1
|
Tan S, Zhu F, Li Y, Wen X, Yang S, Liao Z, Duan X, Xiao D, Zhang Y. HELQ upregulates PARP1 to drive platinum resistance and predict therapeutic response in ovarian cancer. Transl Oncol 2025; 57:102416. [PMID: 40381483 DOI: 10.1016/j.tranon.2025.102416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 04/27/2025] [Accepted: 05/13/2025] [Indexed: 05/20/2025] Open
Abstract
POLQ-like helicase (HELQ), an evolutionarily conserved 3'-5' DNA helicase, is markedly overexpressed in platinum-resistant ovarian cancer (OC), which is correlated with a poor prognosis. However, the mechanisms linking HELQ with resistance to platinum-based chemotherapy remain unkonwn. Our study presents both in vitro and in vivo evidence that elevated HELQ expression is linked to increased chemoresistance in OC models, with reduced HELQ levels enhancing their sensitivity to platinum agents. The expression of γH2AX, RPA1 and 53BP1 determined by immunofluorescence and western blot indicated that HELQ could promote platinum-induced DNA damage repair. HELQ was found to promote OC platinum resistance by regulating the expression of poly (ADP-ribose) polymerase 1(PARP1), which could be reversed by PARP1 downregulation. Furthermore, in vitro experiments showed that HELQ overexpression sensitizes OC cells to PARP inhibitors (PARPi). Immunohistochemical analysis indicates that diminished HELQ expression in tumor tissues correlates with disease progression in patients with first-line maintenance therapy with PARPi, whereby higher expression levels predict improved progression-free survival. Notably, we found a positive correlation between PARP1 and HELQ expression. In conclusion, HELQupregulats PARP1 to promote platinum resistance in OC and warrants consideration as an emerging biomarker for monitoring therapeutic responses to chemotherapy and PARPi treatment in ovarian cancer.
Collapse
Affiliation(s)
- Shuran Tan
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, Hunan, , 410008, PR China; Gynecological Oncology Research and Engineering Center of Hunan Province, XiangyaHospital, Changsha, Hunan, , 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, 410008, PR China
| | - Fang Zhu
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, Hunan, , 410008, PR China; Gynecological Oncology Research and Engineering Center of Hunan Province, XiangyaHospital, Changsha, Hunan, , 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, 410008, PR China
| | - Yi Li
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, Hunan, , 410008, PR China; Gynecological Oncology Research and Engineering Center of Hunan Province, XiangyaHospital, Changsha, Hunan, , 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, 410008, PR China
| | - Xinxin Wen
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, Hunan, , 410008, PR China; Gynecological Oncology Research and Engineering Center of Hunan Province, XiangyaHospital, Changsha, Hunan, , 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, 410008, PR China
| | - Siyu Yang
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, Hunan, , 410008, PR China; Gynecological Oncology Research and Engineering Center of Hunan Province, XiangyaHospital, Changsha, Hunan, , 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, 410008, PR China
| | - Zexi Liao
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, Hunan, , 410008, PR China; Gynecological Oncology Research and Engineering Center of Hunan Province, XiangyaHospital, Changsha, Hunan, , 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, 410008, PR China
| | - Xuerui Duan
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, Hunan, , 410008, PR China; Gynecological Oncology Research and Engineering Center of Hunan Province, XiangyaHospital, Changsha, Hunan, , 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, 410008, PR China
| | - Di Xiao
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, PR China; The Hunan Institute of Pharmacy Practice and Clinical Research, Changsha, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, 410008, PR China.
| | - Yu Zhang
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, Hunan, , 410008, PR China; Gynecological Oncology Research and Engineering Center of Hunan Province, XiangyaHospital, Changsha, Hunan, , 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, 410008, PR China.
| |
Collapse
|
2
|
Pan JM, Betts H, Cubbon A, He L, Bolt EL, Soultanas P. The human HELQ helicase and XRN2 exoribonuclease cooperate in R-loop resolution. Open Biol 2025; 15:240112. [PMID: 39965657 PMCID: PMC11835494 DOI: 10.1098/rsob.240112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 01/14/2025] [Accepted: 01/14/2025] [Indexed: 02/20/2025] Open
Abstract
The human HELQ helicase is a superfamily 2, 3'-5 helicase homologous to POLQ and RNA helicases of the Ski2-like subfamily. It is involved in diverse aspects of DNA repair and is an emerging prognosis biomarker and novel drug target for cancer therapy. HELQ interacts with RPA through its inherently disordered N-HELQ domain and hence is recruited to RPA-bound DNA substrates. Our study reveals a novel role for HELQ in R-loop resolution. We show in cells and in vitro that HELQ is recruited by RPA at R-loops, which are then resolved if HELQ is catalytically active as an ATPase/helicase. Furthermore, we identify a functional interaction of HELQ with XRN2, a nuclear 5' to 3' exoribonuclease, which we suggest coordinates R-loop unwinding by HELQ with RNA digestion by XRN2. Collectively, we assign a new biological function for HELQ in genome stability in metazoans through its involvement with XRN2 in R-loop metabolism.
Collapse
Affiliation(s)
- J. M. Pan
- Biodiscovery Institute, School of Chemistry, University of Nottingham, University Park, NottinghamNG7 2RD, UK
| | - H. Betts
- Biodiscovery Institute, School of Chemistry, University of Nottingham, University Park, NottinghamNG7 2RD, UK
| | - A. Cubbon
- School of Life Sciences, University of Nottingham, University Park, NottinghamNG7 2RD, UK
| | - L. He
- School of Life Sciences, University of Nottingham, University Park, NottinghamNG7 2RD, UK
| | - E. L. Bolt
- School of Life Sciences, University of Nottingham, University Park, NottinghamNG7 2RD, UK
| | - P. Soultanas
- Biodiscovery Institute, School of Chemistry, University of Nottingham, University Park, NottinghamNG7 2RD, UK
| |
Collapse
|
3
|
Biller M, Kabir S, Nipper S, Allen S, Kayali Y, Kuncik S, Sasanuma H, Zhou P, Vaziri C, Tomida J. REV7 associates with ATRIP and inhibits ATR kinase activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.17.633588. [PMID: 39868202 PMCID: PMC11761088 DOI: 10.1101/2025.01.17.633588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Integration of DNA replication with DNA repair, cell cycle progression, and other biological processes is crucial for preserving genome stability and fundamentally important for all life. Ataxia-telangiectasia mutated and RAD3-related (ATR) and its partner ATR-interacting protein (ATRIP) function as a critical proximal sensor and transducer of the DNA Damage Response (DDR). Several ATR substrates, including p53 and CHK1, are crucial for coordination of cell cycle phase transitions, transcription, and DNA repair when cells sustain DNA damage. While much is known about ATR activation mechanisms, it is less clear how ATR signaling is negatively regulated in cells. Here, we identify the DNA repair protein REV7 as a novel direct binding partner of ATRIP. We define a REV7-interaction motif in ATRIP, which when mutated abrogates the REV7-ATRIP interaction in vitro and in intact cells. Using in vitro kinase assays, we show that REV7 inhibits ATR-mediated phosphorylation of its substrates, including p53. Disruption of the REV7-ATRIP interaction also enhances phosphorylation of CHK1 at Ser317 (a known ATR target site) in intact cells. Taken together our results establish REV7 as a critical negative regulator of ATR signaling. REV7 has pleiotropic roles in multiple DDR pathways including Trans-Lesion Synthesis, DNA Double-Strand Break resection, and p53 stability and may play a central role in the integration of multiple genome maintenance pathways.
Collapse
|
4
|
Zhao Y, Hou K, Liu Y, Na Y, Li C, Luo H, Wang H. Helicase HELQ: Molecular Characters Fit for DSB Repair Function. Int J Mol Sci 2024; 25:8634. [PMID: 39201320 PMCID: PMC11355030 DOI: 10.3390/ijms25168634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
The protein sequence and spatial structure of DNA helicase HELQ are highly conserved, spanning from archaea to humans. Aside from its helicase activity, which is based on DNA binding and translocation, it has also been recently reconfirmed that human HELQ possesses DNA-strand-annealing activity, similar to that of the archaeal HELQ homolog StoHjm. These biochemical functions play an important role in regulating various double-strand break (DSB) repair pathways, as well as multiple steps in different DSB repair processes. HELQ primarily facilitates repair in end-resection-dependent DSB repair pathways, such as homologous recombination (HR), single-strand annealing (SSA), microhomology-mediated end joining (MMEJ), as well as the sub-pathways' synthesis-dependent strand annealing (SDSA) and break-induced replication (BIR) within HR. The biochemical functions of HELQ are significant in end resection and its downstream pathways, such as strand invasion, DNA synthesis, and gene conversion. Different biochemical activities are required to support DSB repair at various stages. This review focuses on the functional studies of the biochemical roles of HELQ during different stages of diverse DSB repair pathways.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hailong Wang
- Beijing Key Laboratory of DNA Damage Response, College of Life Sciences, Capital Normal University, Beijing 100048, China
| |
Collapse
|
5
|
Wan C, Huang Y, Xue X, Chang G, Wang M, Zhao X, Luo F, Tang Z. HELQ deficiency impairs the induction of primordial germ cell-like cells. FEBS Open Bio 2024; 14:1087-1100. [PMID: 38720471 PMCID: PMC11216937 DOI: 10.1002/2211-5463.13810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 03/12/2024] [Accepted: 04/22/2024] [Indexed: 07/03/2024] Open
Abstract
Helicase POLQ-like (HELQ) is a DNA helicase essential for the maintenance of genome stability. A recent study identified two HELQ missense mutations in some cases of infertile men. However, the functions of HELQ in the process of germline specification are not well known and whether its function is conserved between mouse and human remains unclear. Here, we revealed that Helq knockout (Helq-/-) could significantly reduce the efficiency of mouse primordial germ cell-like cell (PGCLC) induction. In addition, Helq-/- embryonic bodies exhibited a severe apoptotic phenotype on day 6 of mouse PGCLC induction. p53 inhibitor treatment could partially rescue the generation of mouse PGCLCs from Helq mutant mouse embryonic stem cells. Finally, the genetic ablation of HELQ could also significantly impede the induction of human PGCLCs. Collectively, our study sheds light on the involvement of HELQ in the induction of both mouse and human PGCLCs, providing new insights into the mechanisms underlying germline differentiation and the genetic studies of human fertility.
