant between gut and brain, with negative enrichment in brain (enriched in WT) but positive enrichment in gut. Linear regression of WGCNA modules showed partial independence of gut and brain gene expression changes. Thy1-haSyn-associated WGCNA modules in the gut were enriched for PD risk genes and PD-relevant pathways including inflammation, autophagy, and oxidative stress. Changes in gene expression were modest at 3 months. CONCLUSIONS Overexpression of haSyn acutely disrupts gene expression in the colon. While changes in colon gene expression are highly related to known PD-relevant mechanisms, they are distinct from brain changes, and in some cases, opposite in direction. These findings are in line with the emerging view of PD as a multi-system disease.
Collapse
Affiliation(s)
- Elizabeth J. Videlock
- Center for Inflammatory Bowel Diseases, Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Asa Hatami
- The Drug Discovery Lab, Mary S. Easton Center for Alzheimer’s Disease Research, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Chunni Zhu
- The Drug Discovery Lab, Mary S. Easton Center for Alzheimer’s Disease Research, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Riki Kawaguchi
- The Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Han Chen
- Center for Inflammatory Bowel Diseases, Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Tasnin Khan
- Center for Inflammatory Bowel Diseases, Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Ashwaq Hamid Salem Yehya
- Center for Inflammatory Bowel Diseases, Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Linsey Stiles
- Department of Medicine, Division of Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Swapna Joshi
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Jill M. Hoffman
- Center for Inflammatory Bowel Diseases, Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Ka Man Law
- Center for Inflammatory Bowel Diseases, Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Carl Robert Rankin
- Center for Inflammatory Bowel Diseases, Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Lin Chang
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Nigel T. Maidment
- Hatos Center for Neuropharmacology, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Varghese John
- The Drug Discovery Lab, Mary S. Easton Center for Alzheimer’s Disease Research, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Daniel H. Geschwind
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Center for Autism Research and Treatment, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
- Institute for Precision Health, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Charalabos Pothoulakis
- Center for Inflammatory Bowel Diseases, Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| |
Collapse
|
41
|
Petel Légaré V, Rampal CJ, Gurberg TJN, Aaltonen MJ, Janer A, Zinman L, Shoubridge EA, Armstrong GAB. Loss of mitochondrial Chchd10 or Chchd2 in zebrafish leads to an ALS-like phenotype and Complex I deficiency independent of the mitochondrial integrated stress response. Dev Neurobiol 2023; 83:54-69. [PMID: 36799027 DOI: 10.1002/dneu.22909] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 01/29/2023] [Accepted: 02/05/2023] [Indexed: 02/18/2023]
Abstract
Mutations in CHCHD10 and CHCHD2, encoding two paralogous mitochondrial proteins, have been identified in cases of amyotrophic lateral sclerosis, frontotemporal lobar degeneration, and Parkinson's disease. Their role in disease is unclear, though both have been linked to mitochondrial respiration and mitochondrial stress responses. Here, we investigated the biological roles of these proteins during vertebrate development using knockout (KO) models in zebrafish. We demonstrate that loss of either or both proteins leads to motor impairment, reduced survival and compromised neuromuscular junction integrity in larval zebrafish. Compensation by Chchd10 was observed in the chchd2-/- model, but not by Chchd2 in the chchd10-/- model. The assembly of mitochondrial respiratory chain Complex I was impaired in chchd10-/- and chchd2-/- zebrafish larvae, but unexpectedly not in a double chchd10-/- and chchd2-/- model, suggesting that reduced mitochondrial Complex I cannot be solely responsible for the observed phenotypes, which are generally more severe in the double KO. We observed transcriptional activation markers of the mitochondrial integrated stress response (mt-ISR) in the double chchd10-/- and chchd2-/- KO model, suggesting that this pathway is involved in the restoration of Complex I assembly in our double KO model. The data presented here demonstrates that the Complex I assembly defect in our single KO models arises independently of the mt-ISR. Furthermore, this study provides evidence that both proteins are required for normal vertebrate development.
