1
|
Tolentino M, Walker SE, Spencer GE, Carlone R. The endocannabinoid system regulates both ependymoglial and neuronal cell responses to a tail amputation in the axolotl. Dev Dyn 2025. [PMID: 40377265 DOI: 10.1002/dvdy.70035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 03/21/2025] [Accepted: 04/22/2025] [Indexed: 05/18/2025] Open
Abstract
BACKGROUND The endocannabinoid system is a neuromodulatory system implicated in cellular processes during both development and regeneration. The Mexican axolotl, one of only a few vertebrates capable of central nervous system regeneration, was used to examine the role of the endocannabinoid system in the regeneration of the tail and spinal cord following amputation. RESULTS The endocannabinoid receptor CB1 was upregulated in the regenerating axolotl spinal cord by 4 hours following tail amputation, and this upregulation persisted for at least 14 days. The endocannabinoid receptor CB2 was upregulated later, between 7 and 14 days after tail amputation. Both CB1 and CB2 were located in ependymoglia and neurons within the regenerating spinal cord. Treatment with inverse agonists to inhibit CB1 (AM251) or CB2 (AM630) inhibited spinal cord and tail regeneration. During the first 7 days after injury, CB1 and CB2 expression was also necessary for the proliferation of ependymoglial cells and the regeneration of axons into the newly regenerated tail tissue. However, only CB1 was necessary for the differentiation of ependymoglia into immature neurons. CONCLUSIONS These studies are the first to examine the role of the endocannabinoid system during spinal cord regeneration in a regeneration-competent vertebrate.
Collapse
Affiliation(s)
- Michael Tolentino
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| | - Sarah E Walker
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
- Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| | - Gaynor E Spencer
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| | - Robert Carlone
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| |
Collapse
|
2
|
Park S, Jin Y, Chisholm AD. Context-specific interaction of the lipid regulator DIP-2 with phospholipid synthesis in axon regeneration and maintenance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.06.636954. [PMID: 39974891 PMCID: PMC11839101 DOI: 10.1101/2025.02.06.636954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Neurons maintain their morphology over prolonged periods of adult life with limited regeneration after injury. C. elegans DIP-2 is a conserved regulator of lipid metabolism that affects axon maintenance and regeneration after injury. Here, we investigated genetic interactions of dip-2 with mutants in genes involved in lipid biosynthesis and identified roles of phospholipids in axon regrowth and maintenance. CEPT-2 and EPT-1 are enzymes catalyzing the final steps in the de novo phospholipid synthesis (Kennedy) pathway. Loss of function mutants of cept-2 or ept-1 show reduced axon regrowth and failure to maintain axon morphology. We demonstrate that CEPT-2 is cell-autonomously required to prevent age-related axonal defects. Interestingly, loss of function in dip-2 led to suppression of the axon regrowth phenotype observed in either cept-2 or ept-2 mutants, suggesting that DIP-2 acts to counterbalance phospholipid synthesis. Our findings reveal the genetic regulation of lipid metabolism to be critical for axon maintenance under injury and during aging. Article Summary Little is known about how adult neurons live long with limited regenerative capacity. This study investigates the role of lipid metabolism in sustaining neuronal health in C. elegans. Mutating phospholipid synthetic genes impairs axon regrowth after injury. Lack of DIP-2, a lipid regulator, restores regrowth, suggesting DIP-2 counterbalances phospholipid synthesis. Moreover, neuronal phospholipid synthesis is essential for preventing age-dependent axonal defects. These findings reveal phospholipid biosynthesis is key to axon integrity during aging and injury. As lipid metabolism is implicated in neurological disorders, this study serves as an entry point into investigating neuronal lipid biology under various conditions.
Collapse
|
3
|
Fock E, Parnova R. Omega-3 polyunsaturated fatty acids in the brain and visual system: Focus on invertebrates. Comp Biochem Physiol B Biochem Mol Biol 2025; 275:111023. [PMID: 39154851 DOI: 10.1016/j.cbpb.2024.111023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
A critical role of omega-3 polyunsaturated fatty acids (PUFA), mainly docosahexaenoic acid 22:6ω3 (DHA), in the development and function of the brain and visual system is well established. DHA, the most abundant omega-3 PUFA in the vertebrate brain, contributes to neuro- and synaptogenesis, neuronal differentiation, synaptic transmission and plasticity, neuronal network formation, memory and behaviour formation. Based on these data, the unique importance of DHA and its irreplaceability in neural and retinal tissues has been postulated. In this review, we consider omega-3 PUFA composition in the brain and retina of various invertebrates, and show that DHA has only been found in marine mollusks and crustaceans. A gradual decrease in the DHA content until its disappearance can be observed in the brain lipids of the series marine-freshwater-terrestrial crustaceans and marine-terrestrial mollusks, suggesting that the transition to the land lifestyle in the evolution of invertebrates, but not vertebrates, was accompanied by a loss of DHA. As with terrestrial crustaceans and mollusks, DHA was not found in insects, either terrestrial or aquatic, or in nematodes. We show that the nervous and visual systems of various DHA-free invertebrates can be highly enriched in alpha-linolenic acid 18:3ω3 or eicosapentaenoic acid 20:5ω3, which affect neurological and visual function, stimulating synaptogenesis, synaptic transmission, visual processing, learning and even cognition. The review data show that, in animals at different levels of organization, omega-3 PUFA are required for the functioning of the nervous and visual systems and that their specific needs can be met by various omega-3 PUFA.
Collapse
Affiliation(s)
- Ekaterina Fock
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, 194223, Torez Av., 44, Saint-Petersburg, Russia
| | - Rimma Parnova
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, 194223, Torez Av., 44, Saint-Petersburg, Russia.
| |
Collapse
|
4
|
Liu J, Murray JI. Mechanisms of lineage specification in Caenorhabditis elegans. Genetics 2023; 225:iyad174. [PMID: 37847877 PMCID: PMC11491538 DOI: 10.1093/genetics/iyad174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 09/18/2023] [Indexed: 10/19/2023] Open
Abstract
The studies of cell fate and lineage specification are fundamental to our understanding of the development of multicellular organisms. Caenorhabditis elegans has been one of the premiere systems for studying cell fate specification mechanisms at single cell resolution, due to its transparent nature, the invariant cell lineage, and fixed number of somatic cells. We discuss the general themes and regulatory mechanisms that have emerged from these studies, with a focus on somatic lineages and cell fates. We next review the key factors and pathways that regulate the specification of discrete cells and lineages during embryogenesis and postembryonic development; we focus on transcription factors and include numerous lineage diagrams that depict the expression of key factors that specify embryonic founder cells and postembryonic blast cells, and the diverse somatic cell fates they generate. We end by discussing some future perspectives in cell and lineage specification.
Collapse
Affiliation(s)
- Jun Liu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - John Isaac Murray
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
5
|
Kouchaeknejad A, Van Der Walt G, De Donato MH, Puighermanal E. Imaging and Genetic Tools for the Investigation of the Endocannabinoid System in the CNS. Int J Mol Sci 2023; 24:15829. [PMID: 37958825 PMCID: PMC10648052 DOI: 10.3390/ijms242115829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
As central nervous system (CNS)-related disorders present an increasing cause of global morbidity, mortality, and high pressure on our healthcare system, there is an urgent need for new insights and treatment options. The endocannabinoid system (ECS) is a critical network of endogenous compounds, receptors, and enzymes that contribute to CNS development and regulation. Given its multifaceted involvement in neurobiology and its significance in various CNS disorders, the ECS as a whole is considered a promising therapeutic target. Despite significant advances in our understanding of the ECS's role in the CNS, its complex architecture and extensive crosstalk with other biological systems present challenges for research and clinical advancements. To bridge these knowledge gaps and unlock the full therapeutic potential of ECS interventions in CNS-related disorders, a plethora of molecular-genetic tools have been developed in recent years. Here, we review some of the most impactful tools for investigating the neurological aspects of the ECS. We first provide a brief introduction to the ECS components, including cannabinoid receptors, endocannabinoids, and metabolic enzymes, emphasizing their complexity. This is followed by an exploration of cutting-edge imaging tools and genetic models aimed at elucidating the roles of these principal ECS components. Special emphasis is placed on their relevance in the context of CNS and its associated disorders.