Collapse
Affiliation(s)
- Cong Wan
- Maoming People's HospitalChina
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Yaping Huang
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Xingguo Xue
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Gang Chang
- Department of Biochemistry and Molecular BiologyShenzhen University Health Science CenterChina
| | - Mei Wang
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Xiao‐Yang Zhao
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
- Guangdong Key Laboratory of Construction and Detection in Tissue EngineeringSouthern Medical UniversityGuangzhouChina
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH‐GDL)China
| | - Fang Luo
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | | |
Collapse
|
6
|
Bakhshalizadeh S, Bird AD, Sreenivasan R, Bell KM, Robevska G, van den Bergen J, Asghari-Jafarabadi M, Kueh AJ, Touraine P, Lokchine A, Jaillard S, Ayers KL, Wilhelm D, Sinclair AH, Tucker EJ. A Human Homozygous HELQ Missense Variant Does Not Cause Premature Ovarian Insufficiency in a Mouse Model. Genes (Basel) 2024; 15:333. [PMID: 38540391 PMCID: PMC10970702 DOI: 10.3390/genes15030333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 04/02/2024] Open
Abstract
Disruption of meiosis and DNA repair genes is associated with female fertility disorders like premature ovarian insufficiency (POI). In this study, we identified a homozygous missense variant in the HELQ gene (c.596 A>C; p.Gln199Pro) through whole exome sequencing in a POI patient, a condition associated with disrupted ovarian function and female infertility. HELQ, an enzyme involved in DNA repair, plays a crucial role in repairing DNA cross-links and has been linked to germ cell maintenance, fertility, and tumour suppression in mice. To explore the potential association of the HELQ variant with POI, we used CRISPR/Cas9 to create a knock-in mouse model harbouring the equivalent of the human HELQ variant identified in the POI patient. Surprisingly, Helq knock-in mice showed no discernible phenotype, with fertility levels, histological features, and follicle development similar to wild-type mice. Despite the lack of observable effects in mice, the potential role of HELQ in human fertility, especially in the context of POI, should not be dismissed. Larger studies encompassing diverse ethnic populations and alternative functional approaches will be necessary to further examine the role of HELQ in POI. Our results underscore the potential uncertainties associated with genomic variants and the limitations of in vivo animal modelling.
Collapse
Affiliation(s)
- Shabnam Bakhshalizadeh
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3052, Australia; (S.B.); (R.S.); (K.M.B.); (G.R.); (J.v.d.B.); (K.L.A.); (A.H.S.)
- Department of Paediatrics, The University of Melbourne, Melbourne, VIC 3052, Australia
| | - Anthony D. Bird
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, VIC 3010, Australia; (A.D.B.); (D.W.)
- Hudson Institute of Medical Research, Monash Medical Centre, Melbourne, VIC 3168, Australia
- Department of Molecular & Translational Science, Monash University, Melbourne, VIC 3168, Australia
| | - Rajini Sreenivasan
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3052, Australia; (S.B.); (R.S.); (K.M.B.); (G.R.); (J.v.d.B.); (K.L.A.); (A.H.S.)
| | - Katrina M. Bell
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3052, Australia; (S.B.); (R.S.); (K.M.B.); (G.R.); (J.v.d.B.); (K.L.A.); (A.H.S.)
| | - Gorjana Robevska
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3052, Australia; (S.B.); (R.S.); (K.M.B.); (G.R.); (J.v.d.B.); (K.L.A.); (A.H.S.)
| | - Jocelyn van den Bergen
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3052, Australia; (S.B.); (R.S.); (K.M.B.); (G.R.); (J.v.d.B.); (K.L.A.); (A.H.S.)
| | - Mohammad Asghari-Jafarabadi
- Biostatistics Unit, School of Public Health and Preventative Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC 3004, Australia;
- Department of Psychiatry, School of Clinical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Andrew J. Kueh
- The Walter and Eliza Hall Institute, Parkville, VIC 3052, Australia;
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Philippe Touraine
- Department of Endocrinology and Reproductive Medicine, Pitie Salpetriere Hospital, AP-HP, Sorbonne University Medicine, 75013 Paris, France;
| | - Anna Lokchine
- IRSET (Institut de Recherche en Santé, Environnement et Travail), INSERM/EHESP/Univ Rennes/CHU Rennes–UMR_S 1085, 35000 Rennes, France; (A.L.); (S.J.)
- CHU Rennes, Service de Cytogénétique et Biologie Cellulaire, 35033 Rennes, France
| | - Sylvie Jaillard
- IRSET (Institut de Recherche en Santé, Environnement et Travail), INSERM/EHESP/Univ Rennes/CHU Rennes–UMR_S 1085, 35000 Rennes, France; (A.L.); (S.J.)
- CHU Rennes, Service de Cytogénétique et Biologie Cellulaire, 35033 Rennes, France
| | - Katie L. Ayers
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3052, Australia; (S.B.); (R.S.); (K.M.B.); (G.R.); (J.v.d.B.); (K.L.A.); (A.H.S.)
- Department of Paediatrics, The University of Melbourne, Melbourne, VIC 3052, Australia
| | - Dagmar Wilhelm
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, VIC 3010, Australia; (A.D.B.); (D.W.)
| | - Andrew H. Sinclair
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3052, Australia; (S.B.); (R.S.); (K.M.B.); (G.R.); (J.v.d.B.); (K.L.A.); (A.H.S.)
- Department of Paediatrics, The University of Melbourne, Melbourne, VIC 3052, Australia
| | - Elena J. Tucker
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3052, Australia; (S.B.); (R.S.); (K.M.B.); (G.R.); (J.v.d.B.); (K.L.A.); (A.H.S.)
- Department of Paediatrics, The University of Melbourne, Melbourne, VIC 3052, Australia
| |
Collapse
|
7
|
Ito M, Fujita Y, Shinohara A. Positive and negative regulators of RAD51/DMC1 in homologous recombination and DNA replication. DNA Repair (Amst) 2024; 134:103613. [PMID: 38142595 DOI: 10.1016/j.dnarep.2023.103613] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/10/2023] [Accepted: 12/10/2023] [Indexed: 12/26/2023]
Abstract
RAD51 recombinase plays a central role in homologous recombination (HR) by forming a nucleoprotein filament on single-stranded DNA (ssDNA) to catalyze homology search and strand exchange between the ssDNA and a homologous double-stranded DNA (dsDNA). The catalytic activity of RAD51 assembled on ssDNA is critical for the DNA-homology-mediated repair of DNA double-strand breaks in somatic and meiotic cells and restarting stalled replication forks during DNA replication. The RAD51-ssDNA complex also plays a structural role in protecting the regressed/reversed replication fork. Two types of regulators control RAD51 filament formation, stability, and dynamics, namely positive regulators, including mediators, and negative regulators, so-called remodelers. The appropriate balance of action by the two regulators assures genome stability. This review describes the roles of positive and negative RAD51 regulators in HR and DNA replication and its meiosis-specific homolog DMC1 in meiotic recombination. We also provide future study directions for a comprehensive understanding of RAD51/DMC1-mediated regulation in maintaining and inheriting genome integrity.
