1
|
Wilson JSE, McGill RAR, Steingrund P, Trueman CN. Tracing the geographic origin of Atlantic cod products using stable isotope analysis. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2025; 39 Suppl 1:e9861. [PMID: 39039914 PMCID: PMC12062778 DOI: 10.1002/rcm.9861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 07/24/2024]
Abstract
RATIONALE Increasing demand for fish and seafood means that the traceability of marine products is becoming ever more important for consumers, producers and regulators. Highly complex and globalised supply networks create challenges for verifying a stated catch region. Atlantic cod is one of the most commercially important species in the northeast Atlantic. Several regional fisheries supply cod into the trade network, of which some are at greater risk of overexploitation than others. Tools allowing retrospective testing of spatial origin would significantly assist sustainable harvesting of fish, reducing incentives for illegal fishing and fraud. METHODS Here, we investigate whether stable isotope ratios of carbon, nitrogen and sulphur can be used to retrospectively identify the catch region of Atlantic cod (Gadus morhua). We measured the isotopic composition of muscle tissue from 377 cod from 10 catch regions across the northeast Atlantic and then applied three different assignment methods to classify cod by region of most likely origin. The assignment method developed was subsequently tested using independently sourced, known-origin samples. RESULTS Individual cod could be traced back to their true origin with an average assignment accuracy of 70-79% and over 90% accuracy for certain regions. Assignment success rates comparable to those using genetic techniques were achieved when assigning among restricted and pre-selected regions. However, assignment accuracy to the fishery region estimated from independent samples across the whole geographic range of cod averaged ~25% overall, highlighting the need for careful application of isotope-based approaches. CONCLUSION Stable isotope techniques can provide effective tools to test for origin in Atlantic cod, but not all catch regions are isotopically distinct. Stable isotopes could be combined with genetic techniques to result in higher assignment accuracy than could be achieved using either method independently. Assignment potential can be estimated from reference datasets, but estimates of realistic assignment accuracy require independently collected data.
Collapse
Affiliation(s)
- Juliet S. E. Wilson
- Ocean and Earth ScienceUniversity of SouthamptonSouthamptonUK
- Marine Management Organisation, Environment Agency Romsey OfficeRomseyUK
| | - Rona A. R. McGill
- National Environmental Isotope FacilityScottish Universities Environmental Research CentreGlasgowUK
| | | | | |
Collapse
|
2
|
Nielsen EE, Birnie-Gauvin K, Baktoft H, Arrizabalaga H, Brodin T, Cardinale M, Casini M, Helström G, Jansen T, Koed A, Lundberg P, MacKenzie BR, Medina A, Post S, Rodriguez-Ezpeleta N, Sundelöf A, Varela JL, Aarestrup K. Genetic Sex and Origin Identification Suggests Differential Migration of Male and Female Atlantic Bluefin Tuna ( Thunnus thynnus) in the Northeast Atlantic. Evol Appl 2024; 17:e70009. [PMID: 39301501 PMCID: PMC11411197 DOI: 10.1111/eva.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/22/2024] Open
Abstract
Knowledge about sex-specific difference in life-history traits-like growth, mortality, or behavior-is of key importance for management and conservation as these parameters are essential for predictive modeling of population sustainability. We applied a newly developed molecular sex identification method, in combination with a SNP (single nucleotide polymorphism) panel for inferring the population of origin, for more than 300 large Atlantic bluefin tuna (ABFT) collected over several years from newly reclaimed feeding grounds in the Northeast Atlantic. The vast majority (95%) of individuals were genetically assigned to the eastern Atlantic population, which migrates between spawning grounds in the Mediterranean and feeding grounds in the Northeast Atlantic. We found a consistent pattern of a male bias among the eastern Atlantic individuals, with a 4-year mean of 63% males (59%-65%). Males were most prominent within the smallest (< 230 cm) and largest (> 250 cm) length classes, while the sex ratio was close to 1:1 for intermediate sizes (230-250 cm). The results from this new, widely applicable, and noninvasive approach suggests differential occupancy or migration timing of ABFT males and females, which cannot be explained alone by sex-specific differences in growth. Our findings are corroborated by previous traditional studies of sex ratios in dead ABFT from the Atlantic, the Mediterranean, and the Gulf of Mexico. In concert with observed differences in growth and mortality rates between the sexes, these findings should be recognized in order to sustainably manage the resource, maintain productivity, and conserve diversity within the species.
Collapse
Affiliation(s)
- Einar Eg Nielsen
- National Institute of Aquatic Resources Technical University of Denmark Silkeborg Denmark
| | - Kim Birnie-Gauvin
- National Institute of Aquatic Resources Technical University of Denmark Silkeborg Denmark
| | - Henrik Baktoft
- National Institute of Aquatic Resources Technical University of Denmark Silkeborg Denmark
| | - Haritz Arrizabalaga
- AZTI, Marine Research Basque Research and Technology Alliance (BRTA), Herrera Kaia Pasaia Gipuzkoa Spain
| | - Tomas Brodin
- Department of Wildlife, Fish, and Environmental Studies Swedish University of Agricultural Sciences Umeå Sweden
| | - Massimiliano Cardinale
- Department of Aquatic Resources, Institute of Marine Research Swedish University of Agricultural Sciences Lysekil Sweden
| | - Michele Casini
- Department of Aquatic Resources, Institute of Marine Research Swedish University of Agricultural Sciences Lysekil Sweden
- Department of Biological, Geological and Environmental Sciences University of Bologna Bologna Italy
| | - Gustav Helström
- Department of Wildlife, Fish, and Environmental Studies Swedish University of Agricultural Sciences Umeå Sweden
| | - Teunis Jansen
- National Institute of Aquatic Resources Technical University of Denmark Silkeborg Denmark
- GINR - Greenland Institute of Natural Resources Nuuk Greenland
| | - Anders Koed
- National Institute of Aquatic Resources Technical University of Denmark Silkeborg Denmark
| | - Petter Lundberg
- Department of Wildlife, Fish, and Environmental Studies Swedish University of Agricultural Sciences Umeå Sweden
| | - Brian R MacKenzie
- National Institute of Aquatic Resources Technical University of Denmark Silkeborg Denmark
| | - Antonio Medina
- Departamento de Biología, Facultad de Ciencias del mar y Ambientales Universidad de Cádiz Cádiz Spain
| | - Søren Post
- GINR - Greenland Institute of Natural Resources Nuuk Greenland
| | | | - Andreas Sundelöf
- Department of Aquatic Resources, Institute of Marine Research Swedish University of Agricultural Sciences Lysekil Sweden
| | - José Luis Varela
- Departamento de Biología, Facultad de Ciencias del mar y Ambientales Universidad de Cádiz Cádiz Spain
| | - Kim Aarestrup
- National Institute of Aquatic Resources Technical University of Denmark Silkeborg Denmark
| |
Collapse
|
3
|
Hu L, Zhu Y, Zhong C, Cai Q, Zhang H, Zhang X, Yao Q, Hang Y, Ge Y, Hu Y. Discrimination of three commercial tuna species through species-specific peptides: From high-resolution mass spectrometry discovery to MRM validation. Food Res Int 2024; 187:114462. [PMID: 38763689 DOI: 10.1016/j.foodres.2024.114462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/28/2024] [Accepted: 05/01/2024] [Indexed: 05/21/2024]
Abstract
The risk of tuna adulteration is high driven by economic benefits. The authenticity of tuna is required to protect both consumers and tuna stocks. Given this, the study is designed to identify species-specific peptides for distinguishing three commercial tropical tuna species. The peptides derived from trypsin digestion were separated and detected using ultrahigh-performance liquid chromatography-quadrupole-time of flight mass spectrometry (UPLC-Q-TOF/MS) in data-dependent acquisition (DDA) mode. Venn analysis showed that there were differences in peptide composition among the three tested tuna species. The biological specificity screening through the National Center for Biotechnology Information's Basic Local Alignment Search Tool (NCBI BLAST) revealed that 93 peptides could serve as potential species-specific peptides. Finally, the detection specificity of species-specific peptides of raw meats and processed products was carried out by multiple reaction monitoring (MRM) mode based on a Q-Trap mass spectrometer. The results showed that three, one and two peptides of Katsuwonus pelamis, Thunnus obesus and Thunnus albacores, respectively could serve as species-specific peptides.
Collapse
Affiliation(s)
- Lingping Hu
- Yangtze Delta Region Institute of Tsinghua University, Zhejiang 314006, China; College of Food Science and Engineering, Hainan Tropical Ocean University, Yazhou Bay Innovation Institute, Marine Food Engineering Technology Research Center of Hainan Province, Collaborative Innovation Center of Marine Food Deep Processing, Sanya 572022, China.
| | - Yin Zhu
- Yangtze Delta Region Institute of Tsinghua University, Zhejiang 314006, China.
| | - Chao Zhong
- Yangtze Delta Region Institute of Tsinghua University, Zhejiang 314006, China.
| | - Qiang Cai
- Yangtze Delta Region Institute of Tsinghua University, Zhejiang 314006, China.
| | - Hongwei Zhang
- Food and Agricultural Products Testing Agency, Technology Center of Qingdao Customs District, Qingdao, Shandong Province 266002, China.
| | - Xiaomei Zhang
- Food and Agricultural Products Testing Agency, Technology Center of Qingdao Customs District, Qingdao, Shandong Province 266002, China.
| | - Qian Yao
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China.
| | - Yuyu Hang
- College of Food Science and Engineering, Hainan Tropical Ocean University, Yazhou Bay Innovation Institute, Marine Food Engineering Technology Research Center of Hainan Province, Collaborative Innovation Center of Marine Food Deep Processing, Sanya 572022, China.
| | - Yingliang Ge
- College of Food Science and Engineering, Hainan Tropical Ocean University, Yazhou Bay Innovation Institute, Marine Food Engineering Technology Research Center of Hainan Province, Collaborative Innovation Center of Marine Food Deep Processing, Sanya 572022, China.
| | - Yaqin Hu
- College of Food Science and Engineering, Hainan Tropical Ocean University, Yazhou Bay Innovation Institute, Marine Food Engineering Technology Research Center of Hainan Province, Collaborative Innovation Center of Marine Food Deep Processing, Sanya 572022, China.
| |
Collapse
|
4
|
De Meester L, Vázquez-Domínguez E, Kassen R, Forest F, Bellon MR, Koskella B, Scherson RA, Colli L, Hendry AP, Crandall KA, Faith DP, Starger CJ, Geeta R, Araki H, Dulloo EM, Souffreau C, Schroer S, Johnson MTJ. A link between evolution and society fostering the UN sustainable development goals. Evol Appl 2024; 17:e13728. [PMID: 38884021 PMCID: PMC11178947 DOI: 10.1111/eva.13728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 06/18/2024] Open
Abstract
Given the multitude of challenges Earth is facing, sustainability science is of key importance to our continued existence. Evolution is the fundamental biological process underlying the origin of all biodiversity. This phylogenetic diversity fosters the resilience of ecosystems to environmental change, and provides numerous resources to society, and options for the future. Genetic diversity within species is also key to the ability of populations to evolve and adapt to environmental change. Yet, the value of evolutionary processes and the consequences of their impairment have not generally been considered in sustainability research. We argue that biological evolution is important for sustainability and that the concepts, theory, data, and methodological approaches used in evolutionary biology can, in crucial ways, contribute to achieving the UN Sustainable Development Goals (SDGs). We discuss how evolutionary principles are relevant to understanding, maintaining, and improving Nature Contributions to People (NCP) and how they contribute to the SDGs. We highlight specific applications of evolution, evolutionary theory, and evolutionary biology's diverse toolbox, grouped into four major routes through which evolution and evolutionary insights can impact sustainability. We argue that information on both within-species evolutionary potential and among-species phylogenetic diversity is necessary to predict population, community, and ecosystem responses to global change and to make informed decisions on sustainable production, health, and well-being. We provide examples of how evolutionary insights and the tools developed by evolutionary biology can not only inspire and enhance progress on the trajectory to sustainability, but also highlight some obstacles that hitherto seem to have impeded an efficient uptake of evolutionary insights in sustainability research and actions to sustain SDGs. We call for enhanced collaboration between sustainability science and evolutionary biology to understand how integrating these disciplines can help achieve the sustainable future envisioned by the UN SDGs.
Collapse
Affiliation(s)
- Luc De Meester
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB) Berlin Germany
- Laboratory of Aquatic Ecology, Evolution and Conservation KU Leuven Leuven Belgium
- Institute of Biology Freie University Berlin Berlin Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB) Berlin Germany
| | - Ella Vázquez-Domínguez
- Departamento de Ecología de la Biodiversidad, Instituto de Ecología, Universidad Nacional Autónoma de México Ciudad Universitaria Ciudad de México Mexico
- Conservation and Evolutionary Genetics Group Estación Biológica de Doñana (EBD-CSIC) Sevilla Spain
| | - Rees Kassen
- Department of Biology McGill University Montreal Quebec Canada
| | | | - Mauricio R Bellon
- Comisión Nacional Para el Conocimiento y Uso de la Biodiversidad (CONABIO) México City Mexico
- Swette Center for Sustainable Food Systems Arizona State University Tempe Arizona USA
| | - Britt Koskella
- Department of Integrative Biology University of California Berkeley California USA
| | - Rosa A Scherson
- Laboratorio Evolución y Sistemática, Departamento de Silvicultura y Conservación de la Naturaleza Universidad de Chile Santiago Chile
| | - Licia Colli
- Dipartimento di Scienze Animali, Della Nutrizione e Degli Alimenti, BioDNA Centro di Ricerca Sulla Biodiversità e Sul DNA Antico, Facoltà di Scienze Agrarie, Alimentari e Ambientali Università Cattolica del Sacro Cuore Piacenza Italy
| | - Andrew P Hendry
- Redpath Museum & Department of Biology McGill University Montreal Quebec Canada
| | - Keith A Crandall
- Department of Biostatistics and Bioinformatics George Washington University Washington DC USA
- Department of Invertebrate Zoology, US National Museum of Natural History Smithsonian Institution Washington DC USA
| | | | - Craig J Starger
- School of Global Environmental Sustainability Colorado State University Fort Collins Colorado USA
| | - R Geeta
- Department of Botany University of Delhi New Delhi India
| | - Hitoshi Araki
- Research Faculty of Agriculture Hokkaido University Sapporo Japan
| | - Ehsan M Dulloo
- Effective Genetic Resources Conservation and Use Alliance of Bioversity International and CIAT Rome Italy
| | - Caroline Souffreau
- Laboratory of Aquatic Ecology, Evolution and Conservation KU Leuven Leuven Belgium
| | - Sibylle Schroer
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB) Berlin Germany
| | - Marc T J Johnson
- Department of Biology & Centre for Urban Environments University of Toronto Mississauga Mississauga Ontario Canada
| |
Collapse
|
5
|
Coelho JFR, Mendes LDF, Di Dario F, Carvalho PH, Dias RM, Lima SMQ, Verba JT, Pereira RJ. Integration of genomic and ecological methods inform management of an undescribed, yet highly exploited, sardine species. Proc Biol Sci 2024; 291:20232746. [PMID: 38444338 PMCID: PMC10915539 DOI: 10.1098/rspb.2023.2746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/06/2024] [Indexed: 03/07/2024] Open
Abstract
Assessing genetic diversity within species is key for conservation strategies in the context of human-induced biotic changes. This is important in marine systems, where many species remain undescribed while being overfished, and conflicts between resource-users and conservation agencies are common. Combining niche modelling with population genomics can contribute to resolving those conflicts by identifying management units and understanding how past climatic cycles resulted in current patterns of genetic diversity. We addressed these issues on an undescribed but already overexploited species of sardine of the genus Harengula. We find that the species distribution is determined by salinity and depth, with a continuous distribution along the Brazilian mainland and two disconnected oceanic archipelagos. Genomic data indicate that such biogeographic barriers are associated with two divergent intraspecific lineages. Changes in habitat availability during the last glacial cycle led to different demographic histories among stocks. One coastal population experienced a 3.6-fold expansion, whereas an island-associated population contracted 3-fold, relative to the size of the ancestral population. Our results indicate that the island population should be managed separately from the coastal population, and that a Marine Protected Area covering part of the island population distribution can support the viability of this lineage.