Collapse
Affiliation(s)
- Virginie Petel Légaré
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Christian J Rampal
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Tyler J N Gurberg
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Mari J Aaltonen
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Alexandre Janer
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Lorne Zinman
- Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Eric A Shoubridge
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Gary A B Armstrong
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
42
|
He B, Yu H, Liu S, Wan H, Fu S, Liu S, Yang J, Zhang Z, Huang H, Li Q, Wang F, Jiang Z, Liu Q, Jiang H. Mitochondrial cristae architecture protects against mtDNA release and inflammation. Cell Rep 2022; 41:111774. [PMID: 36476853 DOI: 10.1016/j.celrep.2022.111774] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/20/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial damage causes mitochondrial DNA (mtDNA) release to activate the type I interferon (IFN-I) response via the cGAS-STING pathway. mtDNA-induced inflammation promotes autoimmune- and aging-related degenerative disorders. However, the global picture of inflammation-inducing mitochondrial damages remains obscure. Here, we have performed a mitochondria-targeted CRISPR knockout screen for regulators of the IFN-I response. Strikingly, our screen reveals dozens of hits enriched with key regulators of cristae architecture, including phospholipid cardiolipin and protein complexes such as OPA1, mitochondrial contact site and cristae organization (MICOS), sorting and assembly machinery (SAM), mitochondrial intermembrane space bridging (MIB), prohibitin (PHB), and the F1Fo-ATP synthase. Disrupting these cristae organizers consistently induces mtDNA release and the STING-dependent IFN-I response. Furthermore, knocking out MTX2, a subunit of the SAM complex whose null mutations cause progeria in humans, induces a robust STING-dependent IFN-I response in mouse liver. Taken together, beyond revealing the central role of cristae architecture to prevent mtDNA release and inflammation, our results mechanistically link mitochondrial cristae disorganization and inflammation, two emerging hallmarks of aging and aging-related degenerative diseases.
Collapse
Affiliation(s)
- Baiyu He
- College of Biological Sciences, China Agriculture University, Beijing 100094, China; National Institute of Biological Sciences, Beijing 102206, China; Beijing Key Laboratory of Cell Biology for Animal Aging, Beijing 102206, China
| | - Huatong Yu
- National Institute of Biological Sciences, Beijing 102206, China; Beijing Key Laboratory of Cell Biology for Animal Aging, Beijing 102206, China; Graduate School of Peking Union Medical College, Beijing 100730, China
| | - Shanshan Liu
- National Institute of Biological Sciences, Beijing 102206, China; Beijing Key Laboratory of Cell Biology for Animal Aging, Beijing 102206, China
| | - Huayun Wan
- National Institute of Biological Sciences, Beijing 102206, China; Beijing Key Laboratory of Cell Biology for Animal Aging, Beijing 102206, China
| | - Song Fu
- National Institute of Biological Sciences, Beijing 102206, China; Beijing Key Laboratory of Cell Biology for Animal Aging, Beijing 102206, China; Graduate School of Peking Union Medical College, Beijing 100730, China
| | - Siqi Liu
- National Institute of Biological Sciences, Beijing 102206, China; Beijing Key Laboratory of Cell Biology for Animal Aging, Beijing 102206, China
| | - Jun Yang
- National Institute of Biological Sciences, Beijing 102206, China; Beijing Key Laboratory of Cell Biology for Animal Aging, Beijing 102206, China; School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zihan Zhang
- National Institute of Biological Sciences, Beijing 102206, China; Graduate School of Peking Union Medical College, Beijing 100730, China
| | - Huanwei Huang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Qi Li
- National Institute of Biological Sciences, Beijing 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China
| | - Fengchao Wang
- National Institute of Biological Sciences, Beijing 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China
| | - Zhaodi Jiang
- National Institute of Biological Sciences, Beijing 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China
| | - Qinghua Liu
- National Institute of Biological Sciences, Beijing 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China
| | - Hui Jiang
- College of Biological Sciences, China Agriculture University, Beijing 100094, China; National Institute of Biological Sciences, Beijing 102206, China; Beijing Key Laboratory of Cell Biology for Animal Aging, Beijing 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China.
