1
|
Du C, Yuan F, Zhang Z, He Z, Liu G, Hou W, Deng M, Liu C, Rong M. Spider-derived peptide LCTx-F2 suppresses ASIC channels by occupying the acidic pocket. J Biol Chem 2025; 301:108286. [PMID: 39938802 PMCID: PMC11923824 DOI: 10.1016/j.jbc.2025.108286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 01/31/2025] [Accepted: 02/03/2025] [Indexed: 02/14/2025] Open
Abstract
Acid-sensing ion channels (ASICs) are proton-evoked sodium ion channels, highly distributed in the peripheral and central nervous system. ASICs are involved in pain perception, and ASIC3 channel is presumed as the target of promising analgesics. Peptide drugs have attracted the attention of pharmaceutical developers because of their advantages such as low toxic side effects and targeted specificity. Although numbers of chemicals acting on ASICs are emerging, there are limited reports on peptide inhibitor acting on ASIC3 channel. Here, we found that spider-derived peptide LCTx-F2 suppressed the activity of ASIC3 channel in a concentration-dependent manner. By performing peptide mutation and molecular docking, we revealed the molecular mechanism of LCTx-F2 inhibiting ASIC3 channel, in which β-hairpin of LCTx-F2 penetrated the acidic pocket of the channel. Similarly, LCTx-F2 also inhibited ASIC1a channel by occupying the acidic pocket, but N terminus of the peptide sticked into the region. The bond relationship between critical residues of LCTx-F2 and the channels was uncovered by molecular docking and dynamic simulation. Thus, our findings indicated the molecular mechanism by which LCTx-F2 acts on ASIC3 and ASIC1a channels and provided a novel template of analgesic drug targeting the channels.
Collapse
Affiliation(s)
- Canwei Du
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan, Hunan, China.
| | - Fuchu Yuan
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Zhongzhe Zhang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Ziyan He
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Guohao Liu
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan, Hunan, China
| | - Wenqian Hou
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Meichun Deng
- Department of Biochemistry and Molecular Biology & Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, China
| | - Changjun Liu
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan, Hunan, China
| | - Mingqiang Rong
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, Sichuan, China.
| |
Collapse
|
2
|
Cahill J, Hartfield KA, Heusser SA, Poulsen MH, Yoshioka C, Pless SA, Baconguis I. Conformational plasticity of human acid-sensing ion channel 1a. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.11.628012. [PMID: 39713315 PMCID: PMC11661276 DOI: 10.1101/2024.12.11.628012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Acid-sensing ion channels (ASICs) are typically activated by acidic environments and contribute to nociception and synaptic plasticity. ASIC1a is the most abundant subunit in the central nervous system and forms homomeric channels permeable to Na + and Ca 2+ , making it a compelling therapeutic target for acidotic pathologies including stroke and traumatic brain injury. However, a complete conformational library of human ASIC1a in its various functional states has yet to be described. Using cryo-EM, we obtained hASIC1a structures across a pH range between 8.5 and 5.7, as well as in the presence of a toxin agonist and a gating-modulating mutation. We identify six major conformations that establish linear transmembrane helices to be associated with an open state, delineate mechanistic differences between proton and toxin activation, and demonstrate that desensitization leads to unexpected conformational diversity in the transmembrane domain. Together, they provide a three-dimensional rationalization of decades of structure-function studies on ASIC.
Collapse
|
3
|
Berger KD, MacLean DM. Mechanism of acid-sensing ion channel modulation by Hi1a. J Gen Physiol 2024; 156:e202313519. [PMID: 39446054 PMCID: PMC11513431 DOI: 10.1085/jgp.202313519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 09/01/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024] Open
Abstract
Acid-sensing ion channels (ASICs) are trimeric cation-selective channels activated by extracellular acidification. Amongst many pathological roles, ASICs are an important mediator of ischemic cell death and hence an attractive drug target for stroke treatment as well as other conditions. A peptide called Hi1a, isolated from Australian funnel web spider venom, inhibits ASIC1a and attenuates cell death in a stroke model up to 8 h after stroke induction. Here, we set out to understand the molecular basis for Hi1a's action. Hi1a is a bivalent toxin with two inhibitory cystine knot domains joined by a short linker. We found that both Hi1a domains modulate human ASIC1a gating with the N-terminal domain impairing channel activation while the C-terminal domain produces a "pro-open" phenotype even at submicromolar concentrations. Interestingly, both domains bind at the same site since a single point mutation, F352A, abolishes functional effects and reduces toxin affinity in surface plasmon resonance measurements. Therefore, the action of Hi1a at ASIC1a appears to arise through a mutually exclusive binding model where either the N or C domain of a single Hi1a binds one ASIC1a subunit. An ASIC1a trimer may bind several inhibitory N domains and one or more pro-open C domains at any one time, accounting for the incomplete inhibition of wild type Hi1a. We also found that the functional differences between these two domains are partially transferred by mutagenesis, affording new insight into the channel function and possible novel avenues of drug design.
Collapse
Affiliation(s)
- Kyle D. Berger
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - David M. MacLean
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
4
|
Centonze E, Kellenberger S. Voltage-clamp fluorometry for advancing mechanistic understanding of ion channel mechanisms with a focus on acid-sensing ion channels. Biochem Soc Trans 2024; 52:2167-2177. [PMID: 39400205 PMCID: PMC11555705 DOI: 10.1042/bst20240165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/13/2024] [Accepted: 09/20/2024] [Indexed: 10/15/2024]
Abstract
Voltage-clamp fluorometry (VCF) has revolutionized the study of ion channels by combining electrophysiology with fluorescence spectroscopy. VCF allows ion channel researchers to link dynamic structural changes, measured in real time, to function. Acid-sensing ion channels (ASICs) are Na+-permeable non-voltage-gated ion channels of the central and peripheral nervous system. They function as pH sensors, triggering neuronal excitation when pH decreases. Animal studies have shown the importance of ASICs for pain and fear sensation, learning, and neurodegeneration following ischaemic stroke. This review explores the technical bases and various developments of VCF, including fluorescence resonance energy transfer and the use of unnatural fluorescent amino acids. We provide an overview of VCF applications with a focus on ASICs, detailing how VCF has unveiled proton-induced conformational changes in key regions such as the acid pocket, wrist, and pore, crucial for understanding transitions between closed, open, and desensitized states.
Collapse
Affiliation(s)
- Eleonora Centonze
- Department of Biomedical Sciences, University of Lausanne, 1011 Lausanne, Switzerland
| | - Stephan Kellenberger
- Department of Biomedical Sciences, University of Lausanne, 1011 Lausanne, Switzerland
| |
Collapse
|
5
|
Ortega-Ramírez AM, Albani S, Bachmann M, Schmidt A, Pinoé-Schmidt M, Assmann M, Augustinowski K, Rossetti G, Gründer S. A conserved peptide-binding pocket in HyNaC/ASIC ion channels. Proc Natl Acad Sci U S A 2024; 121:e2409097121. [PMID: 39365813 PMCID: PMC11474038 DOI: 10.1073/pnas.2409097121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/05/2024] [Indexed: 10/06/2024] Open
Abstract
The only known peptide-gated ion channels-FaNaCs/WaNaCs and HyNaCs-belong to different clades of the DEG/ENaC family. FaNaCs are activated by the short neuropeptide FMRFamide, and HyNaCs by Hydra RFamides, which are not evolutionarily related to FMRFamide. The FMRFamide-binding site in FaNaCs was recently identified in a cleft atop the large extracellular domain. However, this cleft is not conserved in HyNaCs. Here, we combined molecular modeling and site-directed mutagenesis and identified a putative binding pocket for Hydra-RFamides in the extracellular domain of the heterotrimeric HyNaC2/3/5. This pocket localizes to only one of the three subunit interfaces, indicating that this trimeric ion channel binds a single peptide ligand. We engineered an unnatural amino acid at the putative binding pocket entrance, which allowed covalent tethering of Hydra RFamide to the channel, thereby trapping the channel in an open conformation. The identified pocket localizes to the same region as the acidic pocket of acid-sensing ion channels (ASICs), which binds peptide ligands. The pocket in HyNaCs is less acidic, and both electrostatic and hydrophobic interactions contribute to peptide binding. Collectively, our results reveal a conserved ligand-binding pocket in HyNaCs and ASICs and indicate independent evolution of peptide-binding cavities in the two subgroups of peptide-gated ion channels.
Collapse
Affiliation(s)
- Audrey Magdalena Ortega-Ramírez
- Medical Faculty, Institute of Physiology, Rheinisch-Westfälische Technische Hochschule Aachen University, 52074Aachen, Germany
| | - Simone Albani
- Computational Biomedicine—Institute for Advanced Simulation/Institute of Neuroscience and Medicine, Forschungszentrum Jülich, 52425Jülich, Germany
- Jülich Supercomputing Center, Forschungszentrum Jülich, 52425Jülich, Germany
- Department of Neurology, Rheinisch-Westfälische Technische Hochschule Aachen University, 52074Aachen, Germany
| | - Michèle Bachmann
- Medical Faculty, Institute of Physiology, Rheinisch-Westfälische Technische Hochschule Aachen University, 52074Aachen, Germany
| | - Axel Schmidt
- Medical Faculty, Institute of Physiology, Rheinisch-Westfälische Technische Hochschule Aachen University, 52074Aachen, Germany
| | - Manuela Pinoé-Schmidt
- Medical Faculty, Institute of Physiology, Rheinisch-Westfälische Technische Hochschule Aachen University, 52074Aachen, Germany
| | - Marc Assmann
- Medical Faculty, Institute of Physiology, Rheinisch-Westfälische Technische Hochschule Aachen University, 52074Aachen, Germany
| | - Katrin Augustinowski
- Medical Faculty, Institute of Physiology, Rheinisch-Westfälische Technische Hochschule Aachen University, 52074Aachen, Germany
| | - Giulia Rossetti
- Computational Biomedicine—Institute for Advanced Simulation/Institute of Neuroscience and Medicine, Forschungszentrum Jülich, 52425Jülich, Germany
- Jülich Supercomputing Center, Forschungszentrum Jülich, 52425Jülich, Germany
- Department of Neurology, Rheinisch-Westfälische Technische Hochschule Aachen University, 52074Aachen, Germany
| | - Stefan Gründer
- Medical Faculty, Institute of Physiology, Rheinisch-Westfälische Technische Hochschule Aachen University, 52074Aachen, Germany
| |
Collapse
|
6
|
Budusan E, Payne CD, Gonzalez TI, Obergrussberger A, Becker N, Clark RJ, Johan Rosengren K, Rash LD, Cristofori-Armstrong B. The funnel-web spider venom derived single knot peptide Hc3a modulates acid-sensing ion channel 1a desensitisation. Biochem Pharmacol 2024; 228:116175. [PMID: 38552850 DOI: 10.1016/j.bcp.2024.116175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/17/2024] [Accepted: 03/26/2024] [Indexed: 04/07/2024]
Abstract
Acid-sensing ion channel 1a (ASIC1a) is a proton-gated channel involved in synaptic transmission, pain signalling, and several ischemia-associated pathological conditions. The spider venom-derived peptides PcTx1 and Hi1a are two of the most potent ASIC1a inhibitors known and have been instrumental in furthering our understanding of the structure, function, and biological roles of ASICs. To date, homologous spider peptides with different pharmacological profiles at ASIC1a have yet to be discovered. Here we report the characterisation of Hc3a, a single inhibitor cystine knot peptide from the Australian funnel-web spider Hadronyche cerberea with sequence similarity to PcTx1. We show that Hc3a has complex pharmacology and binds different ASIC1a conformational states (closed, open, and desensitised) with different affinities, with the most prominent effect on desensitisation. Hc3a slows the desensitisation kinetics of proton-activated ASIC1a currents across multiple application pHs, and when bound directly to ASIC1a in the desensitised conformation promotes current inhibition. The solution structure of Hc3a was solved, and the peptide-channel interaction examined via mutagenesis studies to highlight how small differences in sequence between Hc3a and PcTx1 can lead to peptides with distinct pharmacology. The discovery of Hc3a expands the pharmacological diversity of spider venom peptides targeting ASIC1a and adds to the toolbox of compounds to study the intricacies of ASIC1 gating.
Collapse
Affiliation(s)
- Elena Budusan
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - Colton D Payne
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - Tye I Gonzalez
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, Australia
| | | | | | - Richard J Clark
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - K Johan Rosengren
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, Australia.
| | - Lachlan D Rash
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, Australia.
| | - Ben Cristofori-Armstrong
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, Australia.
| |
Collapse
|
7
|
Khasanov TA, Maleeva EE, Koshelev SG, Palikov VA, Palikova YA, Dyachenko IA, Kozlov SA, Andreev YA, Osmakov DI. Mutagenesis of the Peptide Inhibitor of ASIC3 Channel Introduces Binding to Thumb Domain of ASIC1a but Reduces Analgesic Activity. Mar Drugs 2024; 22:382. [PMID: 39330263 PMCID: PMC11432795 DOI: 10.3390/md22090382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/28/2024] Open
Abstract
Acid-sensing ion channels (ASICs), which act as proton-gating sodium channels, have garnered attention as pharmacological targets. ASIC1a isoform, notably prevalent in the central nervous system, plays an important role in synaptic plasticity, anxiety, neurodegeneration, etc. In the peripheral nervous system, ASIC1a shares prominence with ASIC3, the latter well established for its involvement in pain signaling, mechanical sensitivity, and inflammatory hyperalgesia. However, the precise contributions of ASIC1a in peripheral functions necessitate thorough investigation. To dissect the specific roles of ASICs, peptide ligands capable of modulating these channels serve as indispensable tools. Employing molecular modeling, we designed the peptide targeting ASIC1a channel from the sea anemone peptide Ugr9-1, originally targeting ASIC3. This peptide (A23K) retained an inhibitory effect on ASIC3 (IC50 9.39 µM) and exhibited an additional inhibitory effect on ASIC1a (IC50 6.72 µM) in electrophysiological experiments. A crucial interaction between the Lys23 residue of the A23K peptide and the Asp355 residue in the thumb domain of the ASIC1a channel predicted by molecular modeling was confirmed by site-directed mutagenesis of the channel. However, A23K peptide revealed a significant decrease in or loss of analgesic properties when compared to the wild-type Ugr9-1. In summary, using A23K, we show that negative modulation of the ASIC1a channel in the peripheral nervous system can compromise the efficacy of an analgesic drug. These results provide a compelling illustration of the complex balance required when developing peripheral pain treatments targeting ASICs.