Collapse
Affiliation(s)
- Jéssica Fernanda Ramos Coelho
- Departamento de Botânica e Zoologia, Universidade Federal do Rio Grande do Norte, Avenida Senador Salgado Filho S/N, Campus Universitário, 59078-970, Natal/RN, Brazil
| | - Liana de Figueiredo Mendes
- Departamento de Ecologia, Universidade Federal do Rio Grande do Norte, Avenida Senador Salgado Filho S/N, Campus Universitário, 59078-970, Natal/RN, Brazil
| | - Fabio Di Dario
- Instituto de Biodiversidade e Sustentabilidade - Universidade Federal do Rio de Janeiro, Avenida São José do Barreto, 764, 27965-045, Macaé/RJ, Brazil
| | - Pedro Hollanda Carvalho
- Instituto de Biodiversidade e Sustentabilidade - Universidade Federal do Rio de Janeiro, Avenida São José do Barreto, 764, 27965-045, Macaé/RJ, Brazil
| | - Ricardo Marques Dias
- Museu Nacional, Universidade Federal do Rio de Janeiro, Quinta da Boa Vista - São Cristóvão, 20940-040, Rio de Janeiro/RJ, Brazil
| | - Sergio Maia Queiroz Lima
- Departamento de Botânica e Zoologia, Universidade Federal do Rio Grande do Norte, Avenida Senador Salgado Filho S/N, Campus Universitário, 59078-970, Natal/RN, Brazil
| | - Julia Tovar Verba
- Evolutionary Biology, Ludwig Maximilian University of Munich, Grosshaderner Strasse 2, 82152, Planegg-Martinsried, Germany
| | - Ricardo J. Pereira
- Evolutionary Biology, Ludwig Maximilian University of Munich, Grosshaderner Strasse 2, 82152, Planegg-Martinsried, Germany
- Department of Zoology, State Museum of Natural History Stuttgart, Rosenstein 1–3, 70191, Stuttgart, Germany
| |
Collapse
|
6
|
Andersson L, Bekkevold D, Berg F, Farrell ED, Felkel S, Ferreira MS, Fuentes-Pardo AP, Goodall J, Pettersson M. How Fish Population Genomics Can Promote Sustainable Fisheries: A Road Map. Annu Rev Anim Biosci 2024; 12:1-20. [PMID: 37906837 DOI: 10.1146/annurev-animal-021122-102933] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Maintenance of genetic diversity in marine fishes targeted by commercial fishing is a grand challenge for the future. Most of these species are abundant and therefore important for marine ecosystems and food security. Here, we present a road map of how population genomics can promote sustainable fisheries. In these species, the development of reference genomes and whole genome sequencing is key, because genetic differentiation at neutral loci is usually low due to large population sizes and gene flow. First, baseline allele frequencies representing genetically differentiated populations within species must be established. These can then be used to accurately determine the composition of mixed samples, forming the basis for population demographic analysis to inform sustainably set fish quotas. SNP-chip analysis is a cost-effective method for determining baseline allele frequencies and for population identification in mixed samples. Finally, we describe how genetic marker analysis can transform stock identification and management.
Collapse
Affiliation(s)
- Leif Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden;
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
| | - Dorte Bekkevold
- National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark
| | | | - Edward D Farrell
- Killybegs Fishermen's Organisation, Killybegs, County Donegal, Ireland
| | - Sabine Felkel
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden;
| | - Mafalda S Ferreira
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden;
| | - Angela P Fuentes-Pardo
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden;
| | - Jake Goodall
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden;
| | - Mats Pettersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden;
| |
Collapse
|
7
|
Ferrer Obiol J, Herranz JM, Paris JR, Whiting JR, Rozas J, Riutort M, González-Solís J. Species delimitation using genomic data to resolve taxonomic uncertainties in a speciation continuum of pelagic seabirds. Mol Phylogenet Evol 2023; 179:107671. [PMID: 36442764 DOI: 10.1016/j.ympev.2022.107671] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/28/2022] [Accepted: 11/17/2022] [Indexed: 11/27/2022]
Abstract
Speciation is a continuous and complex process shaped by the interaction of numerous evolutionary forces. Despite the continuous nature of the speciation process, the implementation of conservation policies relies on the delimitation of species and evolutionary significant units (ESUs). Puffinus shearwaters are globally distributed and threatened pelagic seabirds. Due to remarkable morphological status the group has been under intense taxonomic debate for the past three decades. Here, we use double digest Restriction-Site Associated DNA sequencing (ddRAD-Seq) to genotype species and subspecies of North Atlantic and Mediterranean Puffinus shearwaters across their entire geographical range. We assess the phylogenetic relationships and population structure among and within the group, evaluate species boundaries, and characterise the genomic landscape of divergence. We find that current taxonomies are not supported by genomic data and propose a more accurate taxonomy by integrating genomic information with other sources of evidence. Our results show that several taxon pairs are at different stages of a speciation continuum. Our study emphasises the potential of genomic data to resolve taxonomic uncertainties, which can help to focus management actions on relevant taxa, even if they do not necessarily coincide with the taxonomic rank of species.
Collapse
Affiliation(s)
- Joan Ferrer Obiol
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Catalonia, Spain; Institut de Recerca de la Biodiversitat (IRBio), Barcelona, Catalonia, Spain; Department of Environmental Science and Policy, University of Milan, Milan, Italy.
| | - Jose M Herranz
- National Institute for the Study of Liver and Gastrointestinal Diseases, CIBERehd, Carlos III Health Institute, Madrid, Spain; Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Josephine R Paris
- Department of Health, Life and Environmental Sciences, University of l'Aquila, Coppito, Italy; Department of Biosciences, University of Exeter, Exeter, UK
| | - James R Whiting
- Department of Biosciences, University of Exeter, Exeter, UK; Department of Biological Sciences, Faculty of Sciences, University of Calgary, Calgary, Canada
| | - Julio Rozas
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Catalonia, Spain; Institut de Recerca de la Biodiversitat (IRBio), Barcelona, Catalonia, Spain
| | - Marta Riutort
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Catalonia, Spain; Institut de Recerca de la Biodiversitat (IRBio), Barcelona, Catalonia, Spain
| | - Jacob González-Solís
- Institut de Recerca de la Biodiversitat (IRBio), Barcelona, Catalonia, Spain; Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Catalonia, Spain
| |
Collapse
|
8
|
Mozer A, Prost S. An Introduction to Illegal Wildlife Trade and its Effects on Biodiversity and Society. FORENSIC SCIENCE INTERNATIONAL: ANIMALS AND ENVIRONMENTS 2023. [DOI: 10.1016/j.fsiae.2023.100064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
9
|
Devloo‐Delva F, Burridge CP, Kyne PM, Brunnschweiler JM, Chapman DD, Charvet P, Chen X, Cliff G, Daly R, Drymon JM, Espinoza M, Fernando D, Barcia LG, Glaus K, González‐Garza BI, Grant MI, Gunasekera RM, Hernandez S, Hyodo S, Jabado RW, Jaquemet S, Johnson G, Ketchum JT, Magalon H, Marthick JR, Mollen FH, Mona S, Naylor GJP, Nevill JEG, Phillips NM, Pillans RD, Postaire BD, Smoothey AF, Tachihara K, Tillet BJ, Valerio‐Vargas JA, Feutry P. From rivers to ocean basins: The role of ocean barriers and philopatry in the genetic structuring of a cosmopolitan coastal predator. Ecol Evol 2023; 13:e9837. [PMID: 36844667 PMCID: PMC9944188 DOI: 10.1002/ece3.9837] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 02/24/2023] Open
Abstract
The Bull Shark (Carcharhinus leucas) faces varying levels of exploitation around the world due to its coastal distribution. Information regarding population connectivity is crucial to evaluate its conservation status and local fishing impacts. In this study, we sampled 922 putative Bull Sharks from 19 locations in the first global assessment of population structure of this cosmopolitan species. Using a recently developed DNA-capture approach (DArTcap), samples were genotyped for 3400 nuclear markers. Additionally, full mitochondrial genomes of 384 Indo-Pacific samples were sequenced. Reproductive isolation was found between and across ocean basins (eastern Pacific, western Atlantic, eastern Atlantic, Indo-West Pacific) with distinct island populations in Japan and Fiji. Bull Sharks appear to maintain gene flow using shallow coastal waters as dispersal corridors, whereas large oceanic distances and historical land-bridges act as barriers. Females tend to return to the same area for reproduction, making them more susceptible to local threats and an important focus for management actions. Given these behaviors, the exploitation of Bull Sharks from insular populations, such as Japan and Fiji, may instigate local decline that cannot readily be replenished by immigration, which can in turn affect ecosystem dynamics and functions. These data also supported the development of a genetic panel to ascertain the population of origin, which will be useful in monitoring the trade of fisheries products and assessing population-level impacts of this harvest.
Collapse
Affiliation(s)
- Floriaan Devloo‐Delva
- Oceans and Atmosphere, CSIROHobartTasmaniaAustralia
- Quantitative Marine Science, Institute for Marine and Antarctic Studies, University of TasmaniaHobartTasmaniaAustralia
- Discipline of Biological Sciences, School of Natural SciencesUniversity of TasmaniaHobartTasmaniaAustralia
| | - Christopher P. Burridge
- Discipline of Biological Sciences, School of Natural SciencesUniversity of TasmaniaHobartTasmaniaAustralia
| | - Peter M. Kyne
- Research Institute for the Environment and LivelihoodsCharles Darwin UniversityDarwinNorthern TerritoryAustralia
| | | | - Demian D. Chapman
- Department of Biological SciencesFlorida International UniversityNorth MiamiFloridaUSA
| | - Patricia Charvet
- Programa de Pós‐graduação em Sistemática, Uso e Conservação da BiodiversidadeUniversidade Federal do Ceará (PPGSis ‐ UFC)FortalezaBrazil
| | - Xiao Chen
- College of Veterinary MedicineSouth China Agricultural UniversityGuangzhouChina
| | - Geremy Cliff
- KwaZulu‐Natal Sharks Board, Umhlanga 4320, South Africa and School of Life SciencesUniversity of KwaZulu‐NatalDurbanSouth Africa
| | - Ryan Daly
- Oceanographic Research Institute, South African Association for Marine Biological Research, PointDurbanSouth Africa
- South African Institute for Aquatic BiodiversityMkhandaSouth Africa
| | - J. Marcus Drymon
- Coastal Research and Extension CenterMississippi State UniversityBiloxiMississippiUSA
- Mississippi‐Alabama Sea Grant ConsortiumOcean SpringsMississippiUSA
| | - Mario Espinoza
- Centro de Investigación en Ciencias del Mar y Limnología & Escuela de BiologíaUniversidad de Costa Rica, San Pedro de Montes de OcaSan JoséCosta Rica
| | | | - Laura Garcia Barcia
- Department of Biological SciencesFlorida International UniversityNorth MiamiFloridaUSA
| | - Kerstin Glaus
- Faculty of Science, Technology and Environment, School of Marine StudiesThe University of the South PacificSuvaFiji
| | | | - Michael I. Grant
- College of Science and Engineering, Centre for Sustainable Tropical Fisheries and AquacultureJames Cook UniversityTownsvilleQueenslandAustralia
| | | | - Sebastian Hernandez
- Biomolecular Laboratory, Center for International ProgramsUniversidad VERITASSan JoséCosta Rica
- Sala de Colecciones, Facultad de Ciencias del MarUniversidad Católica del NorteCoquimboChile
| | - Susumu Hyodo
- Laboratory of Physiology, Atmosphere and Ocean Research InstituteUniversity of TokyoKashiwa, ChibaJapan
| | - Rima W. Jabado
- College of Science and Engineering, Centre for Sustainable Tropical Fisheries and AquacultureJames Cook UniversityTownsvilleQueenslandAustralia
- Elasmo ProjectDubaiUnited Arab Emirates
| | - Sébastien Jaquemet
- UMR ENTROPIE (Université de La Réunion, Université de Nouvelle‐Calédonie, IRD, CNRS, IFREMER), Faculté des Sciences et TechnologiesUniversité de La RéunionCedex 09, La RéunionFrance
| | - Grant Johnson
- Department of Industry, Tourism and Trade, Aquatic Resource Research UnitDarwinNorthern TerritoryAustralia
| | | | - Hélène Magalon
- UMR ENTROPIE (Université de La Réunion, Université de Nouvelle‐Calédonie, IRD, CNRS, IFREMER), Faculté des Sciences et TechnologiesUniversité de La RéunionCedex 09, La RéunionFrance
| | - James R. Marthick
- Menzies Institute for Medical ResearchUniversity of TasmaniaHobartTasmaniaAustralia
| | | | - Stefano Mona
- Institut de Systématique, Evolution, Biodiversité, ISYEB (UMR 7205), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHEUniversité des AntillesParisFrance
- EPHEPSL Research UniversityParisFrance
| | - Gavin J. P. Naylor
- Florida Museum of Natural HistoryUniversity of FloridaGainesvilleFloridaUSA
| | | | - Nicole M. Phillips
- School of Biological, Environmental and Earth SciencesThe University of Southern MississippiHattiesburgMississippiUSA
| | | | - Bautisse D. Postaire
- UMR ENTROPIE (Université de La Réunion, Université de Nouvelle‐Calédonie, IRD, CNRS, IFREMER), Faculté des Sciences et TechnologiesUniversité de La RéunionCedex 09, La RéunionFrance
| | - Amy F. Smoothey
- NSW Department of Primary Industries, Fisheries ResearchSydney Institute of Marine ScienceMosmanNew South WalesAustralia
| | - Katsunori Tachihara
- Laboratory of Fisheries Biology and Coral Reef Studies, Faculty of ScienceUniversity of Ryukyus, NishiharaOkinawaJapan
| | - Bree J. Tillet
- Translational Research Institute, University of Queensland Diamantina InstituteBrisbaneQueenslandAustralia
| | - Jorge A. Valerio‐Vargas
- Centro de Investigación en Ciencias del Mar y Limnología & Escuela de BiologíaUniversidad de Costa Rica, San Pedro de Montes de OcaSan JoséCosta Rica
| | | |
Collapse
|
10
|
Shi Y, Homola JJ, Euclide PT, Isermann DA, Caroffino D, McPhee MV, Larson WA. High-density genomic data reveal fine-scale population structure and pronounced islands of adaptive divergence in lake whitefish ( Coregonus clupeaformis) from Lake Michigan. Evol Appl 2022; 15:1776-1791. [PMID: 36426119 PMCID: PMC9679245 DOI: 10.1111/eva.13475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 08/12/2022] [Accepted: 08/14/2022] [Indexed: 09/08/2024] Open
Abstract
Understanding patterns of genetic structure and adaptive variation in natural populations is crucial for informing conservation and management. Past genetic research using 11 microsatellite loci identified six genetic stocks of lake whitefish (Coregonus clupeaformis) within Lake Michigan, USA. However, ambiguity in genetic stock assignments suggested those neutral microsatellite markers did not provide adequate power for delineating lake whitefish stocks in this system, prompting calls for a genomics approach to investigate stock structure. Here, we generated a dense genomic dataset to characterize population structure and investigate patterns of neutral and adaptive genetic diversity among lake whitefish populations in Lake Michigan. Using Rapture sequencing, we genotyped 829 individuals collected from 17 baseline populations at 197,588 SNP markers after quality filtering. Although the overall pattern of genetic structure was similar to the previous microsatellite study, our genomic data provided several novel insights. Our results indicated a large genetic break between the northwestern and eastern sides of Lake Michigan, and we found a much greater level of population structure on the eastern side compared to the northwestern side. Collectively, we observed five genomic islands of adaptive divergence on five different chromosomes. Each island displayed a different pattern of population structure, suggesting that combinations of genotypes at these adaptive regions are facilitating local adaptation to spatially heterogenous selection pressures. Additionally, we identified a large linkage disequilibrium block of ~8.5 Mb on chromosome 20 that is suggestive of a putative inversion but with a low frequency of the minor haplotype. Our study provides a comprehensive assessment of population structure and adaptive variation that can help inform the management of Lake Michigan's lake whitefish fishery and highlights the utility of incorporating adaptive loci into fisheries management.
Collapse
Affiliation(s)
- Yue Shi
- College of Fisheries and Ocean SciencesUniversity of Alaska FairbanksJuneauAlaskaUSA
- Wisconsin Cooperative Fishery Research Unit, College of Natural ResourcesUniversity of Wisconsin‐Stevens PointStevens PointWisconsinUSA
| | - Jared J. Homola
- U.S. Geological Survey, Wisconsin Cooperative Fishery Research Unit, College of Natural ResourcesUniversity of Wisconsin‐Stevens PointStevens PointWisconsinUSA
| | - Peter T. Euclide
- Wisconsin Cooperative Fishery Research Unit, College of Natural ResourcesUniversity of Wisconsin‐Stevens PointStevens PointWisconsinUSA
| | - Daniel A. Isermann
- U.S. Geological Survey, Wisconsin Cooperative Fishery Research Unit, College of Natural ResourcesUniversity of Wisconsin‐Stevens PointStevens PointWisconsinUSA
| | - David C. Caroffino
- Michigan Department of Natural ResourcesCharlevoix Research StationCharlevoixMichiganUSA
| | - Megan V. McPhee
- College of Fisheries and Ocean SciencesUniversity of Alaska FairbanksJuneauAlaskaUSA
| | - Wesley A. Larson
- U.S. Geological Survey, Wisconsin Cooperative Fishery Research Unit, College of Natural ResourcesUniversity of Wisconsin‐Stevens PointStevens PointWisconsinUSA
- National Marine Fisheries Service, Alaska Fisheries Science Center, Auke Bay LaboratoriesNational Oceanic and Atmospheric AdministrationJuneauAlaskaUSA
| |
Collapse
|
11
|
Abstract
The rapid growth in genomic techniques provides the potential to transform how we protect, manage, and conserve marine life. Further, solutions to boost the resilience of marine species to climate change and other disturbances that characterize the Anthropocene require transformative approaches, made more effective if guided by genomic data. Although genetic techniques have been employed in marine conservation for decades and the availability of genomic data is rapidly expanding, widespread application still lags behind other data types. This Essay reviews how genetics and genomics have been utilized in management initiatives for ocean conservation and restoration, highlights success stories, and presents a pathway forward to enhance the uptake of genomic data for protecting our oceans.
Collapse
Affiliation(s)
- Madeleine J. H. van Oppen
- Australian Institute of Marine Science, Townsville, Queensland, Australia
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
- * E-mail:
| | - Melinda A. Coleman
- Department of Primary Industries, NSW Fisheries, National Marine Science Centre, Coffs Harbour, New South Wales, Australia
| |
Collapse
|
12
|
Carrier A, Prunier J, Poisson W, Trottier-Lavoie M, Gilbert I, Cavedon M, Pokharel K, Kantanen J, Musiani M, Côté SD, Albert V, Taillon J, Bourret V, Droit A, Robert C. Design and validation of a 63K genome-wide SNP-genotyping platform for caribou/reindeer (Rangifer tarandus). BMC Genomics 2022; 23:687. [PMID: 36199020 PMCID: PMC9533608 DOI: 10.1186/s12864-022-08899-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/15/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Development of large single nucleotide polymorphism (SNP) arrays can make genomic data promptly available for conservation problematic. Medium and high-density panels can be designed with sufficient coverage to offer a genome-wide perspective and the generated genotypes can be used to assess different genetic metrics related to population structure, relatedness, or inbreeding. SNP genotyping could also permit sexing samples with unknown associated metadata as it is often the case when using non-invasive sampling methods favored for endangered species. Genome sequencing of wild species provides the necessary information to design such SNP arrays. We report here the development of a SNP-array for endangered Rangifer tarandus using a multi-platform sequencing approach from animals found in diverse populations representing the entire circumpolar distribution of the species. RESULTS From a very large comprehensive catalog of SNPs detected over the entire sample set (N = 894), a total of 63,336 SNPs were selected. SNP selection accounted for SNPs evenly distributed across the entire genome (~ every 50Kb) with known minor alleles across populations world-wide. In addition, a subset of SNPs was selected to represent rare and local alleles found in Eastern Canada which could be used for ecotype and population assignments - information urgently needed for conservation planning. In addition, heterozygosity from SNPs located in the X-chromosome and genotyping call-rate of SNPs located into the SRY gene of the Y-chromosome yielded an accurate and robust sexing assessment. All SNPs were validated using a high-throughput SNP-genotyping chip. CONCLUSION This design is now integrated into the first genome-wide commercially available genotyping platform for Rangifer tarandus. This platform would pave the way to future genomic investigation of populations for this endangered species, including estimation of genetic diversity parameters, population assignments, as well as animal sexing from genetic SNP data for non-invasive samples.
Collapse
Affiliation(s)
- Alexandra Carrier
- Département de sciences animales, Faculté de l'agriculture et d'alimentation, Université Laval, Quebec City, Québec, Canada.,Centre de recherche en reproduction, développement et santé intergénérationnelle (CRDSI), Quebec City, Québec, Canada.,Réseau Québécois en reproduction (RQR), Saint-Hyacinthe, Québec, Canada
| | - Julien Prunier
- Département de médecine moléculaire, Faculté de médecine, Université Laval, Quebec City, Québec, Canada
| | - William Poisson
- Département de sciences animales, Faculté de l'agriculture et d'alimentation, Université Laval, Quebec City, Québec, Canada.,Centre de recherche en reproduction, développement et santé intergénérationnelle (CRDSI), Quebec City, Québec, Canada.,Réseau Québécois en reproduction (RQR), Saint-Hyacinthe, Québec, Canada
| | - Mallorie Trottier-Lavoie
- Département de sciences animales, Faculté de l'agriculture et d'alimentation, Université Laval, Quebec City, Québec, Canada.,Centre de recherche en reproduction, développement et santé intergénérationnelle (CRDSI), Quebec City, Québec, Canada.,Réseau Québécois en reproduction (RQR), Saint-Hyacinthe, Québec, Canada
| | - Isabelle Gilbert
- Département de sciences animales, Faculté de l'agriculture et d'alimentation, Université Laval, Quebec City, Québec, Canada.,Centre de recherche en reproduction, développement et santé intergénérationnelle (CRDSI), Quebec City, Québec, Canada.,Réseau Québécois en reproduction (RQR), Saint-Hyacinthe, Québec, Canada
| | - Maria Cavedon
- Department of biological sciences, Faculty of Science, University of Calgary, Calgary, Canada
| | | | - Juha Kantanen
- Natural Resources Institute Finland, Jokioinen, Finland
| | - Marco Musiani
- Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Bologna, Italy
| | - Steeve D Côté
- Département de biologie - Faculté de sciences et génie, Caribou Ungava, Université Laval, Quebec City, Québec, Canada
| | - Vicky Albert
- Ministère des Forêts, de la Faune et des Parcs du Québec (MFFP), Quebec City, Québec, Canada
| | - Joëlle Taillon
- Ministère des Forêts, de la Faune et des Parcs du Québec (MFFP), Quebec City, Québec, Canada
| | - Vincent Bourret
- Ministère des Forêts, de la Faune et des Parcs du Québec (MFFP), Quebec City, Québec, Canada
| | - Arnaud Droit
- Département de médecine moléculaire, Faculté de médecine, Université Laval, Quebec City, Québec, Canada
| | - Claude Robert
- Département de sciences animales, Faculté de l'agriculture et d'alimentation, Université Laval, Quebec City, Québec, Canada. .,Centre de recherche en reproduction, développement et santé intergénérationnelle (CRDSI), Quebec City, Québec, Canada. .,Réseau Québécois en reproduction (RQR), Saint-Hyacinthe, Québec, Canada.
| |
Collapse
|
13
|
Farrell ED, Andersson L, Bekkevold D, Campbell N, Carlsson J, Clarke MW, Egan A, Folkvord A, Gras M, Lusseau SM, Mackinson S, Nolan C, O'Connell S, O'Malley M, Pastoors M, Pettersson ME, White E. A baseline for the genetic stock identification of Atlantic herring, Clupea harengus, in ICES Divisions 6.a, 7.b-c. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220453. [PMID: 36133150 PMCID: PMC9449477 DOI: 10.1098/rsos.220453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/19/2022] [Indexed: 06/16/2023]
Abstract
Atlantic herring in International Council for Exploration of the Sea (ICES) Divisions 6.a, 7.b-c comprises at least three populations, distinguished by temporal and spatial differences in spawning, which have until recently been managed as two stocks defined by geographical delineators. Outside of spawning the populations form mixed aggregations, which are the subject of acoustic surveys. The inability to distinguish the populations has prevented the development of separate survey indices and separate stock assessments. A panel of 45 single-nucleotide polymorphisms, derived from whole-genome sequencing, were used to genotype 3480 baseline spawning samples (2014-2021). A temporally stable baseline comprising 2316 herring from populations known to inhabit Division 6.a was used to develop a genetic assignment method, with a self-assignment accuracy greater than 90%. The long-term temporal stability of the assignment model was validated by assigning archive (2003-2004) baseline samples (270 individuals) with a high level of accuracy. Assignment of non-baseline samples (1514 individuals) from Divisions 6.a, 7.b-c indicated previously unrecognized levels of mixing of populations outside of the spawning season. The genetic markers and assignment models presented constitute a 'toolbox' that can be used for the assignment of herring caught in mixed survey and commercial catches in Division 6.a into their population of origin with a high level of accuracy.
Collapse
Affiliation(s)
- Edward D. Farrell
- EDF Scientific Limited, Rathaha, Ladysbridge, Cork, Ireland
- Area 52 Research Group, School of Biology and Environmental Science/Earth Institute, Science Centre West, University College Dublin, Dublin, Ireland
| | - Leif Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Dorte Bekkevold
- National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark
| | - Neil Campbell
- Marine Scotland Science, 375 Victoria Road, Aberdeen AB11 9DB, Scotland
| | - Jens Carlsson
- Area 52 Research Group, School of Biology and Environmental Science/Earth Institute, Science Centre West, University College Dublin, Dublin, Ireland
| | | | - Afra Egan
- Marine Institute, Rinville, Oranmore, Co. Galway, Ireland
| | - Arild Folkvord
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Michaël Gras
- Marine Institute, Rinville, Oranmore, Co. Galway, Ireland
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Susan Mærsk Lusseau
- Marine Scotland Science, 375 Victoria Road, Aberdeen AB11 9DB, Scotland
- National Institute of Aquatic Resources, Willemoesvej 2, Hovedbygning, 067, 9850 Hirtshals, Denmark
| | - Steven Mackinson
- Scottish Pelagic Fishermen's Association, Heritage House, 135-139 Shore Street, Fraserburgh, Aberdeenshire, Scotland
| | - Cormac Nolan
- Marine Institute, Rinville, Oranmore, Co. Galway, Ireland
| | - Steven O'Connell
- Marine Scotland Science, 375 Victoria Road, Aberdeen AB11 9DB, Scotland
| | | | - Martin Pastoors
- Pelagic Freezer-trawler Association, Louis Braillelaan 80, 2719 EK Zoetermeer, The Netherlands
| | - Mats E. Pettersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Emma White
- Marine Institute, Rinville, Oranmore, Co. Galway, Ireland
| |
Collapse
|
14
|
Stable isotope and trace element analysis for tracing the geographical origin of the Mediterranean mussel (Mytilus galloprovincialis) in food authentication. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
EST-Microsatellite Types and Structural Scenarios in European Hake Fisheries. Animals (Basel) 2022; 12:ani12111462. [PMID: 35681926 PMCID: PMC9179439 DOI: 10.3390/ani12111462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 11/17/2022] Open
Abstract
A fishery’s structure and connectivity are priors to its effective management. A successful description of such processes depends on both the sampling design and the choice of adequate genetic markers. EST markers are perfusing the studies of marine metapopulations and are believed to provide access to functional polymorphisms. However, the assumed adaptive role of outlier EST loci might not be generalizable. EST-microsatellites represent the upper polymorphic boundary in these regions because of their high mutation rate. We have subclassified the polymorphisms of EST-microsatellites to assess their structural contribution in the European hake, a paradigmatic and highly mobile marine species (HMMS). Because of the counterbalanced forces between directional markers (15%) and balanced markers (23%), the whole marker set offers the same structural situation as the one observed with neutral markers (62%), i.e., k = 2 gene pools. In contrast to outlier EST- microsatellites, neutral EST subsets allow one to measure crucial population phenomena for fisheries’ management. The high inter-population divergence of outlier EST-microsatellites is compatible with drifted post-selection genomic regions rather than with ongoing local selective pressures. The structural scenario in hake is explainable by a limited gene flow across the Almería-Oran Front (AOF) and by the within-basin IBD pattern of connectivity plus drift-related demographic events. This study highlights how polymorphic properties of EST-microsatellite types can be useful to address mutually excluding research tasks in fisheries, i.e., to address its evolutionary history (directional markers or FAPS: Fossil Adaptive Polymorphic Systems); to delineate management units (neutral markers or NAPS: Non Adaptive Polymorphic Systems); or to ensure sustainability (balanced markers or APS: Adaptive Polymorphic Systems).
Collapse
|
16
|
Hu L, Zhang H, Hu Z, Chin Y, Zhang X, Chen J, Hu Y. Comparative proteomics analysis of three commercial tuna species through SWATH-MS based mass spectrometry and chemometrics. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Berkström C, Wennerström L, Bergström U. Ecological connectivity of the marine protected area network in the Baltic Sea, Kattegat and Skagerrak: Current knowledge and management needs. AMBIO 2022; 51:1485-1503. [PMID: 34964951 PMCID: PMC9005595 DOI: 10.1007/s13280-021-01684-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 11/08/2021] [Accepted: 11/29/2021] [Indexed: 05/31/2023]
Abstract
Marine protected areas (MPAs) have become a key component of conservation and fisheries management to alleviate anthropogenic pressures. For MPA networks to efficiently promote persistence and recovery of populations, ecological connectivity, i.e. dispersal and movement of organisms and material across ecosystems, needs to be taken into account. To improve the ecological coherence of MPA networks, there is hence a need to evaluate the connectivity of species spreading through active migration and passive dispersal. We reviewed knowledge on ecological connectivity in the Baltic Sea, Kattegat and Skagerrak in the northeast Atlantic and present available information on species-specific dispersal and migration distances. Studies on genetic connectivity are summarised and discussed in relation to dispersal-based analyses. Threats to ecological connectivity, limiting dispersal of populations and lowering the resilience to environmental change, were examined. Additionally, a review of studies evaluating the ecological coherence of MPA networks in the Baltic Sea, Kattegat and Skagerrak was performed, and suggestions for future evaluations to meet management needs are presented.
Collapse
Affiliation(s)
- Charlotte Berkström
- Department of Aquatic Resources, Swedish University of Agricultural Sciences, Institute of Coastal Research, Skolgatan 6, 742 42 Öregrund, Sweden
| | - Lovisa Wennerström
- Department of Aquatic Resources, Swedish University of Agricultural Sciences, Institute of Coastal Research, Skolgatan 6, 742 42 Öregrund, Sweden
| | - Ulf Bergström
- Department of Aquatic Resources, Swedish University of Agricultural Sciences, Institute of Coastal Research, Skolgatan 6, 742 42 Öregrund, Sweden
| |
Collapse
|
18
|
Kongsstovu SÍ, Mikalsen SO, Homrum EÍ, Jacobsen JA, Als TD, Gislason H, Flicek P, Nielsen EE, Dahl HA. Atlantic herring ( Clupea harengus) population structure in the Northeast Atlantic Ocean. FISHERIES RESEARCH 2022; 249:106231. [PMID: 36798657 PMCID: PMC7614180 DOI: 10.1016/j.fishres.2022.106231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The Atlantic herring Clupea harengus L has a vast geographical distribution and a complex population structure with a few very large migratory units and many small local populations. Each population has its own spawning ground and/or time, thereby maintaining their genetic integrity. Several herring populations migrate between common feeding grounds and over-wintering areas resulting in frequent mixing of populations. Thus, many herring fisheries are based on mixed populations of different demographic status. In order to avoid over-exploitation of weak populations and to conserve biodiversity, understanding the population structure and population mixing is important for maintaining biologically sustainable herring fisheries. The aim of this study was to investigate the genetic population structure of herring in the Faroese and surrounding waters, and to develop genetic markers for distinguishing between four herring management units (often called stocks), namely the Norwegian spring-spawning herring (NSSH), Icelandic summer-spawning herring (ISSH), North Sea autumn-spawning herring (NSAH), and Faroese autumn-spawning herring (FASH). Herring from the four stocks were sequenced at low coverage, and single nucleotide polymorphisms (SNPs) were called and used for population structure analysis and individual assignment. An ancestry-informative SNP panel with 118 SNPs was developed and tested on 240 individuals. The results showed that all four stocks appeared to be genetically differentiated populations, but at lower levels of differentiation between FASH and ISSH than the other two populations. Overall assignment rate with the SNP panel was 80.7%, and agreement between the genetic and traditional visual assignment was 75.5%. The NSAH and NSSH samples had the highest assignment rate (100% and 98.3%, respectively) and highest agreement between traditional and genetic assignment methods (96.6% and 94.9%, respectively). The FASH and ISSH samples had substantially lower assignment rates (72.9% and 51.7%, respectively) and agreement between traditional and genetic methods (39.5% and 48.4%, respectively).
Collapse
Affiliation(s)
- Sunnvør í Kongsstovu
- Amplexa Genetics A/S, Hoyvíksvegur 51, FO-100 Tórshavn, Faroe Islands
- University of the Faroe Islands, Faculty of Science and Technology, Vestara Bryggja 15, FO-100 Tórshavn, Faroe Islands
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Svein-Ole Mikalsen
- University of the Faroe Islands, Faculty of Science and Technology, Vestara Bryggja 15, FO-100 Tórshavn, Faroe Islands
| | - Eydna í Homrum
- Faroe Marine Research Institute, Nóatún 1, FO-100 Tórshavn, Faroe Islands
| | - Jan Arge Jacobsen
- Faroe Marine Research Institute, Nóatún 1, FO-100 Tórshavn, Faroe Islands
| | - Thomas D. Als
- Aarhus University, Department of Biomedicine, Høegh-Guldbergs Gade 10, 8000 Aarhus C, Denmark
| | - Hannes Gislason
- University of the Faroe Islands, Faculty of Science and Technology, Vestara Bryggja 15, FO-100 Tórshavn, Faroe Islands
| | - Paul Flicek
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Einar Eg Nielsen
- DTU Aqua – National Institute of Aquatic Resources, Technical University of Denmark, Vejlsøvej 39, 8600 Silkeborg, Denmark
| | - Hans Atli Dahl
- Amplexa Genetics A/S, Hoyvíksvegur 51, FO-100 Tórshavn, Faroe Islands
| |
Collapse
|
19
|
Arkhipkin AI, Brickle P, Lee B, Shaw PW, McKeown NJ. Taxonomic re-appraisal for toothfish (Dissostichus: Notothenioidea) across the Antarctic Polar Front using genomic and morphological studies. JOURNAL OF FISH BIOLOGY 2022; 100:1158-1170. [PMID: 35174488 DOI: 10.1111/jfb.15013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/03/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
The Patagonian toothfish, Dissostichus eleginoides, is one of the largest predatory fishes inhabiting Southern Ocean waters spanning the Antarctic Polar Front (APF), a prominent biogeographic boundary restricting gene flow and driving species divergence between Antarctic and sub-Antarctic waters. In the light of emerging threats to toothfish conservation and sustainability, this study investigated genetic [mtDNA sequences and genome wide nuclear single nucleotide polymorphisms (SNPs)] and morphological data to critically evaluate the taxonomic status of toothfish north (Chile and Patagonian shelf) and south (South Georgia and South Sandwich Islands) of the APF. mtDNA revealed reciprocally monophyletic lineages on either side of the APF with coalescent analysis indicating these diverged during the Pleistocene. Integration with data from other sources suggests the Chilean/Patagonian lineage is endemic. SNP analysis confirmed restricted nuclear gene flow between both groups and revealed a consensus suite of positive outlier SNPs compatible with adaptive divergence between these groups. Finally, several morphological features permit unequivocal assignment of individuals to either of the clades. Based on the genetic, phenotypic and ecological divergence, the authors propose that toothfish on either side of the APF be recognised as distinct species, with the name D. eleginoides used for toothfish occurring in South American waters north of the APF and toothfish south of the APF being classified using the new name D. australis reflecting their southern distribution.
Collapse
Affiliation(s)
| | - Paul Brickle
- South Atlantic Environmental Research Institute (SAERI), Stanley, Falkland Islands
| | - Brendon Lee
- Fisheries Department, Stanley, Falkland Islands
| | - Paul W Shaw
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - Niall J McKeown
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| |
Collapse
|
20
|
Manuzzi A, Jiménez-Mena B, Henriques R, Holmes BJ, Pepperell J, Edson J, Bennett MB, Huveneers C, Ovenden JR, Nielsen EE. Retrospective genomics highlights changes in genetic composition of tiger sharks (Galeocerdo cuvier) and potential loss of a south-eastern Australia population. Sci Rep 2022; 12:6582. [PMID: 35449439 PMCID: PMC9023511 DOI: 10.1038/s41598-022-10529-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 04/06/2022] [Indexed: 11/08/2022] Open
Abstract
Over the last century, many shark populations have declined, primarily due to overexploitation in commercial, artisanal and recreational fisheries. In addition, in some locations the use of shark control programs also has had an impact on shark numbers. Still, there is a general perception that populations of large ocean predators cover wide areas and therefore their diversity is less susceptible to local anthropogenic disturbance. Here we report on temporal genomic analyses of tiger shark (Galeocerdo cuvier) DNA samples that were collected from eastern Australia over the past century. Using Single Nucleotide Polymorphism (SNP) loci, we documented a significant change in genetic composition of tiger sharks born between ~1939 and 2015. The change was most likely due to a shift over time in the relative contribution of two well-differentiated, but hitherto cryptic populations. Our data strongly indicate a dramatic shift in the relative contribution of these two populations to the overall tiger shark abundance on the east coast of Australia, possibly associated with differences in direct or indirect exploitation rates.
Collapse
Affiliation(s)
- Alice Manuzzi
- National Institute of Aquatic Resources, Technical University of Denmark, Vejlsøvej 39, 8600, Silkeborg, Denmark.
| | - Belen Jiménez-Mena
- National Institute of Aquatic Resources, Technical University of Denmark, Vejlsøvej 39, 8600, Silkeborg, Denmark
| | - Romina Henriques
- National Institute of Aquatic Resources, Technical University of Denmark, Vejlsøvej 39, 8600, Silkeborg, Denmark
| | - Bonnie J Holmes
- School of Science, Technology & Engineering, University of the Sunshine Coast, Sippy Downs, QLD, 4556, Australia
| | - Julian Pepperell
- Pepperell Research and Consulting, PO Box 1475, Noosaville DC, QLD, 4566, Australia
| | - Janette Edson
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Mike B Bennett
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Charlie Huveneers
- College of Science and Engineering, Flinders University, Adelaide, SA, 5001, Australia
| | - Jennifer R Ovenden
- Molecular Fisheries Laboratory, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Einar E Nielsen
- National Institute of Aquatic Resources, Technical University of Denmark, Vejlsøvej 39, 8600, Silkeborg, Denmark
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
21
|
Bodin N, Amiel A, Fouché E, Sardenne F, Chassot E, Debrauwer L, Guillou H, Tremblay-Franco M, Canlet C. NMR-based metabolic profiling and discrimination of wild tropical tunas by species, size category, geographic origin, and on-board storage condition. Food Chem 2022; 371:131094. [PMID: 34583182 DOI: 10.1016/j.foodchem.2021.131094] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/17/2021] [Accepted: 09/06/2021] [Indexed: 12/15/2022]
Abstract
Tunas are among the most traded and valued fish species, and good traceability of tuna products in the world market is needed to protect both consumers and tuna stocks. To that purpose, high-resolution proton nuclear magnetic resonance (1H NMR) spectroscopy combined with multivariate data analysis was used to investigate the molecular components of the aqueous extract of white and red muscles in three species of wild tropical tuna species, namely yellowfin tuna (Thunnus albacares), skipjack tuna (Katsuwonus pelamis) and bigeye tuna (T. obesus). Principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) applied to the processed 1H NMR spectra showed significant separation according to the species and size category (i.e., small tunas < 80 cm fork length vs large tunas > 80 cm fork length), the storage conditions on-board the purse-seine vessels (i.e., brine- vs deep-freezing), and the geographical origin (i.e., where the tuna was caught: Mozambique Channel vs western-central Indian Ocean). The major groups of metabolites responsible for differentiation in PLS-DA score plots were the dipeptides (anserine, carnosine) and organic acids (lactate, creatine/phosphocreatine) in the white muscle, and the free amino acids, essential nutrients (choline and its derivatives, phosphatidylethanolamine), dipeptides and organic acids in the red muscle. Our results showed that NMR-based metabolomics is a powerful tool to efficiently discriminate specific profiles among wild tuna species, raw muscle tissues, fish storage conditions and tuna geographical origin.
Collapse
Affiliation(s)
- Nathalie Bodin
- Research Institute for Sustainable Development (IRD), Victoria, Mahé, Seychelles; Sustainable Ocean Seychelles (SOS), BeauBelle, Mahé, Seychelles.
| | - Aurélien Amiel
- Research Institute for Sustainable Development (IRD), Victoria, Mahé, Seychelles; Toxalim (Research Centre in Food Toxicology), Toulouse University, INRAE UMR 1331, ENVT, INP-Purpan, UPS, Toulouse, France; Metatoul-AXIOM Platform, National Infrastructure for Metabolomics and Fluxomics: MetaboHUB, Toxalim, INRAE, Toulouse, France
| | - Edwin Fouché
- Research Institute for Sustainable Development (IRD), Victoria, Mahé, Seychelles; Toxalim (Research Centre in Food Toxicology), Toulouse University, INRAE UMR 1331, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Fany Sardenne
- Research Institute for Sustainable Development (IRD), Victoria, Mahé, Seychelles
| | - Emmanuel Chassot
- Research Institute for Sustainable Development (IRD), Victoria, Mahé, Seychelles
| | - Laurent Debrauwer
- Toxalim (Research Centre in Food Toxicology), Toulouse University, INRAE UMR 1331, ENVT, INP-Purpan, UPS, Toulouse, France; Metatoul-AXIOM Platform, National Infrastructure for Metabolomics and Fluxomics: MetaboHUB, Toxalim, INRAE, Toulouse, France
| | - Hervé Guillou
- Toxalim (Research Centre in Food Toxicology), Toulouse University, INRAE UMR 1331, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Marie Tremblay-Franco
- Toxalim (Research Centre in Food Toxicology), Toulouse University, INRAE UMR 1331, ENVT, INP-Purpan, UPS, Toulouse, France; Metatoul-AXIOM Platform, National Infrastructure for Metabolomics and Fluxomics: MetaboHUB, Toxalim, INRAE, Toulouse, France
| | - Cécile Canlet
- Toxalim (Research Centre in Food Toxicology), Toulouse University, INRAE UMR 1331, ENVT, INP-Purpan, UPS, Toulouse, France; Metatoul-AXIOM Platform, National Infrastructure for Metabolomics and Fluxomics: MetaboHUB, Toxalim, INRAE, Toulouse, France
| |
Collapse
|
22
|
Baetscher DS, Beck J, Anderson EC, Ruegg K, Ramey AM, Hatch S, Nevins H, Fitzgerald SM, Carlos Garza J. Genetic assignment of fisheries bycatch reveals disproportionate mortality among Alaska Northern Fulmar breeding colonies. Evol Appl 2022; 15:447-458. [PMID: 35386403 PMCID: PMC8965376 DOI: 10.1111/eva.13357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 11/26/2022] Open
Abstract
Global fisheries kill millions of seabirds annually through bycatch, but little is known about population-level impacts, particularly in species that form metapopulations. U.S. North Pacific groundfish fisheries catch thousands of Northern Fulmars (Fulmarus glacialis rodgersii) each year, making fulmars the most frequently caught seabird in federally managed U.S. fisheries. Here, we used genetic stock identification to assign 1,536 fulmars sampled as bycatch to one of four Alaska breeding colonies and quantified the similarity of bycatch locations at sea among colonies. We found disproportionately high bycatch from the Pribilof Islands (6% of metapopulation, 23% of bycatch), and disproportionately low bycatch from Chagulak Island (34% of metapopulation, 14% of bycatch). Overlap between fisheries and colony-specific foraging areas diverge more during the summer breeding season, leading to greater differences in bycatch susceptibility. Contemporary and historical gene flow likely contributes to low genetic differentiation among colonies (FST = 0.003-0.01), yet these values may not represent present connectivity. Our findings illustrate how genetic stock identification can link at-sea threats to colonies and inform management to reduce bycatch from impacted colonies.
Collapse
Affiliation(s)
- Diana S. Baetscher
- University of California Santa CruzSanta CruzCaliforniaUSA
- NOAA Southwest Fisheries Science CenterSanta CruzCaliforniaUSA
- Present address:
Auke Bay LaboratoriesNOAA Alaska Fisheries Science CenterJuneauAlaskaUSA
| | - Jessie Beck
- Oikonos Ecosystem KnowledgeSanta CruzCaliforniaUSA
| | | | | | - Andrew M. Ramey
- U.S. Geological Survey Alaska Science CenterAnchorageAlaskaUSA
| | - Scott Hatch
- Institute for Seabird Research and ConservationAnchorageAlaskaUSA
| | | | | | - John Carlos Garza
- University of California Santa CruzSanta CruzCaliforniaUSA
- NOAA Southwest Fisheries Science CenterSanta CruzCaliforniaUSA
| |
Collapse
|
23
|
Koot E, Wu C, Ruza I, Hilario E, Storey R, Wells R, Chagné D, Wellenreuther M. Genome-wide analysis reveals the genetic stock structure of hoki ( Macruronus novaezelandiae). Evol Appl 2021; 14:2848-2863. [PMID: 34950233 PMCID: PMC8674887 DOI: 10.1111/eva.13317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 12/23/2022] Open
Abstract
The assessment of the genetic structuring of biodiversity is crucial for management and conservation. This is particularly critical for widely distributed and highly mobile deep-water teleosts, such as hoki (Macruronus novaezelandiae). This species is significant to Māori people and supports the largest commercial fishery in New Zealand, but uncertainty about its stock structure presents a challenge for management. Here, we apply a comprehensive genomic analysis to shed light on the demographic structure of this species by (1) assembling the genome, (2) generating a catalogue of genome-wide SNPs to infer the stock structure and (3) identifying regions of the genome under selection. The final genome assembly used short and long reads and is near complete, representing 93.8% of BUSCO genes, and consisting of 566 contigs totalling 501 Mb. Whole-genome re-sequencing of 510 hoki sampled from 14 locations around New Zealand and Australia, at a read depth greater than 10×, produced 227,490 filtered SNPs. Analyses of these SNPs were able to resolve the stock structure of hoki into two genetically and geographically distinct clusters, one including the Australian and the other one all New Zealand locations, indicating genetic exchange between these regions is limited. Location differences within New Zealand samples were much more subtle (global F ST = 0.0006), and while small and significant differences could be detected, they did not conclusively identify additional substructures. Ten putative adaptive SNPs were detected within the New Zealand samples, but these also did not geographically partition the dataset further. Contemporary and historical N e estimation suggest the current New Zealand population of hoki is large yet declining. Overall, our study provides the first genomic resources for hoki and provides detailed insights into the fine-scale population genetic structure to inform the management of this species.
Collapse
Affiliation(s)
- Emily Koot
- The New Zealand Institute for Plant and Food Research LtdPalmerston NorthNew Zealand
| | - Chen Wu
- The New Zealand Institute for Plant and Food Research LtdAucklandNew Zealand
| | - Igor Ruza
- The New Zealand Institute for Plant and Food Research LtdNelsonNew Zealand
| | - Elena Hilario
- The New Zealand Institute for Plant and Food Research LtdAucklandNew Zealand
| | - Roy Storey
- The New Zealand Institute for Plant and Food Research LtdTe PukeNew Zealand
| | | | - David Chagné
- The New Zealand Institute for Plant and Food Research LtdPalmerston NorthNew Zealand
| | - Maren Wellenreuther
- The New Zealand Institute for Plant and Food Research LtdNelsonNew Zealand
- School of Biological SciencesThe University of AucklandAucklandNew Zealand
| |
Collapse
|
24
|
Zhao L, Qu F, Song N, Han Z, Gao T, Zhang Z. Population genomics provides insights into the population structure and temperature-driven adaptation of Collichthys lucidus. BMC Genomics 2021; 22:729. [PMID: 34625022 PMCID: PMC8501621 DOI: 10.1186/s12864-021-08045-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 09/27/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Understanding the genetic structure and local adaptive evolutionary mechanisms of marine organisms is crucial for the management of biological resources. As the ecologically and commercially important small-sized shallow-sea fish, Collichthys lucidus plays a vital role in the structure and functioning of marine ecosystem processes. C. lucidus has been shown to have an obvious population structure. Therefore, it is an ideal candidate for investigating population differentiation and local adaptation under heterogeneous environmental pressure. RESULTS A total of 184,708 high-quality single nucleotide polymorphisms (SNPs) were identified and applied to elucidate the fine-scale genetic structure and local thermal adaptation of 8 C. lucidus populations. Population structure analysis based on all SNPs indicated that the northern group and southern group of C. lucidus have a strong differentiation. Moreover, 314 SNPs were found to be significantly associated with temperature variation, and annotations of genes containing temperature-related SNPs suggested that genes were involved in material (protein, lipid, and carbohydrate) metabolism and immune responses. CONCLUSION The high genetic differentiation of 8 C. lucidus populations may have been caused by long-term geographic isolation during the glacial period. Moreover, we suspected that variation in these genes associated with material (protein, lipid, and carbohydrate) metabolism and immune responses was critical for adaptation to spatially heterogeneous temperatures in natural C. lucidus populations. In conclusion, this study could help us determine how C. lucidus populations will respond to future ocean temperature rising.
Collapse
Affiliation(s)
- Linlin Zhao
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao, Shandong, 266100, P. R. China
| | - Fangyuan Qu
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao, Shandong, 266100, P. R. China
| | - Na Song
- Fisheries College, Ocean University of China, Qingdao, Shandong, 266003, P. R. China
| | - Zhiqiang Han
- School of Fishery, Zhejiang Ocean University, Zhoushan, Zhejiang, 316004, P. R. China
| | - Tianxiang Gao
- School of Fishery, Zhejiang Ocean University, Zhoushan, Zhejiang, 316004, P. R. China
| | - Zhaohui Zhang
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao, Shandong, 266100, P. R. China.
| |
Collapse
|
25
|
Hierarchical genetic structure in an evolving species complex: Insights from genome wide ddRAD data in Sebastes mentella. PLoS One 2021; 16:e0251976. [PMID: 34043665 PMCID: PMC8158871 DOI: 10.1371/journal.pone.0251976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 05/06/2021] [Indexed: 11/22/2022] Open
Abstract
The diverse biology and ecology of marine organisms may lead to complex patterns of intraspecific diversity for both neutral and adaptive genetic variation. Sebastes mentella displays a particular life-history as livebearers, for which existence of multiple ecotypes has been suspected to complicate the genetic population structure of the species. Double digest restriction-site associated DNA was used to investigate genetic population structure in S. mentella and to scan for evidence of selection. In total, 42,288 SNPs were detected in 277 fish, and 1,943 neutral and 97 tentatively adaptive loci were selected following stringent filtration. Unprecedented levels of genetic differentiation were found among the previously defined ‘shallow pelagic’, ‘deep pelagic’ and ‘demersal slope’ ecotypes, with overall mean FST = 0.05 and 0.24 in neutral and outlier SNPs, respectively. Bayesian computation estimated a concurrent and historical divergence among these three ecotypes and evidence of local adaptation was found in the S. mentella genome. Overall, these findings imply that the depth-defined habitat divergence of S. mentella has led to reproductive isolation and possibly adaptive radiation among these ecotypes. Additional sub-structuring was detected within the ‘shallow’ and ‘deep’ pelagic ecotypes. Population assignment of individual fish showed more than 94% agreement between results based on SNP and previously generated microsatellite data, but the SNP data provided a lower estimate of hybridization among the ecotypes than that by microsatellite data. We identified a SNP panel with only 21 loci to discriminate populations in mixed samples based on a machine-learning algorithm. This first SNP based investigation clarifies the population structure of S. mentella, and provides novel and high-resolution genomic tools for future investigations. The insights and tools provided here can readily be incorporated into the management of S. mentella and serve as a template for other exploited marine species exhibiting similar complex life history traits.
Collapse
|
26
|
Lou F, Gao T, Han Z. Identification of putative key genes for thermal adaptation in the Japanese mantis shrimp (Oratosquilla oratoria) through population genomic analysis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 39:100828. [PMID: 33838619 DOI: 10.1016/j.cbd.2021.100828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 03/19/2021] [Accepted: 03/21/2021] [Indexed: 10/21/2022]
Abstract
Little is known about the mechanisms underlying the relationship between genetic variation and the adaptation of Oratosquilla oratoria populations to different habitat temperature. Here, the genome-wide genetic information of three O. oratoria populations were obtained by IIB restriction site-associated DNA (2b-RAD) sequencing and 2403 single-nucleotide polymorphisms (SNPs) were identified. Based on the 2403 SNPs, we found a remarkable genetic differentiation between the Yellow Sea and the East China Sea groups of O. oratoria. Furthermore, 63 SNPs are thought to be associated with different sea temperatures. Based on the 63 SNPs, it is hypothesised that the long-term temperature differences may contribute to the variation of genes associated with multiple biological functions, such as material metabolism, cytoskeleton, cellular processes, inflammatory response and hormonal regulation. This study provides new information for elucidating the molecular mechanisms underlying the relationship between genetic variation and the adaptation of Oratosquilla oratoria populations to different temperature.
Collapse
Affiliation(s)
- Fangrui Lou
- Fishery College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China; School of Ocean, Yantai University, Yantai, Shandong 264005, China
| | - Tianxiang Gao
- Fishery College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China
| | - Zhiqiang Han
- Fishery College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China.
| |
Collapse
|
27
|
Sort M, Manuzzi A, Jiménez-Mena B, Ovenden JR, Holmes BJ, Bernard AM, Shivji MS, Meldrup D, Bennett MB, Nielsen EE. Come together: calibration of tiger shark (Galeocerdo cuvier) microsatellite databases for investigating global population structure and assignment of historical specimens. CONSERV GENET RESOUR 2021. [DOI: 10.1007/s12686-021-01197-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
28
|
Benestan LM, Rougemont Q, Senay C, Normandeau E, Parent E, Rideout R, Bernatchez L, Lambert Y, Audet C, Parent GJ. Population genomics and history of speciation reveal fishery management gaps in two related redfish species ( Sebastes mentella and Sebastes fasciatus). Evol Appl 2021; 14:588-606. [PMID: 33664797 PMCID: PMC7896722 DOI: 10.1111/eva.13143] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 08/27/2020] [Accepted: 09/01/2020] [Indexed: 12/18/2022] Open
Abstract
Understanding the processes shaping population structure and reproductive isolation of marine organisms can improve their management and conservation. Using genomic markers combined with estimation of individual ancestries, assignment tests, spatial ecology, and demographic modeling, we (i) characterized the contemporary population structure, (ii) assessed the influence of space, fishing depth, and sampling years on contemporary distribution, and (iii) reconstructed the speciation history of two cryptic redfish species, Sebastes mentella and S. fasciatus. We genotyped 860 individuals in the Northwest Atlantic Ocean using 24,603 filtered single nucleotide polymorphisms (SNPs). Our results confirmed the clear genetic distinctiveness of the two species and identified three ecotypes within S. mentella and five populations in S. fasciatus. Multivariate analyses highlighted the influence of spatial distribution and depth on the overall genomic variation, while demographic modeling revealed that secondary contact models best explained inter- and intragenomic divergence. These species, ecotypes, and populations can be considered as a rare and wide continuum of genomic divergence in the marine environment. This acquired knowledge pertaining to the evolutionary processes driving population divergence and reproductive isolation will help optimizing the assessment of demographic units and possibly to refine fishery management units.
Collapse
Affiliation(s)
- Laura M. Benestan
- CEFEUniv Montpellier, CNRS, EPHE‐PSL UniversityIRD, Univ Paul Valéry Montpellier 3MontpellierFrance
| | - Quentin Rougemont
- Département de biologie, Institut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecQCCanada
| | - Caroline Senay
- Fisheries and Oceans CanadaMaurice‐Lamontagne InstituteMont‐JoliQCCanada
| | - Eric Normandeau
- Département de biologie, Institut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecQCCanada
| | - Eric Parent
- Fisheries and Oceans CanadaMaurice‐Lamontagne InstituteMont‐JoliQCCanada
| | - Rick Rideout
- Fisheries and Oceans CanadaNorthwest Atlantic Fisheries CentreN.L.St. John’sCanada
| | - Louis Bernatchez
- Département de biologie, Institut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecQCCanada
| | - Yvan Lambert
- Fisheries and Oceans CanadaMaurice‐Lamontagne InstituteMont‐JoliQCCanada
| | - Céline Audet
- Institut des sciences de la mer de RimouskiUniversité du Québec à RimouskiRimouskiQCCanada
| | | |
Collapse
|
29
|
Discovery of SNP markers of red shrimp Aristeus antennatus for population structure in Western Mediterranean Sea. CONSERV GENET RESOUR 2020. [DOI: 10.1007/s12686-020-01178-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
30
|
Quintela M, Kvamme C, Bekkevold D, Nash RDM, Jansson E, Sørvik AG, Taggart JB, Skaala Ø, Dahle G, Glover KA. Genetic analysis redraws the management boundaries for the European sprat. Evol Appl 2020; 13:1906-1922. [PMID: 32908594 PMCID: PMC7463317 DOI: 10.1111/eva.12942] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 02/03/2020] [Accepted: 02/21/2020] [Indexed: 12/12/2022] Open
Abstract
Sustainable fisheries management requires detailed knowledge of population genetic structure. The European sprat is an important commercial fish distributed from Morocco to the Arctic circle, Baltic, Mediterranean, and Black seas. Prior to 2018, annual catch advice on sprat from the International Council for the Exploration of the Sea (ICES) was based on five putative stocks: (a) North Sea, (b) Kattegat-Skagerrak and Norwegian fjords, (c) Baltic Sea, (d) West of Scotland-southern Celtic Seas, and (e) English Channel. However, there were concerns that the sprat advice on stock size estimates management plan inadequately reflected the underlying biological units. Here, we used ddRAD sequencing to develop 91 SNPs that were thereafter used to genotype approximately 2,500 fish from 40 locations. Three highly distinct and relatively homogenous genetic groups were identified: (a) Norwegian fjords; (b) Northeast Atlantic including the North Sea, Kattegat-Skagerrak, Celtic Sea, and Bay of Biscay; and (c) Baltic Sea. Evidence of genetic admixture and possibly physical mixing was detected in samples collected from the transition zone between the North and Baltic seas, but not between any of the other groups. These results have already been implemented by ICES with the decision to merge the North Sea and the Kattegat-Skagerrak sprat to be assessed as a single unit, thus demonstrating that genetic data can be rapidly absorbed to align harvest regimes and biological units.
Collapse
Affiliation(s)
| | | | - Dorte Bekkevold
- DTU-Aqua National Institute of Aquatic Resources Technical University of Denmark Silkeborg Denmark
| | | | | | | | - John B Taggart
- Institute of Aquaculture School of Natural Sciences University of Stirling Stirling UK
| | | | - Geir Dahle
- Institute of Marine Research Bergen Norway
| | - Kevin A Glover
- Institute of Marine Research Bergen Norway
- Institute of Biology University of Bergen Bergen Norway
| |
Collapse
|
31
|
Coscia I, Wilmes SB, Ironside JE, Goward-Brown A, O'Dea E, Malham SK, McDevitt AD, Robins PE. Fine-scale seascape genomics of an exploited marine species, the common cockle Cerastoderma edule, using a multimodelling approach. Evol Appl 2020; 13:1854-1867. [PMID: 32908590 PMCID: PMC7463313 DOI: 10.1111/eva.12932] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 01/21/2020] [Indexed: 12/11/2022] Open
Abstract
Population dynamics of marine species that are sessile as adults are driven by oceanographic dispersal of larvae from spawning to nursery grounds. This is mediated by life-history traits such as the timing and frequency of spawning, larval behaviour and duration, and settlement success. Here, we use 1725 single nucleotide polymorphisms (SNPs) to study the fine-scale spatial genetic structure in the commercially important cockle species Cerastoderma edule and compare it to environmental variables and current-mediated larval dispersal within a modelling framework. Hydrodynamic modelling employing the NEMO Atlantic Margin Model (AMM15) was used to simulate larval transport and estimate connectivity between populations during spawning months (April-September), factoring in larval duration and interannual variability of ocean currents. Results at neutral loci reveal the existence of three separate genetic clusters (mean F ST = 0.021) within a relatively fine spatial scale in the north-west Atlantic. Environmental association analysis indicates that oceanographic currents and geographic proximity explain over 20% of the variance observed at neutral loci, while genetic variance (71%) at outlier loci was explained by sea surface temperature extremes. These results fill an important knowledge gap in the management of a commercially important and overexploited species, bringing us closer to understanding the role of larval dispersal in connecting populations at a fine geographic scale.
Collapse
Affiliation(s)
- Ilaria Coscia
- Ecosystems and Environment Research Centre School of Science, Engineering and Environment University of Salford Salford UK
| | - Sophie B Wilmes
- School of Ocean Sciences Marine Centre Wales Bangor University Menai Bridge UK
| | - Joseph E Ironside
- Institute of Biological, Environmental and Rural Sciences Aberystwyth University, Penglais Aberystwyth UK
| | - Alice Goward-Brown
- School of Ocean Sciences Marine Centre Wales Bangor University Menai Bridge UK
| | | | - Shelagh K Malham
- School of Ocean Sciences Marine Centre Wales Bangor University Menai Bridge UK
| | - Allan D McDevitt
- Ecosystems and Environment Research Centre School of Science, Engineering and Environment University of Salford Salford UK
| | - Peter E Robins
- School of Ocean Sciences Marine Centre Wales Bangor University Menai Bridge UK
| |
Collapse
|
32
|
Genomes of major fishes in world fisheries and aquaculture: Status, application and perspective. AQUACULTURE AND FISHERIES 2020. [DOI: 10.1016/j.aaf.2020.05.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
33
|
Bourret V, Albert V, April J, Côté G, Morissette O. Past, present and future contributions of evolutionary biology to wildlife forensics, management and conservation. Evol Appl 2020; 13:1420-1434. [PMID: 32684967 PMCID: PMC7359848 DOI: 10.1111/eva.12977] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 03/27/2020] [Accepted: 03/31/2020] [Indexed: 12/14/2022] Open
Abstract
Successfully implementing fundamental concepts into concrete applications is challenging in any given field. It requires communication, collaboration and shared will between researchers and practitioners. We argue that evolutionary biology, through research work linked to conservation, management and forensics, had a significant impact on wildlife agencies and department practices, where new frameworks and applications have been implemented over the last decades. The Quebec government's Wildlife Department (MFFP: Ministère des Forêts, de la Faune et des Parcs) has been proactive in reducing the “research–implementation” gap, thanks to prolific collaborations with many academic researchers. Among these associations, our department's outstanding partnership with Dr. Louis Bernatchez yielded significant contributions to harvest management, stocking programmes, definition of conservation units, recovery of threatened species, management of invasive species and forensic applications. We discuss key evolutionary biology concepts and resulting concrete examples of their successful implementation that derives directly or indirectly from this successful partnership. While old and new threats to wildlife are bringing new challenges, we expect recent developments in eDNA and genomics to provide innovative solutions as long as the research–implementation bridge remains open.
Collapse
Affiliation(s)
- Vincent Bourret
- Direction générale de la protection de la faune Ministère des Forêts, de la Faune et des Parcs Québec QC Canada
| | - Vicky Albert
- Direction générale de la protection de la faune Ministère des Forêts, de la Faune et des Parcs Québec QC Canada
| | - Julien April
- Direction générale de la gestion de la faune et des habitats Ministère des Forêts, de la Faune et des Parcs Québec QC Canada
| | - Guillaume Côté
- Direction générale de la gestion de la faune et des habitats Ministère des Forêts, de la Faune et des Parcs Québec QC Canada
| | - Olivier Morissette
- Direction générale de la gestion de la faune et des habitats Ministère des Forêts, de la Faune et des Parcs Québec QC Canada
| |
Collapse
|
34
|
Dormontt E, Jardine D, van Dijk KJ, Dunker B, Dixon R, Hipkins V, Tobe S, Linacre A, Lowe A. Forensic validation of a SNP and INDEL panel for individualisation of timber from bigleaf maple (Acer macrophyllum Pursch). Forensic Sci Int Genet 2020; 46:102252. [DOI: 10.1016/j.fsigen.2020.102252] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/22/2019] [Accepted: 01/19/2020] [Indexed: 10/25/2022]
|
35
|
Hoey JA, Fodrie FJ, Walker QA, Hilton EJ, Kellison GT, Targett TE, Taylor JC, Able KW, Pinsky ML. Using multiple natural tags provides evidence for extensive larval dispersal across space and through time in summer flounder. Mol Ecol 2020; 29:1421-1435. [PMID: 32176403 DOI: 10.1111/mec.15414] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 02/20/2020] [Accepted: 03/03/2020] [Indexed: 12/19/2022]
Abstract
Dispersal sets the fundamental scales of ecological and evolutionary dynamics and has important implications for population persistence. Patterns of marine dispersal remain poorly understood, partly because dispersal may vary through time and often homogenizes allele frequencies. However, combining multiple types of natural tags can provide more precise dispersal estimates, and biological collections can help to reconstruct dispersal patterns through time. We used single nucleotide polymorphism genotypes and otolith core microchemistry from archived collections of larval summer flounder (Paralichthys dentatus, n = 411) captured between 1989 and 2012 at five locations along the US East coast to reconstruct dispersal patterns through time. Neither genotypes nor otolith microchemistry alone were sufficient to identify the source of larval fish. However, microchemistry identified clusters of larvae (n = 3-33 larvae per cluster) that originated in the same location, and genetic assignment of clusters could be made with substantially more confidence. We found that most larvae probably originated near a biogeographical break (Cape Hatteras) and that larvae were transported in both directions across this break. Larval sources did not shift north through time, despite the northward shift of adult populations in recent decades. Our novel approach demonstrates that summer flounder dispersal is widespread throughout their range, on both intra- and intergenerational timescales, and may be a particularly important process for synchronizing population dynamics and maintaining genetic diversity during an era of rapid environmental change. Broadly, our results reveal the value of archived collections and of combining multiple natural tags to understand the magnitude and directionality of dispersal in species with extensive gene flow.
Collapse
Affiliation(s)
- Jennifer A Hoey
- Ecology, Evolution, & Natural Resources, Rutgers University, New Brunswick, NJ, USA
| | - F Joel Fodrie
- Institute of Marine Sciences, University of North Carolina at Chapel Hill, Morehead City, NC, USA
| | - Quentin A Walker
- NOAA, National Centers for Coastal Ocean Science, Beaufort Laboratory, Beaufort, NC, USA.,CSS-Inc., Fairfax, VA, USA
| | - Eric J Hilton
- Department of Fisheries Science, College of William and Mary, Virginia Institute of Marine Science, Gloucester Point, VA, USA
| | - G Todd Kellison
- NOAA, Southeast Fisheries Science Center, Beaufort Laboratory, Beaufort, NC, USA
| | - Timothy E Targett
- School of Marine Science and Policy, College of Earth, Ocean, & Environment, University of Delaware, Lewes, DE, USA
| | - J Christopher Taylor
- NOAA, National Centers for Coastal Ocean Science, Beaufort Laboratory, Beaufort, NC, USA
| | - Kenneth W Able
- Marine Field Station, Department of Marine and Coastal Sciences, Rutgers University, Tuckerton, NJ, USA
| | - Malin L Pinsky
- Ecology, Evolution, & Natural Resources, Rutgers University, New Brunswick, NJ, USA
| |
Collapse
|
36
|
Barendse J, Roel A, Longo C, Andriessen L, Webster LMI, Ogden R, Neat F. DNA barcoding validates species labelling of certified seafood. Curr Biol 2020; 29:R198-R199. [PMID: 30889387 DOI: 10.1016/j.cub.2019.02.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Seafood is one of the most traded food commodities in the world with demand steadily increasing [1]. There is, however, a rising concern over the vulnerability of seafood supply chains to species mislabelling and fraud [1,2]. DNA methods have been widely used to detect species mislabelling and a recent meta-analysis of 4500 seafood product tests from 51 publications found an average of 30 percent were not the species stated on the label or menu [3]. This high rate poses a serious threat to consumer trust, reputations of seafood businesses and the sustainability of fishery resources. Seafood certification schemes may help reduce this problem. Here, we use DNA barcoding [4] to validate the species identity of 1402 certified seafood products derived from 27 species across 18 countries and find that in over 99% of cases species labelling was correct.
Collapse
Affiliation(s)
- Jaco Barendse
- Marine Stewardship Council, 1 Snow Hill, London, EC1A 2DH, UK; Sustainability Research Unit (SRU), Nelson Mandela University, George Campus, South Africa
| | - Alison Roel
- Marine Stewardship Council, 1 Snow Hill, London, EC1A 2DH, UK
| | - Catherine Longo
- Marine Stewardship Council, 1 Snow Hill, London, EC1A 2DH, UK
| | | | - Lucy M I Webster
- Science and Advice for Scottish Agriculture (SASA), Roddinglaw Road, Edinburgh, EH12 9FJ, UK
| | - Rob Ogden
- Royal (Dick) School of Veterinary Studies and the Roslin Institute, University of Edinburgh, EH25 9RG, UK; TRACE Wildlife Forensics Network, Edinburgh, EH12 6LE, UK
| | - Francis Neat
- Marine Stewardship Council, 1 Snow Hill, London, EC1A 2DH, UK.
| |
Collapse
|
37
|
Jiang S, Ma X, Li T, Zhu C, You X. Developing Single Nucleotide Polymorphisms for Identification of Cod Products by RAD-Seq. Animals (Basel) 2020; 10:E423. [PMID: 32138187 PMCID: PMC7142540 DOI: 10.3390/ani10030423] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/27/2020] [Accepted: 02/29/2020] [Indexed: 11/30/2022] Open
Abstract
The increase in the rate of seafood fraud, particularly in the expensive fishes, forces us to verify the identity of marine products. Meanwhile, the definition of cod lacks consistency at the international level, as few standards and effective application methods are capable of accurately detecting cod species. Genetic fingerprinting is important for both certifying authenticity and traceability of fish species. In this study, we developed a method that combines DNA barcoding and the restriction-site associated DNA sequencing (RAD-Seq) approach for the identification of cod products. We first obtained 6941 high-quality single nucleotide polymorphism (SNP)s from 65.6 gigabases (Gb) of RAD-Seq raw data, and two sequences that contain SNPs were finally used to successfully identify three different cod product species, which are Atlantic cod (Gadus morhua), Greenland turbot (Reinhardtius hippoglossoides), and Patagonian toothfish (Dissostichus eleginoides). This SNP-based method will help us to identify the products, which are sold under the name of "Xue Yu" (Cod) in China, and works in parallel with existing fish identification techniques to establish an efficient framework to detect and prevent fraud at all points of the seafood supply chain.
Collapse
Affiliation(s)
- Shoujia Jiang
- BGI Zhenjiang Detection Co., LTD, Zhenjiang 212132, China; (S.J.); (X.M.); (T.L.)
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China
| | - Xingyu Ma
- BGI Zhenjiang Detection Co., LTD, Zhenjiang 212132, China; (S.J.); (X.M.); (T.L.)
| | - Tao Li
- BGI Zhenjiang Detection Co., LTD, Zhenjiang 212132, China; (S.J.); (X.M.); (T.L.)
| | - Changqing Zhu
- Childhood Food Institute, School of Food Science, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Xinxin You
- BGI Zhenjiang Detection Co., LTD, Zhenjiang 212132, China; (S.J.); (X.M.); (T.L.)
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China
| |
Collapse
|
38
|
Sigsgaard EE, Jensen MR, Winkelmann IE, Møller PR, Hansen MM, Thomsen PF. Population-level inferences from environmental DNA-Current status and future perspectives. Evol Appl 2020; 13:245-262. [PMID: 31993074 PMCID: PMC6976968 DOI: 10.1111/eva.12882] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 10/07/2019] [Indexed: 01/01/2023] Open
Abstract
Environmental DNA (eDNA) extracted from water samples has recently shown potential as a valuable source of population genetic information for aquatic macroorganisms. This approach offers several potential advantages compared with conventional tissue-based methods, including the fact that eDNA sampling is noninvasive and generally more cost-efficient. Currently, eDNA approaches have been limited to single-marker studies of mitochondrial DNA (mtDNA), and the relationship between eDNA haplotype composition and true haplotype composition still needs to be thoroughly verified. This will require testing of bioinformatic and statistical software to correct for erroneous sequences, as well as biases and random variation in relative sequence abundances. However, eDNA-based population genetic methods have far-reaching potential for both basic and applied research. In this paper, we present a brief overview of the achievements of eDNA-based population genetics to date, and outline the prospects for future developments in the field, including the estimation of nuclear DNA (nuDNA) variation and epigenetic information. We discuss the challenges associated with eDNA samples as opposed to those of individual tissue samples and assess whether eDNA might offer additional types of information unobtainable with tissue samples. Lastly, we provide recommendations for determining whether an eDNA approach would be a useful and suitable choice in different research settings. We limit our discussion largely to contemporary aquatic systems, but the advantages, challenges, and perspectives can to a large degree be generalized to eDNA studies with a different spatial and temporal focus.
Collapse
Affiliation(s)
| | | | | | - Peter Rask Møller
- Natural History Museum of DenmarkUniversity of CopenhagenCopenhagen ØDenmark
| | | | | |
Collapse
|
39
|
Bekkevold D, Höjesjö J, Nielsen EE, Aldvén D, Als TD, Sodeland M, Kent MP, Lien S, Hansen MM. Northern European Salmo trutta (L.) populations are genetically divergent across geographical regions and environmental gradients. Evol Appl 2020; 13:400-416. [PMID: 31993085 PMCID: PMC6976966 DOI: 10.1111/eva.12877] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 09/06/2019] [Accepted: 09/22/2019] [Indexed: 12/19/2022] Open
Abstract
The salmonid fish Brown trout is iconic as a model for the application of conservation genetics to understand and manage local interspecific variation. However, there is still scant information about relationships between local and large-scale population structure, and to what extent geographical and environmental variables are associated with barriers to gene flow. We used information from 3,782 mapped SNPs developed for the present study and conducted outlier tests and gene-environment association (GEA) analyses in order to examine drivers of population structure. Analyses comprised >2,600 fish from 72 riverine populations spanning a central part of the species' distribution in northern Europe. We report hitherto unidentified genetic breaks in population structure, indicating strong barriers to gene flow. GEA loci were widely spread across genomic regions and showed correlations with climatic, abiotic and geographical parameters. In some cases, individual loci showed consistent GEA across the geographical regions Britain, Europe and Scandinavia. In other cases, correlations were observed only within a sub-set of regions, suggesting that locus-specific variation was associated with local processes. A paired-population sampling design allowed us to evaluate sampling effects on detection of outlier loci and GEA. Two widely applied methods for outlier detection (pcadapt and bayescan) showed low overlap in loci identified as statistical outliers across sub-sets of data. Two GEA analytical approaches (LFMM and RDA) showed good correspondence concerning loci associated with specific variables, but LFMM identified five times more statistically significant associations than RDA. Our results emphasize the importance of carefully considering the statistical methods applied for the hypotheses being tested in outlier analysis. Sampling design may have lower impact on results if the objective is to identify GEA loci and their population distribution. Our study provides new insights into trout populations, and results have direct management implications in serving as a tool for identification of conservation units.
Collapse
Affiliation(s)
- Dorte Bekkevold
- National Institute of Aquatic ResourcesTechnical University of DenmarkSilkeborgDenmark
| | - Johan Höjesjö
- Department of Biological & Environmental SciencesUniversity of GothenburgGothenburgSweden
| | - Einar Eg Nielsen
- National Institute of Aquatic ResourcesTechnical University of DenmarkSilkeborgDenmark
| | | | | | - Marte Sodeland
- Department of Natural SciencesUniversity of AgderKristiansandNorway
| | | | - Sigbjørn Lien
- Faculty of BiosciencesNorwegian University of Life SciencesÅsNorway
| | - Michael Møller Hansen
- Department of Bioscience – Genetics, Ecology and EvolutionAarhus UniversityAarhusDenmark
| |
Collapse
|
40
|
Jiménez‐Mena B, Le Moan A, Christensen A, van Deurs M, Mosegaard H, Hemmer‐Hansen J, Bekkevold D. Weak genetic structure despite strong genomic signal in lesser sandeel in the North Sea. Evol Appl 2020; 13:376-387. [PMID: 31993083 PMCID: PMC6976957 DOI: 10.1111/eva.12875] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 09/08/2019] [Accepted: 09/09/2019] [Indexed: 02/06/2023] Open
Abstract
Sandeels are an ecologically important group of fishes; they are a key part of the food chain serving as food for marine mammals, seabirds and fish. Sandeels are further targeted by a large industrial fishery, which has led to concern about ecosystem effects. In the North Sea, the lesser sandeel Ammodytes marinus is by far the most prevalent species of sandeel in the fishery. Management of sandeel in the North Sea plus the Kattegat is currently divided into seven geographical areas, based on subtle differences in demography, population dynamics and results from simulations of larval dispersal. However, little is known about the underlying genetic population structure. In this study, we used 2,522 SNPs derived from restriction site-associated DNA sequencing (RADseq) typed in 429 fish representing four main sandeel management areas. Our main results showed (a) a lack of a clear spatially defined genetic structure across the majority of genetic markers and (b) the existence of a group of at least 13 SNPs under strong linkage disequilibrium which together separate North Sea sandeel into three haplotype clusters, suggestive of one or more structural variants in the genome. Analyses of the spatial distribution of these putative structural variants suggest at least partial reproductive isolation of sandeel in the western management area along the Scottish coast, supporting a separate management. Our results highlight the importance of the application of a large number of markers to be able to detect weak patterns of differentiation. This study contributes to increasing the genetic knowledge of this important exploited species, and results can be used to improve our understanding of population dynamics and stock structure.
Collapse
Affiliation(s)
- Belén Jiménez‐Mena
- Section for Marine Living ResourcesNational Institute of Aquatic ResourcesTechnical University of DenmarkSilkeborgDenmark
| | - Alan Le Moan
- Section for Marine Living ResourcesNational Institute of Aquatic ResourcesTechnical University of DenmarkSilkeborgDenmark
| | - Asbjørn Christensen
- Section for Marine Living ResourcesNational Institute of Aquatic ResourcesTechnical University of DenmarkSilkeborgDenmark
| | - Mikael van Deurs
- Section for Marine Living ResourcesNational Institute of Aquatic ResourcesTechnical University of DenmarkSilkeborgDenmark
| | - Henrik Mosegaard
- Section for Marine Living ResourcesNational Institute of Aquatic ResourcesTechnical University of DenmarkSilkeborgDenmark
| | - Jakob Hemmer‐Hansen
- Section for Marine Living ResourcesNational Institute of Aquatic ResourcesTechnical University of DenmarkSilkeborgDenmark
| | - Dorte Bekkevold
- Section for Marine Living ResourcesNational Institute of Aquatic ResourcesTechnical University of DenmarkSilkeborgDenmark
| |
Collapse
|
41
|
Ecological genomics of adaptation to unpredictability in experimental rotifer populations. Sci Rep 2019; 9:19646. [PMID: 31873145 PMCID: PMC6927961 DOI: 10.1038/s41598-019-56100-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 12/02/2019] [Indexed: 12/29/2022] Open
Abstract
Elucidating the genetic basis of phenotypic variation in response to different environments is key to understanding how populations evolve. Facultatively sexual rotifers can develop adaptive responses to fluctuating environments. In a previous evolution experiment, diapause-related traits changed rapidly in response to two selective regimes (predictable vs unpredictable) in laboratory populations of the rotifer Brachionus plicatilis. Here, we investigate the genomic basis of adaptation to environmental unpredictability in these experimental populations. We identified and genotyped genome-wide polymorphisms in 169 clones from both selective regimes after seven cycles of selection using genotyping by sequencing (GBS). Additionally, we used GBS data from the 270 field clones from which the laboratory populations were established. This GBS dataset was used to identify candidate SNPs under selection. A total of 76 SNPs showed divergent selection, three of which are candidates for being under selection in the particular unpredictable fluctuation pattern studied. Most of the remaining SNPs showed strong signals of adaptation to laboratory conditions. Furthermore, a genotype-phenotype association approach revealed five SNPs associated with two key life-history traits in the adaptation to unpredictability. Our results contribute to elucidating the genomic basis for adaptation to unpredictable environments and lay the groundwork for future evolution studies in rotifers.
Collapse
|
42
|
González BA, Agapito AM, Novoa-Muñoz F, Vianna J, Johnson WE, Marín JC. Utility of genetic variation in coat color genes to distinguish wild, domestic and hybrid South American camelids for forensic and judicial applications. Forensic Sci Int Genet 2019; 45:102226. [PMID: 31884178 DOI: 10.1016/j.fsigen.2019.102226] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 12/11/2019] [Accepted: 12/11/2019] [Indexed: 11/30/2022]
Abstract
A molecular genetic protocol for distinguishing pure and hybrid South American camelids was developed to provide strong, quantifiable, and unbiased species identification. We detail the application of the approach in the context of a criminal case in the Andes Mountains of central Chile where the defendants were alleged to have illegally hunted three wild guanacos (Lama guanicoe), as opposed to hybrid domestic llama (Lama glama)/wild guanaco crosses, which are unregulated. We describe a workflow that differentiates among wild, domestic and hybrid South American camelids (Lama versus Vicugna) based on mitochondrial cytochrome b genetic variation (to distinguish between Lama and Vicugna), and MC1R and exon 4 variation of the ASIP gene (to differentiate wild from domestic species). Additionally, we infer the population origin and sex of each of the three individuals from a panel of 15 autosomal microsatellite loci and the presence or absence of the SRY gene. Our analyses strongly supported the inference that the confiscated carcasses corresponded with 2 male and 1 female guanacos that were hunted illegally. Statistical power analyses suggested that there was an extremely low probability of misidentifying domestic camelids as wild camelids (an estimated 0 % Type I error rate), or using more conservative approached a 1.17 % chance of misidentification of wild species as domestic camelids (Type II error). Our case report and methodological and analytical protocols demonstrate the power of genetic variation in coat color genes to identify hybrids between wild and domestic camelid species and highlight the utility of the approach to help combat illegal wildlife hunting and trafficking.
Collapse
Affiliation(s)
- Benito A González
- Laboratorio de Ecología de Vida Silvestre, Facultad de Ciencias Forestales y de la Conservación de la Naturaleza, Universidad de Chile, Chile; South American Camelid Specialist Group, Species Survival Commission, International Union for Conservation of Nature
| | - Ana María Agapito
- Laboratorio de Genómica y Biodiversidad, Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad del Bío-Bío, Chillán, Chile
| | - Francisco Novoa-Muñoz
- Departamento de Estadística, Facultad de Ciencias, Universidad del Bío-Bío, Concepción, Chile
| | - Juliana Vianna
- Departamento de Ecosistemas y Medio Ambiente, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Warren E Johnson
- Smithsonian Conservation Biology Institute, Smithsonian Institution, Washington DC, United States; Walter Reed Biosystematics Unit, Smithsonian Institution, Suitland, MD, United States
| | - Juan Carlos Marín
- Laboratorio de Genómica y Biodiversidad, Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad del Bío-Bío, Chillán, Chile.
| |
Collapse
|
43
|
Jenkins TL, Ellis CD, Triantafyllidis A, Stevens JR. Single nucleotide polymorphisms reveal a genetic cline across the north-east Atlantic and enable powerful population assignment in the European lobster. Evol Appl 2019; 12:1881-1899. [PMID: 31700533 PMCID: PMC6824076 DOI: 10.1111/eva.12849] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 07/09/2019] [Accepted: 07/11/2019] [Indexed: 12/11/2022] Open
Abstract
Resolving stock structure is crucial for fisheries conservation to ensure that the spatial implementation of management is commensurate with that of biological population units. To address this in the economically important European lobster (Homarus gammarus), genetic structure was explored across the species' range using a small panel of single nucleotide polymorphisms (SNPs) previously isolated from restriction-site-associated DNA sequencing; these SNPs were selected to maximize differentiation at a range of both broad and fine scales. After quality control and filtering, 1,278 lobsters from 38 sampling sites were genotyped at 79 SNPs. The results revealed a pronounced phylogeographic break between the Atlantic and Mediterranean basins, while structure within the Mediterranean was also apparent, partitioned between lobsters from the central Mediterranean and the Aegean Sea. In addition, a genetic cline across the north-east Atlantic was revealed using both putatively neutral and outlier SNPs, but the precise driver(s) of this clinal pattern-isolation by distance, secondary contact, selection across an environmental gradient, or a combination of these factors-remains undetermined. Putatively neutral markers differentiated lobsters from Oosterschelde, an estuary on the Dutch coast, a finding likely explained by past bottlenecks and limited gene flow with adjacent North Sea populations. Building on the findings of our spatial genetic analysis, we were able to test the accuracy of assigning lobsters at various spatial scales, including to basin of origin (Atlantic or Mediterranean), region of origin and sampling location. The predictive model assembled using 79 SNPs correctly assigned 99.7% of lobsters not used to build the model to their basin of origin, but accuracy decreased to region of origin and again to sampling location. These results are of direct relevance to managers of lobster fisheries and hatcheries, and provide the basis for a genetic tool for tracing the origin of European lobsters in the food supply chain.
Collapse
Affiliation(s)
- Tom L. Jenkins
- Department of Biosciences, College of Life and Environmental SciencesUniversity of ExeterExeterUK
| | - Charlie D. Ellis
- Department of Biosciences, College of Life and Environmental SciencesUniversity of ExeterExeterUK
- National Lobster HatcherySouth QuayPadstowUK
| | | | - Jamie R. Stevens
- Department of Biosciences, College of Life and Environmental SciencesUniversity of ExeterExeterUK
| |
Collapse
|
44
|
Í Kongsstovu S, Mikalsen SO, Homrum EÍ, Jacobsen JA, Flicek P, Dahl HA. Using long and linked reads to improve an Atlantic herring (Clupea harengus) genome assembly. Sci Rep 2019; 9:17716. [PMID: 31776409 PMCID: PMC6881392 DOI: 10.1038/s41598-019-54151-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/08/2019] [Indexed: 01/01/2023] Open
Abstract
Atlantic herring (Clupea harengus) is one of the most abundant fish species in the world. It is an important economical and nutritional resource, as well as a crucial part of the North Atlantic ecosystem. In 2016, a draft herring genome assembly was published. Being a species of such importance, we sought to independently verify and potentially improve the herring genome assembly. We sequenced the herring genome generating paired-end, mate-pair, linked and long reads. Three assembly versions of the herring genome were generated based on a de novo assembly (A1), which was scaffolded using linked and long reads (A2) and then merged with the previously published assembly (A3). The resulting assemblies were compared using parameters describing the size, fragmentation, correctness, and completeness of the assemblies. Results showed that the A2 assembly was less fragmented, more complete and more correct than A1. A3 showed improvement in fragmentation and correctness compared with A2 and the published assembly but was slightly less complete than the published assembly. Thus, we here confirmed the previously published herring assembly, and made improvements by further scaffolding the assembly and removing low-quality sequences using linked and long reads and merging of assemblies.
Collapse
Affiliation(s)
- Sunnvør Í Kongsstovu
- Amplexa Genetics A/S, Hoyvíksvegur 51, FO-100, Tórshavn, Faroe Islands. .,University of the Faroe Islands, Department of Science and Technology, Vestara Bryggja 15, FO-100, Tórshavn, Faroe Islands. .,European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK.
| | - Svein-Ole Mikalsen
- University of the Faroe Islands, Department of Science and Technology, Vestara Bryggja 15, FO-100, Tórshavn, Faroe Islands
| | - Eydna Í Homrum
- Faroe Marine Research Institute, Nóatún 1, FO-100, Tórshavn, Faroe Islands
| | - Jan Arge Jacobsen
- Faroe Marine Research Institute, Nóatún 1, FO-100, Tórshavn, Faroe Islands
| | - Paul Flicek
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Hans Atli Dahl
- Amplexa Genetics A/S, Hoyvíksvegur 51, FO-100, Tórshavn, Faroe Islands
| |
Collapse
|
45
|
Duranton M, Bonhomme F, Gagnaire P. The spatial scale of dispersal revealed by admixture tracts. Evol Appl 2019; 12:1743-1756. [PMID: 31548854 PMCID: PMC6752141 DOI: 10.1111/eva.12829] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 05/28/2019] [Indexed: 12/11/2022] Open
Abstract
Evaluating species dispersal across the landscape is essential to design appropriate management and conservation actions. However, technical difficulties often preclude direct measures of individual movement, while indirect genetic approaches rely on assumptions that sometimes limit their application. Here, we show that the temporal decay of admixture tracts lengths can be used to assess genetic connectivity within a population introgressed by foreign haplotypes. We present a proof-of-concept approach based on local ancestry inference in a high gene flow marine fish species, the European sea bass (Dicentrarchus labrax). Genetic admixture in the contact zone between Atlantic and Mediterranean sea bass lineages allows the introgression of Atlantic haplotype tracts within the Mediterranean Sea. Once introgressed, blocks of foreign ancestry are progressively eroded by recombination as they diffuse from the western to the eastern Mediterranean basin, providing a means to estimate dispersal. By comparing the length distributions of Atlantic tracts between two Mediterranean populations located at different distances from the contact zone, we estimated the average per-generation dispersal distance within the Mediterranean lineage to less than 50 km. Using simulations, we showed that this approach is robust to a range of demographic histories and sample sizes. Our results thus support that the length of admixture tracts can be used together with a recombination clock to estimate genetic connectivity in species for which the neutral migration-drift balance is not informative or simply does not exist.
Collapse
Affiliation(s)
- Maud Duranton
- ISEM, Univ Montpellier, CNRS, EPHE, IRDMontpellierFrance
| | | | | |
Collapse
|
46
|
SNP discovery in European lobster (Homarus gammarus) using RAD sequencing. CONSERV GENET RESOUR 2019. [DOI: 10.1007/s12686-018-1001-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
47
|
Haynes E, Jimenez E, Pardo MA, Helyar SJ. The future of NGS (Next Generation Sequencing) analysis in testing food authenticity. Food Control 2019. [DOI: 10.1016/j.foodcont.2019.02.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
48
|
Weist P, Schade FM, Damerau M, Barth JMI, Dierking J, André C, Petereit C, Reusch T, Jentoft S, Hanel R, Krumme U. Assessing SNP-markers to study population mixing and ecological adaptation in Baltic cod. PLoS One 2019; 14:e0218127. [PMID: 31220098 PMCID: PMC6586271 DOI: 10.1371/journal.pone.0218127] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 05/27/2019] [Indexed: 02/01/2023] Open
Abstract
Atlantic cod (Gadus morhua) is a species of great ecological and economical importance in the Baltic Sea. Here, two genetically differentiated stocks, the western and the eastern Baltic cod, display substantial mechanical mixing, hampering our understanding of cod ecology and impeding stock assessments and management. Based on whole-genome re-sequencing data from reference samples obtained from the study area, we designed two different panels of Single Nucleotide Polymorphisms markers (SNPs), which take into account the exceptional genome architecture of cod. A minimum panel of 20 diagnostic SNPs and an extended panel (20 diagnostic and 18 biologically informative SNPs, 38 in total) were developed and validated to distinguish unambiguously between the western and the eastern Baltic cod stocks and to enable studies of local adaptation to the specific environment in the Baltic Sea, respectively. We tested both panels on cod sampled from the southern Baltic Sea (n = 603) caught in 2015 and 2016. Genotyping results showed that catches from the mixing zone in the Arkona Sea, were composed of similar proportions of individuals of the western and the eastern stock. Catches from adjacent areas to the east, the Bornholm Basin and Gdańsk Deep, were exclusively composed of eastern Baltic cod, whereas catches from adjacent western areas (Belt Sea and Öresund) were composed of western Baltic cod. Interestingly, the two Baltic cod stocks showed strong genetic differences at loci associated with life-history trait candidate genes, highlighting the species’ potential for ecological adaptation even at small geographical scales. The minimum and the extended panel of SNP markers presented in this study provide powerful tools for future applications in research and fisheries management to further illuminate the mixing dynamics of cod in the Baltic Sea and to better understand Baltic cod ecology.
Collapse
Affiliation(s)
- Peggy Weist
- Thünen-Institute of Fisheries Ecology, Bremerhaven, Germany
- * E-mail:
| | | | - Malte Damerau
- Thünen-Institute of Fisheries Ecology, Bremerhaven, Germany
| | - Julia M. I. Barth
- Zoological Institute, University of Basel, Basel, Switzerland
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Jan Dierking
- GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
| | - Carl André
- Department of Marine Sciences-Tjärnö, University of Gothenburg, Strömstad, Sweden
| | | | | | - Sissel Jentoft
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Reinhold Hanel
- Thünen-Institute of Fisheries Ecology, Bremerhaven, Germany
| | - Uwe Krumme
- Thünen-Institute of Baltic Sea Fisheries, Rostock, Germany
| |
Collapse
|
49
|
Petrou EL, Drinan DP, Kopperl R, Lepofsky D, Yang D, Moss ML, Hauser L. Intraspecific DNA contamination distorts subtle population structure in a marine fish: Decontamination of herring samples before restriction-site associated sequencing and its effects on population genetic statistics. Mol Ecol Resour 2019; 19:1131-1143. [PMID: 30561168 DOI: 10.1111/1755-0998.12978] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 12/10/2018] [Accepted: 12/12/2018] [Indexed: 02/04/2023]
Abstract
Wild specimens are often collected in challenging field conditions, where samples may be contaminated with the DNA of conspecific individuals. This contamination can result in false genotype calls, which are difficult to detect, but may also cause inaccurate estimates of heterozygosity, allele frequencies and genetic differentiation. Marine broadcast spawners are especially problematic, because population genetic differentiation is low and samples are often collected in bulk and sometimes from active spawning aggregations. Here, we used contaminated and clean Pacific herring (Clupea pallasi) samples to test (a) the efficacy of bleach decontamination, (b) the effect of decontamination on RAD genotypes and (c) the consequences of contaminated samples on population genetic analyses. We collected fin tissue samples from actively spawning (and thus contaminated) wild herring and nonspawning (uncontaminated) herring. Samples were soaked for 10 min in bleach or left untreated, and extracted DNA was used to prepare DNA libraries using a restriction site-associated DNA (RAD) approach. Our results demonstrate that intraspecific DNA contamination affects patterns of individual and population variability, causes an excess of heterozygotes and biases estimates of population structure. Bleach decontamination was effective at removing intraspecific DNA contamination and compatible with RAD sequencing, producing high-quality sequences, reproducible genotypes and low levels of missing data. Although sperm contamination may be specific to broadcast spawners, intraspecific contamination of samples may be common and difficult to detect from high-throughput sequencing data and can impact downstream analyses.
Collapse
Affiliation(s)
- Eleni L Petrou
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington
| | - Daniel P Drinan
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington
| | - Robert Kopperl
- Willamette Cultural Resources Associates Ltd., Seattle, Washington
| | - Dana Lepofsky
- Department of Archaeology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Dongya Yang
- Department of Archaeology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Madonna L Moss
- Department of Anthropology, University of Oregon, Eugene, Oregon
| | - Lorenz Hauser
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington
| |
Collapse
|
50
|
Moore MK, Frazier K. Humans Are Animals, Too: Critical Commonalities and Differences Between Human and Wildlife Forensic Genetics. J Forensic Sci 2019; 64:1603-1621. [DOI: 10.1111/1556-4029.14066] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 03/10/2019] [Accepted: 04/08/2019] [Indexed: 12/31/2022]
Affiliation(s)
- M. Katherine Moore
- Forensic Laboratory Conservation Biology Division Northwest Fisheries Science Center, National Marine Fisheries Service National Oceanic and Atmospheric Administration 219 Fort Johnson Road Charleston SC29412
| | - Kim Frazier
- Wyoming Game and Fish Wildlife Forensic and Fish Health Laboratory 1212 South Adams Street Laramie WY 82070
| |
Collapse
|