| |
Collapse
|
43
|
Zhang C, Chen S, Li X, Xu Q, Lin Y, Lin F, Yuan M, Zi Y, Cai J. Progress in Parkinson's disease animal models of genetic defects: Characteristics and application. Biomed Pharmacother 2022; 155:113768. [DOI: 10.1016/j.biopha.2022.113768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/15/2022] [Accepted: 09/26/2022] [Indexed: 11/25/2022] Open
|
44
|
van den Hurk M, Lau S, Marchetto MC, Mertens J, Stern S, Corti O, Brice A, Winner B, Winkler J, Gage FH, Bardy C. Druggable transcriptomic pathways revealed in Parkinson's patient-derived midbrain neurons. NPJ Parkinsons Dis 2022; 8:134. [PMID: 36258029 PMCID: PMC9579158 DOI: 10.1038/s41531-022-00400-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022] Open
Abstract
Complex genetic predispositions accelerate the chronic degeneration of midbrain substantia nigra neurons in Parkinson’s disease (PD). Deciphering the human molecular makeup of PD pathophysiology can guide the discovery of therapeutics to slow the disease progression. However, insights from human postmortem brain studies only portray the latter stages of PD, and there is a lack of data surrounding molecular events preceding the neuronal loss in patients. We address this gap by identifying the gene dysregulation of live midbrain neurons reprogrammed in vitro from the skin cells of 42 individuals, including sporadic and familial PD patients and matched healthy controls. To minimize bias resulting from neuronal reprogramming and RNA-seq methods, we developed an analysis pipeline integrating PD transcriptomes from different RNA-seq datasets (unsorted and sorted bulk vs. single-cell and Patch-seq) and reprogramming strategies (induced pluripotency vs. direct conversion). This PD cohort’s transcriptome is enriched for human genes associated with known clinical phenotypes of PD, regulation of locomotion, bradykinesia and rigidity. Dysregulated gene expression emerges strongest in pathways underlying synaptic transmission, metabolism, intracellular trafficking, neural morphogenesis and cellular stress/immune responses. We confirmed a synaptic impairment with patch-clamping and identified pesticides and endoplasmic reticulum stressors as the most significant gene-chemical interactions in PD. Subsequently, we associated the PD transcriptomic profile with candidate pharmaceuticals in a large database and a registry of current clinical trials. This study highlights human transcriptomic pathways that can be targeted therapeutically before the irreversible neuronal loss. Furthermore, it demonstrates the preclinical relevance of unbiased large transcriptomic assays of reprogrammed patient neurons.
Collapse
Affiliation(s)
- Mark van den Hurk
- grid.430453.50000 0004 0565 2606South Australian Health and Medical Research Institute (SAHMRI), Laboratory for Human Neurophysiology and Genetics, Adelaide, SA Australia
| | - Shong Lau
- grid.250671.70000 0001 0662 7144Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA USA
| | - Maria C. Marchetto
- grid.266100.30000 0001 2107 4242Department of Anthropology, University of California San Diego, La Jolla, CA USA
| | - Jerome Mertens
- grid.250671.70000 0001 0662 7144Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA USA ,grid.5771.40000 0001 2151 8122Neural Aging Laboratory, Institute of Molecular Biology, CMBI, Leopold-Franzens-University Innsbruck, Innsbruck, Tyrol Austria
| | - Shani Stern
- grid.250671.70000 0001 0662 7144Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA USA ,grid.18098.380000 0004 1937 0562Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Olga Corti
- grid.425274.20000 0004 0620 5939Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, DMU BioGeM, Paris, France
| | - Alexis Brice
- grid.425274.20000 0004 0620 5939Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, DMU BioGeM, Paris, France
| | - Beate Winner
- grid.411668.c0000 0000 9935 6525Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany ,grid.411668.c0000 0000 9935 6525Center of Rare Diseases Erlangen (ZSEER), University Hospital Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany ,grid.411668.c0000 0000 9935 6525Department of Molecular Neurology, University Hospital Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Jürgen Winkler
- grid.411668.c0000 0000 9935 6525Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany ,grid.411668.c0000 0000 9935 6525Center of Rare Diseases Erlangen (ZSEER), University Hospital Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany ,grid.411668.c0000 0000 9935 6525Department of Molecular Neurology, University Hospital Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Fred H. Gage
- grid.250671.70000 0001 0662 7144Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA USA
| | - Cedric Bardy
- grid.430453.50000 0004 0565 2606South Australian Health and Medical Research Institute (SAHMRI), Laboratory for Human Neurophysiology and Genetics, Adelaide, SA Australia ,grid.1014.40000 0004 0367 2697Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA Australia