Collapse
Affiliation(s)
| | | | | | - Emma Puighermanal
- Neuroscience Institute, Autonomous University of Barcelona, 08193 Bellaterra, Spain; (A.K.); (G.V.D.W.); (M.H.D.D.)
| |
Collapse
|
6
|
Levichev A, Faumont S, Berner RZ, Purcell Z, White AM, Chicas-Cruz K, Lockery SR. The conserved endocannabinoid anandamide modulates olfactory sensitivity to induce hedonic feeding in C. elegans. Curr Biol 2023; 33:1625-1639.e4. [PMID: 37084730 PMCID: PMC10175219 DOI: 10.1016/j.cub.2023.03.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 04/23/2023]
Abstract
The ability of cannabis to increase food consumption has been known for centuries. In addition to producing hyperphagia, cannabinoids can amplify existing preferences for calorically dense, palatable food sources, a phenomenon called hedonic amplification of feeding. These effects result from the action of plant-derived cannabinoids that mimic endogenous ligands called endocannabinoids. The high degree of conservation of cannabinoid signaling at the molecular level across the animal kingdom suggests hedonic feeding may also be widely conserved. Here, we show that exposure of Caenorhabditis elegans to anandamide, an endocannabinoid common to nematodes and mammals, shifts both appetitive and consummatory responses toward nutritionally superior food, an effect analogous to hedonic feeding. We find that anandamide's effect on feeding requires the C. elegans cannabinoid receptor NPR-19 but can also be mediated by the human CB1 cannabinoid receptor, indicating functional conservation between the nematode and mammalian endocannabinoid systems for the regulation of food preferences. Furthermore, anandamide has reciprocal effects on appetitive and consummatory responses to food, increasing and decreasing responses to inferior and superior foods, respectively. Anandamide's behavioral effects require the AWC chemosensory neurons, and anandamide renders these neurons more sensitive to superior foods and less sensitive to inferior foods, mirroring the reciprocal effects seen at the behavioral level. Our findings reveal a surprising degree of functional conservation in the effects of endocannabinoids on hedonic feeding across species and establish a new system to investigate the cellular and molecular basis of endocannabinoid system function in the regulation of food choice.
Collapse
Affiliation(s)
- Anastasia Levichev
- University of Oregon, Institute of Neuroscience, 1245 University of Oregon, Eugene, OR 97403, USA
| | - Serge Faumont
- University of Oregon, Institute of Neuroscience, 1245 University of Oregon, Eugene, OR 97403, USA
| | - Rachel Z Berner
- University of Oregon, Institute of Neuroscience, 1245 University of Oregon, Eugene, OR 97403, USA
| | - Zhifeng Purcell
- University of Oregon, Institute of Neuroscience, 1245 University of Oregon, Eugene, OR 97403, USA
| | - Amanda M White
- University of Oregon, Institute of Neuroscience, 1245 University of Oregon, Eugene, OR 97403, USA
| | - Kathy Chicas-Cruz
- University of Oregon, Institute of Neuroscience, 1245 University of Oregon, Eugene, OR 97403, USA
| | - Shawn R Lockery
- University of Oregon, Institute of Neuroscience, 1245 University of Oregon, Eugene, OR 97403, USA.
| |
Collapse
|
7
|
Estrada-Valencia R, de Lima ME, Colonnello A, Rangel-López E, Saraiva NR, de Ávila DS, Aschner M, Santamaría A. The Endocannabinoid System in Caenorhabditis elegans. Rev Physiol Biochem Pharmacol 2023; 184:1-31. [PMID: 34401955 PMCID: PMC8850531 DOI: 10.1007/112_2021_64] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The existence of a formal Endocannabinoid System in C. elegans has been questioned due to data showing the absence of typical cannabinoid receptors in the worm; however, the presence of a full metabolism for endocannabinoids, alternative ligands, and receptors for these agents and a considerable number of orthologous and homologous genes regulating physiological cannabinoid-like signals and responses - several of which are similar to those of mammals - demonstrates a well-structured and functional complex system in nematodes. In this review, we describe and compare similarities and differences between the Endocannabinoid System in mammals and nematodes, highlighting the basis for the integral study of this novel system in the worm.
Collapse
Affiliation(s)
| | - María Eduarda de Lima
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Aline Colonnello
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Edgar Rangel-López
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Nariani Rocha Saraiva
- Laboratório de Bioquímica e Toxicologia em Caenorhabditis elegans, UNIPAMPA, Uruguaiana, Brazil
| | - Daiana Silva de Ávila
- Laboratório de Bioquímica e Toxicologia em Caenorhabditis elegans, UNIPAMPA, Uruguaiana, Brazil
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Abel Santamaría
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico.
| |
Collapse
|
8
|
Zhan C, Chen L, Guo D, Sun J, Duan Y, Zhang P, Li P, Ma L, Xu M, Wang Y, Bao H, Gao G, Liu L, Zhang K. An Intestinal Symbiotic Bacterial Strain of Oscheius chongmingensis Modulates Host Viability at Both Global and Post-Transcriptional Levels. Int J Mol Sci 2022; 23:ijms232314692. [PMID: 36499019 PMCID: PMC9739912 DOI: 10.3390/ijms232314692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/08/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
A rhabditid entomopathogenic nematode (EPN), Oscheius chongmingensis, has a stable symbiotic relationship with the bacterial strain Serratia nematodiphila S1 harbored in its intestines and drastically reduced viability when associated with a non-native strain (186) of the same bacterial species. This nematode is thus a good model for understanding the molecular mechanisms and interactions involved between a nematode host and a member of its intestinal microbiome. Transcriptome analysis and RNA-seq data indicated that expression levels of the majority (8797, 87.59%) of mRNAs in the non-native combination of O. chongmingensis and S. nematodiphila 186 were downregulated compared with the native combination, including strain S1. Accordingly, 88.84% of the total uniq-sRNAs mapped in the O. chongmingensis transcriptome were specific between the two combinations. Six DEGs, including two transcription factors (oc-daf-16 and oc-goa-1) and four kinases (oc-pdk-1, oc-akt-1, oc-rtk, and oc-fak), as well as an up-regulated micro-RNA, oc-miR-71, were found to demonstrate the regulatory mechanisms underlying diminished host viability induced by a non-native bacterial strain. Oc-rtk and oc-fak play key roles in the viability regulation of O. chongmingensis by positively mediating the expression of oc-daf-16 to indirectly impact its longevity and stress tolerances and by negatively regulating the expression of oc-goa-1 to affect the olfactory chemotaxis and fecundity. In response to the stress of invasion by the non-native strain, the expression of oc-miR-71 in the non-native combination was upregulated to downregulate the expression of its targeting oc-pdk-1, which might improve the localization and activation of the transcription factor DAF-16 in the nucleus to induce longevity extension and stress resistance enhancement to some extent. Our findings provide novel insight into comprehension of how nematodes deal with the stress of encountering novel potential bacterial symbionts at the physiological and molecular genetic levels and contribute to improved understanding of host-symbiont relationships generally.
Collapse
Affiliation(s)
- Chengxiu Zhan
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Long Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Dandan Guo
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jing Sun
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yunbin Duan
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Panjie Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Pengpeng Li
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lijun Ma
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Man Xu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Haoran Bao
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Guofu Gao
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Liwang Liu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crop (East China), Ministry of Agriculture and Rural Affairs, College of Horiticulture, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: (L.L.); (K.Z.)
| | - Keyun Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: (L.L.); (K.Z.)
| |
Collapse
|
9
|
Intrinsic heterogeneity in axon regeneration. Biochem Soc Trans 2022; 50:1753-1762. [DOI: 10.1042/bst20220624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/01/2022] [Accepted: 11/07/2022] [Indexed: 11/18/2022]
Abstract
The nervous system is composed of a variety of neurons and glial cells with different morphology and functions. In the mammalian peripheral nervous system (PNS) or the lower vertebrate central nervous system (CNS), most neurons can regenerate extensively after axotomy, while the neurons in the mammalian CNS possess only limited regenerative ability. This heterogeneity is common within and across species. The studies about the transcriptomes after nerve injury in different animal models have revealed a series of molecular and cellular events that occurred in neurons after axotomy. However, responses of various types of neurons located in different positions of individuals were different remarkably. Thus, researchers aim to find the key factors that are conducive to regeneration, so as to provide the molecular basis for solving the regeneration difficulties after CNS injury. Here we review the heterogeneity of axonal regeneration among different cell subtypes in different animal models or the same organ, emphasizing the importance of comparative studies within and across species.
Collapse
|
10
|
Sakai Y, Hanafusa H, Hisamoto N, Matsumoto K. Histidine dephosphorylation of the Gβ protein GPB-1 promotes axon regeneration in C. elegans. EMBO Rep 2022; 23:e55076. [PMID: 36278516 PMCID: PMC9724660 DOI: 10.15252/embr.202255076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 12/12/2022] Open
Abstract
Histidine phosphorylation is an emerging noncanonical protein phosphorylation in animals, yet its physiological role remains largely unexplored. The protein histidine phosphatase (PHPT1) was recently identified for the first time in mammals. Here, we report that PHIP-1, an ortholog of PHPT1 in Caenorhabditis elegans, promotes axon regeneration by dephosphorylating GPB-1 Gβ at His-266 and inactivating GOA-1 Goα signaling, a negative regulator of axon regeneration. Overexpression of the histidine kinase NDK-1 also inhibits axon regeneration via GPB-1 His-266 phosphorylation. Thus, His-phosphorylation plays an antiregenerative role in C. elegans. Furthermore, we identify a conserved UNC-51/ULK kinase that functions in autophagy as a PHIP-1-binding protein. We demonstrate that UNC-51 phosphorylates PHIP-1 at Ser-112 and activates its catalytic activity and that this phosphorylation is required for PHIP-1-mediated axon regeneration. This study reveals a molecular link from ULK to protein histidine phosphatase, which facilitates axon regeneration by inhibiting trimeric G protein signaling.
