1
|
Limatola N, Chun JT, Schmitt JL, Lehn JM, Santella L. The Effect of Synthetic Polyamine BPA-C8 on the Fertilization Process of Intact and Denuded Sea Urchin Eggs. Cells 2024; 13:1477. [PMID: 39273047 PMCID: PMC11394060 DOI: 10.3390/cells13171477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
Sea urchin eggs are covered with layers of extracellular matrix, namely, the vitelline layer (VL) and jelly coat (JC). It has been shown that sea urchin eggs' JC components serve as chemoattractants or ligands for the receptor on the fertilizing sperm to promote the acrosome reaction. Moreover, the egg's VL provides receptors for conspecific sperm to bind, and, to date, at least two sperm receptors have been identified on the surface of sea urchin eggs. Interestingly, however, according to our previous work, denuded sea urchin eggs devoid of the JC and VL do not fail to become fertilized by sperm. Instead, they are bound and penetratedby multiple sperm, raising the possibility that an alternative pathway independent of the VL-residing sperm receptor may be at work. In this research, we studied the roles of the JC and VL using intact and denuded eggs and the synthetic polyamine BPA-C8. BPA-C8 is known to bind to the negatively charged macromolecular complexes in the cells, such as the JC, VL, and the plasma membrane of echinoderm eggs, as well as to the actin filaments in fibroblasts. Our results showed that, when added to seawater, BPA-C8 significantly repressed the Ca2+ wave in the intact P. lividus eggs at fertilization. In eggs deprived of the VL and JC, BPA-C8 binds to the plasma membrane and increases fibrous structures connecting microvilli, thereby allowing the denuded eggs to revert towards monospermy at fertilization. However, the reduced Ca2+ signal in denuded eggs was nullified compared to the intact eggs because removing the JC and VL already decreased the Ca2+ wave. BPA-C8 does not cross the VL and the cell membrane of unfertilized sea urchin eggs to diffuse into the cytoplasm at variance with the fibroblasts. Indeed, the jasplakinolide-induced polymerization of subplasmalemmal actin filaments was inhibited in the eggs microinjected with BPA-C8, but not in the ones bath-incubated with the same dose of BPA-C8.
Collapse
Affiliation(s)
- Nunzia Limatola
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy;
| | - Jong Tai Chun
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy;
| | - Jean-Louis Schmitt
- Laboratory of Supramolecular Chemistry, Institut de Science et d’Ingénierie Supramoléculaires ISIS, Université de Strasbourg, 8 Allée Gaspard Monge, 67000 Strasbourg, France; (J.-L.S.); (J.-M.L.)
| | - Jean-Marie Lehn
- Laboratory of Supramolecular Chemistry, Institut de Science et d’Ingénierie Supramoléculaires ISIS, Université de Strasbourg, 8 Allée Gaspard Monge, 67000 Strasbourg, France; (J.-L.S.); (J.-M.L.)
| | - Luigia Santella
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy;
| |
Collapse
|
2
|
Das S, Banerjee A, Roy S, Mallick T, Maiti S, De P. Zwitterionic Polysulfobetaine Inhibits Cancer Cell Migration Owing to Actin Cytoskeleton Dynamics. ACS APPLIED BIO MATERIALS 2024; 7:144-153. [PMID: 38150303 DOI: 10.1021/acsabm.3c00682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Cell migration is an essential dynamic process for most living cells, mainly driven by the reorganization of actin cytoskeleton. To control actin dynamics, a molecular architecture that can serve as a nucleator has been designed by polymerizing sulfobetaine methacrylate. The synthesized zwitterionic polymer, poly(sulfobetaine methacrylate) (PZI), effectively nucleates the polymerization process of G-actin and substantially accelerates the rate of polymerization. Isothermal titration calorimetry (ITC) and bioinformatics analysis indicated binding between PZI and monomeric G-actin. Thus, in vitro actin dynamics was studied by dynamic light scattering (DLS), pyrene-actin polymerization assay, and total internal reflection fluorescence microscopy (TIRFM). Furthermore, a 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) fluorophore-containing monomeric unit was incorporated into the sulfobetaine zwitterionic architecture to visualize the effect of polymer in the cellular environment. The BODIPY-containing zwitterionic sulfobetaine polymer (PZI-F) successfully penetrated the cell and remained in the lysosome with minimal cytotoxicity. Confocal microscopy revealed the influence of this polymer on the cellular actin cytoskeleton dynamics. The PZI-F polymer was successfully able to inhibit the collective migration of the human cervical cancer cell line (HeLa cell) and breast cancer cell line (MDA-MB-231 cell), as confirmed by a wound healing assay. Therefore, polyzwitterionic sulfobetaine could be explored as an inhibitor of cancer cell migration.
