1
|
Dalton BA, Klimek A, Kiefer H, Brünig FN, Colinet H, Tepper L, Abbasi A, Netz RR. Memory and Friction: From the Nanoscale to the Macroscale. Annu Rev Phys Chem 2025; 76:431-454. [PMID: 39952639 DOI: 10.1146/annurev-physchem-082423-031037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2025]
Abstract
Friction is a phenomenon that manifests across all spatial and temporal scales, from the molecular to the macroscopic scale. It describes the dissipation of energy from the motion of particles or abstract reaction coordinates and arises in the transition from a detailed molecular-level description to a simplified, coarse-grained model. It has long been understood that time-dependent (non-Markovian) friction effects are critical for describing the dynamics of many systems, but that they are notoriously difficult to evaluate for complex physical, chemical, and biological systems. In recent years, the development of advanced numerical friction extraction techniques and methods to simulate the generalized Langevin equation has enabled exploration of the role of time-dependent friction across all scales. We discuss recent applications of these friction extraction techniques and the growing understanding of the role of friction in complex equilibrium and nonequilibrium dynamic many-body systems.
Collapse
Affiliation(s)
| | - Anton Klimek
- Department of Physics, Freie Universität Berlin, Berlin, Germany;
| | - Henrik Kiefer
- Department of Physics, Freie Universität Berlin, Berlin, Germany;
| | - Florian N Brünig
- Department of Physics, Freie Universität Berlin, Berlin, Germany;
| | - Hélène Colinet
- Department of Physics, Freie Universität Berlin, Berlin, Germany;
| | - Lucas Tepper
- Department of Physics, Freie Universität Berlin, Berlin, Germany;
| | - Amir Abbasi
- Department of Physics, Freie Universität Berlin, Berlin, Germany;
| | - Roland R Netz
- Department of Physics, Freie Universität Berlin, Berlin, Germany;
| |
Collapse
|
2
|
Monago C, Torre JADL, Delgado-Buscalioni R, Español P. Unraveling internal friction in a coarse-grained protein model. J Chem Phys 2025; 162:114115. [PMID: 40106402 DOI: 10.1063/5.0255498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 02/20/2025] [Indexed: 03/22/2025] Open
Abstract
Understanding the dynamic behavior of complex biomolecules requires simplified models that not only make computations feasible but also reveal fundamental mechanisms. Coarse-graining (CG) achieves this by grouping atoms into beads, whose stochastic dynamics can be derived using the Mori-Zwanzig formalism, capturing both reversible and irreversible interactions. In liquid, the dissipative bead-bead interactions have so far been restricted to hydrodynamic couplings. However, friction does not only arise from the solvent but, notably, from the internal degrees of freedom missing in the CG beads. This leads to an additional "internal friction" whose relevance is studied in this contribution. By comparing with all-atom molecular dynamics (MD), we neatly show that in order to accurately reproduce the dynamics of a globular protein in water using a CG model, not only a precise determination of elastic couplings and the Stokesian self-friction of each bead is required. Critically, the inclusion of internal friction between beads is also necessary for a faithful representation of protein dynamics. We propose to optimize the parameters of the CG model through a self-averaging method that integrates the CG dynamics with an evolution equation for the CG parameters. This approach ensures that selected quantities, such as the radial distribution function and the time correlation of bead velocities, match the corresponding MD values.
Collapse
Affiliation(s)
- Carlos Monago
- Dept. Física Fundamental, Universidad Nacional de Educación a Distancia, Madrid 28015, Spain
| | - J A de la Torre
- Dept. Física Fundamental, Universidad Nacional de Educación a Distancia, Madrid 28015, Spain
| | - R Delgado-Buscalioni
- Dept. Física de la Materia Condensada, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Pep Español
- Dept. Física Fundamental, Universidad Nacional de Educación a Distancia, Madrid 28015, Spain
| |
Collapse
|
3
|
Dalton BA, Netz RR. pH Modulates Friction Memory Effects in Protein Folding. PHYSICAL REVIEW LETTERS 2024; 133:188401. [PMID: 39547199 DOI: 10.1103/physrevlett.133.188401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 09/24/2024] [Indexed: 11/17/2024]
Abstract
Protein folding is an intrinsically multitimescale problem. While it is accepted that non-Markovian effects are present on short timescales, it is unclear whether memory-dependent friction influences long-timescale protein folding reaction kinetics. We combine friction memory-kernel extraction techniques with recently published extensive all-atom simulations of the α3D protein under neutral and reduced pH conditions, and we show that the pH reduction modifies the friction acting on the folding protein by dramatically decreasing the friction memory decay time. This switches α3D folding reaction kinetics from the pronounced non-Markovian regime, where memory significantly accelerates folding, to the Markovian regime, where memory does not influence the folding time. We explore salt-bridge interactions, which are eliminated under pH reduction, as a key microscopic origin of non-Markovian friction in α3D.
Collapse
|
4
|
Zhao Y, Schmid MF, Chiu W. Visualizing nucleation, condensation and propagation of β-tubulin folding in chaperonin TRiC. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.13.618036. [PMID: 39464091 PMCID: PMC11507676 DOI: 10.1101/2024.10.13.618036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
The folding nucleus (FN) initiates protein folding and enables an efficient folding pathway. Here we directly visualize the tubulin FN consisting of a nonnative, partially assembled Rossmann fold, in the closed chamber of human chaperonin TRiC. Chaperonin TRiC interacts with non-natively folded secondary structural elements, stabilizing the nucleus for transition into its first native domain. Through progressive folding, the unfolded sequence goes through drastic spatial arrangement in the TRiC chamber to sample the conformational space, mediated by the highly dynamic CCT tails. The observed presence of individual nonnative secondary structures first in the nonnative FN and then around the incrementally folded native domains supports the hypothesis that tubulin folding in TRiC is a hierarchical process of nucleation, condensation and propagation in cooperation with TRiC subunits.
Collapse
Affiliation(s)
- Yanyan Zhao
- Department of Bioengineering, James Clark Center, Stanford University, Palo Alto, CA, 94305, USA
| | - Michael F. Schmid
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Wah Chiu
- Department of Bioengineering, James Clark Center, Stanford University, Palo Alto, CA, 94305, USA
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
- Lead contact
| |
Collapse
|
5
|
Dalton BA, Kiefer H, Netz RR. The role of memory-dependent friction and solvent viscosity in isomerization kinetics in viscogenic media. Nat Commun 2024; 15:3761. [PMID: 38704367 PMCID: PMC11069540 DOI: 10.1038/s41467-024-48016-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 04/18/2024] [Indexed: 05/06/2024] Open
Abstract
Molecular isomerization kinetics in liquid solvent depends on a complex interplay between the solvent friction acting on the molecule, internal dissipation effects (also known as internal friction), the viscosity of the solvent, and the dihedral free energy profile. Due to the absence of accurate techniques to directly evaluate isomerization friction, it has not been possible to explore these relationships in full. By combining extensive molecular dynamics simulations with friction memory-kernel extraction techniques we consider a variety of small, isomerising molecules under a range of different viscogenic conditions and directly evaluate the viscosity dependence of the friction acting on a rotating dihedral. We reveal that the influence of different viscogenic media on isomerization kinetics can be dramatically different, even when measured at the same viscosity. This is due to the dynamic solute-solvent coupling, mediated by time-dependent friction memory kernels. We also show that deviations from the linear dependence of isomerization rates on solvent viscosity, which are often simply attributed to internal friction effects, are due to the simultaneous violation of two fundamental relationships: the Stokes-Einstein relation and the overdamped Kramers prediction for the barrier-crossing rate, both of which require explicit knowledge of friction.
Collapse
Affiliation(s)
| | - Henrik Kiefer
- Freie Universität Berlin, Fachbereich Physik, Berlin, Germany
| | - Roland R Netz
- Freie Universität Berlin, Fachbereich Physik, Berlin, Germany.
| |
Collapse
|
6
|
Świątek A, Kuczera K, Szoszkiewicz R. Effects of Proline on Internal Friction in Simulated Folding Dynamics of Several Alanine-Based α-Helical Peptides. J Phys Chem B 2024; 128:3856-3869. [PMID: 38606880 PMCID: PMC11056985 DOI: 10.1021/acs.jpcb.4c00623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/13/2024] [Accepted: 04/01/2024] [Indexed: 04/13/2024]
Abstract
We have studied in silico the effect of proline, a model cosolvent, on local and global friction coefficients in (un)folding of several typical alanine-based α-helical peptides. Local friction is related to dwell times of a single, ensemble-averaged hydrogen bond (HB) within each peptide. Global friction is related to energy dissipated in a series of configurational changes of each peptide experienced by increasing the number of HBs during folding. Both of these approaches are important in relation to future atomic force microscopic-based measurements of internal friction via force-clamp single-molecule force spectroscopy. Molecular dynamics (MD) simulations for six peptides, namely, ALA5, ALA8, ALA15, ALA21, (AAQAA)3, and H2N-GN(AAQAA)2G-COONH2, have been conducted at 2 and 5 M proline solutions in water. Using previously obtained MD data for these peptides in pure water as well as upgraded theoretical models, we obtained variations of local and global internal friction coefficients as a function of solution viscosity. The results showed the substantial role of proline in stabilizing the folded state and slowing the overall folding dynamics. Consequently, larger friction coefficients were obtained at larger viscosities. The local and global internal friction, i.e., respective, friction coefficients approximated to zero viscosity, was also obtained. The evolution of friction coefficients with viscosity was weakly dependent on the number of concurrent folding pathways but was rather dominated by a stabilizing effect of proline on the folded states. Obtained values of local and global internal friction showed qualitatively similar results and a clear dependency on the structure of the studied peptide.