Collapse
Affiliation(s)
- Yoshiki Sakai
- Division of Biological Science, Graduate School of ScienceNagoya UniversityNagoyaJapan
| | - Hiroshi Hanafusa
- Division of Biological Science, Graduate School of ScienceNagoya UniversityNagoyaJapan
| | - Naoki Hisamoto
- Division of Biological Science, Graduate School of ScienceNagoya UniversityNagoyaJapan
| | - Kunihiro Matsumoto
- Division of Biological Science, Graduate School of ScienceNagoya UniversityNagoyaJapan
| |
Collapse
|
11
|
Crooks BA, Mckenzie D, Cadd LC, McCoy CJ, McVeigh P, Marks NJ, Maule AG, Mousley A, Atkinson LE. Pan-phylum In Silico Analyses of Nematode Endocannabinoid Signalling Systems Highlight Novel Opportunities for Parasite Drug Target Discovery. Front Endocrinol (Lausanne) 2022; 13:892758. [PMID: 35846343 PMCID: PMC9283691 DOI: 10.3389/fendo.2022.892758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/20/2022] [Indexed: 11/13/2022] Open
Abstract
The endocannabinoid signalling (ECS) system is a complex lipid signalling pathway that modulates diverse physiological processes in both vertebrate and invertebrate systems. In nematodes, knowledge of endocannabinoid (EC) biology is derived primarily from the free-living model species Caenorhabditis elegans, where ECS has been linked to key aspects of nematode biology. The conservation and complexity of nematode ECS beyond C. elegans is largely uncharacterised, undermining the understanding of ECS biology in nematodes including species with key importance to human, veterinary and plant health. In this study we exploited publicly available omics datasets, in silico bioinformatics and phylogenetic analyses to examine the presence, conservation and life stage expression profiles of EC-effectors across phylum Nematoda. Our data demonstrate that: (i) ECS is broadly conserved across phylum Nematoda, including in therapeutically and agriculturally relevant species; (ii) EC-effectors appear to display clade and lifestyle-specific conservation patterns; (iii) filarial species possess a reduced EC-effector complement; (iv) there are key differences between nematode and vertebrate EC-effectors; (v) life stage-, tissue- and sex-specific EC-effector expression profiles suggest a role for ECS in therapeutically relevant parasitic nematodes. To our knowledge, this study represents the most comprehensive characterisation of ECS pathways in phylum Nematoda and inform our understanding of nematode ECS complexity. Fundamental knowledge of nematode ECS systems will seed follow-on functional studies in key nematode parasites to underpin novel drug target discovery efforts.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Louise E. Atkinson
- Microbes & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| |
Collapse
|
12
|
Molecular encoding and synaptic decoding of context during salt chemotaxis in C. elegans. Nat Commun 2022; 13:2928. [PMID: 35624091 PMCID: PMC9142520 DOI: 10.1038/s41467-022-30279-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 04/25/2022] [Indexed: 01/21/2023] Open
Abstract
Animals navigate toward favorable locations using various environmental cues. However, the mechanism of how the goal information is encoded and decoded to generate migration toward the appropriate direction has not been clarified. Here, we describe the mechanism of migration towards a learned concentration of NaCl in Caenorhabditis elegans. In the salt-sensing neuron ASER, the difference between the experienced and currently perceived NaCl concentration is encoded as phosphorylation at Ser65 of UNC-64/Syntaxin 1 A through the protein kinase C(PKC-1) signaling pathway. The phosphorylation affects basal glutamate transmission from ASER, inducing the reversal of the postsynaptic response of reorientation-initiating neurons (i.e., from inhibitory to excitatory), guiding the animals toward the experienced concentration. This process, the decoding of the context, is achieved through the differential sensitivity of postsynaptic excitatory and inhibitory receptors. Our results reveal the mechanism of migration based on the synaptic plasticity that conceptually differs from the classical ones. The nematode C. elegans moves around to find an optimal environment. This work demonstrates how it can detect and move towards a previously learned salinity using the salt-sensing neuron ASER.
Collapse
|
13
|
BRCA1-BARD1 Regulates Axon Regeneration in Concert with the Gqα-DAG Signaling Network. J Neurosci 2021; 41:2842-2853. [PMID: 33593852 PMCID: PMC8018897 DOI: 10.1523/jneurosci.1806-20.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 01/20/2021] [Accepted: 02/05/2021] [Indexed: 12/27/2022] Open
Abstract
The breast cancer susceptibility protein BRCA1 and its partner BRCA1-associated RING domain protein 1 (BARD1) form an E3-ubiquitin (Ub) ligase complex that acts as a tumor suppressor in mitotic cells. However, the roles of BRCA1–BARD1 in postmitotic cells, such as neurons, remain poorly defined. Here, we report that BRC-1 and BRD-1, the Caenorhabditis elegans orthologs of BRCA1 and BARD1, are required for adult-specific axon regeneration, which is positively regulated by the EGL-30 Gqα–diacylglycerol (DAG) signaling pathway. This pathway is downregulated by DAG kinase (DGK), which converts DAG to phosphatidic acid (PA). We demonstrate that inactivation of DGK-3 suppresses the brc-1 brd-1 defect in axon regeneration, suggesting that BRC-1–BRD-1 inhibits DGK-3 function. Indeed, we show that BRC-1–BRD-1 poly-ubiquitylates DGK-3 in a manner dependent on its E3 ligase activity, causing DGK-3 degradation. Furthermore, we find that axon injury causes the translocation of BRC-1 from the nucleus to the cytoplasm, where DGK-3 is localized. These results suggest that the BRC-1–BRD-1 complex regulates axon regeneration in concert with the Gqα–DAG signaling network. Thus, this study describes a new role for breast cancer proteins in fully differentiated neurons and the molecular mechanism underlying the regulation of axon regeneration in response to nerve injury. SIGNIFICANCE STATEMENT BRCA1–BRCA1-associated RING domain protein 1 (BARD1) is an E3-ubiquitin (Ub) ligase complex acting as a tumor suppressor in mitotic cells. The roles of BRCA1–BARD1 in postmitotic cells, such as neurons, remain poorly defined. We show here that Caenorhabditis elegans BRC-1/BRCA1 and BRD-1/BARD1 are required for adult-specific axon regeneration, a process that requires high diacylglycerol (DAG) levels in injured neurons. The DAG kinase (DGK)-3 inhibits axon regeneration by reducing DAG levels. We find that BRC-1–BRD-1 poly-ubiquitylates and degrades DGK-3, thereby keeping DAG levels elevated and promoting axon regeneration. Furthermore, we demonstrate that axon injury causes the translocation of BRC-1 from the nucleus to the cytoplasm, where DGK-3 is localized. Thus, this study describes a new role for BRCA1–BARD1 in fully-differentiated neurons.
Collapse
|
14
|
Clarke TL, Johnson RL, Simone JJ, Carlone RL. The Endocannabinoid System and Invertebrate Neurodevelopment and Regeneration. Int J Mol Sci 2021; 22:2103. [PMID: 33672634 PMCID: PMC7924210 DOI: 10.3390/ijms22042103] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/12/2021] [Accepted: 02/17/2021] [Indexed: 12/17/2022] Open
Abstract
Cannabis has long been used for its medicinal and psychoactive properties. With the relatively new adoption of formal medicinal cannabis regulations worldwide, the study of cannabinoids, both endogenous and exogenous, has similarly flourished in more recent decades. In particular, research investigating the role of cannabinoids in regeneration and neurodevelopment has yielded promising results in vertebrate models. However, regeneration-competent vertebrates are few, whereas a myriad of invertebrate species have been established as superb models for regeneration. As such, this review aims to provide a comprehensive summary of the endocannabinoid system, with a focus on current advances in the area of endocannabinoid system contributions to invertebrate neurodevelopment and regeneration.
Collapse
Affiliation(s)
- Tristyn L. Clarke
- Department of Biological Sciences, Brock University, 1812 Sir Isaac brock Way, St. Catharines, ON L2S 3A1, Canada; (T.L.C.); (R.L.J.); (J.J.S.)
| | - Rachael L. Johnson
- Department of Biological Sciences, Brock University, 1812 Sir Isaac brock Way, St. Catharines, ON L2S 3A1, Canada; (T.L.C.); (R.L.J.); (J.J.S.)
| | - Jonathan J. Simone
- Department of Biological Sciences, Brock University, 1812 Sir Isaac brock Way, St. Catharines, ON L2S 3A1, Canada; (T.L.C.); (R.L.J.); (J.J.S.)