Collapse
Affiliation(s)
- Masaru Ito
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan.
| | - Yurika Fujita
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan.
| | - Akira Shinohara
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
8
|
Tischler JD, Tsuchida H, Bosire R, Oda TT, Park A, Adeyemi RO. FLIP(C1orf112)-FIGNL1 complex regulates RAD51 chromatin association to promote viability after replication stress. Nat Commun 2024; 15:866. [PMID: 38286805 PMCID: PMC10825145 DOI: 10.1038/s41467-024-45139-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 01/16/2024] [Indexed: 01/31/2024] Open
Abstract
Homologous recombination (HR) plays critical roles in repairing lesions that arise during DNA replication and is thus essential for viability. RAD51 plays important roles during replication and HR, however, how RAD51 is regulated downstream of nucleofilament formation and how the varied RAD51 functions are regulated is not clear. We have investigated the protein c1orf112/FLIP that previously scored in genome-wide screens for mediators of DNA inter-strand crosslink (ICL) repair. Upon ICL agent exposure, FLIP loss leads to marked cell death, elevated chromosomal instability, increased micronuclei formation, altered cell cycle progression and increased DNA damage signaling. FLIP is recruited to damage foci and forms a complex with FIGNL1. Both proteins have epistatic roles in ICL repair, forming a stable complex. Mechanistically, FLIP loss leads to increased RAD51 amounts and foci on chromatin both with or without exogenous DNA damage, defective replication fork progression and reduced HR competency. We posit that FLIP is essential for limiting RAD51 levels on chromatin in the absence of damage and for RAD51 dissociation from nucleofilaments to properly complete HR. Failure to do so leads to replication slowing and inability to complete repair.
Collapse
Affiliation(s)
- Jessica D Tischler
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Hiroshi Tsuchida
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | | | - Tommy T Oda
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
- University of Washington, Seattle, 98195, USA
| | - Ana Park
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
- University of Washington, Seattle, 98195, USA
| | - Richard O Adeyemi
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA.
| |
Collapse
|
9
|
Zhao Y, Hou K, Li Y, Hao S, Liu Y, Na Y, Li C, Cui J, Xu X, Wu X, Wang H. Human HELQ regulates DNA end resection at DNA double-strand breaks and stalled replication forks. Nucleic Acids Res 2023; 51:12207-12223. [PMID: 37897354 PMCID: PMC10711563 DOI: 10.1093/nar/gkad940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/15/2023] [Accepted: 10/11/2023] [Indexed: 10/30/2023] Open
Abstract
Following a DNA double strand break (DSB), several nucleases and helicases coordinate to generate single-stranded DNA (ssDNA) with 3' free ends, facilitating precise DNA repair by homologous recombination (HR). The same nucleases can act on stalled replication forks, promoting nascent DNA degradation and fork instability. Interestingly, some HR factors, such as CtIP and BRCA1, have opposite regulatory effects on the two processes, promoting end resection at DSB but inhibiting the degradation of nascent DNA on stalled forks. However, the reason why nuclease actions are regulated by different mechanisms in two DNA metabolism is poorly understood. We show that human HELQ acts as a DNA end resection regulator, with opposing activities on DNA end resection at DSBs and on stalled forks as seen for other regulators. Mechanistically, HELQ helicase activity is required for EXO1-mediated DSB end resection, while ssDNA-binding capacity of HELQ is required for its recruitment to stalled forks, facilitating fork protection and preventing chromosome aberrations caused by replication stress. Here, HELQ synergizes with CtIP but not BRCA1 or BRCA2 to protect stalled forks. These findings reveal an unanticipated role of HELQ in regulating DNA end resection at DSB and stalled forks, which is important for maintaining genome stability.
Collapse
Affiliation(s)
- Yuqin Zhao
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Kaiping Hou
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Youhang Li
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Shuailin Hao
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Yu Liu
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Yinan Na
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Chao Li
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Jian Cui
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Xingzhi Xu
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and Carson International Cancer Center, Marshall Laboratory of Biomedical Engineering, China Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China
| | - Xiaohua Wu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Hailong Wang
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| |
Collapse
|
10
|
Tang N, Wen W, Liu Z, Xiong X, Wu Y. HELQ as a DNA helicase: Its novel role in normal cell function and tumorigenesis (Review). Oncol Rep 2023; 50:220. [PMID: 37921071 PMCID: PMC10652244 DOI: 10.3892/or.2023.8657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 08/08/2023] [Indexed: 11/04/2023] Open
Abstract
Helicase POLQ‑like (HELQ or Hel308), is a highly conserved, 3'‑5' superfamily II DNA helicase that contributes to diverse DNA processes, including DNA repair, unwinding, and strand annealing. HELQ deficiency leads to subfertility, due to its critical role in germ cell stability. In addition, the abnormal expression of HELQ has been observed in multiple tumors and a number of molecular pathways, including the nucleotide excision repair, checkpoint kinase 1‑DNA repair protein RAD51 homolog 1 and ATM/ATR pathways, have been shown to be involved in HELQ. In the present review, the structure and characteristics of HELQ, as well as its major functions in DNA processing, were described. Molecular mechanisms involving HELQ in the context of tumorigenesis were also described. It was deduced that HELQ biology warrants investigation, and that its critical roles in the regulation of various DNA processes and participation in tumorigenesis are clinically relevant.
Collapse
Affiliation(s)
- Nan Tang
- Department of Traditional Chinese Medicine, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, Guangdong 510220, P.R. China
| | - Weilun Wen
- Department of Traditional Chinese Medicine, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, Guangdong 510220, P.R. China
| | - Zhihe Liu
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, Guangdong 510220, P.R. China
| | - Xifeng Xiong
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, Guangdong 510220, P.R. China
| | - Yanhua Wu
- Department of Traditional Chinese Medicine, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, Guangdong 510220, P.R. China
| |
Collapse
|
11
|
Traband EL, Hammerlund SR, Shameem M, Narayan A, Ramana S, Tella A, Sobeck A, Shima N. Mitotic DNA Synthesis in Untransformed Human Cells Preserves Common Fragile Site Stability via a FANCD2-Driven Mechanism That Requires HELQ. J Mol Biol 2023; 435:168294. [PMID: 37777152 PMCID: PMC10839910 DOI: 10.1016/j.jmb.2023.168294] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/14/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023]
Abstract
Faithful genome duplication is a challenging task for dividing mammalian cells, particularly under replication stress where timely resolution of late replication intermediates (LRIs) becomes crucial prior to cell division. In human cancer cells, mitotic DNA repair synthesis (MiDAS) is described as a final mechanism for the resolution of LRIs to avoid lethal chromosome mis-segregation. RAD52-driven MiDAS achieves this mission in part by generating gaps/breaks on metaphase chromosomes, which preferentially occur at common fragile sites (CFS). We previously demonstrated that a MiDAS mechanism also exists in untransformed and primary human cells, which is RAD52 independent but requires FANCD2. However, the properties of this form of MiDAS are not well understood. Here, we report that FANCD2-driven MiDAS in untransformed human cells: 1) requires a prerequisite step of FANCD2 mono-ubiquitination by a subset of Fanconi anemia (FA) proteins, 2) primarily acts to preserve CFS stability but not to prevent chromosome mis-segregation, and 3) depends on HELQ, which potentially functions at an early step. Hence, FANCD2-driven MiDAS in untransformed cells is built to protect CFS stability, whereas RAD52-driven MiDAS in cancer cells is likely adapted to prevent chromosome mis-segregation at the cost of CFS expression. Notably, we also identified a novel form of MiDAS, which surfaces to function when FANCD2 is absent in untransformed cells. Our findings substantiate the complex nature of MiDAS and a link between its deficiencies and the pathogenesis of FA, a human genetic disease.
Collapse
Affiliation(s)
- Emma L Traband
- Department of Genetics, Cell Biology and Development, Medical School, University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA; Department of Biochemistry, Molecular Biology, and Biophysics, College of Biological Sciences, University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA
| | - Sarah R Hammerlund
- Department of Genetics, Cell Biology and Development, Medical School, University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA; Department of Biochemistry, Molecular Biology, and Biophysics, College of Biological Sciences, University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA
| | - Mohammad Shameem
- Department of Biochemistry, Molecular Biology, and Biophysics, College of Biological Sciences, University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA
| | - Ananya Narayan
- Department of Genetics, Cell Biology and Development, Medical School, University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA
| | - Sanjiv Ramana
- Department of Genetics, Cell Biology and Development, Medical School, University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA
| | - Anika Tella
- Department of Genetics, Cell Biology and Development, Medical School, University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA
| | - Alexandra Sobeck
- Department of Biochemistry, Molecular Biology, and Biophysics, College of Biological Sciences, University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA; Masonic Cancer Center, Minneapolis, MN 55455, USA
| | - Naoko Shima
- Department of Genetics, Cell Biology and Development, Medical School, University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA; Masonic Cancer Center, Minneapolis, MN 55455, USA.
| |
Collapse
|
12
|
Tischler JD, Tsuchida H, Oda TT, Park A, Adeyemi RO. RADIF(C1orf112)-FIGNL1 Complex Regulates RAD51 Chromatin Association to Promote Viability After Replication Stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.25.556595. [PMID: 37808755 PMCID: PMC10557588 DOI: 10.1101/2023.09.25.556595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Homologous recombination (HR) plays critical roles in repairing lesions that arise during DNA replication and is thus essential for viability. RAD51 plays important roles during replication and HR, however, how RAD51 is regulated downstream of nucleofilament formation and how the varied RAD51 functions are regulated is not clear. We have investigated the poorly characterized protein c1orf112/RADIF that previously scored in genome-wide screens for mediators of DNA inter-strand crosslink (ICL) repair. Upon ICL agent exposure, RADIF loss leads to marked cell death, elevated chromosomal instability, increased micronuclei formation, altered cell cycle progression and increased DNA damage signaling. RADIF is recruited to damage foci and forms a complex with FIGNL1. Both proteins have epistatic roles in ICL repair, forming a co-stable complex. Mechanistically, RADIF loss leads to increased RAD51 amounts and foci on chromatin both with or without exogenous DNA damage, defective replication fork progression and reduced HR competency. We posit that RADIF is essential for limiting RAD51 levels on chromatin in the absence of damage and for RAD51 dissociation from nucleofilaments to properly complete HR. Failure to do so leads to replication slowing and inability to complete repair.