Collapse
Affiliation(s)
- Adam Świątek
- Faculty of Chemistry,
Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Krzysztof Kuczera
- Department
of Chemistry, The University of Kansas, Lawrence, Kansas 66045, United States
- Department of Molecular Biosciences, The
University of Kansas, Lawrence, Kansas 66045, United States
| | - Robert Szoszkiewicz
- Faculty of Chemistry,
Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| |
Collapse
|
7
|
Vancraenenbroeck R, Hofmann H. Electrostatics and hydrophobicity in the dynamics of intrinsically disordered proteins. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2023; 46:133. [PMID: 38127117 PMCID: PMC10739388 DOI: 10.1140/epje/s10189-023-00383-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023]
Abstract
Internal friction is a major contribution to the dynamics of intrinsically disordered proteins (IDPs). Yet, the molecular origin of internal friction has so far been elusive. Here, we investigate whether attractive electrostatic interactions in IDPs modulate internal friction differently than the hydrophobic effect. To this end, we used nanosecond fluorescence correlation spectroscopy (nsFCS) and single-molecule Förster resonance energy transfer (FRET) to quantify the conformation and dynamics of the disordered DNA-binding domains Myc, Max and Mad at different salt concentrations. We find that internal friction effects are stronger when the chain is compacted by electrostatic attractions compared to the hydrophobic effect. Although the effect is moderate, the results show that the heteropolymeric nature of IDPs is reflected in their dynamics.
Collapse
Affiliation(s)
- Renee Vancraenenbroeck
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Herzl St. 234, 76100, Rehovot, Israel
- Present Address: Department of Structural and Molecular Biology, University College London, Darwin Building, 107 Gower Street, London, WC1E 6BT, UK
| | - Hagen Hofmann
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Herzl St. 234, 76100, Rehovot, Israel.
| |
Collapse
|
8
|
Sohmen B, Beck C, Frank V, Seydel T, Hoffmann I, Hermann B, Nüesch M, Grimaldo M, Schreiber F, Wolf S, Roosen‐Runge F, Hugel T. The Onset of Molecule-Spanning Dynamics in Heat Shock Protein Hsp90. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304262. [PMID: 37984887 PMCID: PMC10754087 DOI: 10.1002/advs.202304262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/06/2023] [Indexed: 11/22/2023]
Abstract
Protein dynamics have been investigated on a wide range of time scales. Nano- and picosecond dynamics have been assigned to local fluctuations, while slower dynamics have been attributed to larger conformational changes. However, it is largely unknown how fast (local) fluctuations can lead to slow global (allosteric) changes. Here, fast molecule-spanning dynamics on the 100 to 200 ns time scale in the heat shock protein 90 (Hsp90) are shown. Global real-space movements are assigned to dynamic modes on this time scale, which is possible by a combination of single-molecule fluorescence, quasi-elastic neutron scattering and all-atom molecular dynamics (MD) simulations. The time scale of these dynamic modes depends on the conformational state of the Hsp90 dimer. In addition, the dynamic modes are affected to various degrees by Sba1, a co-chaperone of Hsp90, depending on the location within Hsp90, which is in very good agreement with MD simulations. Altogether, this data is best described by fast molecule-spanning dynamics, which precede larger conformational changes in Hsp90 and might be the molecular basis for allostery. This integrative approach provides comprehensive insights into molecule-spanning dynamics on the nanosecond time scale for a multi-domain protein.
Collapse
Affiliation(s)
- Benedikt Sohmen
- Institute of Physical ChemistryUniversity of FreiburgAlbertstrasse 2179104FreiburgGermany
| | - Christian Beck
- Institute of Applied PhysicsUniversity of TübingenAuf der Morgenstelle 1072076TübingenGermany
- Science DivisionInstitut Max von Laue ‐ Paul Langevin71 avenue des MartyrsGrenoble38042France
| | - Veronika Frank
- Institute of Physical ChemistryUniversity of FreiburgAlbertstrasse 2179104FreiburgGermany
| | - Tilo Seydel
- Science DivisionInstitut Max von Laue ‐ Paul Langevin71 avenue des MartyrsGrenoble38042France
| | - Ingo Hoffmann
- Science DivisionInstitut Max von Laue ‐ Paul Langevin71 avenue des MartyrsGrenoble38042France
| | - Bianca Hermann
- Institute of Physical ChemistryUniversity of FreiburgAlbertstrasse 2179104FreiburgGermany
| | - Mark Nüesch
- Department of BiochemistryUniversity of ZurichWinterthurerstrasse 190CH‐8057ZurichSwitzerland
| | - Marco Grimaldo
- Science DivisionInstitut Max von Laue ‐ Paul Langevin71 avenue des MartyrsGrenoble38042France
| | - Frank Schreiber
- Institute of Applied PhysicsUniversity of TübingenAuf der Morgenstelle 1072076TübingenGermany
| | - Steffen Wolf
- Biomolecular Dynamics, Institute of PhysicsUniversity of FreiburgHermann‐Herder‐Strasse 379104FreiburgGermany
| | - Felix Roosen‐Runge
- Department of Biomedical Sciences and Biofilms‐Research Center for Biointerfaces (BRCB)Malmö University20506MalmöSweden
- Division of Physical ChemistryLund UniversityNaturvetarvägen 1422100LundSweden
| | - Thorsten Hugel
- Institute of Physical ChemistryUniversity of FreiburgAlbertstrasse 2179104FreiburgGermany
- Signalling Research Centers BIOSS and CIBSSUniversity of FreiburgSchänzlestrasse 1879104FreiburgGermany
| |
Collapse
|
9
|
da Silva FB, Martins de Oliveira V, de Oliveira Junior AB, Contessoto VDG, Leite VBP. Probing the Energy Landscape of Spectrin R15 and R16 and the Effects of Non-native Interactions. J Phys Chem B 2023; 127:1291-1300. [PMID: 36723393 DOI: 10.1021/acs.jpcb.2c06178] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Understanding the details of a protein folding mechanism can be a challenging and complex task. One system with an interesting folding behavior is the α-spectrin domain, where the R15 folds three-orders of magnitude faster than its homologues R16 and R17, despite having similar structures. The molecular origins that explain these folding rate differences remain unclear, but our previous work revealed that a combined effect produced by non-native interactions could be a reasonable cause for these differences. In this study, we explore further the folding process by identifying the molecular paths, metastable states, and the collective motions that lead these unfolded proteins to their native state conformation. Our results uncovered the differences between the folding pathways for the wild-type R15 and R16 and an R16 mutant. The metastable ensembles that speed down the folding were identified using an energy landscape visualization method (ELViM). These ensembles correspond to similar experimentally reported configurations. Our observations indicate that the non-native interactions are also associated with secondary structure misdocking. This computational methodology can be used as a fast, straightforward protocol for shedding light on systems with unclear folding or conformational traps.
Collapse
Affiliation(s)
- Fernando Bruno da Silva
- Department of Physics, São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences, São José do Rio Preto, São Paulo15054-000, Brazil
| | - Vinícius Martins de Oliveira
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland21201, United States
| | | | | | - Vitor B P Leite
- Department of Physics, São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences, São José do Rio Preto, São Paulo15054-000, Brazil
| |
Collapse
|
10
|
Wosztyl A, Kuczera K, Szoszkiewicz R. Analytical Approaches for Deriving Friction Coefficients for Selected α-Helical Peptides Based Entirely on Molecular Dynamics Simulations. J Phys Chem B 2022; 126:8901-8912. [PMID: 36300354 PMCID: PMC9661531 DOI: 10.1021/acs.jpcb.2c03076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In this paper we derive analytically from molecular dynamics (MD) simulations the friction coefficients related to conformational transitions within several model peptides with α-helical structures. We study a series of alanine peptides with various length from ALA5 to ALA21 as well as their two derivatives, the (AAQAA)3 peptide and a 13-residue KR1 peptide that is a derivative of the (AAQAA)2 peptide with the formula GN(AAQAA)2G. We use two kinds of approaches to derive their friction coefficients. In the local approach, friction associated with fluctuations of single hydrogen bonds are studied. In the second approach, friction coefficients associated with a folding transitions within the studied peptides are obtained. In both cases, the respective friction coefficients differentiated very well the subtle structural changes between studied peptides and compared favorably to experimentally available data.