Collapse
Affiliation(s)
- Shubham Das
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Arnab Banerjee
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Subhadip Roy
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Tamanna Mallick
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Sankar Maiti
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Priyadarsi De
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| |
Collapse
|
3
|
Godeau AL, Leoni M, Comelles J, Guyomar T, Lieb M, Delanoë-Ayari H, Ott A, Harlepp S, Sens P, Riveline D. 3D single cell migration driven by temporal correlation between oscillating force dipoles. eLife 2022; 11:71032. [PMID: 35899947 PMCID: PMC9395190 DOI: 10.7554/elife.71032] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Directional cell locomotion requires symmetry breaking between the front and rear of the cell. In some cells, symmetry breaking manifests itself in a directional flow of actin from the front to the rear of the cell. Many cells, especially in physiological 3D matrices do not show such coherent actin dynamics and present seemingly competing protrusion/retraction dynamics at their front and back. How symmetry breaking manifests itself for such cells is therefore elusive. We take inspiration from the scallop theorem proposed by Purcell for micro-swimmers in Newtonian fluids: self-propelled objects undergoing persistent motion at low Reynolds number must follow a cycle of shape changes that breaks temporal symmetry. We report similar observations for cells crawling in 3D. We quantified cell motion using a combination of 3D live cell imaging, visualization of the matrix displacement and a minimal model with multipolar expansion. We show that our cells embedded in a 3D matrix form myosin-driven force dipoles at both sides of the nucleus, that locally and periodically pinch the matrix. The existence of a phase shift between the two dipoles is required for directed cell motion which manifests itself as cycles with finite area in the dipole-quadrupole diagram, a formal equivalence to the Purcell cycle. We confirm this mechanism by triggering local dipolar contractions with a laser. This leads to directed motion. Our study reveals that these cells control their motility by synchronizing dipolar forces distributed at front and back. This result opens new strategies to externally control cell motion as well as for the design of micro-crawlers.
Collapse
Affiliation(s)
- Amélie Luise Godeau
- Laboratory of Cell Physics, University of Strasbourg, CNRS, IGBMC, Illkirch, France
| | | | - Jordi Comelles
- Laboratory of Cell Physics, University of Strasbourg, CNRS, IGBMC, Illkirch, France
| | - Tristan Guyomar
- Laboratory of Cell Physics, University of Strasbourg, CNRS, IGBMC, Illkirch, France
| | - Michele Lieb
- Laboratory of Cell Physics, University of Strasbourg, CNRS, IGBMC, Illkirch, France
| | - Hélène Delanoë-Ayari
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5306, LyonVilleurbanne Cedex, France
| | - Albrecht Ott
- Universität des Saarlandes, Saarbrücken, Germany
| | - Sebastien Harlepp
- INSERM UMR S1109, Institut d'Hématologie et d'Immunologie, Strasbourg, France
| | - Pierre Sens
- Laboratoire Physico Chimie Curie, Institut Curie, CNRS UMR168, Paris, France
| | - Daniel Riveline
- Development and stem cells, University of Strasbourg, CNRS, IGBMC, Illkirch, France
| |
Collapse
|
4
|
Caballero D, Lima AC, Abreu CM, Neves NM, Correlo VM, Oliveira JM, Reis RL, Kundu SC. Quantifying protrusions as tumor-specific biophysical predictors of cancer invasion in in vitro tumor micro-spheroid models. IN VITRO MODELS 2022; 1:229-239. [PMID: 39871869 PMCID: PMC11756473 DOI: 10.1007/s44164-022-00020-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/08/2022] [Accepted: 04/22/2022] [Indexed: 01/29/2025]
Abstract
An important hallmark in cancer research is the discovery of suitable features capable to reliably predict tumor invasiveness, and consequently, their metastatic potential at an early stage. Current methods are based on molecular biomarker screening and imaging that may not reveal the altered properties of tumor cells, being also labor-intensive and costly. Biophysical-based methodologies provide a new framework assessing-and even predicting-the invasion potential of tumors with improved accuracy. In particular, the stochastic fluctuations of cancer invasive protrusions can be used as a tumor-specific biophysical indicator of its aggressiveness. In this methodology, tumor micro-spheroids with different metastatic capabilities were employed as in vitro models to analyze protrusion activity. It is described the procedure for extracting the descriptive biophysical parameters characteristic of protrusion activity, which magnitude depends on the invasion capability of tumors. Next, a simple mathematical approach is employed to define a predictive index that correlates with tumor invasiveness. Overall, this innovative approach may provide a simple method for unveiling cancer invasiveness and complement existing diagnosis methodologies. Supplementary Information The online version contains supplementary material available at 10.1007/s44164-022-00020-1.
Collapse
Affiliation(s)
- D. Caballero
- 3B’s Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - A. C. Lima
- 3B’s Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - C. M. Abreu
- 3B’s Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - N. M. Neves
- 3B’s Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - V. M. Correlo
- 3B’s Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - J. M. Oliveira
- 3B’s Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - R. L. Reis
- 3B’s Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - S. C. Kundu
- 3B’s Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| |
Collapse
|
5
|
Limatola N, Chun JT, Cherraben S, Schmitt JL, Lehn JM, Santella L. Effects of Dithiothreitol on Fertilization and Early Development in Sea Urchin. Cells 2021; 10:3573. [PMID: 34944081 PMCID: PMC8700669 DOI: 10.3390/cells10123573] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/11/2021] [Accepted: 12/15/2021] [Indexed: 01/20/2023] Open
Abstract
The vitelline layer (VL) of a sea urchin egg is an intricate meshwork of glycoproteins that intimately ensheathes the plasma membrane. During fertilization, the VL plays important roles. Firstly, the receptors for sperm reside on the VL. Secondly, following cortical granule exocytosis, the VL is elevated and transformed into the fertilization envelope (FE), owing to the assembly and crosslinking of the extruded materials. As these two crucial stages involve the VL, its alteration was expected to affect the fertilization process. In the present study, we addressed this question by mildly treating the eggs with a reducing agent, dithiothreitol (DTT). A brief pretreatment with DTT resulted in partial disruption of the VL, as judged by electron microscopy and by a novel fluorescent polyamine probe that selectively labelled the VL. The DTT-pretreated eggs did not elevate the FE but were mostly monospermic at fertilization. These eggs also manifested certain anomalies at fertilization: (i) compromised Ca2+ signaling, (ii) blocked translocation of cortical actin filaments, and (iii) impaired cleavage. Some of these phenotypic changes were reversed by restoring the DTT-exposed eggs in normal seawater prior to fertilization. Our findings suggest that the FE is not the decisive factor preventing polyspermy and that the integrity of the VL is nonetheless crucial to the egg's fertilization response.
