1
|
Fiore APZP, Maity S, Jeffery L, An D, Rendleman J, Iannitelli D, Choi H, Mazzoni E, Vogel C. Identification of molecular signatures defines the differential proteostasis response in induced spinal and cranial motor neurons. Cell Rep 2024; 43:113885. [PMID: 38457337 PMCID: PMC11018139 DOI: 10.1016/j.celrep.2024.113885] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 12/12/2023] [Accepted: 02/13/2024] [Indexed: 03/10/2024] Open
Abstract
Amyotrophic lateral sclerosis damages proteostasis, affecting spinal and upper motor neurons earlier than a subset of cranial motor neurons. To aid disease understanding, we exposed induced cranial and spinal motor neurons (iCrMNs and iSpMNs) to proteotoxic stress, under which iCrMNs showed superior survival, quantifying the transcriptome and proteome for >8,200 genes at 0, 12, and 36 h. Two-thirds of the proteome showed cell-type differences. iSpMN-enriched proteins related to DNA/RNA metabolism, and iCrMN-enriched proteins acted in the endoplasmic reticulum (ER)/ER chaperone complex, tRNA aminoacylation, mitochondria, and the plasma/synaptic membrane, suggesting that iCrMNs expressed higher levels of proteins supporting proteostasis and neuronal function. When investigating the increased proteasome levels in iCrMNs, we showed that the activity of the 26S proteasome, but not of the 20S proteasome, was higher in iCrMNs than in iSpMNs, even after a stress-induced decrease. We identified Ublcp1 as an iCrMN-specific regulator of the nuclear 26S activity.
Collapse
Affiliation(s)
| | - Shuvadeep Maity
- New York University, Department of Biology, New York, NY 10003, USA; Department of Biological Sciences, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad, Telangana, India
| | - Lauren Jeffery
- New York University, Department of Biology, New York, NY 10003, USA
| | - Disi An
- New York University, Department of Biology, New York, NY 10003, USA
| | - Justin Rendleman
- New York University, Department of Biology, New York, NY 10003, USA
| | - Dylan Iannitelli
- New York University, Department of Biology, New York, NY 10003, USA
| | - Hyungwon Choi
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Esteban Mazzoni
- New York University, Department of Biology, New York, NY 10003, USA; Department of Cell Biology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Christine Vogel
- New York University, Department of Biology, New York, NY 10003, USA.
| |
Collapse
|
2
|
Hagiwara T, Minami R, Ushio C, Yokota N, Kawahara H. Proteotoxic stresses stimulate dissociation of UBL4A from the tail-anchored protein recognition complex. Biochem J 2023; 480:1583-1598. [PMID: 37747814 PMCID: PMC10586765 DOI: 10.1042/bcj20230267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 09/27/2023]
Abstract
Inclusion body formation is associated with cytotoxicity in a number of neurodegenerative diseases. However, the molecular basis of the toxicity caused by the accumulation of aggregation-prone proteins remains controversial. In this study, we found that disease-associated inclusions induced by elongated polyglutamine chains disrupt the complex formation of BAG6 with UBL4A, a mammalian homologue of yeast Get5. UBL4A also dissociated from BAG6 in response to proteotoxic stresses such as proteasomal inhibition and mitochondrial depolarization. These findings imply that the cytotoxicity of pathological protein aggregates might be attributed in part to disruption of the BAG6-UBL4A complex that is required for the biogenesis of tail-anchored proteins.
Collapse
Affiliation(s)
- Takumi Hagiwara
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Ryosuke Minami
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Chizuru Ushio
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Naoto Yokota
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Hiroyuki Kawahara
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| |
Collapse
|
3
|
Kesner JS, Chen Z, Shi P, Aparicio AO, Murphy MR, Guo Y, Trehan A, Lipponen JE, Recinos Y, Myeku N, Wu X. Noncoding translation mitigation. Nature 2023; 617:395-402. [PMID: 37046090 PMCID: PMC10560126 DOI: 10.1038/s41586-023-05946-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 03/13/2023] [Indexed: 04/14/2023]
Abstract
Translation is pervasive outside of canonical coding regions, occurring in long noncoding RNAs, canonical untranslated regions and introns1-4, especially in ageing4-6, neurodegeneration5,7 and cancer8-10. Notably, the majority of tumour-specific antigens are results of noncoding translation11-13. Although the resulting polypeptides are often nonfunctional, translation of noncoding regions is nonetheless necessary for the birth of new coding sequences14,15. The mechanisms underlying the surveillance of translation in diverse noncoding regions and how escaped polypeptides evolve new functions remain unclear10,16-19. Functional polypeptides derived from annotated noncoding sequences often localize to membranes20,21. Here we integrate massively parallel analyses of more than 10,000 human genomic sequences and millions of random sequences with genome-wide CRISPR screens, accompanied by in-depth genetic and biochemical characterizations. Our results show that the intrinsic nucleotide bias in the noncoding genome and in the genetic code frequently results in polypeptides with a hydrophobic C-terminal tail, which is captured by the ribosome-associated BAG6 membrane protein triage complex for either proteasomal degradation or membrane targeting. By contrast, canonical proteins have evolved to deplete C-terminal hydrophobic residues. Our results reveal a fail-safe mechanism for the surveillance of unwanted translation from diverse noncoding regions and suggest a possible biochemical route for the preferential membrane localization of newly evolved proteins.