- Centre for Neuroscience, Brock University, 1812 Sir Isaac brock Way, St. Catharines, ON L2S 3A1, Canada
- eCB Consulting Inc., P.O. Box 652, 3 Cameron St. W., Cannington, ON L2S 3A1, Canada
| | - Robert L. Carlone
- Department of Biological Sciences, Brock University, 1812 Sir Isaac brock Way, St. Catharines, ON L2S 3A1, Canada; (T.L.C.); (R.L.J.); (J.J.S.)
- Centre for Neuroscience, Brock University, 1812 Sir Isaac brock Way, St. Catharines, ON L2S 3A1, Canada
| |
Collapse
|
15
|
Shimizu T, Hisamoto N. Factors regulating axon regeneration via JNK MAP kinase in Caenorhabditis elegans. J Biochem 2021; 167:433-439. [PMID: 32091576 DOI: 10.1093/jb/mvaa020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 01/23/2020] [Indexed: 12/25/2022] Open
Abstract
Axon regeneration following nerve injury is a highly conserved process in animals. The nematode Caenorhabditis elegans is an excellent model for investigating the molecular mechanisms of axon regeneration. Recent studies using C. elegans have shown that the c-Jun N-terminal kinase (JNK) plays the important role in axon regeneration. Furthermore, many factors have been identified that act upstream of the JNK cascade after axotomy. This review introduces these factors and describes their roles during the regulation of axon regeneration.
Collapse
Affiliation(s)
- Tatsuhiro Shimizu
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Naoki Hisamoto
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| |
Collapse
|
16
|
Caenorhabditis elegans F-Box Protein Promotes Axon Regeneration by Inducing Degradation of the Mad Transcription Factor. J Neurosci 2021; 41:2373-2381. [PMID: 33514673 PMCID: PMC7984584 DOI: 10.1523/jneurosci.1024-20.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 01/13/2021] [Accepted: 01/20/2021] [Indexed: 01/19/2023] Open
Abstract
In Caenorhabditis elegans, axon regeneration is activated by a signaling cascade through the receptor tyrosine kinase (RTK) SVH-2. Axonal injury induces svh-2 gene expression by degradation of the Mad-like transcription factor MDL-1. In this study, we identify the svh-24/sdz-33 gene encoding a protein containing F-box and F-box-associated domains as a regulator of axon regeneration in motor neurons. We find that sdz-33 is required for axon injury-induced svh-2 expression. In Caenorhabditis elegans, axon regeneration is activated by a signaling cascade through the receptor tyrosine kinase (RTK) SVH-2. Axonal injury induces svh-2 gene expression by degradation of the Mad-like transcription factor MDL-1. In this study, we identify the svh-24/sdz-33 gene encoding a protein containing F-box and F-box-associated domains as a regulator of axon regeneration in motor neurons. We find that sdz-33 is required for axon injury-induced svh-2 expression. SDZ-33 targets MDL-1 for poly-ubiquitylation and degradation. Furthermore, we demonstrate that SDZ-33 promotes axotomy-induced nuclear degradation of MDL-1, resulting in the activation of svh-2 expression in animals. These results suggest that the F-box protein is required for RTK signaling in the control of axon regeneration. SIGNIFICANCE STATEMENT In Caenorhabditis elegans, axon regeneration is positively regulated by the growth factor SVH-1 and its receptor tyrosine kinase SVH-2. Expression of the svh-2 gene is induced by axonal injury via the Ets-like transcription factor ETS-4, whose transcriptional activity is inhibited by the Mad-like transcription factor MDL-1. Axon injury leads to the degradation of MDL-1, and this is linked to the activation of ETS-4 transcriptional activity. In this study, we identify the sdz-33 gene encoding a protein containing an F-box domain as a regulator of axon regeneration. We demonstrate that MDL-1 is poly-ubiquitylated and degraded through the SDZ-33-mediated 26S proteasome pathway. These results reveal that an F-box protein promotes axon regeneration by degrading the Mad transcription factor.
Collapse
|
17
|
Esse R, Grishok A. Caenorhabditis elegans Deficient in DOT-1.1 Exhibit Increases in H3K9me2 at Enhancer and Certain RNAi-Regulated Regions. Cells 2020; 9:cells9081846. [PMID: 32781660 PMCID: PMC7464606 DOI: 10.3390/cells9081846] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 01/06/2023] Open
Abstract
The methylation of histone H3 at lysine 79 is a feature of open chromatin. It is deposited by the conserved histone methyltransferase DOT1. Recently, DOT1 localization and H3K79 methylation (H3K79me) have been correlated with enhancers in C. elegans and mammalian cells. Since earlier research implicated H3K79me in preventing heterochromatin formation both in yeast and leukemic cells, we sought to inquire whether a H3K79me deficiency would lead to higher levels of heterochromatic histone modifications, specifically H3K9me2, at developmental enhancers in C. elegans. Therefore, we used H3K9me2 ChIP-seq to compare its abundance in control and dot-1.1 loss-of-function mutant worms, as well as in rde-4; dot-1.1 and rde-1; dot-1.1 double mutants. The rde-1 and rde-4 genes are components of the RNAi pathway in C. elegans, and RNAi is known to initiate H3K9 methylation in many organisms, including C. elegans. We have previously shown that dot-1.1(-) lethality is rescued by rde-1 and rde-4 loss-of-function. Here we found that H3K9me2 was elevated in enhancer, but not promoter, regions bound by the DOT-1.1/ZFP-1 complex in dot-1.1(-) worms. We also found increased H3K9me2 at genes targeted by the ALG-3/4-dependent small RNAs and repeat regions. Our results suggest that ectopic H3K9me2 in dot-1.1(-) could, in some cases, be induced by small RNAs.
Collapse
|
18
|
Chang C, Hisamoto N. Engulfment Genes Promote Neuronal Regeneration in
Caenorhabditis Elegans
: Two Divergent But Complementary Views. Bioessays 2020; 42:e1900185. [DOI: 10.1002/bies.201900185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 04/23/2020] [Indexed: 12/25/2022]
Affiliation(s)
- Chieh Chang
- Department of Biological Sciences University of Illinois at Chicago Chicago Illinois 60607 USA
| | - Naoki Hisamoto
- Dept. of Biological Science Graduate School of Science Nagoya University Furo‐cho, Chikusa‐ku, Aichi Prefecture Nagoya 464‐8602 Japan
| |
Collapse
|
19
|
The C. elegans BRCA2-ALP/Enigma Complex Regulates Axon Regeneration via a Rho GTPase-ROCK-MLC Phosphorylation Pathway. Cell Rep 2019; 24:1880-1889. [PMID: 30110643 DOI: 10.1016/j.celrep.2018.07.049] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 05/28/2018] [Accepted: 07/16/2018] [Indexed: 12/11/2022] Open
Abstract
The ability of specific neurons to regenerate their axons after injury is governed by cell-intrinsic regeneration pathways. However, the mechanisms regulating axon regeneration are not well understood. Here, we identify the brc-2 gene encoding a homolog of the mammalian BRCA2 tumor suppressor as a regulator of axon regeneration in Caenorhabditis elegans motor neurons. We show that the RHO-1/Rho GTPase-LET-502/ROCK (Rho-associated coiled-coil kinase)-regulatory non-muscle myosin light-chain (MLC-4/MLC) phosphorylation signaling pathway regulates axon regeneration. BRC-2 functions between RHO-1 and LET-502, suggesting that BRC-2 is required for the activation of LET-502 by RHO-1-GTP. We also find that one component that interacts with BRC-2, the ALP (α-actinin-associated LIM protein)/Enigma protein ALP-1, is required for regeneration and acts between LET-502 and MLC-4 phosphorylation. Furthermore, we demonstrate that ALP-1 associates with LET-502 and MLC-4. Thus, ALP-1 serves as a platform to activate MLC-4 phosphorylation mediated by the RHO-1-LET-502 signaling pathway.
Collapse
|
20
|
C. elegans Tensin Promotes Axon Regeneration by Linking the Met-like SVH-2 and Integrin Signaling Pathways. J Neurosci 2019; 39:5662-5672. [PMID: 31109965 DOI: 10.1523/jneurosci.2059-18.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 01/04/2023] Open
Abstract
Axon regeneration is a conserved mechanism induced by axon injury that initiates a neuronal response leading to regrowth of the axon. In Caenorhabditis elegans, the initiation of axon regeneration is regulated by the JNK MAP kinase (MAPK) pathway. We have previously identified a number of genes affecting the JNK pathway using an RNAi-based screen. Analysis of these genes, called the svh genes, has shed new light on the regulation of axon regeneration, revealing the involvement of a signaling cascade consisting of a growth factor SVH-1 and its receptor, the tyrosine kinase SVH-2. Here, we characterize the svh-6/tns-1 gene, which is a homolog of mammalian tensin, and show that it is a positive regulator of axon regeneration in motor neurons. We demonstrate that TNS-1 interacts with tyrosine-autophosphorylated SVH-2 and the integrin β subunit PAT-3 via its SH2 and PTB domains, respectively, to promote axon regeneration. These results suggest that TNS-1 acts as an adaptor to link the SVH-2 and integrin signaling pathways.SIGNIFICANCE STATEMENT The Caenorhabditis elegans JNK MAPK pathway regulates the initiation of axon regeneration. Previously, we showed that a signaling cascade consisting of the HGF-like growth factor SVH-1 and its Met-like receptor tyrosine kinase SVH-2 promotes axon regeneration through activation of the JNK pathway. In this study, we show that the C. elegans tensin, TNS-1, is required for efficient regeneration after axon injury. Phosphorylation of SVH-2 on tyrosine mediates its interaction with the SH2 domain of TNS-1 to positively regulate axon regeneration. Furthermore, TNS-1 interacts via its PTB domain with the integrin β subunit PAT-3. These results suggest that TNS-1 plays a critical role in the regulation of axon regeneration by linking the SVH-2 and integrin signaling pathways.