| |
Collapse
|
45
|
Rai P, Kumar Roy J. Endosomal recycling protein Rab11 in Parkin and Pink1 signaling in Drosophila model of Parkinson's disease. Exp Cell Res 2022; 420:113357. [PMID: 36116557 DOI: 10.1016/j.yexcr.2022.113357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/23/2022] [Accepted: 09/11/2022] [Indexed: 11/16/2022]
Abstract
Neurodegenerative diseases are progressive disorders of the nervous system primarily affecting the loss of neuronal cells present in the brain. Although most neurodegenerative cases are sporadic, some familial genes are found to be involved in the neurodegenerative diseases. The extensively studied parkin and pink1 gene products are known to be involved in the removal of damaged mitochondria via autophagy (mitophagy), a quality control process. If the function of any of these genes is somehow disrupted, accumulation of damaged mitochondria occurs in the forms of protein aggregates in the cytoplasm, leading to formation of the Lewy-bodies. Autophagy is an important catabolic process where the endosomal Rab proteins are seen to be involved. Rab11, an endosomal recycling protein, serves as an ATG9A carrier that helps in autophagosome formation and maturation. Earlier studies have reported that loss of Rab11 prevents the fusion of autophagosomes with the late endosomes hampering the autophagy pathway resulting in apoptosis of cells. In this study, we have emphasized on the importance and functional role of Rab11 in the molecular pathway of Parkin/Pink1 in Parkinson's disease.
Collapse
Affiliation(s)
- Pooja Rai
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| | - Jagat Kumar Roy
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
46
|
Ikeda A, Imai Y, Hattori N. Neurodegeneration-associated mitochondrial proteins, CHCHD2 and CHCHD10–what distinguishes the two? Front Cell Dev Biol 2022; 10:996061. [PMID: 36158221 PMCID: PMC9500460 DOI: 10.3389/fcell.2022.996061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Coiled-coil-helix-coiled-coil-helix domain containing 2 (CHCHD2) and Coiled-coil-helix-coiled-coil-helix domain containing 10 (CHCHD10) are mitochondrial proteins that are thought to be genes which duplicated during evolution and are the causative genes for Parkinson’s disease and amyotrophic lateral sclerosis/frontotemporal lobe dementia, respectively. CHCHD2 forms a heterodimer with CHCHD10 and a homodimer with itself, both of which work together within the mitochondria. Various pathogenic and disease-risk variants have been identified; however, how these mutations cause neurodegeneration in specific diseases remains a mystery. This review focuses on important new findings published since 2019 and discusses avenues to solve this mystery.
Collapse
Affiliation(s)
- Aya Ikeda
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Yuzuru Imai
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
- Department of Research for Parkinson’s Disease, Juntendo University Graduate School of Medicine, Tokyo, Japan
- *Correspondence: Yuzuru Imai, ; Nobutaka Hattori,
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
- Department of Research for Parkinson’s Disease, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Research Institute for Diseases of Old Age, Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Center for Genomic and Regenerative Medicine, Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Neurodegenerative Disorders Collaborative Laboratory, RIKEN Center for Brain Science, Saitama, Japan
- *Correspondence: Yuzuru Imai, ; Nobutaka Hattori,
| |
Collapse
|
47
|
Jiang T, Wang Y, Wang X, Xu J. CHCHD2 and CHCHD10: Future therapeutic targets in cognitive disorder and motor neuron disorder. Front Neurosci 2022; 16:988265. [PMID: 36061599 PMCID: PMC9434015 DOI: 10.3389/fnins.2022.988265] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/02/2022] [Indexed: 11/27/2022] Open
Abstract
CHCHD2 and CHCHD10 are homolog mitochondrial proteins that play key roles in the neurological, cardiovascular, and reproductive systems. They are also involved in the mitochondrial metabolic process. Although previous research has concentrated on their functions within mitochondria, their functions within apoptosis, synaptic plasticity, cell migration as well as lipid metabolism remain to be concluded. The review highlights the different roles played by CHCHD2 and/or CHCHD10 binding to various target proteins (such as OPA-1, OMA-1, PINK, and TDP43) and reveals their non-negligible effects in cognitive impairments and motor neuron diseases. This review focuses on the functions of CHCHD2 and/or CHCHD10. This review reveals protective effects and mechanisms of CHCHD2 and CHCHD10 in neurodegenerative diseases characterized by cognitive and motor deficits, such as frontotemporal dementia (FTD), Lewy body dementia (LBD), Parkinson's disease (PD) and amyotrophic lateral sclerosis (ALS). However, there are numerous specific mechanisms that have yet to be elucidated, and additional research into these mechanisms is required.