Collapse
|
13
|
Llano E, Pendás AM. Synaptonemal Complex in Human Biology and Disease. Cells 2023; 12:1718. [PMID: 37443752 PMCID: PMC10341275 DOI: 10.3390/cells12131718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/16/2023] [Accepted: 06/18/2023] [Indexed: 07/15/2023] Open
Abstract
The synaptonemal complex (SC) is a meiosis-specific multiprotein complex that forms between homologous chromosomes during prophase of meiosis I. Upon assembly, the SC mediates the synapses of the homologous chromosomes, leading to the formation of bivalents, and physically supports the formation of programmed double-strand breaks (DSBs) and their subsequent repair and maturation into crossovers (COs), which are essential for genome haploidization. Defects in the assembly of the SC or in the function of the associated meiotic recombination machinery can lead to meiotic arrest and human infertility. The majority of proteins and complexes involved in these processes are exclusively expressed during meiosis or harbor meiosis-specific subunits, although some have dual functions in somatic DNA repair and meiosis. Consistent with their functions, aberrant expression and malfunctioning of these genes have been associated with cancer development. In this review, we focus on the significance of the SC and their meiotic-associated proteins in human fertility, as well as how human genetic variants encoding for these proteins affect the meiotic process and contribute to infertility and cancer development.
Collapse
Affiliation(s)
- Elena Llano
- Departamento Fisiología y Farmacología, Universidad de Salamanca, 37007 Salamanca, Spain
- Molecular Mechanisms Program, Centro de Investigación del Cáncer, Instituto de Biologıía Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, 37007 Salamanca, Spain;
| | - Alberto M. Pendás
- Molecular Mechanisms Program, Centro de Investigación del Cáncer, Instituto de Biologıía Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, 37007 Salamanca, Spain;
| |
Collapse
|
14
|
Tsang ES, Csizmok V, Williamson LM, Pleasance E, Topham JT, Karasinska JM, Titmuss E, Schrader I, Yip S, Tessier-Cloutier B, Mungall K, Ng T, Sun S, Lim HJ, Loree JM, Laskin J, Marra MA, Jones SJM, Schaeffer DF, Renouf DJ. Homologous recombination deficiency signatures in gastrointestinal and thoracic cancers correlate with platinum therapy duration. NPJ Precis Oncol 2023; 7:31. [PMID: 36964191 PMCID: PMC10039042 DOI: 10.1038/s41698-023-00368-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 03/08/2023] [Indexed: 03/26/2023] Open
Abstract
There is emerging evidence about the predictive role of homologous recombination deficiency (HRD), but this is less defined in gastrointestinal (GI) and thoracic malignancies. We reviewed whole genome (WGS) and transcriptomic (RNA-Seq) data from advanced GI and thoracic cancers in the Personalized OncoGenomics trial (NCT02155621) to evaluate HRD scores and single base substitution (SBS)3, which is associated with BRCA1/2 mutations and potentially predictive of defective HRD. HRD scores were calculated by sum of loss of heterozygosity, telomeric allelic imbalance, and large-scale state transitions scores. Regression analyses examined the association between HRD and time to progression on platinum (TTPp). We included 223 patients with GI (n = 154) or thoracic (n = 69) malignancies. TTPp was associated with SBS3 (p < 0.01) but not HRD score in patients with GI malignancies, whereas neither was associated with TTPp in thoracic malignancies. Tumors with gBRCA1/2 mutations and a somatic second alteration exhibited high SBS3 and HRD scores, but these signatures were also present in several tumors with germline but no somatic second alterations, suggesting silencing of the wild-type allele or BRCA1/2 haploinsufficiency. Biallelic inactivation of an HR gene, including loss of XRCC2 and BARD1, was identified in BRCA1/2 wild-type HRD tumors and these patients had prolonged response to platinum. Thoracic cases with high HRD score were associated with high RECQL5 expression (p ≤ 0.025), indicating another potential mechanism of HRD. SBS3 was more strongly associated with TTPp in patients with GI malignancies and may be complementary to using HRD and BRCA status in identifying patients who benefit from platinum therapy.
Collapse
Affiliation(s)
- Erica S Tsang
- Department of Medical Oncology, BC Cancer, Vancouver, BC, Canada
- Pancreas Centre BC, Vancouver, BC, Canada
| | - Veronika Csizmok
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Laura M Williamson
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Erin Pleasance
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | | | | | - Emma Titmuss
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Intan Schrader
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Stephen Yip
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Basile Tessier-Cloutier
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Karen Mungall
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Tony Ng
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Sophie Sun
- Department of Medical Oncology, BC Cancer, Vancouver, BC, Canada
| | - Howard J Lim
- Department of Medical Oncology, BC Cancer, Vancouver, BC, Canada
| | - Jonathan M Loree
- Department of Medical Oncology, BC Cancer, Vancouver, BC, Canada
| | - Janessa Laskin
- Department of Medical Oncology, BC Cancer, Vancouver, BC, Canada
| | - Marco A Marra
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Steven J M Jones
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Vancouver, BC, Canada
| | - David F Schaeffer
- Pancreas Centre BC, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Daniel J Renouf
- Department of Medical Oncology, BC Cancer, Vancouver, BC, Canada.
- Pancreas Centre BC, Vancouver, BC, Canada.
| |
Collapse
|
15
|
He L, Lever R, Cubbon A, Tehseen M, Jenkins T, Nottingham AO, Horton A, Betts H, Fisher M, Hamdan SM, Soultanas P, Bolt EL. Interaction of human HelQ with DNA polymerase delta halts DNA synthesis and stimulates DNA single-strand annealing. Nucleic Acids Res 2023; 51:1740-1749. [PMID: 36718939 PMCID: PMC9976902 DOI: 10.1093/nar/gkad032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 02/01/2023] Open
Abstract
DNA strand breaks are repaired by DNA synthesis from an exposed DNA end paired with a homologous DNA template. DNA polymerase delta (Pol δ) catalyses DNA synthesis in multiple eukaryotic DNA break repair pathways but triggers genome instability unless its activity is restrained. We show that human HelQ halts DNA synthesis by isolated Pol δ and Pol δ-PCNA-RPA holoenzyme. Using novel HelQ mutant proteins we identify that inhibition of Pol δ is independent of DNA binding, and maps to a 70 amino acid intrinsically disordered region of HelQ. Pol δ and its POLD3 subunit robustly stimulated DNA single-strand annealing by HelQ, and POLD3 and HelQ interact physically via the intrinsically disordered HelQ region. This data, and inability of HelQ to inhibit DNA synthesis by the POLD1 catalytic subunit of Pol δ, reveal a mechanism for limiting DNA synthesis and promoting DNA strand annealing during human DNA break repair, which centres on POLD3.
Collapse
Affiliation(s)
- Liu He
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Rebecca Lever
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Andrew Cubbon
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Muhammad Tehseen
- Bioscience Program, Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Tabitha Jenkins
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | | | - Anya Horton
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Hannah Betts
- Biodiscovery Institute, School of Chemistry, University of Nottingham, Nottingham, UK
| | | | - Samir M Hamdan
- Bioscience Program, Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Panos Soultanas
- Biodiscovery Institute, School of Chemistry, University of Nottingham, Nottingham, UK
| | - Edward L Bolt
- School of Life Sciences, University of Nottingham, Nottingham, UK
| |
Collapse
|
16
|
Krassnig SC, Mäser M, Probst NA, Werner J, Schlett C, Schumann N, von Scheven G, Mangerich A, Bürkle A. Comparative analysis of chlorambucil-induced DNA lesion formation and repair in a spectrum of different human cell systems. Toxicol Rep 2023; 10:171-189. [PMID: 36714466 PMCID: PMC9881385 DOI: 10.1016/j.toxrep.2023.01.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/21/2023] Open
Abstract
Chlorambucil (CLB) belongs to the class of nitrogen mustards (NMs), which are highly reactive bifunctional alkylating agents and were the first chemotherapeutic agents developed. They form DNA interstrand crosslinks (ICLs), which cause a blockage of DNA strand separation, inhibiting essential processes in DNA metabolism like replication and transcription. In fast replicating cells, e.g., tumor cells, this can induce cell death. The upregulation of ICL repair is thought to be a key factor for the resistance of tumor cells to ICL-inducing cytostatic agents including NMs. To monitor induction and repair of CLB-induced ICLs, we adjusted the automated reversed fluorometric analysis of alkaline DNA unwinding assay (rFADU) for the detection of ICLs in adherent cells. For the detection of monoalkylated DNA bases we established an LC-MS/MS method. We performed a comparative analysis of adduct formation and removal in five human cell lines and in peripheral blood mononuclear cells (PBMCs) after treatment with CLB. Dose-dependent increases in adduct formation were observed, and suitable treatment concentrations were identified for each cell line, which were then used for monitoring the kinetics of adduct formation. We observed significant differences in the repair kinetics of the cell lines tested. For example, in A2780 cells, hTERT immortalized VH10 cells, and in PBMCs a time-dependent repair of the two main monoalkylated DNA-adducts was confirmed. Regarding ICLs, repair was observed in all cell systems except for PBMCs. In conclusion, LC-MS/MS analyses combined with the rFADU technique are powerful tools to study the molecular mechanisms of NM-induced DNA damage and repair. By applying these methods to a spectrum of human cell systems of different origin and transformation status, we obtained insight into the cell-type specific repair of different CLB-induced DNA lesions, which may help identify novel resistance mechanisms of tumors and define molecular targets for therapeutic interventions.