Collapse
Affiliation(s)
- Jordan S Kesner
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Ziheng Chen
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Peiguo Shi
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Alexis O Aparicio
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Michael R Murphy
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Yang Guo
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Aditi Trehan
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Jessica E Lipponen
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Yocelyn Recinos
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Natura Myeku
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Xuebing Wu
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
4
|
BAG6 prevents the aggregation of neurodegeneration-associated fragments of TDP43. iScience 2022; 25:104273. [PMID: 35542047 PMCID: PMC9079172 DOI: 10.1016/j.isci.2022.104273] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/23/2021] [Accepted: 04/14/2022] [Indexed: 11/24/2022] Open
Abstract
Neurodegeneration is associated with the aggregation of proteins bearing solvent-exposed hydrophobicity as a result of their misfolding and/or proteolytic cleavage. An understanding of the cellular protein quality control mechanisms which prevent protein aggregation is fundamental to understanding the etiology of neurodegeneration. By examining the metabolism of disease-linked C-terminal fragments of the TAR DNA-binding protein 43 (TDP43), we found that the Bcl-2 associated athanogene 6 (BAG6) functions as a sensor of proteolytic fragments bearing exposed hydrophobicity and prevents their intracellular aggregation. In addition, BAG6 facilitates the ubiquitylation of TDP43 fragments by recruiting the Ub-ligase, Ring finger protein 126 (RNF126). Authenticating its role in preventing aggregation, we found that TDP43 fragments form intracellular aggregates in the absence of BAG6. Finally, we found that BAG6 could interact with and solubilize additional neurodegeneration-associated proteolytic fragments. Therefore, BAG6 plays a general role in preventing intracellular aggregation associated with neurodegeneration. Proteolytic cleavage generates protein fragments bearing exposed hydrophobicity BAG6 maintains the solubility and directs the degradation of protein fragments BAG6 prevents intracellular aggregation associated with neurodegeneration
Collapse
|
5
|
Tang R, Acharya N, Subramanian A, Purohit V, Tabaka M, Hou Y, He D, Dixon KO, Lambden C, Xia J, Rozenblatt-Rosen O, Sobel RA, Wang C, Regev A, Anderson AC, Kuchroo VK. Tim-3 adapter protein Bat3 acts as an endogenous regulator of tolerogenic dendritic cell function. Sci Immunol 2022; 7:eabm0631. [PMID: 35275752 PMCID: PMC9273260 DOI: 10.1126/sciimmunol.abm0631] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Dendritic cells (DCs) sense environmental cues and adopt either an immune-stimulatory or regulatory phenotype, thereby fine-tuning immune responses. Identifying endogenous regulators that determine DC function can thus inform the development of therapeutic strategies for modulating the immune response in different disease contexts. Tim-3 plays an important role in regulating immune responses by inhibiting the activation status and the T cell priming ability of DC in the setting of cancer. Bat3 is an adaptor protein that binds to the tail of Tim-3; therefore, we studied its role in regulating the functional status of DCs. In murine models of autoimmunity (experimental autoimmune encephalomyelitis) and cancer (MC38-OVA-implanted tumor), lack of Bat3 expression in DCs alters the T cell compartment-it decreases TH1, TH17 and cytotoxic effector cells, increases regulatory T cells, and exhausted CD8+ tumor-infiltrating lymphocytes, resulting in the attenuation of autoimmunity and acceleration of tumor growth. We found that Bat3 expression levels were differentially regulated by activating versus inhibitory stimuli in DCs, indicating a role for Bat3 in the functional calibration of DC phenotypes. Mechanistically, loss of Bat3 in DCs led to hyperactive unfolded protein response and redirected acetyl-coenzyme A to increase cell intrinsic steroidogenesis. The enhanced steroidogenesis in Bat3-deficient DC suppressed T cell response in a paracrine manner. Our findings identified Bat3 as an endogenous regulator of DC function, which has implications for DC-based immunotherapies.
Collapse
Affiliation(s)
- Ruihan Tang
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Nandini Acharya
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Ayshwarya Subramanian
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Vinee Purohit
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Marcin Tabaka
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Yu Hou
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Danyang He
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Karen O. Dixon
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Connor Lambden
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Junrong Xia
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | - Chao Wang
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biology, Howard Hughes Medical Institute and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ana C. Anderson
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Vijay K. Kuchroo
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
6
|
Can ND, Basturk E, Kizilboga T, Akcay IM, Dingiloglu B, Tatli O, Acar S, Ozfiliz Kilbas P, Elbeyli E, Muratcioglu S, Jannuzzi AT, Gursoy A, Keskin O, Doganay HL, Karademir Yilmaz B, Dinler Doganay G. Interactome analysis of Bag-1 isoforms reveals novel interaction partners in endoplasmic reticulum-associated degradation. PLoS One 2021; 16:e0256640. [PMID: 34428256 PMCID: PMC8384158 DOI: 10.1371/journal.pone.0256640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/11/2021] [Indexed: 11/24/2022] Open
Abstract
Bag-1 is a multifunctional protein that regulates Hsp70 chaperone activity, apoptosis, and proliferation. The three major Bag-1 isoforms have different subcellular localizations and partly non-overlapping functions. To identify the detailed interaction network of each isoform, we utilized mass spectrometry-based proteomics and found that interactomes of Bag-1 isoforms contained many common proteins, with variations in their abundances. Bag-1 interactomes were enriched with proteins involved in protein processing and degradation pathways. Novel interaction partners included VCP/p97; a transitional ER ATPase, Rad23B; a shuttling factor for ubiquitinated proteins, proteasome components, and ER-resident proteins, suggesting a role for Bag-1 also in ER-associated protein degradation (ERAD). Bag-1 pull-down from cells and tissues from breast cancer patients validated these interactions and showed cancer-related prominence. Using in silico predictions we detected hotspot residues of Bag-1. Mutations of these residues caused loss of binding to protein quality control elements and impaired proteasomal activity in MCF-7 cells. Following CD147 glycosylation pattern, we showed that Bag-1 downregulated VCP/p97-dependent ERAD. Overall, our data extends the interaction map of Bag-1, and broadens its role in protein homeostasis. Targeting the interaction surfaces revealed in this study might be an effective strategy in the treatment of cancer.