Collapse
Affiliation(s)
- Aleksandra Wosztyl
- Faculty
of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089Warsaw, Poland
| | - Krzysztof Kuczera
- Department
of Chemistry, The University of Kansas, Lawrence, Kansas66045, United States,Department
of Molecular Biosciences, The University
of Kansas, Lawrence, Kansas66045, United States,
| | - Robert Szoszkiewicz
- Faculty
of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089Warsaw, Poland,
| |
Collapse
|
11
|
Cubuk J, Soranno A. Macromolecular crowding and intrinsically disordered proteins: a polymer physics perspective. CHEMSYSTEMSCHEM 2022. [DOI: 10.1002/syst.202100051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jasmine Cubuk
- Washington University in St Louis Biochemistry and Molecular Biophysics UNITED STATES
| | - Andrea Soranno
- Washington University in St Louis Biochemistry and Molecular Biophysics 660 St Euclid Ave 63110 St Louis UNITED STATES
| |
Collapse
|
12
|
Abstract
Proteins have dynamic structures that undergo chain motions on time scales spanning from picoseconds to seconds. Resolving the resultant conformational heterogeneity is essential for gaining accurate insight into fundamental mechanistic aspects of the protein folding reaction. The use of high-resolution structural probes, sensitive to population distributions, has begun to enable the resolution of site-specific conformational heterogeneity at different stages of the folding reaction. Different states populated during protein folding, including the unfolded state, collapsed intermediate states, and even the native state, are found to possess significant conformational heterogeneity. Heterogeneity in protein folding and unfolding reactions originates from the reduced cooperativity of various kinds of physicochemical interactions between various structural elements of a protein, and between a protein and solvent. Heterogeneity may arise because of functional or evolutionary constraints. Conformational substates within the unfolded state and the collapsed intermediates that exchange at rates slower than the subsequent folding steps give rise to heterogeneity on the protein folding pathways. Multiple folding pathways are likely to represent distinct sequences of structure formation. Insight into the nature of the energy barriers separating different conformational states populated during (un)folding can also be obtained by resolving heterogeneity.
Collapse
Affiliation(s)
- Sandhya Bhatia
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India.,Indian Institute of Science Education and Research, Pune 411008, India
| | - Jayant B Udgaonkar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India.,Indian Institute of Science Education and Research, Pune 411008, India
| |
Collapse
|
13
|
Das D, Arora L, Mukhopadhyay S. Short-Range Backbone Dihedral Rotations Modulate Internal Friction in Intrinsically Disordered Proteins. J Am Chem Soc 2022; 144:1739-1747. [DOI: 10.1021/jacs.1c11236] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Debapriya Das
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, Mohali, SAS Nagar, Punjab 140306, India
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, Mohali, SAS Nagar, Punjab 140306, India
| | - Lisha Arora
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, Mohali, SAS Nagar, Punjab 140306, India
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, Mohali, SAS Nagar, Punjab 140306, India
| | - Samrat Mukhopadhyay
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, Mohali, SAS Nagar, Punjab 140306, India
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, Mohali, SAS Nagar, Punjab 140306, India
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, Mohali, SAS Nagar, Punjab 140306, India
| |
Collapse
|
14
|
Gopich IV, Chung HS. Theory and Analysis of Single-Molecule FRET Experiments. Methods Mol Biol 2022; 2376:247-282. [PMID: 34845614 DOI: 10.1007/978-1-0716-1716-8_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Inter-dye distances and conformational dynamics can be studied using single-molecule FRET measurements. We consider two approaches to analyze sequences of photons with recorded photon colors and arrival times. The first approach is based on FRET efficiency histograms obtained from binned photon sequences. The experimental histograms are compared with the theoretical histograms obtained using the joint distribution of acceptor and donor photons or the Gaussian approximation. In the second approach, a photon sequence is analyzed without binning. The parameters of a model describing conformational dynamics are found by maximizing the appropriate likelihood function. The first approach is simpler, while the second one is more accurate, especially when the population of species is small and transition rates are fast. The likelihood-based analysis as well as the recoloring method has the advantage that diffusion of molecules through the laser focus can be rigorously handled.
Collapse
Affiliation(s)
- Irina V Gopich
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Hoi Sung Chung
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
15
|
Jas GS, Childs EW, Middaugh CR, Kuczera K. Probing the Internal Dynamics and Shape of Simple Peptides in Urea, Guanidinium Hydrochloride, and Proline Solutions with Time-Resolved Fluorescence Anisotropy and Atomistic Cosolvent Simulations. J Phys Chem B 2021; 125:10972-10984. [PMID: 34559968 DOI: 10.1021/acs.jpcb.1c06838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Picosecond time-resolved fluorescence anisotropy was used to measure the effect of denaturants and osmolytes on the reorientation dynamics of the simplest dipeptide. The solvent denaturants guanidinium hydrochloride (gdm), urea, and the osmolyte proline were used at several concentrations. Analysis of the concentration dependence of denaturants at a fixed temperature showed faster and slower reorientation time in two different denaturants at a nearly identical solvent viscosity (η). The reorientation time τ significantly deviates from Kramers' theory (τ ∝ η1) in the high friction limit for guanidinium and urea with r ≈ 0.4 and r ≈ 0.6 at pH 7.2, respectively. In proline, τ is nearly proportional to η. Atomistic molecular dynamics simulations of the dipeptide in identical cosolvents showed excellent agreement with the measured rotational orientation time. The dipeptide dihedral (ϕ, ψ) isomerization times in water and 6 M urea are almost identical and significantly slower in guanidinium. If a faster and slower reorientation time can be associated with the compact and expanded shapes, the fractional viscosity dependence for guanidinium and urea may result from the fact that internal dynamics of peptides in these cosolvents involve higher and lower internal friction within the dynamic elements.
Collapse
Affiliation(s)
- Gouri S Jas
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66047, United States
| | - Ed W Childs
- Department of Surgery, Morehouse School of Medicine, Atlanta, Georgia 30310, United States
| | - C Russell Middaugh
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66047, United States
| | - Krzysztof Kuczera
- Department of Chemistry and Department of Molecular Biosciences, The University of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|
16
|
Kailasham R, Chakrabarti R, Prakash JR. How important are fluctuations in the treatment of internal friction in polymers? SOFT MATTER 2021; 17:7133-7157. [PMID: 34259278 DOI: 10.1039/d1sm00613d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The Rouse model with internal friction (RIF), a widely used theoretical framework to interpret the effects of internal friction on conformational transitions in biomolecules, is shown to be an approximate treatment that is based on preaveraging internal friction. By comparison with Brownian dynamics simulations of an exact coarse-grained model that incorporates fluctuations in internal friction, the accuracy of the preaveraged model predictions is examined both at and away from equilibrium. While the two models predict intrachain autocorrelations that approach each other for long enough chain segments, they differ in their predictions for shorter segments. Furthermore, the two models differ qualitatively in their predictions for the chain extension and viscosity in shear flow, which is taken to represent a prototypical out-of-equilibrium condition.
Collapse
Affiliation(s)
- R Kailasham
- IITB-Monash Research Academy, Indian Institute of Technology Bombay, Mumbai, Maharashtra - 400076, India and Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, Maharashtra - 400076, India. and Department of Chemical Engineering, Monash University, Melbourne, VIC 3800, Australia.
| | - Rajarshi Chakrabarti
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, Maharashtra - 400076, India.
| | - J Ravi Prakash
- Department of Chemical Engineering, Monash University, Melbourne, VIC 3800, Australia.
| |
Collapse
|
17
|
Qiao Y, Luo Y, Long N, Xing Y, Tu J. Single-Molecular Förster Resonance Energy Transfer Measurement on Structures and Interactions of Biomolecules. MICROMACHINES 2021; 12:492. [PMID: 33925350 PMCID: PMC8145425 DOI: 10.3390/mi12050492] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 12/15/2022]
Abstract
Single-molecule Förster resonance energy transfer (smFRET) inherits the strategy of measurement from the effective "spectroscopic ruler" FRET and can be utilized to observe molecular behaviors with relatively high throughput at nanometer scale. The simplicity in principle and configuration of smFRET make it easy to apply and couple with other technologies to comprehensively understand single-molecule dynamics in various application scenarios. Despite its widespread application, smFRET is continuously developing and novel studies based on the advanced platforms have been done. Here, we summarize some representative examples of smFRET research of recent years to exhibit the versatility and note typical strategies to further improve the performance of smFRET measurement on different biomolecules.
Collapse
Affiliation(s)
- Yi Qiao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China; (Y.Q.); (Y.L.); (N.L.)
| | - Yuhan Luo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China; (Y.Q.); (Y.L.); (N.L.)
| | - Naiyun Long
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China; (Y.Q.); (Y.L.); (N.L.)
| | - Yi Xing
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing 100191, China;
| | - Jing Tu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China; (Y.Q.); (Y.L.); (N.L.)
| |
Collapse
|
18
|
Cubuk J, Alston JJ, Incicco JJ, Singh S, Stuchell-Brereton MD, Ward MD, Zimmerman MI, Vithani N, Griffith D, Wagoner JA, Bowman GR, Hall KB, Soranno A, Holehouse AS. The SARS-CoV-2 nucleocapsid protein is dynamic, disordered, and phase separates with RNA. Nat Commun 2021; 12:1936. [PMID: 33782395 PMCID: PMC8007728 DOI: 10.1038/s41467-021-21953-3] [Citation(s) in RCA: 359] [Impact Index Per Article: 89.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 02/18/2021] [Indexed: 12/15/2022] Open
Abstract
The SARS-CoV-2 nucleocapsid (N) protein is an abundant RNA-binding protein critical for viral genome packaging, yet the molecular details that underlie this process are poorly understood. Here we combine single-molecule spectroscopy with all-atom simulations to uncover the molecular details that contribute to N protein function. N protein contains three dynamic disordered regions that house putative transiently-helical binding motifs. The two folded domains interact minimally such that full-length N protein is a flexible and multivalent RNA-binding protein. N protein also undergoes liquid-liquid phase separation when mixed with RNA, and polymer theory predicts that the same multivalent interactions that drive phase separation also engender RNA compaction. We offer a simple symmetry-breaking model that provides a plausible route through which single-genome condensation preferentially occurs over phase separation, suggesting that phase separation offers a convenient macroscopic readout of a key nanoscopic interaction.