Collapse
Key Words
- BER, base excision repair
- CLB, chlorambucil
- Chlorambucil
- DNA repair kinetics
- ICL, interstrand crosslink
- Interstrand crosslink
- MS, mass spectrometry
- Mass spectrometry
- Monoalkylated DNA adducts
- NER, nucleotide excision repair
- NM, Nitrogen mustard
- Nitrogen mustard
- PBMCs, peripheral blood mononuclear cells
- PI, propidium iodide
- RPE-1, human retinal pigment epithelial
- SD, standard deviation
- VH10, human foreskin fibroblasts
- dG, 2'-deoxyguanosine
- hTERT, human telomerase reverse transcriptase
- rFADU, reverse fluorometric analysis of alkaline DNA unwinding
Collapse
Affiliation(s)
- Sarah Ceylan Krassnig
- Molecular Toxicology, Department of Biology, University of Konstanz, D-78464 Konstanz, Germany
| | - Marina Mäser
- Molecular Toxicology, Department of Biology, University of Konstanz, D-78464 Konstanz, Germany
| | - Nicola Anna Probst
- Molecular Toxicology, Department of Biology, University of Konstanz, D-78464 Konstanz, Germany
| | - Jens Werner
- Molecular Toxicology, Department of Biology, University of Konstanz, D-78464 Konstanz, Germany
| | - Charlotte Schlett
- Molecular Toxicology, Department of Biology, University of Konstanz, D-78464 Konstanz, Germany
| | - Nina Schumann
- Molecular Toxicology, Department of Biology, University of Konstanz, D-78464 Konstanz, Germany
| | - Gudrun von Scheven
- Molecular Toxicology, Department of Biology, University of Konstanz, D-78464 Konstanz, Germany
| | - Aswin Mangerich
- Molecular Toxicology, Department of Biology, University of Konstanz, D-78464 Konstanz, Germany
- Nutritional Toxicology, Institute of Nutritional Science, University of Potsdam, D-14558 Nuthetal, Germany
| | - Alexander Bürkle
- Molecular Toxicology, Department of Biology, University of Konstanz, D-78464 Konstanz, Germany
| |
Collapse
|
17
|
Zhong NS, Tong WL, Zhang Y, Xiao SN, Liu JM, Li AA, Yao GL, Lin Q, Liu ZL. HELQ suppresses migration and proliferation of non-small cell lung cancer cells by repairing DNA damage and inducing necrosis. Cell Biol Int 2022; 47:188-200. [PMID: 36183369 DOI: 10.1002/cbin.11922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/19/2022] [Indexed: 01/22/2023]
Abstract
HELQ plays a key role in DNA damage response and cell-cycle checkpoint regulation. It has been implicated in ovarian and pituitary tumors and may play a role in germ cell maintenance. This study investigated the role of HELQ in lung cancer. The expression of HELQ in patients with non-small-cell lung cancer (NSCLC) was downregulated compared with normal human lungs. Clinical prognostic analysis of Kaplan-Meier plots revealed that patients with NSCLC with low HELQ levels had a reduced overall survival. Further, we found that HELQ depletion enhanced lung cancer cell malignancy. Furthermore, overexpression of HELQ in lung cancer cells reduced cell migration in vitro, while DNA damage repair was inhibited. Both in vitro and in vivo studies have shown that HELQ induces cell death. Mechanistically, we found that cells overexpressing HELQ showed a tendency to induce necrosis. After analyzing the database of HELQ interactors. we found that RIPK3 may interact with it and proved this conclusion by immunoprecipitation. Our findings identified the tumor suppressive role of HELQ in malignant human lung cancer and unraveled a potential therapeutic strategy for cancer treatment through HELQ activation. Moreover, HELQ may also be a predictive biomarker for the clinical predisposition, progression, and prognosis of lung cancer.
Collapse
Affiliation(s)
- Nan Shan Zhong
- Medical Innovation Center, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China.,Institute of Spine and Spinal Cord, Nanchang University, Nanchang, P.R. China
| | - Wei Lai Tong
- Medical Innovation Center, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China.,Institute of Spine and Spinal Cord, Nanchang University, Nanchang, P.R. China
| | - Yu Zhang
- Medical Innovation Center, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China.,Institute of Spine and Spinal Cord, Nanchang University, Nanchang, P.R. China
| | - Shi Ning Xiao
- Medical Innovation Center, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China.,Institute of Spine and Spinal Cord, Nanchang University, Nanchang, P.R. China
| | - Jia Ming Liu
- Institute of Spine and Spinal Cord, Nanchang University, Nanchang, P.R. China
| | - An An Li
- Medical Innovation Center, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China.,Institute of Spine and Spinal Cord, Nanchang University, Nanchang, P.R. China
| | - Ge Liang Yao
- Medical Innovation Center, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China.,Institute of Spine and Spinal Cord, Nanchang University, Nanchang, P.R. China
| | - Qing Lin
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Massachusetts, USA
| | - Zhi Li Liu
- Institute of Spine and Spinal Cord, Nanchang University, Nanchang, P.R. China
| |
Collapse
|
18
|
Halder S, Ranjha L, Taglialatela A, Ciccia A, Cejka P. Strand annealing and motor driven activities of SMARCAL1 and ZRANB3 are stimulated by RAD51 and the paralog complex. Nucleic Acids Res 2022; 50:8008-8022. [PMID: 35801922 PMCID: PMC9371921 DOI: 10.1093/nar/gkac583] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/13/2022] [Accepted: 06/23/2022] [Indexed: 12/17/2022] Open
Abstract
SMARCAL1, ZRANB3 and HLTF are required for the remodeling of replication forks upon stress to promote genome stability. RAD51, along with the RAD51 paralog complex, were also found to have recombination-independent functions in fork reversal, yet the underlying mechanisms remained unclear. Using reconstituted reactions, we build upon previous data to show that SMARCAL1, ZRANB3 and HLTF have unequal biochemical capacities, explaining why they have non-redundant functions. SMARCAL1 uniquely anneals RPA-coated ssDNA, which depends on its direct interaction with RPA, but not on ATP. SMARCAL1, along with ZRANB3, but not HLTF efficiently employ ATPase driven translocase activity to rezip RPA-covered bubbled DNA, which was proposed to mimic elements of fork reversal. In contrast, ZRANB3 and HLTF but not SMARCAL1 are efficient in branch migration that occurs downstream in fork remodeling. We also show that low concentrations of RAD51 and the RAD51 paralog complex, RAD51B–RAD51C–RAD51D–XRCC2 (BCDX2), directly stimulate the motor-driven activities of SMARCAL1 and ZRANB3 but not HLTF, and the interplay is underpinned by physical interactions. Our data provide a possible mechanism explaining previous cellular experiments implicating RAD51 and BCDX2 in fork reversal.
Collapse
Affiliation(s)
- Swagata Halder
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Bellinzona, Switzerland
| | - Lepakshi Ranjha
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Bellinzona, Switzerland
| | - Angelo Taglialatela
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, NY, USA
| | - Alberto Ciccia
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, NY, USA
| | - Petr Cejka
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Bellinzona, Switzerland.,Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), Zürich, Switzerland
| |
Collapse
|
19
|
Vanson S, Li Y, Wood RD, Doublié S. Probing the structure and function of polymerase θ helicase-like domain. DNA Repair (Amst) 2022; 116:103358. [PMID: 35753097 PMCID: PMC10329254 DOI: 10.1016/j.dnarep.2022.103358] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/09/2022] [Accepted: 06/09/2022] [Indexed: 11/19/2022]
Abstract
DNA Polymerase θ is the key actuator of the recently identified double-strand break repair pathway, theta-mediated end joining (TMEJ). It is the only known polymerase to have a 3-domain architecture containing an independently functional family A DNA polymerase tethered by a long central region to an N-terminal helicase-like domain (HLD). Full-length polymerase θ and the isolated HLD hydrolyze ATP in the presence of DNA, but no processive DNA duplex unwinding has been observed. Based on sequence and structure conservation, the HLD is classified as a member of helicase superfamily II and, more specifically, the Ski2-like family. The specific subdomain composition and organization most closely resemble that of archaeal DNA repair helicases Hel308 and Hjm. The underlying structural basis as to why the HLD is not able to processively unwind duplex DNA, despite its similarity to bona fide helicases, remains elusive. Activities of the HLD include ATP hydrolysis, protein displacement, and annealing of complementary DNA. These observations have led to speculation about the role of the HLD within the context of double-strand break repair via TMEJ, such as removal of single-stranded DNA binding proteins like RPA and RAD51 and microhomology alignment. This review summarizes the structural classification and organization of the polymerase θ HLD and its homologs and explores emerging data on its biochemical activities. We conclude with a simple, speculative model for the HLD's role in TMEJ.