Collapse
|
21
|
Abstract
How the nervous system is wired has been a central question of neuroscience since the inception of the field, and many of the foundational discoveries and conceptual advances have been made through the study of invertebrate experimental organisms, including Caenorhabditis elegans and Drosophila melanogaster. Although many guidance molecules and receptors have been identified, recent experiments have shed light on the many modes of action for these pathways. Here, we summarize the recent progress in determining how the physical and temporal constraints of the surrounding environment provide instructive regulations in nervous system wiring. We use Netrin and its receptors as an example to analyze the complexity of how they guide neurite outgrowth. In neurite repair, conserved injury detection and response-signaling pathways regulate gene expression and cytoskeletal dynamics. We also describe recent developments in the research on molecular mechanisms of neurite regeneration in worms and flies.
Collapse
Affiliation(s)
- Claire E Richardson
- Department of Biology, Stanford University, Stanford, California 94305, USA;
| | - Kang Shen
- Department of Biology, Stanford University, Stanford, California 94305, USA; .,Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
22
|
Liu L, Ruediger C, Shapira M. Integration of Stress Signaling in Caenorhabditis elegans Through Cell-Nonautonomous Contributions of the JNK Homolog KGB-1. Genetics 2018; 210:1317-1328. [PMID: 30291110 PMCID: PMC6283176 DOI: 10.1534/genetics.118.301446] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 09/25/2018] [Indexed: 01/07/2023] Open
Abstract
Dealing with physiological stress is a necessity for all organisms, and the pathways charged with this task are highly conserved in Metazoa . Accumulating evidence highlights cell-nonautonomous activation as an important mode of integrating stress responses at the organism level. Work in Caenorhabditis elegans highlighted the importance of such regulation for the unfolded protein response (UPR) and for gene expression downstream of the longevity-associated transcription factor DAF-16 Here we describe a role for the JNK homolog KGB-1 in cell-nonautonomous regulation of these two response modules. KGB-1 protects developing larvae from heavy metals and from protein folding stress (which we found to be independent of canonical UPR pathways), but sensitizes adults to the same stress, further shortening life span under normal conditions. This switch is associated with age-dependent antagonistic regulation of DAF-16 Using transgenic tissue-specific KGB-1 expression or tissue-specific KGB-1 activation we examined the contributions of KGB-1 to gene regulation, stress resistance, and life span. While cell-autonomous contributions were observed, particularly in the epidermis, cell-nonautonomous contributions of neuronal KGB-1 (and also in muscle) were effective in driving intestinal gene induction, age-dependent regulation of intestinal DAF-16, and stress resistance, and did not require KGB-1 expression in the target tissue. Additional genetic analyses revealed requirement for UNC-13 in mediating neuronal contributions, indicating involvement of neurotransmission. Our results expand the role of KGB-1 in stress responses from providing local cellular protection to integrating stress responses at the level of the whole organism.
Collapse
Affiliation(s)
- Limeng Liu
- Department of Integrative Biology, University of California at Berkeley, California 94720
| | - Cyrus Ruediger
- Department of Integrative Biology, University of California at Berkeley, California 94720
| | - Michael Shapira
- Department of Integrative Biology, University of California at Berkeley, California 94720
| |
Collapse
|
23
|
Shin M, Ware TB, Lee HC, Hsu KL. Lipid-metabolizing serine hydrolases in the mammalian central nervous system: endocannabinoids and beyond. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1864:907-921. [PMID: 30905349 DOI: 10.1016/j.bbalip.2018.08.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/07/2018] [Accepted: 08/10/2018] [Indexed: 02/07/2023]
Abstract
The metabolic serine hydrolases hydrolyze ester, amide, or thioester bonds found in broad small molecule substrates using a conserved activated serine nucleophile. The mammalian central nervous system (CNS) express a diverse repertoire of serine hydrolases that act as (phospho)lipases or lipid amidases to regulate lipid metabolism and signaling vital for normal neurocognitive function and CNS integrity. Advances in genomic DNA sequencing have provided evidence for the role of these lipid-metabolizing serine hydrolases in neurologic, psychiatric, and neurodegenerative disorders. This review briefly summarizes recent progress in understanding the biochemical and (patho)physiological roles of these lipid-metabolizing serine hydrolases in the mammalian CNS with a focus on serine hydrolases involved in the endocannabinoid system. The development and application of specific inhibitors for an individual serine hydrolase, if available, are also described. This article is part of a Special Issue entitled Novel functions of phospholipase A2 Guest Editors: Makoto Murakami and Gerard Lambeau.
Collapse
Affiliation(s)
- Myungsun Shin
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, United States
| | - Timothy B Ware
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, United States
| | - Hyeon-Cheol Lee
- Department of Biochemistry, Juntendo University School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan.
| | - Ku-Lung Hsu
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, United States; Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, United States; University of Virginia Cancer Center, University of Virginia, Charlottesville, VA 22903, United States.
| |
Collapse
|
24
|
Yu B, Wang X, Wei S, Fu T, Dzakah EE, Waqas A, Walthall WW, Shan G. Convergent Transcriptional Programs Regulate cAMP Levels in C. elegans GABAergic Motor Neurons. Dev Cell 2017; 43:212-226.e7. [PMID: 29033363 DOI: 10.1016/j.devcel.2017.09.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 06/26/2017] [Accepted: 09/15/2017] [Indexed: 02/07/2023]
Abstract
Both transcriptional regulation and signaling pathways play crucial roles in neuronal differentiation and plasticity. Caenorhabditis elegans possesses 19 GABAergic motor neurons (MNs) called D MNs, which are divided into two subgroups: DD and VD. DD, but not VD, MNs reverse their cellular polarity in a developmental process called respecification. UNC-30 and UNC-55 are two critical transcription factors in D MNs. By using chromatin immunoprecipitation with CRISPR/Cas9 knockin of GFP fusion, we uncovered the global targets of UNC-30 and UNC-55. UNC-30 and UNC-55 are largely converged to regulate over 1,300 noncoding and coding genes, and genes in multiple biological processes, including cAMP metabolism, are co-regulated. Increase in cAMP levels may serve as a timing signal for respecification, whereas UNC-55 regulates genes such as pde-4 to keep the cAMP levels low in VD. Other genes modulating DD respecification such as lin-14, irx-1, and oig-1 are also found to affect cAMP levels.
Collapse
Affiliation(s)
- Bin Yu
- CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Science, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui Province 230027, China
| | - Xiaolin Wang
- CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Science, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui Province 230027, China
| | - Shuai Wei
- CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Science, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui Province 230027, China
| | - Tao Fu
- CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Science, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui Province 230027, China
| | - Emmanuel Enoch Dzakah
- CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Science, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui Province 230027, China
| | - Ahmed Waqas
- CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Science, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui Province 230027, China
| | - Walter W Walthall
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Ge Shan
- CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Science, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui Province 230027, China.
| |
Collapse
|
25
|
The Core Molecular Machinery Used for Engulfment of Apoptotic Cells Regulates the JNK Pathway Mediating Axon Regeneration in Caenorhabditis elegans. J Neurosci 2017; 36:9710-21. [PMID: 27629720 DOI: 10.1523/jneurosci.0453-16.2016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 07/25/2016] [Indexed: 02/04/2023] Open
Abstract
UNLABELLED The mechanisms that govern the ability of specific neurons to regenerate their axons after injury are not well understood. In Caenorhabditis elegans, the initiation of axon regeneration is positively regulated by the JNK-MAPK pathway. In this study, we identify two components functioning upstream of the JNK pathway: the Ste20-related protein kinase MAX-2 and the Rac-type GTPase CED-10. CED-10, when bound by GTP, interacts with MAX-2 and functions as its upstream regulator in axon regeneration. CED-10, in turn, is activated by axon injury via signals initiated from the integrin α-subunit INA-1 and the nonreceptor tyrosine kinase SRC-1 and transmitted via the signaling module CED-2/CrkII-CED-5/Dock180-CED-12/ELMO. This module is also known to regulate the engulfment of apoptotic cells during development. Our findings thus reveal that the molecular machinery used for engulfment of apoptotic cells also promotes axon regeneration through activation of the JNK pathway. SIGNIFICANCE STATEMENT The molecular mechanisms of axon regeneration after injury remain poorly understood. In Caenorhabditis elegans, the initiation of axon regeneration is positively regulated by the JNK-MAPK pathway. In this study, we show that integrin, Rac-GTPase, and several other molecules, all of which are known to regulate engulfment of apoptotic cells during development, also regulate axon regeneration. This signaling module activates the JNK-MAPK cascade via MAX-2, a PAK-like protein kinase that binds Rac. Our findings thus reveal that the molecular machinery used for engulfment of apoptotic cells also promotes axon regeneration through activation of the JNK pathway.