Collapse
Affiliation(s)
- Nunzia Limatola
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy;
| | - Jong Tai Chun
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy
| | - Sawsen Cherraben
- Laboratory of Supramolecular Chemistry, Institut de Science et d’Ingénierie Supramoléculaires ISIS—Université de Strasbourg, 8 allée Gaspard Monge, 67000 Strasbourg, France; (S.C.); (J.-L.S.); (J.-M.L.)
| | - Jean-Louis Schmitt
- Laboratory of Supramolecular Chemistry, Institut de Science et d’Ingénierie Supramoléculaires ISIS—Université de Strasbourg, 8 allée Gaspard Monge, 67000 Strasbourg, France; (S.C.); (J.-L.S.); (J.-M.L.)
| | - Jean-Marie Lehn
- Laboratory of Supramolecular Chemistry, Institut de Science et d’Ingénierie Supramoléculaires ISIS—Université de Strasbourg, 8 allée Gaspard Monge, 67000 Strasbourg, France; (S.C.); (J.-L.S.); (J.-M.L.)
| | - Luigia Santella
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy;
| |
Collapse
|
6
|
Bock F, Elias BC, Dong X, Parekh DV, Mernaugh G, Viquez OM, Hassan A, Amara VR, Liu J, Brown KL, Terker AS, Chiusa M, Gewin LS, Fogo AB, Brakebusch CH, Pozzi A, Zent R. Rac1 promotes kidney collecting duct integrity by limiting actomyosin activity. J Cell Biol 2021; 220:e202103080. [PMID: 34647970 PMCID: PMC8563289 DOI: 10.1083/jcb.202103080] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/27/2021] [Accepted: 09/08/2021] [Indexed: 12/31/2022] Open
Abstract
A polarized collecting duct (CD), formed from the branching ureteric bud (UB), is a prerequisite for an intact kidney. The small Rho GTPase Rac1 is critical for actin cytoskeletal regulation. We investigated the role of Rac1 in the kidney collecting system by selectively deleting it in mice at the initiation of UB development. The mice exhibited only a mild developmental phenotype; however, with aging, the CD developed a disruption of epithelial integrity and function. Despite intact integrin signaling, Rac1-null CD cells had profound adhesion and polarity abnormalities that were independent of the major downstream Rac1 effector, Pak1. These cells did however have a defect in the WAVE2-Arp2/3 actin nucleation and polymerization apparatus, resulting in actomyosin hyperactivity. The epithelial defects were reversible with direct myosin II inhibition. Furthermore, Rac1 controlled lateral membrane height and overall epithelial morphology by maintaining lateral F-actin and restricting actomyosin. Thus, Rac1 promotes CD epithelial integrity and morphology by restricting actomyosin via Arp2/3-dependent cytoskeletal branching.
Collapse
Affiliation(s)
- Fabian Bock
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Bertha C. Elias
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Xinyu Dong
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Diptiben V. Parekh
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
| | - Glenda Mernaugh
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Olga M. Viquez
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Anjana Hassan
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Venkateswara Rao Amara
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Jiageng Liu
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Kyle L. Brown
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Andrew S. Terker
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Manuel Chiusa
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Department of Veterans Affairs Hospital, Nashville, TN
| | - Leslie S. Gewin
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Department of Veterans Affairs Hospital, Nashville, TN
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN
| | - Agnes B. Fogo
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | | | - Ambra Pozzi
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Department of Veterans Affairs Hospital, Nashville, TN
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Roy Zent
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Department of Veterans Affairs Hospital, Nashville, TN
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN
| |
Collapse
|
7
|
Chotphruethipong L, Binlateh T, Hutamekalin P, Sukketsiri W, Aluko RE, Benjakul S. In vitro antioxidant and wound-healing activities of hydrolyzed collagen from defatted Asian sea bass skin as influenced by different enzyme types and hydrolysis processes. RSC Adv 2021; 11:18144-18151. [PMID: 35480907 PMCID: PMC9033432 DOI: 10.1039/d1ra03131g] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 04/24/2021] [Indexed: 01/06/2023] Open
Abstract
Hydrolyzed collagen (HC) from defatted Asian sea bass skin was prepared by different enzymatic hydrolysis processes. For one-enzyme hydrolysis, papain (0.3 unit per g dry matter, DM) at 40 °C for 90 min or Alcalase (0.2 or 0.3 unit per g DM) at 50 °C for 90 min were used. The two-enzyme hydrolysis was accomplished with papain at 0.3 unit per g DM (P0.3), followed by Alcalase hydrolysis at 0.2 or 0.3 units per g DM (A0.2 or A0.3, respectively). HC prepared using the P0.3 + A0.3 process showed higher peptide yield, recovery and imino acid content in addition to stronger ABTS, DPPH radical scavenging activities and ferric reducing antioxidant power than other hydrolysis processes. HC obtained from the P0.3 + A0.3 process (at 125-500 μg mL-1) induced MRC-5 fibroblast proliferation and augmented migration and lamellipodia formation in the cells. Peptides with average molecular weight of 750 Da exhibited the highest ABTS radical scavenging activity while the 4652 Da fraction had the lowest. Thus, HC can be considered as a suitable ingredient to formulate functional products for skin nourishment and wound healing.
Collapse
Affiliation(s)
- Lalita Chotphruethipong
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University Hat Yai Songkhla 90110 Thailand
| | - Thunwa Binlateh
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University Hat Yai Songkhla 90110 Thailand
| | - Pilaiwanwadee Hutamekalin
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University Hat Yai Songkhla 90110 Thailand
| | - Wanida Sukketsiri
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University Hat Yai Songkhla 90110 Thailand
| | - Rotimi E Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba Winnipeg Manitoba R3T 2N2 Canada
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University Hat Yai Songkhla 90110 Thailand
| |
Collapse
|
8
|
Maciel D, Guerrero-Beltrán C, Ceña-Diez R, Tomás H, Muñoz-Fernández MÁ, Rodrigues J. New anionic poly(alkylideneamine) dendrimers as microbicide agents against HIV-1 infection. NANOSCALE 2019; 11:9679-9690. [PMID: 31066407 DOI: 10.1039/c9nr00303g] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Acquired immune deficiency syndrome (AIDS) due to human immunodeficiency virus type-1 (HIV-1) represents one of the most important sexually transmitted infections (STI) worldwide. Great international efforts have been made to stop new infections but, to date, several compounds failed as microbicides at different stages of clinical trials. The quest to design new molecules that could prevent these infections is essential. In this work, we synthesized the first, second and third generations of anionic dendrimers having carboxylate and sulfonate terminal groups, respectively named G1C, G2C, G3C and G1S, G2S, and G3S, starting from a family of poly(alkylideneamine) dendrimers with nitrile termini. The anionic terminal groups of these dendrimers were expected to prompt them to act against HIV-1 infection. All dendrimers were fully characterized by 1H- and 13C-NMR, FTIR, MS and zeta potential techniques. Importantly, they were able to remain stable in the solid state and aqueous solutions at least for one and a half years. Screening of these six new dendrimers was then performed to shed light on their potential anti-HIV-1 activity and their mechanism of action. Results showed that the dendrimers were cytocompatible and that G1C and G1S dendrimers had important activity against R5-HIV-1NLAD8 and X4-HIV-1NL4.3 isolates by acting directly on viral particles and blocking their entry in host cells. Additionally, G1C and G1S dendrimers maintained their inhibitory effect at different pH values. Through a vaginal irritation assay carried out in BALB/c mice, the safety of these new dendrimers for topical application was also shown. Taken together, our results clearly show that G1C and G1S dendrimers are strong candidates for developing an effective microbicide to prevent HIV-1 new infections.
Collapse
Affiliation(s)
- Dina Maciel
- CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal.
| | | | | | | | | | | |
Collapse
|
9
|
Ali A, Bovilla VR, Mysarla DK, Siripurapu P, Pathak RU, Basu B, Mamillapalli A, Bhattacharya S. Knockdown of Broad-Complex Gene Expression of Bombyx mori by Oligopyrrole Carboxamides Enhances Silk Production. Sci Rep 2017; 7:805. [PMID: 28400559 PMCID: PMC5429751 DOI: 10.1038/s41598-017-00653-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 12/15/2016] [Indexed: 11/09/2022] Open
Abstract
Bombyx mori (B. mori) is important due to its major role in the silk production. Though DNA binding ligands often influence gene expression, no attempt has been made to exploit their use in sericulture. The telomeric heterochromatin of B. mori is enriched with 5'-TTAGG-3' sequences. These sequences were also found to be present in several genes in the euchromatic regions. We examined three synthetic oligopyrrole carboxamides that target 5'-TTAGG-3' sequences in controlling the gene expression in B. mori. The ligands did not show any defect or feeding difference in the larval stage, crucial for silk production. The ligands caused silencing of various isoforms of the broad-complex transcription factor and cuticle proteins which resulted in late pupal developmental defects. Furthermore, treatment with such drugs resulted in statistically enhanced cocoon weight, shell weight, and silk yield. This study shows for the first time use of oligopyrrole carboxamide drugs in controlling gene expression in B. mori and their long term use in enhancing silk production.
Collapse
Affiliation(s)
- Asfa Ali
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560 012, India
| | - Venugopal Reddy Bovilla
- Department of Biotechnology, GITAM Institute of Science, GITAM University, Visakhapatnam, 530 045, India
| | - Danti Kumari Mysarla
- Department of Biotechnology, GITAM Institute of Science, GITAM University, Visakhapatnam, 530 045, India
| | - Prasanthi Siripurapu
- Department of Biotechnology, GITAM Institute of Science, GITAM University, Visakhapatnam, 530 045, India
| | - Rashmi U Pathak
- Centre for Cellular and Molecular Biology, Hyderabad, 500 007, India
| | - Bhakti Basu
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, 400 085, India
| | - Anitha Mamillapalli
- Department of Biotechnology, GITAM Institute of Science, GITAM University, Visakhapatnam, 530 045, India
| | - Santanu Bhattacharya
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560 012, India. .,Director's Research Unit, and Technical Research Centre, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, West Bengal, 700 032, India.
| |
Collapse
|
10
|
Maiti B, Dutta P, Seal S, Pal S, De P, Maiti S. Side-chain amino acid based cationic polymer induced actin polymerization. J Mater Chem B 2017; 5:1218-1226. [PMID: 32263591 DOI: 10.1039/c6tb02814d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Actin filament dynamics is important for proper cellular functions and is controlled by hundreds of actin binding proteins inside the cells. There are several natural and synthetic compounds that are able to bind actin and alter the actin filament dynamics. Since the actin dynamics changes due to nonspecific electrostatic interactions between negatively charged actin and positively charged proteins, and natural or synthetic compounds, herein we report the synthesis of poly(tert-butyl carbamate (Boc)-l-alanine methacryloyloxyethyl ester) (P(Boc-Ala-HEMA)) homopolymer in a controlled fashion by the reversible addition-fragmentation chain transfer (RAFT) polymerization. Subsequent deprotection of the Boc groups in the homopolymer under acidic conditions resulted in a positively charged polymer with primary amine moieties at the side chains. This cationic polymer (P(NH3 +-Ala-HEMA)), is able to nucleate actin in vitro. The cationic polymer and corresponding partially fluorescence tagged polymer are able to nucleate actin filament in vivo. These polymers are nontoxic to the cultured cells and also stabilize the filamentous actin in vitro.
Collapse
Affiliation(s)
- Binoy Maiti
- Polymer Research Centre, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur - 741246, Nadia, West Bengal, India.
| | | | | | | | | | | |
Collapse
|
11
|
Binamé F, Bidaud-Meynard A, Magnan L, Piquet L, Montibus B, Chabadel A, Saltel F, Lagrée V, Moreau V. Cancer-associated mutations in the protrusion-targeting region of p190RhoGAP impact tumor cell migration. J Cell Biol 2016; 214:859-73. [PMID: 27646271 PMCID: PMC5037408 DOI: 10.1083/jcb.201601063] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 08/15/2016] [Indexed: 01/01/2023] Open
Abstract
p190RhoGAP (p190A) is a negative regulator of RhoA and localizes to membrane protrusions, where its GAP activity is required for directional migration. Here, Binamé et al. identify the protrusion-localization sequence in p190A and show that cancer-associated mutations in this region affect p190A localization and function as well as tumor cell migration. Spatiotemporal regulation of RhoGTPases such as RhoA is required at the cell leading edge to achieve cell migration. p190RhoGAP (p190A) is the main negative regulator of RhoA and localizes to membrane protrusions, where its GTPase-activating protein (GAP) activity is required for directional migration. In this study, we investigated the molecular processes responsible for p190A targeting to actin protrusions. By analyzing the subcellular localization of truncated versions of p190A in hepatocellular carcinoma cells, we identified a novel functional p190A domain: the protrusion localization sequence (PLS) necessary and sufficient for p190A targeting to leading edges. Interestingly, the PLS is also required for the negative regulation of p190A RhoGAP activity. Further, we show that the F-actin binding protein cortactin binds the PLS and is required for p190A targeting to protrusions. Lastly, we demonstrate that cancer-associated mutations in PLS affect p190A localization and function, as well as tumor cell migration. Altogether, our data unveil a new mechanism of regulation of p190A in migrating tumor cells.
Collapse
Affiliation(s)
- Fabien Binamé
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1053 Bordeaux Research In Translational Oncology, F-33000 Bordeaux, France Université de Bordeaux, Unité Mixte de Recherche 1053 Bordeaux Research In Translational Oncology, F-33000 Bordeaux, France
| | - Aurélien Bidaud-Meynard
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1053 Bordeaux Research In Translational Oncology, F-33000 Bordeaux, France Université de Bordeaux, Unité Mixte de Recherche 1053 Bordeaux Research In Translational Oncology, F-33000 Bordeaux, France
| | - Laure Magnan
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1053 Bordeaux Research In Translational Oncology, F-33000 Bordeaux, France Université de Bordeaux, Unité Mixte de Recherche 1053 Bordeaux Research In Translational Oncology, F-33000 Bordeaux, France
| | - Léo Piquet
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1053 Bordeaux Research In Translational Oncology, F-33000 Bordeaux, France Université de Bordeaux, Unité Mixte de Recherche 1053 Bordeaux Research In Translational Oncology, F-33000 Bordeaux, France
| | - Bertille Montibus
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1053 Bordeaux Research In Translational Oncology, F-33000 Bordeaux, France Université de Bordeaux, Unité Mixte de Recherche 1053 Bordeaux Research In Translational Oncology, F-33000 Bordeaux, France
| | - Anne Chabadel
- Institut National de la Santé et de la Recherche Médicale, Unité 441, F-33600 Pessac, France
| | - Frédéric Saltel
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1053 Bordeaux Research In Translational Oncology, F-33000 Bordeaux, France Université de Bordeaux, Unité Mixte de Recherche 1053 Bordeaux Research In Translational Oncology, F-33000 Bordeaux, France
| | - Valérie Lagrée
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1053 Bordeaux Research In Translational Oncology, F-33000 Bordeaux, France Université de Bordeaux, Unité Mixte de Recherche 1053 Bordeaux Research In Translational Oncology, F-33000 Bordeaux, France
| | - Violaine Moreau
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1053 Bordeaux Research In Translational Oncology, F-33000 Bordeaux, France Université de Bordeaux, Unité Mixte de Recherche 1053 Bordeaux Research In Translational Oncology, F-33000 Bordeaux, France
| |
Collapse
|
12
|
Chen M, Xin J, Liu B, Luo L, Li J, Yin W, Li M. Mitogen-Activated Protein Kinase and Intracellular Polyamine Signaling Is Involved in TRPV1 Activation-Induced Cardiac Hypertrophy. J Am Heart Assoc 2016; 5:JAHA.116.003718. [PMID: 27473037 PMCID: PMC5015292 DOI: 10.1161/jaha.116.003718] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND The transient receptor potential vanilloid type 1 (TRPV1) is expressed in the cardiovascular system, and increased TRPV1 expression has been associated with cardiac hypertrophy. Nevertheless, the role of TRPV1 in the pathogenesis of cardiac hypertrophy and the underlying molecular mechanisms remain unclear. METHODS AND RESULTS In cultured cardiomyocytes, activation of TRPV1 increased cell size and elevated expression of atrial natriuretic peptide mRNA and intracellular calcium level, which was reversed by TRPV1 antagonist capsazepine. Increased expression of phosphorylated calmodulin-dependent protein kinase IIδ and mitogen-activated protein kinases were found in TRPV1 agonist capsaicin-treated cardiomyocytes. Selective inhibitor of calmodulin-dependent protein kinase IIδ decreased phosphorylation of extracellular signal-regulated kinases and p38. Capsaicin induced an increase in expression of ornithine decarboxylase protein, which is the key enzyme in polyamine biosynthesis in cardiomyocytes. Nevertheless, there was no obvious change of ornithine decarboxylase expression in TRPV1 knockdown cells after capsaicin treatment, and specific inhibitors of calmodulin-dependent protein kinase IIδ or p38 downregulated the capsaicin-induced expression of ornithine decarboxylase. Capsazepine alleviated the increase in cross-sectional area of cardiomyocytes and the ratio of heart weight to body weight and improved cardiac function, including left ventricular internal end-diastolic and -systolic dimensions and ejection fraction and fractional shortening percentages, in mice treated with transverse aorta constriction. Capsazepine also reduced expression of ornithine decarboxylase and cardiac polyamine levels. Transverse aorta constriction induced increases in phosphorylated calmodulin-dependent protein kinase IIδ and extracellular signal-regulated kinases, and p38 and Serca2a were attenuated by capsazepine treatment. CONCLUSIONS This study revealed that the mitogen-activated protein kinase signaling pathway and intracellular polyamines are essential for TRPV1 activation-induced cardiac hypertrophy.
Collapse
Affiliation(s)
- Mai Chen
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jiajia Xin
- Department of Blood Transfusion, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Baohui Liu
- Department of Cardiac Surgery, Binzhou Medical University Hospital, Binzhou, China
| | - Liyang Luo
- Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, Xi'an, China
| | - Jiayi Li
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Wen Yin
- Department of Blood Transfusion, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Mingkai Li
- Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
13
|
Hamon L, Savarin P, Pastré D. Polyamine signal through gap junctions: A key regulator of proliferation and gap-junction organization in mammalian tissues? Bioessays 2016; 38:498-507. [DOI: 10.1002/bies.201500195] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Loic Hamon
- Laboratoire Structure-Activité des Biomolécules Normales et Pathologiques; INSERM U1204 and Université Evry-Val d'Essonne; Evry France
| | - Philippe Savarin
- Centre National de Recherche Scientifique (CNRS), Equipe Spectroscopie des Biomolécules et des Milieux Biologiques (SBMB); Université Paris 13, Sorbonne Paris Cité, Laboratoire Chimie, Structures, Propriétés de Biomatériaux et d'Agents Thérapeutiques (CSPBAT), Unité Mixte de Recherche (UMR) 7244; Bobigny France
| | - David Pastré
- Laboratoire Structure-Activité des Biomolécules Normales et Pathologiques; INSERM U1204 and Université Evry-Val d'Essonne; Evry France
| |
Collapse
|
14
|
Marbach S, Godeau AL, Riveline D, Joanny JF, Prost J. Theoretical study of actin layers attachment and separation. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2015; 38:122. [PMID: 26590152 DOI: 10.1140/epje/i2015-15122-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 11/03/2015] [Indexed: 06/05/2023]
Abstract
We use the theory of active gels to study theoretically the merging and separation of two actin dense layers akin to cortical layers of animal cells. The layers bind at a distance equal to twice the thickness of a free layer, thus forming a single dense layer, similar in this sense to a lamellipodium. When that unique layer is stretched apart, it is resilient to break apart up to a critical length larger than twice the thickness of a free layer. We show that this behavior can result from the high contractile properties of the actomyosin gel due to the activity of myosin molecular motors. Furthermore, we establish that the stability of the stretched single layer is highly dependent on the properties of the gel. Indeed, the nematic order of the actin filaments along the polymerizing membranes is a destabilizing factor.
Collapse
Affiliation(s)
- Sophie Marbach
- Physico-Chimie Curie, (Institut Curie, Cnrs UMR 168, UPMC), Institut Curie Centre de Recherche, 26, rue de l'Ulm, 75005, Paris, France.
- ICFP, Physics Department, Ecole Normale Supérieure de Paris, 24 rue Lhomond, 75005, Paris, France.
| | - Amélie Luise Godeau
- Laboratory of Cell Physics, Institut de Science et d'Ingénierie Supramoléculaires, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg and Centre National de la Recherche Scientifique UMR 7006, Strasbourg, France
- Development and Stem Cells Program, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique UMR 7104, Institut National de la Santé et de la Recherche Médicale (U964), Université de Strasbourg, Illkirch, France
| | - Daniel Riveline
- Laboratory of Cell Physics, Institut de Science et d'Ingénierie Supramoléculaires, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg and Centre National de la Recherche Scientifique UMR 7006, Strasbourg, France
- Development and Stem Cells Program, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique UMR 7104, Institut National de la Santé et de la Recherche Médicale (U964), Université de Strasbourg, Illkirch, France
| | - Jean-François Joanny
- Physico-Chimie Curie, (Institut Curie, Cnrs UMR 168, UPMC), Institut Curie Centre de Recherche, 26, rue de l'Ulm, 75005, Paris, France.
- ESPCI, 10 rue Vauquelin, 75005, Paris, France.
| | - Jacques Prost
- Physico-Chimie Curie, (Institut Curie, Cnrs UMR 168, UPMC), Institut Curie Centre de Recherche, 26, rue de l'Ulm, 75005, Paris, France
| |
Collapse
|
15
|
Riveline D, Thiagarajan R, Lehn JM, Carlier MF. Synthetic polyamines: new compounds specific to actin dynamics for mammalian cell and fission yeast. BIOARCHITECTURE 2015; 4:144-8. [PMID: 25664996 DOI: 10.4161/19490992.2014.965111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Actin is a major actor in the determination of cell shape. On the one hand, site-directed assembly/disassembly cycles of actin filaments drive protrusive force leading to lamellipodia and filopodia dynamics. Force produced by actin similarly contributes in membrane scission in endocytosis or Golgi remodeling. On the other hand, cellular processes like adhesion, immune synapse, cortex dynamics or cytokinesis are achieved by combining acto-myosin contractility and actin assembly in a complex and not fully understood manner. New chemical compounds are therefore needed to disentangle acto-myosin and actin dynamics. We have found that synthetic, cell permeant, short polyamines are promising new actin regulators in this context. They generate growth and stabilization of lamellipodia within minutes by slowing down the actin assembly/disassembly cycle and facilitating nucleation. We now report that these polyamines also slow down cytokinetic ring closure in fission yeast. This shows that these synthetic compounds are active also in yeasts, and these experiments specifically highlight that actin depolymerization is involved in the ring closure. Thus, synthetic polyamines appear to be potentially powerful agents in a quantitative approach to the role of actin in complex processes in cell biology, developmental biology and potentially cancer research.
Collapse
Affiliation(s)
- Daniel Riveline
- a Laboratory of Cell Physics; ISIS/IGBMC; Université de Strasbourg and CNRS (UMR 7006) ; Strasbourg , France
| | | | | | | |
Collapse
|
16
|
Uncovering protein polyamination by the spermine-specific antiserum and mass spectrometric analysis. Amino Acids 2014; 47:469-81. [PMID: 25471600 DOI: 10.1007/s00726-014-1879-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 11/18/2014] [Indexed: 01/06/2023]
Abstract
The polyamines spermidine and spermine, and their precursor putrescine, have been shown to play an important role in cell migration, proliferation, and differentiation. Because of their polycationic property, polyamines are traditionally thought to be involved in DNA replication, gene expression, and protein translation. However, polyamines can also be covalently conjugated to proteins by transglutaminase 2 (TG2). This modification leads to an increase in positive charge in the polyamine-incorporated region which significantly alters the structure of proteins. It is anticipated that protein polyamine conjugation may affect the protein-protein interaction, protein localization, and protein function of the TG2 substrates. In order to investigate the roles of polyamine modification, we synthesized a spermine-conjugated antigen and generated an antiserum against spermine. In vitro TG2-catalyzed spermine incorporation assays were carried out to show that actin, tubulins, heat shock protein 70 and five types of histone proteins were modified with spermine, and modification sites were also identified by liquid chromatography and linear ion trap-orbitrap hybrid mass spectrometry. Subsequent mass spectrometry-based shotgun proteomic analysis also identified 254 polyaminated sites in 233 proteins from the HeLa cell lysate catalyzed by human TG2 with spermine, thus allowing, for the first time, a global appraisal of site-specific protein polyamination. Global analysis of mouse tissues showed that this modification really exists in vivo. Importantly, we have demonstrated that there is a new histone modification, polyamination, in cells. However, the functional significance of histone polyamination demands further investigations.
Collapse
|
17
|
Mifková A, Kodet O, Szabo P, Kučera J, Dvořánková B, André S, Koripelly G, Gabius HJ, Lehn JM, Smetana K. Synthetic polyamine BPA-C8 inhibits TGF-β1-mediated conversion of human dermal fibroblast to myofibroblasts and establishment of galectin-1-rich extracellular matrix in vitro. Chembiochem 2014; 15:1465-70. [PMID: 24867251 DOI: 10.1002/cbic.201402087] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Indexed: 12/21/2022]
Abstract
Cancer-associated fibroblasts (CAFs) play a role in the progression of malignant tumors. They are formed by conversion of fibroblasts to smooth muscle α-actin-positive (SMA-positive) myofibroblasts. Polyamines are known to change the arrangement of the actin cytoskeleton by binding to the anionic actin. We tested the effect of the synthetic polyamine BPA-C8 on the transition of human dermal fibroblasts to myofibroblasts induced either by TGF-β1 alone or by TGF-β1 together with adhesion/growth-regulatory galectin-1. Pre-existing CAFs, myofibroblasts from pancreatitis, and rat smooth muscle cells were also exposed to BPA-C8. BPA-C8 impaired myofibroblast formation from activated fibroblasts, but it had no effect on cells already expressing SMA. BPA-C8 also reduced the occurrence of an extracellular matrix around the activated fibroblasts. The reported data thus extend current insights into polyamine activity, adding interference with tumor progression to the tumor-promoting processes warranting study.
Collapse
Affiliation(s)
- Alžběta Mifková
- Institute of Anatomy, Charles University, 1st Faculty of Medicine, U Nemocnice 3, 128 00 Prague (Czech Republic); Department of Otorhinolaryngology and Head and Neck Surgery, Charles University, 1st Faculty of Medicine, V Úvalu 5, 150 00 Prague (Czech Republic)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Gama S, Rodrigues I, Marques F, Palma E, Correia I, Carvalho MFNN, Pessoa JC, Cruz A, Mendo S, Santos IC, Mendes F, Santos I, Paulo A. New ternary bipyridine–terpyridine copper(ii) complexes as self-activating chemical nucleases. RSC Adv 2014. [DOI: 10.1039/c4ra12085j] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
New copper complexes with an impressive DNA cleaving ability in the absence of any exogenous oxidants or reductants.
Collapse
Affiliation(s)
- Sofia Gama
- Centro de Ciências e Tecnologias Nucleares (C2TN)
- Instituto Superior Técnico
- Universidade de Lisboa
- Campus Tecnológico e Nuclear
- Bobadela LRS, Portugal
| | - Inês Rodrigues
- Centro de Ciências e Tecnologias Nucleares (C2TN)
- Instituto Superior Técnico
- Universidade de Lisboa
- Campus Tecnológico e Nuclear
- Bobadela LRS, Portugal
| | - Fernanda Marques
- Centro de Ciências e Tecnologias Nucleares (C2TN)
- Instituto Superior Técnico
- Universidade de Lisboa
- Campus Tecnológico e Nuclear
- Bobadela LRS, Portugal
| | - Elisa Palma
- Centro de Química Estrutural
- Instituto Superior Técnico
- Universidade de Lisboa
- 1049-001 Lisboa, Portugal
| | - Isabel Correia
- Centro de Química Estrutural
- Instituto Superior Técnico
- Universidade de Lisboa
- 1049-001 Lisboa, Portugal
| | | | - João Costa Pessoa
- Centro de Química Estrutural
- Instituto Superior Técnico
- Universidade de Lisboa
- 1049-001 Lisboa, Portugal
| | - Andreia Cruz
- Departamento de Biologia & CESAM
- Universidade de Aveiro
- Campus de Santiago
- 3810-193 Aveiro, Portugal
| | - Sónia Mendo
- Departamento de Biologia & CESAM
- Universidade de Aveiro
- Campus de Santiago
- 3810-193 Aveiro, Portugal
| | - Isabel C. Santos
- Centro de Ciências e Tecnologias Nucleares (C2TN)
- Instituto Superior Técnico
- Universidade de Lisboa
- Campus Tecnológico e Nuclear
- Bobadela LRS, Portugal
| | - Filipa Mendes
- Centro de Ciências e Tecnologias Nucleares (C2TN)
- Instituto Superior Técnico
- Universidade de Lisboa
- Campus Tecnológico e Nuclear
- Bobadela LRS, Portugal
| | - Isabel Santos
- Centro de Ciências e Tecnologias Nucleares (C2TN)
- Instituto Superior Técnico
- Universidade de Lisboa
- Campus Tecnológico e Nuclear
- Bobadela LRS, Portugal
| | - António Paulo
- Centro de Ciências e Tecnologias Nucleares (C2TN)
- Instituto Superior Técnico
- Universidade de Lisboa
- Campus Tecnológico e Nuclear
- Bobadela LRS, Portugal
| |
Collapse
|