Collapse
Affiliation(s)
- Scott Vanson
- Department of Microbiology and Molecular Genetics, University of Vermont, 89 Beaumont Ave, Burlington, VT 05405, USA
| | - Yuzhen Li
- Department of Epigenetics & Molecular Carcinogenesis, The University of Texas MD Anderson Center, Houston, TX 77230, USA
| | - Richard D Wood
- Department of Epigenetics & Molecular Carcinogenesis, The University of Texas MD Anderson Center, Houston, TX 77230, USA.
| | - Sylvie Doublié
- Department of Microbiology and Molecular Genetics, University of Vermont, 89 Beaumont Ave, Burlington, VT 05405, USA.
| |
Collapse
|
20
|
Guo B, Jin X, Chen J, Xu H, Zhang M, Lu X, Wu R, Zhao Y, Guo Y, An Y, Li S. ATP-dependent DNA helicase (TaDHL), a Novel Reduced-Height (Rht) Gene in Wheat. Genes (Basel) 2022; 13:genes13060979. [PMID: 35741741 PMCID: PMC9222645 DOI: 10.3390/genes13060979] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 02/01/2023] Open
Abstract
In wheat, a series of dwarf and semi-dwarf plant varieties have been developed and utilized worldwide since the 1960s and caused the ‘Green Revolution’. To date, 25 reduced-height (Rht) genes have been identified, but only several genes for plant height (PH) have been isolated previously. In this study, we identified a candidate gene, ATP-dependent DNA helicase (TaDHL-7B), for PH via QTL mapping and genome-wide association study (GWAS) methods. We knocked out this gene using the CRISPR/Cas9 system in variety ‘Fielder’. Two homozygous mutant genotypes, AAbbDD (−5 bp) and AAbbDD (−1 bp), were obtained in the T2 generation. The PH values of AAbbDD (−5 bp) and AAbbDD (−1 bp) were significantly reduced compared with the wild-type (WT, ‘Fielder’), indicating that TaDHL-7B is a novel Rht gene that controls the PH. This is the first time that a PH gene of wheat has been isolated with a non-hormone pathway, providing a new insight into the genetic control of PH. The TaDHL gene reduced the PH without a yield penalty. It could be used to improve the lodging resistance and yield in wheat breeding programs.
Collapse
Affiliation(s)
- Baojin Guo
- State Key Laboratory of Crop Biology, Tai’an 271018, China; (B.G.); (X.J.); (J.C.); (H.X.); (M.Z.); (X.L.); (Y.Z.); (Y.G.); (Y.A.)
- College of Agronomy, Shandong Agricultural University, Tai’an 271018, China
| | - Xuemei Jin
- State Key Laboratory of Crop Biology, Tai’an 271018, China; (B.G.); (X.J.); (J.C.); (H.X.); (M.Z.); (X.L.); (Y.Z.); (Y.G.); (Y.A.)
- College of Agronomy, Shandong Agricultural University, Tai’an 271018, China
- Rizhao Academy of Agricultural Science, Rizhao 276826, China
| | - Jingchuan Chen
- State Key Laboratory of Crop Biology, Tai’an 271018, China; (B.G.); (X.J.); (J.C.); (H.X.); (M.Z.); (X.L.); (Y.Z.); (Y.G.); (Y.A.)
- College of Agronomy, Shandong Agricultural University, Tai’an 271018, China
| | - Huiyan Xu
- State Key Laboratory of Crop Biology, Tai’an 271018, China; (B.G.); (X.J.); (J.C.); (H.X.); (M.Z.); (X.L.); (Y.Z.); (Y.G.); (Y.A.)
- College of Agronomy, Shandong Agricultural University, Tai’an 271018, China
| | - Mingxia Zhang
- State Key Laboratory of Crop Biology, Tai’an 271018, China; (B.G.); (X.J.); (J.C.); (H.X.); (M.Z.); (X.L.); (Y.Z.); (Y.G.); (Y.A.)
- College of Agronomy, Shandong Agricultural University, Tai’an 271018, China
| | - Xing Lu
- State Key Laboratory of Crop Biology, Tai’an 271018, China; (B.G.); (X.J.); (J.C.); (H.X.); (M.Z.); (X.L.); (Y.Z.); (Y.G.); (Y.A.)
- College of Agronomy, Shandong Agricultural University, Tai’an 271018, China
| | - Rugang Wu
- Dezhou Academy of Agricultural Science, Dezhou 253015, China;
| | - Yan Zhao
- State Key Laboratory of Crop Biology, Tai’an 271018, China; (B.G.); (X.J.); (J.C.); (H.X.); (M.Z.); (X.L.); (Y.Z.); (Y.G.); (Y.A.)
- College of Agronomy, Shandong Agricultural University, Tai’an 271018, China
| | - Ying Guo
- State Key Laboratory of Crop Biology, Tai’an 271018, China; (B.G.); (X.J.); (J.C.); (H.X.); (M.Z.); (X.L.); (Y.Z.); (Y.G.); (Y.A.)
- College of Agronomy, Shandong Agricultural University, Tai’an 271018, China
| | - Yanrong An
- State Key Laboratory of Crop Biology, Tai’an 271018, China; (B.G.); (X.J.); (J.C.); (H.X.); (M.Z.); (X.L.); (Y.Z.); (Y.G.); (Y.A.)
- College of Agronomy, Shandong Agricultural University, Tai’an 271018, China
| | - Sishen Li
- State Key Laboratory of Crop Biology, Tai’an 271018, China; (B.G.); (X.J.); (J.C.); (H.X.); (M.Z.); (X.L.); (Y.Z.); (Y.G.); (Y.A.)
- College of Agronomy, Shandong Agricultural University, Tai’an 271018, China
- Correspondence: ; Tel.: +86-0538-8246503; Fax: +86-0538-8242226
| |
Collapse
|
21
|
Athar F, Templeman NM. C. elegans as a model organism to study female reproductive health. Comp Biochem Physiol A Mol Integr Physiol 2022; 266:111152. [PMID: 35032657 DOI: 10.1016/j.cbpa.2022.111152] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 12/17/2022]
Abstract
Female reproductive health has been historically understudied and underfunded. Here, we present the advantages of using a free-living nematode, Caenorhabditis elegans, as an animal system to study fundamental aspects of female reproductive health. C. elegans is a powerful high-throughput model organism that shares key genetic and physiological similarities with humans. In this review, we highlight areas of pressing medical and biological importance in the 21st century within the context of female reproductive health. These include the decline in female reproductive capacity with increasing chronological age, reproductive dysfunction arising from toxic environmental insults, and cancers of the reproductive system. C. elegans has been instrumental in uncovering mechanistic insights underlying these processes, and has been valuable for developing and testing therapeutics to combat them. Adopting a convenient model organism such as C. elegans for studying reproductive health will encourage further research into this field, and broaden opportunities for making advancements into evolutionarily conserved mechanisms that control reproductive function.
Collapse
Affiliation(s)
- Faria Athar
- Department of Biology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Nicole M Templeman
- Department of Biology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada.
| |
Collapse
|
22
|
Division of Labor by the HELQ, BLM, and FANCM Helicases during Homologous Recombination Repair in Drosophila melanogaster. Genes (Basel) 2022; 13:genes13030474. [PMID: 35328029 PMCID: PMC8951532 DOI: 10.3390/genes13030474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/02/2022] [Accepted: 03/07/2022] [Indexed: 02/01/2023] Open
Abstract
Repair of DNA double-strand breaks by homologous recombination (HR) requires a carefully orchestrated sequence of events involving many proteins. One type of HR, synthesis-dependent strand annealing (SDSA), proceeds via the formation of a displacement loop (D-loop) when RAD51-coated single-stranded DNA invades a homologous template. The 3' end of the single-stranded DNA is extended by DNA synthesis. In SDSA, the D-loop is then disassembled prior to strand annealing. While many helicases can unwind D-loops in vitro, how their action is choreographed in vivo remains to be determined. To clarify the roles of various DNA helicases during SDSA, we used a double-strand gap repair assay to study the outcomes of homologous recombination repair in Drosophila melanogaster lacking the BLM, HELQ, and FANCM helicases. We found that the absence of any of these three helicases impairs gap repair. In addition, flies lacking both BLM and HELQ or HELQ and FANCM had more severe SDSA defects than the corresponding single mutants. In the absence of BLM, a large percentage of repair events were accompanied by flanking deletions. Strikingly, these deletions were mostly abolished in the blm helq and blm fancm double mutants. Our results suggest that the BLM, HELQ, and FANCM helicases play distinct roles during SDSA, with HELQ and FANCM acting early to promote the formation of recombination intermediates that are then processed by BLM to prevent repair by deletion-prone mechanisms.