Collapse
|
26
|
Hisamoto N, Matsumoto K. Signal transduction cascades in axon regeneration: insights from C. elegans. Curr Opin Genet Dev 2017; 44:54-60. [PMID: 28213159 DOI: 10.1016/j.gde.2017.01.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/13/2017] [Accepted: 01/26/2017] [Indexed: 02/07/2023]
Abstract
Axon regeneration after nerve injury is a conserved biological process in many animals, including humans. The nematode Caenorhabditis elegans (C. elegans) has recently emerged as a genetically tractable model for studying regenerative responses in neurons. Extensive studies over several years using this organism have revealed a number of intrinsic and extrinsic signal transduction cascades that regulate axon regeneration, and these are found to be conserved from worms to humans. Further studies have demonstrated that these cascades consist of several signaling networks that ultimately merge into the c-Jun N-terminal kinase (JNK) cascade. In this review, we describe some recent insights into the signaling cascades controlling axon regeneration in C. elegans and describe their conserved roles in other organisms including mammals.
Collapse
Affiliation(s)
- Naoki Hisamoto
- Department of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan.
| | - Kunihiro Matsumoto
- Department of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan.
| |
Collapse
|
27
|
Burrell BD. Comparative biology of pain: What invertebrates can tell us about how nociception works. J Neurophysiol 2017; 117:1461-1473. [PMID: 28053241 DOI: 10.1152/jn.00600.2016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 01/04/2017] [Accepted: 01/04/2017] [Indexed: 12/30/2022] Open
Abstract
The inability to adequately treat chronic pain is a worldwide health care crisis. Pain has both an emotional and a sensory component, and this latter component, nociception, refers specifically to the detection of damaging or potentially damaging stimuli. Nociception represents a critical interaction between an animal and its environment and exhibits considerable evolutionary conservation across species. Using comparative approaches to understand the basic biology of nociception could promote the development of novel therapeutic strategies to treat pain, and studies of nociception in invertebrates can provide especially useful insights toward this goal. Both vertebrates and invertebrates exhibit segregated sensory pathways for nociceptive and nonnociceptive information, injury-induced sensitization to nociceptive and nonnociceptive stimuli, and even similar antinociceptive modulatory processes. In a number of invertebrate species, the central nervous system is understood in considerable detail, and it is often possible to record from and/or manipulate single identifiable neurons through either molecular genetic or physiological approaches. Invertebrates also provide an opportunity to study nociception in an ethologically relevant context that can provide novel insights into the nature of how injury-inducing stimuli produce persistent changes in behavior. Despite these advantages, invertebrates have been underutilized in nociception research. In this review, findings from invertebrate nociception studies are summarized, and proposals for how research using invertebrates can address questions about the fundamental mechanisms of nociception are presented.
Collapse
Affiliation(s)
- Brian D Burrell
- Division of Basic Biomedical Sciences, Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota
| |
Collapse
|
28
|
Hisamoto N, Nagamori Y, Shimizu T, Pastuhov SI, Matsumoto K. The C. elegans Discoidin Domain Receptor DDR-2 Modulates the Met-like RTK-JNK Signaling Pathway in Axon Regeneration. PLoS Genet 2016; 12:e1006475. [PMID: 27984580 PMCID: PMC5161311 DOI: 10.1371/journal.pgen.1006475] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 11/11/2016] [Indexed: 11/22/2022] Open
Abstract
The ability of specific neurons to regenerate their axons after injury is governed by cell-intrinsic regeneration pathways. However, the signaling pathways that orchestrate axon regeneration are not well understood. In Caenorhabditis elegans, initiation of axon regeneration is positively regulated by SVH-2 Met-like growth factor receptor tyrosine kinase (RTK) signaling through the JNK MAPK pathway. Here we show that SVH-4/DDR-2, an RTK containing a discoidin domain that is activated by collagen, and EMB-9 collagen type IV regulate the regeneration of neurons following axon injury. The scaffold protein SHC-1 interacts with both DDR-2 and SVH-2. Furthermore, we demonstrate that overexpression of svh-2 and shc-1 suppresses the delay in axon regeneration observed in ddr-2 mutants, suggesting that DDR-2 functions upstream of SVH-2 and SHC-1. These results suggest that DDR-2 modulates the SVH-2–JNK pathway via SHC-1. We thus identify two different RTK signaling networks that play coordinated roles in the regulation of axonal regeneration. An axon’s ability to regenerate after injury is governed by cell-intrinsic regeneration pathways. The C. elegans JNK MAP kinase pathway is required for the regrowth of neurons after injury. Previously, we identified several svh genes involved in JNK-mediated signaling. Among them, the svh-1 and svh-2 genes encode a growth factor and its receptor tyrosine kinase (RTK), respectively. This SVH-1–SVH-2 signaling cascade positively regulates axon regeneration through the JNK pathway. In the present study, we investigate the role of the svh-4/ddr-2 gene, which encodes an RTK containing a discoidin domain that is activated by collagen. Indeed, DDR-2 functions downstream of EMB-9 collagen type IV. Here, we show that the ddr-2 and emb-9 mutations delay initiation of regeneration after axon injury. Furthermore, we demonstrate that DDR-2 modulates the SVH-1–SVH-2–JNK pathway through the scaffold protein SHC-1. Thus, two different RTK signaling networks play coordinated roles in the regulation of axonal regeneration.
Collapse
Affiliation(s)
- Naoki Hisamoto
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, Japan
- * E-mail: (K.M.); (N.H.)
| | - Yuki Nagamori
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, Japan
| | - Tatsuhiro Shimizu
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, Japan
| | - Strahil I. Pastuhov
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, Japan
| | - Kunihiro Matsumoto
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, Japan
- * E-mail: (K.M.); (N.H.)
| |
Collapse
|
29
|
Chisholm AD, Hutter H, Jin Y, Wadsworth WG. The Genetics of Axon Guidance and Axon Regeneration in Caenorhabditis elegans. Genetics 2016; 204:849-882. [PMID: 28114100 PMCID: PMC5105865 DOI: 10.1534/genetics.115.186262] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/06/2016] [Indexed: 11/18/2022] Open
Abstract
The correct wiring of neuronal circuits depends on outgrowth and guidance of neuronal processes during development. In the past two decades, great progress has been made in understanding the molecular basis of axon outgrowth and guidance. Genetic analysis in Caenorhabditis elegans has played a key role in elucidating conserved pathways regulating axon guidance, including Netrin signaling, the slit Slit/Robo pathway, Wnt signaling, and others. Axon guidance factors were first identified by screens for mutations affecting animal behavior, and by direct visual screens for axon guidance defects. Genetic analysis of these pathways has revealed the complex and combinatorial nature of guidance cues, and has delineated how cues guide growth cones via receptor activity and cytoskeletal rearrangement. Several axon guidance pathways also affect directed migrations of non-neuronal cells in C. elegans, with implications for normal and pathological cell migrations in situations such as tumor metastasis. The small number of neurons and highly stereotyped axonal architecture of the C. elegans nervous system allow analysis of axon guidance at the level of single identified axons, and permit in vivo tests of prevailing models of axon guidance. C. elegans axons also have a robust capacity to undergo regenerative regrowth after precise laser injury (axotomy). Although such axon regrowth shares some similarities with developmental axon outgrowth, screens for regrowth mutants have revealed regeneration-specific pathways and factors that were not identified in developmental screens. Several areas remain poorly understood, including how major axon tracts are formed in the embryo, and the function of axon regeneration in the natural environment.
Collapse
Affiliation(s)
| | - Harald Hutter
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Yishi Jin
- Section of Neurobiology, Division of Biological Sciences, and
- Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, California 92093
- Department of Pathology and Laboratory Medicine, Howard Hughes Medical Institute, Chevy Chase, Maryland, and
| | - William G Wadsworth
- Department of Pathology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| |
Collapse
|
30
|
Byrne AB, Hammarlund M. Axon regeneration in C. elegans: Worming our way to mechanisms of axon regeneration. Exp Neurol 2016; 287:300-309. [PMID: 27569538 DOI: 10.1016/j.expneurol.2016.08.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 08/19/2016] [Accepted: 08/24/2016] [Indexed: 12/12/2022]
Abstract
How axons repair themselves after injury is a fundamental question in neurobiology. With its conserved genome, relatively simple nervous system, and transparent body, C. elegans has recently emerged as a productive model to uncover the cellular mechanisms that regulate and execute axon regeneration. In this review, we discuss the strengths and weaknesses of the C. elegans model of regeneration. We explore the technical advances that enable the use of C. elegans for in vivo regeneration studies, review findings in C. elegans that have contributed to our understanding of the regeneration response across species, discuss the potential of C. elegans research to provide insight into mechanisms that function in the injured mammalian nervous system, and present potential future directions of axon regeneration research using C. elegans.
Collapse
Affiliation(s)
- Alexandra B Byrne
- Department of Genetics, Yale University School of Medicine, New Haven, CT, United States; Department of Neuroscience, Yale University School of Medicine, New Haven, CT, United States
| | - Marc Hammarlund
- Department of Genetics, Yale University School of Medicine, New Haven, CT, United States; Department of Neuroscience, Yale University School of Medicine, New Haven, CT, United States.
| |
Collapse
|
31
|
Pastuhov SI, Matsumoto K, Hisamoto N. Endocannabinoid signaling regulates regenerative axon navigation in Caenorhabditis elegans via the GPCRs NPR-19 and NPR-32. Genes Cells 2016; 21:696-705. [PMID: 27193416 DOI: 10.1111/gtc.12377] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 04/17/2016] [Indexed: 02/05/2023]
Abstract
The axon regeneration ability of neurons depends on the interplay of factors that promote and inhibit regeneration. In Caenorhabditis elegans, axon regeneration is promoted by the JNK MAP kinase (MAPK) pathway. Previously, we found that the endocannabinoid anandamide (AEA) inhibits the axon regeneration response of motor neurons after laser axotomy by suppressing the JNK signaling pathway. Here, we show that the G-protein-coupled receptors (GPCRs) NPR-19 and NPR-32 inhibit axon regeneration in response to AEA. Furthermore, we show that sensory neuron expression of the nape-1 gene, which encodes an enzyme synthesizing AEA, causes the regenerating motor axons to avoid sensory neurons and this avoidant response depends on NPR-19 and NPR-32. These results indicate that the navigation of regenerating axons is modulated by the action of AEA on NPR-19/32 GPCRs.
Collapse
Affiliation(s)
- Strahil Iv Pastuhov
- Division of Biological Science, Graduate school of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Kunihiro Matsumoto
- Division of Biological Science, Graduate school of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Naoki Hisamoto
- Division of Biological Science, Graduate school of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan
| |
Collapse
|
32
|
Andrusiak MG, Jin Y. Context Specificity of Stress-activated Mitogen-activated Protein (MAP) Kinase Signaling: The Story as Told by Caenorhabditis elegans. J Biol Chem 2016; 291:7796-804. [PMID: 26907690 DOI: 10.1074/jbc.r115.711101] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Stress-associated p38 and JNK mitogen-activated protein (MAP) kinase signaling cascades trigger specific cellular responses and are involved in multiple disease states. At the root of MAP kinase signaling complexity is the differential use of common components on a context-specific basis. The roundwormCaenorhabditis eleganswas developed as a system to study genes required for development and nervous system function. The powerful genetics ofC. elegansin combination with molecular and cellular dissections has led to a greater understanding of how p38 and JNK signaling affects many biological processes under normal and stress conditions. This review focuses on the studies revealing context specificity of different stress-activated MAPK components inC. elegans.
Collapse
Affiliation(s)
| | - Yishi Jin
- From the Howard Hughes Medical Institute and the Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093
| |
Collapse
|
33
|
Fukuzono T, Pastuhov SI, Fukushima O, Li C, Hattori A, Iemura SI, Natsume T, Shibuya H, Hanafusa H, Matsumoto K, Hisamoto N. Chaperone complex BAG2-HSC70 regulates localization of Caenorhabditis elegans leucine-rich repeat kinase LRK-1 to the Golgi. Genes Cells 2016; 21:311-24. [PMID: 26853528 DOI: 10.1111/gtc.12338] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 12/15/2015] [Indexed: 01/15/2023]
Abstract
Mutations in LRRK2 are linked to autosomal dominant forms of Parkinson's disease. We identified two human proteins that bind to LRRK2: BAG2 and HSC70, which are known to form a chaperone complex. We characterized the role of their Caenorhabditis elegans homologues, UNC-23 and HSP-1, in the regulation of LRK-1, the sole homologue of human LRRK2. In C. elegans, LRK-1 determines the polarized sorting of synaptic vesicle (SV) proteins to the axons by excluding SV proteins from the dendrite-specific transport machinery in the Golgi. In unc-23 mutants, SV proteins are localized to both presynaptic and dendritic endings in neurons, a phenotype also observed in lrk-1 deletion mutants. Furthermore, we isolated mutations in the hsp-1 gene that can suppress the unc-23, but not the lrk-1 defect. We show that UNC-23 determines LRK-1 localization to the Golgi apparatus in cooperation with HSP-1. These results describe a chaperone-dependent mechanism through which LRK-1 localization is regulated.
Collapse
Affiliation(s)
- Takashi Fukuzono
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Strahil Iv Pastuhov
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Okinobu Fukushima
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Chun Li
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Ayuna Hattori
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Shun-ichiro Iemura
- National Institutes of Advanced Industrial Science and Technology, Molecular Profiling Research Center for Drug Discovery (Molprof), Kohtoh-ku, Tokyo, 135-0064, Japan
| | - Tohru Natsume
- National Institutes of Advanced Industrial Science and Technology, Molecular Profiling Research Center for Drug Discovery (Molprof), Kohtoh-ku, Tokyo, 135-0064, Japan
| | - Hiroshi Shibuya
- Department of Molecular Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Hiroshi Hanafusa
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Kunihiro Matsumoto
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Naoki Hisamoto
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan
| |
Collapse
|
34
|
Watts JL. Using Caenorhabditis elegans to Uncover Conserved Functions of Omega-3 and Omega-6 Fatty Acids. J Clin Med 2016; 5:jcm5020019. [PMID: 26848697 PMCID: PMC4773775 DOI: 10.3390/jcm5020019] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 01/05/2016] [Accepted: 01/28/2016] [Indexed: 01/14/2023] Open
Abstract
The nematode Caenorhabditis elegans is a powerful model organism to study functions of polyunsaturated fatty acids. The ability to alter fatty acid composition with genetic manipulation and dietary supplementation permits the dissection of the roles of omega-3 and omega-6 fatty acids in many biological process including reproduction, aging and neurobiology. Studies in C. elegans to date have mostly identified overlapping functions of 20-carbon omega-6 and omega-3 fatty acids in reproduction and in neurons, however, specific roles for either omega-3 or omega-6 fatty acids are beginning to emerge. Recent findings with importance to human health include the identification of a conserved Cox-independent prostaglandin synthesis pathway, critical functions for cytochrome P450 derivatives of polyunsaturated fatty acids, the requirements for omega-6 and omega-3 fatty acids in sensory neurons, and the importance of fatty acid desaturation for long lifespan. Furthermore, the ability of C. elegans to interconvert omega-6 to omega-3 fatty acids using the FAT-1 omega-3 desaturase has been exploited in mammalian studies and biotechnology approaches to generate mammals capable of exogenous generation of omega-3 fatty acids.
Collapse
Affiliation(s)
- Jennifer L Watts
- School of Molecular Biosciences and Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|
35
|
Promoting axon regeneration in the adult CNS by modulation of the melanopsin/GPCR signaling. Proc Natl Acad Sci U S A 2016; 113:1937-42. [PMID: 26831088 DOI: 10.1073/pnas.1523645113] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Cell-type-specific G protein-coupled receptor (GPCR) signaling regulates distinct neuronal responses to various stimuli and is essential for axon guidance and targeting during development. However, its function in axonal regeneration in the mature CNS remains elusive. We found that subtypes of intrinsically photosensitive retinal ganglion cells (ipRGCs) in mice maintained high mammalian target of rapamycin (mTOR) levels after axotomy and that the light-sensitive GPCR melanopsin mediated this sustained expression. Melanopsin overexpression in the RGCs stimulated axonal regeneration after optic nerve crush by up-regulating mTOR complex 1 (mTORC1). The extent of the regeneration was comparable to that observed after phosphatase and tensin homolog (Pten) knockdown. Both the axon regeneration and mTOR activity that were enhanced by melanopsin required light stimulation and Gq/11 signaling. Specifically, activating Gq in RGCs elevated mTOR activation and promoted axonal regeneration. Melanopsin overexpression in RGCs enhanced the amplitude and duration of their light response, and silencing them with Kir2.1 significantly suppressed the increased mTOR signaling and axon regeneration that were induced by melanopsin. Thus, our results provide a strategy to promote axon regeneration after CNS injury by modulating neuronal activity through GPCR signaling.
Collapse
|
36
|
Alam T, Maruyama H, Li C, Pastuhov SI, Nix P, Bastiani M, Hisamoto N, Matsumoto K. Axotomy-induced HIF-serotonin signalling axis promotes axon regeneration in C. elegans. Nat Commun 2016; 7:10388. [PMID: 26790951 PMCID: PMC4735912 DOI: 10.1038/ncomms10388] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 12/05/2015] [Indexed: 12/28/2022] Open
Abstract
The molecular mechanisms underlying the ability of axons to regenerate after injury remain poorly understood. Here we show that in Caenorhabditis elegans, axotomy induces ectopic expression of serotonin (5-HT) in axotomized non-serotonergic neurons via HIF-1, a hypoxia-inducible transcription factor, and that 5-HT subsequently promotes axon regeneration by autocrine signalling through the SER-7 5-HT receptor. Furthermore, we identify the rhgf-1 and rga-5 genes, encoding homologues of RhoGEF and RhoGAP, respectively, as regulators of axon regeneration. We demonstrate that one pathway initiated by SER-7 acts upstream of the C. elegans RhoA homolog RHO-1 in neuron regeneration, which functions via G12α and RHGF-1. In this pathway, RHO-1 inhibits diacylglycerol kinase, resulting in an increase in diacylglycerol. SER-7 also promotes axon regeneration by activating the cyclic AMP (cAMP) signalling pathway. Thus, HIF-1-mediated activation of 5-HT signalling promotes axon regeneration by activating both the RhoA and cAMP pathways.
Collapse
Affiliation(s)
- Tanimul Alam
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Hiroki Maruyama
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Chun Li
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Strahil Iv. Pastuhov
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Paola Nix
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, Utah 84112-0840, USA
| | - Michael Bastiani
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, Utah 84112-0840, USA
| | - Naoki Hisamoto
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Kunihiro Matsumoto
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| |
Collapse
|
37
|
PASTUHOV SI, HISAMOTO N, MATSUMOTO K. MAP kinase cascades regulating axon regeneration in C. elegans. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2015; 91:63-75. [PMID: 25792136 PMCID: PMC4410086 DOI: 10.2183/pjab.91.63] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 01/13/2015] [Indexed: 06/04/2023]
Abstract
Mitogen-activated protein kinase (MAPK) signaling cascades are activated by diverse stimuli such as growth factors, cytokines, neurotransmitters and various types of cellular stress. Our evolving understanding of these signal cascades has been facilitated by genetic analyses and physiological characterization in model organisms such as the nematode Caenorhabditis elegans. Genetic and biochemical studies in C. elegans have shed light on the physiological roles of MAPK cascades in the control of cell fate decision, neuronal function and immunity. Recently it was demonstrated that MAPK signaling is also important for axon regeneration in C. elegans, and the use of C. elegans as a model system has significantly advanced our understanding of the largely conserved molecular mechanisms underlying axon regeneration. This review summarizes our current understanding of the role and regulation of MAPK signaling in C. elegans axon regeneration.
Collapse
Affiliation(s)
- Strahil Iv. PASTUHOV
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, Japan
| | - Naoki HISAMOTO
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, Japan
| | - Kunihiro MATSUMOTO
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, Japan
| |
Collapse
|
38
|
Zhu H, Han M. Exploring developmental and physiological functions of fatty acid and lipid variants through worm and fly genetics. Annu Rev Genet 2014; 48:119-48. [PMID: 25195508 DOI: 10.1146/annurev-genet-041814-095928] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Lipids are more than biomolecules for energy storage and membrane structure. With ample structural variation, lipids critically participate in nearly all aspects of cellular function. Lipid homeostasis and metabolism are closely related to major human diseases and health problems. However, lipid functional studies have been significantly underdeveloped, partly because of the difficulty in applying genetics and common molecular approaches to tackle the complexity associated with lipid biosynthesis, metabolism, and function. In the past decade, a number of laboratories began to analyze the roles of lipid metabolism in development and other physiological functions using animal models and combining genetics, genomics, and biochemical approaches. These pioneering efforts have not only provided valuable insights regarding lipid functions in vivo but have also established feasible methodology for future studies. Here, we review a subset of these studies using Caenorhabditis elegans and Drosophila melanogaster.
Collapse
Affiliation(s)
- Huanhu Zhu
- Howard Hughes Medical Institute and Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309;
| | | |
Collapse
|
39
|
PI3K-GSK3 signalling regulates mammalian axon regeneration by inducing the expression of Smad1. Nat Commun 2014; 4:2690. [PMID: 24162165 PMCID: PMC3836055 DOI: 10.1038/ncomms3690] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 09/27/2013] [Indexed: 01/20/2023] Open
Abstract
In contrast to neurons in the central nervous system, mature neurons in the mammalian peripheral nervous system (PNS) can regenerate axons after injury, in part, by enhancing intrinsic growth competence. However, the signalling pathways that enhance the growth potential and induce spontaneous axon regeneration remain poorly understood. Here we reveal that phosphatidylinositol 3-kinase (PI3K) signalling is activated in response to peripheral axotomy and that PI3K pathway is required for sensory axon regeneration. Moreover, we show that glycogen synthase kinase 3 (GSK3), rather than mammalian target of rapamycin, mediates PI3K-dependent augmentation of the growth potential in the PNS. Furthermore, we show that PI3K-GSK3 signal is conveyed by the induction of a transcription factor Smad1 and that acute depletion of Smad1 in adult mice prevents axon regeneration in vivo. Together, these results suggest PI3K-GSK3-Smad1 signalling as a central module for promoting sensory axon regeneration in the mammalian nervous system.
Collapse
|
40
|
Saijilafu, Zhang BY, Zhou FQ. Signaling pathways that regulate axon regeneration. Neurosci Bull 2013; 29:411-20. [PMID: 23846598 DOI: 10.1007/s12264-013-1357-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 02/25/2013] [Indexed: 10/26/2022] Open
Abstract
Neurons in the mammalian central nervous system (CNS) cannot regenerate axons after injury. in contrast, neurons in the mammalian peripheral nervous system and in some non-mammalian models, such as C. elegans and Drosophila, are able to regrow axons. Understanding the molecular mechanisms by which these neurons support axon regeneration will help us find ways to enhance mammalian CNS axon regeneration. Here, recent studies in which signaling pathways regulating naturally-occurring axon regeneration that have been identified are reviewed, focusing on how these pathways control gene expression and growth-cone function during axon regeneration.
Collapse
Affiliation(s)
- Saijilafu
- Department of Orthopaedic Surgery, The Johns Hopkins University, Baltimore, Maryland, USA
| | | | | |
Collapse
|
41
|
Zhang J, Twelvetrees AE, Lazarus JE, Blasier KR, Yao X, Inamdar NA, Holzbaur ELF, Pfister KK, Xiang X. Establishing a novel knock-in mouse line for studying neuronal cytoplasmic dynein under normal and pathologic conditions. Cytoskeleton (Hoboken) 2013; 70:215-27. [PMID: 23475693 PMCID: PMC3670090 DOI: 10.1002/cm.21102] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Revised: 02/23/2013] [Accepted: 02/26/2013] [Indexed: 12/19/2022]
Abstract
Cytoplasmic dynein plays important roles in mitosis and the intracellular transport of organelles, proteins, and mRNAs. Dynein function is particularly critical for survival of neurons, as mutations in dynein are linked to neurodegenerative diseases. Dynein function is also implicated in neuronal regeneration, driving the active transport of signaling molecules following injury of peripheral neurons. To enhance our understanding of dynein function and regulation in neurons, we established a novel knock-in mouse line in which the neuron-specific cytoplasmic dynein 1 intermediate chain 1 (IC-1) is tagged with both GFP and a 3xFLAG tag at its C-terminus. The fusion gene is under the control of IC-1's endogenous promoter and is integrated at the endogenous locus of the IC-1-encoding gene Dync1i1. The IC-1-GFP-3xFLAG fusion protein is incorporated into the endogenous dynein complex, and movements of GFP-labeled dynein expressed at endogenous levels can be observed in cultured neurons for the first time. The knock-in mouse line also allows isolation and analysis of dynein-bound proteins specifically from neurons. Using this mouse line we have found proteins, including 14-3-3 zeta, which physically interact with dynein upon injury of the brain cortex. Thus, we have created a useful tool for studying dynein function in the central nervous system under normal and pathologic conditions.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Biochemistry and Molecular Biology, the Uniformed Services University of the Health Sciences, Bethesda, MD 20814
- Center for Neuroscience and Regenerative Medicine, the Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | - Alison E. Twelvetrees
- Pennsylvania Muscle Institute and Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jacob E. Lazarus
- Pennsylvania Muscle Institute and Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Kiev R. Blasier
- Department of Cell Biology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Xuanli Yao
- Department of Biochemistry and Molecular Biology, the Uniformed Services University of the Health Sciences, Bethesda, MD 20814
- Center for Neuroscience and Regenerative Medicine, the Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | - Nirja A. Inamdar
- Department of Cell Biology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Erika L. F. Holzbaur
- Pennsylvania Muscle Institute and Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - K. Kevin Pfister
- Department of Cell Biology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Xin Xiang
- Department of Biochemistry and Molecular Biology, the Uniformed Services University of the Health Sciences, Bethesda, MD 20814
- Center for Neuroscience and Regenerative Medicine, the Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| |
Collapse
|