Collapse
Affiliation(s)
- Tianlin Jiang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Yanli Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiaohong Wang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Experimental and Translational Non-coding RNA Research, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Jun Xu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
48
|
Lu L, Mao H, Zhou M, Lin Y, Dai W, Qiu J, Xiao Y, Mo M, Zhu X, Wu Z, Pei Z, Guo W, Xu P, Chen X. CHCHD2 maintains mitochondrial contact site and cristae organizing system stability and protects against mitochondrial dysfunction in an experimental model of Parkinson's disease. Chin Med J (Engl) 2022; 135:00029330-990000000-00025. [PMID: 35830185 PMCID: PMC9532036 DOI: 10.1097/cm9.0000000000002053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Parkinson's disease (PD) is the second most common neurodegenerative disease after Alzheimer's dementia. Mitochondrial dysfunction is involved in the pathology of PD. Coiled-coil-helix-coiled-coil-helix domain-containing 2 (CHCHD2) was identified as associated with autosomal dominant PD. However, the mechanism of CHCHD2 in PD remains unclear. METHODS Short hairpin RNA (ShRNA)-mediated CHCHD2 knockdown or lentivirus-mediated CHCHD2 overexpression was performed to investigate the impact of CHCHD2 on mitochondrial morphology and function in neuronal tumor cell lines represented with human neuroblastoma (SHSY5Y) and HeLa cells. Blue-native polyacrylamide gel electrophoresis (PAGE) and two-dimensional sodium dodecyl sulfate-PAGE analysis were used to illustrate the role of CHCHD2 in mitochondrial contact site and cristae organizing system (MICOS). Co-immunoprecipitation and immunoblotting were used to address the interaction between CHCHD2 and Mic10. Serotype injection of adeno-associated vector-mediated CHCHD2 and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration were used to examine the influence of CHCHD2 in vivo. RESULTS We found that the overexpression of CHCHD2 can protect against methyl-4-phenylpyridinium (MPP+)-induced mitochondrial dysfunction and inhibit the loss of dopaminergic neurons in the MPTP-induced mouse model. Furthermore, we identified that CHCHD2 interacted with Mic10, and overexpression of CHCHD2 can protect against MPP+-induced MICOS impairment, while knockdown of CHCHD2 impaired the stability of MICOS. CONCLUSION This study indicated that CHCHD2 could interact with Mic10 and maintain the stability of the MICOS complex, which contributes to protecting mitochondrial function in PD.
Collapse
Affiliation(s)
- Lin Lu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Hengxu Mao
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Miaomiao Zhou
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Yuwan Lin
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Wei Dai
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Jiewen Qiu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Yousheng Xiao
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Mingshu Mo
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Xiaoqin Zhu
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Zhuohua Wu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Zhong Pei
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Wenyuan Guo
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Pingyi Xu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Xiang Chen
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| |
Collapse
|
49
|
Kee TR, Wehinger JL, Gonzalez PE, Nguyen E, McGill Percy KC, Khan SA, Chaput D, Wang X, Liu T, Kang DE, Woo JAA. Pathological characterization of a novel mouse model expressing the PD-linked CHCHD2-T61I mutation. Hum Mol Genet 2022; 31:3987-4005. [PMID: 35786718 PMCID: PMC9703812 DOI: 10.1093/hmg/ddac083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/15/2022] [Accepted: 03/29/2022] [Indexed: 11/13/2022] Open
Abstract
Coiled-coil-helix-coiled-coil-helix domain containing 2 (CHCHD2) is a mitochondrial protein that plays important roles in cristae structure, oxidative phosphorylation and apoptosis. Multiple mutations in CHCHD2 have been associated with Lewy body disorders (LBDs), such as Parkinson's disease (PD) and dementia with Lewy bodies, with the CHCHD2-T61I mutation being the most widely studied. However, at present, only CHCHD2 knockout or CHCHD2/CHCHD10 double knockout mouse models have been investigated. They do not recapitulate the pathology seen in patients with CHCHD2 mutations. We generated the first transgenic mouse model expressing the human PD-linked CHCHD2-T61I mutation driven by the mPrP promoter. We show that CHCHD2-T61I Tg mice exhibit perinuclear mitochondrial aggregates, neuroinflammation, and have impaired long-term synaptic plasticity associated with synaptic dysfunction. Dopaminergic neurodegeneration, a hallmark of PD, is also observed along with α-synuclein pathology. Significant motor dysfunction is seen with no changes in learning and memory at 1 year of age. A minor proportion of the CHCHD2-T61I Tg mice (~10%) show a severe motor phenotype consistent with human Pisa Syndrome, an atypical PD phenotype. Unbiased proteomics analysis reveals surprising increases in many insoluble proteins predominantly originating from mitochondria and perturbing multiple canonical biological pathways as assessed by ingenuity pathway analysis, including neurodegenerative disease-associated proteins such as tau, cofilin, SOD1 and DJ-1. Overall, CHCHD2-T61I Tg mice exhibit pathological and motor changes associated with LBDs, indicating that this model successfully captures phenotypes seen in human LBD patients with CHCHD2 mutations and demonstrates changes in neurodegenerative disease-associated proteins, which delineates relevant pathological pathways for further investigation.
Collapse
Affiliation(s)
- Teresa R Kee
- Department of Pathology, CWRU School of Medicine, Cleveland, OH 44106, USA,Department of Molecular of Medicine, USF Health College of Medicine, Tampa, FL 33613, USA
| | - Jessica L Wehinger
- Department of Molecular of Medicine, USF Health College of Medicine, Tampa, FL 33613, USA
| | | | - Eric Nguyen
- Department of Molecular of Medicine, USF Health College of Medicine, Tampa, FL 33613, USA
| | | | - Sophia A Khan
- Department of Pathology, CWRU School of Medicine, Cleveland, OH 44106, USA
| | - Dale Chaput
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL 33620, USA
| | - Xinming Wang
- Department of Pathology, CWRU School of Medicine, Cleveland, OH 44106, USA
| | - Tian Liu
- Department of Pathology, CWRU School of Medicine, Cleveland, OH 44106, USA
| | - David E Kang
- Department of Pathology, CWRU School of Medicine, Cleveland, OH 44106, USA,Louis Stokes Cleveland VA Medical Center, Cleveland, OH 44106, USA
| | - Jung-A A Woo
- To whom correspondence should be addressed at: Department of Pathology, CWRU School of Medicine, 2103 Cornell Rd, Cleveland, OH 44106, USA. Tel: +1 2163680052; Fax: +1 2163680494;
| |
Collapse
|
50
|
Gao XY, Yang T, Gu Y, Sun XH. Mitochondrial Dysfunction in Parkinson’s Disease: From Mechanistic Insights to Therapy. Front Aging Neurosci 2022; 14:885500. [PMID: 35795234 PMCID: PMC9250984 DOI: 10.3389/fnagi.2022.885500] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/30/2022] [Indexed: 12/02/2022] Open
Abstract
Parkinson’s disease (PD) is one of the most common neurodegenerative movement disorders worldwide. There are currently no cures or preventative treatments for PD. Emerging evidence indicates that mitochondrial dysfunction is closely associated with pathogenesis of sporadic and familial PD. Because dopaminergic neurons have high energy demand, cells affected by PD exhibit mitochondrial dysfunction that promotes the disease-defining the loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc). The mitochondrion has a particularly important role as the cellular “powerhouse” of dopaminergic neurons. Therefore, mitochondria have become a promising therapeutic target for PD treatments. This review aims to describe mitochondrial dysfunction in the pathology of PD, outline the genes associated with familial PD and the factors related to sporadic PD, summarize current knowledge on mitochondrial quality control in PD, and give an overview of therapeutic strategies for targeting mitochondria in neuroprotective interventions in PD.
Collapse
Affiliation(s)
- Xiao-Yan Gao
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
- Science Experiment Center, China Medical University, Shenyang, China
| | - Tuo Yang
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Ying Gu
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiao-Hong Sun
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
- Science Experiment Center, China Medical University, Shenyang, China
- *Correspondence: Xiao-Hong Sun,
| |
Collapse
|