Collapse
|
23
|
Tucker EJ, Bell KM, Robevska G, van den Bergen J, Ayers KL, Listyasari N, Faradz SMH, Dulon J, Bakhshalizadeh S, Sreenivasan R, Nouyou B, Carre W, Akloul L, Duros S, Domin-Bernhard M, Belaud-Rotureau MA, Touraine P, Jaillard S, Sinclair AH. Meiotic genes in premature ovarian insufficiency: variants in HROB and REC8 as likely genetic causes. Eur J Hum Genet 2022; 30:219-228. [PMID: 34707299 PMCID: PMC8821714 DOI: 10.1038/s41431-021-00977-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/29/2021] [Accepted: 09/27/2021] [Indexed: 02/03/2023] Open
Abstract
Premature ovarian insufficiency (POI), affecting 1 in 100 women, is characterised by loss of ovarian function associated with elevated gonadotropin, before the age of 40. In addition to infertility, patients face increased risk of comorbidities such as heart disease, osteoporosis, cancer and/or early mortality. We used whole exome sequencing to identify the genetic cause of POI in seven women. Each had biallelic candidate variants in genes with a primary role in DNA damage repair and/or meiosis. This includes two genes, REC8 and HROB, not previously associated with autosomal recessive POI. REC8 encodes a component of the cohesin complex and HROB encodes a factor that recruits MCM8/9 for DNA damage repair. In silico analyses, combined with concordant mouse model phenotypes support these as new genetic causes of POI. We also identified novel variants in MCM8, NUP107, STAG3 and HFM1 and a known variant in POF1B. Our study highlights the pivotal role of meiosis in ovarian function. We identify novel variants, consolidate the pathogenicity of variants previously considered of unknown significance, and propose HROB and REC8 variants as new genetic causes while exploring their link to pathogenesis.
Collapse
Affiliation(s)
- Elena J. Tucker
- grid.1058.c0000 0000 9442 535XMurdoch Children’s Research Institute, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Paediatrics, University of Melbourne, Melbourne, VIC Australia
| | - Katrina M. Bell
- grid.1058.c0000 0000 9442 535XMurdoch Children’s Research Institute, Melbourne, VIC Australia
| | - Gorjana Robevska
- grid.1058.c0000 0000 9442 535XMurdoch Children’s Research Institute, Melbourne, VIC Australia
| | - Jocelyn van den Bergen
- grid.1058.c0000 0000 9442 535XMurdoch Children’s Research Institute, Melbourne, VIC Australia
| | - Katie L. Ayers
- grid.1058.c0000 0000 9442 535XMurdoch Children’s Research Institute, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Paediatrics, University of Melbourne, Melbourne, VIC Australia
| | - Nurin Listyasari
- grid.1058.c0000 0000 9442 535XMurdoch Children’s Research Institute, Melbourne, VIC Australia ,grid.412032.60000 0001 0744 0787Division of Human Genetics, Center for Biomedical Research (CEBIOR), Faculty of Medicine, Diponegoro University/Diponegoro National Hospital, Semarang, Indonesia
| | - Sultana MH Faradz
- grid.412032.60000 0001 0744 0787Division of Human Genetics, Center for Biomedical Research (CEBIOR), Faculty of Medicine, Diponegoro University/Diponegoro National Hospital, Semarang, Indonesia
| | - Jérôme Dulon
- grid.50550.350000 0001 2175 4109Department of Endocrinology and Reproductive Medicine, AP‐HP, Sorbonne University Medicine, Centre de Référence des Maladies Endocriniennes Rares de la Croissance et du Développement, Centre des Pathologies Gynécologiques Rares, Paris, France
| | - Shabnam Bakhshalizadeh
- grid.1058.c0000 0000 9442 535XMurdoch Children’s Research Institute, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Paediatrics, University of Melbourne, Melbourne, VIC Australia
| | - Rajini Sreenivasan
- grid.1058.c0000 0000 9442 535XMurdoch Children’s Research Institute, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Paediatrics, University of Melbourne, Melbourne, VIC Australia
| | - Benedicte Nouyou
- grid.411154.40000 0001 2175 0984CHU Rennes, Service de Cytogénétique et Biologie Cellulaire, F-35033 Rennes, France
| | - Wilfrid Carre
- grid.411154.40000 0001 2175 0984CHU Rennes, UF Bioinformatique et Génétique Computationnelle, Service de Génétique Moléculaire et Génomique, F-35033 Rennes, France
| | - Linda Akloul
- grid.411154.40000 0001 2175 0984CHU Rennes, Service de Génétique Clinique, CLAD Ouest, F-35033 Rennes, France
| | - Solène Duros
- grid.411154.40000 0001 2175 0984CHU Rennes, Département de Gynécologie Obstétrique et Reproduction Humaine, F-35033 Rennes, France
| | - Mathilde Domin-Bernhard
- grid.411154.40000 0001 2175 0984CHU Rennes, Département de Gynécologie Obstétrique et Reproduction Humaine, F-35033 Rennes, France
| | - Marc-Antoine Belaud-Rotureau
- grid.411154.40000 0001 2175 0984CHU Rennes, Service de Cytogénétique et Biologie Cellulaire, F-35033 Rennes, France ,grid.411154.40000 0001 2175 0984Univ Rennes, CHU Rennes, INSERM, EHESP, IRSET (Institut de recherche en santé, environnement et travail) – UMR_S 1085, F-35000 Rennes, France
| | - Philippe Touraine
- grid.50550.350000 0001 2175 4109Department of Endocrinology and Reproductive Medicine, AP‐HP, Sorbonne University Medicine, Centre de Référence des Maladies Endocriniennes Rares de la Croissance et du Développement, Centre des Pathologies Gynécologiques Rares, Paris, France
| | - Sylvie Jaillard
- grid.411154.40000 0001 2175 0984CHU Rennes, Service de Cytogénétique et Biologie Cellulaire, F-35033 Rennes, France ,grid.411154.40000 0001 2175 0984Univ Rennes, CHU Rennes, INSERM, EHESP, IRSET (Institut de recherche en santé, environnement et travail) – UMR_S 1085, F-35000 Rennes, France
| | - Andrew H. Sinclair
- grid.1058.c0000 0000 9442 535XMurdoch Children’s Research Institute, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Paediatrics, University of Melbourne, Melbourne, VIC Australia
| |
Collapse
|
24
|
Anand R, Buechelmaier E, Belan O, Newton M, Vancevska A, Kaczmarczyk A, Takaki T, Rueda DS, Powell SN, Boulton SJ. HELQ is a dual-function DSB repair enzyme modulated by RPA and RAD51. Nature 2022; 601:268-273. [PMID: 34937945 PMCID: PMC8755542 DOI: 10.1038/s41586-021-04261-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 11/17/2021] [Indexed: 02/04/2023]
Abstract
DNA double-stranded breaks (DSBs) are deleterious lesions, and their incorrect repair can drive cancer development1. HELQ is a superfamily 2 helicase with 3' to 5' polarity, and its disruption in mice confers germ cells loss, infertility and increased predisposition to ovarian and pituitary tumours2-4. At the cellular level, defects in HELQ result in hypersensitivity to cisplatin and mitomycin C, and persistence of RAD51 foci after DNA damage3,5. Notably, HELQ binds to RPA and the RAD51-paralogue BCDX2 complex, but the relevance of these interactions and how HELQ functions in DSB repair remains unclear3,5,6. Here we show that HELQ helicase activity and a previously unappreciated DNA strand annealing function are differentially regulated by RPA and RAD51. Using biochemistry analyses and single-molecule imaging, we establish that RAD51 forms a complex with and strongly stimulates HELQ as it translocates during DNA unwinding. By contrast, RPA inhibits DNA unwinding by HELQ but strongly stimulates DNA strand annealing. Mechanistically, we show that HELQ possesses an intrinsic ability to capture RPA-bound DNA strands and then displace RPA to facilitate annealing of complementary sequences. Finally, we show that HELQ deficiency in cells compromises single-strand annealing and microhomology-mediated end-joining pathways and leads to bias towards long-tract gene conversion tracts during homologous recombination. Thus, our results implicate HELQ in multiple arms of DSB repair through co-factor-dependent modulation of intrinsic translocase and DNA strand annealing activities.
Collapse
Affiliation(s)
- Roopesh Anand
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London, UK
| | - Erika Buechelmaier
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Ondrej Belan
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London, UK
| | - Matthew Newton
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London, UK
| | | | - Artur Kaczmarczyk
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
- Single Molecule Imaging Group, MRC-London Institute of Medical Sciences, London, UK
| | - Tohru Takaki
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London, UK
| | - David S Rueda
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK.