Collapse
Affiliation(s)
- Jasmine Cubuk
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, MO, USA
| | - Jhullian J Alston
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, MO, USA
| | - J Jeremías Incicco
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, MO, USA
| | - Sukrit Singh
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, MO, USA
| | - Melissa D Stuchell-Brereton
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, MO, USA
| | - Michael D Ward
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, MO, USA
| | - Maxwell I Zimmerman
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, MO, USA
| | - Neha Vithani
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, MO, USA
| | - Daniel Griffith
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, MO, USA
| | - Jason A Wagoner
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, USA
| | - Gregory R Bowman
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, MO, USA
| | - Kathleen B Hall
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Andrea Soranno
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA.
- Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, MO, USA.
| | - Alex S Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA.
- Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
19
|
Xia C, Kang W, Wang J, Wang W. Temperature Dependence of Internal Friction of Peptides. J Phys Chem B 2021; 125:2821-2832. [PMID: 33689339 DOI: 10.1021/acs.jpcb.0c09056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Internal friction is a valuable concept to describe the kinetics of proteins. As is well known, internal friction can be modulated by solvent features (such as viscosity). How can internal friction be affected by environmental temperature? The answer to this question is not evident. In the present work, we approach this problem with simulations on two model peptides. The thermodynamics and relaxation kinetics are characterized through long molecular dynamics simulations, with the viscosity modulated by varying the mass of solvent molecules. Based on the extrapolation to zero viscosity together with scaling of the relaxation time scales, we discover that internal friction is almost invariant at various temperatures. Controlled simulations further support the idea that internal friction is independent of environmental temperature. Comparisons between the two model peptides help us to understand the diverse phenomena in experiments.
Collapse
Affiliation(s)
- Chenliang Xia
- School of Physics, Nanjing University, Nanjing 210093, P.R.China.,National Laboratory of Solid State Microstructure, Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, P.R.China
| | - Wenbin Kang
- School of Public Health and Management, Hubei University of Medicine, Shiyan 442000, P.R. China
| | - Jun Wang
- School of Physics, Nanjing University, Nanjing 210093, P.R.China.,National Laboratory of Solid State Microstructure, Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, P.R.China
| | - Wei Wang
- School of Physics, Nanjing University, Nanjing 210093, P.R.China.,National Laboratory of Solid State Microstructure, Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, P.R.China
| |
Collapse
|
20
|
Mehlich A, Fang J, Pelz B, Li H, Stigler J. Slow Transition Path Times Reveal a Complex Folding Barrier in a Designed Protein. Front Chem 2020; 8:587824. [PMID: 33365300 PMCID: PMC7750197 DOI: 10.3389/fchem.2020.587824] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/26/2020] [Indexed: 11/30/2022] Open
Abstract
De-novo designed proteins have received wide interest as potential platforms for nano-engineering and biomedicine. While much work is being done in the design of thermodynamically stable proteins, the folding process of artificially designed proteins is not well-studied. Here we used single-molecule force spectroscopy by optical tweezers to study the folding of ROSS, a de-novo designed 2x2 Rossmann fold. We measured a barrier crossing time in the millisecond range, much slower than what has been reported for other systems. While long transition times can be explained by barrier roughness or slow diffusion, we show that isotropic roughness cannot explain the measured transition path time distribution. Instead, this study shows that the slow barrier crossing of ROSS is caused by the population of three short-lived high-energy intermediates. In addition, we identify incomplete and off-pathway folding events with different barrier crossing dynamics. Our results hint at the presence of a complex transition barrier that may be a common feature of many artificially designed proteins.
Collapse
Affiliation(s)
- Alexander Mehlich
- Physics Department E22, Technische Universität München, Garching, Germany
| | - Jie Fang
- Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
| | - Benjamin Pelz
- Physics Department E22, Technische Universität München, Garching, Germany
| | - Hongbin Li
- Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
| | - Johannes Stigler
- Gene Center Munich, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
21
|
Cubuk J, Alston JJ, Incicco JJ, Singh S, Stuchell-Brereton MD, Ward MD, Zimmerman MI, Vithani N, Griffith D, Wagoner JA, Bowman GR, Hall KB, Soranno A, Holehouse AS. The SARS-CoV-2 nucleocapsid protein is dynamic, disordered, and phase separates with RNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.06.17.158121. [PMID: 32587966 PMCID: PMC7310622 DOI: 10.1101/2020.06.17.158121] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
The SARS-CoV-2 nucleocapsid (N) protein is an abundant RNA binding protein critical for viral genome packaging, yet the molecular details that underlie this process are poorly understood. Here we combine single-molecule spectroscopy with all-atom simulations to uncover the molecular details that contribute to N protein function. N protein contains three dynamic disordered regions that house putative transiently-helical binding motifs. The two folded domains interact minimally such that full-length N protein is a flexible and multivalent RNA binding protein. N protein also undergoes liquid-liquid phase separation when mixed with RNA, and polymer theory predicts that the same multivalent interactions that drive phase separation also engender RNA compaction. We offer a simple symmetry-breaking model that provides a plausible route through which single-genome condensation preferentially occurs over phase separation, suggesting that phase separation offers a convenient macroscopic readout of a key nanoscopic interaction.
Collapse
|
22
|
Lee YR, Kwon S, Sung BJ. The non-classical kinetics and the mutual information of polymer loop formation. J Chem Phys 2020; 152:184905. [PMID: 32414275 DOI: 10.1063/5.0005453] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The loop formation of a single polymer chain has served as a model system for various biological and chemical processes. Theories based on the Smoluchowski equation proposed that the rate constant (kloop) of the loop formation would be inversely proportional to viscosity (η), i.e., kloop ∼ η-1. Experiments and simulations showed, however, that kloop showed the fractional viscosity dependence of kloop ∼ η-β with β < 1 either in glasses or in low-viscosity solutions. The origin of the fractional viscosity dependence remains elusive and has been attributed to phenomenological aspects. In this paper, we illustrate that the well-known failure of classical kinetics of the loop formation results from the breakdown of the local thermal equilibrium (LTE) approximation and that the mutual information can quantify the breakdown of the LTE successfully.
Collapse
Affiliation(s)
- Young-Ro Lee
- Department of Chemistry, Sogang University, Seoul 04107, South Korea
| | - Seulki Kwon
- Department of Chemistry, Sogang University, Seoul 04107, South Korea
| | - Bong June Sung
- Department of Chemistry, Sogang University, Seoul 04107, South Korea
| |
Collapse
|
23
|
Cohen NR, Kayatekin C, Zitzewitz JA, Bilsel O, Matthews CR. Friction-Limited Folding of Disulfide-Reduced Monomeric SOD1. Biophys J 2020; 118:1992-2000. [PMID: 32191862 DOI: 10.1016/j.bpj.2020.02.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 02/04/2020] [Accepted: 02/28/2020] [Indexed: 11/16/2022] Open
Abstract
The folding reaction of a stable monomeric variant of Cu/Zn superoxide dismutase (mSOD1), an enzyme responsible for the conversion of superoxide free radicals into hydrogen peroxide and oxygen, is known to be among the slowest folding processes that adhere to two-state behavior. The long lifetime, ∼10 s, of the unfolded state presents ample opportunities for the polypeptide chain to transiently sample nonnative structures before the formation of the productive folding transition state. We recently observed the formation of a nonnative structure in a peptide model of the C-terminus of SOD1, a sequence that might serve as a potential source of internal chain friction-limited folding. To test for friction-limited folding, we performed a comprehensive thermodynamic and kinetic analysis of the folding mechanism of mSOD1 in the presence of the viscogens glycerol and glucose. Using a, to our knowledge, novel analysis of the folding reactions, we found the disulfide-reduced form of the protein that exposes the C-terminal sequence, but not its disulfide-oxidized counterpart that protects it, experiences internal chain friction during folding. The sensitivity of the internal friction to the disulfide bond status suggests that one or both of the cross-linked regions play a critical role in driving the friction-limited folding. We speculate that the molecular mechanisms giving rise to the internal friction of disulfide-reduced mSOD1 might play a role in the amyotrophic lateral sclerosis-linked aggregation of SOD1.
Collapse
Affiliation(s)
- Noah R Cohen
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Can Kayatekin
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts; Rare and Neurological Therapeutic Area, Sanofi, Framingham, Massachusetts
| | - Jill A Zitzewitz
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Osman Bilsel
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - C R Matthews
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts.
| |
Collapse
|
24
|
Pyo AGT, Woodside MT. Memory effects in single-molecule force spectroscopy measurements of biomolecular folding. Phys Chem Chem Phys 2019; 21:24527-24534. [PMID: 31663550 DOI: 10.1039/c9cp04197d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Folding is generally assumed to be a Markov process, without memory. When the molecular motion is coupled to that of a probe as in single-molecule force spectroscopy (SMFS) experiments, however, theory predicts that the coupling to a second Markov process should induce memory when monitoring a projection of the full multi-dimensional motion onto a reduced coordinate. We developed a method to evaluate the time constant of the induced memory from its effects on the autocorrelation function, which can be readily determined from experimental data. Applying this method to both simulated SMFS measurements and experimental trajectories of DNA hairpin folding measured by optical tweezers as a model system, we validated the prediction that the linker induces memory. For these measurements, the timescale of the induced memory was found to be similar to the time required for the force probe to respond to changes in the molecule, and in the regime where the experimentally observed dynamics were not significantly perturbed by probe-molecule coupling artifacts. Memory effects are thus a general feature of SMFS measurements induced by the mechanical connection between the molecule and force probe that should be considered when interpreting experimental data.
Collapse
Affiliation(s)
- Andrew G T Pyo
- Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada.
| | | |
Collapse
|
25
|
Krainer G, Keller S, Schlierf M. Structural dynamics of membrane-protein folding from single-molecule FRET. Curr Opin Struct Biol 2019; 58:124-137. [DOI: 10.1016/j.sbi.2019.05.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 05/27/2019] [Indexed: 12/15/2022]
|
26
|
Ultrafast folding kinetics of WW domains reveal how the amino acid sequence determines the speed limit to protein folding. Proc Natl Acad Sci U S A 2019; 116:8137-8142. [PMID: 30967507 DOI: 10.1073/pnas.1900203116] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protein (un)folding rates depend on the free-energy barrier separating the native and unfolded states and a prefactor term, which sets the timescale for crossing such barrier or folding speed limit. Because extricating these two factors is usually unfeasible, it has been common to assume a constant prefactor and assign all rate variability to the barrier. However, theory and simulations postulate a protein-specific prefactor that contains key mechanistic information. Here, we exploit the special properties of fast-folding proteins to experimentally resolve the folding rate prefactor and investigate how much it varies among structural homologs. We measure the ultrafast (un)folding kinetics of five natural WW domains using nanosecond laser-induced temperature jumps. All five WW domains fold in microseconds, but with a 10-fold difference between fastest and slowest. Interestingly, they all produce biphasic kinetics in which the slower phase corresponds to reequilibration over the small barrier (<3 RT) and the faster phase to the downhill relaxation of the minor population residing at the barrier top [transition state ensemble (TSE)]. The fast rate recapitulates the 10-fold range, demonstrating that the folding speed limit of even the simplest all-β fold strongly depends on the amino acid sequence. Given this fold's simplicity, the most plausible source for such prefactor differences is the presence of nonnative interactions that stabilize the TSE but need to break up before folding resumes. Our results confirm long-standing theoretical predictions and bring into focus the rate prefactor as an essential element for understanding the mechanisms of folding.
Collapse
|
27
|
Foster DAN, Petrosyan R, Pyo AGT, Hoffmann A, Wang F, Woodside MT. Probing Position-Dependent Diffusion in Folding Reactions Using Single-Molecule Force Spectroscopy. Biophys J 2019; 114:1657-1666. [PMID: 29642035 DOI: 10.1016/j.bpj.2018.02.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 02/27/2018] [Indexed: 01/02/2023] Open
Abstract
Folding of proteins and nucleic acids involves a diffusive search over a multidimensional conformational energy landscape for the minimal-energy structure. When examining the projection of conformational motions onto a one-dimensional reaction coordinate, as done in most experiments, the diffusion coefficient D is generally position dependent. However, it has proven challenging to measure such position-dependence experimentally. We investigated the position-dependence of D in the folding of DNA hairpins as a simple model system in two ways: first, by analyzing the round-trip time to return to a given extension in constant-force extension trajectories measured by force spectroscopy, and second, by analyzing the fall time required to reach a given extension in force jump measurements. These methods yielded conflicting results: the fall time implied a fairly constant D, but the round-trip time implied variations of over an order of magnitude. Comparison of experiments with computational simulations revealed that both methods were strongly affected by experimental artifacts inherent to force spectroscopy measurements, which obscured the intrinsic position-dependence of D. Lastly, we applied Kramers's theory to the kinetics of hairpins with energy barriers located at different positions along the hairpin stem, as a crude probe of D at different stem positions, and we found that D did not vary much as the barrier was moved along the reaction coordinate. This work underlines the difficulties faced when trying to deduce position-dependent diffusion coefficients from experimental folding trajectories.
Collapse
Affiliation(s)
- Daniel A N Foster
- Department of Physics, University of Alberta, Edmonton, Alberta, Canada
| | - Rafayel Petrosyan
- Department of Physics, University of Alberta, Edmonton, Alberta, Canada
| | - Andrew G T Pyo
- Department of Physics, University of Alberta, Edmonton, Alberta, Canada
| | - Armin Hoffmann
- Department of Physics, University of Alberta, Edmonton, Alberta, Canada
| | - Feng Wang
- National Institute for Nanotechnology, National Research Council, Edmonton, Alberta, Canada
| | - Michael T Woodside
- Department of Physics, University of Alberta, Edmonton, Alberta, Canada; National Institute for Nanotechnology, National Research Council, Edmonton, Alberta, Canada.
| |
Collapse
|
28
|
Choi UB, Sanabria H, Smirnova T, Bowen ME, Weninger KR. Spontaneous Switching among Conformational Ensembles in Intrinsically Disordered Proteins. Biomolecules 2019; 9:biom9030114. [PMID: 30909517 PMCID: PMC6468417 DOI: 10.3390/biom9030114] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/14/2019] [Accepted: 03/15/2019] [Indexed: 01/08/2023] Open
Abstract
The common conception of intrinsically disordered proteins (IDPs) is that they stochastically sample all possible configurations driven by thermal fluctuations. This is certainly true for many IDPs, which behave as swollen random coils that can be described using polymer models developed for homopolymers. However, the variability in interaction energy between different amino acid sequences provides the possibility that some configurations may be strongly preferred while others are forbidden. In compact globular IDPs, core hydration and packing density can vary between segments of the polypeptide chain leading to complex conformational dynamics. Here, we describe a growing number of proteins that appear intrinsically disordered by biochemical and bioinformatic characterization but switch between restricted regions of conformational space. In some cases, spontaneous switching between conformational ensembles was directly observed, but few methods can identify when an IDP is acting as a restricted chain. Such switching between disparate corners of conformational space could bias ligand binding and regulate the volume of IDPs acting as structural or entropic elements. Thus, mapping the accessible energy landscape and capturing dynamics across a wide range of timescales are essential to recognize when an IDP is acting as such a switch.
Collapse
Affiliation(s)
- Ucheor B Choi
- Department of Molecular and Cellular Physiology, Department of Neurology and Neurological Sciences, Department of Structural Biology, Department of Photon Science, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.
| | - Hugo Sanabria
- Department of Physics and Astronomy, Clemson University, Clemson, SC, 29634, USA.
| | - Tatyana Smirnova
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27695, USA.
| | - Mark E Bowen
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, 11794, USA.
| | - Keith R Weninger
- Department of Physics, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
29
|
Borgogna A, Murmura M, Annesini M, Giona M, Cerbelli S. A hybrid numerical approach for predicting mixing length and mixing time in microfluidic junctions from moderate to arbitrarily large values of the Péclet number. Chem Eng Sci 2019. [DOI: 10.1016/j.ces.2018.10.051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
30
|
Soranno A, Zosel F, Hofmann H. Internal friction in an intrinsically disordered protein-Comparing Rouse-like models with experiments. J Chem Phys 2018; 148:123326. [PMID: 29604877 DOI: 10.1063/1.5009286] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Internal friction is frequently found in protein dynamics. Its molecular origin however is difficult to conceptualize. Even unfolded and intrinsically disordered polypeptide chains exhibit signs of internal friction despite their enormous solvent accessibility. Here, we compare four polymer theories of internal friction with experimental results on the intrinsically disordered protein ACTR (activator of thyroid hormone receptor). Using nanosecond fluorescence correlation spectroscopy combined with single-molecule Förster resonance energy transfer (smFRET), we determine the time scales of the diffusive chain dynamics of ACTR at different solvent viscosities and varying degrees of compaction. Despite pronounced differences between the theories, we find that all models can capture the experimental viscosity-dependence of the chain relaxation time. In contrast, the observed slowdown upon chain collapse of ACTR is not captured by any of the theories and a mechanistic link between chain dimension and internal friction is still missing, implying that the current theories are incomplete. In addition, a discrepancy between early results on homopolymer solutions and recent single-molecule experiments on unfolded and disordered proteins suggests that internal friction is likely to be a composite phenomenon caused by a variety of processes.
Collapse
Affiliation(s)
- Andrea Soranno
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St. Louis, Missouri 63110, USA
| | - Franziska Zosel
- Department of Biochemistry, University of Zurich, Zurich 8057, Switzerland
| | - Hagen Hofmann
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
31
|
Sturzenegger F, Zosel F, Holmstrom ED, Buholzer KJ, Makarov DE, Nettels D, Schuler B. Transition path times of coupled folding and binding reveal the formation of an encounter complex. Nat Commun 2018; 9:4708. [PMID: 30413694 PMCID: PMC6226497 DOI: 10.1038/s41467-018-07043-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 10/15/2018] [Indexed: 11/09/2022] Open
Abstract
The association of biomolecules is the elementary event of communication in biology. Most mechanistic information of how the interactions between binding partners form or break is, however, hidden in the transition paths, the very short parts of the molecular trajectories from the encounter of the two molecules to the formation of a stable complex. Here we use single-molecule spectroscopy to measure the transition path times for the association of two intrinsically disordered proteins that form a folded dimer upon binding. The results reveal the formation of a metastable encounter complex that is electrostatically favored and transits to the final bound state within tens of microseconds. Such measurements thus open a new window into the microscopic events governing biomolecular interactions.