Collapse
Affiliation(s)
- Timur A. Khasanov
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (T.A.K.); (E.E.M.); (S.G.K.); (S.A.K.); (D.I.O.)
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592 Moscow, Russia
| | - Ekaterina E. Maleeva
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (T.A.K.); (E.E.M.); (S.G.K.); (S.A.K.); (D.I.O.)
| | - Sergey G. Koshelev
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (T.A.K.); (E.E.M.); (S.G.K.); (S.A.K.); (D.I.O.)
| | - Victor A. Palikov
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Nauki Avenue, 142290 Pushchino, Russia; (V.A.P.); (Y.A.P.); (I.A.D.)
| | - Yulia A. Palikova
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Nauki Avenue, 142290 Pushchino, Russia; (V.A.P.); (Y.A.P.); (I.A.D.)
| | - Igor A. Dyachenko
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Nauki Avenue, 142290 Pushchino, Russia; (V.A.P.); (Y.A.P.); (I.A.D.)
| | - Sergey A. Kozlov
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (T.A.K.); (E.E.M.); (S.G.K.); (S.A.K.); (D.I.O.)
| | - Yaroslav A. Andreev
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (T.A.K.); (E.E.M.); (S.G.K.); (S.A.K.); (D.I.O.)
| | - Dmitry I. Osmakov
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (T.A.K.); (E.E.M.); (S.G.K.); (S.A.K.); (D.I.O.)
| |
Collapse
|
8
|
Lu Y, Lin Y, Wang J. Progress on functions of intracellular domain of trimeric ligand-gated ion channels. Zhejiang Da Xue Xue Bao Yi Xue Ban 2024; 53:221-230. [PMID: 38310082 PMCID: PMC11057991 DOI: 10.3724/zdxbyxb-2023-0472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 11/11/2023] [Indexed: 02/05/2024]
Abstract
Ligand-gated ion channels are a large category of essential ion channels, modulating their state by binding to specific ligands to allow ions to pass through the cell membrane. Purinergic ligand-gated ion channel receptors (P2XRs) and acid-sensitive ion channels (ASICs) are representative members of trimeric ligand-gated ion channel. Recent studies have shown that structural differences in the intracellular domain of P2XRs may determine the desensitization process. The lateral fenestrations of P2XRs potentially serve as a pathway for ion conductance and play a decisive role in ion selectivity. Phosphorylation of numerous amino acid residues in the P2XRs are involved in regulating the activity of ion channels. Additionally, the P2XRs interact with other ligand-gated ion channels including N-methyl-D-aspartate receptors, γ-aminobutyric acid receptors, 5-hydroxytryptamin receptors and nicotinic acetylcholine receptors, mediating physiological processes such as synaptic plasticity. Conformational changes in the intracellular domain of the ASICs expose binding sites of intracellular signal partners, facilitating metabolic signal transduction. Amino acids such as Val16, Ser17, Ile18, Gln19 and Ala20 in the ASICs participate in channel opening and membrane expression. ASICs can also bind to intracellular proteins, such as CIPP and p11, to regulate channel function. Many phosphorylation sites at the C-terminus and N-terminus of ASICs are involved in the regulation of receptors. Furthermore, ASICs are involved in various physiological and pathophysiological processes, which include pain, ischemic stroke, psychiatric disorders, and neurodegenerative disease. In this article, we review the roles of the intracellular domains of these trimeric ligand-gated ion channels in channel gating as well as their physiological and pathological functions, in order to provide new insights into the discovery of related drugs.
Collapse
Affiliation(s)
- Yan Lu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Yiyu Lin
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jin Wang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
9
|
Sure F, Einsiedel J, Gmeiner P, Duchstein P, Zahn D, Korbmacher C, Ilyaskin AV. The small molecule activator S3969 stimulates the epithelial sodium channel by interacting with a specific binding pocket in the channel's β-subunit. J Biol Chem 2024; 300:105785. [PMID: 38401845 PMCID: PMC11065748 DOI: 10.1016/j.jbc.2024.105785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/13/2024] [Accepted: 02/19/2024] [Indexed: 02/26/2024] Open
Abstract
The epithelial sodium channel (ENaC) is essential for mediating sodium absorption in several epithelia. Its impaired function leads to severe disorders, including pseudohypoaldosteronism type 1 and respiratory distress. Therefore, pharmacological ENaC activators have potential therapeutic implications. Previously, a small molecule ENaC activator (S3969) was developed. So far, little is known about molecular mechanisms involved in S3969-mediated ENaC stimulation. Here, we identified an S3969-binding site in human ENaC by combining structure-based simulations with molecular biological methods and electrophysiological measurements of ENaC heterologously expressed in Xenopus laevis oocytes. We confirmed a previous observation that the extracellular loop of β-ENaC is essential for ENaC stimulation by S3969. Molecular dynamics simulations predicted critical residues in the thumb domain of β-ENaC (Arg388, Phe391, and Tyr406) that coordinate S3969 within a binding site localized at the β-γ-subunit interface. Importantly, mutating each of these residues reduced (R388H; R388A) or nearly abolished (F391G; Y406A) the S3969-mediated ENaC activation. Molecular dynamics simulations also suggested that S3969-mediated ENaC stimulation involved a movement of the α5 helix of the thumb domain of β-ENaC away from the palm domain of γ-ENaC. Consistent with this, the introduction of two cysteine residues (βR437C - γS298C) to form a disulfide bridge connecting these two domains prevented ENaC stimulation by S3969 unless the disulfide bond was reduced by DTT. Finally, we demonstrated that S3969 stimulated ENaC endogenously expressed in cultured human airway epithelial cells (H441). These new findings may lead to novel (patho-)physiological and therapeutic concepts for disorders associated with altered ENaC function.
Collapse
Affiliation(s)
- Florian Sure
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jürgen Einsiedel
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Peter Gmeiner
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Patrick Duchstein
- Theoretical Chemistry/Computer Chemistry Center (CCC), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Dirk Zahn
- Theoretical Chemistry/Computer Chemistry Center (CCC), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christoph Korbmacher
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Alexandr V Ilyaskin
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
10
|
Kashlan OB, Wang XP, Sheng S, Kleyman TR. Epithelial Na + Channels Function as Extracellular Sensors. Compr Physiol 2024; 14:1-41. [PMID: 39109974 PMCID: PMC11309579 DOI: 10.1002/cphy.c230015] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
The epithelial Na + channel (ENaC) resides on the apical surfaces of specific epithelia in vertebrates and plays a critical role in extracellular fluid homeostasis. Evidence that ENaC senses the external environment emerged well before the molecular identity of the channel was reported three decades ago. This article discusses progress toward elucidating the mechanisms through which specific external factors regulate ENaC function, highlighting insights gained from structural studies of ENaC and related family members. It also reviews our understanding of the role of ENaC regulation by the extracellular environment in physiology and disease. After familiarizing the reader with the channel's physiological roles and structure, we describe the central role protein allostery plays in ENaC's sensitivity to the external environment. We then discuss each of the extracellular factors that directly regulate the channel: proteases, cations and anions, shear stress, and other regulators specific to particular extracellular compartments. For each regulator, we discuss the initial observations that led to discovery, studies investigating molecular mechanism, and the physiological and pathophysiological implications of regulation. © 2024 American Physiological Society. Compr Physiol 14:5407-5447, 2024.
Collapse
Affiliation(s)
- Ossama B. Kashlan
- Department of Medicine, Renal-Electrolyte Division,
University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Computational and Systems Biology, University
of Pittsburgh, Pittsburgh, Pennsylvania
| | - Xue-Ping Wang
- Department of Medicine, Renal-Electrolyte Division,
University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Shaohu Sheng
- Department of Medicine, Renal-Electrolyte Division,
University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Thomas R. Kleyman
- Department of Medicine, Renal-Electrolyte Division,
University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Cell Biology, University of Pittsburgh,
Pittsburgh, Pennsylvania
- Department of Pharmacology and Chemical Biology, University
of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
11
|
Platonov M, Maximyuk O, Rayevsky A, Hurmach V, Iegorova O, Naumchyk V, Bulgakov E, Cherninskyi A, Ozheredov D, Ryabukhin SV, Krishtal O, Volochnyuk DM. 4-(Azolyl)-Benzamidines as a Novel Chemotype for ASIC1a Inhibitors. Int J Mol Sci 2024; 25:3584. [PMID: 38612396 PMCID: PMC11011685 DOI: 10.3390/ijms25073584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 03/03/2024] [Accepted: 03/13/2024] [Indexed: 04/14/2024] Open
Abstract
Acid-sensing ion channels (ASICs) play a key role in the perception and response to extracellular acidification changes. These proton-gated cation channels are critical for neuronal functions, like learning and memory, fear, mechanosensation and internal adjustments like synaptic plasticity. Moreover, they play a key role in neuronal degeneration, ischemic neuronal injury, seizure termination, pain-sensing, etc. Functional ASICs are homo or heterotrimers formed with (ASIC1-ASIC3) homologous subunits. ASIC1a, a major ASIC isoform in the central nervous system (CNS), possesses an acidic pocket in the extracellular region, which is a key regulator of channel gating. Growing data suggest that ASIC1a channels are a potential therapeutic target for treating a variety of neurological disorders, including stroke, epilepsy and pain. Many studies were aimed at identifying allosteric modulators of ASIC channels. However, the regulation of ASICs remains poorly understood. Using all available crystal structures, which correspond to different functional states of ASIC1, and a molecular dynamics simulation (MD) protocol, we analyzed the process of channel inactivation. Then we applied a molecular docking procedure to predict the protein conformation suitable for the amiloride binding. To confirm the effect of its sole active blocker against the ASIC1 state transition route we studied the complex with another MD simulation run. Further experiments evaluated various compounds in the Enamine library that emerge with a detectable ASIC inhibitory activity. We performed a detailed analysis of the structural basis of ASIC1a inhibition by amiloride, using a combination of in silico approaches to visualize its interaction with the ion pore in the open state. An artificial activation (otherwise, expansion of the central pore) causes a complex modification of the channel structure, namely its transmembrane domain. The output protein conformations were used as a set of docking models, suitable for a high-throughput virtual screening of the Enamine chemical library. The outcome of the virtual screening was confirmed by electrophysiological assays with the best results shown for three hit compounds.
Collapse
Affiliation(s)
- Maksym Platonov
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Zabolotnogo Str., 150, 03143 Kyiv, Ukraine; (M.P.); (V.H.)
- Enamine Ltd., 78 Winston Churchill Str., 02660 Kyiv, Ukraine; (V.N.); (E.B.); (D.M.V.)
| | - Oleksandr Maximyuk
- Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, 4 Bogomoletz Str., 01024 Kyiv, Ukraine; (O.M.); (O.I.); (A.C.); (O.K.)
| | - Alexey Rayevsky
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Zabolotnogo Str., 150, 03143 Kyiv, Ukraine; (M.P.); (V.H.)
- Enamine Ltd., 78 Winston Churchill Str., 02660 Kyiv, Ukraine; (V.N.); (E.B.); (D.M.V.)
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Osypovskoho Str., 2A, 04123 Kyiv, Ukraine;
| | - Vasyl Hurmach
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Zabolotnogo Str., 150, 03143 Kyiv, Ukraine; (M.P.); (V.H.)
- Enamine Ltd., 78 Winston Churchill Str., 02660 Kyiv, Ukraine; (V.N.); (E.B.); (D.M.V.)
| | - Olena Iegorova
- Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, 4 Bogomoletz Str., 01024 Kyiv, Ukraine; (O.M.); (O.I.); (A.C.); (O.K.)
| | - Vasyl Naumchyk
- Enamine Ltd., 78 Winston Churchill Str., 02660 Kyiv, Ukraine; (V.N.); (E.B.); (D.M.V.)
- Institute of High Technologies, Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, 01601 Kyiv, Ukraine
| | - Elijah Bulgakov
- Enamine Ltd., 78 Winston Churchill Str., 02660 Kyiv, Ukraine; (V.N.); (E.B.); (D.M.V.)
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Osypovskoho Str., 2A, 04123 Kyiv, Ukraine;
| | - Andrii Cherninskyi
- Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, 4 Bogomoletz Str., 01024 Kyiv, Ukraine; (O.M.); (O.I.); (A.C.); (O.K.)
| | - Danil Ozheredov
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Osypovskoho Str., 2A, 04123 Kyiv, Ukraine;
| | - Serhiy V. Ryabukhin
- Enamine Ltd., 78 Winston Churchill Str., 02660 Kyiv, Ukraine; (V.N.); (E.B.); (D.M.V.)
- Institute of High Technologies, Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, 01601 Kyiv, Ukraine
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, 5 Academik Kukhar Str., 02660 Kyiv, Ukraine
| | - Oleg Krishtal
- Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, 4 Bogomoletz Str., 01024 Kyiv, Ukraine; (O.M.); (O.I.); (A.C.); (O.K.)
| | - Dmytro M. Volochnyuk
- Enamine Ltd., 78 Winston Churchill Str., 02660 Kyiv, Ukraine; (V.N.); (E.B.); (D.M.V.)
- Institute of High Technologies, Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, 01601 Kyiv, Ukraine
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, 5 Academik Kukhar Str., 02660 Kyiv, Ukraine
| |
Collapse
|
12
|
Rook ML, McCullock TW, Couch T, Lueck JD, MacLean DM. Photomodulation of the ASIC1a acidic pocket destabilizes the open state. Protein Sci 2023; 32:e4800. [PMID: 37805833 PMCID: PMC10599103 DOI: 10.1002/pro.4800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 10/09/2023]
Abstract
Acid-sensing ion channels (ASICs) are important players in detecting extracellular acidification throughout the brain and body. ASICs have large extracellular domains containing two regions replete with acidic residues: the acidic pocket, and the palm domain. In the resting state, the acidic pocket is in an expanded conformation but collapses in low pH conditions as the acidic side chains are neutralized. Thus, extracellular acidification has been hypothesized to collapse the acidic pocket that, in turn, ultimately drives channel activation. However, several observations run counter to this idea. To explore how collapse or mobility of the acidic pocket is linked to channel gating, we employed two distinct tools. First, we incorporated the photocrosslinkable noncanonical amino acids (ncAAs) 4-azido-L-phenylalanine (AzF) or 4-benzoyl-L-phenylalanine (BzF) into several positions in the acidic pocket. At both E315 and Y318, AzF incorporation followed by UV irradiation led to right shifts in pH response curves and accelerations of desensitization and deactivation, consistent with restrictions of acidic pocket mobility destabilizing the open state. Second, we reasoned that because Cl- ions are found in the open and desensitized structures but absent in the resting state structures, Cl- substitution would provide insight into how stability of the pocket is linked to gating. Anion substitution resulted in faster deactivation and desensitization, consistent with the acidic pocket regulating the stability of the open state. Taken together, our data support a model where acidic pocket collapse is not essential for channel activation. Rather, collapse of the acidic pocket influences the stability of the open state of the pore.
Collapse
Affiliation(s)
- Matthew L. Rook
- Department of Pharmacology and Physiology, School of Medicine and DentistryUniversity of RochesterRochesterNew YorkUSA
| | - Tyler W. McCullock
- Department of Pharmacology and Physiology, School of Medicine and DentistryUniversity of RochesterRochesterNew YorkUSA
| | - Tyler Couch
- Department of Pharmacology and Physiology, School of Medicine and DentistryUniversity of RochesterRochesterNew YorkUSA
| | - John D. Lueck
- Department of Pharmacology and Physiology, School of Medicine and DentistryUniversity of RochesterRochesterNew YorkUSA
- Deparment of Neurology, School of Medicine and DentistryUniversity of RochesterRochesterNew YorkUSA
- Center for RNA BiologyUniversity of Rochester Medical CenterRochesterNew YorkUSA
| | - David M. MacLean
- Department of Pharmacology and Physiology, School of Medicine and DentistryUniversity of RochesterRochesterNew YorkUSA
| |
Collapse
|
13
|
Liu F, Dang Y, Li L, Feng H, Li J, Wang H, Zhang X, Zhang Z, Ye S, Tian Y, Chen Q. Structure and mechanism of a neuropeptide-activated channel in the ENaC/DEG superfamily. Nat Chem Biol 2023; 19:1276-1285. [PMID: 37550431 DOI: 10.1038/s41589-023-01401-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 07/10/2023] [Indexed: 08/09/2023]
Abstract
Phe-Met-Arg-Phe-amide (FMRFamide)-activated sodium channels (FaNaCs) are a family of channels activated by the neuropeptide FMRFamide, and, to date, the underlying ligand gating mechanism remains unknown. Here we present the high-resolution cryo-electron microscopy structures of Aplysia californica FaNaC in both apo and FMRFamide-bound states. AcFaNaC forms a chalice-shaped trimer and possesses several notable features, including two FaNaC-specific insertion regions, a distinct finger domain and non-domain-swapped transmembrane helix 2 in the transmembrane domain (TMD). One FMRFamide binds to each subunit in a cleft located in the top-most region of the extracellular domain, with participation of residues from the neighboring subunit. Bound FMRFamide adopts an extended conformation. FMRFamide binds tightly to A. californica FaNaC in an N terminus-in manner, which causes collapse of the binding cleft and induces large local conformational rearrangements. Such conformational changes are propagated downward toward the TMD via the palm domain, possibly resulting in outward movement of the TMD and dilation of the ion conduction pore.
Collapse
Affiliation(s)
- Fenglian Liu
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan and Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Yu Dang
- State Key Laboratory of Membrane Biology, Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Lu Li
- Academy of Medical Engineering and Translational Medicine (AMT) and Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin, China
| | - Hao Feng
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, China
| | - Jianlin Li
- Academy of Medical Engineering and Translational Medicine (AMT) and Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin, China
| | - Haowei Wang
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan and Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Xu Zhang
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan and Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Zhe Zhang
- State Key Laboratory of Membrane Biology, Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
- Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China.
| | - Sheng Ye
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, China.
| | - Yutao Tian
- Academy of Medical Engineering and Translational Medicine (AMT) and Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin, China.
| | - Qingfeng Chen
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan and Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China.
| |
Collapse
|
14
|
Fischer L, Schmidt A, Dopychai A, Joussen S, Joeres N, Oslender-Bujotzek A, Schmalzing G, Gründer S. Physiologically relevant acid-sensing ion channel (ASIC) 2a/3 heteromers have a 1:2 stoichiometry. Commun Biol 2023; 6:701. [PMID: 37422581 PMCID: PMC10329638 DOI: 10.1038/s42003-023-05087-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 06/29/2023] [Indexed: 07/10/2023] Open
Abstract
Acid-sensing ion channels (ASICs) sense extracellular protons and are involved in synaptic transmission and pain sensation. ASIC1a and ASIC3 are the ASIC subunits with the highest proton sensitivity. ASIC2a in contrast has low proton sensitivity but increases the variability of ASICs by forming heteromers with ASIC1a or ASIC3. ASICs are trimers and for the ASIC1a/2a heteromer it has been shown that subunits randomly assemble with a flexible 1:2/2:1 stoichiometry. Both heteromers have almost identical proton sensitivity intermediate between ASIC1a and ASIC2a. Here, we investigated the stoichiometry of the ASIC2a/3 heteromer. Using electrophysiology, we extensively characterized, first, cells expressing ASIC2a and ASIC3 at different ratios, second, concatemeric channels with a fixed subunit stoichiometry, and, third, channels containing loss-of-functions mutations in specific subunits. Our results conclusively show that only ASIC2a/3 heteromers with a 1:2 stoichiometry had a proton-sensitivity intermediate between ASIC2a and ASIC3. In contrast, the proton sensitivity of ASIC2a/3 heteromers with a 2:1 stoichiometry was strongly acid-shifted by more than one pH unit, which suggests that they are not physiologically relevant. Together, our results reveal that the proton sensitivity of the two ASIC2a/3 heteromers is clearly different and that ASIC3 and ASIC1a make remarkably different contributions to heteromers with ASIC2a.
Collapse
Affiliation(s)
- Leon Fischer
- Institute of Physiology, RWTH Aachen University, Pauwelsstrasse 30, D-52074, Aachen, Germany
- Department of Anesthesiology, Technical University Dresden, Dresden, Germany
| | - Axel Schmidt
- Institute of Physiology, RWTH Aachen University, Pauwelsstrasse 30, D-52074, Aachen, Germany
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Anke Dopychai
- Institute of Clinical Pharmacology, RWTH Aachen University, Wendlingweg, D-52074, Aachen, Germany
| | - Sylvia Joussen
- Institute of Physiology, RWTH Aachen University, Pauwelsstrasse 30, D-52074, Aachen, Germany
| | - Niko Joeres
- Institute of Physiology, RWTH Aachen University, Pauwelsstrasse 30, D-52074, Aachen, Germany
- Department of Nephrology and Clinical Immunology, RWTH Aachen University, Pauwelsstrasse 30, D-52074, Aachen, Germany
| | | | - Günther Schmalzing
- Institute of Clinical Pharmacology, RWTH Aachen University, Wendlingweg, D-52074, Aachen, Germany
| | - Stefan Gründer
- Institute of Physiology, RWTH Aachen University, Pauwelsstrasse 30, D-52074, Aachen, Germany.
| |
Collapse
|
15
|
Korkosh VS, Tikhonov DB. Analysis of residue-residue interactions in the structures of ASIC1a suggests possible gating mechanisms. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2023; 52:111-119. [PMID: 36690863 DOI: 10.1007/s00249-023-01628-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 01/25/2023]
Abstract
The gating mechanism of acid-sensitive ion channels (ASICs) remains unclear, despite the availability of atomic-scale structures in various functional states. The collapse of the acidic pocket and structural changes in the low-palm region are assumed to trigger activation. For the acidic pocket, protonation of some residues can minimize repulsion in the collapsed conformation. The relationship between low-palm rearrangements and gating is unknown. In this work, we performed a Monte Carlo energy optimization of known ASIC1a structures and determined the residue-residue interactions in different functional states. For rearrangements in the acidic pocket, our results are consistent with previously proposed mechanisms, although significant complexity was revealed for the residue-residue interactions. The data support the proposal of a gating mechanism in the low-palm region, in which residues E80 and E417 share a proton to activate the channel.
Collapse
Affiliation(s)
- Vyacheslav S Korkosh
- Sechenov Institute of Evolutionary Physiology and Biochemistry, St. Petersburg, Russia
| | - Denis B Tikhonov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, St. Petersburg, Russia.
| |
Collapse
|
16
|
Evlanenkov KK, Komarova MS, Dron MY, Nikolaev MV, Zhukovskaya ON, Gurova NA, Tikhonov DB. Derivatives of 2-aminobenzimidazole potentiate ASIC open state with slow kinetics of activation and desensitization. Front Physiol 2023; 14:1018551. [PMID: 36711018 PMCID: PMC9878307 DOI: 10.3389/fphys.2023.1018551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 01/04/2023] [Indexed: 01/15/2023] Open
Abstract
The pharmacology of acid-sensitive ion channels (ASICs) is diverse, but potent and selective modulators, for instance for ASIC2a, are still lacking. In the present work we studied the effect of five 2-aminobenzimidazole derivatives on native ASICs in rat brain neurons and recombinant receptors expressed in CHO cells using the whole-cell patch clamp method. 2-aminobenzimidazole selectively potentiated ASIC3. Compound Ru-1355 strongly enhanced responses of ASIC2a and caused moderate potentiation of native ASICs and heteromeric ASIC1a/ASIC2a. The most active compound, Ru-1199, caused the strongest potentiation of ASIC2a, but also potentiated native ASICs, ASIC1a and ASIC3. The potentiating effects depended on the pH and was most pronounced with intermediate acidifications. In the presence of high concentrations of Ru-1355 and Ru-1199, the ASIC2a responses were biphasic, the initial transient currents were followed by slow component. These slow additional currents were weakly sensitive to the acid-sensitive ion channels pore blocker diminazene. We also found that sustained currents mediated by ASIC2a and ASIC3 are less sensitive to diminazene than the peak currents. Different sensitivities of peak and sustained components to the pore-blocking drug suggest that they are mediated by different open states. We propose that the main mechanism of action of 2-aminobenzimidazole derivatives is potentiation of the open state with slow kinetics of activation and desensitization.
Collapse
Affiliation(s)
| | - Margarita S Komarova
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, St. Petersburg, Russia
| | - Mikhail Y Dron
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, St. Petersburg, Russia
| | - Maxim V Nikolaev
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, St. Petersburg, Russia
| | - Olga N Zhukovskaya
- Research Institute of Physical and Organic Chemistry, Southern Federal University, Rostov-on-Don, Russia
| | - Nataliya A Gurova
- Department of Pharmacology and Bioinformatics, Volgograd State Medical University, Volgograd, Russia
| | - Denis B Tikhonov
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, St. Petersburg, Russia,*Correspondence: Denis B Tikhonov,
| |
Collapse
|
17
|
Verkest C, Salinas M, Diochot S, Deval E, Lingueglia E, Baron A. Mechanisms of Action of the Peptide Toxins Targeting Human and Rodent Acid-Sensing Ion Channels and Relevance to Their In Vivo Analgesic Effects. Toxins (Basel) 2022; 14:toxins14100709. [PMID: 36287977 PMCID: PMC9612379 DOI: 10.3390/toxins14100709] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/30/2022] [Accepted: 10/02/2022] [Indexed: 11/16/2022] Open
Abstract
Acid-sensing ion channels (ASICs) are voltage-independent H+-gated cation channels largely expressed in the nervous system of rodents and humans. At least six isoforms (ASIC1a, 1b, 2a, 2b, 3 and 4) associate into homotrimers or heterotrimers to form functional channels with highly pH-dependent gating properties. This review provides an update on the pharmacological profiles of animal peptide toxins targeting ASICs, including PcTx1 from tarantula and related spider toxins, APETx2 and APETx-like peptides from sea anemone, and mambalgin from snake, as well as the dimeric protein snake toxin MitTx that have all been instrumental to understanding the structure and the pH-dependent gating of rodent and human cloned ASICs and to study the physiological and pathological roles of native ASICs in vitro and in vivo. ASICs are expressed all along the pain pathways and the pharmacological data clearly support a role for these channels in pain. ASIC-targeting peptide toxins interfere with ASIC gating by complex and pH-dependent mechanisms sometimes leading to opposite effects. However, these dual pH-dependent effects of ASIC-inhibiting toxins (PcTx1, mambalgin and APETx2) are fully compatible with, and even support, their analgesic effects in vivo, both in the central and the peripheral nervous system, as well as potential effects in humans.
Collapse
Affiliation(s)
- Clément Verkest
- CNRS (Centre National de la Recherche Scientifique), IPMC (Institut de Pharmacologie Moléculaire et Cellulaire), LabEx ICST (Laboratory of Excellence in Ion Channel Science and Therapeutics), FHU InovPain (Fédération Hospitalo-Universitaire “Innovative Solutions in Refractory Chronic Pain”), Université Côte d’Azur, 660 Route des Lucioles, Sophia-Antipolis, 06560 Nice, France
- Department of Anesthesiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Miguel Salinas
- CNRS (Centre National de la Recherche Scientifique), IPMC (Institut de Pharmacologie Moléculaire et Cellulaire), LabEx ICST (Laboratory of Excellence in Ion Channel Science and Therapeutics), FHU InovPain (Fédération Hospitalo-Universitaire “Innovative Solutions in Refractory Chronic Pain”), Université Côte d’Azur, 660 Route des Lucioles, Sophia-Antipolis, 06560 Nice, France
| | - Sylvie Diochot
- CNRS (Centre National de la Recherche Scientifique), IPMC (Institut de Pharmacologie Moléculaire et Cellulaire), LabEx ICST (Laboratory of Excellence in Ion Channel Science and Therapeutics), FHU InovPain (Fédération Hospitalo-Universitaire “Innovative Solutions in Refractory Chronic Pain”), Université Côte d’Azur, 660 Route des Lucioles, Sophia-Antipolis, 06560 Nice, France
| | - Emmanuel Deval
- CNRS (Centre National de la Recherche Scientifique), IPMC (Institut de Pharmacologie Moléculaire et Cellulaire), LabEx ICST (Laboratory of Excellence in Ion Channel Science and Therapeutics), FHU InovPain (Fédération Hospitalo-Universitaire “Innovative Solutions in Refractory Chronic Pain”), Université Côte d’Azur, 660 Route des Lucioles, Sophia-Antipolis, 06560 Nice, France
| | - Eric Lingueglia
- CNRS (Centre National de la Recherche Scientifique), IPMC (Institut de Pharmacologie Moléculaire et Cellulaire), LabEx ICST (Laboratory of Excellence in Ion Channel Science and Therapeutics), FHU InovPain (Fédération Hospitalo-Universitaire “Innovative Solutions in Refractory Chronic Pain”), Université Côte d’Azur, 660 Route des Lucioles, Sophia-Antipolis, 06560 Nice, France
| | - Anne Baron
- CNRS (Centre National de la Recherche Scientifique), IPMC (Institut de Pharmacologie Moléculaire et Cellulaire), LabEx ICST (Laboratory of Excellence in Ion Channel Science and Therapeutics), FHU InovPain (Fédération Hospitalo-Universitaire “Innovative Solutions in Refractory Chronic Pain”), Université Côte d’Azur, 660 Route des Lucioles, Sophia-Antipolis, 06560 Nice, France
- Correspondence:
| |
Collapse
|
18
|
Zha XM, Xiong ZG, Simon RP. pH and proton-sensitive receptors in brain ischemia. J Cereb Blood Flow Metab 2022; 42:1349-1363. [PMID: 35301897 PMCID: PMC9274858 DOI: 10.1177/0271678x221089074] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/11/2022] [Accepted: 02/28/2022] [Indexed: 01/01/2023]
Abstract
Extracellular proton concentration is at 40 nM when pH is 7.4. In disease conditions such as brain ischemia, proton concentration can reach µM range. To respond to this increase in extracellular proton concentration, the mammalian brain expresses at least three classes of proton receptors. Acid-sensing ion channels (ASICs) are the main neuronal cationic proton receptor. The proton-activated chloride channel (PAC), which is also known as (aka) acid-sensitive outwardly rectifying anion channel (ASOR; TMEM206), mediates acid-induced chloride currents. Besides proton-activated channels, GPR4, GPR65 (aka TDAG8, T-cell death-associated gene 8), and GPR68 (aka OGR1, ovarian cancer G protein-coupled receptor 1) function as proton-sensitive G protein-coupled receptors (GPCRs). Though earlier studies on these GPCRs mainly focus on peripheral cells, we and others have recently provided evidence for their functional importance in brain injury. Specifically, GPR4 shows strong expression in brain endothelium, GPR65 is present in a fraction of microglia, while GPR68 exhibits predominant expression in brain neurons. Here, to get a better view of brain acid signaling and its contribution to ischemic injury, we will review the recent findings regarding the differential contribution of proton-sensitive GPCRs to cerebrovascular function, neuroinflammation, and neuronal injury following acidosis and brain ischemia.
Collapse
Affiliation(s)
- Xiang-ming Zha
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Zhi-Gang Xiong
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Roger P Simon
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA, USA
| |
Collapse
|
19
|
Vaithia A, Kellenberger S. Probing conformational changes during activation of ASIC1a by an optical tweezer and by methanethiosulfonate-based cross-linkers. PLoS One 2022; 17:e0270762. [PMID: 35802631 PMCID: PMC9269482 DOI: 10.1371/journal.pone.0270762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/16/2022] [Indexed: 11/19/2022] Open
Abstract
Acid-sensing ion channels (ASICs) are neuronal, proton-gated, Na+-selective ion channels. They are involved in various physiological and pathological processes such as neurodegeneration after stroke, pain sensation, fear behavior and learning. To obtain information on the activation mechanism of ASIC1a, we attempted in this study to impose distance constraints between paired residues in different channel domains by using cross-linkers reacting with engineered Cys residues, and we measured how this affected channel function. First, the optical tweezer 4′-Bis(maleimido)azobenzene (BMA) was used, whose conformation changes depending on the wavelength of applied light. After exposure of channel mutants to BMA, an activation of the channel by light was only observed with a mutant containing a Cys mutation in the extracellular pore entry, I428C. Western blot analysis indicated that BMA did not cross-link Cys428 residues. Extracellular application of methanethiosulfonate (MTS) cross-linkers of different lengths changed the properties of several Cys mutants, in many cases likely without cross-linking two Cys residues. Our observations suggest that intersubunit cross-linking occurred in the wrist mutant A425C and intrasubunit cross-linking in the acidic pocket mutant D237C/I312C. In these mutants, exposure to cross-linkers favored a non-conducting channel conformation and induced an acidic shift of the pH dependence and a decrease of the maximal current amplitude. Overall, the cross-linking approaches appeared to be inefficient, possibly due to the geometrical requirements for successful reactions of the two ends of the cross-linking compound.
Collapse
Affiliation(s)
- Anand Vaithia
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Stephan Kellenberger
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
20
|
On the quest of small molecules that can mimic Psalmotoxin-1, the most powerful peptidic modulator of the acid sensing channel ASIC1a. Struct Chem 2022. [DOI: 10.1007/s11224-021-01826-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
Zhang L, Wang X, Chen J, Kleyman TR, Sheng S. Accessibility of ENaC extracellular domain central core residues. J Biol Chem 2022; 298:101860. [PMID: 35339489 PMCID: PMC9052164 DOI: 10.1016/j.jbc.2022.101860] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 11/20/2022] Open
Abstract
The epithelial Na+ channel (ENaC)/degenerin family has a similar extracellular architecture, where specific regulatory factors interact and alter channel gating behavior. The extracellular palm domain serves as a key link to the channel pore. In this study, we used cysteine-scanning mutagenesis to assess the functional effects of Cys-modifying reagents on palm domain β10 strand residues in mouse ENaC. Of the 13 ENaC α subunit mutants with Cys substitutions examined, only mutants at sites in the proximal region of β10 exhibited changes in channel activity in response to methanethiosulfonate reagents. Additionally, Cys substitutions at three proximal sites of β and γ subunit β10 strands also rendered mutant channels methanethiosulfonate-responsive. Moreover, multiple Cys mutants were activated by low concentrations of thiophilic Cd2+. Using the Na+ self-inhibition response to assess ENaC gating behavior, we identified four α, two β, and two γ subunit β10 strand mutations that changed the Na+ self-inhibition response. Our results suggest that the proximal regions of β10 strands in all three subunits are accessible to small aqueous compounds and Cd2+ and have a role in modulating ENaC gating. These results are consistent with a structural model of mouse ENaC that predicts the presence of aqueous tunnels adjacent to the proximal part of β10 and with previously resolved structures of a related family member where palm domain structural transitions were observed with channels in an open or closed state.
Collapse
Affiliation(s)
- Lei Zhang
- Departments of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xueqi Wang
- Departments of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jingxin Chen
- Departments of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Thomas R Kleyman
- Departments of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| | - Shaohu Sheng
- Departments of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
22
|
Heusser SA, Borg CB, Colding JM, Pless SA. Conformational decoupling in acid-sensing ion channels uncovers mechanism and stoichiometry of PcTx1-mediated inhibition. eLife 2022; 11:73384. [PMID: 35156612 PMCID: PMC8871370 DOI: 10.7554/elife.73384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 02/11/2022] [Indexed: 01/10/2023] Open
Abstract
Acid-sensing ion channels (ASICs) are trimeric proton-gated cation channels involved in fast synaptic transmission. Pharmacological inhibition of ASIC1a reduces neurotoxicity and stroke infarct volumes, with the cysteine knot toxin psalmotoxin-1 (PcTx1) being one of the most potent and selective inhibitors. PcTx1 binds at the subunit interface in the extracellular domain (ECD), but the mechanism and conformational consequences of the interaction, as well as the number of toxin molecules required for inhibition, remain unknown. Here, we use voltage-clamp fluorometry and subunit concatenation to decipher the mechanism and stoichiometry of PcTx1 inhibition of ASIC1a. Besides the known inhibitory binding mode, we propose PcTx1 to have at least two additional binding modes that are decoupled from the pore. One of these modes induces a long-lived ECD conformation that reduces the activity of an endogenous neuropeptide. This long-lived conformational state is proton-dependent and can be destabilized by a mutation that decreases PcTx1 sensitivity. Lastly, the use of concatemeric channel constructs reveals that disruption of a single PcTx1 binding site is sufficient to destabilize the toxin-induced conformation, while functional inhibition is not impaired until two or more binding sites are mutated. Together, our work provides insight into the mechanism of PcTx1 inhibition of ASICs and uncovers a prolonged conformational change with possible pharmacological implications.
Collapse
Affiliation(s)
- Stephanie A Heusser
- Department of Drug Design and Pharmacology, University of Copenhagen, Copehagen, Denmark
| | - Christian B Borg
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Janne M Colding
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Stephan A Pless
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
23
|
Leisle L, Margreiter M, Ortega-Ramírez A, Cleuvers E, Bachmann M, Rossetti G, Gründer S. Dynorphin Neuropeptides Decrease Apparent Proton Affinity of ASIC1a by Occluding the Acidic Pocket. J Med Chem 2021; 64:13299-13311. [PMID: 34461722 DOI: 10.1021/acs.jmedchem.1c00447] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Prolonged acidosis, as it occurs during ischemic stroke, induces neuronal death via acid-sensing ion channel 1a (ASIC1a). Concomitantly, it desensitizes ASIC1a, highlighting the pathophysiological significance of modulators of ASIC1a acid sensitivity. One such modulator is the opioid neuropeptide big dynorphin (Big Dyn) which binds to ASIC1a and enhances its activity during prolonged acidosis. The molecular determinants and dynamics of this interaction remain unclear, however. Here, we present a molecular interaction model showing a dynorphin peptide inserting deep into the acidic pocket of ASIC1a. We confirmed experimentally that the interaction is predominantly driven by electrostatic forces, and using noncanonical amino acids as photo-cross-linkers, we identified 16 residues in ASIC1a contributing to Big Dyn binding. Covalently tethering Big Dyn to its ASIC1a binding site dramatically decreased the proton sensitivity of channel activation, suggesting that Big Dyn stabilizes a resting conformation of ASIC1a and dissociates from its binding site during channel opening.
Collapse
Affiliation(s)
- Lilia Leisle
- Institute of Physiology, RWTH Aachen University, 52074 Aachen, Germany
| | - Michael Margreiter
- Computational Biomedicine-Institute for Advanced Simulation/Institute of Neuroscience and Medicine, Forschungszentrum Jülich, 52425 Jülich, Germany.,Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | | | - Elinor Cleuvers
- Institute of Physiology, RWTH Aachen University, 52074 Aachen, Germany
| | - Michèle Bachmann
- Institute of Physiology, RWTH Aachen University, 52074 Aachen, Germany
| | - Giulia Rossetti
- Computational Biomedicine-Institute for Advanced Simulation/Institute of Neuroscience and Medicine, Forschungszentrum Jülich, 52425 Jülich, Germany.,Jülich Supercomputing Center (JSC), Forschungszentrum Jülich, 52425 Jülich, Germany.,Department of Neurology, RWTH Aachen University, 52074 Aachen, Germany
| | - Stefan Gründer
- Institute of Physiology, RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
24
|
High-throughput characterization of photocrosslinker-bearing ion channel variants to map residues critical for function and pharmacology. PLoS Biol 2021; 19:e3001321. [PMID: 34491979 PMCID: PMC8448361 DOI: 10.1371/journal.pbio.3001321] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 09/17/2021] [Accepted: 06/10/2021] [Indexed: 12/24/2022] Open
Abstract
Incorporation of noncanonical amino acids (ncAAs) can endow proteins with novel functionalities, such as crosslinking or fluorescence. In ion channels, the function of these variants can be studied with great precision using standard electrophysiology, but this approach is typically labor intensive and low throughput. Here, we establish a high-throughput protocol to conduct functional and pharmacological investigations of ncAA-containing human acid-sensing ion channel 1a (hASIC1a) variants in transiently transfected mammalian cells. We introduce 3 different photocrosslinking ncAAs into 103 positions and assess the function of the resulting 309 variants with automated patch clamp (APC). We demonstrate that the approach is efficient and versatile, as it is amenable to assessing even complex pharmacological modulation by peptides. The data show that the acidic pocket is a major determinant for current decay, and live-cell crosslinking provides insight into the hASIC1a–psalmotoxin 1 (PcTx1) interaction. Further, we provide evidence that the protocol can be applied to other ion channels, such as P2X2 and GluA2 receptors. We therefore anticipate the approach to enable future APC-based studies of ncAA-containing ion channels in mammalian cells. This study describes a method to rapidly screen hundreds of ion channel variants containing non-canonical amino acids. A proof-of-principle introducing photocrosslinking non-canonical amino acids into the human ion channel hASIC1a shows how this approach can provide insights into function and pharmacology.
Collapse
|
25
|
Wu Y, Chen Z, Sigworth FJ, Canessa CM. Structure and analysis of nanobody binding to the human ASIC1a ion channel. eLife 2021; 10:e67115. [PMID: 34319232 PMCID: PMC8318589 DOI: 10.7554/elife.67115] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 07/13/2021] [Indexed: 11/13/2022] Open
Abstract
ASIC1a is a proton-gated sodium channel involved in modulation of pain, fear, addiction, and ischemia-induced neuronal injury. We report isolation and characterization of alpaca-derived nanobodies (Nbs) that specifically target human ASIC1a. Cryo-electron microscopy of the human ASIC1a channel at pH 7.4 in complex with one of these, Nb.C1, yielded a structure at 2.9 Å resolution. It is revealed that Nb.C1 binds to a site overlapping with that of the Texas coral snake toxin (MitTx1) and the black mamba venom Mambalgin-1; however, the Nb.C1-binding site does not overlap with that of the inhibitory tarantula toxin psalmotoxin-1 (PcTx1). Fusion of Nb.C1 with PcTx1 in a single polypeptide markedly enhances the potency of PcTx1, whereas competition of Nb.C1 and MitTx1 for binding reduces channel activation by the toxin. Thus, Nb.C1 is a molecular tool for biochemical and structural studies of hASIC1a; a potential antidote to the pain-inducing component of coral snake bite; and a candidate to potentiate PcTx1-mediated inhibition of hASIC1a in vivo for therapeutic applications.
Collapse
Affiliation(s)
- Yangyu Wu
- Basic Sciences Department, Tsinghua University School of MedicineBeijingChina
| | - Zhuyuan Chen
- Basic Sciences Department, Tsinghua University School of MedicineBeijingChina
| | - Fred J Sigworth
- Cellular and Molecular Physiology, Yale University School of MedicineNew HavenUnited States
| | - Cecilia M Canessa
- Basic Sciences Department, Tsinghua University School of MedicineBeijingChina
- Cellular and Molecular Physiology, Yale University School of MedicineNew HavenUnited States
| |
Collapse
|
26
|
Gornati D, Ciccone R, Vinciguerra A, Ippati S, Pannaccione A, Petrozziello T, Pizzi E, Hassan A, Colombo E, Barbini S, Milani M, Caccavone C, Randazzo P, Muzio L, Annunziato L, Menegon A, Secondo A, Mastrangelo E, Pignataro G, Seneci P. Synthesis and Characterization of Novel Mono- and Bis-Guanyl Hydrazones as Potent and Selective ASIC1 Inhibitors Able to Reduce Brain Ischemic Insult. J Med Chem 2021; 64:8333-8353. [PMID: 34097384 DOI: 10.1021/acs.jmedchem.1c00305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Acid-sensitive ion channels (ASICs) are sodium channels partially permeable to Ca2+ ions, listed among putative targets in central nervous system (CNS) diseases in which a pH modification occurs. We targeted novel compounds able to modulate ASIC1 and to reduce the progression of ischemic brain injury. We rationally designed and synthesized several diminazene-inspired diaryl mono- and bis-guanyl hydrazones. A correlation between their predicted docking affinities for the acidic pocket (AcP site) in chicken ASIC1 and their inhibition of homo- and heteromeric hASIC1 channels in HEK-293 cells was found. Their activity on murine ASIC1a currents and their selectivity vs mASIC2a were assessed in engineered CHO-K1 cells, highlighting a limited isoform selectivity. Neuroprotective effects were confirmed in vitro, on primary rat cortical neurons exposed to oxygen-glucose deprivation followed by reoxygenation, and in vivo, in ischemic mice. Early lead 3b, showing a good selectivity for hASIC1 in human neurons, was neuroprotective against focal ischemia induced in mice.
Collapse
Affiliation(s)
- Davide Gornati
- Chemistry Department, University of Milan, Via Golgi 19, 20133 Milan, Italy
| | - Roselia Ciccone
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples Federico II, Via Pansini 5, I-80131 Naples, Italy
| | - Antonio Vinciguerra
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples Federico II, Via Pansini 5, I-80131 Naples, Italy
| | - Stefania Ippati
- Experimental Imaging Center, ALEMBIC-Advanced Light and Electron Microscopy BioImaging Center, San Raffaele Scientific Institute, Via Olgettina 60, I-20132 Milan, Italy
| | - Anna Pannaccione
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples Federico II, Via Pansini 5, I-80131 Naples, Italy
| | - Tiziana Petrozziello
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples Federico II, Via Pansini 5, I-80131 Naples, Italy
| | - Erika Pizzi
- Experimental Imaging Center, ALEMBIC-Advanced Light and Electron Microscopy BioImaging Center, San Raffaele Scientific Institute, Via Olgettina 60, I-20132 Milan, Italy
| | - Amal Hassan
- National Research Council-Biophysics Institute (CNR-IBF), and Biosciences Department University of Milan, Via Celoria, 26, I-20133 Milan, Italy
| | - Eleonora Colombo
- Chemistry Department, University of Milan, Via Golgi 19, 20133 Milan, Italy
| | - Stefano Barbini
- Chemistry Department, University of Milan, Via Golgi 19, 20133 Milan, Italy
| | - Mario Milani
- National Research Council-Biophysics Institute (CNR-IBF), and Biosciences Department University of Milan, Via Celoria, 26, I-20133 Milan, Italy
| | - Cecilia Caccavone
- Experimental Imaging Center, ALEMBIC-Advanced Light and Electron Microscopy BioImaging Center, San Raffaele Scientific Institute, Via Olgettina 60, I-20132 Milan, Italy
| | | | - Luca Muzio
- INSPE-Institute of Experimental Neurology, San Raffaele Scientific Institute, Via Olgettina 60, I-20132 Milan, Italy
| | | | - Andrea Menegon
- Experimental Imaging Center, ALEMBIC-Advanced Light and Electron Microscopy BioImaging Center, San Raffaele Scientific Institute, Via Olgettina 60, I-20132 Milan, Italy
| | - Agnese Secondo
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples Federico II, Via Pansini 5, I-80131 Naples, Italy
| | - Eloise Mastrangelo
- National Research Council-Biophysics Institute (CNR-IBF), and Biosciences Department University of Milan, Via Celoria, 26, I-20133 Milan, Italy
| | - Giuseppe Pignataro
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples Federico II, Via Pansini 5, I-80131 Naples, Italy
| | - Pierfausto Seneci
- Chemistry Department, University of Milan, Via Golgi 19, 20133 Milan, Italy
| |
Collapse
|
27
|
Klipp RC, Cullinan MM, Bankston JR. Insights into the molecular mechanisms underlying the inhibition of acid-sensing ion channel 3 gating by stomatin. J Gen Physiol 2021; 152:133684. [PMID: 32012213 PMCID: PMC7054857 DOI: 10.1085/jgp.201912471] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/07/2019] [Accepted: 12/17/2019] [Indexed: 12/19/2022] Open
Abstract
Stomatin (STOM) is a monotopic integral membrane protein found in all classes of life that has been shown to regulate members of the acid-sensing ion channel (ASIC) family. However, the mechanism by which STOM alters ASIC function is not known. Using chimeric channels, we combined patch-clamp electrophysiology and FRET to search for regions of ASIC3 critical for binding to and regulation by STOM. With this approach, we found that regulation requires two distinct sites on ASIC3: the distal C-terminus and the first transmembrane domain (TM1). The C-terminal site is critical for formation of the STOM–ASIC3 complex, while TM1 is required only for the regulatory effect. We then looked at the mechanism of STOM-dependent regulation of ASIC3 and found that STOM does not alter surface expression of ASIC3 or shift the pH dependence of channel activation. However, a point mutation (Q269G) that prevents channel desensitization also prevents STOM regulation, suggesting that STOM may alter ASIC3 currents by stabilizing the desensitized state of the channel. Based on these findings, we propose a model whereby STOM is anchored to the channel via a site on the distal C-terminus and stabilizes the desensitized state of the channel via an interaction with TM1.
Collapse
Affiliation(s)
| | - Megan M Cullinan
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, CO
| | - John R Bankston
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, CO
| |
Collapse
|
28
|
Vullo S, Ambrosio N, Kucera JP, Bignucolo O, Kellenberger S. Kinetic analysis of ASIC1a delineates conformational signaling from proton-sensing domains to the channel gate. eLife 2021; 10:66488. [PMID: 33729158 PMCID: PMC8009679 DOI: 10.7554/elife.66488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/16/2021] [Indexed: 11/13/2022] Open
Abstract
Acid-sensing ion channels (ASICs) are neuronal Na+ channels that are activated by a drop in pH. Their established physiological and pathological roles, involving fear behaviors, learning, pain sensation, and neurodegeneration after stroke, make them promising targets for future drugs. Currently, the ASIC activation mechanism is not understood. Here, we used voltage-clamp fluorometry (VCF) combined with fluorophore-quencher pairing to determine the kinetics and direction of movements. We show that conformational changes with the speed of channel activation occur close to the gate and in more distant extracellular sites, where they may be driven by local protonation events. Further, we provide evidence for fast conformational changes in a pathway linking protonation sites to the channel pore, in which an extracellular interdomain loop interacts via aromatic residue interactions with the upper end of a transmembrane helix and would thereby open the gate.
Collapse
Affiliation(s)
- Sabrina Vullo
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Nicolas Ambrosio
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Jan P Kucera
- Department of Physiology, University of Bern, Bern, Switzerland
| | - Olivier Bignucolo
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland.,SIB, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Stephan Kellenberger
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
29
|
Fechner S, D'Alessandro I, Wang L, Tower C, Tao L, Goodman MB. DEG/ENaC/ASIC channels vary in their sensitivity to anti-hypertensive and non-steroidal anti-inflammatory drugs. J Gen Physiol 2021; 153:211847. [PMID: 33656557 PMCID: PMC7933985 DOI: 10.1085/jgp.202012655] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 01/12/2021] [Indexed: 12/19/2022] Open
Abstract
The degenerin channels, epithelial sodium channels, and acid-sensing ion channels (DEG/ENaC/ASICs) play important roles in sensing mechanical stimuli, regulating salt homeostasis, and responding to acidification in the nervous system. They have two transmembrane domains separated by a large extracellular domain and are believed to assemble as homomeric or heteromeric trimers. Based on studies of selected family members, these channels are assumed to form nonvoltage-gated and sodium-selective channels sensitive to the anti-hypertensive drug amiloride. They are also emerging as a target of nonsteroidal anti-inflammatory drugs (NSAIDs). Caenorhabditis elegans has more than two dozen genes encoding DEG/ENaC/ASIC subunits, providing an excellent opportunity to examine variations in drug sensitivity. Here, we analyze a subset of the C. elegans DEG/ENaC/ASIC proteins to test the hypothesis that individual family members vary not only in their ability to form homomeric channels but also in their drug sensitivity. We selected a panel of C. elegans DEG/ENaC/ASICs that are coexpressed in mechanosensory neurons and expressed gain-of-function or d mutants in Xenopus laevis oocytes. We found that only DEGT‑1d, UNC‑8d, and MEC‑4d formed homomeric channels and that, unlike MEC‑4d and UNC‑8d, DEGT‑1d channels were insensitive to amiloride and its analogues. As reported for rat ASIC1a, NSAIDs inhibit DEGT‑1d and UNC‑8d channels. Unexpectedly, MEC‑4d was strongly potentiated by NSAIDs, an effect that was decreased by mutations in the putative NSAID-binding site in the extracellular domain. Collectively, these findings reveal that not all DEG/ENaC/ASIC channels are amiloride-sensitive and that NSAIDs can both inhibit and potentiate these channels.
Collapse
Affiliation(s)
- Sylvia Fechner
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA
| | - Isabel D'Alessandro
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA
| | - Lingxin Wang
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA
| | - Calvin Tower
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA
| | - Li Tao
- Department of Biology, Stanford University, Stanford, CA
| | - Miriam B Goodman
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA
| |
Collapse
|
30
|
Liu Y, Ma J, DesJarlais RL, Hagan R, Rech J, Lin D, Liu C, Miller R, Schoellerman J, Luo J, Letavic M, Grasberger B, Maher M. Molecular mechanism and structural basis of small-molecule modulation of the gating of acid-sensing ion channel 1. Commun Biol 2021; 4:174. [PMID: 33564124 PMCID: PMC7873226 DOI: 10.1038/s42003-021-01678-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 01/07/2021] [Indexed: 01/07/2023] Open
Abstract
Acid-sensing ion channels (ASICs) are proton-gated cation channels critical for neuronal functions. Studies of ASIC1, a major ASIC isoform and proton sensor, have identified acidic pocket, an extracellular region enriched in acidic residues, as a key participant in channel gating. While binding to this region by the venom peptide psalmotoxin modulates channel gating, molecular and structural mechanisms of ASIC gating modulation by small molecules are poorly understood. Here, combining functional, crystallographic, computational and mutational approaches, we show that two structurally distinct small molecules potently and allosterically inhibit channel activation and desensitization by binding at the acidic pocket and stabilizing the closed state of rat/chicken ASIC1. Our work identifies a previously unidentified binding site, elucidates a molecular mechanism of small molecule modulation of ASIC gating, and demonstrates directly the structural basis of such modulation, providing mechanistic and structural insight into ASIC gating, modulation and therapeutic targeting.
Collapse
Affiliation(s)
- Yi Liu
- Neuroscience Discovery, Janssen Research & Development, L.L.C., 3210 Merryfield Row, San Diego, CA, 92121, USA.
| | - Jichun Ma
- Discovery Sciences, Janssen Research & Development, L.L.C., Welsh & McKean Roads, P.O. Box 776, Spring House, PA, 19477, USA
| | - Renee L DesJarlais
- Discovery Sciences, Janssen Research & Development, L.L.C., Welsh & McKean Roads, P.O. Box 776, Spring House, PA, 19477, USA
| | - Rebecca Hagan
- Neuroscience Discovery, Janssen Research & Development, L.L.C., 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Jason Rech
- Discovery Sciences, Janssen Research & Development, L.L.C., 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - David Lin
- Discovery Sciences, Janssen Research & Development, L.L.C., 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Changlu Liu
- Neuroscience Discovery, Janssen Research & Development, L.L.C., 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Robyn Miller
- Discovery Sciences, Janssen Research & Development, L.L.C., Welsh & McKean Roads, P.O. Box 776, Spring House, PA, 19477, USA
| | - Jeffrey Schoellerman
- Neuroscience Discovery, Janssen Research & Development, L.L.C., 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Jinquan Luo
- Lead Engineering, Janssen Research & Development, L.L.C., Welsh & McKean Roads, P.O. Box 776, Spring House, PA, 19477, USA
| | - Michael Letavic
- Discovery Sciences, Janssen Research & Development, L.L.C., 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Bruce Grasberger
- Discovery Sciences, Janssen Research & Development, L.L.C., Welsh & McKean Roads, P.O. Box 776, Spring House, PA, 19477, USA
| | - Michael Maher
- Neuroscience Discovery, Janssen Research & Development, L.L.C., 3210 Merryfield Row, San Diego, CA, 92121, USA
| |
Collapse
|
31
|
Shah B, Sindhikara D, Borrelli K, Leffler AE. Water Thermodynamics of Peptide Toxin Binding Sites on Ion Channels. Toxins (Basel) 2020; 12:toxins12100652. [PMID: 33053750 PMCID: PMC7599640 DOI: 10.3390/toxins12100652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/21/2020] [Accepted: 10/09/2020] [Indexed: 12/20/2022] Open
Abstract
Peptide toxins isolated from venomous creatures, long prized as research tools due to their innate potency for ion channels, are emerging as drugs as well. However, it remains challenging to understand why peptide toxins bind with high potency to ion channels, to identify residues that are key for activity, and to improve their affinities via mutagenesis. We use WaterMap, a molecular dynamics simulation-based method, to gain computational insight into these three questions by calculating the locations and thermodynamic properties of water molecules in the peptide toxin binding sites of five ion channels. These include an acid-sensing ion channel, voltage-gated potassium channel, sodium channel in activated and deactivated states, transient-receptor potential channel, and a nicotinic receptor whose structures were recently determined by crystallography and cryo-electron microscopy (cryo-EM). All channels had water sites in the peptide toxin binding site, and an average of 75% of these sites were stable (low-energy), and 25% were unstable (medium or high energy). For the sodium channel, more unstable water sites were present in the deactivated state structure than the activated. Additionally, for each channel, unstable water sites coincided with the positions of peptide toxin residues that previous mutagenesis experiments had shown were important for activity. Finally, for the sodium channel in the deactivated state, unstable water sites were present in the peptide toxin binding pocket but did not overlap with the peptide toxin, suggesting that future experimental efforts could focus on targeting these sites to optimize potency.
Collapse
Affiliation(s)
- Binita Shah
- Schrödinger, Inc. 120 W. 45th St, New York, NY 10036, USA; (B.S.); (D.S.); (K.B.)
- PhD Program in Biological and Biomedical Sciences, Division of Medical Sciences, Harvard Medical School, Boston, MA 02115, USA
| | - Dan Sindhikara
- Schrödinger, Inc. 120 W. 45th St, New York, NY 10036, USA; (B.S.); (D.S.); (K.B.)
| | - Ken Borrelli
- Schrödinger, Inc. 120 W. 45th St, New York, NY 10036, USA; (B.S.); (D.S.); (K.B.)
| | - Abba E. Leffler
- Schrödinger, Inc. 120 W. 45th St, New York, NY 10036, USA; (B.S.); (D.S.); (K.B.)
- Correspondence:
| |
Collapse
|
32
|
Zhu Y, Pan X, Du N, Li K, Hu Y, Wang L, Zhang J, Liu Y, Zuo L, Meng X, Hu C, Wu X, Jin J, Wu W, Chen X, Wu F, Huang Y. ASIC1a regulates miR‐350/SPRY2 by N
6
‐methyladenosine to promote liver fibrosis. FASEB J 2020; 34:14371-14388. [DOI: 10.1096/fj.202001337r] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/03/2020] [Accepted: 08/11/2020] [Indexed: 01/05/2023]
Affiliation(s)
- Yueqin Zhu
- Anhui Provincial laboratory of inflammatory and immunity disease Anhui Institute of Innovative Drugs School of Pharmacy Anhui Medical University, 230032, China Hefei230032China
| | - Xuesheng Pan
- Anhui Provincial laboratory of inflammatory and immunity disease Anhui Institute of Innovative Drugs School of Pharmacy Anhui Medical University, 230032, China Hefei230032China
| | - Na Du
- Anhui Provincial laboratory of inflammatory and immunity disease Anhui Institute of Innovative Drugs School of Pharmacy Anhui Medical University, 230032, China Hefei230032China
| | - Kuayue Li
- Anhui Provincial laboratory of inflammatory and immunity disease Anhui Institute of Innovative Drugs School of Pharmacy Anhui Medical University, 230032, China Hefei230032China
| | - Yamin Hu
- Anhui Provincial laboratory of inflammatory and immunity disease Anhui Institute of Innovative Drugs School of Pharmacy Anhui Medical University, 230032, China Hefei230032China
| | - Lili Wang
- Anhui Provincial laboratory of inflammatory and immunity disease Anhui Institute of Innovative Drugs School of Pharmacy Anhui Medical University, 230032, China Hefei230032China
| | - Jin Zhang
- Anhui Provincial laboratory of inflammatory and immunity disease Anhui Institute of Innovative Drugs School of Pharmacy Anhui Medical University, 230032, China Hefei230032China
| | - Yanyi Liu
- Anhui Provincial laboratory of inflammatory and immunity disease Anhui Institute of Innovative Drugs School of Pharmacy Anhui Medical University, 230032, China Hefei230032China
| | - Longquan Zuo
- Department of Pharmacy Hospital of Armed Police of Anhui Province Hefei230041China
| | - Xiaoming Meng
- Anhui Provincial laboratory of inflammatory and immunity disease Anhui Institute of Innovative Drugs School of Pharmacy Anhui Medical University, 230032, China Hefei230032China
| | - Chengmu Hu
- Anhui Provincial laboratory of inflammatory and immunity disease Anhui Institute of Innovative Drugs School of Pharmacy Anhui Medical University, 230032, China Hefei230032China
| | - xian Wu
- Anhui Provincial laboratory of inflammatory and immunity disease Anhui Institute of Innovative Drugs School of Pharmacy Anhui Medical University, 230032, China Hefei230032China
| | - Juan Jin
- Department of Pharmacology, School of Basic Medical Sciences Anhui Medical University Hefei230032China
| | - Wenyong Wu
- 4Department of General Surgery First Affiliated Hospital of Anhui Medical University Hefei230022China
| | - Xiangtao Chen
- Anhui Provincial laboratory of inflammatory and immunity disease Anhui Institute of Innovative Drugs School of Pharmacy Anhui Medical University, 230032, China Hefei230032China
| | - Fanrong Wu
- Anhui Provincial laboratory of inflammatory and immunity disease Anhui Institute of Innovative Drugs School of Pharmacy Anhui Medical University, 230032, China Hefei230032China
| | - Yan Huang
- Anhui Provincial laboratory of inflammatory and immunity disease Anhui Institute of Innovative Drugs School of Pharmacy Anhui Medical University, 230032, China Hefei230032China
| |
Collapse
|
33
|
Yoder N, Jalali-Yazdi F, Noreng S, Houser A, Baconguis I, Gouaux E. Light-coupled cryo-plunger for time-resolved cryo-EM. J Struct Biol 2020; 212:107624. [PMID: 32950604 DOI: 10.1016/j.jsb.2020.107624] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/08/2020] [Accepted: 09/11/2020] [Indexed: 12/26/2022]
Abstract
Proteins are dynamic molecules that can undergo rapid conformational rearrangements in response to stimuli. These structural changes are often critical to protein function, and thus elucidating time-dependent conformational landscapes has been a long-standing goal of structural biology. To harness the power of single particle cryo-EM methods to enable 'time-resolved' structure determination, we have developed a light-coupled cryo-plunger that pairs flash-photolysis of caged ligands with rapid sample vitrification. The 'flash-plunger' consists of a high-power ultraviolet LED coupled with focusing optics and a motorized linear actuator, enabling the user to immobilize protein targets in vitreous ice within a programmable time window - as short as tens of milliseconds - after stimulus delivery. The flash-plunger is a simple, inexpensive and flexible tool to explore short-lived conformational states previously unobtainable by conventional sample preparation methods.
Collapse
Affiliation(s)
- Nate Yoder
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Farzad Jalali-Yazdi
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Sigrid Noreng
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Alexandra Houser
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Isabelle Baconguis
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Eric Gouaux
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA; Howard Hughes Medical Institute, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
34
|
Sun D, Liu S, Li S, Zhang M, Yang F, Wen M, Shi P, Wang T, Pan M, Chang S, Zhang X, Zhang L, Tian C, Liu L. Structural insights into human acid-sensing ion channel 1a inhibition by snake toxin mambalgin1. eLife 2020; 9:57096. [PMID: 32915133 PMCID: PMC7553779 DOI: 10.7554/elife.57096] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 09/10/2020] [Indexed: 12/15/2022] Open
Abstract
Acid-sensing ion channels (ASICs) are proton-gated cation channels that are involved in diverse neuronal processes including pain sensing. The peptide toxin Mambalgin1 (Mamba1) from black mamba snake venom can reversibly inhibit the conductance of ASICs, causing an analgesic effect. However, the detailed mechanism by which Mamba1 inhibits ASIC1s, especially how Mamba1 binding to the extracellular domain affects the conformational changes of the transmembrane domain of ASICs remains elusive. Here, we present single-particle cryo-EM structures of human ASIC1a (hASIC1a) and the hASIC1a-Mamba1 complex at resolutions of 3.56 and 3.90 Å, respectively. The structures revealed the inhibited conformation of hASIC1a upon Mamba1 binding. The combination of the structural and physiological data indicates that Mamba1 preferentially binds hASIC1a in a closed state and reduces the proton sensitivity of the channel, representing a closed-state trapping mechanism.
Collapse
Affiliation(s)
- Demeng Sun
- Hefei National Laboratory of Physical Sciences at Microscale, Anhui Laboratory of Advanced Photonic Science and Technology and School of Life Sciences, University of Science and Technology of China, Hefei, China.,Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Sanling Liu
- Hefei National Laboratory of Physical Sciences at Microscale, Anhui Laboratory of Advanced Photonic Science and Technology and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Siyu Li
- Hefei National Laboratory of Physical Sciences at Microscale, Anhui Laboratory of Advanced Photonic Science and Technology and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Mengge Zhang
- Hefei National Laboratory of Physical Sciences at Microscale, Anhui Laboratory of Advanced Photonic Science and Technology and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Fan Yang
- Hefei National Laboratory of Physical Sciences at Microscale, Anhui Laboratory of Advanced Photonic Science and Technology and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Ming Wen
- Hefei National Laboratory of Physical Sciences at Microscale, Anhui Laboratory of Advanced Photonic Science and Technology and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Pan Shi
- Hefei National Laboratory of Physical Sciences at Microscale, Anhui Laboratory of Advanced Photonic Science and Technology and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Tao Wang
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, China
| | - Man Pan
- Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Shenghai Chang
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Xing Zhang
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Longhua Zhang
- Hefei National Laboratory of Physical Sciences at Microscale, Anhui Laboratory of Advanced Photonic Science and Technology and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Changlin Tian
- Hefei National Laboratory of Physical Sciences at Microscale, Anhui Laboratory of Advanced Photonic Science and Technology and School of Life Sciences, University of Science and Technology of China, Hefei, China.,High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, China
| | - Lei Liu
- Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China
| |
Collapse
|
35
|
Shi W, Shen J, Shen L, Hu W, Xu P, Baucom JA, Ma S, Yang S, Chen XM, Lu Y. Electrolyte Membranes with Biomimetic Lithium-Ion Channels. NANO LETTERS 2020; 20:5435-5442. [PMID: 32491862 DOI: 10.1021/acs.nanolett.0c01910] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
High-performance lithium-ion batteries (LIBs) demand efficient and selective transport of lithium ions. Inspired by ion channels in biology systems, lithium-ion channels are constructed by chemically modifying the nanoporous channels of metal-organic frameworks (MOFs) with negatively charged sulfonate groups. Analogous to the biological ion channels, such pendant anionic moieties repel free anions while allowing efficient transport of cations through the pore channels. Implementing such MOFs as an electrolyte membrane doubly enhances the lithium-ion transference number, alleviates concentration polarization, and affords striking durability of high-rate LIBs. This work demonstrates an ion-selective material design that effectively tunes the ion-transport behavior and could assist with more efficient operation of LIBs.
Collapse
Affiliation(s)
- Wenyue Shi
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
| | - Jianqiang Shen
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
| | - Li Shen
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
| | - Wei Hu
- College of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun 130024, P.R. China
| | - Pengcheng Xu
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
| | - Jesse A Baucom
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
| | - Shengxiang Ma
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
| | - Shuxing Yang
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
| | - Xiao-Ming Chen
- School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, P.R. China
| | - Yunfeng Lu
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
36
|
Osmakov DI, Khasanov TA, Andreev YA, Lyukmanova EN, Kozlov SA. Animal, Herb, and Microbial Toxins for Structural and Pharmacological Study of Acid-Sensing Ion Channels. Front Pharmacol 2020; 11:991. [PMID: 32733241 PMCID: PMC7360831 DOI: 10.3389/fphar.2020.00991] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/19/2020] [Indexed: 12/22/2022] Open
Abstract
Acid-sensing ion channels (ASICs) are of the most sensitive molecular sensors of extracellular pH change in mammals. Six isoforms of these channels are widely represented in membranes of neuronal and non-neuronal cells, where these molecules are involved in different important regulatory functions, such as synaptic plasticity, learning, memory, and nociception, as well as in various pathological states. Structural and functional studies of both wild-type and mutant ASICs are essential for human care and medicine for the efficient treatment of socially significant diseases and ensure a comfortable standard of life. Ligands of ASICs serve as indispensable tools for these studies. Such bioactive compounds can be synthesized artificially. However, to date, the search for such molecules has been most effective amongst natural sources, such as animal venoms or plants and microbial extracts. In this review, we provide a detailed and comprehensive structural and functional description of natural compounds acting on ASICs, as well as the latest information on structural aspects of their interaction with the channels. Many of the examples provided in the review demonstrate the undoubted fundamental and practical successes of using natural toxins. Without toxins, it would not be possible to obtain data on the mechanisms of ASICs' functioning, provide detailed study of their pharmacological properties, or assess the contribution of the channels to development of different pathologies. The selectivity to different isoforms and variety in the channel modulation mode allow for the appraisal of prospective candidates for the development of new drugs.
Collapse
Affiliation(s)
- Dmitry I Osmakov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Moscow, Russia
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Timur A Khasanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Moscow, Russia
| | - Yaroslav A Andreev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Moscow, Russia
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Ekaterina N Lyukmanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Moscow, Russia
| | - Sergey A Kozlov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Moscow, Russia
| |
Collapse
|
37
|
Yoder N, Gouaux E. The His-Gly motif of acid-sensing ion channels resides in a reentrant 'loop' implicated in gating and ion selectivity. eLife 2020; 9:e56527. [PMID: 32496192 PMCID: PMC7308080 DOI: 10.7554/elife.56527] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/03/2020] [Indexed: 12/18/2022] Open
Abstract
Acid-sensing ion channels (ASICs) are proton-gated members of the epithelial sodium channel/degenerin (ENaC/DEG) superfamily of ion channels and are expressed throughout the central and peripheral nervous systems. The homotrimeric splice variant ASIC1a has been implicated in nociception, fear memory, mood disorders and ischemia. Here, we extract full-length chicken ASIC1 (cASIC1) from cell membranes using styrene maleic acid (SMA) copolymer, elucidating structures of ASIC1 channels in both high pH resting and low pH desensitized conformations by single-particle cryo-electron microscopy (cryo-EM). The structures of resting and desensitized channels reveal a reentrant loop at the amino terminus of ASIC1 that includes the highly conserved 'His-Gly' (HG) motif. The reentrant loop lines the lower ion permeation pathway and buttresses the 'Gly-Ala-Ser' (GAS) constriction, thus providing a structural explanation for the role of the His-Gly dipeptide in the structure and function of ASICs.
Collapse
Affiliation(s)
- Nate Yoder
- Vollum Institute, Oregon Health & Science UniversityPortlandUnited States
| | - Eric Gouaux
- Vollum Institute, Oregon Health & Science UniversityPortlandUnited States
- Howard Hughes Medical Institute, Oregon Health & Science UniversityPortlandUnited States
| |
Collapse
|
38
|
Rook ML, Musgaard M, MacLean DM. Coupling structure with function in acid-sensing ion channels: challenges in pursuit of proton sensors. J Physiol 2020; 599:417-430. [PMID: 32306405 DOI: 10.1113/jp278707] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/27/2020] [Indexed: 12/25/2022] Open
Abstract
Acid-sensing ion channels (ASICs) are a class of trimeric cation-selective ion channels activated by changes in pH within the physiological range. They are widely expressed in the central and peripheral nervous systems where they participate in a range of physiological and pathophysiological situations such as learning and memory, pain sensation, fear and anxiety, substance abuse and cell death. ASICs are localized to cell bodies and dendrites, including the postsynaptic density, and within the last 5 years several examples of proton-evoked ASIC excitatory postsynaptic currents have emerged. Thus, ASICs have become bona fide neurotransmitter-gated ion channels, activated by the smallest neurotransmitter possible: protons. Here we review how protons are thought to drive the conformational changes associated with ASIC activation and desensitization. In particular, we weigh the evidence for and against the so-called 'acidic pocket' being a vital proton sensor and discuss the emerging role of the β11-12 linker as a desensitization switch or 'molecular clutch'. We also examine how proton-induced conformational changes pose unique challenges to classical molecular dynamics simulations, as well as some possible solutions. Given the emergence of new methodologies and structures, the coming years will probably see many advances in the study of acid-sensing ion channels.
Collapse
Affiliation(s)
- Matthew L Rook
- Graduate Program in Cellular and Molecular Pharmacology and Physiology, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, 14642, USA
| | - Maria Musgaard
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 75 Laurier Ave E, Ottawa, ON, K1N 6N5, Canada
| | - David M MacLean
- Department of Pharmacology and Physiology, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, 14642, USA
| |
Collapse
|
39
|
Bignucolo O, Vullo S, Ambrosio N, Gautschi I, Kellenberger S. Structural and Functional Analysis of Gly212 Mutants Reveals the Importance of Intersubunit Interactions in ASIC1a Channel Function. Front Mol Biosci 2020; 7:58. [PMID: 32411719 PMCID: PMC7198790 DOI: 10.3389/fmolb.2020.00058] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 03/23/2020] [Indexed: 12/27/2022] Open
Abstract
Acid-sensing ion channels (ASICs) act as pH sensors in neurons. ASICs contribute to pain sensation, learning, fear behavior and to neuronal death after ischemic stroke. Extracellular acidification induces a transient activation and subsequent desensitization of these Na+-selective channels. ASICs are trimeric channels made of identical or homologous subunits. We have previously shown that mutation of the highly conserved Gly212 residue of human ASIC1a to Asp affects the channel function. Gly212 is located in the proximity of a predicted Cl– binding site at a subunit interface. Here, we have measured the function of a series of Gly212 mutants. We show that substitution of Gly212 affects the ASIC1a pH dependence and current decay kinetics. Intriguingly, the mutations to the acidic residues Asp and Glu have opposing effects on the pH dependence and the current decay kinetics. Analysis of molecular dynamics simulation trajectories started with the coordinates of the closed conformation indicates that the immediate environment of residue 212 in G212E, which shifts the pH dependence to more alkaline values, adopts a conformation closer to the open state. The G212D and G212E mutants have a different pattern of intersubunit salt bridges, that, in the case of G212E, leads to an approaching of neighboring subunits. Based on the comparison of crystal structures, the conformational changes in this zone appear to be smaller during the open-desensitized transition. Nevertheless, MD simulations highlight differences between mutants, suggesting that the changed function upon substitution of residue 212 is due to differences in intra- and intersubunit interactions in its proximity.
Collapse
Affiliation(s)
- Olivier Bignucolo
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland.,SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Sabrina Vullo
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Nicolas Ambrosio
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Ivan Gautschi
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Stephan Kellenberger
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
40
|
APETx-Like Peptides from the Sea Anemone Heteractis crispa, Diverse in Their Effect on ASIC1a and ASIC3 Ion Channels. Toxins (Basel) 2020; 12:toxins12040266. [PMID: 32326130 PMCID: PMC7232172 DOI: 10.3390/toxins12040266] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/17/2020] [Accepted: 04/18/2020] [Indexed: 12/23/2022] Open
Abstract
Currently, five peptide modulators of acid-sensing ion channels (ASICs) attributed to structural class 1b of sea anemone toxins have been described. The APETx2 toxin is the first and most potent ASIC3 inhibitor, so its homologs from sea anemones are known as the APETx-like peptides. We have discovered that two APETx-like peptides from the sea anemone Heteractis crispa, Hcr 1b-3 and Hcr 1b-4, demonstrate different effects on rASIC1a and rASIC3 currents. While Hcr 1b-3 inhibits both investigated ASIC subtypes with IC50 4.95 ± 0.19 μM for rASIC1a and 17 ± 5.8 μM for rASIC3, Hcr 1b-4 has been found to be the first potentiator of ASIC3, simultaneously inhibiting rASIC1a at similar concentrations: EC50 1.53 ± 0.07 μM and IC50 1.25 ± 0.04 μM. The closest homologs, APETx2, Hcr 1b-1, and Hcr 1b-2, previously demonstrated the ability to inhibit hASIC3 with IC50 63 nM, 5.5, and 15.9 μM, respectively, while Hcr 1b-2 also inhibited rASIC1a with IC50 4.8 ± 0.3 μM. Computer modeling allowed us to describe the peculiarities of Hcr 1b-2 and Hcr 1b-4 interfaces with the rASIC1a channel and the stabilization of the expanded acidic pocket resulting from peptides binding which traps the rASIC1a channel in the closed state.
Collapse
|
41
|
A molecular view of the function and pharmacology of acid-sensing ion channels. Pharmacol Res 2020; 154:104166. [DOI: 10.1016/j.phrs.2019.02.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/01/2019] [Accepted: 02/02/2019] [Indexed: 02/06/2023]
|
42
|
Abstract
Acid-sensing ion channels (ASICs) are proton-gated cation channels that contribute to neurotransmission, as well as initiation of pain and neuronal death following ischemic stroke. As such, there is a great interest in understanding the in vivo regulation of ASICs, especially by endogenous neuropeptides that potently modulate ASICs. The most potent endogenous ASIC modulator known to date is the opioid neuropeptide big dynorphin (BigDyn). BigDyn is up-regulated in chronic pain and increases ASIC-mediated neuronal death during acidosis. Understanding the mechanism and site of action of BigDyn on ASICs could thus enable the rational design of compounds potentially useful in the treatment of pain and ischemic stroke. To this end, we employ a combination of electrophysiology, voltage-clamp fluorometry, synthetic BigDyn analogs, and noncanonical amino acid-mediated photocrosslinking. We demonstrate that BigDyn binding results in an ASIC1a closed resting conformation that is distinct from open and desensitized states induced by protons. Using alanine-substituted BigDyn analogs, we find that the BigDyn modulation of ASIC1a is primarily mediated through electrostatic interactions of basic amino acids in the BigDyn N terminus. Furthermore, neutralizing acidic amino acids in the ASIC1a extracellular domain reduces BigDyn effects, suggesting a binding site at the acidic pocket. This is confirmed by photocrosslinking using the noncanonical amino acid azidophenylalanine. Overall, our data define the mechanism of how BigDyn modulates ASIC1a, identify the acidic pocket as the binding site for BigDyn, and thus highlight this cavity as an important site for the development of ASIC-targeting therapeutics.
Collapse
|
43
|
Carattino MD, Montalbetti N. Acid-sensing ion channels in sensory signaling. Am J Physiol Renal Physiol 2020; 318:F531-F543. [PMID: 31984789 DOI: 10.1152/ajprenal.00546.2019] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Acid-sensing ion channels (ASICs) are cation-permeable channels that in the periphery are primarily expressed in sensory neurons that innervate tissues and organs. Soon after the cloning of the ASIC subunits, almost 20 yr ago, investigators began to use genetically modified mice to assess the role of these channels in physiological processes. These studies provide critical insights about the participation of ASICs in sensory processes, including mechanotransduction, chemoreception, and nociception. Here, we provide an extensive assessment of these findings and discuss the current gaps in knowledge with regard to the functions of ASICs in the peripheral nervous system.
Collapse
Affiliation(s)
- Marcelo D Carattino
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Nicolas Montalbetti
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
44
|
Nath K, Bin Rahaman A, Moi R, Maity K, Biradha K. Porous Li-MOF as a solid-state electrolyte: exploration of lithium ion conductivity through bio-inspired ionic channels. Chem Commun (Camb) 2020; 56:14873-14876. [DOI: 10.1039/d0cc05728b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A newly constructed porous Li-MOF was used as a solvent free solid electrolyte for Li-ion conductivity.
Collapse
Affiliation(s)
- Karabi Nath
- Department of Chemistry
- Indian Institute of Technology
- Kharagpur-721302
- India
| | | | - Rajib Moi
- Department of Chemistry
- Indian Institute of Technology
- Kharagpur-721302
- India
| | - Kartik Maity
- Department of Chemistry
- Indian Institute of Technology
- Kharagpur-721302
- India
| | - Kumar Biradha
- Department of Chemistry
- Indian Institute of Technology
- Kharagpur-721302
- India
| |
Collapse
|
45
|
Spider Venom: Components, Modes of Action, and Novel Strategies in Transcriptomic and Proteomic Analyses. Toxins (Basel) 2019; 11:toxins11100611. [PMID: 31652611 PMCID: PMC6832493 DOI: 10.3390/toxins11100611] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 10/18/2019] [Indexed: 12/19/2022] Open
Abstract
This review gives an overview on the development of research on spider venoms with a focus on structure and function of venom components and techniques of analysis. Major venom component groups are small molecular mass compounds, antimicrobial (also called cytolytic, or cationic) peptides (only in some spider families), cysteine-rich (neurotoxic) peptides, and enzymes and proteins. Cysteine-rich peptides are reviewed with respect to various structural motifs, their targets (ion channels, membrane receptors), nomenclature, and molecular binding. We further describe the latest findings concerning the maturation of antimicrobial, and cysteine-rich peptides that are in most known cases expressed as propeptide-containing precursors. Today, venom research, increasingly employs transcriptomic and mass spectrometric techniques. Pros and cons of venom gland transcriptome analysis with Sanger, 454, and Illumina sequencing are discussed and an overview on so far published transcriptome studies is given. In this respect, we also discuss the only recently described cross contamination arising from multiplexing in Illumina sequencing and its possible impacts on venom studies. High throughput mass spectrometric analysis of venom proteomes (bottom-up, top-down) are reviewed.
Collapse
|
46
|
Vaithia A, Vullo S, Peng Z, Alijevic O, Kellenberger S. Accelerated Current Decay Kinetics of a Rare Human Acid-Sensing ion Channel 1a Variant That Is Used in Many Studies as Wild Type. Front Mol Neurosci 2019; 12:133. [PMID: 31178694 PMCID: PMC6542941 DOI: 10.3389/fnmol.2019.00133] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 05/08/2019] [Indexed: 12/30/2022] Open
Abstract
Acid-sensing ion channels (ASICs) are neuronal Na+-permeable ion channels that are activated by extracellular acidification and are involved in fear sensing, learning, neurodegeneration after ischemia, and in pain sensation. We have recently found that the human ASIC1a (hASIC1a) wild type (WT) clone which has been used by many laboratories in recombinant expression studies contains a point mutation that occurs with a very low frequency in humans. Here, we compared the function and expression of ASIC1a WT and of this rare variant, in which the highly conserved residue Gly212 is substituted by Asp. Residue 212 is located at a subunit interface that undergoes changes during channel activity. We show that the modulation of channel function by commonly used ASIC inhibitors and modulators, and the pH dependence, are the same or only slightly different between hASIC1a-G212 and -D212. hASIC1a-G212 has however a higher current amplitude per surface-expressed channel and considerably slower current decay kinetics than hASIC1a-D212, and its current decay kinetics display a higher dependency on the type of anion present in the extracellular solution. We demonstrate for a number of channel mutants previously characterized in the hASIC1a-D212 background that they have very similar effects in the hASIC1a-G212 background. Taken together, we show that the variant hASIC1a-D212 that has been used as WT in many studies is, in fact, a mutant and that the properties of hASIC1a-D212 and hASIC1a-G212 are sufficiently close that the conclusions made in previous pharmacology and structure-function studies remain valid.
Collapse
Affiliation(s)
- Anand Vaithia
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Sabrina Vullo
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Zhong Peng
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Omar Alijevic
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Stephan Kellenberger
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
47
|
Nixon SA, Saez NJ, Herzig V, King GF, Kotze AC. The antitrypanosomal diarylamidines, diminazene and pentamidine, show anthelmintic activity against Haemonchus contortus in vitro. Vet Parasitol 2019; 270:40-46. [PMID: 31213240 DOI: 10.1016/j.vetpar.2019.05.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/17/2019] [Accepted: 05/18/2019] [Indexed: 12/13/2022]
Abstract
Parasitic nematodes pose a major threat to livestock production worldwide. The blood-feeding parasite Haemonchus contortus is a key small-ruminant pathogen that causes anaemia, and thereby seriously impacts animal health and production. Control of this parasite relies largely upon broad-spectrum anthelmintics, but new drugs are urgently needed to combat the threat of widespread multidrug resistance. Repurposing drugs can accelerate the development pipeline by reducing costs and risks, and can be an effective way of quickly bringing new antiparasitic drugs to market. Diarylamidine compounds such as pentamidine and diminazene have been employed in the treatment of trypanosomiasis and leishmaniasis in both human and veterinary settings, but their activity against parasitic worms has not yet been reported. We screened a small panel of diarylamidine compounds against H. contortus to assess their potential to be repurposed as anthelmintic drugs. Pentamidine and diminazene inhibited H. contortus larval development at low micromolar concentrations (IC50 4.9 μM and 16.1 μM, respectively, in a drug-susceptible isolate) with no existing cross-resistance in two multidrug resistant isolates and a monepantel-resistant isolate. Combinations of pentamidine with commercial anthelmintics showed additive activity, with no significant synergism detected. Pentamidine and diminazene showed different life-stage patterns of activity; both were active against early stage larvae in development assays, but only diminazene was active against the infective L3 stage in migration assays. This suggests some differences in uptake of the two drugs across the nematode cuticle, or differences in the nature and expression patterns of their molecular targets. As pentamidine and diminazene have been reported to be potent inhibitors of mammalian acid-sensing ion channels (ASIC), we tested the activity of known ASIC inhibitors against H. contortus to probe whether these channels may represent potential anthelmintic targets in nematodes. Remarkably, the spider-venom peptide Hi1a, a potent inhibitor of ASIC1a, inhibited H. contortus larval development with an IC50 of 22.9 ± 1.9 μM. This study highlights the potential use of diarylamidines as anthelmintics, although their activity needs to be confirmed in vivo. In addition, our demonstration that ASIC inhibitors have anthelmintic activity raises the possibility that this family of ion channels may represent a novel anthelmintic target.
Collapse
Affiliation(s)
- Samantha A Nixon
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia; CSIRO Agriculture and Food, Queensland Bioscience Precinct, St. Lucia, QLD 4067, Australia
| | - Natalie J Saez
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Volker Herzig
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Andrew C Kotze
- CSIRO Agriculture and Food, Queensland Bioscience Precinct, St. Lucia, QLD 4067, Australia.
| |
Collapse
|
48
|
Schmidt A, Alsop RJ, Rimal R, Lenzig P, Joussen S, Gervasi NN, Khondker A, Gründer S, Rheinstädter MC, Wiemuth D. Modulation of DEG/ENaCs by Amphiphiles Suggests Sensitivity to Membrane Alterations. Biophys J 2019; 114:1321-1335. [PMID: 29590590 DOI: 10.1016/j.bpj.2018.01.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 01/22/2018] [Accepted: 01/26/2018] [Indexed: 12/25/2022] Open
Abstract
The bile acid-sensitive ion channel is activated by amphiphilic substances such as bile acids or artificial detergents via membrane alterations; however, the mechanism of membrane sensitivity of the bile acid-sensitive ion channel is not known. It has also not been systematically investigated whether other members of the degenerin/epithelial Na+ channel (DEG/ENaC) gene family are affected by amphiphilic compounds. Here, we show that DEG/ENaCs ASIC1a, ASIC3, ENaC, and the purinergic receptor P2X2 are modulated by a large number of different, structurally unrelated amphiphilic substances, namely the detergents N-lauroylsarcosine, Triton X-100, and β-octylglucoside; the fenamate flufenamic acid; the antipsychotic drug chlorpromazine; the natural phenol resveratrol; the chili pepper compound capsaicin; the loop diuretic furosemide; and the antiarrythmic agent verapamil. We determined the modification of membrane properties using large-angle x-ray diffraction experiments on model lipid bilayers, revealing that the amphiphilic compounds are positioned in a characteristic fashion either in the lipid tail group region or in the lipid head group region, demonstrating that they perturbed the membrane structure. Collectively, our results show that DEG/ENaCs and structurally related P2X receptors are modulated by diverse amphiphilic molecules. Furthermore, they suggest alterations of membrane properties by amphiphilic compounds as a mechanism contributing to modulation.
Collapse
Affiliation(s)
- Axel Schmidt
- Institute of Physiology, RWTH Aachen University, Aachen, Germany
| | - Rick J Alsop
- Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada
| | - Rahul Rimal
- Institute of Physiology, RWTH Aachen University, Aachen, Germany
| | - Pia Lenzig
- Institute of Physiology, RWTH Aachen University, Aachen, Germany
| | - Sylvia Joussen
- Institute of Physiology, RWTH Aachen University, Aachen, Germany
| | - Natalie N Gervasi
- Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada
| | - Adree Khondker
- Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada
| | - Stefan Gründer
- Institute of Physiology, RWTH Aachen University, Aachen, Germany
| | | | - Dominik Wiemuth
- Institute of Physiology, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
49
|
Cristofori-Armstrong B, Saez NJ, Chassagnon IR, King GF, Rash LD. The modulation of acid-sensing ion channel 1 by PcTx1 is pH-, subtype- and species-dependent: Importance of interactions at the channel subunit interface and potential for engineering selective analogues. Biochem Pharmacol 2019; 163:381-390. [PMID: 30849303 DOI: 10.1016/j.bcp.2019.03.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 03/04/2019] [Indexed: 01/13/2023]
Abstract
Acid-sensing ion channels (ASICs) are primary acid sensors in the mammalian nervous system that are activated by protons under conditions of local acidosis. They have been implicated in a range of pathologies including ischemic stroke (ASIC1a subtype) and peripheral pain (ASIC1b and ASIC3). Although the spider venom peptide PcTx1 is the best-studied ASIC modulator and is neuroprotective in rodent models of ischemic stroke, little experimental work has been done to examine its molecular interaction with human ASIC1a or the off-target ASIC1b. The complementary face of the acidic pocket binding site of PcTx1 is where these channels differ in sequence. We show here that although PcTx1 is 10-fold less potent at human ASIC1a than the rat channel, the apparent affinity for the two channels is comparable. We examined the pharmacophore of PcTx1 for human ASIC1a and rat ASIC1b, and show that inhibitory and stimulatory effects at each ASIC1 variant is driven mostly by a shared set of core peptide pharmacophore residues that bind to the thumb domain, while peptide residues that interact with the complementary face of the biding site underlie species and subtype-dependent differences in activity that may allow manipulation of ASIC1 variant selectivity. Finally, the stimulatory effect of PcTx1 on rat ASIC1a when applied under mildly alkaline pH correlates with low receptor occupancy. These new insights into the interactions between PcTx1 with ASIC1 subtypes demonstrates the complexity of its mechanism of action, and highlights important implications to consider when using PcTx1 as a pharmacological tool to study ASIC function.
Collapse
Affiliation(s)
- Ben Cristofori-Armstrong
- School of Biomedical Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia; Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Natalie J Saez
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Irène R Chassagnon
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Lachlan D Rash
- School of Biomedical Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia.
| |
Collapse
|
50
|
Maatuf Y, Geron M, Priel A. The Role of Toxins in the Pursuit for Novel Analgesics. Toxins (Basel) 2019; 11:toxins11020131. [PMID: 30813430 PMCID: PMC6409898 DOI: 10.3390/toxins11020131] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/17/2019] [Accepted: 02/20/2019] [Indexed: 12/19/2022] Open
Abstract
Chronic pain is a major medical issue which reduces the quality of life of millions and inflicts a significant burden on health authorities worldwide. Currently, management of chronic pain includes first-line pharmacological therapies that are inadequately effective, as in just a portion of patients pain relief is obtained. Furthermore, most analgesics in use produce severe or intolerable adverse effects that impose dose restrictions and reduce compliance. As the majority of analgesic agents act on the central nervous system (CNS), it is possible that blocking pain at its source by targeting nociceptors would prove more efficient with minimal CNS-related side effects. The development of such analgesics requires the identification of appropriate molecular targets and thorough understanding of their structural and functional features. To this end, plant and animal toxins can be employed as they affect ion channels with high potency and selectivity. Moreover, elucidation of the toxin-bound ion channel structure could generate pharmacophores for rational drug design while favorable safety and analgesic profiles could highlight toxins as leads or even as valuable therapeutic compounds themselves. Here, we discuss the use of plant and animal toxins in the characterization of peripherally expressed ion channels which are implicated in pain.
Collapse
Affiliation(s)
- Yossi Maatuf
- The Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel.
| | - Matan Geron
- The Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel.
| | - Avi Priel
- The Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel.
| |
Collapse
|