- Single Molecule Imaging Group, MRC-London Institute of Medical Sciences, London, UK.
| | - Simon N Powell
- Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Simon J Boulton
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
25
|
Helicase Q promotes homology-driven DNA double-strand break repair and prevents tandem duplications. Nat Commun 2021; 12:7126. [PMID: 34880204 PMCID: PMC8654963 DOI: 10.1038/s41467-021-27408-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 11/16/2021] [Indexed: 11/09/2022] Open
Abstract
DNA double-strand breaks are a major threat to cellular survival and genetic integrity. In addition to high fidelity repair, three intrinsically mutagenic DNA break repair routes have been described, i.e. single-strand annealing (SSA), polymerase theta-mediated end-joining (TMEJ) and residual ill-defined microhomology-mediated end-joining (MMEJ) activity. Here, we identify C. elegans Helicase Q (HELQ-1) as being essential for MMEJ as well as for SSA. We also find HELQ-1 to be crucial for the synthesis-dependent strand annealing (SDSA) mode of homologous recombination (HR). Loss of HELQ-1 leads to increased genome instability: patchwork insertions arise at deletion junctions due to abortive rounds of polymerase theta activity, and tandem duplications spontaneously accumulate in genomes of helq-1 mutant animals as a result of TMEJ of abrogated HR intermediates. Our work thus implicates HELQ activity for all DSB repair modes guided by complementary base pairs and provides mechanistic insight into mutational signatures common in HR-defective cancers.
Collapse
|
26
|
Zhao J, Lu P, Wan C, Huang Y, Cui M, Yang X, Hu Y, Zheng Y, Dong J, Wang M, Zhang S, Liu Z, Bian S, Wang X, Wang R, Ren S, Wang D, Yao Z, Chang G, Tang F, Zhao XY. Cell-fate transition and determination analysis of mouse male germ cells throughout development. Nat Commun 2021; 12:6839. [PMID: 34824237 PMCID: PMC8617176 DOI: 10.1038/s41467-021-27172-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 11/08/2021] [Indexed: 12/31/2022] Open
Abstract
Mammalian male germ cell development is a stepwise cell-fate transition process; however, the full-term developmental profile of male germ cells remains undefined. Here, by interrogating the high-precision transcriptome atlas of 11,598 cells covering 28 critical time-points, we demonstrate that cell-fate transition from mitotic to post-mitotic primordial germ cells is accompanied by transcriptome-scale reconfiguration and a transitional cell state. Notch signaling pathway is essential for initiating mitotic arrest and the maintenance of male germ cells' identities. Ablation of HELQ induces developmental arrest and abnormal transcriptome reprogramming of male germ cells, indicating the importance of cell cycle regulation for proper cell-fate transition. Finally, systematic human-mouse comparison reveals potential regulators whose deficiency contributed to human male infertility via mitotic arrest regulation. Collectively, our study provides an accurate and comprehensive transcriptome atlas of the male germline cycle and allows for an in-depth understanding of the cell-fate transition and determination underlying male germ cell development.
Collapse
Affiliation(s)
- Jiexiang Zhao
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, Guangdong, P. R. China
| | - Ping Lu
- Beijing Advanced Innovation Center for Genomics (ICG), School of Life Sciences, Peking University, 100871, Beijing, P. R. China
- Biomedical Pioneering Innovation Center, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, 100871, Beijing, P. R. China
| | - Cong Wan
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, Guangdong, P. R. China
| | - Yaping Huang
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, Guangdong, P. R. China
| | - Manman Cui
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, Guangdong, P. R. China
| | - Xinyan Yang
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, Guangdong, P. R. China
| | - Yuqiong Hu
- Beijing Advanced Innovation Center for Genomics (ICG), School of Life Sciences, Peking University, 100871, Beijing, P. R. China
- Biomedical Pioneering Innovation Center, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, 100871, Beijing, P. R. China
| | - Yi Zheng
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, Guangdong, P. R. China
| | - Ji Dong
- Beijing Advanced Innovation Center for Genomics (ICG), School of Life Sciences, Peking University, 100871, Beijing, P. R. China
- Biomedical Pioneering Innovation Center, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, 100871, Beijing, P. R. China
| | - Mei Wang
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, Guangdong, P. R. China
| | - Shu Zhang
- Beijing Advanced Innovation Center for Genomics (ICG), School of Life Sciences, Peking University, 100871, Beijing, P. R. China
- Biomedical Pioneering Innovation Center, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, 100871, Beijing, P. R. China
| | - Zhaoting Liu
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, Guangdong, P. R. China
| | - Shuhui Bian
- Beijing Advanced Innovation Center for Genomics (ICG), School of Life Sciences, Peking University, 100871, Beijing, P. R. China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, P. R. China
| | - Xiaoman Wang
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, Guangdong, P. R. China
| | - Rui Wang
- Beijing Advanced Innovation Center for Genomics (ICG), School of Life Sciences, Peking University, 100871, Beijing, P. R. China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, P. R. China
| | - Shaofang Ren
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, Guangdong, P. R. China
| | - Dazhuang Wang
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, Guangdong, P. R. China
| | - Zhaokai Yao
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, Guangdong, P. R. China
| | - Gang Chang
- Department of Biochemistry and Molecular Biology, Shenzhen University Health Science Center, 518060, Shenzhen, Guangdong, P. R. China.
| | - Fuchou Tang
- Beijing Advanced Innovation Center for Genomics (ICG), School of Life Sciences, Peking University, 100871, Beijing, P. R. China.
- Biomedical Pioneering Innovation Center, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, 100871, Beijing, P. R. China.
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, P. R. China.
| | - Xiao-Yang Zhao
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, Guangdong, P. R. China.
- Guangdong Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, 510515, Guangzhou, Guangdong, P. R. China.
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), 510700, Guangzhou, Guangdong, P. R. China.
| |
Collapse
|
27
|
Morati F, Modesti M. Insights into the control of RAD51 nucleoprotein filament dynamics from single-molecule studies. Curr Opin Genet Dev 2021; 71:182-187. [PMID: 34571340 DOI: 10.1016/j.gde.2021.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/05/2021] [Accepted: 09/10/2021] [Indexed: 11/26/2022]
Abstract
Genomic integrity depends on the RecA/RAD51 protein family. Discovered over five decades ago with the founder bacterial RecA protein, eukaryotic RAD51 is an ATP-dependent DNA strand transferase implicated in DNA double-strand break and single-strand gap repair, and in dealing with stressed DNA replication forks. RAD51 assembles as a nucleoprotein filament around single-stranded DNA to promote homology recognition in a duplex DNA and subsequent strand exchange. While the intrinsic dynamics of the RAD51 nucleoprotein filament has been extensively studied, a plethora of accessory factors control its dynamics. Understanding how modulators control filament dynamics is at the heart of current research efforts. Here, we describe recent advances in RAD51 control mechanisms obtained specifically using fluorescence-based single-molecule techniques.
Collapse
Affiliation(s)
- Florian Morati
- Cancer Research Center of Marseille, CNRS UMR7258, Inserm U1068, Institut Paoli-Calmettes, Aix-Marseille Université UM105, Marseille, France
| | - Mauro Modesti
- Cancer Research Center of Marseille, CNRS UMR7258, Inserm U1068, Institut Paoli-Calmettes, Aix-Marseille Université UM105, Marseille, France.
| |
Collapse
|
28
|
Zahn KE, Jensen RB. Polymerase θ Coordinates Multiple Intrinsic Enzymatic Activities during DNA Repair. Genes (Basel) 2021; 12:1310. [PMID: 34573292 PMCID: PMC8470613 DOI: 10.3390/genes12091310] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 11/16/2022] Open
Abstract
The POLQ gene encodes DNA polymerase θ, a 2590 amino acid protein product harboring DNA-dependent ATPase, template-dependent DNA polymerase, dNTP-dependent endonuclease, and 5'-dRP lyase functions. Polymerase θ participates at an essential step of a DNA double-strand break repair pathway able to join 5'-resected substrates by locating and pairing microhomologies present in 3'-overhanging single-stranded tails, cleaving the extraneous 3'-DNA by dNTP-dependent end-processing, before extending the nascent 3' end from the microhomology annealing site. Metazoans require polymerase θ for full resistance to DNA double-strand break inducing agents but can survive knockout of the POLQ gene. Cancer cells with compromised homologous recombination, or other DNA repair defects, over-utilize end-joining by polymerase θ and often over-express the POLQ gene. This dependency points to polymerase θ as an ideal drug target candidate and multiple drug-development programs are now preparing to enter clinical trials with small-molecule inhibitors. Specific inhibitors of polymerase θ would not only be predicted to treat BRCA-mutant cancers, but could thwart accumulated resistance to current standard-of-care cancer therapies and overcome PARP-inhibitor resistance in patients. This article will discuss synthetic lethal strategies targeting polymerase θ in DNA damage-response-deficient cancers and summarize data, describing molecular structures and enzymatic functions.
Collapse
Affiliation(s)
- Karl E. Zahn
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
- Repare Therapeutics, 7210 Rue Frederick Banting, Montreal, QC H4S 2A1, