1
|
Javier AJS, Kennedy FM, Yi X, Wehling-Henricks M, Tidball JG, White KE, Witczak CA, Kuro-O M, Welc SS. Klotho Is Cardioprotective in the mdx Mouse Model of Duchenne Muscular Dystrophy. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:923-940. [PMID: 39889824 PMCID: PMC12016860 DOI: 10.1016/j.ajpath.2024.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/18/2024] [Accepted: 12/30/2024] [Indexed: 02/03/2025]
Abstract
Duchenne muscular dystrophy (DMD) is a lethal, progressive skeletal and cardiac myopathy. Cardiomyopathy is the leading cause of death in patients with DMD, but the molecular basis for heart failure is incompletely understood. As with humans, in the mdx mouse model of DMD, cardiac function is impaired after the onset of skeletal muscle pathology. Dysregulation of Klotho gene regulation in dystrophic skeletal muscles occurs at disease onset, affecting pathogenesis. Whether Klotho is protective against dystrophin-deficient cardiomyopathy is unknown. This study found that expression of a Klotho transgene prevented deficits in left ventricular ejection fraction and fractional shortening in mdx mice. Improvements in cardiac performance were associated with reductions in adverse cardiac remodeling, cardiac myocyte hypertrophy, and fibrosis. In addition, mdx mice expressed high concentrations of plasma fibroblast growth factor 23 (FGF23), and expression was increased locally in hearts. The cardioprotective effects of Klotho were not associated with differences in renal function or serum biochemistries, but transgene expression prevented increased expression of plasma FGF23 and cardiac Fgf23 mRNA expression. Cardiac reactive oxygen species, oxidative damage, mitochondrial damage, and apoptosis were reduced in transgenic hearts. FGF23 stimulated hypertrophic growth in dystrophic neonatal mouse ventricular myocytes in vitro, which was inhibited by co-stimulation with soluble Klotho. Taken together, these results show that Klotho prevented dystrophic cardiac remodeling and improved function.
Collapse
MESH Headings
- Animals
- Klotho Proteins
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/physiopathology
- Muscular Dystrophy, Duchenne/pathology
- Muscular Dystrophy, Duchenne/complications
- Muscular Dystrophy, Duchenne/genetics
- Glucuronidase/metabolism
- Glucuronidase/genetics
- Fibroblast Growth Factor-23
- Fibroblast Growth Factors/metabolism
- Fibroblast Growth Factors/blood
- Fibroblast Growth Factors/genetics
- Mice, Inbred mdx
- Disease Models, Animal
- Mice
- Cardiomyopathies/pathology
- Cardiomyopathies/metabolism
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Mice, Transgenic
- Mice, Inbred C57BL
- Male
- Apoptosis
- Reactive Oxygen Species/metabolism
- Fibrosis
- Humans
- Myocardium/pathology
- Myocardium/metabolism
Collapse
Affiliation(s)
- Areli Jannes S Javier
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, Indiana
| | - Felicia M Kennedy
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Xin Yi
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| | | | - James G Tidball
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California; Department of Pathology and Laboratory Medicine, University of California, Los Angeles, California
| | - Kenneth E White
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Carol A Witczak
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, Indiana; Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Makoto Kuro-O
- Division of Anti-Aging Medicine, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Steven S Welc
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, Indiana; Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, Indiana.
| |
Collapse
|
2
|
Cai C, Wu Y, Feng X, Ye X, Liu P, Huang X, Li Z, Xu Z. Study on the Synergistic Effect of Klotho and KRAS on Reducing Ferroptosis After Myocardial Infarction by Regulating RAP1/ERK Signaling Pathway. Appl Biochem Biotechnol 2025; 197:2910-2926. [PMID: 39808407 DOI: 10.1007/s12010-024-05171-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/24/2024] [Indexed: 01/16/2025]
Abstract
Myocardial infarction (MI) is a coronary artery-related disease that seriously threatens human life and is the leading cause of sudden death worldwide, where a lack of nutrients and oxygen leads to an inflammatory response and death of cardiomyocytes. Ferroptosis is a form of non-apoptotic cell death associated with metabolic dysfunction, resulting in abnormal breakdown of glutamine and iron-dependent accumulation of reactive oxygen species (ROS) during metabolism. However, the molecular mechanism of ferroptosis in the pathogenesis of MI and the function of Klotho and KRAS on ferroptosis during MI remain unclear. The MI rat model was established by LAD ligation with a 6-0 suture. H9c2 cells were placed in glucose-deficient DMEM (Thermo) and cultured in an anaerobic environment (1% CO2 and 5% CO) to establish an in vitro OGD cell model. The damage to rat heart tissue was detected by HE staining, and Klotho and KRAS were determined by RT-qPCR, Western Blot, and IHC. TUNEL staining was used to determine apoptosis in rat heart tissue samples. The interaction between Klotho and KRAS was verified by co-immunoprecipitation and Western Blot. The cardiomyocyte activity was measured by CCK-8 assay. LDH, CK-MB, cTnT, and Fe2+ markers were detected by the kits. For the assessment of ferroptosis, GSH and ROS in cardiomyocytes and serum were detected by kits, and PTSG was detected by Western Blot. IL-1β and IL-6 in cardiomyocytes and serum were determined by ELISA. Klotho was downregulated in MI. Downregulation of Klotho promoted myocardial injury; increased apoptosis of cardiomyocytes; promoted LDH, CK-MB, and cTnT concentrations; inhibited GSH; and promoted ROS levels, PTGS2 expression, and ferroptosis in rats. The same results were obtained in vitro. Klotho and KRAS had endogenous interactions. KRAS knockdown can reverse Klotho knockdown-mediated MI and ferroptosis. RAP1/ERK pathway was highly expressed in MI, and inhibiting RAP1/ERK pathway activation can reverse the promoting effect of overexpressed KRAS on MI progression and ferroptosis. Klotho interacts with KRAS and inhibits ferroptosis after MI by regulating the RAP1/ERK pathway.
Collapse
Affiliation(s)
- ChengZhe Cai
- Department of Internal Medicine-Cardiovascular, Guangzhou Twelfth People's Hospital, No.1, Tianqiang Road, Tianhe District, Guangzhou City, Guangdong Province, 510620, China
| | - YiQin Wu
- Department of Internal Medicine-Cardiovascular, Guangzhou Twelfth People's Hospital, No.1, Tianqiang Road, Tianhe District, Guangzhou City, Guangdong Province, 510620, China
| | - XiaoQian Feng
- Department of Internal Medicine-Cardiovascular, Guangzhou Twelfth People's Hospital, No.1, Tianqiang Road, Tianhe District, Guangzhou City, Guangdong Province, 510620, China
| | - XianQu Ye
- Department of Internal Medicine-Cardiovascular, Guangzhou Twelfth People's Hospital, No.1, Tianqiang Road, Tianhe District, Guangzhou City, Guangdong Province, 510620, China
| | - PingFang Liu
- Department of Internal Medicine-Cardiovascular, Guangzhou Twelfth People's Hospital, No.1, Tianqiang Road, Tianhe District, Guangzhou City, Guangdong Province, 510620, China
| | - XiangJin Huang
- Department of Internal Medicine-Cardiovascular, Guangzhou Twelfth People's Hospital, No.1, Tianqiang Road, Tianhe District, Guangzhou City, Guangdong Province, 510620, China
| | - ZhiJun Li
- Department of Internal Medicine-Cardiovascular, Guangzhou Twelfth People's Hospital, No.1, Tianqiang Road, Tianhe District, Guangzhou City, Guangdong Province, 510620, China
| | - ZhuoFan Xu
- Department of Internal Medicine-Cardiovascular, Guangzhou Twelfth People's Hospital, No.1, Tianqiang Road, Tianhe District, Guangzhou City, Guangdong Province, 510620, China.
| |
Collapse
|
3
|
Zavvari Oskuye Z, Mehri K, Khalilpour J, Nemati S, Hosseini L, Bafadam S, Abdollahzade N, Badalzadeh R. Klotho in age-related cardiovascular diseases: Insights into mitochondrial dysfunction and cell death. IJC HEART & VASCULATURE 2025; 57:101629. [PMID: 40129656 PMCID: PMC11930703 DOI: 10.1016/j.ijcha.2025.101629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 01/26/2025] [Accepted: 02/08/2025] [Indexed: 03/26/2025]
Abstract
Aging is a major risk factor for the development of cardiovascular diseases (CVD), leading to specific alterations in the heart and vasculature. Besides, the mechanisms and intracellular pathways of aging and the factors affecting it are still not completely clear. Age-related complications such as oxidative stress, decreased autophagy, mitochondrial dysfunction, inflammatory responses, and cardiac dysfunction are associated with relative Klotho deficiency. Klotho, an anti-aging protein, with anti-oxidative and anti-inflammatory properties, has been shown to modulate calcium regulation and autophagy. It also protects against endothelial dysfunction by increasing nitric oxide production. Furthermore, emerging research has revealed that klotho significantly impacts vascular smooth muscle cells (VSMC) energetics and survival. This article has focused on recent advances in using Klotho in age-related CVD and summarizes the pre-clinical evidence supporting this approach. Based on the research, Klotho could provide more therapeutic options for ameliorating aging-related CVD.
Collapse
Affiliation(s)
- Zohreh Zavvari Oskuye
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Keyvan Mehri
- Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy, Iran
| | - Jamal Khalilpour
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samira Nemati
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - Leila Hosseini
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soleyman Bafadam
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Naseh Abdollahzade
- Neurophysiology Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Reza Badalzadeh
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
4
|
Fan J, Liu X, Guo SW. Hypermethylation of Klotho and Peroxisome Proliferator-Activated Receptor γ Concomitant with Overexpression of DNA Methyltransferase 1 in Adenomyosis. Reprod Sci 2025; 32:668-683. [PMID: 38816595 DOI: 10.1007/s43032-024-01599-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/14/2024] [Indexed: 06/01/2024]
Abstract
Cellular senescence is known to be involved in tissue repair, but its role in adenomyosis remains unclear. This study was tasked to evaluate the expression of Klotho, a well-known aging-suppressing protein, as well as PPARγ and DNMT1 in adenomyotic lesions (AD) in comparison with that of control endometrium (CT). We performed immunohistochemistry analysis of markers of cellular senescence p16 and p21, along with Klotho, PPARγ and DNMT1 in CT and AD samples, followed by the quantification of gene expression of Klotho, PPARγ and DNMT1 in epithelial organoids derived from AD and CT samples and methylation-specific PCR to evaluate promoter methylation status. The effect of forced expression and knockdown of DNMT1 on Klotho and PPARγ expression in ectopic endometrial epithelial cells was evaluated. We found that both p16 and p21 immunoreactivity in AD was significantly higher while that of Klotho and PPARγ was significantly lower than CT samples, which was concomitant with elevated immunoexpression of DNMT1. The results were confirmed by transcriptional analysis using epithelial organoids derived from AD and CT samples. In addition, the promoter regions of both Klotho and PPARγ genes were hypermethylated in AD as compared with CT, and treatment with HDAC and DNMT inhibitors reactivated the expression of both Klotho and PPARγ. Forced expression of DNMT1 resulted in downregulation of both Klotho and PPARγ but its knockdown increased their expression. Thus, overexpression of DNMT1 seems to facilitate the promoter hypermethylation of both Klotho and PPARγ in AD, resulting in their reduced expression that is suggestive of the role of senescence in adenomyosis.
Collapse
Affiliation(s)
- Jiao Fan
- Department of General Gynecology, Shanghai OB/GYN Hospital, Fudan University, Shanghai, 200011, China
| | - Xishi Liu
- Department of General Gynecology, Shanghai OB/GYN Hospital, Fudan University, Shanghai, 200011, China
| | - Sun-Wei Guo
- Research Institute, Shanghai Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China.
| |
Collapse
|
5
|
Vergatti A, Abate V, Iannuzzo G, Barbato A, De Filippo G, Rendina D. The bone-heart axis in the pathogenesis of cardiovascular diseases: A narrative review. Nutr Metab Cardiovasc Dis 2025; 35:103872. [PMID: 39956695 DOI: 10.1016/j.numecd.2025.103872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 02/18/2025]
Abstract
Cardiovascular diseases (CVDs) cause about 30% of deaths worldwide, increasing social and economic burden in our societies. Although the treatment of the canonical cardiovascular risk factors has reduced the impact of CVDs on morbidity and mortality in the past few years, they continue to represent a major health problem. The definition of the biological properties of the bone-heart axis has led to new insights in the pathogenesis of CVDs; hence, the aim of this review is to try to elucidate the role of this axis on the susceptibility to CVDs. There is evidence that the bone interacts with extra-skeletal organs, including the cardiovascular system, through its endocrine functions. Clinical and experimental data strongly indicate that the interplay between the bone and the cardiovascular system represents a future tool for the prevention, diagnosis and treatment of CVDs. The identification of these non-canonical cardiovascular risk factors could prompt pharmacological research towards new target therapy aimed at precision medicine.
Collapse
Affiliation(s)
- Anita Vergatti
- Department of Clinical Medicine and Surgery, Federico II University, Naples, 80131, Italy
| | - Veronica Abate
- Department of Clinical Medicine and Surgery, Federico II University, Naples, 80131, Italy
| | - Gabriella Iannuzzo
- Department of Clinical Medicine and Surgery, Federico II University, Naples, 80131, Italy
| | - Antonio Barbato
- Department of Clinical Medicine and Surgery, Federico II University, Naples, 80131, Italy
| | - Gianpaolo De Filippo
- Assistance Publique-Hôpitaux de Paris, Hôpital Robert Debré, Service d'Endocrinologie et Diabétologie, Paris, 75019, France
| | - Domenico Rendina
- Department of Clinical Medicine and Surgery, Federico II University, Naples, 80131, Italy.
| |
Collapse
|
6
|
Han Y, Liu C, Nie Y, Jiang X, An N, Qin Y, Ma Y, An Z, Zhao Y. Sex differences in the association between serum α-Klotho levels and hyperlipidemia: a cross-sectional study from NHANES 2013-2016. Sci Rep 2025; 15:4919. [PMID: 39929854 PMCID: PMC11811052 DOI: 10.1038/s41598-024-85018-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 12/30/2024] [Indexed: 02/13/2025] Open
Abstract
This study assessed the association between serum α-Klotho levels and hyperlipidemia. The aim was to ascertain the potential of serum α-Klotho levels as a predictive biomarker for hyperlipidemia. The research employed data from the National Health and Nutrition Examination Survey (NHANES) between 2013 and 2016. Weighted logistic regression analyses were employed to investigate the association between serum α-Klotho levels and hyperlipidemia. Restricted cubic spline (RCS) analyses were executed for males and females to scrutinize the non-linear correlation between α-Klotho levels and hyperlipidemia. Subsequently, piecewise logistic regression analysis was carried out based on the RCS findings. In females, the levels of α-Klotho were notably lower in those with hyperlipidemia in comparison to those without this condition (P < 0.05), No significant variation was demonstrated in α-Klotho levels between males with and without hyperlipidemia (P > 0.05). The participants were stratified by sex and subjected to analysis by logistic regression model. When α-Klotho was log2-transformed, it was significantly negatively associated with the risk of hyperlipidemia in females, even after adjusting for all of the covariates (OR 0.45, 95% CI 0.24-0.82), which was not observed in males (OR 1.14, 95% CI 0.63-2.06). The same results were observed in the third tertile of α-Klotho. Moreover, RCS analysis suggested a nonlinear correlation between serum α-Klotho levels and hyperlipidemia in females (P < 0.01). The inflection point of α-Klotho was found to be 1106.87 pg/mL. The piecewise logistic regression model revealed that when α-Klotho levels exceeded 1106.87 pg/mL, the link between α-Klotho and hyperlipidemia was no longer significant (P > 0.05). This investigation highlights the sex-based variation in the link between serum α-Klotho levels and hyperlipidemia. In females, α-Klotho exhibited negative association with hyperlipidemia, displaying a saturation effect. Serum α-Klotho emerges as a promising biological marker for the risk of hyperlipidemia among females.
Collapse
Affiliation(s)
- Yu Han
- Department of Pharmacy, Hebei Children's Hospital, Shijiazhuang, Hebei, People's Republic of China
| | - Chao Liu
- Department of Laboratory Animal Science, Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
- Hebei Key Lab of Laboratory Animal Science, Shijiazhuang, Hebei, People's Republic of China
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Ying Nie
- College of Pharmacy, Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Xijuan Jiang
- Department of Pharmacy, Hebei Children's Hospital, Shijiazhuang, Hebei, People's Republic of China
| | - Na An
- Department of Pharmacy, Hebei Children's Hospital, Shijiazhuang, Hebei, People's Republic of China
| | - Yabin Qin
- Department of Pharmacy, Hebei Children's Hospital, Shijiazhuang, Hebei, People's Republic of China
| | - Yinghua Ma
- Department of Pharmacy, Hebei Children's Hospital, Shijiazhuang, Hebei, People's Republic of China
| | - Zhihua An
- Department of Pharmacy, Hebei Children's Hospital, Shijiazhuang, Hebei, People's Republic of China
| | - Yile Zhao
- Department of Pharmacy, Hebei Children's Hospital, Shijiazhuang, Hebei, People's Republic of China.
| |
Collapse
|
7
|
Jiang S, Wang Y, Ren Y, Tang Q, Xue C, Wang Z, Zhang Q, Hu Y, Wang H, Zhao F, Zhu MX, Cao Z. TRPC6 suppresses liver fibrosis by inhibiting hepatic stellate cell activation via CaMK4-CREB pathway. Br J Pharmacol 2025. [PMID: 39887689 DOI: 10.1111/bph.17431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/26/2024] [Accepted: 12/06/2024] [Indexed: 02/01/2025] Open
Abstract
BACKGROUND AND PURPOSE Genetic ablation or inhibition of the cation channel TRPC6 is protective against renal, cardiac and intestinal fibrosis. However, TRPC6 expression is decreased in patients with liver diseases. Here, we explored the role of TRPC6 in liver fibrosis and the underlying mechanism. EXPERIMENTAL APPROACH Bile duct ligation and thioacetamide gavage were used to model liver fibrosis in C57BL/6J mice. Western blotting, immunolabelling and qPCR were employed for protein and mRNA expression. Liver injury/fibrosis were assessed using serum alanine transaminase and aspartate transaminase assays, haematoxylin-eosin, Masson and Sirius red staining. Adenoviruses were used to overexpress TRPC6 and CREB1Y134F. ChIP and dual-luciferase reporter assays were performed to test the direct inhibition of Acta2 transcription by CREB. KEY RESULTS TRPC6 protein levels were decreased in fibrotic liver tissues from both patients and mice, with the decrease being more robust in fibrotic areas. In hepatic stellate cells (HSCs), TRPC6 ablation aggravated liver injury and fibrosis, which was alleviated by overexpressing TRPC6. In primary cultured HSCs, deletion of TRPC6 exacerbated self-activation of HSCs, which was reversed by restoration of TRPC6 expression. Mechanistically, TRPC6 suppressed HSC activation through CaMK4-mediated CREB phosphorylation. CREB directly interacted with the promoter region of Acta2 to inhibit its transcription. Expression of a constitutively active form of CREB1 (CREB1Y134F) in HSCs attenuated BDL-induced liver injury/fibrosis in TRPC6 knockout mice. CONCLUSION AND IMPLICATIONS Deficiency of TRPC6 aggravates liver injury/fibrosis through augmentation of HSC activation. Increasing TRPC6 expression/function would be therapeutically beneficial for fibrotic liver diseases.
Collapse
Affiliation(s)
- Shan Jiang
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yujing Wang
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Younan Ren
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Qinglian Tang
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Chu Xue
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zhi Wang
- Department of Gastroenterology, Zhongda Hospital, Nanjing, China
| | - Qi Zhang
- Center of Interventional Radiology and Vascular Surgery, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Yixin Hu
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hongbo Wang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Yantai University, Yantai, China
| | - Fang Zhao
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Michael X Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Zhengyu Cao
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
8
|
Vogt J, Wolf L, Hoelzle LE, Feger M, Föller M. AMP-dependent kinase stimulates the expression of αKlotho. FEBS Open Bio 2024; 14:1691-1700. [PMID: 39090792 PMCID: PMC11452301 DOI: 10.1002/2211-5463.13872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 06/14/2024] [Accepted: 07/17/2024] [Indexed: 08/04/2024] Open
Abstract
Renal αKlotho along with fibroblast growth factor 23 regulates phosphate and vitamin D metabolism. Its cleavage yields soluble Klotho controlling intracellular processes. αKlotho has anti-inflammatory and antioxidant effects and is nephro- and cardioprotective. AMP-dependent kinase (AMPK) is a nephro- and cardioprotective energy sensor. Given that both αKlotho and AMPK have beneficial effects in similar organs, we studied whether AMPK regulates αKlotho gene expression in Madin-Darby canine kidney, normal rat kidney 52E, and human kidney 2 cells. Using quantitative real-time PCR and western blotting, we measured αKlotho expression upon pharmacological manipulation or siRNA-mediated knockdown of AMPKα. AMPK activator 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) enhanced αKlotho expression, an effect reduced in the presence of AMPK inhibitor compound C or siRNA targeting AMPK catalytic α-subunits (α1 and α2). Similarly, AMPK activators metformin and phenformin upregulated αKlotho transcripts. Taken together, our results suggest that AMPK is a powerful inducer of αKlotho and could thereby contribute to the development of future therapeutic interventions.
Collapse
Affiliation(s)
- Julia Vogt
- Department of PhysiologyUniversity of HohenheimStuttgartGermany
| | - Lisa Wolf
- Department of PhysiologyUniversity of HohenheimStuttgartGermany
| | - Ludwig E. Hoelzle
- Institute of Animal Science, University of HohenheimStuttgartGermany
| | - Martina Feger
- Department of PhysiologyUniversity of HohenheimStuttgartGermany
| | - Michael Föller
- Department of PhysiologyUniversity of HohenheimStuttgartGermany
| |
Collapse
|
9
|
Daneshgar N, Lan R, Regnier M, Mackintosh SG, Venkatasubramanian R, Dai DF. Klotho enhances diastolic function in aged hearts through Sirt1-mediated pathways. GeroScience 2024; 46:4729-4741. [PMID: 38976132 PMCID: PMC11336011 DOI: 10.1007/s11357-024-01209-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/16/2024] [Indexed: 07/09/2024] Open
Abstract
Aging leads to a progressive decline in cardiac function, increasing the risk of heart failure with preserved ejection fraction (HFpEF). This study elucidates the impact of α-Klotho, an anti-aging hormone, on cardiac diastolic dysfunction and explore its downstream mechanisms. Aged wild-type and heterozygous Klotho-deficient mice received daily injection of soluble α-Klotho (sKL) for 10 weeks, followed by a comprehensive assessment of heart function by echocardiography, intracardiac pressure catheter, exercise tolerance, and cardiac pathology. Our findings show that klotho deficiency accentuated cardiac hypertrophy, diastolic dysfunction, and exercise intolerance, while sKL treatment ameliorates these abnormalities and improves cardiac capillary densities. Downstream of klotho, we focused on the Sirtuin1 (Sirt1) signaling pathway to elucidate the potential underlying mechanism by which Klotho improves diastolic function. We found that decreased Klotho levels were linked with Sirt1 deficiency, whereas sKL treatment restored Sirt1 expression in aged hearts and mitigated the DNA damage response pathway activation. Through tandem mass tag proteomics and unbiased acetylomics analysis, we identified 220 significantly hyperacetylated lysine sites in critical cardiac proteins of aged hearts. We found that sKL supplementation attenuated age-dependent DNA damage and cardiac diastolic dysfunction. In contrast, Klotho deficiency significantly increased hyperacetylation of several crucial cardiac contractile proteins, potentially impairing ventricular relaxation and diastolic function, thus predisposing to HFpEF. These results suggest the potential benefit of sKL supplementation as a promising therapeutic strategy for combating HFpEF in aging.
Collapse
Affiliation(s)
- Nastaran Daneshgar
- Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Renny Lan
- UAMS, Arkansas Children's Nutrition Center, Little Rock, AR, USA
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Samuel G Mackintosh
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | - Dao-Fu Dai
- Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
10
|
Liu S, Zhu Z, Yu K, Zhang W, Pu J, Lv Y, Tang Z, Liu F, Sun Y. U-shaped association between serum Klotho and all-cause mortality in US cardiovascular patients: a prospective cohort study. Front Endocrinol (Lausanne) 2024; 15:1405665. [PMID: 38948524 PMCID: PMC11212453 DOI: 10.3389/fendo.2024.1405665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 05/31/2024] [Indexed: 07/02/2024] Open
Abstract
Background Increased levels of serum Klotho have been associated with a reduced risk of several cardiovascular diseases (CVD). However, limited studies exist on the association between serum Klotho and mortality in patients with CVD. Methods We collected data from CVD patients in the National Health and Nutrition Examination Survey (NHANES) spanning 2007 to 2016. We linked NHANES data with the National Death Index to determine the survival status of participants. Univariate and multivariable Cox regression models were used to investigate the relationship between serum Klotho levels and mortality in CVD patients. The relationship between serum Klotho quartiles and mortality in CVD patients was visualized using Kaplan-Meier (KM) curves and restricted cubic spine. Finally, subgroup analyses were used to examine the association between serum Klotho and all-cause mortality in different populations. Results 1905 patients with CVD were finally enrolled in our study with a mean follow-up of 7.1 years. The average age of the participants was 63.4 years, with 58.40% being male. KM showed that lower Klotho levels were associated with lower survival rates. After adjusting for potential confounders, patients with higher serum Klotho levels had lower all-cause mortality (Q1: 1.00, Q2: 0.58 (0.42-0.80), Q3: 0.69 (0.47-1.01), and Q4:0.64 (0.45-0.92). However, the relationship between serum Klotho levels and cardiovascular mortality was not statistically significant. Dose-response analysis shows a U-shaped relationship between serum Klotho levels and all-cause mortality in patients with CVD (P nonlinear=0.002). Subgroup analysis indicated that participants with a history of hypertension had a higher risk of all-cause mortality in serum Klotho Q4 compared to Q1 (P trend <0.05). Conclusion The relationship between serum Klotho levels and all-cause mortality in CVD patients exhibits a U-shaped association. The underlying mechanisms of this association need further investigation.
Collapse
Affiliation(s)
- Shasha Liu
- Department of Cardiology, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Zhanfang Zhu
- Department of Internal Medicine, Xi’an Jiaotong University Hospital, Xi’an, China
| | - Kai Yu
- Department of Cardiology, Pucheng County Hospital, Weinan, China
| | - Wei Zhang
- Department of Cardiology, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Jie Pu
- Department of Cardiology, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Ying Lv
- Department of Cardiology, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Zhiguo Tang
- Department of Cardiology, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Fuqiang Liu
- Department of Cardiology, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Yongqiang Sun
- Department of Cardiology, Shaanxi Provincial People’s Hospital, Xi’an, China
- Department of Interventional Radiography, Shanxi Provincial People’s Hospital, Xi’an, China
| |
Collapse
|
11
|
Wen Z, Liu X, Zhang T. L-shaped association of systemic immune-inflammation index (SII) with serum soluble α-Klotho in the prospective cohort study from the NHANES database. Sci Rep 2024; 14:13189. [PMID: 38851827 PMCID: PMC11162490 DOI: 10.1038/s41598-024-64050-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 06/04/2024] [Indexed: 06/10/2024] Open
Abstract
The systemic immune-inflammation index (SII), an integrated and ground-breaking inflammatory measure, has been widely used in various fields. We aimed to assess the association between the systemic immune-inflammation index (SII) and α-Klotho (a new anti-aging biomarker). In this cross-sectional investigation, people with complete information on SII and α-Klotho from the National Health and Nutrition Examination Survey (NHANES) between 2007 and 2016 were the study's subject population. SII was calculated by platelet count × neutrophil count/lymphocyte count. The association between SII and α-Klotho was investigated using multivariable linear regression and a generalized additive model. In order to explore the non-linear connection, we employed smoothed curve fitting. Subgroup analysis were also performed. A total of 13,701 participants with an average age of 57.73 ± 10.86 years were enrolled, of whom 51.53% were female. After fully adjustment, SII was negatively associated with serum soluble α-Klotho [β(95% CI) = - 0.07 (- 0.08, - 0.05)]. Furthermore, we found L-shaped association between SII and klotho protein level, with the inflection point at 255 pg/ml. Subgroup analysis and interaction test revealed that there was no discernible dependence on gender, age, race, smoking, alcohol, diabetes and hypertension (all p for interaction > 0.05). SII level was negatively associated with serum klotho protein concentration in American adults. To verify our findings, more large-scale prospective investigations are still required.
Collapse
Affiliation(s)
- Zujun Wen
- Department of Pharmacy, Heyuan People's Hospital, Heyuan, China
| | - Xiang Liu
- The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Tingting Zhang
- Department of Pharmacy, Heyuan People's Hospital, Heyuan, China.
| |
Collapse
|
12
|
Luo R, Gourriérec PL, Antigny F, Bedouet K, Domenichini S, Gomez AM, Benitah JP, Sabourin J. STIM2 variants regulate Orai1/TRPC1/TRPC4-mediated store-operated Ca 2+ entry and mitochondrial Ca 2+ homeostasis in cardiomyocytes. Cell Calcium 2024; 119:102871. [PMID: 38537434 DOI: 10.1016/j.ceca.2024.102871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 02/29/2024] [Accepted: 03/07/2024] [Indexed: 04/05/2024]
Abstract
The stromal interaction molecules (STIMs) are the sarcoplasmic reticulum (SR) Ca2+ sensors that trigger store-operated Ca2+ entry (SOCE) in a variety of cell types. While STIM1 isoform has been the focus of the research in cardiac pathophysiology, the function of the homolog STIM2 remains unknown. Using Ca2+ imaging and patch-clamp techniques, we showed that knockdown (KD) of STIM2 by siRNAs increased SOCE and the ISOC current in neonatal rat ventricular cardiomyocytes (NRVMs). Within this cardiomyocyte model, we identified the transcript expression of Stim2.1 and Stim2.2 splice variants, with predominance for Stim2.2. Using conventional and super-resolution confocal microscopy (STED), we found that exogenous STIM2.1 and STIM2.2 formed pre-clusters with a reticular organization at rest. Following SR Ca2+ store depletion, some STIM2.1 and STIM2.2 clusters were translocated to SR-plasma membrane (PM) junctions and co-localized with Orai1. The overexpression strategy revealed that STIM2.1 suppressed Orai1-mediated SOCE and the ISOC current while STIM2.2 enhanced SOCE. STIM2.2-enhanced SOCE was also dependent on TRPC1 and TRPC4. Even if STIM2 KD or splice variants overexpression did not affect cytosolic Ca2+ cycling, we observed, using Rhod-2/AM Ca2+ imaging, that Orai1 inhibition or STIM2.1 overexpression abolished the mitochondrial Ca2+ (mCa2+) uptake, as opposed to STIM2 KD. We also found that STIM2 was present in the mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs) by interacting with the inositol trisphosphate receptors (IP3Rs), voltage-dependent anion channel (VDAC), mitochondrial Ca2+ uniporter (MCU), and mitofusin-2 (MNF2). Our results suggested that, in NRVMs, STIM2.1 constitutes the predominant functional variant that negatively regulates Orai1-generated SOCE. It participates in the control of mCa2+ uptake capacity possibly via the STIM2-IP3Rs-VDAC-MCU and MNF2 complex.
Collapse
Affiliation(s)
- Rui Luo
- Inserm, UMR-S 1180, Signalisation et Physiopathologie Cardiovasculaire, Université Paris-Saclay, 91400 Orsay, France
| | - Pauline Le Gourriérec
- Inserm, UMR-S 1180, Signalisation et Physiopathologie Cardiovasculaire, Université Paris-Saclay, 91400 Orsay, France
| | - Fabrice Antigny
- Inserm, UMR-S 999 « Hypertension pulmonaire: Physiopathologie et Innovation Thérapeutique », Hôpital Marie Lannelongue, Le Plessis-Robinson, France; Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
| | - Kaveen Bedouet
- Inserm, UMR-S 1180, Signalisation et Physiopathologie Cardiovasculaire, Université Paris-Saclay, 91400 Orsay, France
| | - Séverine Domenichini
- Université Paris-Saclay, Inserm, CNRS, Ingénierie et Plateformes au Service de l'Innovation Thérapeutique-Plateforme MIPSIT, Orsay, France
| | - Ana-Maria Gomez
- Inserm, UMR-S 1180, Signalisation et Physiopathologie Cardiovasculaire, Université Paris-Saclay, 91400 Orsay, France
| | - Jean-Pierre Benitah
- Inserm, UMR-S 1180, Signalisation et Physiopathologie Cardiovasculaire, Université Paris-Saclay, 91400 Orsay, France
| | - Jessica Sabourin
- Inserm, UMR-S 1180, Signalisation et Physiopathologie Cardiovasculaire, Université Paris-Saclay, 91400 Orsay, France.
| |
Collapse
|
13
|
Williams MJ, Halabi CM, Patel HM, Joseph Z, McCommis K, Weinheimer C, Kovacs A, Lima F, Finck B, Malluche H, Hruska KA. In chronic kidney disease altered cardiac metabolism precedes cardiac hypertrophy. Am J Physiol Renal Physiol 2024; 326:F751-F767. [PMID: 38385175 PMCID: PMC11386984 DOI: 10.1152/ajprenal.00416.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/15/2024] [Accepted: 02/15/2024] [Indexed: 02/23/2024] Open
Abstract
Conduit arterial disease in chronic kidney disease (CKD) is an important cause of cardiac complications. Cardiac function in CKD has not been studied in the absence of arterial disease. In an Alport syndrome model bred not to have conduit arterial disease, mice at 225 days of life (dol) had CKD equivalent to humans with CKD stage 4-5. Parathyroid hormone (PTH) and FGF23 levels were one log order elevated, circulating sclerostin was elevated, and renal activin A was strongly induced. Aortic Ca levels were not increased, and vascular smooth muscle cell (VSMC) transdifferentiation was absent. The CKD mice were not hypertensive, and cardiac hypertrophy was absent. Freshly excised cardiac tissue respirometry (Oroboros) showed that ADP-stimulated O2 flux was diminished from 52 to 22 pmol/mg (P = 0.022). RNA-Seq of cardiac tissue from CKD mice revealed significantly decreased levels of cardiac mitochondrial oxidative phosphorylation genes. To examine the effect of activin A signaling, some Alport mice were treated with a monoclonal Ab to activin A or an isotype-matched IgG beginning at 75 days of life until euthanasia. Treatment with the activin A antibody (Ab) did not affect cardiac oxidative phosphorylation. However, the activin A antibody was active in the skeleton, disrupting the effect of CKD to stimulate osteoclast number, eroded surfaces, and the stimulation of osteoclast-driven remodeling. The data reported here show that cardiac mitochondrial respiration is impaired in CKD in the absence of conduit arterial disease. This is the first report of the direct effect of CKD on cardiac respiration.NEW & NOTEWORTHY Heart disease is an important morbidity of chronic kidney disease (CKD). Hypertension, vascular stiffness, and vascular calcification all contribute to cardiac pathophysiology. However, cardiac function in CKD devoid of vascular disease has not been studied. Here, in an animal model of human CKD without conduit arterial disease, we analyze cardiac respiration and discover that CKD directly impairs cardiac mitochondrial function by decreasing oxidative phosphorylation. Protection of cardiac oxidative phosphorylation may be a therapeutic target in CKD.
Collapse
Affiliation(s)
- Matthew J Williams
- Renal Division, Department of Pediatrics, Washington University in St. Louis, St. Louis, Missouri, United States
| | - Carmen M Halabi
- Renal Division, Department of Pediatrics, Washington University in St. Louis, St. Louis, Missouri, United States
| | - Hiral M Patel
- Renal Division, Department of Pediatrics, Washington University in St. Louis, St. Louis, Missouri, United States
| | - Zachary Joseph
- Renal Division, Department of Pediatrics, Washington University in St. Louis, St. Louis, Missouri, United States
| | - Kyle McCommis
- Geriatrics and Nutritional Science Division, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, United States
| | - Carla Weinheimer
- Cardiology Division, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, United States
| | - Attila Kovacs
- Cardiology Division, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, United States
| | - Florence Lima
- Renal Division, Department of Medicine, University of Kentucky, Lexington, Kentucky, United States
| | - Brian Finck
- Geriatrics and Nutritional Science Division, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, United States
| | - Hartmut Malluche
- Renal Division, Department of Medicine, University of Kentucky, Lexington, Kentucky, United States
| | - Keith A Hruska
- Renal Division, Department of Pediatrics, Washington University in St. Louis, St. Louis, Missouri, United States
- Renal Division, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, United States
- Department of Cell Biology, Washington University in St. Louis, St. Louis, Missouri, United States
| |
Collapse
|
14
|
Neumann S, Siegert S. Investigation of α-Klotho Concentrations in Serum of Cats Affected by Hypertrophic Cardiomyopathy. Vet Sci 2024; 11:184. [PMID: 38787156 PMCID: PMC11125955 DOI: 10.3390/vetsci11050184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/11/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024] Open
Abstract
Being involved in various physiological and pathophysiological mechanisms (ageing, kidney damage, cardiovascular diseases, etc.), Klotho is a parameter of increasing interest. Studies in veterinary medicine are still rare, but it is exciting to find out whether the findings obtained can be transferred to animals. The aim of this study was therefore to investigate Klotho in cats. This study addressed α-Klotho concentrations in the serum of two groups of cats: one diseased group affected by hypertrophic cardiomyopathy (n = 27) and one healthy control group (n = 35). α-Klotho concentrations in serum were measured using an ELISA. The results were evaluated in the context of several echocardiographic measurement parameters in the diseased group. No significant difference between α-Klotho concentrations in the two groups was found. A slight negative correlation was found between α-Klotho concentrations and the relation of left atrium/aorta (La/Ao) in the diseased group. Gaining initial information on α-Klotho in cats, it was not possible to draw definite conclusions concerning cardiomyopathies in this species. The assessment of Klotho should be considered in terms of its broad implications in disease processes, but it is also recommended to focus on specific disease features. Both approaches might be promising as possible applications of Klotho in veterinary medicine.
Collapse
Affiliation(s)
- Stephan Neumann
- Institute of Veterinary Medicine, Georg-August-University of Goettingen, Burckhardtweg 2, 37077 Goettingen, Germany;
| | | |
Collapse
|
15
|
Yuguang L, Chang Y, Chen N, Zhao Y, Zhang X, Song W, Lu J, Liu X. Serum klotho as a novel biomarker for metabolic syndrome: findings from a large national cohort. Front Endocrinol (Lausanne) 2024; 15:1295927. [PMID: 38501099 PMCID: PMC10944879 DOI: 10.3389/fendo.2024.1295927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 02/23/2024] [Indexed: 03/20/2024] Open
Abstract
Background Metabolic syndrome is a cluster of metabolic abnormalities that significantly increase the risk of cardiovascular disease and mortality. The identification of novel biomarkers associated with mortality in patients with metabolic syndrome could facilitate early risk stratification and targeted interventions. Methods We conducted a large prospective cohort study using data from five cycles (2009-2016) of the National Health and Nutrition Examination Survey (NHANES) database, including a total of 40,439 participants. Logistic regression analysis was used to assess the association between serum klotho protein levels and metabolic syndrome, while Cox regression analysis was employed to examine the correlation between serum klotho levels and all-cause mortality. Mortality data were updated until December 31, 2019. Results After adjusting for demographic and socioeconomic confounders, the logistic regression model demonstrated that higher serum klotho levels were significantly associated with a decreased prevalence of metabolic syndrome (OR [95% CI] Highest vs. lowest quartile: 0.84 [0.70-0.99], P=0.038). In the Cox regression model, elevated klotho levels were found to significantly reduce the risk of all-cause mortality among individuals with metabolic syndrome (HR [95% CI] Highest vs. lowest quartile: 0.68 [0.51-0.90], P=0.006). Conclusion Serum klotho levels were found to be inversely associated with the prevalence of metabolic syndrome, independent of potential confounding factors such as demographics, socioeconomic status, and lifestyle factors. Furthermore, higher klotho levels strongly indicated a lower risk of all-cause mortality in individuals with metabolic syndrome.
Collapse
Affiliation(s)
- Li Yuguang
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Yu Chang
- Department of Gastroenterology,The First Hospital of Jilin University, Changchun, China
| | - Naifei Chen
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Yixin Zhao
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Xinwei Zhang
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Wei Song
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Jin Lu
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Xiangliang Liu
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
16
|
Turner ME, Beck L, Hill Gallant KM, Chen Y, Moe OW, Kuro-o M, Moe S, Aikawa E. Phosphate in Cardiovascular Disease: From New Insights Into Molecular Mechanisms to Clinical Implications. Arterioscler Thromb Vasc Biol 2024; 44:584-602. [PMID: 38205639 PMCID: PMC10922848 DOI: 10.1161/atvbaha.123.319198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Hyperphosphatemia is a common feature in patients with impaired kidney function and is associated with increased risk of cardiovascular disease. This phenomenon extends to the general population, whereby elevations of serum phosphate within the normal range increase risk; however, the mechanism by which this occurs is multifaceted, and many aspects are poorly understood. Less than 1% of total body phosphate is found in the circulation and extracellular space, and its regulation involves multiple organ cross talk and hormones to coordinate absorption from the small intestine and excretion by the kidneys. For phosphate to be regulated, it must be sensed. While mostly enigmatic, various phosphate sensors have been elucidated in recent years. Phosphate in the circulation can be buffered, either through regulated exchange between extracellular and cellular spaces or through chelation by circulating proteins (ie, fetuin-A) to form calciprotein particles, which in themselves serve a function for bulk mineral transport and signaling. Either through direct signaling or through mediators like hormones, calciprotein particles, or calcifying extracellular vesicles, phosphate can induce various cardiovascular disease pathologies: most notably, ectopic cardiovascular calcification but also left ventricular hypertrophy, as well as bone and kidney diseases, which then propagate phosphate dysregulation further. Therapies targeting phosphate have mostly focused on intestinal binding, of which appreciation and understanding of paracellular transport has greatly advanced the field. However, pharmacotherapies that target cardiovascular consequences of phosphate directly, such as vascular calcification, are still an area of great unmet medical need.
Collapse
Affiliation(s)
- Mandy E. Turner
- Division of Cardiovascular Medicine, Department of Medicine, Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Laurent Beck
- Nantes Université, CNRS, Inserm, l’institut du thorax, F-44000 Nantes, France
| | - Kathleen M Hill Gallant
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, Minnesota, USA
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yabing Chen
- Department of Pathology, University of Alabama at Birmingham
- Research Department, Veterans Affairs Birmingham Medical Center, Birmingham, AL, USA
| | - Orson W Moe
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Makoto Kuro-o
- Division of Anti-aging Medicine, Center for Molecular Medicine, Jichi Medical University 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Sharon Moe
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Elena Aikawa
- Division of Cardiovascular Medicine, Department of Medicine, Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Division of Cardiovascular Medicine, Department of Medicine, Center for Excellence in Vascular Biology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
17
|
Liu L, Jia J, Cheng X, Gao S, Yan T. The optimal cut-off values of Klotho for predicting all-cause and cardiovascular mortality among chronic kidney disease: results from NHANES. Sci Rep 2024; 14:4647. [PMID: 38409304 PMCID: PMC10897465 DOI: 10.1038/s41598-024-52701-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 01/22/2024] [Indexed: 02/28/2024] Open
Abstract
To explore the optimal cut-off values of Klotho for predicting all-cause and cardiovascular mortality among chronic kidney disease (CKD) patients. Klotho was measured in 40-79-year-old individuals in the NHANES 2007-2016. A total of 2418 patients with stage 1-4 CKD were included. The optimal cut-off values of Klotho were utilized using receiver operator characteristic (ROC) curves and be verified on the effects of all-cause and cardiovascular mortality. Restricted cubic splines were used to examine the relationship between Klotho and all-cause and cardiovascular mortality with the optimal cutpoints as the reference. After a mean follow-up period of 87.9 months, 535 deaths occurred and 188 died of cardiovascular disease. Cubic splines showed that the risk of all-cause and cardiovascular mortality increased gradually for Klotho < 700 pg/ml. ROC curves revealed that the optimal cut-off values of Klotho for all-cause and cardiovascular mortality are 548.8 pg/ml and 660.9 pg/ml, respectively. Compared to patients with higher levels of Klotho, HRs (95% CIs) for all-cause and cardiovascular mortality were 1.52 (1.23, 1.87) and 1.58 (1.13, 2.22) among patients with lower levels of Klotho, respectively, in the multivariate model (P < .0001 and P = 0.008). Our findings revealed the optimal cut-off values of Klotho for all-cause and cardiovascular mortality in CKD.
Collapse
Affiliation(s)
- Lili Liu
- Department of Nephrology, General Hospital of Tianjin Medical University, No. 154, Anshan Road, Heping District, Tianjin, 300052, China
| | - Junya Jia
- Department of Nephrology, General Hospital of Tianjin Medical University, No. 154, Anshan Road, Heping District, Tianjin, 300052, China
| | - Xi Cheng
- Department of Nephrology, General Hospital of Tianjin Medical University, No. 154, Anshan Road, Heping District, Tianjin, 300052, China
| | - Shan Gao
- Department of Nephrology, General Hospital of Tianjin Medical University, No. 154, Anshan Road, Heping District, Tianjin, 300052, China
| | - Tiekun Yan
- Department of Nephrology, General Hospital of Tianjin Medical University, No. 154, Anshan Road, Heping District, Tianjin, 300052, China.
| |
Collapse
|
18
|
Martín-Vírgala J, Martín-Carro B, Fernández-Villabrille S, Ruiz-Torres MP, Gómez-Alonso C, Rodríguez-García M, Fernández-Martín JL, Alonso-Montes C, Panizo S, Cannata-Andía JB, Naves-Díaz M, Carrillo-López N. Soluble Klotho, a Potential Biomarker of Chronic Kidney Disease-Mineral Bone Disorders Involved in Healthy Ageing: Lights and Shadows. Int J Mol Sci 2024; 25:1843. [PMID: 38339121 PMCID: PMC10855561 DOI: 10.3390/ijms25031843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/23/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
Shortly after the discovery of Klotho, interest grew in its potential role in chronic kidney disease (CKD). There are three isoforms of the Klotho protein: αKlotho, βKlotho and γKlotho. This review will focus on αKlotho due to its relevance as a biomarker in CKD. αKlotho is synthesized mainly in the kidneys, but it can be released into the bloodstream and urine as soluble Klotho (sKlotho), which undertakes systemic actions, independently or in combination with FGF23. It is usually accepted that sKlotho levels are reduced early in CKD and that lower levels of sKlotho might be associated with the main chronic kidney disease-mineral bone disorders (CKD-MBDs): cardiovascular and bone disease. However, as results are inconsistent, the applicability of sKlotho as a CKD-MBD biomarker is still a matter of controversy. Much of the inconsistency can be explained due to low sample numbers, the low quality of clinical studies, the lack of standardized assays to assess sKlotho and a lack of consensus on sample processing, especially in urine. In recent decades, because of our longer life expectancies, the prevalence of accelerated-ageing diseases, such as CKD, has increased. Exercise, social interaction and caloric restriction are considered key factors for healthy ageing. While exercise and social interaction seem to be related to higher serum sKlotho levels, it is not clear whether serum sKlotho might be influenced by caloric restriction. This review focuses on the possible role of sKlotho as a biomarker in CKD-MBD, highlighting the difference between solid knowledge and areas requiring further research, including the role of sKlotho in healthy ageing.
Collapse
Affiliation(s)
- Julia Martín-Vírgala
- Metabolismo Óseo, Vascular y Enfermedades Inflamatorias Crónicas, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS2040, Kidney Disease), 28040 Madrid, Spain;
| | - Beatriz Martín-Carro
- Metabolismo Óseo, Vascular y Enfermedades Inflamatorias Crónicas, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS2040, Kidney Disease), 28040 Madrid, Spain;
| | - Sara Fernández-Villabrille
- Metabolismo Óseo, Vascular y Enfermedades Inflamatorias Crónicas, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS2040, Kidney Disease), 28040 Madrid, Spain;
| | - María Piedad Ruiz-Torres
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS2040, Kidney Disease), 28040 Madrid, Spain;
- Área 5—Fisiología y Fisiopatología Renal y Vascular del Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Physiology Unit, Department of Systems Biology, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, 28871 Alcalá de Henares, Spain
| | - Carlos Gómez-Alonso
- Metabolismo Óseo, Vascular y Enfermedades Inflamatorias Crónicas, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | - Minerva Rodríguez-García
- Metabolismo Óseo, Vascular y Enfermedades Inflamatorias Crónicas, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS2040, Kidney Disease), 28040 Madrid, Spain;
- Nephrology Unit, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | - José Luis Fernández-Martín
- Metabolismo Óseo, Vascular y Enfermedades Inflamatorias Crónicas, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS2040, Kidney Disease), 28040 Madrid, Spain;
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | - Cristina Alonso-Montes
- Metabolismo Óseo, Vascular y Enfermedades Inflamatorias Crónicas, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS2040, Kidney Disease), 28040 Madrid, Spain;
| | - Sara Panizo
- Metabolismo Óseo, Vascular y Enfermedades Inflamatorias Crónicas, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS2040, Kidney Disease), 28040 Madrid, Spain;
| | - Jorge B. Cannata-Andía
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS2040, Kidney Disease), 28040 Madrid, Spain;
- Department of Medicine, Universidad de Oviedo, 33011 Oviedo, Spain
| | - Manuel Naves-Díaz
- Metabolismo Óseo, Vascular y Enfermedades Inflamatorias Crónicas, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS2040, Kidney Disease), 28040 Madrid, Spain;
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | - Natalia Carrillo-López
- Metabolismo Óseo, Vascular y Enfermedades Inflamatorias Crónicas, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS2040, Kidney Disease), 28040 Madrid, Spain;
| |
Collapse
|
19
|
Rausch S, Hammerschmidt K, Feger M, Vítek L, Föller M. Bilirubin Down-Regulates Oxidative Stress and Fibroblast Growth Factor 23 Expression in UMR106 Osteoblast-Like Cells. Exp Clin Endocrinol Diabetes 2024; 132:91-97. [PMID: 38373702 DOI: 10.1055/a-2237-8863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
INTRODUCTION Fibroblast growth factor 23 (FGF23) is a major regulator of phosphate and vitamin D metabolism in the kidney, and its higher levels in plasma are associated with poorer outcomes in kidney and cardiovascular diseases. It is produced by bone cells upon enhanced oxidative stress and inhibits renal phosphate reabsorption and calcitriol (active form of vitamin D) production. Bilirubin, the final product of the heme catabolic pathway in the vascular bed, has versatile biological functions, including antioxidant and anti-inflammatory effects. This study explored whether bilirubin alters FGF23 production. METHODS Experiments were performed using UMR106 osteoblast-like cells. Fgf23 transcript levels were determined by quantitative real-time polymerase chain reaction, C-terminal and intact FGF23 protein levels were determined by enzyme-linked immunosorbent assay, and cellular oxidative stress was assessed by CellROX assay. RESULTS Unconjugated bilirubin down-regulated Fgf23 gene transcription and FGF23 protein abundance; these effects were paralleled by lower cellular oxidative stress levels. Also, conjugated bilirubin reduced Fgf23 mRNA abundance. CONCLUSION Bilirubin down-regulates FGF23 production in UMR106 cells, an effect likely to be dependent on the reduction of cellular oxidative stress.
Collapse
Affiliation(s)
- Steffen Rausch
- University of Hohenheim, Department of Physiology, Stuttgart, Germany
| | | | - Martina Feger
- University of Hohenheim, Department of Physiology, Stuttgart, Germany
| | - Libor Vítek
- Fourth Department of Internal Medicine and Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Michael Föller
- University of Hohenheim, Department of Physiology, Stuttgart, Germany
| |
Collapse
|
20
|
Wolf L, Vogt J, Alber J, Franjic D, Feger M, Föller M. PKC regulates αKlotho gene expression in MDCK and NRK-52E cells. Pflugers Arch 2024; 476:75-86. [PMID: 37773536 PMCID: PMC10758369 DOI: 10.1007/s00424-023-02863-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 09/20/2023] [Accepted: 09/20/2023] [Indexed: 10/01/2023]
Abstract
Particularly expressed in the kidney, αKlotho is a transmembrane protein that acts together with bone hormone fibroblast growth factor 23 (FGF23) to regulate renal phosphate and vitamin D homeostasis. Soluble Klotho (sKL) is released from the transmembrane form and controls various cellular functions as a paracrine and endocrine factor. αKlotho deficiency accelerates aging, whereas its overexpression favors longevity. Higher αKlotho abundance confers a better prognosis in cardiovascular and renal disease owing to anti-inflammatory, antifibrotic, or antioxidant effects and tumor suppression. Serine/threonine protein kinase C (PKC) is ubiquitously expressed, affects several cellular responses, and is also implicated in heart or kidney disease as well as cancer. We explored whether PKC is a regulator of αKlotho. Experiments were performed in renal MDCK or NRK-52E cells and PKC isoform and αKlotho expression determined by qRT-PCR and Western Blotting. In both cell lines, PKC activation with phorbol ester phorbol-12-myristate-13-acetate (PMA) downregulated, while PKC inhibitor staurosporine enhanced αKlotho mRNA abundance. Further experiments with PKC inhibitor Gö6976 and RNA interference suggested that PKCγ is the major isoform for the regulation of αKlotho gene expression in the two cell lines. In conclusion, PKC is a negative regulator of αKlotho gene expression, an effect which may be relevant for the unfavorable effect of PKC on heart or kidney disease and tumorigenesis.
Collapse
Affiliation(s)
- Lisa Wolf
- Department of Physiology, University of Hohenheim, Garbenstraße 30, 70599, Stuttgart, Germany
| | - Julia Vogt
- Department of Physiology, University of Hohenheim, Garbenstraße 30, 70599, Stuttgart, Germany
| | - Jana Alber
- Department of Physiology, University of Hohenheim, Garbenstraße 30, 70599, Stuttgart, Germany
| | - Domenic Franjic
- Core Facility Hohenheim, Data and Statistical Consulting, University of Hohenheim, 70599, Stuttgart, Germany
| | - Martina Feger
- Department of Physiology, University of Hohenheim, Garbenstraße 30, 70599, Stuttgart, Germany
| | - Michael Föller
- Department of Physiology, University of Hohenheim, Garbenstraße 30, 70599, Stuttgart, Germany.
| |
Collapse
|
21
|
Edmonston D, Grabner A, Wolf M. FGF23 and klotho at the intersection of kidney and cardiovascular disease. Nat Rev Cardiol 2024; 21:11-24. [PMID: 37443358 DOI: 10.1038/s41569-023-00903-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/13/2023] [Indexed: 07/15/2023]
Abstract
Cardiovascular disease is the leading cause of death in patients with chronic kidney disease (CKD). As CKD progresses, CKD-specific risk factors, such as disordered mineral homeostasis, amplify traditional cardiovascular risk factors. Fibroblast growth factor 23 (FGF23) regulates mineral homeostasis by activating complexes of FGF receptors and transmembrane klotho co-receptors. A soluble form of klotho also acts as a 'portable' FGF23 co-receptor in tissues that do not express klotho. In progressive CKD, rising circulating FGF23 levels in combination with decreasing kidney expression of klotho results in klotho-independent effects of FGF23 on the heart that promote left ventricular hypertrophy, heart failure, atrial fibrillation and death. Emerging data suggest that soluble klotho might mitigate some of these effects via several candidate mechanisms. More research is needed to investigate FGF23 excess and klotho deficiency in specific cardiovascular complications of CKD, but the pathophysiological primacy of FGF23 excess versus klotho deficiency might never be precisely resolved, given the entangled feedback loops that they share. Therefore, randomized trials should prioritize clinical practicality over scientific certainty by targeting disordered mineral homeostasis holistically in an effort to improve cardiovascular outcomes in patients with CKD.
Collapse
Affiliation(s)
- Daniel Edmonston
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC, USA
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC, USA
| | - Alexander Grabner
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Myles Wolf
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC, USA.
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
22
|
Sadowska A, Poniedziałek-Czajkowska E, Mierzyński R. The Role of the FGF19 Family in the Pathogenesis of Gestational Diabetes: A Narrative Review. Int J Mol Sci 2023; 24:17298. [PMID: 38139126 PMCID: PMC10743406 DOI: 10.3390/ijms242417298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/02/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Gestational diabetes mellitus (GDM) is one of the most common pregnancy complications. Understanding the pathogenesis and appropriate diagnosis of GDM enables the implementation of early interventions during pregnancy that reduce the risk of maternal and fetal complications. At the same time, it provides opportunities to prevent diabetes, metabolic syndrome, and cardiovascular diseases in women with GDM and their offspring in the future. Fibroblast growth factors (FGFs) represent a heterogeneous family of signaling proteins which play a vital role in cell proliferation and differentiation, repair of damaged tissues, wound healing, angiogenesis, and mitogenesis and also affect the regulation of carbohydrate, lipid, and hormone metabolism. Abnormalities in the signaling function of FGFs may lead to numerous pathological conditions, including metabolic diseases. The FGF19 subfamily, also known as atypical FGFs, which includes FGF19, FGF21, and FGF23, is essential in regulating metabolic homeostasis and acts as a hormone while entering the systemic circulation. Many studies have pointed to the involvement of the FGF19 subfamily in the pathogenesis of metabolic diseases, including GDM, although the results are inconclusive. FGF19 and FGF21 are thought to be associated with insulin resistance, an essential element in the pathogenesis of GDM. FGF21 may influence placental metabolism and thus contribute to fetal growth and metabolism regulation. The observed relationship between FGF21 and increased birth weight could suggest a potential role for FGF21 in predicting future metabolic abnormalities in children born to women with GDM. In this group of patients, different mechanisms may contribute to an increased risk of cardiovascular diseases in women in later life, and FGF23 appears to be their promising early predictor. This study aims to present a comprehensive review of the FGF19 subfamily, emphasizing its role in GDM and predicting its long-term metabolic consequences for mothers and their offspring.
Collapse
Affiliation(s)
| | - Elżbieta Poniedziałek-Czajkowska
- Chair and Department of Obstetrics and Perinatology, Medical University of Lublin, Jaczewskiego 8, 20-090 Lublin, Poland; (A.S.); (R.M.)
| | | |
Collapse
|
23
|
Olejnik A, Radajewska A, Krzywonos-Zawadzka A, Bil-Lula I. Klotho inhibits IGF1R/PI3K/AKT signalling pathway and protects the heart from oxidative stress during ischemia/reperfusion injury. Sci Rep 2023; 13:20312. [PMID: 37985893 PMCID: PMC10662387 DOI: 10.1038/s41598-023-47686-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/16/2023] [Indexed: 11/22/2023] Open
Abstract
Ischemia/reperfusion injury (IRI) of the heart involves the activation of oxidative and proapoptotic pathways. Simultaneously Klotho protein presents anti-aging, antiapoptotic and antioxidative properties. Therefore, this study aimed to evaluate the effect of Klotho protein on oxidative stress in hearts subjected to IRI. Isolated rat hearts perfused with the Langendorff method were subjected to ischemia, followed by reperfusion, in the presence or absence of recombinant rat Klotho protein. The factors involved in the activation of insulin-like growth factor receptor (IGF1R)/phosphoinositide-3-kinase (PI3K)/protein kinase B (AKT) signalling pathway were evaluated. IRI caused activation of the IGF1R (p = 0.0122)/PI3K (p = 0.0022) signalling, as compared to the aerobic control group. Infusion supply of Klotho protein during IRI significantly reduced the level of phospho-IGF1R (p = 0.0436), PI3K (p = 0.0218) and phospho-AKT (p = 0.0020). Transcriptional activity of forkhead box protein O3 (FOXO3) was reduced (p = 0.0207) in hearts subjected to IRI, compared to aerobic control. Administration of Klotho decreased phosphorylation of FOXO3 (p = 0.0355), and enhanced activity of glutathione peroxidase (p = 0.0452) and superoxide dismutase (p = 0.0060) in IRI + Klotho group. The levels of reactive oxygen/nitrogen species (ROS/RNS) (p = 0.0480) and hydrogen peroxide (H2O2) (p = 0.0460), and heart injury (p = 0.0005) were significantly increased in hearts from the IRI group in comparison to the aerobic group. Klotho reduced NADPH oxidase 2 (NOX2) (p = 0.0390), ROS/RNS (p = 0.0435) and H2O2 (p = 0.0392) levels, and heart damage (p = 0.0286) in the hearts subjected to IRI. In conclusion, Klotho contributed to the protection of the heart against IRI and oxidative stress via inhibition of the IGF1R/PI3K/AKT pathway, thus can be recognized as a novel cardiopreventive/cardioprotective agent.
Collapse
Affiliation(s)
- Agnieszka Olejnik
- Division of Clinical Chemistry and Laboratory Haematology, Department of Medical Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A St., 50-556, Wrocław, Poland
| | - Anna Radajewska
- Division of Clinical Chemistry and Laboratory Haematology, Department of Medical Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A St., 50-556, Wrocław, Poland
| | - Anna Krzywonos-Zawadzka
- Division of Clinical Chemistry and Laboratory Haematology, Department of Medical Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A St., 50-556, Wrocław, Poland
| | - Iwona Bil-Lula
- Division of Clinical Chemistry and Laboratory Haematology, Department of Medical Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A St., 50-556, Wrocław, Poland.
| |
Collapse
|
24
|
Tanriover C, Copur S, Mutlu A, Peltek IB, Galassi A, Ciceri P, Cozzolino M, Kanbay M. Early aging and premature vascular aging in chronic kidney disease. Clin Kidney J 2023; 16:1751-1765. [PMID: 37915901 PMCID: PMC10616490 DOI: 10.1093/ckj/sfad076] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Indexed: 11/03/2023] Open
Abstract
Aging is the progressive decline of body functions and a number of chronic conditions can lead to premature aging characterized by frailty, a diseased vasculature, osteoporosis, and muscle wasting. One of the major conditions associated with premature and accelerated aging is chronic kidney disease (CKD), which can also result in early vascular aging and the stiffening of the arteries. Premature vascular aging in CKD patients has been considered as a marker of prognosis of mortality and cardiovascular morbidity and therefore requires further attention. Oxidative stress, inflammation, advanced glycation end products, fructose, and an aberrant gut microbiota can contribute to the development of early aging in CKD patients. There are several key molecular pathways and molecules which play a role in aging and vascular aging including nuclear factor erythroid 2-related factor 2 (Nrf-2), AMP-activated protein kinase (AMPK), sirtuin 1 (SIRT1), and klotho. Potential therapeutic strategies can target these pathways. Future studies are needed to better understand the importance of premature aging and early vascular aging and to develop therapeutic alternatives for these conditions.
Collapse
Affiliation(s)
- Cem Tanriover
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Sidar Copur
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Ali Mutlu
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | | | - Andrea Galassi
- Department of Health Sciences, Renal Division, University of Milan, Milan, Italy
| | - Paola Ciceri
- Department of Health Sciences, Renal Division, University of Milan, Milan, Italy
| | - Mario Cozzolino
- Department of Health Sciences, Renal Division, University of Milan, Milan, Italy
| | - Mehmet Kanbay
- Department of Medicine, Division of Nephrology, Koc University School of Medicine, Istanbul, Turkey
| |
Collapse
|
25
|
Brown RL, Epel EE, Lin J, Dubal DB, Prather AA. Associations between klotho and telomere biology in high stress caregivers. Aging (Albany NY) 2023; 15:7381-7396. [PMID: 37580799 PMCID: PMC10457041 DOI: 10.18632/aging.204961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/06/2023] [Indexed: 08/16/2023]
Abstract
Aging biomarkers may be related to each other through direct co-regulation and/or through being regulated by common processes associated with chronological aging or stress. Klotho is an aging regulator that acts as a circulating hormone with critical involvement in regulating insulin signaling, phosphate homeostasis, oxidative stress, and age-related inflammatory functioning. Both klotho and telomere length are biomarkers of biological aging and decrease with age; however, the relationship between them is not well understood. Here we test the association between klotho levels and the telomere length of specific sorted immune cells among a healthy sample of mothers caregiving for a child with autism spectrum disorder (ASD; i.e., experiencing higher caregiving stress) or a child without ASD, covarying age and body mass index, in order to understand if high stress associated with caregiving for a child with an ASD may be involved in any association between these aging biomarkers. In 178 caregiving women (n = 90 high-stress mothers of children with ASD, n = 88 low-stress mothers of neurotypical children), we found that klotho levels were positively associated with telomere length in PBMCs (an effect driven by CD4+ and CD8+CD28- T cells) among high-stress mothers of children with an ASD but not among low-stress mothers of neurotypical children. There were no significant associations between klotho and telomerase activity in either group, across cell types assessed here. Our results suggest that klotho levels and telomere length may be associated through a coordinated downregulation of longevity factors occurring under higher stress caregiving conditions.
Collapse
Affiliation(s)
- Ryan L. Brown
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA 94107, USA
| | - Elissa E. Epel
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA 94107, USA
| | - Jue Lin
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94107, USA
| | - Dena B. Dubal
- Department of Neurology and Weill Institute of Neurosciences, University of California, San Francisco, CA 94107, USA
| | - Aric A. Prather
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA 94107, USA
| |
Collapse
|
26
|
Khurm M, Guo Y, Wu Q, Zhang X, Ghori MU, Rasool MF, Imran I, Saqib F, Wahid M, Guo Z. Conocarpus lancifolius (Combretaceae): Pharmacological Effects, LC-ESI-MS/MS Profiling and In Silico Attributes. Metabolites 2023; 13:794. [PMID: 37512501 PMCID: PMC10385132 DOI: 10.3390/metabo13070794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
In folklore medicine, Conocarpus lancifolius is used to treat various illnesses. The main objective of this study was a comprehensive investigation of Conocarpus lancifolius leaf aqueous extract (CLAE) for its antioxidant, cardioprotective, anxiolytic, antidepressant and memory-enhancing capabilities by using different in vitro, in vivo and in silico models. The in vitro experimentation revealed that CLAE consumed an ample amount of total phenolics (67.70 ± 0.15 µg GAE/mg) and flavonoids (47.54 ± 0.45 µg QE/mg) with stronger antiradical effects through DPPH (IC50 = 16.66 ± 0.42 µg/mL), TAC (77.33 ± 0.41 µg AAE/mg) and TRP (79.11 ± 0.67 µg GAE/mg) assays. The extract also displayed suitable acetylcholinesterase (AChE) inhibitory (IC50 = 110.13 ± 1.71 µg/mL) activity through a modified Ellman's method. The toxicology examination presented no mortality or any signs of clinical toxicity in both single-dose and repeated-dose tests. In line with the cardioprotective study, the pretreatment of CLAE was found to be effective in relieving the isoproterenol (ISO)-induced myocardial injury in rats by normalizing the heart weight index, serum cardiac biomarkers, lipid profile and various histopathological variations. In the noise-stress-induced model for behavior attributes, the results demonstrated that CLAE has the tendency to increase the time spent in the central zone and elevated open arms in the open field and elevated plus maze tests (examined for anxiety assessment), reduced periods of immobility in the forced swimming test (for depression) and improved recognition and working memory in the novel object recognition and Morris water maze tests, respectively. Moreover, the LC-ESI-MS/MS profiling predicted 53 phytocompounds in CLAE. The drug-likeness and ADMET analysis exhibited that the majority of the identified compounds have reasonable physicochemical and pharmacokinetic profiles. The co-expression of molecular docking and network analysis indicated that top-ranked CLAE phytoconstituents act efficiently against the key proteins and target multiple signaling pathways to exert its cardiovascular-protectant, anxiolytic, antidepressant and memory-enhancing activity. Hence, this artifact illustrates that the observed biological properties of CLAE elucidate its significance as a sustainable source of bioactive phytochemicals, which appears to be advantageous for pursuing further studies for the development of new therapeutic agents of desired interest.
Collapse
Affiliation(s)
- Muhammad Khurm
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yuting Guo
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Qingqing Wu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xinxin Zhang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Muhammad Umer Ghori
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan
| | - Muhammad Fawad Rasool
- Department of Pharmacy Practice, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Imran Imran
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Fatima Saqib
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Muqeet Wahid
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Zengjun Guo
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
27
|
Jin X, Xie J, Yeh CW, Chen JC, Cheng CJ, Lien CC, Huang CL. WNK1 promotes water homeostasis by acting as a central osmolality sensor for arginine vasopressin release. J Clin Invest 2023; 133:e164222. [PMID: 37071482 PMCID: PMC10231991 DOI: 10.1172/jci164222] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 04/14/2023] [Indexed: 04/19/2023] Open
Abstract
Maintaining internal osmolality constancy is essential for life. Release of arginine vasopressin (AVP) in response to hyperosmolality is critical. Current hypotheses for osmolality sensors in circumventricular organs (CVOs) of the brain focus on mechanosensitive membrane proteins. The present study demonstrated that intracellular protein kinase WNK1 was involved. Focusing on vascular-organ-of-lamina-terminalis (OVLT) nuclei, we showed that WNK1 kinase was activated by water restriction. Neuron-specific conditional KO (cKO) of Wnk1 caused polyuria with decreased urine osmolality that persisted in water restriction and blunted water restriction-induced AVP release. Wnk1 cKO also blunted mannitol-induced AVP release but had no effect on osmotic thirst response. The role of WNK1 in the osmosensory neurons in CVOs was supported by neuronal pathway tracing. Hyperosmolality-induced increases in action potential firing in OVLT neurons was blunted by Wnk1 deletion or pharmacological WNK inhibitors. Knockdown of Kv3.1 channel in OVLT by shRNA reproduced the phenotypes. Thus, WNK1 in osmosensory neurons in CVOs detects extracellular hypertonicity and mediates the increase in AVP release by activating Kv3.1 and increasing action potential firing from osmosensory neurons.
Collapse
Affiliation(s)
- Xin Jin
- Department of Medicine, Division of Nephrology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Jian Xie
- Department of Medicine, Division of Nephrology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | | | - Jen-Chi Chen
- Department of Medicine, Division of Nephrology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Chih-Jen Cheng
- Department of Medicine, Division of Nephrology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Cheng-Chang Lien
- Institute of Neuroscience and
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chou-Long Huang
- Department of Medicine, Division of Nephrology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| |
Collapse
|
28
|
Saqib U, Munjuluri S, Sarkar S, Biswas S, Mukherjee O, Satsangi H, Baig MS, Obukhov AG, Hajela K. Transient Receptor Potential Canonical 6 (TRPC6) Channel in the Pathogenesis of Diseases: A Jack of Many Trades. Inflammation 2023:10.1007/s10753-023-01808-3. [PMID: 37072606 PMCID: PMC10112830 DOI: 10.1007/s10753-023-01808-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/18/2023] [Accepted: 03/23/2023] [Indexed: 04/20/2023]
Abstract
The mammalian Transient Receptor Potential Canonical (TRPC) subfamily comprises seven transmembrane proteins (TRPC1-7) forming cation channels in the plasma membrane of mammalian cells. TRPC channels mediate Ca2+ and Na+ influx into the cells. Amongst TRPCs, TRPC6 deficiency or increased activity due to gain-of-function mutations has been associated with a multitude of diseases, such as kidney disease, pulmonary disease, and neurological disease. Indeed, the TRPC6 protein is expressed in various organs and is involved in diverse signalling pathways. The last decade saw a surge in the investigative studies concerning the physiological roles of TRPC6 and describing the development of new pharmacological tools modulating TRPC6 activity. The current review summarizes the progress achieved in those investigations.
Collapse
Affiliation(s)
- Uzma Saqib
- School of Life Sciences, Devi Ahilya Vishwavidyalaya, Vigyan Bhawan, Khandwa Road Campus, Indore, 452 001, MP, India
| | - Sreepadaarchana Munjuluri
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Sutripta Sarkar
- Post Graduate Department of Food and Nutrition, Barrackpore Rastraguru Surendranath College, 85, Middle Road, Barrackpore, 700120, West Bengal, India
| | - Subir Biswas
- Ramky One Galaxia, Nallagandla, Hyderabad, 500019, Telangana, India
| | - Oyshi Mukherjee
- Post Graduate Department of Food and Nutrition, Barrackpore Rastraguru Surendranath College, 85, Middle Road, Barrackpore, 700120, West Bengal, India
| | | | - Mirza S Baig
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Alexander G Obukhov
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - Krishnan Hajela
- School of Life Sciences, Devi Ahilya Vishwavidyalaya, Vigyan Bhawan, Khandwa Road Campus, Indore, 452 001, MP, India.
| |
Collapse
|
29
|
Senescent cardiac fibroblasts: A key role in cardiac fibrosis. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166642. [PMID: 36669578 DOI: 10.1016/j.bbadis.2023.166642] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023]
Abstract
Cardiac fibroblasts are a cell population that controls the homeostasis of the extracellular matrix and orchestrates a damage response to maintain cardiac architecture and performance. Due to these functions, fibroblasts play a central role in cardiac fibrosis development, and there are large differences in matrix protein secretion profiles between fibroblasts from aged versus young animals. Senescence is a multifactorial and complex process that has been associated with inflammatory and fibrotic responses. After damage, transient cellular senescence is usually beneficial, as these cells promote tissue repair. However, the persistent presence of senescent cells within a tissue is linked with fibrosis development and organ dysfunction, leading to aging-related diseases such as cardiovascular pathologies. In the heart, early cardiac fibroblast senescence after myocardial infarction seems to be protective to avoid excessive fibrosis; however, in non-infarcted models of cardiac fibrosis, cardiac fibroblast senescence has been shown to be deleterious. Today, two new classes of drugs, termed senolytics and senostatics, which eliminate senescent cells or modify senescence-associated secretory phenotype, respectively, arise as novel therapeutical strategies to treat aging-related pathologies. However, further studies will be needed to evaluate the extent of the utility of senotherapeutic drugs in cardiac diseases, in which pathological context and temporality of the intervention must be considered.
Collapse
|
30
|
Effects of resveratrol supplementation on cardiac remodeling in hypertensive patients: a randomized controlled clinical trial. Hypertens Res 2023:10.1038/s41440-023-01231-z. [PMID: 36854725 DOI: 10.1038/s41440-023-01231-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/07/2023] [Accepted: 02/07/2023] [Indexed: 03/02/2023]
Abstract
Resveratrol (RES) has been demonstrated to be protective in the cardiovascular system in animal studies, but the evidence is limited in humans. The purpose of the study was to evaluate the effect of RES supplementation on cardiac remodeling in patients with hypertension. Eighty Subjects were randomly divided into RES group (plus RES 400 mg/d in addition to conventional therapy, n = 43) and control group (conventional therapy, n = 37). The main outcomes of the study were changes within cardiac-remodeling parameters. Secondary outcomes were changes in anthropometric parameters, arterial stiffness parameters and mechanism indices. There was no statistically significant difference between the RES group and control group in terms of baseline characteristics. After 6 months, the RES group had smaller left atrial, lower E/e', higher left ventricular global longitudinal strain and lower biomarkers indicating cardiac fibrosis (expressed by decreases in procollagen type I C-peptide and galectin-3) compared to the control group. However, there was no significant difference in left ventricular structure between the two groups. Although the RES group showed a significant decrease in brachial-ankle pulse wave velocity compared to the pre-intervention value, the difference between the RES and the control groups was not obvious. What's more, compared with the control group, the serum levels of sirtuin3, superoxide dismutase and klotho were significantly increased in the RES group. In conclusion, RES supplementation can alleviate left atrial remodeling, improve left ventricular diastolic function and may alleviate cardiac fibrosis in hypertensive patients, and could be used as an adjunct to conventional therapies of hypertensive heart disease.
Collapse
|
31
|
Williams MJ, White SC, Joseph Z, Hruska KA. Updates in the chronic kidney disease-mineral bone disorder show the role of osteocytic proteins, a potential mechanism of the bone-Vascular paradox, a therapeutic target, and a biomarker. Front Physiol 2023; 14:1120308. [PMID: 36776982 PMCID: PMC9909112 DOI: 10.3389/fphys.2023.1120308] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/17/2023] [Indexed: 01/27/2023] Open
Abstract
The chronic kidney disease-mineral bone disorder (CKD-MBD) is a complex multi-component syndrome occurring during kidney disease and its progression. Here, we update progress in the components of the syndrome, and synthesize recent investigations, which suggest a potential mechanism of the bone-vascular paradox. The discovery that calcified arteries in chronic kidney disease inhibit bone remodeling lead to the identification of factors produced by the vasculature that inhibit the skeleton, thus providing a potential explanation for the bone-vascular paradox. Among the factors produced by calcifying arteries, sclerostin secretion is especially enlightening. Sclerostin is a potent inhibitor of bone remodeling and an osteocyte specific protein. Its production by the vasculature in chronic kidney disease identifies the key role of vascular cell osteoblastic/osteocytic transdifferentiation in vascular calcification and renal osteodystrophy. Subsequent studies showing that inhibition of sclerostin activity by a monoclonal antibody improved bone remodeling as expected, but stimulated vascular calcification, demonstrate that vascular sclerostin functions to brake the Wnt stimulation of the calcification milieu. Thus, the target of therapy in the chronic kidney disease-mineral bone disorder is not inhibition of sclerostin function, which would intensify vascular calcification. Rather, decreasing sclerostin production by decreasing the vascular osteoblastic/osteocytic transdifferentiation is the goal. This might decrease vascular calcification, decrease vascular stiffness, decrease cardiac hypertrophy, decrease sclerostin production, reduce serum sclerostin and improve skeletal remodeling. Thus, the therapeutic target of the chronic kidney disease-mineral bone disorder may be vascular osteoblastic transdifferentiation, and sclerostin levels may be a useful biomarker for the diagnosis of the chronic kidney disease-mineral bone disorder and the progress of its therapy.
Collapse
Affiliation(s)
- Matthew J. Williams
- Division of Pediatric Nephrology, Department of Pediatrics, Washington University, Saint Louis, MO, United States
| | - Sarah C. White
- Division of Pediatric Nephrology, Department of Pediatrics, Washington University, Saint Louis, MO, United States
| | - Zachary Joseph
- Division of Pediatric Nephrology, Department of Pediatrics, Washington University, Saint Louis, MO, United States
| | - Keith A. Hruska
- Division of Pediatric Nephrology, Department of Pediatrics, Washington University, Saint Louis, MO, United States
- Departments of Medicine and Cell Biology, Washington University, Saint Louis, MO, United States
| |
Collapse
|
32
|
González-Lafuente L, Navarro-García JA, Valero-Almazán Á, Rodríguez-Sánchez E, Vázquez-Sánchez S, Mercado-García E, Pineros P, Poveda J, Fernández-Velasco M, Kuro-O M, Ruilope LM, Ruiz-Hurtado G. Partial Genetic Deletion of Klotho Aggravates Cardiac Calcium Mishandling in Acute Kidney Injury. Int J Mol Sci 2023; 24:ijms24021322. [PMID: 36674838 PMCID: PMC9867237 DOI: 10.3390/ijms24021322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/02/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Acute kidney injury (AKI) is associated with an elevated risk of cardiovascular major events and mortality. The pathophysiological mechanisms underlying the complex cardiorenal network interaction remain unresolved. It is known that the presence of AKI and its evolution are significantly associated with an alteration in the anti-aging factor klotho expression. However, it is unknown whether a klotho deficiency might aggravate cardiac damage after AKI. We examined intracellular calcium (Ca2+) handling in native ventricular isolated cardiomyocytes from wild-type (+/+) and heterozygous hypomorphic mice for the klotho gene (+/kl) in which an overdose of folic acid was administered to induce AKI. Twenty-four hours after AKI induction, cardiomyocyte contraction was decreased in mice with the partial deletion of klotho expression (heterozygous hypomorphic klotho named +/kl). This was accompanied by alterations in Ca2+ transients during systole and an impairment of sarco/endoplasmic reticulum Ca2+-ATPase (SERCA2a) function in +/kl mice after AKI induction. Moreover, Ca2+ spark frequency and the incidence of Ca2+ pro-arrhythmic events were greater in cardiomyocytes from heterozygous hypomorphic klotho compared to wild-type mice after AKI. A decrease in klotho expression plays a role in cardiorenal damage aggravating cardiac Ca2+ mishandling after an AKI, providing the basis for future targeted approaches directed to control klotho expression as novel therapeutic strategies to reduce the cardiac burden that affects AKI patients.
Collapse
Affiliation(s)
- Laura González-Lafuente
- Cardiorenal Translational Laboratory, Institute of Research Imas12, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - José Alberto Navarro-García
- Cardiorenal Translational Laboratory, Institute of Research Imas12, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - Ángela Valero-Almazán
- Cardiorenal Translational Laboratory, Institute of Research Imas12, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - Elena Rodríguez-Sánchez
- Cardiorenal Translational Laboratory, Institute of Research Imas12, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - Sara Vázquez-Sánchez
- Cardiorenal Translational Laboratory, Institute of Research Imas12, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - Elisa Mercado-García
- Cardiorenal Translational Laboratory, Institute of Research Imas12, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - Patricia Pineros
- Cardiorenal Translational Laboratory, Institute of Research Imas12, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - Jonay Poveda
- Cardiorenal Translational Laboratory, Institute of Research Imas12, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - María Fernández-Velasco
- IdiPAZ Institute for Health Research/Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, CIBER-CV, 28046 Madrid, Spain
| | - Makoto Kuro-O
- Division of Anti-Ageing Medicine, Centre for Molecular Medicine, Jichi Medical University, Shimotsuke 329-0498, Japan
| | - Luis M. Ruilope
- Cardiorenal Translational Laboratory, Institute of Research Imas12, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBER-CV), Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
- School of Doctoral Studies and Research, European University of Madrid, 28040 Madrid, Spain
| | - Gema Ruiz-Hurtado
- Cardiorenal Translational Laboratory, Institute of Research Imas12, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBER-CV), Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-91-3908001
| |
Collapse
|
33
|
Wolf L, Föller M, Feger M. The impact of SGLT2 inhibitors on αKlotho in renal MDCK and HK-2 cells. Front Endocrinol (Lausanne) 2023; 14:1069715. [PMID: 36967770 PMCID: PMC10032406 DOI: 10.3389/fendo.2023.1069715] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/16/2023] [Indexed: 03/11/2023] Open
Abstract
αKlotho is a transmembrane protein predominantly expressed in the kidney serving as a co-receptor for phosphate homeostasis-regulating hormone FGF23 and has an extracellular domain that can be cleaved off and is a hormone. αKlotho deficiency results in accelerated aging and early onset of aging-associated diseases while its overexpression strongly expands the lifespan of mice. Moreover, αKlotho exerts health-beneficial anti-inflammatory, anti-neoplastic, anti-fibrotic, and anti-oxidant effects. Higher αKlotho levels are associated with better outcomes in renal and cardiovascular diseases. SGLT2 inhibitors are novel drugs in the treatment of diabetes by inhibiting renal glucose transport and have additional nephro- and cardioprotective effects. We explored whether SGLT2 inhibitors affect αKlotho gene expression and protein secretion. Experiments were performed in renal MDCK and HK-2 cells, and αKlotho transcripts were determined by qRT-PCR and Klotho protein by ELISA. SGLT2 inhibitors canagliflozin, sotagliflozin, and dapagliflozin enhanced whereas empagliflozin reduced αKlotho gene expression in MDCK cells. By the same token, canagliflozin, sotagliflozin, dapagliflozin, but not empagliflozin down-regulated p65 subunit of pro-inflammatory NFκB. In HK-2 cells, all SGLT2 inhibitors reduced αKlotho transcripts. Canagliflozin and sotagliflozin, however, increased Klotho protein concentration in the cell culture supernatant, an effect paralleled by up-regulation of ADAM17. Taken together, our investigations demonstrate complex effects of different SGLT2 inhibitors on αKlotho gene expression and protein secretion in renal MDCK and HK-2 cells.
Collapse
|
34
|
Abraham CR, Li A. Aging-suppressor Klotho: Prospects in diagnostics and therapeutics. Ageing Res Rev 2022; 82:101766. [PMID: 36283617 DOI: 10.1016/j.arr.2022.101766] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 01/31/2023]
Abstract
INTRODUCTION The protein Klotho (KL) was first discovered in KL-deficient mice, which developed a syndrome similar to premature aging in humans. Since then, KL has been implicated in multiple molecular signaling pathways and diseases. KL has been shown to have anti-aging, healthspan and lifespan extending, cognitive enhancing, anti-oxidative, anti-inflammatory, and anti-tumor properties. KL levels decrease with age and in many diseases. Therefore, it has been of great interest to develop a KL-boosting or restoring drug, or to supplement endogenous Klotho with exogenous Klotho genetic material or recombinant Klotho protein, and to use KL levels in the body as a marker for the efficacy of such drugs and as a biomarker for the diagnosis and management of diseases. OBJECTIVE The goal of this study was to provide a comprehensive review of KL levels across age groups in individuals who are healthy or have certain health conditions, using four sources: blood, cerebrospinal fluid, urine, and whole biopsy/necropsy tissue. By doing so, baseline KL levels can be identified across the lifespan, in the absence or presence of disease. In turn, these findings can be used to guide the development of future KL-based therapeutics and biomarkers, which will heavily rely on an individual's baseline KL range to be efficacious. METHODS A total of 65 studies were collected primarily using the PubMed database. Research articles that were published up to April 2022 were included. Statistical analysis was conducted using RStudio. RESULTS Mean and median blood KL levels in healthy individuals, mean blood KL levels in individuals with renal conditions, and mean blood KL levels in individuals with metabolic or endocrine conditions were shown to decrease with age. Similarly, CSF KL levels in patients with AD also declined compared with age-matched controls. CONCLUSIONS The present study confirms the trend that KL levels in blood decrease with age in humans, among those who are healthy, and even further among those with renal and endocrine/metabolic illnesses. Further, by drawing this trend from multiple published works, we were able to provide a general idea of baseline KL ranges, specifically in blood in these populations. These data add to the current knowledge on normal KL levels in the body and how they change with time and in disease, and can potentially support efforts to create KL-based treatments and screening tools to better manage aging, renal, and metabolic/endocrine diseases.
Collapse
Affiliation(s)
- Carmela R Abraham
- Department of Biochemistry, Boston University School of Medicine, USA; Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, USA.
| | - Anne Li
- Division of Graduate Medical Sciences, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
35
|
Abstract
BACKGROUND & AIMS Soluble α-Klotho (s-Klotho) is a circulating protein with pleiotropic effects that mainly induce protective effects. Our study investigates the associations between s-Klotho and several established inflammatory biomarkers, with the aim of examining whether s-Klotho levels are representative of inflammatory states. METHODS A total of 11,128 eligible participants from NHANES 2007-2016 were included in our study. Levels of four inflammatory biomarkers, uric acid (UA), C-reactive protein (CRP), white blood cell (WBC) count, and mean platelet volume (MPV), were examined for their relationship with s-Klotho levels. Sub-analyses sorted the total population by gender and into four quartiles. Linear regression models were used to evaluate the strengths of associations. RESULTS All four inflammatory biomarkers were significantly associated with s-Klotho levels. UA, CRP, and WBC count showed an inverse association, while MPV showed a direct one. Of the four markers, UA was most strongly correlated with s-Klotho levels (β coefficient: -28.89 in unadjusted model, p<.001), and this relationship was stronger in women than in men (β coefficient of UA in men: -22.01, p<.001; in women: -31.54, p<.001). In addition, all four biomarkers manifested stronger associations with s-Klotho in higher quartiles, and the highest absolute values of β coefficients appeared in Q4 vs. Q1. CONCLUSION s-Klotho is significantly associated with well-recognized inflammatory biomarkers. A decrease in s-Klotho levels implies a general inflammatory status; therefore, s-Klotho serves as a potential biomarker that is inversely correlated with inflammatory conditions. Further applications in clinical practice will provide us with a better understanding of its role.Key messagesSoluble α-Klotho (s-Klotho) levels are significantly associated with the inflammatory markers uric acid, C-reactive protein, white blood cell count, and mean platelet volume.S-Klotho is involved in inflammatory processes and plays a protective role.S-Klotho may serve as an inverse indicator of inflammation.
Collapse
Affiliation(s)
- Shou-En Wu
- Department of Dermatology, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei City, Taiwan
| | - Wei-Liang Chen
- Division of Family Medicine, Department of Family and Community Medicine, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei City, Taiwan.,Division of Geriatric Medicine, Department of Family and Community Medicine, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei City, Taiwan.,Department of Biochemistry, National Defense Medical Center, Taipei City, Taiwan
| |
Collapse
|
36
|
Ahmadian E, Eftekhari A, Atakishizada S, Valiyeva M, Ardalan M, Khalilov R, Kavetskyy T. Podocytopathy: The role of actin cytoskeleton. Biomed Pharmacother 2022; 156:113920. [DOI: 10.1016/j.biopha.2022.113920] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/12/2022] [Accepted: 10/24/2022] [Indexed: 11/02/2022] Open
|
37
|
Lu T, Sun X, Necela BM, Lee HC, Norton N. TRPC6 N338S is a gain-of-function mutant identified in patient with doxorubicin-induced cardiotoxicity. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166505. [PMID: 35882306 PMCID: PMC10858733 DOI: 10.1016/j.bbadis.2022.166505] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 01/23/2023]
Abstract
The canonical transient receptor potential 6 gene, TRPC6, has been implicated as a putative risk gene for chemotherapy-induced congestive heart failure, but knowledge of specific risk variants is lacking. Following our genome-wide association study and subsequent fine-mapping, a rare missense mutant of TRPC6 N338S, was identified in a breast cancer patient who received anthracycline-containing chemotherapy regiments and developed congestive heart failure. However, the function of N338S mutant has not been examined. Using intracellular Ca2+ imaging, patch clamp recording and molecular docking techniques, we assessed the function of N338S mutant heterologously expressed in HEK293 cells and HL-1 cardiac cells. We found that expression of TRPC6 N338S significantly increased intracellular Ca2+ levels ([Ca2+]i) and current densities in response to 50 μM 1-oleoyl 2-acetyl-sn-glycerol (OAG), an activator of TRPC6 channels, compared to those of TRPC6 WT. A 24-h pretreatment with 0.5 μM doxorubicin (DOX) further potentiated the OAG effects on TRPC6 N338S current densities and [Ca2+]i, and these effects were abolished by 1 μM BI-749327, a highly selective TRPC6 inhibitor. Moreover, DOX treatment significantly upregulated the mRNA and protein expressions of TRPC6 N338S, compared to those of TRPC6 WT. Molecular docking and dynamics simulation showed that OAG binds to the pocket constituted by the pore-helix, S5 and S6 domains of TRPC6. However, the N338S mutation strengthened the interaction with OAG, therefore stabilizing the OAG-TRPC6 N338S complex and enhancing OAG binding affinity. Our results indicate that TRPC6 N338S is a gain-of-function mutant that may contribute to DOX-induced cardiotoxicity by increasing Ca2+ influx and [Ca2+]i in cardiomyocytes.
Collapse
Affiliation(s)
- Tong Lu
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA.
| | - Xiaojing Sun
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Brian M Necela
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Hon-Chi Lee
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Nadine Norton
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| |
Collapse
|
38
|
Oda S, Nishiyama K, Furumoto Y, Yamaguchi Y, Nishimura A, Tang X, Kato Y, Numaga-Tomita T, Kaneko T, Mangmool S, Kuroda T, Okubo R, Sanbo M, Hirabayashi M, Sato Y, Nakagawa Y, Kuwahara K, Nagata R, Iribe G, Mori Y, Nishida M. Myocardial TRPC6-mediated Zn 2+ influx induces beneficial positive inotropy through β-adrenoceptors. Nat Commun 2022; 13:6374. [PMID: 36289215 PMCID: PMC9606288 DOI: 10.1038/s41467-022-34194-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 10/12/2022] [Indexed: 12/25/2022] Open
Abstract
Baroreflex control of cardiac contraction (positive inotropy) through sympathetic nerve activation is important for cardiocirculatory homeostasis. Transient receptor potential canonical subfamily (TRPC) channels are responsible for α1-adrenoceptor (α1AR)-stimulated cation entry and their upregulation is associated with pathological cardiac remodeling. Whether TRPC channels participate in physiological pump functions remains unclear. We demonstrate that TRPC6-specific Zn2+ influx potentiates β-adrenoceptor (βAR)-stimulated positive inotropy in rodent cardiomyocytes. Deletion of trpc6 impairs sympathetic nerve-activated positive inotropy but not chronotropy in mice. TRPC6-mediated Zn2+ influx boosts α1AR-stimulated βAR/Gs-dependent signaling in rat cardiomyocytes by inhibiting β-arrestin-mediated βAR internalization. Replacing two TRPC6-specific amino acids in the pore region with TRPC3 residues diminishes the α1AR-stimulated Zn2+ influx and positive inotropic response. Pharmacological enhancement of TRPC6-mediated Zn2+ influx prevents chronic heart failure progression in mice. Our data demonstrate that TRPC6-mediated Zn2+ influx with α1AR stimulation enhances baroreflex-induced positive inotropy, which may be a new therapeutic strategy for chronic heart failure.
Collapse
Affiliation(s)
- Sayaka Oda
- grid.250358.90000 0000 9137 6732National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Okazaki, 444-8787 Japan ,grid.250358.90000 0000 9137 6732Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, 444-8787 Japan ,grid.275033.00000 0004 1763 208XDepartment of Physiological Sciences, SOKENDAI (School of Life Science, The Graduate University for Advanced Studies), Aichi, 444-8787 Japan
| | - Kazuhiro Nishiyama
- grid.177174.30000 0001 2242 4849Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582 Japan
| | - Yuka Furumoto
- grid.177174.30000 0001 2242 4849Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582 Japan
| | - Yohei Yamaguchi
- grid.252427.40000 0000 8638 2724Asahikawa Medical University, Hokkaido, 078-8510 Japan
| | - Akiyuki Nishimura
- grid.250358.90000 0000 9137 6732National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Okazaki, 444-8787 Japan ,grid.250358.90000 0000 9137 6732Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, 444-8787 Japan ,grid.275033.00000 0004 1763 208XDepartment of Physiological Sciences, SOKENDAI (School of Life Science, The Graduate University for Advanced Studies), Aichi, 444-8787 Japan
| | - Xiaokang Tang
- grid.250358.90000 0000 9137 6732National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Okazaki, 444-8787 Japan ,grid.250358.90000 0000 9137 6732Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, 444-8787 Japan ,grid.275033.00000 0004 1763 208XDepartment of Physiological Sciences, SOKENDAI (School of Life Science, The Graduate University for Advanced Studies), Aichi, 444-8787 Japan
| | - Yuri Kato
- grid.177174.30000 0001 2242 4849Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582 Japan
| | - Takuro Numaga-Tomita
- grid.250358.90000 0000 9137 6732National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Okazaki, 444-8787 Japan ,grid.250358.90000 0000 9137 6732Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, 444-8787 Japan ,grid.263518.b0000 0001 1507 4692Shinshu University School of Medicine, Matsumoto, 390-8621 Japan
| | - Toshiyuki Kaneko
- grid.252427.40000 0000 8638 2724Asahikawa Medical University, Hokkaido, 078-8510 Japan
| | - Supachoke Mangmool
- grid.10223.320000 0004 1937 0490Faculty of Science, Mahidol University, Bangkok, 10400 Thailand
| | - Takuya Kuroda
- grid.410797.c0000 0001 2227 8773National Institute of Health Sciences, Kanagawa, 210-9501 Japan
| | - Reishin Okubo
- grid.177174.30000 0001 2242 4849Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582 Japan
| | - Makoto Sanbo
- grid.250358.90000 0000 9137 6732National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Okazaki, 444-8787 Japan
| | - Masumi Hirabayashi
- grid.250358.90000 0000 9137 6732National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Okazaki, 444-8787 Japan
| | - Yoji Sato
- grid.410797.c0000 0001 2227 8773National Institute of Health Sciences, Kanagawa, 210-9501 Japan
| | - Yasuaki Nakagawa
- grid.258799.80000 0004 0372 2033Kyoto University Graduate School of Medicine, Kyoto, 606-8507 Japan
| | - Koichiro Kuwahara
- grid.263518.b0000 0001 1507 4692Shinshu University School of Medicine, Matsumoto, 390-8621 Japan
| | - Ryu Nagata
- grid.136593.b0000 0004 0373 3971Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871 Japan
| | - Gentaro Iribe
- grid.252427.40000 0000 8638 2724Asahikawa Medical University, Hokkaido, 078-8510 Japan
| | - Yasuo Mori
- grid.258799.80000 0004 0372 2033Graduate School of Engineering, Kyoto University, Kyoto, 615-8510 Japan
| | - Motohiro Nishida
- grid.250358.90000 0000 9137 6732National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Okazaki, 444-8787 Japan ,grid.250358.90000 0000 9137 6732Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, 444-8787 Japan ,grid.275033.00000 0004 1763 208XDepartment of Physiological Sciences, SOKENDAI (School of Life Science, The Graduate University for Advanced Studies), Aichi, 444-8787 Japan ,grid.177174.30000 0001 2242 4849Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582 Japan
| |
Collapse
|
39
|
Sabourin J, Beauvais A, Luo R, Montani D, Benitah JP, Masson B, Antigny F. The SOCE Machinery: An Unbalanced Knowledge between Left and Right Ventricular Pathophysiology. Cells 2022; 11:cells11203282. [PMID: 36291148 PMCID: PMC9600889 DOI: 10.3390/cells11203282] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/09/2022] [Accepted: 10/15/2022] [Indexed: 11/16/2022] Open
Abstract
Right ventricular failure (RVF) is the most important prognostic factor for morbidity and mortality in pulmonary arterial hypertension (PAH) or pulmonary hypertension (PH) caused by left heart diseases. However, right ventricle (RV) remodeling is understudied and not targeted by specific therapies. This can be partly explained by the lack of basic knowledge of RV remodeling. Since the physiology and hemodynamic function of the RV differ from those of the left ventricle (LV), the mechanisms of LV dysfunction cannot be generalized to that of the RV, albeit a knowledge of these being helpful to understanding RV remodeling and dysfunction. Store-operated Ca2+ entry (SOCE) has recently emerged to participate in the LV cardiomyocyte Ca2+ homeostasis and as a critical player in Ca2+ mishandling in a pathological context. In this paper, we highlight the current knowledge on the SOCE contribution to the LV and RV dysfunctions, as SOCE molecules are present in both compartments. he relative lack of studies on RV dysfunction indicates the necessity of further investigations, a significant challenge over the coming years.
Collapse
Affiliation(s)
- Jessica Sabourin
- Signalisation et Physiopathologie Cardiovasculaire, Inserm, Université Paris-Saclay, UMR-S 1180, 91400 Orsay, France
- Correspondence: (J.S.); (F.A.); Tel.: +(33)-180-006-302 (J.S.); +(33)-140-942-299 (F.A.)
| | - Antoine Beauvais
- Faculté de Médecine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
- Hypertension Pulmonaire: Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, Université Paris-Saclay, Inserm, UMR-S 999, 92350 Le Plessis-Robinson, France
- Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Rui Luo
- Signalisation et Physiopathologie Cardiovasculaire, Inserm, Université Paris-Saclay, UMR-S 1180, 91400 Orsay, France
| | - David Montani
- Faculté de Médecine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
- Hypertension Pulmonaire: Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, Université Paris-Saclay, Inserm, UMR-S 999, 92350 Le Plessis-Robinson, France
- Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Jean-Pierre Benitah
- Signalisation et Physiopathologie Cardiovasculaire, Inserm, Université Paris-Saclay, UMR-S 1180, 91400 Orsay, France
| | - Bastien Masson
- Faculté de Médecine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
- Hypertension Pulmonaire: Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, Université Paris-Saclay, Inserm, UMR-S 999, 92350 Le Plessis-Robinson, France
- Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Fabrice Antigny
- Faculté de Médecine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
- Hypertension Pulmonaire: Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, Université Paris-Saclay, Inserm, UMR-S 999, 92350 Le Plessis-Robinson, France
- Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
- Correspondence: (J.S.); (F.A.); Tel.: +(33)-180-006-302 (J.S.); +(33)-140-942-299 (F.A.)
| |
Collapse
|
40
|
Münz S, Wolf L, Hoelzle LE, Chernyakov D, Edemir B, Föller M. Impact of cytotoxic agents or apoptosis stimulants on αklotho in MDCK, NRK-52E and HK2 kidney cells. Aging (Albany NY) 2022; 14:7282-7299. [PMID: 35997650 PMCID: PMC9550246 DOI: 10.18632/aging.204238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 08/09/2022] [Indexed: 11/25/2022]
Abstract
αKlotho is a transmembrane protein acting as a co-receptor for FGF23, a bone hormone regulating renal phosphate and vitamin D metabolism. αKlotho expression is controlled by PPARγ. Soluble αklotho (sKL) regulates cellular signaling impacting stress resistance and death. αKlotho deficiency causes early onset of aging-associated diseases while its overexpression markedly increases lifespan. Cellular stress due to cytotoxic therapeutics or apoptosis induction through caspase activation or serum deficiency may result in cell death. Owing to αklotho's role in cellular stress and aging, this study explored the effect of cytotoxic agents or apoptosis stimulants on cellular αklotho expression. Experiments were performed in renal MDCK, NRK-52E and HK-2 cells. Gene expression was determined by qRT-PCR, sKL by ELISA, apoptosis and necrosis by annexin V binding and a fluorescent DNA dye, and cell viability by MTT assay. Cytostatic drugs cisplatin, paclitaxel, and doxorubicin as well as apoptosis induction with caspase 3 activator PAC-1 and serum deprivation induced αklotho and PPARG gene expression while decreasing viability and proliferation and inducing apoptosis of MDCK and NRK-52E cells to a variable extent. PPARγ antagonism attenuated up-regulation of αklotho in MDCK cells. In HK-2 cells, αklotho gene expression and sKL protein were down-regulated by chemotherapeutics. SKL serum levels in patients following chemotherapy were not significantly changed. In summary, potentially fatal stress results in up-regulation of αKlotho gene expression in MDCK and NRK-52E cells and down-regulation in HK-2 cells. These results indicate that different renal cell lines may exhibit completely different regulation of αklotho.
Collapse
Affiliation(s)
- Sina Münz
- Department of Physiology, University of Hohenheim, Stuttgart 70599, Germany
| | - Lisa Wolf
- Department of Physiology, University of Hohenheim, Stuttgart 70599, Germany
| | - Ludwig E Hoelzle
- Institute of Animal Science, University of Hohenheim, Stuttgart 70599, Germany
| | - Dmitry Chernyakov
- Department of Oncology, Martin-Luther-University Halle-Wittenberg, Halle (Saale) 06120, Germany
| | - Bayram Edemir
- Department of Oncology, Martin-Luther-University Halle-Wittenberg, Halle (Saale) 06120, Germany
| | - Michael Föller
- Department of Physiology, University of Hohenheim, Stuttgart 70599, Germany
| |
Collapse
|
41
|
Yanucil C, Kentrup D, Campos I, Czaya B, Heitman K, Westbrook D, Osis G, Grabner A, Wende AR, Vallejo J, Wacker MJ, Navarro-Garcia JA, Ruiz-Hurtado G, Zhang F, Song Y, Linhardt RJ, White K, Kapiloff M, Faul C. Soluble α-klotho and heparin modulate the pathologic cardiac actions of fibroblast growth factor 23 in chronic kidney disease. Kidney Int 2022; 102:261-279. [PMID: 35513125 PMCID: PMC9329240 DOI: 10.1016/j.kint.2022.03.028] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 03/14/2022] [Accepted: 03/29/2022] [Indexed: 01/03/2023]
Abstract
Fibroblast growth factor (FGF) 23 is a phosphate-regulating hormone that is elevated in patients with chronic kidney disease and associated with cardiovascular mortality. Experimental studies showed that elevated FGF23 levels induce cardiac hypertrophy by targeting cardiac myocytes via FGF receptor isoform 4 (FGFR4). A recent structural analysis revealed that the complex of FGF23 and FGFR1, the physiologic FGF23 receptor in the kidney, includes soluble α-klotho (klotho) and heparin, which both act as co-factors for FGF23/FGFR1 signaling. Here, we investigated whether soluble klotho, a circulating protein with cardio-protective properties, and heparin, a factor that is routinely infused into patients with kidney failure during the hemodialysis procedure, regulate FGF23/FGFR4 signaling and effects in cardiac myocytes. We developed a plate-based binding assay to quantify affinities of specific FGF23/FGFR interactions and found that soluble klotho and heparin mediate FGF23 binding to distinct FGFR isoforms. Heparin specifically mediated FGF23 binding to FGFR4 and increased FGF23 stimulatory effects on hypertrophic growth and contractility in isolated cardiac myocytes. When repetitively injected into two different mouse models with elevated serum FGF23 levels, heparin aggravated cardiac hypertrophy. We also developed a novel procedure for the synthesis and purification of recombinant soluble klotho, which showed anti-hypertrophic effects in FGF23-treated cardiac myocytes. Thus, soluble klotho and heparin act as independent FGF23 co-receptors with opposite effects on the pathologic actions of FGF23, with soluble klotho reducing and heparin increasing FGF23-induced cardiac hypertrophy. Hence, whether heparin injections during hemodialysis in patients with extremely high serum FGF23 levels contribute to their high rates of cardiovascular events and mortality remains to be studied.
Collapse
Affiliation(s)
- Christopher Yanucil
- Division of Nephrology and Hypertension, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Dominik Kentrup
- Division of Nephrology and Hypertension, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA.,Division of Nephrology and Hypertension, Center for Translational Metabolism and Health, Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, IL, USA
| | - Isaac Campos
- Division of Nephrology and Hypertension, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Brian Czaya
- Division of Nephrology and Hypertension, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kylie Heitman
- Division of Nephrology and Hypertension, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - David Westbrook
- Division of Nephrology and Hypertension, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Gunars Osis
- Division of Nephrology and Hypertension, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Alexander Grabner
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Adam R. Wende
- Division of Molecular & Cellular Pathology, Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Julian Vallejo
- Department of Molecular Biosciences, University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
| | - Michael J. Wacker
- Department of Molecular Biosciences, University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
| | - Jose Alberto Navarro-Garcia
- Cardiorenal Translational Laboratory, Institute of Research, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Gema Ruiz-Hurtado
- Cardiorenal Translational Laboratory, Institute of Research, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Fuming Zhang
- Departments of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Yuefan Song
- Departments of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Robert J. Linhardt
- Departments of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA.,Departments of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Kenneth White
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Michael Kapiloff
- Departments of Ophthalmology and Medicine, Stanford Cardiovascular Institute, Stanford University, Palo Alto, CA, USA
| | - Christian Faul
- Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA.
| |
Collapse
|
42
|
Chen C, Xie C, Xiong Y, Wu H, Wu L, Zhu J, Xing C, Mao H. Damage of uremic myocardium by p-cresyl sulfate and the ameliorative effect of Klotho by regulating SIRT6 ubiquitination. Toxicol Lett 2022; 367:19-31. [PMID: 35839976 DOI: 10.1016/j.toxlet.2022.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/01/2022] [Accepted: 06/20/2022] [Indexed: 11/15/2022]
Abstract
Uremic cardiomyopathy (UCM) is a common complication in patients with chronic kidney disease (CKD) and an important risk factor for death. P-Cresyl sulfate (PCS) is a damaging factor in UCM, and Klotho is a protective factor. However, the molecular mechanisms of Klotho and PCS in UCM and the relationship between PCS and Klotho are unclear. In vitro, Klotho treatment inhibited PCS-induced cardiomyocyte hypertrophy and apoptosis by blocking mTOR phosphorylation and inhibiting DNA double-strand breaks (DSBs), respectively. Moreover, PCS increased SIRT6 protein ubiquitination and downregulated SIRT6 protein expression, while Klotho inhibited SIRT6 protein ubiquitination and upregulated SIRT6 protein expression. In a mouse model of 5/6 nephrectomy (5/6Nx)-induced UCM, the expression of Klotho in the kidney and serum was decreased, and the expression of SIRT6 protein in myocardial tissues was lower. PCS further reduced Klotho and SIRT6 expression, aggravated heart structure and function abnormalities, and increased myocardial cell apoptosis in UCM mice. Administration of Klotho protein inhibited the downregulation of SIRT6 protein expression and improved cardiac structure and function. Furthermore, serum PCS level was associated with the left ventricular mass (LVM) and left ventricular mass index (LVMI) in hemodialysis patients. In conclusion, the uremic toxin PCS injures cardiomyocytes via mTOR phosphorylation and DSBs, and Klotho antagonizes the damaging effects of PCS. Moreover, the SIRT6 protein plays an important role in UCM, and Klotho suppresses SIRT6 ubiquitination induced by PCS, further improves cardiac structure and function in UCM and exerts protective effects.
Collapse
Affiliation(s)
- Cheng Chen
- Department of Nephrology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China,; Department of Medical Science, Yangzhou Polytechnic College, Yangzhou, China
| | - Caidie Xie
- Department of Nephrology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China,; Department of Nephrology, Nanjing Second Hospital, Nanjing Hospital Affiliated to Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Yiqing Xiong
- Department of Nephrology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hanzhang Wu
- Department of Nephrology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lin Wu
- Department of Nephrology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jingfeng Zhu
- Department of Nephrology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Changying Xing
- Department of Nephrology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China,.
| | - Huijuan Mao
- Department of Nephrology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China,.
| |
Collapse
|
43
|
Klotho Modulates Pro-Fibrotic Activities in Human Atrial Fibroblasts through Inhibition of Phospholipase C Signaling and Suppression of Store-Operated Calcium Entry. Biomedicines 2022; 10:biomedicines10071574. [PMID: 35884879 PMCID: PMC9312905 DOI: 10.3390/biomedicines10071574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/24/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Atrial fibroblasts activation causes atrial fibrosis, which is one major pathophysiological contributor to atrial fibrillation (AF) genesis. Klotho is a pleiotropic protein with remarkable cardiovascular effects, including anti-inflammatory, anti-oxidative, and anti-apoptotic effects. This study investigated whether Klotho can modulate the activity of human atrial fibroblasts and provides an anti-fibrotic effect. Methods: Cell migration assay and proliferation assay were used to investigate fibrogenesis activities in single human atrial fibroblasts with or without treatment of Klotho (10 and 100 pM, 48 h). Calcium fluorescence imaging, the whole-cell patch-clamp, and Western blotting were performed in human atrial fibroblasts treated with and without Klotho (100 pM, 48 h) to evaluate the store-operated calcium entry (SOCE), transient receptor potential (TRP) currents, and downstream signaling. Results: High dose of Klotho (100 pM, 48 h) significantly reduced the migration of human atrial fibroblasts without alternating their proliferation; in addition, treatment of Klotho (100 pM, 48 h) also decreased SOCE and TRP currents. In the presence of BI-749327 (a selective canonical TRP 6 channel inhibitor, 1 μM, 48 h), Klotho (100 pM, 48 h) could not inhibit fibroblast migration nor suppress the TRP currents. Klotho-treated fibroblasts (100 pM, 48 h) had lower phosphorylated phospholipase C (PLC) (p-PLCβ3 Ser537) expression than the control. The PLC inhibitor, U73122 (1 μM, 48 h), reduced the migration, decreased SOCE and TRP currents, and lowered p-PLCβ3 in atrial fibroblasts, similar to Klotho. In the presence of the U73122 (1 μM, 48 h), Klotho (100 pM, 48 h) could not further modulate the migration and collagen synthesis nor suppress the TRP currents in human atrial fibroblasts. Conclusions: Klotho inhibited pro-fibrotic activities and SOCE by inhibiting the PLC signaling and suppressing the TRP currents, which may provide a novel insight into atrial fibrosis and arrhythmogenesis.
Collapse
|
44
|
Li C, Jiang S, Wang H, Wang Y, Han Y, Jiang J. Berberine exerts protective effects on cardiac senescence by regulating the Klotho/SIRT1 signaling pathway. Biomed Pharmacother 2022; 151:113097. [PMID: 35609366 DOI: 10.1016/j.biopha.2022.113097] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/04/2022] [Accepted: 05/07/2022] [Indexed: 11/15/2022] Open
Abstract
Berberine (BBR), an isoquinoline alkaloid, exerts protective effects on various cardiac injuries, and also extends the lifespan of individuals. However, the cardioprotective effect of BBR on cardiac senescence remains unknown. This study investigated the effects of BBR on cardiac senescence and its underlying mechanism. Senescent H9c2 cells induced by doxorubicin (DOX) and naturally aged rats were used to evaluate the protective effects of BBR on cardiac senescence. The results showed that BBR protected H9c2 cells against DOX-induced senescence. Exogenous Klotho (KL) exerts similar effects to those of BBR. BBR significantly increased in protein expression of KL, while transfection with KL-specific siRNA (siKL) inhibited the protective effect of BBR against senescence. Both BBR and exogenous KL decreased the levels of reactive oxygen species, inhibited apoptosis, and alleviated mitochondrial dysfunction in these cells; and transfection with siKL attenuated these effects of BBR. In naturally aged rats, BBR indeed protected the animals from cardiac aging, at least partially, through lowering the levels of cardiac hypertrophy markers, and increased the expression of KL in cardiac tissue. Additionally, BBR markedly reversed downregulation of sirtuin1 (SIRTI) in the aged heart. In vitro experiments revealed that BBR and exogenous KL also increased the expression of SIRT1, whereas siKL limited this effect of BBR in senescent H9c2 cell. In summary, BBR upregulated KL expression and prevented heart from cardiac senescence through anti-oxidative and anti-apoptotic effects, as well as alleviation of mitochondrial dysfunction. These effects may be mediated via regulation of the Klotho/SIRT1 signaling pathway.
Collapse
Affiliation(s)
- Cong Li
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, 100050 Beijing, China
| | - Shuang Jiang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, 100050 Beijing, China
| | - Hengfei Wang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, 100050 Beijing, China
| | - Yuhong Wang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, 100050 Beijing, China.
| | - Yanxing Han
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, 100050 Beijing, China.
| | - Jiandong Jiang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, 100050 Beijing, China.
| |
Collapse
|
45
|
Xu JP, Zeng RX, He MH, Lin SS, Guo LH, Zhang MZ. Associations Between Serum Soluble α-Klotho and the Prevalence of Specific Cardiovascular Disease. Front Cardiovasc Med 2022; 9:899307. [PMID: 35795366 PMCID: PMC9251131 DOI: 10.3389/fcvm.2022.899307] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/20/2022] [Indexed: 12/03/2022] Open
Abstract
Objective Accumulating experimental evidence has identified the beneficial effects of the anti-aging protein, serum soluble α-Klotho, on longevity, and the cardiovascular system. Although a previous study has revealed the predictive value of α-Klotho on total cardiovascular disease (CVD), the associations between α-Klotho and specific CVDs, including congestive heart failure (CHF), coronary heart disease (CHD), myocardial infarction (MI), and stroke, remains to be fully elucidated in humans. Methods For 8,615 adults in the 2007 to 2016 National Health and Nutrition Examination Survey, stratified multivariable logistic regression models, restricted cubic spline curves, and subgroup analyses were used to evaluate the associations between α-Klotho and the four specific CVDs. Results In the quartile analyses, compared to those in the highest quartile, participants in the lowest level of α-Klotho were significantly associated with CHF [odds ratio (OR) = 1.46, 95% CI: 1.09–1.97] and MI (1.33, 1.02–1.74), which was not the case for CHD (1.12, 0.91–1.38) or stroke (0.96, 0.73–1.25). Each unit increment in the ln-transformed α-Klotho concentrations was only positively associated with a 38 and 24% reduction in the prevalence of CHF and MI, respectively. Restricted cubic spline curves indicated that the α-Klotho was correlated with CHF and MI in linear-inverse relationships. Conclusion The present findings suggested that the serum soluble α-Klotho is significantly associated with the prevalence of CHF and MI. To better determine whether α-Klotho is a specific biomarker of CVD, particularly for CHD and stroke, further research in humans is needed.
Collapse
Affiliation(s)
- Jun-Peng Xu
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Rui-Xiang Zeng
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Mu-Hua He
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Shan-Shan Lin
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Li-Heng Guo
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Min-Zhou Zhang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- *Correspondence: Min-Zhou Zhang
| |
Collapse
|
46
|
Elnoury HA, Elgendy SA, Baloza SH, Ghamry HI, Soliman M, Abdel-Aziz EAM. Synergistic impacts of Montelukast and Klotho against doxorubicin-induced cardiac toxicity in Rats. Toxicol Res (Camb) 2022; 11:592-604. [DOI: 10.1093/toxres/tfac023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/24/2022] [Accepted: 04/02/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
Doxorubicin (DOX) is a powerful antitumor agent with a well-known cardiaotoxic side effects. In the current study, the ameliorative combined impacts of montelukast (Mont) and Klotho against doxorubicin-induced cardiac toxicity were examined. Fifty-six adult male rats (2 months age and weighting 150–200 g) were grouped into 7 groups (8 rats per group). Animals received doxorubicin alone or in combination with either Mont or Klotho. After 2 weeks of treatments, serum samples were examined to assess the changes in cardiac activity biomarkers such as LDH, CK-MB, cardiac troponin-I (cTn-I), and heart fatty acid binding protein (H-FABP). Serum changes of IL-6, inducible nitric oxide synthase (iNOS), and caspase-3 levels were assayed. The oxidative stress biomarkers such as total antioxidant capacity (TAC) and inflammatory (rat IL-1β and rat TNF-α,) and anti-inflammatory (rat IL-10) cytokines were examined. Heart histology and transforming growth factor-β1 (TGF-β1) immunoreactivity were measured. DOX induced cardiomyopathy, which was reflected by the increases in all examined cardiac parameters. Real-time PCR confirmed that DOX upregulated the expression of TNF-α and IL-1β and decreased the expression of IL-10. Moreover, DOX showed marked elevation in the ST segment T wave complex, causing profound tachycardia. Heart histology assessments showed cardiac cell necrosis, inflammatory cell infiltration, interstitial congestion, and increased TGF-β1 immunoreactivity. Montelukast and Klotho administration ameliorated all the altered parameters when administered alone or in combination to DOX-intoxicated rats. Klotho was more effective compared with montelukast in terms of reductions in heart rate, ST segment T wave complex elevation, cardiac enzymes (lactate dehydrogenase; LDH, creatine kinase-MB; CK-MB, cardiac troponin I; cTn-I, heart fatty acid binding protein; H-FABP) cardiac histology, and caspase-3 levels and increases in TAC activity. Montelukast was more effective in reducing serum levels of IL6 and iNOS, expression of TNF-α and IL-1β, and the upregulation of IL-10 expression. The co-administration of both drugs led to significantly more synergistic results in terms of reducing cardiac toxicity. In conclusion, montelukast and Klotho either alone or in combination were confirmed to be effective in suppressing DOX-induced cardiac toxicity in rats.
Collapse
Affiliation(s)
- Heba A Elnoury
- Department of Pharmacology , Faculty of Medicine, Benha University, Benha 13511, Egypt
| | - Salwa A Elgendy
- Department of Pharmacology , Faculty of Medicine, Benha University, Benha 13511, Egypt
| | - Samar H Baloza
- Genetic and Genetic Engineering , Animal Wealth Development Department, Faculty of Veterinary Medicine, Benha University, Benha 13736, Egypt
| | - Heba I Ghamry
- Department of Home Economics , College of Home Economics, King Khalid University, P.O. Box 960, Abha, 61421, Saudi Arabia
| | - Mohamed Soliman
- Clinical Laboratory Sciences Department , Turabah University College, Taif University, 21995, Saudi Arabia
| | | |
Collapse
|
47
|
Baccam GC, Xie J, Jin X, Park H, Wang B, Husson H, Ibraghimov-Beskrovnaya O, Huang CL. Glucosylceramide synthase inhibition protects against cardiac hypertrophy in chronic kidney disease. Sci Rep 2022; 12:9340. [PMID: 35660779 PMCID: PMC9167280 DOI: 10.1038/s41598-022-13390-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/09/2022] [Indexed: 11/20/2022] Open
Abstract
A significant population of patients with chronic kidney disease (CKD) develops cardiac hypertrophy, which can lead to heart failure and sudden cardiac death. Soluble klotho (sKL), the shed ectodomain of the transmembrane protein klotho, protects the heart against hypertrophic growth. We have shown that sKL protects the heart by regulating the formation and function of lipid rafts by targeting the sialic acid moiety of gangliosides, GM1/GM3. Reduction in circulating sKL contributes to an increased risk of cardiac hypertrophy in mice. sKL replacement therapy has been considered but its use is limited by the inability to mass produce the protein. Therefore, alternative methods to protect the heart are proposed. Glucosylation of ceramide catalyzed by glucosylceramide synthase is the entry step for the formation of gangliosides. Here we show that oral administration of a glucosylceramide synthase inhibitor (GCSi) reduces plasma and heart tissue glycosphingolipids, including gangliosides. Administration of GCSi is protective in two mouse models of cardiac stress-induction, one with isoproterenol overstimulation and the other with 5/6 nephrectomy-induced CKD. Treatment with GCSi does not alter the severity of renal dysfunction and hypertension in CKD. These results provide proof of principle for targeting glucosylceramide synthase to decrease gangliosides as a treatment for cardiac hypertrophy. They also support the hypothesis that sKL protects the heart by targeting gangliosides.
Collapse
Affiliation(s)
- Gabriel C Baccam
- Division of Nephrology, Department of Internal Medicine, University of Iowa Carver College of Medicine, 200 Hawkins Drive, E300 GH, Iowa City, IA, 52242-1081, USA
| | - Jian Xie
- Division of Nephrology, Department of Internal Medicine, University of Iowa Carver College of Medicine, 200 Hawkins Drive, E300 GH, Iowa City, IA, 52242-1081, USA
| | - Xin Jin
- Division of Nephrology, Department of Internal Medicine, University of Iowa Carver College of Medicine, 200 Hawkins Drive, E300 GH, Iowa City, IA, 52242-1081, USA
| | - Hyejung Park
- US Early Development, Synthetics Platform, Global CMC Development, Sanofi, Waltham, MA, 02451, USA
| | - Bing Wang
- US Early Development, Synthetics Platform, Global CMC Development, Sanofi, Waltham, MA, 02451, USA
| | - Hervé Husson
- Genomic Medicine Unit, Sanofi, Framingham, MA, 01701, USA
| | - Oxana Ibraghimov-Beskrovnaya
- Rare and Neurologic Diseases, Sanofi, Framingham, MA, 01701, USA
- Dyne Therapeutics, 1560 Trapelo Road, Waltham, MA, 20451, USA
| | - Chou-Long Huang
- Division of Nephrology, Department of Internal Medicine, University of Iowa Carver College of Medicine, 200 Hawkins Drive, E300 GH, Iowa City, IA, 52242-1081, USA.
| |
Collapse
|
48
|
Chen K, Wang S, Sun Z. In Vivo Cardiac-specific Expression of Adenylyl Cyclase 4 Gene Protects against Klotho Deficiency-induced Heart Failure. Transl Res 2022; 244:101-113. [PMID: 35114419 PMCID: PMC9119924 DOI: 10.1016/j.trsl.2022.01.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/10/2022] [Accepted: 01/26/2022] [Indexed: 01/10/2023]
Abstract
Klotho is an aging-suppressor gene. Klotho gene deficiency causes heart failure in Klotho-hypomorphic mutant (KL (-/-)) mice. RNA-seq and western blot analysis showed that adenylyl cyclase type IV (AC4) mRNA and protein expression was largely decreased in cardiomyocytes of KL (-/-) mice. The objective of this study was to investigate whether in vivo cardiac-specific expression of AC4 gene protects against Klotho deficiency-induced heart failure. Interestingly, in vivo AAV-based cardiac-specific AC4 gene expression increased left ventricular fractional shortening, ejection fraction, stroke volume, and left ventricular end-diastolic volume in KL (-/-) mice, suggesting that cardiac-specific AC4 gene expression improves Klotho deficiency-induced heart dysfunction. Cardiac-specific AC4 gene expression also decreased Klotho deficiency-induced cardiac hypertrophy. Cardiac-specific AC4 gene expression alleviated Klotho deficiency-induced cardiac fibrosis and calcification. Furthermore, cardiac-specific AC4 gene expression attenuated mitochondrial dysfunction, superoxide accumulation and cardiomyocyte apoptotic cell death. Thus, downregulation of AC4 may contribute to Klotho deficiency-induced heart failure. Mechanistically, AAV2/9-αMHC-AC4 increased cardiomyocytic cAMP levels and thus regulated the PKA-PLN-SERCA2 signal pathway, which is critical in modulating calcium flux and mitochondrial function. In conclusion, cardiac-specific AC4 gene expression protects against Klotho deficiency-induced heart failure through increasing cardiomyocytic cAMP levels, which alleviates cAMP-dependent mitochondrial dysfunction, superoxide accumulation and apoptotic cell death. AC4 regulates superoxide levels via the cAMP-PKA pathway. AC4 could be a potential therapeutic target for heart failure associated with Klotho deficiency. Heart failure is the major cause of mortality in patients with chronic kidney disease (CKD). A decrease in Klotho levels is linked to CKD.
Collapse
Affiliation(s)
- Kai Chen
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America; Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Shirley Wang
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America; Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Zhongjie Sun
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America; Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America.
| |
Collapse
|
49
|
Wang Y, Wang K, Bao Y, Zhang T, Ainiwaer D, Xiong X, Wang G, Sun Z. The serum soluble Klotho alleviates cardiac aging and regulates M2a/M2c macrophage polarization via inhibiting TLR4/Myd88/NF-κB pathway. Tissue Cell 2022; 76:101812. [DOI: 10.1016/j.tice.2022.101812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/15/2022] [Accepted: 04/26/2022] [Indexed: 11/27/2022]
|
50
|
Zhu X, Gao D, Albertazzi V, Zhong J, Ma LJ, Du L, Shyr Y, Kon V, Yang HC, Fogo AB. Podocyte-Related Mechanisms Underlying Survival Benefit of Long-Term Angiotensin Receptor Blocker. Int J Mol Sci 2022; 23:6018. [PMID: 35682697 PMCID: PMC9181646 DOI: 10.3390/ijms23116018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/18/2022] [Accepted: 05/23/2022] [Indexed: 12/10/2022] Open
Abstract
We previously found that short-term treatment (week 8 to 12 after injury) with high-dose angiotensin receptor blocker (ARB) induced the regression of existing glomerulosclerosis in 5/6 nephrectomy rats. We therefore assessed the effects of long-term intervention with ARB vs. nonspecific antihypertensives in this study. Adult rats underwent 5/6 nephrectomy and renal biopsy 8 weeks later. The rats were then divided into three groups with equivalent renal function and glomerular sclerosis and treated with high-dose losartan (ARB), nonspecific antihypertensive triple-therapy (TRX), or left untreated (Control) until week 30. We found that blood pressure, serum creatinine levels, and glomerulosclerosis were lower at sacrifice in ARB and TRX vs. Control. Only ARB reduced proteinuria and maintained the density of WT-1-positive podocytes. Glomerular tufts showed more double-positive cells for CD44, a marker of activated parietal epithelial cells, and synaptopodin after ARB vs. TRX or Control. ARB treatment reduced aldosterone levels. ARB-treated rats had significantly improved survival when compared with TRX or Control. We conclude that both long-term ARB and triple-therapy ameliorate progression, but do not sustain the regression of glomerulosclerosis. ARB resulted in the superior preservation of podocyte integrity and decreased proteinuria and aldosterone, linked to increased survival in the uremic environment.
Collapse
Affiliation(s)
- Xuejing Zhu
- Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha 410011, China;
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (D.G.); (V.A.); (J.Z.); (L.-J.M.); (H.-C.Y.)
| | - Dan Gao
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (D.G.); (V.A.); (J.Z.); (L.-J.M.); (H.-C.Y.)
- Department of Nephrology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China
| | - Vittorio Albertazzi
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (D.G.); (V.A.); (J.Z.); (L.-J.M.); (H.-C.Y.)
- Unit of Nephrology and Dialysis, “Guglielmo da Saliceto” AUSL Piacenza Hospital, Via Taverna 49, 29100 Piacenza, Italy
| | - Jianyong Zhong
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (D.G.); (V.A.); (J.Z.); (L.-J.M.); (H.-C.Y.)
- Division of Pediatric Nephrology, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| | - Li-Jun Ma
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (D.G.); (V.A.); (J.Z.); (L.-J.M.); (H.-C.Y.)
| | - Liping Du
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (L.D.); (Y.S.)
| | - Yu Shyr
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (L.D.); (Y.S.)
| | - Valentina Kon
- Division of Pediatric Nephrology, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| | - Hai-Chun Yang
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (D.G.); (V.A.); (J.Z.); (L.-J.M.); (H.-C.Y.)
- Division of Pediatric Nephrology, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| | - Agnes B. Fogo
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (D.G.); (V.A.); (J.Z.); (L.-J.M.); (H.-C.Y.)
- Division of Pediatric Nephrology, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
- Division of Nephrology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|