Collapse
Affiliation(s)
| | - Franziska Zosel
- Department of Biochemistry, University of Zurich, 8057, Zurich, Switzerland.,Novo Nordisk A/S, Novo Nordisk Park 1, 2760, Måløv, Denmark
| | - Erik D Holmstrom
- Department of Biochemistry, University of Zurich, 8057, Zurich, Switzerland
| | - Karin J Buholzer
- Department of Biochemistry, University of Zurich, 8057, Zurich, Switzerland
| | - Dmitrii E Makarov
- Department of Chemistry and Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX, 78712, USA
| | - Daniel Nettels
- Department of Biochemistry, University of Zurich, 8057, Zurich, Switzerland
| | - Benjamin Schuler
- Department of Biochemistry, University of Zurich, 8057, Zurich, Switzerland. .,Department of Physics, University of Zurich, 8057, Zurich, Switzerland.
| |
Collapse
|
32
|
Bruno da Silva F, Contessoto VG, de Oliveira VM, Clarke J, Leite VBP. Non-Native Cooperative Interactions Modulate Protein Folding Rates. J Phys Chem B 2018; 122:10817-10824. [DOI: 10.1021/acs.jpcb.8b08990] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Fernando Bruno da Silva
- Department of Physics, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto - São Paulo 15054-000, Brazil
| | - Vinícius G. Contessoto
- Brazilian Bioethanol Science and Technology Laboratory - CTBE, Campinas - São Paulo 13083-100, Brazil
| | - Vinícius M. de Oliveira
- Department of Physics, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto - São Paulo 15054-000, Brazil
| | - Jane Clarke
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Vitor B. P. Leite
- Department of Physics, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto - São Paulo 15054-000, Brazil
| |
Collapse
|
33
|
Roh JH, Kilburn D, Behrouzi R, Sung W, Briber RM, Woodson SA. Effects of Preferential Counterion Interactions on the Specificity of RNA Folding. J Phys Chem Lett 2018; 9:5726-5732. [PMID: 30211556 PMCID: PMC6351067 DOI: 10.1021/acs.jpclett.8b02086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The real-time search for native RNA structure is essential for the operation of regulatory RNAs. We previously reported that a fraction of the Azoarcus ribozyme achieves a compact structure in less than a millisecond. To scrutinize the forces that drive initial folding steps, we used time-resolved SAXS to compare the folding dynamics of this ribozyme in thermodynamically isostable concentrations of different counterions. The results show that the size of the fast-folding population increases with the number of available counterions and correlates with the flexibility of initial RNA structures. Within 1 ms of folding, Mg2+ exhibits a smaller preferential interaction coefficient per charge, ΔΓ+/ Z, than Na+ or [Co(NH3)6]3+. The lower ΔΓ+/ Z corresponds to a smaller yield of folded RNA, although Mg2+ stabilizes native RNA more efficiently than other ions at equilibrium. These results suggest that strong Mg2+-RNA interactions impede the search for globally native structure during early folding stages.
Collapse
Affiliation(s)
- Joon Ho Roh
- Department of Materials Science and Engineering , University of Maryland , College Park , Maryland 20742 , United States
- T. C. Jenkins Department of Biophysics , Johns Hopkins University , Baltimore , Maryland 21218 , United States
| | - Duncan Kilburn
- T. C. Jenkins Department of Biophysics , Johns Hopkins University , Baltimore , Maryland 21218 , United States
| | - Reza Behrouzi
- Cell Biology , Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Wokyung Sung
- Department of Physics , Pohang University of Science and Technology , Pohang 37673 , Republic of Korea
| | - R M Briber
- Department of Materials Science and Engineering , University of Maryland , College Park , Maryland 20742 , United States
| | - Sarah A Woodson
- T. C. Jenkins Department of Biophysics , Johns Hopkins University , Baltimore , Maryland 21218 , United States
| |
Collapse
|
34
|
Zheng W, Hofmann H, Schuler B, Best RB. Origin of Internal Friction in Disordered Proteins Depends on Solvent Quality. J Phys Chem B 2018; 122:11478-11487. [PMID: 30277791 DOI: 10.1021/acs.jpcb.8b07425] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Protein dynamics often exhibit internal friction; i.e., contributions to friction that cannot solely be attributed to the viscosity of the solvent. Remarkably, even unfolded and intrinsically disordered proteins (IDPs) exhibit this behavior, despite typically being solvent-exposed. Several competing molecular mechanisms have been suggested to underlie this phenomenon, in particular dihedral relaxation and intrachain interactions. It has also recently been shown that single-molecule data reflecting internal friction in the disordered protein ACTR cannot be explained using polymer models unless this friction is dependent on protein collapse. However, the connection between the collapse of the chain and the underlying mechanism of internal friction has been unclear. To address this issue, we combine molecular simulation and single-molecule experimental data to investigate how chain compaction affects protein dynamics in the context of ACTR. Chain reconfiguration times and internal friction estimated from all-atom simulations are in semiquantitative agreement with experimental data. We dissect the underlying molecular mechanism with all-atom and coarse-grained simulations and clearly identify both intrachain interactions and dihedral angle transitions as contributions to internal friction. However, their relative contribution is strongly dependent on the compactness of the IDP; while dihedral relaxation dominates internal friction in expanded configurations, intrachain interactions dominate for more compact chains. Our results thus imply a continuous transition between mechanisms and provide a link between internal friction in IDPs and that in more compact and folded states of proteins.
Collapse
Affiliation(s)
- Wenwei Zheng
- College of Integrative Sciences and Arts , Arizona State University , Mesa , Arizona 85212 , United States.,Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases , National Institutes of Health , Bethesda , Maryland 20892-0520 , United States
| | - Hagen Hofmann
- Department of Structural Biology , Weizmann Institute of Science , 76100 Rehovot , Israel
| | | | - Robert B Best
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases , National Institutes of Health , Bethesda , Maryland 20892-0520 , United States
| |
Collapse
|
35
|
Vancraenenbroeck R, Hofmann H. Occupancies in the DNA-Binding Pathways of Intrinsically Disordered Helix-Loop-Helix Leucine-Zipper Proteins. J Phys Chem B 2018; 122:11460-11467. [DOI: 10.1021/acs.jpcb.8b07351] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Renee Vancraenenbroeck
- Department of Structural Biology, Weizmann Institute of Science, Herzl St. 234, 76100 Rehovot, Israel
| | - Hagen Hofmann
- Department of Structural Biology, Weizmann Institute of Science, Herzl St. 234, 76100 Rehovot, Israel
| |
Collapse
|
36
|
Das A, Makarov DE. Dynamics of Disordered Proteins under Confinement: Memory Effects and Internal Friction. J Phys Chem B 2018; 122:9049-9060. [PMID: 30092636 DOI: 10.1021/acs.jpcb.8b06112] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Many proteins are disordered under physiological conditions. How efficiently they can search for their cellular targets and how fast they can fold upon target binding is determined by their intrinsic dynamics, which have thus attracted much recent attention. Experiments and molecular simulations show that the inherent reconfiguration timescale for unfolded proteins has a solvent friction component and an internal friction component, and the microscopic origin of the latter, along with its proper mathematical description, has been a topic of considerable debate. Internal friction varies across different proteins of comparable length and increases with decreasing denaturant concentration, showing that it depends on how compact the protein is. Here we report on a systematic atomistic simulation study of how confinement, which induces a more compact unfolded state, affects dynamics and friction in disordered peptides. We find that the average reconfiguration timescales increase exponentially as the peptide's spatial dimensions are reduced; at the same time, confinement broadens the spectrum of relaxation timescales exhibited by the peptide. There are two important implications of this broadening: First, it limits applicability of the common Rouse and Zimm models with internal friction, as those models attempt to capture internal friction effects by introducing a single internal friction timescale. Second, the long-tailed distribution of relaxation times leads to anomalous diffusion effects in the dynamics of intramolecular distances. Analysis and interpretation of experimental signals from various measurements that probe intramolecular protein dynamics (such as single-molecule fluorescence correlation spectroscopy and single-molecule force spectroscopy) rely on the assumption of diffusive dynamics along the distances being probed; hence, our results suggest the need for more general models allowing for anomalous diffusion effects.
Collapse
Affiliation(s)
- Atanu Das
- Department of Chemistry , University of Texas at Austin , Austin , Texas 78712 , United States
| | - Dmitrii E Makarov
- Department of Chemistry , University of Texas at Austin , Austin , Texas 78712 , United States.,Institute for Computational Engineering and Sciences , University of Texas at Austin , Austin , Texas 78712 , United States
| |
Collapse
|
37
|
Dupuis NF, Holmstrom ED, Nesbitt DJ. Tests of Kramers’ Theory at the Single-Molecule Level: Evidence for Folding of an Isolated RNA Tertiary Interaction at the Viscous Speed Limit. J Phys Chem B 2018; 122:8796-8804. [DOI: 10.1021/acs.jpcb.8b04014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Nicholas F. Dupuis
- JILA, University of Colorado and National Institute of Standards and Technology, Department of Chemistry and Biochemistry, and Department of Physics, University of Colorado, Boulder, Boulder, Colorado 80309, United States
| | - Erik D. Holmstrom
- JILA, University of Colorado and National Institute of Standards and Technology, Department of Chemistry and Biochemistry, and Department of Physics, University of Colorado, Boulder, Boulder, Colorado 80309, United States
| | - David J. Nesbitt
- JILA, University of Colorado and National Institute of Standards and Technology, Department of Chemistry and Biochemistry, and Department of Physics, University of Colorado, Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
38
|
Schuler B. Perspective: Chain dynamics of unfolded and intrinsically disordered proteins from nanosecond fluorescence correlation spectroscopy combined with single-molecule FRET. J Chem Phys 2018; 149:010901. [PMID: 29981536 DOI: 10.1063/1.5037683] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The dynamics of unfolded proteins are important both for the process of protein folding and for the behavior of intrinsically disordered proteins. However, methods for investigating the global chain dynamics of these structurally diverse systems have been limited. A versatile experimental approach is single-molecule spectroscopy in combination with Förster resonance energy transfer and nanosecond fluorescence correlation spectroscopy. The concepts of polymer physics offer a powerful framework both for interpreting the results and for understanding and classifying the properties of unfolded and intrinsically disordered proteins. This information on long-range chain dynamics can be complemented with spectroscopic techniques that probe different length scales and time scales, and integration of these results greatly benefits from recent advances in molecular simulations. This increasing convergence between the experiment, theory, and simulation is thus starting to enable an increasingly detailed view of the dynamics of disordered proteins.
Collapse
Affiliation(s)
- Benjamin Schuler
- Department of Biochemistry and Department of Physics, University of Zurich, Winterthurerstrasse 190, Zurich, Switzerland
| |
Collapse
|
39
|
Abstract
The dihedral dynamics of butane in water is known to be rather insensitive to the water viscosity; possible explanations for this involve inertial effects or Kramers' turnover, the finite memory time of friction, and the presence of so-called internal friction. To disentangle these factors, we introduce a method to directly extract the friction memory function from unconstrained simulations in the presence of an arbitrary free-energy landscape. By analysis of the dihedral friction in butane for varying water viscosity, we demonstrate the existence of an internal friction contribution that does not scale linearly with water viscosity. At normal water viscosity, the internal friction turns out to be eight times larger than the solvent friction and thus completely dominates the effective friction. By comparison with simulations of a constrained butane molecule that has the dihedral as the only degree of freedom, we show that internal friction comes from the six additional degrees of freedom in unconstrained butane that are orthogonal to the dihedral angle reaction coordinate. While the insensitivity of butane's dihedral dynamics to water viscosity is solely due to the presence of internal friction, inertial effects nevertheless crucially influence the resultant transition rates. In contrast, non-Markovian effects due to the finite memory time are present but do not significantly influence the dihedral barrier-crossing rate of butane. These results not only settle the character of dihedral dynamics in small solvated molecular systems such as butane, they also have important implications for the folding of polymers and proteins.
Collapse
|
40
|
Zheng W, Zerze GH, Borgia A, Mittal J, Schuler B, Best RB. Inferring properties of disordered chains from FRET transfer efficiencies. J Chem Phys 2018; 148:123329. [PMID: 29604882 PMCID: PMC5812746 DOI: 10.1063/1.5006954] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 01/10/2018] [Indexed: 11/15/2022] Open
Abstract
Förster resonance energy transfer (FRET) is a powerful tool for elucidating both structural and dynamic properties of unfolded or disordered biomolecules, especially in single-molecule experiments. However, the key observables, namely, the mean transfer efficiency and fluorescence lifetimes of the donor and acceptor chromophores, are averaged over a broad distribution of donor-acceptor distances. The inferred average properties of the ensemble therefore depend on the form of the model distribution chosen to describe the distance, as has been widely recognized. In addition, while the distribution for one type of polymer model may be appropriate for a chain under a given set of physico-chemical conditions, it may not be suitable for the same chain in a different environment so that even an apparently consistent application of the same model over all conditions may distort the apparent changes in chain dimensions with variation of temperature or solution composition. Here, we present an alternative and straightforward approach to determining ensemble properties from FRET data, in which the polymer scaling exponent is allowed to vary with solution conditions. In its simplest form, it requires either the mean FRET efficiency or fluorescence lifetime information. In order to test the accuracy of the method, we have utilized both synthetic FRET data from implicit and explicit solvent simulations for 30 different protein sequences, and experimental single-molecule FRET data for an intrinsically disordered and a denatured protein. In all cases, we find that the inferred radii of gyration are within 10% of the true values, thus providing higher accuracy than simpler polymer models. In addition, the scaling exponents obtained by our procedure are in good agreement with those determined directly from the molecular ensemble. Our approach can in principle be generalized to treating other ensemble-averaged functions of intramolecular distances from experimental data.
Collapse
Affiliation(s)
- Wenwei Zheng
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, USA
| | - Gül H Zerze
- Department of Chemical and Biomolecular Engineering, Bethlehem, Pennsylvania 18015, USA
| | - Alessandro Borgia
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Jeetain Mittal
- Department of Chemical and Biomolecular Engineering, Bethlehem, Pennsylvania 18015, USA
| | - Benjamin Schuler
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Robert B Best
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, USA
| |
Collapse
|
41
|
Zheng W, Best RB. An Extended Guinier Analysis for Intrinsically Disordered Proteins. J Mol Biol 2018; 430:2540-2553. [PMID: 29571687 DOI: 10.1016/j.jmb.2018.03.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 02/28/2018] [Accepted: 03/12/2018] [Indexed: 12/25/2022]
Abstract
Guinier analysis allows model-free determination of the radius of gyration (Rg) of a biomolecule from X-ray or neutron scattering data, in the limit of very small scattering angles. Its range of validity is well understood for globular proteins, but is known to be more restricted for unfolded or intrinsically disordered proteins (IDPs). We have used ensembles of disordered structures from molecular dynamics simulations to investigate which structural properties cause deviations from the Guinier approximation at small scattering angles. We find that the deviation from the Guinier approximation is correlated with the polymer scaling exponent ν describing the unfolded ensemble. We therefore introduce an empirical, ν-dependent, higher-order correction term, to augment the standard Guinier analysis. We test the new fitting scheme using all-atom simulation data for several IDPs and experimental data for both an IDP and a destabilized mutant of a folded protein. In all cases tested, we achieve an accuracy of the inferred Rg within ∼3% of the true Rg. The method is straightforward to implement and extends the range of validity to a maximum qRg of ∼2 versus ∼1.1 for Guinier analysis. Compared with the Guinier or Debye approaches, our method allows data from wider angles with lower noise to be used to analyze scattering data accurately. In addition to Rg, our fitting scheme also yields estimates of the scaling exponent ν in excellent agreement with the reference ν determined from the underlying molecular ensemble.
Collapse
Affiliation(s)
- Wenwei Zheng
- College of Integrative Sciences and Arts, Arizona State University, Mesa, AZ 85212, USA.
| | - Robert B Best
- Laboratory of Chemical Physics, National Institute of Diabetes Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
42
|
Takahashi S, Yoshida A, Oikawa H. Hypothesis: structural heterogeneity of the unfolded proteins originating from the coupling of the local clusters and the long-range distance distribution. Biophys Rev 2018; 10:363-373. [PMID: 29446056 DOI: 10.1007/s12551-018-0405-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 02/05/2018] [Indexed: 01/22/2023] Open
Abstract
We propose a hypothesis that explains two apparently contradicting observations for the heterogeneity of the unfolded proteins. First, the line confocal method of the single-molecule Förster resonance energy transfer (sm-FRET) spectroscopy revealed that the unfolded proteins possess broad peaks in the FRET efficiency plot, implying the significant heterogeneity that lasts longer than milliseconds. Second, the fluorescence correlation method demonstrated that the unfolded proteins fluctuate in the time scale shorter than 100 ns. To formulate the hypothesis, we first summarize the recent consensus for the structure and dynamics of the unfolded proteins. We next discuss the conventional method of the sm-FRET spectroscopy and its limitations for the analysis of the unfolded proteins, followed by the advantages of the line confocal method that revealed the heterogeneity. Finally, we propose that the structural heterogeneity formed by the local clustering of hydrophobic residues modulates the distribution of the long-range distance between the labeled chromophores, resulting in the broadening of the peak in the FRET efficiency plot. A clustering of hydrophobic residues around the chromophore might further contribute to the broadening. The proposed clusters are important for the understanding of protein folding mechanism.
Collapse
Affiliation(s)
- Satoshi Takahashi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan. .,Department of Chemistry, Graduate school of Science, Tohoku University, Aramaki 6-3, Aoba-ku, Sendai, 980-8578, Japan.
| | - Aya Yoshida
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan.,Department of Chemistry, Graduate school of Science, Tohoku University, Aramaki 6-3, Aoba-ku, Sendai, 980-8578, Japan
| | - Hiroyuki Oikawa
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan.,Department of Chemistry, Graduate school of Science, Tohoku University, Aramaki 6-3, Aoba-ku, Sendai, 980-8578, Japan
| |
Collapse
|
43
|
Comparative mechanical unfolding studies of spectrin domains R15, R16 and R17. J Struct Biol 2017; 201:162-170. [PMID: 29221897 DOI: 10.1016/j.jsb.2017.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 11/08/2017] [Accepted: 12/04/2017] [Indexed: 11/20/2022]
Abstract
Spectrins belong to repetitive three-helix bundle proteins that have vital functions in multicellular organisms and are of potential value in nanotechnology. To reveal the unique physical features of repeat proteins we have studied the structural and mechanical properties of three repeats of chicken brain α-spectrin (R15, R16 and R17) at the atomic level under stretching at constant velocities (0.01, 0.05 and 0.1 Å·ps-1) and constant forces (700 and 900 pN) using molecular dynamics (MD) simulations at T = 300 K. 114 independent MD simulations were performed and their analysis has been done. Despite structural similarity of these domains we have found that R15 is less mechanically stable than R16, which is less stable than R17. This result is in agreement with the thermal unfolding rates. Moreover, we have observed the relationship between mechanical stability, flexibility of the domains and the number of aromatic residues involved in aromatic clusters.
Collapse
|
44
|
Song J, Gomes GN, Shi T, Gradinaru CC, Chan HS. Conformational Heterogeneity and FRET Data Interpretation for Dimensions of Unfolded Proteins. Biophys J 2017; 113:1012-1024. [PMID: 28877485 DOI: 10.1016/j.bpj.2017.07.023] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/26/2017] [Accepted: 07/31/2017] [Indexed: 12/28/2022] Open
Abstract
A mathematico-physically valid formulation is required to infer properties of disordered protein conformations from single-molecule Förster resonance energy transfer (smFRET). Conformational dimensions inferred by conventional approaches that presume a homogeneous conformational ensemble can be unphysical. When all possible-heterogeneous as well as homogeneous-conformational distributions are taken into account without prejudgment, a single value of average transfer efficiency 〈E〉 between dyes at two chain ends is generally consistent with highly diverse, multiple values of the average radius of gyration 〈Rg〉. Here we utilize unbiased conformational statistics from a coarse-grained explicit-chain model to establish a general logical framework to quantify this fundamental ambiguity in smFRET inference. As an application, we address the long-standing controversy regarding the denaturant dependence of 〈Rg〉 of unfolded proteins, focusing on Protein L as an example. Conventional smFRET inference concluded that 〈Rg〉 of unfolded Protein L is highly sensitive to [GuHCl], but data from SAXS suggested a near-constant 〈Rg〉 irrespective of [GuHCl]. Strikingly, our analysis indicates that although the reported 〈E〉 values for Protein L at [GuHCl] = 1 and 7 M are very different at 0.75 and 0.45, respectively, the Bayesian Rg2 distributions consistent with these two 〈E〉 values overlap by as much as 75%. Our findings suggest, in general, that the smFRET-SAXS discrepancy regarding unfolded protein dimensions likely arise from highly heterogeneous conformational ensembles at low or zero denaturant, and that additional experimental probes are needed to ascertain the nature of this heterogeneity.
Collapse
Affiliation(s)
- Jianhui Song
- School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, China; Departments of Biochemistry and Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Gregory-Neal Gomes
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada; Department of Physics, University of Toronto, Toronto, Ontario, Canada
| | - Tongfei Shi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China
| | - Claudiu C Gradinaru
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada; Department of Physics, University of Toronto, Toronto, Ontario, Canada
| | - Hue Sun Chan
- Departments of Biochemistry and Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
45
|
Abstract
Protein sequences are evolved to encode generally one folded structure, out of a nearly infinite array of possible folds. Underlying this code is a funneled free energy landscape that guides folding to the native conformation. Protein misfolding and aggregation are also a manifestation of free-energy landscapes. The detailed mechanisms of these processes are poorly understood, but often involve rare, transient species and a variety of different pathways. The inherent complexity of misfolding has hampered efforts to measure aggregation pathways and the underlying energy landscape, especially using traditional methods where ensemble averaging obscures important rare and transient events. We recently studied the misfolding and aggregation of prion protein by examining 2 monomers tethered in close proximity as a dimer, showing how the steps leading to the formation of a stable aggregated state can be resolved in the single-molecule limit and the underlying energy landscape thereby reconstructed. This approach allows a more quantitative comparison of native folding versus misfolding, including fundamental differences in the dynamics for misfolding. By identifying key steps and interactions leading to misfolding, it should help to identify potential drug targets. Here we describe the importance of characterizing free-energy landscapes for aggregation and the challenges involved in doing so, and we discuss how single-molecule studies can help test proposed structural models for PrP aggregates.
Collapse
Affiliation(s)
- Derek R Dee
- a Department of Physics , University of Alberta , Edmonton , AB , Canada
| | - Michael T Woodside
- a Department of Physics , University of Alberta , Edmonton , AB , Canada;,b National Institute for Nanotechnology, National Research Council , Edmonton , AB , Canada
| |
Collapse
|
46
|
Abstract
In vitro, computational, and theoretical studies of protein folding have converged to paint a rich and complex energy landscape. This landscape is sensitively modulated by environmental conditions and subject to evolutionary pressure on protein function. Of these environments, none is more complex than the cell itself, where proteins function in the cytosol, in membranes, and in different compartments. A wide variety of kinetic and thermodynamics experiments, ranging from single-molecule studies to jump kinetics and from nuclear magnetic resonance to imaging on the microscope, have elucidated how protein energy landscapes facilitate folding and how they are subject to evolutionary constraints and environmental perturbation. Here we review some recent developments in the field and refer the reader to some original work and additional reviews that cover this broad topic in protein science.
Collapse
Affiliation(s)
- Martin Gruebele
- Center for Biophysics and Quantitative Biology, University of Illinois, Urbana, Illinois 61801; , .,Department of Chemistry, University of Illinois, Urbana, Illinois 61801; .,Department of Physics, University of Illinois, Urbana, Illinois 61801
| | - Kapil Dave
- Center for Biophysics and Quantitative Biology, University of Illinois, Urbana, Illinois 61801; ,
| | - Shahar Sukenik
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801;
| |
Collapse
|
47
|
Abaskharon RM, Gai F. Meandering Down the Energy Landscape of Protein Folding: Are We There Yet? Biophys J 2017; 110:1924-32. [PMID: 27166801 DOI: 10.1016/j.bpj.2016.03.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 03/18/2016] [Accepted: 03/22/2016] [Indexed: 12/11/2022] Open
Abstract
As judged by a single publication metric, the activity in the protein folding field has been declining over the past 5 years, after enjoying a decade-long growth. Does this development indicate that the field is sunsetting or is this decline only temporary? Upon surveying a small territory of its landscape, we find that the protein folding field is still quite active and many important findings have emerged from recent experimental studies. However, it is also clear that only continued development of new techniques and methods, especially those enabling dissection of the fine details and features of the protein folding energy landscape, will fuel this old field to move forward.
Collapse
Affiliation(s)
- Rachel M Abaskharon
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Feng Gai
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania; The Ultrafast Optical Processes Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
48
|
Chung HS. Transition Path Times Measured by Single-Molecule Spectroscopy. J Mol Biol 2017; 430:409-423. [PMID: 28551335 DOI: 10.1016/j.jmb.2017.05.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 05/18/2017] [Indexed: 11/28/2022]
Abstract
The transition path is a tiny fraction of a molecular trajectory during which the free-energy barrier is crossed. It is a single-molecule property and contains all mechanistic information of folding processes of biomolecules such as proteins and nucleic acids. However, the transition path has been difficult to probe because it is short and rarely visited when transitions actually occur. Recent technical advances in single-molecule spectroscopy have made it possible to directly probe transition paths, which has opened up new theoretical and experimental approaches to investigating folding mechanisms. This article reviews recent single-molecule fluorescence and force spectroscopic measurements of transition path times and their connection to both theory and simulations.
Collapse
Affiliation(s)
- Hoi Sung Chung
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 5 Memorial Dr., Bethesda, MD 20892-0520, USA.
| |
Collapse
|
49
|
Abstract
Prion diseases, like Alzheimer's disease and Parkinson disease, are rapidly progressive neurodegenerative disorders caused by misfolding followed by aggregation and accumulation of protein deposits in neuronal cells. Here we measure intramolecular polypeptide backbone reconfiguration as a way to understand the molecular basis of prion aggregation. Our hypothesis is that when reconfiguration is either much faster or much slower than bimolecular diffusion, biomolecular association is not stable, but as the reconfiguration rate becomes similar to the rate of biomolecular diffusion, the association is more stable and subsequent aggregation is faster. Using the technique of Trp-Cys contact quenching, we investigate the effects of various conditions on reconfiguration dynamics of the Syrian hamster and rabbit prion proteins. This protein exhibits behavior in all three reconfiguration regimes. We conclude that the hamster prion is prone to aggregation at pH 4.4 because its reconfiguration rate is slow enough to expose hydrophobic residues on the same time scale that bimolecular association occurs, whereas the rabbit sequence avoids aggregation by reconfiguring 10 times faster than the hamster sequence.
Collapse
|
50
|
Benke S, Nettels D, Hofmann H, Schuler B. Quantifying kinetics from time series of single-molecule Förster resonance energy transfer efficiency histograms. NANOTECHNOLOGY 2017; 28:114002. [PMID: 28103588 DOI: 10.1088/1361-6528/aa5abd] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Single-molecule fluorescence spectroscopy is a powerful approach for probing biomolecular structure and dynamics, including protein folding. For the investigation of nonequilibrium kinetics, Förster resonance energy transfer combined with confocal multiparameter detection has proven particularly versatile, owing to the large number of observables and the broad range of accessible timescales, especially in combination with rapid microfluidic mixing. However, a comprehensive kinetic analysis of the resulting time series of transfer efficiency histograms and complementary observables can be challenging owing to the complexity of the data. Here we present and compare three different methods for the analysis of such kinetic data: singular value decomposition, multivariate curve resolution with alternating least square fitting, and model-based peak fitting, where an explicit model of both the transfer efficiency histogram of each species and the kinetic mechanism of the process is employed. While each of these methods has its merits for specific applications, we conclude that model-based peak fitting is most suitable for a quantitative analysis and comparison of kinetic mechanisms.
Collapse
Affiliation(s)
- Stephan Benke
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | | | | | | |
Collapse
|