Collapse
Affiliation(s)
- Nisan Denizce Can
- Department of Molecular Biology—Genetics and Biotechnology, Istanbul Technical University, Istanbul, Turkey
| | - Ezgi Basturk
- Department of Molecular Biology—Genetics and Biotechnology, Istanbul Technical University, Istanbul, Turkey
| | - Tugba Kizilboga
- Department of Molecular Biology—Genetics and Biotechnology, Istanbul Technical University, Istanbul, Turkey
| | - Izzet Mehmet Akcay
- Department of Molecular Biology—Genetics and Biotechnology, Istanbul Technical University, Istanbul, Turkey
| | - Baran Dingiloglu
- Department of Molecular Biology—Genetics and Biotechnology, Istanbul Technical University, Istanbul, Turkey
| | - Ozge Tatli
- Department of Molecular Biology—Genetics and Biotechnology, Istanbul Technical University, Istanbul, Turkey
- Molecular Biology and Genetics Department, Istanbul Medeniyet University, Istanbul, Turkey
| | - Sevilay Acar
- Department of Molecular Biology—Genetics and Biotechnology, Istanbul Technical University, Istanbul, Turkey
| | - Pelin Ozfiliz Kilbas
- Department of Molecular Biology—Genetics and Biotechnology, Istanbul Technical University, Istanbul, Turkey
- Department of Molecular Biology and Genetics, Istanbul Kultur University, Istanbul, Turkey
| | - Efe Elbeyli
- Department of Chemical and Biological Engineering, Koc University, Istanbul, Turkey
| | - Serena Muratcioglu
- Department of Chemical and Biological Engineering, Koc University, Istanbul, Turkey
| | - Ayse Tarbin Jannuzzi
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Istanbul University, Istanbul, Turkey
| | - Attila Gursoy
- Department of Chemical and Biological Engineering, Koc University, Istanbul, Turkey
| | - Ozlem Keskin
- Department of Chemical and Biological Engineering, Koc University, Istanbul, Turkey
| | | | - Betul Karademir Yilmaz
- Department of Biochemistry, School of Medicine/Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, Istanbul, Turkey
| | - Gizem Dinler Doganay
- Department of Molecular Biology—Genetics and Biotechnology, Istanbul Technical University, Istanbul, Turkey
| |
Collapse
|
7
|
The parkinsonism-associated protein FBXO7 cooperates with the BAG6 complex in proteasome function and controls the subcellular localization of the complex. Biochem J 2021; 478:2179-2199. [PMID: 34060591 DOI: 10.1042/bcj20201000] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 05/28/2021] [Accepted: 05/28/2021] [Indexed: 11/17/2022]
Abstract
The regulation of proteasome activity is essential to cellular homeostasis and defects have been implicated in various disorders including Parkinson disease. The F-box protein FBXO7 has been implicated in early-onset parkinsonism and has previously been shown to have a regulatory role in proteasome activity and assembly. Here, we report the association of the E3 ubiquitin ligase FBXO7-SCF (SKP1, cullin-1, F-box protein) with the BAG6 complex, consisting of the subunits BAG6, GET4 and UBL4A. We identify the subunit GET4 as a direct interactor of FBXO7 and we show that the subunits GET4 and UBL4A are required for proper proteasome activity. Our findings demonstrate reduced binding of FBXO7 variants to GET4 and that FBXO7 variants bring about reduced proteasome activity. In addition, we find that GET4 is a non-proteolytic substrate of FBXO7, that binding of GET4 to BAG6 is enhanced in the presence of active FBXO7-SCF and that the cytoplasmic localization of the BAG6 complex is dependent on the E3 ubiquitin ligase activity. Taken together, our study shows that the parkinsonism-associated FBXO7 cooperates with the BAG6 complex in proteasome function and determines the subcellular localization of this complex.
Collapse
|
8
|
Expanding the role of proteasome homeostasis in Parkinson's disease: beyond protein breakdown. Cell Death Dis 2021; 12:154. [PMID: 33542205 PMCID: PMC7862491 DOI: 10.1038/s41419-021-03441-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 02/06/2023]
Abstract
Proteasome is the principal hydrolytic machinery responsible for the great majority of protein degradation. The past three decades have testified prominent advances about proteasome involved in almost every aspect of biological processes. Nonetheless, inappropriate increase or decrease in proteasome function is regarded as a causative factor in several diseases. Proteasome abundance and proper assembly need to be precisely controlled. Indeed, various neurodegenerative diseases including Parkinson's disease (PD) share a common pathological feature, intracellular protein accumulation such as α-synuclein. Proteasome activation may effectively remove aggregates and prevent the neurodegeneration in PD, which provides a potential application for disease-modifying treatment. In this review, we build on the valuable discoveries related to different types of proteolysis by distinct forms of proteasome, and how its regulatory and catalytic particles promote protein elimination. Additionally, we summarize the emerging ideas on the proteasome homeostasis regulation by targeting transcriptional, translational, and post-translational levels. Given the imbalanced proteostasis in PD, the strategies for intensifying proteasomal degradation are advocated as a promising approach for PD clinical intervention.
Collapse
|
9
|
Wang X, Meul T, Meiners S. Exploring the proteasome system: A novel concept of proteasome inhibition and regulation. Pharmacol Ther 2020; 211:107526. [PMID: 32173559 DOI: 10.1016/j.pharmthera.2020.107526] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 03/08/2020] [Indexed: 12/13/2022]
Abstract
The proteasome is a well-identified therapeutic target for cancer treatment. It acts as the main protein degradation system in the cell and degrades key mediators of cell growth, survival and function. The term "proteasome" embraces a whole family of distinct complexes, which share a common proteolytic core, the 20S proteasome, but differ by their attached proteasome activators. Each of these proteasome complexes plays specific roles in the control of cellular function. In addition, distinct proteasome interacting proteins regulate proteasome activity in subcellular compartments and in response to cellular signals. Proteasome activators and regulators may thus serve as building blocks to fine-tune proteasome function in the cell according to cellular needs. Inhibitors of the proteasome, e.g. the FDA approved drugs Velcade™, Kyprolis™, Ninlaro™, inactivate the catalytic 20S core and effectively block protein degradation of all proteasome complexes in the cell resulting in inhibition of cell growth and induction of apoptosis. Efficacy of these inhibitors, however, is hampered by their pronounced cytotoxic side-effects as well as by the emerging development of resistance to catalytic proteasome inhibitors. Targeted inhibition of distinct buiding blocks of the proteasome system, i.e. proteasome activators or regulators, represents an alternative strategy to overcome these limitations. In this review, we stress the importance of the diversity of the proteasome complexes constituting an entire proteasome system. Our building block concept provides a rationale for the defined targeting of distinct proteasome super-complexes in disease. We thereby aim to stimulate the development of innovative therapeutic approaches beyond broad catalytic proteasome inhibition.
Collapse
Affiliation(s)
- Xinyuan Wang
- Comprehensive Pneumology Center (CPC), University Hospital of the Ludwig-Maximilians-University (LMU) and Helmholtz Zentrum München, German Center for Lung Research (DZL), 81377 Munich, Germany
| | - Thomas Meul
- Comprehensive Pneumology Center (CPC), University Hospital of the Ludwig-Maximilians-University (LMU) and Helmholtz Zentrum München, German Center for Lung Research (DZL), 81377 Munich, Germany
| | - Silke Meiners
- Comprehensive Pneumology Center (CPC), University Hospital of the Ludwig-Maximilians-University (LMU) and Helmholtz Zentrum München, German Center for Lung Research (DZL), 81377 Munich, Germany.
| |
Collapse
|
10
|
Coux O, Zieba BA, Meiners S. The Proteasome System in Health and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1233:55-100. [DOI: 10.1007/978-3-030-38266-7_3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Abstract
The proteasome degrades most cellular proteins in a controlled and tightly regulated manner and thereby controls many processes, including cell cycle, transcription, signalling, trafficking and protein quality control. Proteasomal degradation is vital in all cells and organisms, and dysfunction or failure of proteasomal degradation is associated with diverse human diseases, including cancer and neurodegeneration. Target selection is an important and well-established way to control protein degradation. In addition, mounting evidence indicates that cells adjust proteasome-mediated degradation to their needs by regulating proteasome abundance through the coordinated expression of proteasome subunits and assembly chaperones. Central to the regulation of proteasome assembly is TOR complex 1 (TORC1), which is the master regulator of cell growth and stress. This Review discusses how proteasome assembly and the regulation of proteasomal degradation are integrated with cellular physiology, including the interplay between the proteasome and autophagy pathways. Understanding these mechanisms has potential implications for disease therapy, as the misregulation of proteasome function contributes to human diseases such as cancer and neurodegeneration.
Collapse
|
12
|
Lee Y, Eum H, Lee D, Lee S, Song Y, Kang SW. Mutant-selective topologic conversion facilitates selective degradation of a pathogenic prion isoform. Cell Death Differ 2019; 27:284-296. [PMID: 31127199 PMCID: PMC7205900 DOI: 10.1038/s41418-019-0354-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 04/10/2019] [Accepted: 05/13/2019] [Indexed: 11/29/2022] Open
Abstract
Regulating protein import across the endoplasmic reticulum (ER) membrane occasionally results in the synthesis of topologically unnatural variants, and their accumulation often leads to proteotoxicity. However, since this is a regulated process, it is questionable whether the topological rearrangement really has adverse consequences. In the present study, we provide an insight into the functional benefit of translocational regulation by illustrating mutant-selective topologic conversion (MSTC) and demonstrate that MSTC contributes to selective degradation of a membrane-anchored prion protein isoform (ctmPrP). We find that ctmPrP is inherently short-lived and topologically competent for degradation rather than accumulation. MSTC achieves, cotranslationally, the unique topology of ctmPrP during translocation, facilitating selective ctmPrP degradation from the ER via the proteasome-dependent pathway before entering the secretory pathway. At this time, the N-terminal polycationic cluster is essential for MSTC, and its cytosolic exposure acquires “ERAD-degron”-like activity for ctmPrP. Bypassing MSTC delays ctmPrP degradation, thus increasing prion proteotoxicity. Thus, topological rearrangement is used for the MSTC as a part of the protein quality control pathway to ensure the safety of the secretory pathway from misfolded PrP.
Collapse
Affiliation(s)
- Yumi Lee
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hongsik Eum
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Duri Lee
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sohee Lee
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Youngsup Song
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Asan Institute of Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Sang-Wook Kang
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul, Republic of Korea. .,Asan Institute of Life Sciences, Asan Medical Center, Seoul, Republic of Korea.
| |
Collapse
|
13
|
Kuscuoglu D, Janciauskiene S, Hamesch K, Haybaeck J, Trautwein C, Strnad P. Liver - master and servant of serum proteome. J Hepatol 2018; 69:512-524. [PMID: 29709680 DOI: 10.1016/j.jhep.2018.04.018] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 04/13/2018] [Accepted: 04/16/2018] [Indexed: 12/20/2022]
Abstract
Hepatocytes synthesise the majority of serum proteins. This production occurs in the endoplasmic reticulum (ER) and is adjusted by complex local and systemic regulatory mechanisms. Accordingly, serum levels of hepatocyte-made proteins constitute important biomarkers that reflect both systemic processes and the status of the liver. For example, C-reactive protein is an established marker of inflammatory reaction, whereas transferrin emerges as a liver stress marker and an attractive mortality predictor. The high protein flow through the ER poses a continuous challenge that is handled by a complex proteostatic network consisting of ER folding machinery, ER stress response, ER-associated degradation and autophagy. Various disorders disrupt this delicate balance and result in protein accumulation in the ER. These include chronic hepatitis B infection with overproduction of hepatitis B surface antigen or inherited alpha1-antitrypsin deficiency that give rise to ground glass hepatocytes and alpha1-antitrypsin aggregates, respectively. We review these ER storage disorders and their downstream consequences. The interaction between proteotoxic stress and other ER challenges such as lipotoxicity is also discussed. Collectively, this article aims to sharpen our view of liver hepatocytes as the central hubs of protein metabolism.
Collapse
Affiliation(s)
- Deniz Kuscuoglu
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Aachen, Germany; The Interdisciplinary Center for Clinical Research (IZKF), University Hospital Aachen, Aachen, Germany
| | - Sabina Janciauskiene
- Department of Respiratory Medicine, Hannover Medical School, BREATH, German Center for Lung Research (DZL), Hannover, Germany
| | - Karim Hamesch
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Aachen, Germany
| | - Johannes Haybaeck
- Institute of Pathology, Medical University Graz, Graz, Austria; Department of Pathology, Medical Faculty, Otto-von-Guericke University of Magdeburg, Magdeburg, Germany
| | - Christian Trautwein
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Aachen, Germany
| | - Pavel Strnad
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Aachen, Germany; The Interdisciplinary Center for Clinical Research (IZKF), University Hospital Aachen, Aachen, Germany.
| |
Collapse
|
14
|
Norlin S, Parekh V, Edlund H. The ATPase activity of Asna1/TRC40 is required for pancreatic progenitor cell survival. Development 2018; 145:dev.154468. [PMID: 29180572 PMCID: PMC5825870 DOI: 10.1242/dev.154468] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 11/10/2017] [Indexed: 12/13/2022]
Abstract
Asna1, also known as TRC40, is implicated in the delivery of tail-anchored (TA) proteins into the endoplasmic reticulum (ER), in vesicle-mediated transport, and in chaperoning unfolded proteins during oxidative stress/ATP depletion. Here, we show that Asna1 inactivation in pancreatic progenitor cells leads to redistribution of the Golgi TA SNARE proteins syntaxin 5 and syntaxin 6, Golgi fragmentation, and accumulation of cytosolic p62+ puncta. Asna1−/− multipotent progenitor cells (MPCs) selectively activate integrated stress response signaling and undergo apoptosis, thereby disrupting endocrine and acinar cell differentiation, resulting in pancreatic agenesis. Rescue experiments implicate the Asna1 ATPase activity and a CXXC di-cysteine motif in ensuring Golgi integrity, syntaxin 5 localization and MPC survival. Ex vivo inhibition of retrograde transport reproduces the perturbed Golgi morphology, and syntaxin 5 and syntaxin 6 expression, whereas modulation of p53 activity, using PFT-α and Nutlin-3, prevents or reproduces apoptosis in Asna1-deficient and wild-type MPCs, respectively. These findings support a role for the Asna1 ATPase activity in ensuring the survival of pancreatic MPCs, possibly by counteracting p53-mediated apoptosis. Summary: Conditional inactivation of Asna1/TRC40 in pancreatic progenitor cells results in pancreatic agenesis resulting from pancreatic progenitor cell apoptosis, thus revealing a crucial role for Asna1/TRC40 in pancreatic progenitor cell survival.
Collapse
Affiliation(s)
- Stefan Norlin
- Umeå Centre for Molecular Medicine, Umeå University, SE-901 87 Umeå, Sweden
| | - Vishal Parekh
- Umeå Centre for Molecular Medicine, Umeå University, SE-901 87 Umeå, Sweden
| | - Helena Edlund
- Umeå Centre for Molecular Medicine, Umeå University, SE-901 87 Umeå, Sweden
| |
Collapse
|
15
|
Wang X, Chemmama IE, Yu C, Huszagh A, Xu Y, Viner R, Block SA, Cimermancic P, Rychnovsky SD, Ye Y, Sali A, Huang L. The proteasome-interacting Ecm29 protein disassembles the 26S proteasome in response to oxidative stress. J Biol Chem 2017; 292:16310-16320. [PMID: 28821611 DOI: 10.1074/jbc.m117.803619] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 08/11/2017] [Indexed: 01/17/2023] Open
Abstract
Oxidative stress has been implicated in multiple human neurological and other disorders. Proteasomes are multi-subunit proteases critical for the removal of oxidatively damaged proteins. To understand stress-associated human pathologies, it is important to uncover the molecular events underlying the regulation of proteasomes upon oxidative stress. To this end, we investigated H2O2 stress-induced molecular changes of the human 26S proteasome and determined that stress-induced 26S proteasome disassembly is conserved from yeast to human. Moreover, we developed and employed a new proteomic approach, XAP (in vivo cross-linking-assisted affinity purification), coupled with stable isotope labeling with amino acids in cell culture (SILAC)-based quantitative MS, to capture and quantify several weakly bound proteasome-interacting proteins and examine their roles in stress-mediated proteasomal remodeling. Our results indicate that the adapter protein Ecm29 is the main proteasome-interacting protein responsible for stress-triggered remodeling of the 26S proteasome in human cells. Importantly, using a disuccinimidyl sulfoxide-based cross-linking MS platform, we mapped the interactions of Ecm29 within itself and with proteasome subunits and determined the architecture of the Ecm29-proteasome complex with integrative structure modeling. These results enabled us to propose a structural model in which Ecm29 intrudes on the interaction between the 20S core particle and the 19S regulatory particle in the 26S proteasome, disrupting the proteasome structure in response to oxidative stress.
Collapse
Affiliation(s)
- Xiaorong Wang
- From the Department of Physiology and Biophysics, University of California, Irvine, California 92697
| | - Ilan E Chemmama
- the Departments of Bioengineering and Therapeutic Sciences and Pharmaceutical Chemistry, California Institute for Quantitative Biosciences, University of California, San Francisco, California 94143
| | - Clinton Yu
- From the Department of Physiology and Biophysics, University of California, Irvine, California 92697
| | - Alexander Huszagh
- From the Department of Physiology and Biophysics, University of California, Irvine, California 92697
| | - Yue Xu
- the Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Rosa Viner
- Thermo Fisher Scientific, San Jose, California 95134, and
| | - Sarah A Block
- the Department of Chemistry, University of California, Irvine, California 92697
| | - Peter Cimermancic
- the Departments of Bioengineering and Therapeutic Sciences and Pharmaceutical Chemistry, California Institute for Quantitative Biosciences, University of California, San Francisco, California 94143
| | - Scott D Rychnovsky
- the Department of Chemistry, University of California, Irvine, California 92697
| | - Yihong Ye
- the Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Andrej Sali
- the Departments of Bioengineering and Therapeutic Sciences and Pharmaceutical Chemistry, California Institute for Quantitative Biosciences, University of California, San Francisco, California 94143
| | - Lan Huang
- From the Department of Physiology and Biophysics, University of California, Irvine, California 92697,
| |
Collapse
|
16
|
Budenholzer L, Cheng CL, Li Y, Hochstrasser M. Proteasome Structure and Assembly. J Mol Biol 2017; 429:3500-3524. [PMID: 28583440 DOI: 10.1016/j.jmb.2017.05.027] [Citation(s) in RCA: 264] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/22/2017] [Accepted: 05/30/2017] [Indexed: 10/19/2022]
Abstract
The eukaryotic 26S proteasome is a large multisubunit complex that degrades the majority of proteins in the cell under normal conditions. The 26S proteasome can be divided into two subcomplexes: the 19S regulatory particle and the 20S core particle. Most substrates are first covalently modified by ubiquitin, which then directs them to the proteasome. The function of the regulatory particle is to recognize, unfold, deubiquitylate, and translocate substrates into the core particle, which contains the proteolytic sites of the proteasome. Given the abundance and subunit complexity of the proteasome, the assembly of this ~2.5MDa complex must be carefully orchestrated to ensure its correct formation. In recent years, significant progress has been made in the understanding of proteasome assembly, structure, and function. Technical advances in cryo-electron microscopy have resulted in a series of atomic cryo-electron microscopy structures of both human and yeast 26S proteasomes. These structures have illuminated new intricacies and dynamics of the proteasome. In this review, we focus on the mechanisms of proteasome assembly, particularly in light of recent structural information.
Collapse
Affiliation(s)
- Lauren Budenholzer
- Department of Molecular Biophysics & Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT 06520, USA
| | - Chin Leng Cheng
- Department of Molecular Biophysics & Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT 06520, USA
| | - Yanjie Li
- Department of Molecular Biophysics & Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT 06520, USA
| | - Mark Hochstrasser
- Department of Molecular Biophysics & Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT 06520, USA.
| |
Collapse
|
17
|
Ohigashi I, Ohte Y, Setoh K, Nakase H, Maekawa A, Kiyonari H, Hamazaki Y, Sekai M, Sudo T, Tabara Y, Sawai H, Omae Y, Yuliwulandari R, Tanaka Y, Mizokami M, Inoue H, Kasahara M, Minato N, Tokunaga K, Tanaka K, Matsuda F, Murata S, Takahama Y. A human PSMB11 variant affects thymoproteasome processing and CD8+ T cell production. JCI Insight 2017; 2:e93664. [PMID: 28515360 PMCID: PMC5436549 DOI: 10.1172/jci.insight.93664] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 04/11/2017] [Indexed: 11/17/2022] Open
Abstract
The Psmb11-encoded β5t subunit of the thymoproteasome, which is specifically expressed in cortical thymic epithelial cells (cTECs), is essential for the optimal positive selection of functionally competent CD8+ T cells in mice. Here, we report that a human genomic PSMB11 variation, which is detectable at an appreciable allele frequency in human populations, alters the β5t amino acid sequence that affects the processing of catalytically active β5t proteins. The introduction of this variation in the mouse genome revealed that the heterozygotes showed reduced β5t expression in cTECs and the homozygotes further exhibited reduction in the cellularity of CD8+ T cells. No severe health problems were noticed in many heterozygous and 5 homozygous human individuals. Long-term analysis of health status, particularly in the homozygotes, is expected to improve our understanding of the role of the thymoproteasome-dependent positive selection of CD8+ T cells in humans.
Collapse
Affiliation(s)
- Izumi Ohigashi
- Division of Experimental Immunology, Institute of Advanced Medical Sciences, University of Tokushima, Tokushima, Japan
| | - Yuki Ohte
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Kazuya Setoh
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroshi Nakase
- Division of Experimental Immunology, Institute of Advanced Medical Sciences, University of Tokushima, Tokushima, Japan
| | - Akiko Maekawa
- Division of Experimental Immunology, Institute of Advanced Medical Sciences, University of Tokushima, Tokushima, Japan
| | - Hiroshi Kiyonari
- Animal Resource Development Unit and Genetic Engineering Team, RIKEN Center for Life Science Technologies, Kobe, Japan
| | - Yoko Hamazaki
- Department of Immunology and Cell Biology, Graduate School of Medicine
| | - Miho Sekai
- Department of Immunology and Cell Biology, Graduate School of Medicine
| | - Tetsuo Sudo
- Department of Nanobio Drug Discovery, Graduate School of Pharmaceutical Science, Kyoto University, Kyoto, Japan
| | - Yasuharu Tabara
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiromi Sawai
- Department of Human Genetics, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Yosuke Omae
- Department of Human Genetics, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Rika Yuliwulandari
- Department of Pharmacology, Faculty of Medicine, YARSI University, Jakarta Pusat, Indonesia
| | - Yasuhito Tanaka
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Masashi Mizokami
- Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Japan
| | - Hiroshi Inoue
- Division of Genetic Information, Institute for Genome Research, University of Tokushima, Tokushima, Japan
| | - Masanori Kasahara
- Department of Pathology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Nagahiro Minato
- Department of Immunology and Cell Biology, Graduate School of Medicine
| | - Katsushi Tokunaga
- Department of Human Genetics, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Keiji Tanaka
- Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Fumihiko Matsuda
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shigeo Murata
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Yousuke Takahama
- Division of Experimental Immunology, Institute of Advanced Medical Sciences, University of Tokushima, Tokushima, Japan
| |
Collapse
|
18
|
Howell LA, Tomko RJ, Kusmierczyk AR. Putting it all together: intrinsic and extrinsic mechanisms governing proteasome biogenesis. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/s11515-017-1439-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
19
|
Sasaki K, Takada K, Ohte Y, Kondo H, Sorimachi H, Tanaka K, Takahama Y, Murata S. Thymoproteasomes produce unique peptide motifs for positive selection of CD8(+) T cells. Nat Commun 2015; 6:7484. [PMID: 26099460 PMCID: PMC4557289 DOI: 10.1038/ncomms8484] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 05/13/2015] [Indexed: 11/09/2022] Open
Abstract
Positive selection in the thymus provides low-affinity T-cell receptor (TCR) engagement to support the development of potentially useful self-major histocompatibility complex class I (MHC-I)-restricted T cells. Optimal positive selection of CD8(+) T cells requires cortical thymic epithelial cells that express β5t-containing thymoproteasomes (tCPs). However, how tCPs govern positive selection is unclear. Here we show that the tCPs produce unique cleavage motifs in digested peptides and in MHC-I-associated peptides. Interestingly, MHC-I-associated peptides carrying these tCP-dependent motifs are enriched with low-affinity TCR ligands that efficiently induce the positive selection of functionally competent CD8(+) T cells in antigen-specific TCR-transgenic models. These results suggest that tCPs contribute to the positive selection of CD8(+) T cells by preferentially producing low-affinity TCR ligand peptides.
Collapse
Affiliation(s)
- Katsuhiro Sasaki
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Kensuke Takada
- Division of Experimental Immunology, Institute for Genome Research, University of Tokushima, Tokushima 770-8503, Japan
| | - Yuki Ohte
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hiroyuki Kondo
- Division of Experimental Immunology, Institute for Genome Research, University of Tokushima, Tokushima 770-8503, Japan
| | - Hiroyuki Sorimachi
- Calpain Project, Department of Advanced Science for Biomolecules, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Keiji Tanaka
- Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Yousuke Takahama
- Division of Experimental Immunology, Institute for Genome Research, University of Tokushima, Tokushima 770-8503, Japan
| | - Shigeo Murata
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
20
|
Shirozu R, Yashiroda H, Murata S. Identification of minimum Rpn4-responsive elements in genes related to proteasome functions. FEBS Lett 2015; 589:933-40. [PMID: 25747386 DOI: 10.1016/j.febslet.2015.02.025] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 02/23/2015] [Accepted: 02/24/2015] [Indexed: 12/29/2022]
Abstract
The proteasome is an essential, 66-subunit protease that mediates ubiquitin-dependent proteolysis. The transcription factor Rpn4 regulates concerted expression of proteasome subunits to increase the proteasome by recognizing nonamer proteasome-associated control element (PACE) elements on the promoter regions. However, the genes for proteasome assembly chaperones and some of the subunits have no PACEs. Here we identified a minimal hexamer "PACE-core" sequence that responds to Rpn4. PACE-cores are found in many genes related to proteasome function including the assembly chaperones, but cannot substitute for PACE of the subunits. Our results add a new layer of complexity in transcriptional regulation of genes involved in protein degradation.
Collapse
Affiliation(s)
- Ryohei Shirozu
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hideki Yashiroda
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Shigeo Murata
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan.
| |
Collapse
|
21
|
Bag6 complex contains a minimal tail-anchor-targeting module and a mock BAG domain. Proc Natl Acad Sci U S A 2014; 112:106-11. [PMID: 25535373 DOI: 10.1073/pnas.1402745112] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
BCL2-associated athanogene cochaperone 6 (Bag6) plays a central role in cellular homeostasis in a diverse array of processes and is part of the heterotrimeric Bag6 complex, which also includes ubiquitin-like 4A (Ubl4A) and transmembrane domain recognition complex 35 (TRC35). This complex recently has been shown to be important in the TRC pathway, the mislocalized protein degradation pathway, and the endoplasmic reticulum-associated degradation pathway. Here we define the architecture of the Bag6 complex, demonstrating that both TRC35 and Ubl4A have distinct C-terminal binding sites on Bag6 defining a minimal Bag6 complex. A crystal structure of the Bag6-Ubl4A dimer demonstrates that Bag6-BAG is not a canonical BAG domain, and this finding is substantiated biochemically. Remarkably, the minimal Bag6 complex defined here facilitates tail-anchored substrate transfer from small glutamine-rich tetratricopeptide repeat-containing protein α to TRC40. These findings provide structural insight into the complex network of proteins coordinated by Bag6.
Collapse
|
22
|
Gu ZC, Enenkel C. Proteasome assembly. Cell Mol Life Sci 2014; 71:4729-45. [PMID: 25107634 PMCID: PMC11113775 DOI: 10.1007/s00018-014-1699-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 07/30/2014] [Accepted: 07/31/2014] [Indexed: 10/24/2022]
Abstract
In eukaryotic cells, proteasomes are highly conserved protease complexes and eliminate unwanted proteins which are marked by poly-ubiquitin chains for degradation. The 26S proteasome consists of the proteolytic core particle, the 20S proteasome, and the 19S regulatory particle, which are composed of 14 and 19 different subunits, respectively. Proteasomes are the second-most abundant protein complexes and are continuously assembled from inactive precursor complexes in proliferating cells. The modular concept of proteasome assembly was recognized in prokaryotic ancestors and applies to eukaryotic successors. The efficiency and fidelity of eukaryotic proteasome assembly is achieved by several proteasome-dedicated chaperones that initiate subunit incorporation and control the quality of proteasome assemblies by transiently interacting with proteasome precursors. It is important to understand the mechanism of proteasome assembly as the proteasome has key functions in the turnover of short-lived proteins regulating diverse biological processes.
Collapse
Affiliation(s)
- Zhu Chao Gu
- Department of Biochemistry, University of Toronto, Medical Sciences Building, 1 King’s College Circle, Toronto, ON M5S 1A8 Canada
| | - Cordula Enenkel
- Department of Biochemistry, University of Toronto, Medical Sciences Building, 1 King’s College Circle, Toronto, ON M5S 1A8 Canada
| |
Collapse
|
23
|
Abstract
BAG6 participates in protein quality control and, here, we address its role in endoplasmic-reticulum-associated degradation (ERAD) by using the polytopic membrane protein OpD, an opsin degron mutant. Both BAG6 knockdown and BAG6 overexpression delay OpD degradation; however, our data suggest that these two perturbations are mechanistically distinct. Hence, BAG6 knockdown correlates with reduced OpD polyubiquitylation, whereas BAG6 overexpression increases the level of polyubiquitylated OpD. The UBL- and BAG-domains of exogenous BAG6 are dispensable for OpD stabilisation and enhanced levels of polyubiquitylated OpD. Thus, although endogenous BAG6 normally promotes OpD degradation, exogenous BAG6 expression delays this process. We speculate that overexpressed BAG6 subunits might associate with the endogenous BAG6 complex, resulting in a dominant-negative effect that inhibits its function. Interestingly, cellular levels of BAG6 also correlate with total steady-state polyubiquitylation, with Rpn10 (officially known as PSMD4) overexpression showing a similar effect. These findings suggest that perturbations of the levels of ubiquitin-binding proteins can impact upon cellular ubiquitin homeostasis. We propose that exogenous BAG6 perturbs the function of the BAG6 complex at a stage subsequent to substrate recognition and polyubiquitylation, most likely the BAG6-dependent delivery of OpD to the proteasome.
Collapse
Affiliation(s)
- Aishwarya Payapilly
- Faculty of Life Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Stephen High
- Faculty of Life Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
24
|
Antón LC, Yewdell JW. Translating DRiPs: MHC class I immunosurveillance of pathogens and tumors. J Leukoc Biol 2014; 95:551-62. [PMID: 24532645 PMCID: PMC3958739 DOI: 10.1189/jlb.1113599] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 01/15/2014] [Accepted: 01/19/2014] [Indexed: 11/24/2022] Open
Abstract
MHC class I molecules display oligopeptides on the cell surface to enable T cell immunosurveillance of intracellular pathogens and tumors. Speed is of the essence in detecting viruses, which can complete a full replication cycle in just hours, whereas tumor detection is typically a finding-the-needle-in-the-haystack exercise. We review current evidence supporting a nonrandom, compartmentalized selection of peptidogenic substrates that focuses on rapidly degraded translation products as a main source of peptide precursors to optimize immunosurveillance of pathogens and tumors.
Collapse
Affiliation(s)
- Luis C Antón
- 1.NIAID, NIH, Bldg. 33, Bethesda, MD 20892, USA.
| | | |
Collapse
|
25
|
Korpetinou A, Skandalis SS, Labropoulou VT, Smirlaki G, Noulas A, Karamanos NK, Theocharis AD. Serglycin: at the crossroad of inflammation and malignancy. Front Oncol 2014; 3:327. [PMID: 24455486 PMCID: PMC3888995 DOI: 10.3389/fonc.2013.00327] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 12/20/2013] [Indexed: 12/14/2022] Open
Abstract
Serglycin has been initially characterized as an intracellular proteoglycan expressed by hematopoietic cells. All inflammatory cells highly synthesize serglycin and store it in granules, where it interacts with numerous inflammatory mediators, such as proteases, chemokines, cytokines, and growth factors. Serglycin is implicated in their storage into the granules and their protection since they are secreted as complexes and delivered to their targets after secretion. During the last decade, numerous studies have demonstrated that serglycin is also synthesized by various non-hematopoietic cell types. It has been shown that serglycin is highly expressed by tumor cells and promotes their aggressive phenotype and confers resistance against drugs and complement system attack. Apart from its direct beneficial role to tumor cells, serglycin may promote the inflammatory process in the tumor cell microenvironment thus enhancing tumor development. In the present review, we discuss the role of serglycin in inflammation and tumor progression.
Collapse
Affiliation(s)
- Angeliki Korpetinou
- Laboratory of Biochemistry, Department of Chemistry, University of Patras , Patras , Greece
| | - Spyros S Skandalis
- Laboratory of Biochemistry, Department of Chemistry, University of Patras , Patras , Greece
| | | | - Gianna Smirlaki
- Laboratory of Biochemistry, Department of Chemistry, University of Patras , Patras , Greece
| | | | - Nikos K Karamanos
- Laboratory of Biochemistry, Department of Chemistry, University of Patras , Patras , Greece
| | - Achilleas D Theocharis
- Laboratory of Biochemistry, Department of Chemistry, University of Patras , Patras , Greece
| |
Collapse
|
26
|
Sahara K, Kogleck L, Yashiroda H, Murata S. The mechanism for molecular assembly of the proteasome. Adv Biol Regul 2014; 54:51-8. [PMID: 24145026 DOI: 10.1016/j.jbior.2013.09.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 09/09/2013] [Indexed: 05/23/2023]
Abstract
In eukaryotic cells, the ubiquitin proteasome system plays important roles in diverse cellular processes. The 26S proteasome is a large enzyme complex that degrades ubiquitinated proteins. It consists of 33 different subunits that form two subcomplexes, the 20S core particle and the 19S regulatory particle. Recently, several chaperones dedicated to the accurate assembly of this protease complex have been identified, but the complete mechanism of the 26S proteasome assembly is still unclear. In this review, we summarize what is known about the assembly of proteasome to date and present our group's recent findings on the role of the GET pathway in the assembly of the 26S proteasome, in addition to its role in mediating the insertion of tail-anchored (TA) proteins into the ER membrane.
Collapse
Affiliation(s)
- Kazutaka Sahara
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Larissa Kogleck
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hideki Yashiroda
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Shigeo Murata
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan.
| |
Collapse
|