1
|
Aleogho BM, Mohri M, Jang MS, Tsukada S, Al-Hebri Y, Matsuyama HJ, Tsukada Y, Mori I, Noma K. Aberrant neuronal hyperactivation causes an age-dependent behavioral decline in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2025; 122:e2412391122. [PMID: 39739791 PMCID: PMC11725918 DOI: 10.1073/pnas.2412391122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 11/25/2024] [Indexed: 01/02/2025] Open
Abstract
Age-dependent sensory impairment, memory loss, and cognitive decline are generally attributed to neuron loss, synaptic dysfunction, and decreased neuronal activities over time. Concurrently, increased neuronal activity is reported in humans and other organisms during aging. However, it is unclear whether neuronal hyperactivity is the cause of cognitive impairment or a compensatory mechanism of circuit dysfunction. The roundworm Caenorhabditis elegans exhibits age-dependent declines in an associative learning behavior called thermotaxis, in which its temperature preference on a thermal gradient is contingent on food availability during its cultivation. Cell ablation and calcium imaging demonstrate that the major thermosensory circuit consisting of AFD thermosensory neuron and AIY interneuron is relatively intact in aged animals. On the other hand, ablation of either AWC sensory neurons or AIA interneurons ameliorates the age-dependent thermotaxis decline. Both neurons showed spontaneous and stochastic hyperactivity in aged animals, enhanced by reciprocal communication between AWC and AIA via neurotransmitters and neuropeptides. Our findings suggest that AWC and AIA hyperactivity mediates thermotaxis decline in aged animals. Furthermore, dietary modulation could ameliorate age-dependent thermotaxis decline by suppressing neuronal hyperactivity. We propose that aberrantly enhanced, not diminished, neuronal activities can impair the behavior of aged animals.
Collapse
Affiliation(s)
- Binta Maria Aleogho
- Group of Microbial Motility, Department of Biological Science, Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya464-8602, Japan
- Group of Nutritional Neuroscience, Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya464-8602, Japan
| | - Mizuho Mohri
- Group of Nutritional Neuroscience, Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya464-8602, Japan
| | - Moon Sun Jang
- Group of Molecular Neurobiology, Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya464-8602, Japan
| | - Sachio Tsukada
- Group of Nutritional Neuroscience, Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya464-8602, Japan
- Milk Science Research Institute, MEGMILK SNOW BRAND Co. Ltd, Saitama350-1165, Japan
| | - Yana Al-Hebri
- Group of Nutritional Neuroscience, Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya464-8602, Japan
| | - Hironori J. Matsuyama
- Group of Molecular Neurobiology, Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya464-8602, Japan
| | - Yuki Tsukada
- Group of Molecular Neurobiology, Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya464-8602, Japan
| | - Ikue Mori
- Group of Molecular Neurobiology, Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya464-8602, Japan
| | - Kentaro Noma
- Group of Microbial Motility, Department of Biological Science, Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya464-8602, Japan
- Group of Nutritional Neuroscience, Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya464-8602, Japan
| |
Collapse
|
2
|
Gregory BT, Desouky M, Slaughter J, Hallem EA, Bryant AS. Thermosensory behaviors of the free-living life stages of Strongyloides species support parasitism in tropical environments. PLoS Negl Trop Dis 2024; 18:e0012529. [PMID: 39689121 DOI: 10.1371/journal.pntd.0012529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/31/2024] [Accepted: 12/02/2024] [Indexed: 12/19/2024] Open
Abstract
Soil-transmitted parasitic nematodes infect over 1 billion people worldwide and are a common source of neglected disease. Strongyloides stercoralis is a potentially fatal skin-penetrating human parasite that is endemic to tropical and subtropical regions around the world. The complex life cycle of Strongyloides species is unique among human-parasitic nematodes in that it includes a single free-living generation featuring soil-dwelling, bacterivorous adults whose progeny all develop into infective larvae. The sensory behaviors that enable free-living Strongyloides adults to navigate and survive soil environments are unknown. S. stercoralis infective larvae display parasite-specific sensory-driven behaviors, including robust attraction to mammalian body heat. In contrast, the free-living model nematode Caenorhabditis elegans displays thermosensory behaviors that guide adult worms to stay within a physiologically permissive range of environmental temperatures. Do S. stercoralis and C. elegans free-living adults, which experience similar environmental stressors, display common thermal preferences? Here, we characterize the thermosensory behaviors of the free-living adults of S. stercoralis as well as those of the closely related rat parasite, Strongyloides ratti. We find that Strongyloides free-living adults are exclusively attracted to near-tropical temperatures, despite their inability to infect mammalian hosts. We further show that lifespan is shorter at higher temperatures for free-living Strongyloides adults, similar to the effect of temperature on C. elegans lifespan. However, we also find that the reproductive potential of the free-living life stage is enhanced at warmer temperatures, particularly for S. stercoralis. Together, our results reveal a novel role for thermotaxis to maximize the infectious capacity of obligate parasites and provide insight into the biological adaptations that may contribute to their endemicity in tropical climates.
Collapse
Affiliation(s)
- Ben T Gregory
- Department of Neurobiology and Biophysics, University of Washington, Seattle, Washington, United States of America
| | - Mariam Desouky
- Department of Neurobiology and Biophysics, University of Washington, Seattle, Washington, United States of America
| | - Jaidyn Slaughter
- BRIGHT-UP Summer Research Program, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Elissa A Hallem
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Astra S Bryant
- Department of Neurobiology and Biophysics, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
3
|
Gregory BT, Desouky M, Slaughter J, Hallem EA, Bryant AS. Thermosensory behaviors of the free-living life stages of Strongyloides species support parasitism in tropical environments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.12.612595. [PMID: 39314377 PMCID: PMC11419086 DOI: 10.1101/2024.09.12.612595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Soil-transmitted parasitic nematodes infect over 1 billion people worldwide and are a common source of neglected disease. Strongyloides stercoralis is a potentially fatal skin-penetrating human parasite that is endemic to tropical and subtropical regions around the world. The complex life cycle of Strongyloides species is unique among human-parasitic nematodes in that it includes a single free-living generation featuring soil-dwelling, bacterivorous adults whose progeny all develop into infective larvae. The sensory behaviors that enable free-living Strongyloides adults to navigate and survive soil environments are unknown. S. stercoralis infective larvae display parasite-specific sensory-driven behaviors, including robust attraction to mammalian body heat. In contrast, the free-living model nematode Caenorhabditis elegans displays thermosensory behaviors that guide adult worms to stay within a physiologically permissive range of environmental temperatures. Do S. stercoralis and C. elegans free-living adults, which experience similar environmental stressors, display common thermal preferences? Here, we characterize the thermosensory behaviors of the free-living adults of S. stercoralis as well as those of the closely related rat parasite, Strongyloides ratti. We find that Strongyloides free-living adults are exclusively attracted to near-tropical temperatures, despite their inability to infect mammalian hosts. We further show that lifespan is shorter at higher temperatures for free-living Strongyloides adults, similar to the effect of temperature on C. elegans lifespan. However, we also find that the reproductive potential of the free-living life stage is enhanced at warmer temperatures, particularly for S. stercoralis. Together, our results reveal a novel role for thermotaxis to maximize the infectious capacity of obligate parasites and provide insight into the biological adaptations that may contribute to their endemicity in tropical climates.
Collapse
Affiliation(s)
- Ben T Gregory
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | - Mariam Desouky
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | - Jaidyn Slaughter
- BRIGHT-UP Summer Research Program, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Elissa A Hallem
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Astra S Bryant
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
4
|
Zhou R, Yu Y, Li C. Revealing neural dynamical structure of C. elegans with deep learning. iScience 2024; 27:109759. [PMID: 38711456 PMCID: PMC11070340 DOI: 10.1016/j.isci.2024.109759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/27/2024] [Accepted: 04/15/2024] [Indexed: 05/08/2024] Open
Abstract
Caenorhabditis elegans serves as a common model for investigating neural dynamics and functions of biological neural networks. Data-driven approaches have been employed in reconstructing neural dynamics. However, challenges remain regarding the curse of high-dimensionality and stochasticity in realistic systems. In this study, we develop a deep neural network (DNN) approach to reconstruct the neural dynamics of C. elegans and study neural mechanisms for locomotion. Our model identifies two limit cycles in the neural activity space: one underpins basic pirouette behavior, essential for navigation, and the other introduces extra Ω turns. The combination of two limit cycles elucidates predominant locomotion patterns in neural imaging data. The corresponding energy landscape explains the switching strategies between two limit cycles, quantitatively, and provides testable predictions on neural functions and circuit roles. Our work provides a general approach to study neural dynamics by combining imaging data and stochastic modeling.
Collapse
Affiliation(s)
- Ruisong Zhou
- School of Mathematical Sciences and Shanghai Center for Mathematical Sciences, Fudan University, Shanghai 200433, China
| | - Yuguo Yu
- Research Institute of Intelligent and Complex Systems, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
- Shanghai Artificial Intelligence Laboratory, Shanghai 200232, China
| | - Chunhe Li
- School of Mathematical Sciences and Shanghai Center for Mathematical Sciences, Fudan University, Shanghai 200433, China
- Institute of Science and Technology for Brain-Inspired Intelligence and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200433, China
| |
Collapse
|
5
|
Lin C, Shan Y, Wang Z, Peng H, Li R, Wang P, He J, Shen W, Wu Z, Guo M. Molecular and circuit mechanisms underlying avoidance of rapid cooling stimuli in C. elegans. Nat Commun 2024; 15:297. [PMID: 38182628 PMCID: PMC10770330 DOI: 10.1038/s41467-023-44638-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 12/21/2023] [Indexed: 01/07/2024] Open
Abstract
The mechanisms by which animals respond to rapid changes in temperature are largely unknown. Here, we found that polymodal ASH sensory neurons mediate rapid cooling-evoked avoidance behavior within the physiological temperature range in C. elegans. ASH employs multiple parallel circuits that consist of stimulatory circuits (AIZ, RIA, AVA) and disinhibitory circuits (AIB, RIM) to respond to rapid cooling. In the stimulatory circuit, AIZ, which is activated by ASH, releases glutamate to act on both GLR-3 and GLR-6 receptors in RIA neurons to promote reversal, and ASH also directly or indirectly stimulates AVA to promote reversal. In the disinhibitory circuit, AIB is stimulated by ASH through the GLR-1 receptor, releasing glutamate to act on AVR-14 to suppress RIM activity. RIM, an inter/motor neuron, inhibits rapid cooling-evoked reversal, and the loop activities thus equally stimulate reversal. Our findings elucidate the molecular and circuit mechanisms underlying the acute temperature stimuli-evoked avoidance behavior.
Collapse
Affiliation(s)
- Chenxi Lin
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuxin Shan
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhongyi Wang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hui Peng
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Rong Li
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, and Department of Biophysics and Molecular Physiology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Pingzhou Wang
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, and Department of Biophysics and Molecular Physiology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Junyan He
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Weiwei Shen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Zhengxing Wu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, and Department of Biophysics and Molecular Physiology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Min Guo
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
6
|
Thapliyal S, Beets I, Glauser DA. Multisite regulation integrates multimodal context in sensory circuits to control persistent behavioral states in C. elegans. Nat Commun 2023; 14:3052. [PMID: 37236963 DOI: 10.1038/s41467-023-38685-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Maintaining or shifting between behavioral states according to context is essential for animals to implement fitness-promoting strategies. How the integration of internal state, past experience and sensory inputs orchestrates persistent multidimensional behavioral changes remains poorly understood. Here, we show that C. elegans integrates environmental temperature and food availability over different timescales to engage in persistent dwelling, scanning, global or glocal search strategies matching thermoregulatory and feeding needs. Transition between states, in each case, involves regulating multiple processes including AFD or FLP tonic sensory neurons activity, neuropeptide expression and downstream circuit responsiveness. State-specific FLP-6 or FLP-5 neuropeptide signaling acts on a distributed set of inhibitory GPCR(s) to promote scanning or glocal search, respectively, bypassing dopamine and glutamate-dependent behavioral state control. Integration of multimodal context via multisite regulation in sensory circuits might represent a conserved regulatory logic for a flexible prioritization on the valence of multiple inputs when operating persistent behavioral state transitions.
Collapse
Affiliation(s)
- Saurabh Thapliyal
- Department of Biology, University of Fribourg, 1700, Fribourg, Switzerland.
| | - Isabel Beets
- Neural Signaling and Circuit Plasticity Group, Department of Biology, KU Leuven, 3000, Leuven, Belgium
| | | |
Collapse
|
7
|
Jordan A, Glauser DA. Distinct clusters of human pain gene orthologs in Caenorhabditis elegans regulate thermo-nociceptive sensitivity and plasticity. Genetics 2023; 224:iyad047. [PMID: 36947448 PMCID: PMC10158838 DOI: 10.1093/genetics/iyad047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 05/13/2022] [Accepted: 03/07/2023] [Indexed: 03/23/2023] Open
Abstract
The detection and avoidance of harmful stimuli are essential animal capabilities. The molecular and cellular mechanisms controlling nociception and its plasticity are conserved, genetically controlled processes of broad biomedical interest given their relevance to understand and treat pain conditions that represent a major health burden. Recent genome-wide association studies (GWAS) have identified a rich set of polymorphisms related to different pain conditions and pointed to many human pain gene candidates, whose connection to the pain pathways is however often poorly understood. Here, we used a computer-assisted Caenorhabditis elegans thermal avoidance analysis pipeline to screen for behavioral defects in a set of 109 mutants for genes orthologous to human pain-related genes. We measured heat-evoked reversal thermosensitivity profiles, as well as spontaneous reversal rate, and compared naïve animals with adapted animals submitted to a series of repeated noxious heat stimuli, which in wild type causes a progressive habituation. Mutations affecting 28 genes displayed defects in at least one of the considered parameters and could be clustered based on specific phenotypic footprints, such as high-sensitivity mutants, nonadapting mutants, or mutants combining multiple defects. Collectively, our data reveal the functional architecture of a network of conserved pain-related genes in C. elegans and offer novel entry points for the characterization of poorly understood human pain genes in this genetic model.
Collapse
Affiliation(s)
- Aurore Jordan
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | | |
Collapse
|
8
|
Mendez P, Walsh B, Hallem EA. Using newly optimized genetic tools to probe Strongyloides sensory behaviors. Mol Biochem Parasitol 2022; 250:111491. [PMID: 35697205 PMCID: PMC9339661 DOI: 10.1016/j.molbiopara.2022.111491] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/25/2022] [Accepted: 06/07/2022] [Indexed: 11/26/2022]
Abstract
The oft-neglected human-parasitic threadworm, Strongyloides stercoralis, infects roughly eight percent of the global population, placing disproportionate medical and economic burden upon marginalized communities. While current chemotherapies treat strongyloidiasis, disease recrudescence and the looming threat of anthelminthic resistance necessitate novel strategies for nematode control. Throughout its life cycle, S. stercoralis relies upon sensory cues to aid in environmental navigation and coordinate developmental progression. Odorants, tastants, gases, and temperature have been shown to shape parasite behaviors that drive host seeking and infectivity; however, many of these sensory behaviors remain poorly understood, and their underlying molecular and neural mechanisms are largely uncharacterized. Disruption of sensory circuits essential to parasitism presents a promising strategy for future interventions. In this review, we describe our current understanding of sensory behaviors - namely olfactory, gustatory, gas sensing, and thermosensory behaviors - in Strongyloides spp. We also highlight the ever-growing cache of genetic tools optimized for use in Strongyloides that have facilitated these findings, including transgenesis, CRISPR/Cas9-mediated mutagenesis, RNAi, chemogenetic neuronal silencing, and the use of fluorescent biosensors to measure neuronal activity. Bolstered by these tools, we are poised to enter an era of rapid discovery in Strongyloides sensory neurobiology, which has the potential to shape pioneering advances in the prevention and treatment of strongyloidiasis.
Collapse
Affiliation(s)
- Patricia Mendez
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA; Molecular Biology Interdepartmental PhD Program, University of California Los Angeles, Los Angeles, CA, USA.
| | - Breanna Walsh
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA; Molecular Biology Interdepartmental PhD Program, University of California Los Angeles, Los Angeles, CA, USA; Medical Scientist Training Program, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Elissa A Hallem
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
9
|
Bryant AS, Ruiz F, Lee JH, Hallem EA. The neural basis of heat seeking in a human-infective parasitic worm. Curr Biol 2022; 32:2206-2221.e6. [PMID: 35483361 PMCID: PMC9158753 DOI: 10.1016/j.cub.2022.04.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 03/21/2022] [Accepted: 04/05/2022] [Indexed: 02/06/2023]
Abstract
Soil-transmitted parasitic nematodes infect over one billion people and cause devastating morbidity worldwide. Many of these parasites have infective larvae that locate hosts using thermal cues. Here, we identify the thermosensory neurons of the human threadworm Strongyloides stercoralis and show that they display unique functional adaptations that enable the precise encoding of temperatures up to human body temperature. We demonstrate that experience-dependent thermal plasticity regulates the dynamic range of these neurons while preserving their ability to encode host-relevant temperatures. We describe a novel behavior in which infective larvae spontaneously reverse attraction to heat sources at sub-body temperatures and show that this behavior is mediated by rapid adaptation of the thermosensory neurons. Finally, we identify thermoreceptors that confer parasite-specific sensitivity to body heat. Our results pinpoint the parasite-specific neural adaptations that enable parasitic nematodes to target humans and provide the foundation for drug development to prevent human infection.
Collapse
Affiliation(s)
- Astra S Bryant
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Felicitas Ruiz
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Joon Ha Lee
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Elissa A Hallem
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
10
|
Barlow IL, Feriani L, Minga E, McDermott-Rouse A, O'Brien TJ, Liu Z, Hofbauer M, Stowers JR, Andersen EC, Ding SS, Brown AEX. Megapixel camera arrays enable high-resolution animal tracking in multiwell plates. Commun Biol 2022; 5:253. [PMID: 35322206 PMCID: PMC8943053 DOI: 10.1038/s42003-022-03206-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 03/01/2022] [Indexed: 01/13/2023] Open
Abstract
Tracking small laboratory animals such as flies, fish, and worms is used for phenotyping in neuroscience, genetics, disease modelling, and drug discovery. An imaging system with sufficient throughput and spatiotemporal resolution would be capable of imaging a large number of animals, estimating their pose, and quantifying detailed behavioural differences at a scale where hundreds of treatments could be tested simultaneously. Here we report an array of six 12-megapixel cameras that record all the wells of a 96-well plate with sufficient resolution to estimate the pose of C. elegans worms and to extract high-dimensional phenotypic fingerprints. We use the system to study behavioural variability across wild isolates, the sensitisation of worms to repeated blue light stimulation, the phenotypes of worm disease models, and worms' behavioural responses to drug treatment. Because the system is compatible with standard multiwell plates, it makes computational ethological approaches accessible in existing high-throughput pipelines.
Collapse
Affiliation(s)
- Ida L Barlow
- Institute of Clinical Sciences, Imperial College London, London, UK
- MRC London Institute of Medical Sciences, London, UK
| | - Luigi Feriani
- Institute of Clinical Sciences, Imperial College London, London, UK
- MRC London Institute of Medical Sciences, London, UK
| | - Eleni Minga
- Institute of Clinical Sciences, Imperial College London, London, UK
- MRC London Institute of Medical Sciences, London, UK
| | - Adam McDermott-Rouse
- Institute of Clinical Sciences, Imperial College London, London, UK
- MRC London Institute of Medical Sciences, London, UK
| | - Thomas James O'Brien
- Institute of Clinical Sciences, Imperial College London, London, UK
- MRC London Institute of Medical Sciences, London, UK
| | - Ziwei Liu
- Institute of Clinical Sciences, Imperial College London, London, UK
- MRC London Institute of Medical Sciences, London, UK
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | | | | | - Erik C Andersen
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Siyu Serena Ding
- Institute of Clinical Sciences, Imperial College London, London, UK
- MRC London Institute of Medical Sciences, London, UK
- Max Planck Institute of Animal Behavior, Konstanz, Germany
| | - André E X Brown
- Institute of Clinical Sciences, Imperial College London, London, UK.
- MRC London Institute of Medical Sciences, London, UK.
| |
Collapse
|
11
|
Ippolito D, Thapliyal S, Glauser DA. Ca 2+/CaM binding to CaMKI promotes IMA-3 importin binding and nuclear translocation in sensory neurons to control behavioral adaptation. eLife 2021; 10:71443. [PMID: 34766550 PMCID: PMC8635976 DOI: 10.7554/elife.71443] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 11/11/2021] [Indexed: 12/29/2022] Open
Abstract
Sensory and behavioral plasticity are essential for animals to thrive in changing environments. As key effectors of intracellular calcium signaling, Ca2+/calmodulin-dependent protein kinases (CaMKs) can bridge neural activation with the many regulatory processes needed to orchestrate sensory adaptation, including by relaying signals to the nucleus. Here, we elucidate the molecular mechanism controlling the cell activation-dependent nuclear translocation of CMK-1, the Caenorhabditis elegans ortholog of mammalian CaMKI/IV, in thermosensory neurons in vivo. We show that an intracellular Ca2+ concentration elevation is necessary and sufficient to favor CMK-1 nuclear import. The binding of Ca2+/CaM to CMK-1 increases its affinity for IMA-3 importin, causing a redistribution with a relatively slow kinetics, matching the timescale of sensory adaptation. Furthermore, we show that this mechanism enables the encoding of opposite nuclear signals in neuron types with opposite calcium-responses and that it is essential for experience-dependent behavioral plasticity and gene transcription control in vivo. Since CaMKI/IV are conserved regulators of adaptable behaviors, similar mechanisms could exist in other organisms and for other sensory modalities.
Collapse
Affiliation(s)
- Domenica Ippolito
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Saurabh Thapliyal
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | | |
Collapse
|
12
|
Rouleau N, Cairns DM, Rusk W, Levin M, Kaplan DL. Learning and synaptic plasticity in 3D bioengineered neural tissues. Neurosci Lett 2021; 750:135799. [PMID: 33675883 PMCID: PMC7994196 DOI: 10.1016/j.neulet.2021.135799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 01/20/2021] [Accepted: 02/28/2021] [Indexed: 11/29/2022]
Abstract
Though neuroscientists have historically relied upon measurement of established nervous systems, contemporary advances in bioengineering have made it possible to design and build artificial neural tissues with which to investigate normative and diseased states [1-5] however, their potential to display features of learning and memory remains unexplored. Here, we demonstrate response patterns characteristic of habituation, a form of non-associative learning, in 3D bioengineered neural tissues exposed to repetitive injections of current to elicit evoked-potentials (EPs). A return of the evoked response following rest indicated learning was transient and partially reversible. Applying patterned current as massed or distributed pulse trains induced differential expression of immediate early genes (IEG) that are known to facilitate synaptic plasticity and participate in memory formation [6,7]. Our findings represent the first demonstration of a learning response in a bioengineered neural tissue in vitro.
Collapse
Affiliation(s)
- Nicolas Rouleau
- Department of Biomedical Engineering, Tufts University, United States; The Allen Discovery Center, Tufts University, United States; Initiative for Neural Science, Disease, and Engineering (INSciDE), Tufts University, United States.
| | - Dana M Cairns
- Department of Biomedical Engineering, Tufts University, United States; The Allen Discovery Center, Tufts University, United States; Initiative for Neural Science, Disease, and Engineering (INSciDE), Tufts University, United States.
| | - William Rusk
- Department of Biomedical Engineering, Tufts University, United States.
| | - Michael Levin
- Department of Biomedical Engineering, Tufts University, United States; The Allen Discovery Center, Tufts University, United States; Department of Biology, Tufts University, United States.
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, United States; The Allen Discovery Center, Tufts University, United States; Initiative for Neural Science, Disease, and Engineering (INSciDE), Tufts University, United States.
| |
Collapse
|
13
|
Neural Coding of Thermal Preferences in the Nematode Caenorhabditis elegans. eNeuro 2020; 7:ENEURO.0414-19.2020. [PMID: 32253198 PMCID: PMC7322292 DOI: 10.1523/eneuro.0414-19.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/09/2020] [Accepted: 02/08/2020] [Indexed: 02/02/2023] Open
Abstract
Animals are capable to modify sensory preferences according to past experiences. Surrounded by ever-changing environments, they continue assigning a hedonic value to a sensory stimulus. It remains to be elucidated however how such alteration of sensory preference is encoded in the nervous system. Here we show that past experiences alter temporal interaction between the calcium responses of sensory neurons and their postsynaptic interneurons in the nematode Caenorhabditis elegans. C. elegans exhibits thermotaxis, in which its temperature preference is modified by the past feeding experience: well-fed animals are attracted toward their past cultivation temperature on a thermal gradient, whereas starved animals lose that attraction. By monitoring calcium responses simultaneously from both AFD thermosensory neurons and their postsynaptic AIY interneurons in well-fed and starved animals under time-varying thermal stimuli, we found that past feeding experiences alter phase shift between AFD and AIY calcium responses. Furthermore, the difference in neuronal activities between well-fed and starved animals observed here are able to explain the difference in the behavioral output on a thermal gradient between well-fed and starved animals. Although previous studies have shown that C. elegans executes thermotaxis by regulating amplitude or frequency of the AIY response, our results proposed a new mechanism by which thermal preference is encoded by phase shift between AFD and AIY activities. Given these observations, thermal preference is likely to be computed on synapses between AFD and AIY neurons. Such a neural strategy may enable animals to enrich information processing within defined connectivity via dynamic alterations of synaptic communication.
Collapse
|
14
|
Lia AS, Glauser DA. A system for the high-throughput analysis of acute thermal avoidance and adaptation in C. elegans. J Biol Methods 2020; 7:e129. [PMID: 32313814 PMCID: PMC7163209 DOI: 10.14440/jbm.2020.324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/13/2020] [Accepted: 02/16/2020] [Indexed: 02/06/2023] Open
Abstract
Nociception and its plasticity are essential biological processes controlling adaptive behavioral responses in animals. These processes are also linked to different pain conditions in human and have received considerable attention, notably via studies in rodent models and the use of heat-evoked withdrawal behavior assays as a readout of unpleasant experience. More recently, invertebrates have also emerged as useful complementary models, with their own set of advantages, including their amenability to genetic manipulations, the accessibility and relative simplicity of their nervous system and ethical concerns linked to animal suffering. Like humans, the nematode Caenorhabditis elegans (C. elegans) can detect noxious heat and produce avoidance responses such as reversals. Here, we present a methodology suitable for the high-throughput analysis of C. elegans heat-evoked reversals and the adaptation to repeated stimuli. We introduce two platforms: the INFERNO (for infrared-evoked reversal analysis platform), allowing the quantification of the thermal sensitivity in a petri dish containing a large population (> 100 animals), and the ThermINATOR (for thermal adaptation multiplexed induction platform), allowing the mass-adaptation of up to 18 worm populations at the same time. We show that wild type animals progressively desensitize in response to repeated noxious heat pulses. Furthermore, analyzing the phenotype of mutant animals, we show that the mechanisms underlying baseline sensitivity and adaptation, respectively, are supported by genetically separable molecular pathways. In conclusion, the presented method enables the high-throughput evaluation of thermal avoidance in C. elegans and will contribute to accelerate studies in the field with this invertebrate model.
Collapse
Affiliation(s)
- Andrei-Stefan Lia
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | | |
Collapse
|
15
|
Context-dependent operation of neural circuits underlies a navigation behavior in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2020; 117:6178-6188. [PMID: 32123108 PMCID: PMC7084152 DOI: 10.1073/pnas.1918528117] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
A free-living nematode Caenorhabditis elegans memorizes an environmental temperature and migrates toward the remembered temperature on a thermal gradient by switching movement up or down the gradient. How does the C. elegans brain, consisting of 302 neurons, achieve this memory-dependent thermotaxis behavior? Here, we addressed this question through large-scale single-cell ablation, high-resolution behavioral analysis, and computational modeling. We found that depending on whether the environmental temperature is below or above the remembered temperature, distinct sets of neurons are responsible to generate opposing motor biases, thereby switching the movement up or down the thermal gradient. Our study indicates that such a context-dependent operation in neural circuits is essential for flexible execution of animal behavior. The nervous system evaluates environmental cues and adjusts motor output to ensure navigation toward a preferred environment. The nematode Caenorhabditis elegans navigates in the thermal environment and migrates toward its cultivation temperature by moving up or down thermal gradients depending not only on absolute temperature but on relative difference between current and previously experienced cultivation temperature. Although previous studies showed that such thermal context-dependent opposing migration is mediated by bias in frequency and direction of reorientation behavior, the complete neural pathways—from sensory to motor neurons—and their circuit logics underlying the opposing behavioral bias remain elusive. By conducting comprehensive cell ablation, high-resolution behavioral analyses, and computational modeling, we identified multiple neural pathways regulating behavioral components important for thermotaxis, and demonstrate that distinct sets of neurons are required for opposing bias of even single behavioral components. Furthermore, our imaging analyses show that the context-dependent operation is evident in sensory neurons, very early in the neural pathway, and manifested by bidirectional responses of a first-layer interneuron AIB under different thermal contexts. Our results suggest that the contextual differences are encoded among sensory neurons and a first-layer interneuron, processed among different downstream neurons, and lead to the flexible execution of context-dependent behavior.
Collapse
|
16
|
Saro G, Lia AS, Thapliyal S, Marques F, Busch KE, Glauser DA. Specific Ion Channels Control Sensory Gain, Sensitivity, and Kinetics in a Tonic Thermonociceptor. Cell Rep 2020; 30:397-408.e4. [DOI: 10.1016/j.celrep.2019.12.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 10/17/2019] [Accepted: 12/06/2019] [Indexed: 10/25/2022] Open
|
17
|
How Caenorhabditis elegans Senses Mechanical Stress, Temperature, and Other Physical Stimuli. Genetics 2019; 212:25-51. [PMID: 31053616 PMCID: PMC6499529 DOI: 10.1534/genetics.118.300241] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/04/2019] [Indexed: 12/30/2022] Open
Abstract
Caenorhabditis elegans lives in a complex habitat in which they routinely experience large fluctuations in temperature, and encounter physical obstacles that vary in size and composition. Their habitat is shared by other nematodes, by beneficial and harmful bacteria, and nematode-trapping fungi. Not surprisingly, these nematodes can detect and discriminate among diverse environmental cues, and exhibit sensory-evoked behaviors that are readily quantifiable in the laboratory at high resolution. Their ability to perform these behaviors depends on <100 sensory neurons, and this compact sensory nervous system together with powerful molecular genetic tools has allowed individual neuron types to be linked to specific sensory responses. Here, we describe the sensory neurons and molecules that enable C. elegans to sense and respond to physical stimuli. We focus primarily on the pathways that allow sensation of mechanical and thermal stimuli, and briefly consider this animal’s ability to sense magnetic and electrical fields, light, and relative humidity. As the study of sensory transduction is critically dependent upon the techniques for stimulus delivery, we also include a section on appropriate laboratory methods for such studies. This chapter summarizes current knowledge about the sensitivity and response dynamics of individual classes of C. elegans mechano- and thermosensory neurons from in vivo calcium imaging and whole-cell patch-clamp electrophysiology studies. We also describe the roles of conserved molecules and signaling pathways in mediating the remarkably sensitive responses of these nematodes to mechanical and thermal cues. These studies have shown that the protein partners that form mechanotransduction channels are drawn from multiple superfamilies of ion channel proteins, and that signal transduction pathways responsible for temperature sensing in C. elegans share many features with those responsible for phototransduction in vertebrates.
Collapse
|
18
|
Stegeman GW, Medina D, Cutter AD, Ryu WS. Neuro-genetic plasticity of Caenorhabditis elegans behavioral thermal tolerance. BMC Neurosci 2019; 20:26. [PMID: 31182018 PMCID: PMC6558720 DOI: 10.1186/s12868-019-0510-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 06/03/2019] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Animal responses to thermal stimuli involve intricate contributions of genetics, neurobiology and physiology, with temperature variation providing a pervasive environmental factor for natural selection. Thermal behavior thus exemplifies a dynamic trait that requires non-trivial phenotypic summaries to appropriately capture the trait in response to a changing environment. To characterize the deterministic and plastic components of thermal responses, we developed a novel micro-droplet assay of nematode behavior that permits information-dense summaries of dynamic behavioral phenotypes as reaction norms in response to increasing temperature (thermal tolerance curves, TTC). RESULTS We found that C. elegans TTCs shift predictably with rearing conditions and developmental stage, with significant differences between distinct wildtype genetic backgrounds. Moreover, after screening TTCs for 58 C. elegans genetic mutant strains, we determined that genes affecting thermosensation, including cmk-1 and tax-4, potentially play important roles in the behavioral control of locomotion at high temperature, implicating neural decision-making in TTC shape rather than just generalized physiological limits. However, expression of the transient receptor potential ion channel TRPA-1 in the nervous system is not sufficient to rescue rearing-dependent plasticity in TTCs conferred by normal expression of this gene, indicating instead a role for intestinal signaling involving TRPA-1 in the adaptive plasticity of thermal performance. CONCLUSIONS These results implicate nervous system and non-nervous system contributions to behavior, in addition to basic cellular physiology, as key mediators of evolutionary responses to selection from temperature variation in nature.
Collapse
Affiliation(s)
- Gregory W Stegeman
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
| | - Denise Medina
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
- Department of Physics, University of Toronto, Toronto, Canada
| | - Asher D Cutter
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada.
| | - William S Ryu
- Department of Physics, University of Toronto, Toronto, Canada.
- Donnelly Centre, University of Toronto, Toronto, ON, M5S3E1, Canada.
| |
Collapse
|
19
|
Okahata M, Wei AD, Ohta A, Kuhara A. Cold acclimation via the KQT-2 potassium channel is modulated by oxygen in Caenorhabditis elegans. SCIENCE ADVANCES 2019; 5:eaav3631. [PMID: 30775442 PMCID: PMC6365114 DOI: 10.1126/sciadv.aav3631] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 12/21/2018] [Indexed: 06/09/2023]
Abstract
Adaptive responses to external temperatures are essential for survival in changing environments. We show here that environmental oxygen concentration affects cold acclimation in Caenorhabditis elegans and that this response is regulated by a KCNQ-type potassium channel, KQT-2. Depending on culture conditions, kqt-2 mutants showed supranormal cold acclimation, caused by abnormal thermosensation in ADL chemosensory neurons. ADL neurons are responsive to temperature via transient receptor potential channels-OSM-9, OCR-2, and OCR-1-with OCR-1 negatively regulating ADL function. Similarly, KQT-2 and KQT-3 regulate ADL activity, with KQT-2 positively regulating ADL function. Abnormal cold acclimation and acute temperature responses of ADL neurons in kqt-2 mutants were suppressed by an oxygen-receptor mutation in URX coelomic sensory neurons, which are electrically connected to ADL via RMG interneurons. Likewise, low oxygen suppressed supranormal kqt-2 cold acclimation. These data thus demonstrate a simple neuronal circuit integrating two different sensory modalities, temperature and oxygen, that determines cold acclimation.
Collapse
Affiliation(s)
- Misaki Okahata
- Graduate School of Natural Science, Konan University, Kobe 658-8501, Japan
| | - Aguan D. Wei
- Center for Integrative Brain Research, Seattle Children’s Research Institute, 1900 Ninth Ave., Seattle, WA 98101, USA
| | - Akane Ohta
- Graduate School of Natural Science, Konan University, Kobe 658-8501, Japan
- Institute for Integrative Neurobiology, Konan University, Kobe 658-8501, Japan
- Faculty of Science and Engineering, Konan University, Kobe 658-8501, Japan
| | - Atsushi Kuhara
- Graduate School of Natural Science, Konan University, Kobe 658-8501, Japan
- Institute for Integrative Neurobiology, Konan University, Kobe 658-8501, Japan
- Faculty of Science and Engineering, Konan University, Kobe 658-8501, Japan
- AMED-PRIME, Japan Agency for Medical Research and Development, Tokyo 100-0004, Japan
| |
Collapse
|
20
|
Bryant AS, Hallem EA. Terror in the dirt: Sensory determinants of host seeking in soil-transmitted mammalian-parasitic nematodes. Int J Parasitol Drugs Drug Resist 2018; 8:496-510. [PMID: 30396862 PMCID: PMC6287541 DOI: 10.1016/j.ijpddr.2018.10.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/22/2018] [Accepted: 10/24/2018] [Indexed: 12/12/2022]
Abstract
Infection with gastrointestinal parasitic nematodes is a major cause of chronic morbidity and economic burden around the world, particularly in low-resource settings. Some parasitic nematode species, including the human-parasitic threadworm Strongyloides stercoralis and human-parasitic hookworms in the genera Ancylostoma and Necator, feature a soil-dwelling infective larval stage that seeks out hosts for infection using a variety of host-emitted sensory cues. Here, we review our current understanding of the behavioral responses of soil-dwelling infective larvae to host-emitted sensory cues, and the molecular and cellular mechanisms that mediate these responses. We also discuss the development of methods for transgenesis and CRISPR/Cas9-mediated targeted mutagenesis in Strongyloides stercoralis and the closely related rat parasite Strongyloides ratti. These methods have established S. stercoralis and S. ratti as genetic model systems for gastrointestinal parasitic nematodes and are enabling more detailed investigations into the neural mechanisms that underlie the sensory-driven behaviors of this medically and economically important class of parasites.
Collapse
Affiliation(s)
- Astra S Bryant
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, 90095, USA
| | - Elissa A Hallem
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
21
|
Bryant AS, Hallem EA. Temperature-dependent behaviors of parasitic helminths. Neurosci Lett 2018; 687:290-303. [PMID: 30336196 PMCID: PMC6240462 DOI: 10.1016/j.neulet.2018.10.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/09/2018] [Accepted: 10/10/2018] [Indexed: 02/07/2023]
Abstract
Parasitic helminth infections are the most common source of neglected tropical disease among impoverished global communities. Many helminths infect their hosts via an active, sensory-driven process in which environmentally motile infective larvae position themselves near potential hosts. For these helminths, host seeking and host invasion can be divided into several discrete behaviors that are regulated by both host-emitted and environmental sensory cues, including heat. Thermosensation is a critical sensory modality for helminths that infect warm-blooded hosts, driving multiple behaviors necessary for host seeking and host invasion. Furthermore, thermosensory cues influence the host-seeking behaviors of both helminths that parasitize endothermic hosts and helminths that parasitize insect hosts. Here, we discuss the role of thermosensation in guiding the host-seeking and host-infection behaviors of a diverse group of helminths, including mammalian-parasitic nematodes, entomopathogenic nematodes, and schistosomes. We also discuss the neural circuitry and molecular pathways that underlie thermosensory responses in these species.
Collapse
Affiliation(s)
- Astra S Bryant
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Elissa A Hallem
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
22
|
Single copy/knock-in models of ALS SOD1 in C. elegans suggest loss and gain of function have different contributions to cholinergic and glutamatergic neurodegeneration. PLoS Genet 2018; 14:e1007682. [PMID: 30296255 PMCID: PMC6200258 DOI: 10.1371/journal.pgen.1007682] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 10/24/2018] [Accepted: 09/09/2018] [Indexed: 12/11/2022] Open
Abstract
Mutations in Cu/Zn superoxide dismutase 1 (SOD1) lead to Amyotrophic Lateral Sclerosis (ALS), a neurodegenerative disease that disproportionately affects glutamatergic and cholinergic motor neurons. Previous work with SOD1 overexpression models supports a role for SOD1 toxic gain of function in ALS pathogenesis. However, the impact of SOD1 loss of function in ALS cannot be directly examined in overexpression models. In addition, overexpression may obscure the contribution of SOD1 loss of function in the degeneration of different neuronal populations. Here, we report the first single-copy, ALS knock-in models in C. elegans generated by transposon- or CRISPR/Cas9- mediated genome editing of the endogenous sod-1 gene. Introduction of ALS patient amino acid changes A4V, H71Y, L84V, G85R or G93A into the C. elegans sod-1 gene yielded single-copy/knock-in ALS SOD1 models. These differ from previously reported overexpression models in multiple assays. In single-copy/knock-in models, we observed differential impact of sod-1 ALS alleles on glutamatergic and cholinergic neurodegeneration. A4V, H71Y, G85R, and G93A animals showed increased SOD1 protein accumulation and oxidative stress induced degeneration, consistent with a toxic gain of function in cholinergic motor neurons. By contrast, H71Y, L84V, and G85R lead to glutamatergic neuron degeneration due to sod-1 loss of function after oxidative stress. However, dopaminergic and serotonergic neuronal populations were spared in single-copy ALS models, suggesting a neuronal-subtype specificity previously not reported in invertebrate ALS SOD1 models. Combined, these results suggest that knock-in models may reproduce the neurotransmitter-type specificity of ALS and that both SOD1 loss and gain of toxic function differentially contribute to ALS pathogenesis in different neuronal populations. In all SOD1 ALS patients, cholinergic spinal motor neurons degenerate, but degeneration of cortical glutamatergic neurons is less common. Despite decades of work, it remains unclear why some disease alleles (e.g. A4V) primarily affect cholinergic spinal neurons, while other alleles affect both cholinergic and glutamatergic neurons. New genome editing techniques allowed us to create the first C. elegans knock-in/single-copy models for SOD1 ALS by directly editing the C. elegans sod-1 gene to recreate SOD1 amino acid changes that cause ALS in patients. These new models are complementary to previously described overexpression models, which revealed mutant SOD1 toxic gain of function properties. By contrast, in the new C. elegans knock-in models, we find that both loss and gain of sod-1 function contribute to neurodegeneration. C. elegans cholinergic motor neuron loss is primarily driven by toxic gain of function, but glutamatergic neuron loss is primarily driven by loss of function. Only cholinergic and glutamatergic neurons degenerate in C. elegans knock-in models; dopaminergic, serotoninergic and GABAergic neurons do not. This pattern of neuronal loss is reminiscent of the pattern of neuronal loss seen in SOD1 ALS patients. Strikingly, in the C. elegans A4V model, only cholinergic neurons are lost. Our results suggest that an underlying premise of the ALS field–that identical pathological mechanisms lead to degeneration of cholinergic and glutamatergic neurons–should be reconsidered. Mechanisms that predominantly drive glutamatergic and cholinergic neuron degeneration in ALS may not be identical.
Collapse
|
23
|
Pansch C, Scotti M, Barboza FR, Al-Janabi B, Brakel J, Briski E, Bucholz B, Franz M, Ito M, Paiva F, Saha M, Sawall Y, Weinberger F, Wahl M. Heat waves and their significance for a temperate benthic community: A near-natural experimental approach. GLOBAL CHANGE BIOLOGY 2018; 24:4357-4367. [PMID: 29682862 DOI: 10.1111/gcb.14282] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 02/09/2018] [Accepted: 04/07/2018] [Indexed: 06/08/2023]
Abstract
Climate change will not only shift environmental means but will also increase the intensity of extreme events, exerting additional stress on ecosystems. While field observations on the ecological consequences of heat waves are emerging, experimental evidence is rare, and lacking at the community level. Using a novel "near-natural" outdoor mesocosms approach, this study tested whether marine summer heat waves have detrimental consequences for macrofauna of a temperate coastal community, and whether sequential heat waves provoke an increase or decrease of sensitivity to thermal stress. Three treatments were applied, defined and characterized through a statistical analysis of 15 years of temperature records from the experimental site: (1) no heat wave, (2) two heat waves in June and July followed by a summer heat wave in August and (3) the summer heat wave only. Overall, 50% of the species showed positive, negative or positive/negative responses in either abundance and/or biomass. We highlight four possible ways in which single species responded to either three subsequent heat waves or one summer heat wave: (1) absence of a response (tolerance, 50% of species), (2) negative accumulative effects by three subsequent heat waves (tellinid bivalve), (3) buffering by proceeding heat waves due to acclimation and/or shifts in phenology (spionid polychaete) and (4) an accumulative positive effect by subsequent heat waves (amphipod). The differential responses to single or sequential heat waves at the species level entailed shifts at the community level. Community-level differences between single and triple heat waves were more pronounced than those between regimes with vs. without heat waves. Detritivory was reduced by the single heat wave while suspension feeding was less common in the triple heat wave regime. Critical extreme events occur already today and will occur more frequently in a changing climate, thus, leading to detrimental impacts on coastal marine systems.
Collapse
Affiliation(s)
- Christian Pansch
- Department of Marine Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Marco Scotti
- Department of Marine Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Francisco R Barboza
- Department of Marine Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Balsam Al-Janabi
- Department of Marine Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Janina Brakel
- Department of Marine Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Elizabeta Briski
- Department of Marine Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Björn Bucholz
- Department of Marine Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Markus Franz
- Department of Marine Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Maysa Ito
- Department of Marine Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Filipa Paiva
- Department of Marine Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
- MARE - Marine and Environmental Sciences Centre, Quinta do Lorde Marina, Caniçal, Madeira Island, Portugal
| | - Mahasweta Saha
- Department of Marine Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Yvonne Sawall
- Bermuda Institute of Ocean Sciences (BIOS), St. George's, Bermuda
| | - Florian Weinberger
- Department of Marine Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Martin Wahl
- Department of Marine Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| |
Collapse
|
24
|
Bryant AS, Ruiz F, Gang SS, Castelletto ML, Lopez JB, Hallem EA. A Critical Role for Thermosensation in Host Seeking by Skin-Penetrating Nematodes. Curr Biol 2018; 28:2338-2347.e6. [PMID: 30017486 PMCID: PMC6091634 DOI: 10.1016/j.cub.2018.05.063] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/18/2018] [Accepted: 05/22/2018] [Indexed: 12/31/2022]
Abstract
Skin-penetrating parasitic nematodes infect approximately one billion people worldwide and are a major source of neglected tropical disease [1-6]. Their life cycle includes an infective third-larval (iL3) stage that searches for hosts to infect in a poorly understood process that involves both thermal and olfactory cues. Here, we investigate the temperature-driven behaviors of skin-penetrating iL3s, including the human-parasitic threadworm Strongyloides stercoralis and the human-parasitic hookworm Ancylostoma ceylanicum. We show that human-parasitic iL3s respond robustly to thermal gradients. Like the free-living nematode Caenorhabditis elegans, human-parasitic iL3s show both positive and negative thermotaxis, and the switch between them is regulated by recent cultivation temperature [7]. When engaging in positive thermotaxis, iL3s migrate toward temperatures approximating mammalian body temperature. Exposing iL3s to a new cultivation temperature alters the thermal switch point between positive and negative thermotaxis within hours, similar to the timescale of thermal plasticity in C. elegans [7]. Thermal plasticity in iL3s may enable them to optimize host finding on a diurnal temperature cycle. We show that temperature-driven responses can be dominant in multisensory contexts such that, when thermal drive is strong, iL3s preferentially engage in temperature-driven behaviors despite the presence of an attractive host odorant. Finally, targeted mutagenesis of the S. stercoralis tax-4 homolog abolishes heat seeking, providing the first evidence that parasitic host-seeking behaviors are generated through an adaptation of sensory cascades that drive environmental navigation in C. elegans [7-10]. Together, our results provide insight into the behavioral strategies and molecular mechanisms that allow skin-penetrating nematodes to target humans.
Collapse
Affiliation(s)
- Astra S Bryant
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Felicitas Ruiz
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Spencer S Gang
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Michelle L Castelletto
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jacqueline B Lopez
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Elissa A Hallem
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
25
|
Kalinnikova TB, Kolsanova RR, Belova EB, Shagidullin RR, Gainutdinov MK. Opposite effects of moderate heat stress and hyperthermia on cholinergic system of soil nematodes Caenorhabditis elegans and Caenorhabditis briggsae. J Therm Biol 2016; 62:37-49. [PMID: 27839548 DOI: 10.1016/j.jtherbio.2016.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 05/26/2016] [Accepted: 05/29/2016] [Indexed: 10/20/2022]
Abstract
Cholinergic system plays important role in all functions of organisms of free-living soil nematodes C. elegans and C. briggsae. Using pharmacological analysis we showed the existence of two opposite responses of nematodes cholinergic system to moderate and extreme heat stress. Short-term (15min) noxious heat (31-32°C) caused activation of cholinergic synaptic transmission in C. elegans and C. briggsae organisms by sensitization of nicotinic ACh receptors. In contrast, hyperthermia blocked cholinergic synaptic transmission by inhibition of ACh secretion by neurons. The resistance of behavior to extreme high temperature (36-37°C) was significantly higher in C. briggsae than in C. elegans, and thermostability of cholinergic transmission correlated with resistance of behavior to hyperthermia. Activation of cholinergic transmission by moderate heat stress can be the reason of movement speed increase in such adaptive behavior as noxious heat escape. Inhibition of ACh release is one of reasons for behavior failure caused by extreme high temperature since partial inhibition of ACh-esterase by aldicarb protected C. elegans and C. briggsae behavior against hyperthermia. Antagonist of mAChRs atropine almost completely prevented the rise in behavior thermotolerance caused by aldicarb. Pilocarpine, agonist of mAChRs, protected nematodes behavior against hyperthermia similarly with aldicarb. Therefore it is evident that it is the deficiency of mAChRs activity that is the reason for nematodes' behavior failure by hyperthermia.
Collapse
Affiliation(s)
- Tatiana B Kalinnikova
- Research Institute for Problems of Ecology and Mineral Wealth Use of Tatarstan Academy of Sciences, Daurskaya str., 28, 420087 Kazan, Russia.
| | - Rufina R Kolsanova
- Research Institute for Problems of Ecology and Mineral Wealth Use of Tatarstan Academy of Sciences, Daurskaya str., 28, 420087 Kazan, Russia
| | - Evgenia B Belova
- Research Institute for Problems of Ecology and Mineral Wealth Use of Tatarstan Academy of Sciences, Daurskaya str., 28, 420087 Kazan, Russia
| | - Rifgat R Shagidullin
- Research Institute for Problems of Ecology and Mineral Wealth Use of Tatarstan Academy of Sciences, Daurskaya str., 28, 420087 Kazan, Russia
| | - Marat Kh Gainutdinov
- Research Institute for Problems of Ecology and Mineral Wealth Use of Tatarstan Academy of Sciences, Daurskaya str., 28, 420087 Kazan, Russia
| |
Collapse
|
26
|
Glauser DA, Goodman MB. Molecules empowering animals to sense and respond to temperature in changing environments. Curr Opin Neurobiol 2016; 41:92-98. [PMID: 27657982 DOI: 10.1016/j.conb.2016.09.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 08/17/2016] [Accepted: 09/05/2016] [Indexed: 11/25/2022]
Abstract
Adapting behavior to thermal cues is essential for animal growth and survival. Indeed, each and every biological and biochemical process is profoundly affected by temperature and its extremes can cause irreversible damage. Hence, animals have developed thermotransduction mechanisms to detect and encode thermal information in the nervous system and acclimation mechanisms to finely tune their response over different timescales. While temperature-gated TRP channels are the best described class of temperature sensors, recent studies highlight many new candidates, including ionotropic and metabotropic receptors. Here, we review recent findings in vertebrate and invertebrate models, which highlight and substantiate the role of new candidate molecular thermometers and reveal intracellular signaling mechanisms implicated in thermal acclimation at the behavioral and cellular levels.
Collapse
Affiliation(s)
| | - Miriam B Goodman
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
27
|
Hums I, Riedl J, Mende F, Kato S, Kaplan HS, Latham R, Sonntag M, Traunmüller L, Zimmer M. Regulation of two motor patterns enables the gradual adjustment of locomotion strategy in Caenorhabditis elegans. eLife 2016; 5. [PMID: 27222228 PMCID: PMC4880447 DOI: 10.7554/elife.14116] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 04/19/2016] [Indexed: 11/18/2022] Open
Abstract
In animal locomotion a tradeoff exists between stereotypy and flexibility: fast long-distance travelling (LDT) requires coherent regular motions, while local sampling and area-restricted search (ARS) rely on flexible movements. We report here on a posture control system in C. elegans that coordinates these needs. Using quantitative posture analysis we explain worm locomotion as a composite of two modes: regular undulations versus flexible turning. Graded reciprocal regulation of both modes allows animals to flexibly adapt their locomotion strategy under sensory stimulation along a spectrum ranging from LDT to ARS. Using genetics and functional imaging of neural activity we characterize the counteracting interneurons AVK and DVA that utilize FLP-1 and NLP-12 neuropeptides to control both motor modes. Gradual regulation of behaviors via this system is required for spatial navigation during chemotaxis. This work shows how a nervous system controls simple elementary features of posture to generate complex movements for goal-directed locomotion strategies. DOI:http://dx.doi.org/10.7554/eLife.14116.001 Animals navigate through their environment using different strategies according to their current needs. For example, when the goal is to travel long distances, they move quickly and in an efficient way by employing regular, repetitive movements. However, when the aim is to explore the nearby area – to search for food, for example – animals move slowly and make more flexible movements. These different types of movement mostly use the same groups of muscles, and so animals must be able to alter how they control their muscles to yield these different strategies. These movement strategies have been observed in many animal species, from worms to grazing cows, and researchers have mostly classified them into distinct behavioral states that the animals switch between. To date, the patterns of movements that underlie these strategies have not been described in detail. The wavelike movement of the roundworm Caenorhabditis elegans has the advantage of being relatively easy to measure. By analyzing precise recordings of how the worms change posture as they move, Hums et al. now show that two main patterns of motion underlie worm movement. Regular whole-body waves (undulations) efficiently drive long-distance travel, while more complex turning motions allow the animals to flexibly change direction and so explore the local environment. Furthermore, the worms can fine-tune their movement strategy by gradually transitioning between the two patterns. This finding is opposed to the standard view, where animals switch between distinct behavioral states. Hums et al. then studied how neuronal regulation in the C. elegans nervous system enables the worms to transition between the different movement strategies. In these experiments, neurons were manipulated and their activity was recorded. The results suggest that two classes of so called interneurons enable the worms to fine-tune their movements. Each class of these interneurons produces a signaling molecule (or neuropeptide) that counteracts the activity of the other signal; together both neuropeptides regulate the patterns of movements. Further work is now needed to identify and investigate the downstream neurons that work together to represent the different patterns of movements in the roundworm. Future studies could also analyze whether other animals – such as swimming animals and limbed animals – use similar principles to change between distinct forms of movement and thus enact a range of behavioral strategies. DOI:http://dx.doi.org/10.7554/eLife.14116.002
Collapse
Affiliation(s)
- Ingrid Hums
- Research Institute of Molecular Pathology, Vienna Biocenter VBC, Vienna, Austria
| | - Julia Riedl
- Research Institute of Molecular Pathology, Vienna Biocenter VBC, Vienna, Austria
| | - Fanny Mende
- Research Institute of Molecular Pathology, Vienna Biocenter VBC, Vienna, Austria
| | - Saul Kato
- Research Institute of Molecular Pathology, Vienna Biocenter VBC, Vienna, Austria
| | - Harris S Kaplan
- Research Institute of Molecular Pathology, Vienna Biocenter VBC, Vienna, Austria
| | - Richard Latham
- Research Institute of Molecular Pathology, Vienna Biocenter VBC, Vienna, Austria
| | - Michael Sonntag
- Research Institute of Molecular Pathology, Vienna Biocenter VBC, Vienna, Austria
| | - Lisa Traunmüller
- Research Institute of Molecular Pathology, Vienna Biocenter VBC, Vienna, Austria
| | - Manuel Zimmer
- Research Institute of Molecular Pathology, Vienna Biocenter VBC, Vienna, Austria
| |
Collapse
|
28
|
Singh D, Odedra D, Lehmann C, Pohl C. Acute heat shock leads to cortical domain internalization and polarity loss in theC. elegansembryo. Genesis 2016; 54:220-8. [DOI: 10.1002/dvg.22930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 02/26/2016] [Accepted: 02/26/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Deepika Singh
- Buchmann Institute for Molecular Life Sciences and Institute of Biochemistry II, Goethe University; Max-von-Laue-Strasse 15 Frankfurt (Main) 60438 Germany
| | - Devang Odedra
- Buchmann Institute for Molecular Life Sciences and Institute of Biochemistry II, Goethe University; Max-von-Laue-Strasse 15 Frankfurt (Main) 60438 Germany
| | - Christina Lehmann
- Buchmann Institute for Molecular Life Sciences and Institute of Biochemistry II, Goethe University; Max-von-Laue-Strasse 15 Frankfurt (Main) 60438 Germany
| | - Christian Pohl
- Buchmann Institute for Molecular Life Sciences and Institute of Biochemistry II, Goethe University; Max-von-Laue-Strasse 15 Frankfurt (Main) 60438 Germany
| |
Collapse
|
29
|
Schild LC, Zbinden L, Bell HW, Yu YV, Sengupta P, Goodman MB, Glauser DA. The balance between cytoplasmic and nuclear CaM kinase-1 signaling controls the operating range of noxious heat avoidance. Neuron 2014; 84:983-96. [PMID: 25467982 DOI: 10.1016/j.neuron.2014.10.039] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2014] [Indexed: 12/12/2022]
Abstract
Through encounters with predators, competitors, and noxious stimuli, animals have evolved defensive responses that minimize injury and are essential for survival. Physiological adaptation modulates the stimulus intensities that trigger such nocifensive behaviors, but the molecular networks that define their operating range are largely unknown. Here, we identify a gain-of-function allele of the cmk-1 CaMKI gene in C. elegans and show that loss of the regulatory domain of the CaMKI enzyme produces thermal analgesia and shifts the operating range for nocifensive heat avoidance to higher temperatures. Such analgesia depends on nuclear CMK-1 signaling, while cytoplasmic CMK-1 signaling lowers the threshold for thermal avoidance. CMK-1 acts downstream of heat detection in thermal receptor neurons and controls neuropeptide release. Our results establish CaMKI as a key regulator of the operating range for nocifensive behaviors and suggest strategies for producing thermal analgesia through the regulation of CaMKI-dependent signaling.
Collapse
Affiliation(s)
- Lisa C Schild
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Laurie Zbinden
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Harold W Bell
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454, USA
| | - Yanxun V Yu
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454, USA
| | - Piali Sengupta
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454, USA
| | - Miriam B Goodman
- Department of Molecular and Cellular Physiology, Stanford School of Medicine, Stanford, CA 94305, USA.
| | | |
Collapse
|
30
|
Hill AJ, Mansfield R, Lopez JMNG, Raizen DM, Van Buskirk C. Cellular stress induces a protective sleep-like state in C. elegans. Curr Biol 2014; 24:2399-405. [PMID: 25264259 DOI: 10.1016/j.cub.2014.08.040] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 07/22/2014] [Accepted: 08/18/2014] [Indexed: 01/17/2023]
Abstract
Sleep is recognized to be ancient in origin, with vertebrates and invertebrates experiencing behaviorally quiescent states that are regulated by conserved genetic mechanisms. Despite its conservation throughout phylogeny, the function of sleep remains debated. Hypotheses for the purpose of sleep include nervous-system-specific functions such as modulation of synaptic strength and clearance of metabolites from the brain, as well as more generalized cellular functions such as energy conservation and macromolecule biosynthesis. These models are supported by the identification of synaptic and metabolic processes that are perturbed during prolonged wakefulness. It remains to be seen whether perturbations of cellular homeostasis in turn drive sleep. Here we show that under conditions of cellular stress, including noxious heat, cold, hypertonicity, and tissue damage, the nematode Caenorhabditis elegans engages a behavioral quiescence program. The stress-induced quiescent state displays properties of sleep and is dependent on the ALA neuron, which mediates the conserved soporific effect of epidermal growth factor (EGF) ligand overexpression. We characterize heat-induced quiescence in detail and show that it is indeed dependent on components of EGF signaling, providing physiological relevance to the behavioral effects of EGF family ligands. We find that after noxious heat exposure, quiescence-defective animals show elevated expression of cellular stress reporter genes and are impaired for survival, demonstrating the benefit of stress-induced behavioral quiescence. These data provide evidence that cellular stress can induce a protective sleep-like state in C. elegans and suggest that a deeply conserved function of sleep is to mitigate disruptions of cellular homeostasis.
Collapse
Affiliation(s)
- Andrew J Hill
- Department of Biology, California State University, Northridge, Northridge, CA 91330, USA
| | - Richard Mansfield
- Department of Biology, California State University, Northridge, Northridge, CA 91330, USA
| | - Jessie M N G Lopez
- Department of Biology, California State University, Northridge, Northridge, CA 91330, USA
| | - David M Raizen
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Cheryl Van Buskirk
- Department of Biology, California State University, Northridge, Northridge, CA 91330, USA.
| |
Collapse
|
31
|
Glauser DA. How and why Caenorhabditis elegans uses distinct escape and avoidance regimes to minimize exposure to noxious heat. WORM 2013; 2:e27285. [PMID: 24744986 DOI: 10.4161/worm.27285] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 11/13/2013] [Accepted: 11/20/2013] [Indexed: 02/02/2023]
Abstract
Minimizing the exposure to deleterious extremes of temperature is essential for animals to avoid tissue damages. Because their body temperature equilibrates very rapidly with their surroundings, small invertebrates are particularly vulnerable to the deleterious impact of high temperatures, which jeopardizes their growth, fertility, and survival. The present article reviews recent analyses of Caenorhabditis elegans behavior in temperature gradients covering innocuous and noxious temperatures. These analyses have highlighted that worm uses two separate, multi-componential navigational strategies: an avoidance strategy, aiming at staying away from noxious heat, and an escape strategy, aiming at running away after exposure. Here, I explain why efficient escape and avoidance mechanisms are mutually exclusive and why worm needs to switch between distinct behavioral regimes to achieve efficient protective thermoregulation. Collectively, these findings reveal some largely unrecognized strategies improving worm goal-directed navigation and the fascinating level of sophistication of the behavioral responses deployed to minimize the exposure to noxious heat. Because switching between avoidance and escape regimes circumvents constraints that are valid for navigation behaviors in general, similar solutions might be used by worms and also other organisms in response to various environmental parameters covering an innocuous/noxious, non-toxic/toxic range.
Collapse
Affiliation(s)
- Dominique A Glauser
- Department of Biology; University of Fribourg; Chemin du Musée 10; Fribourg, Switzerland
| |
Collapse
|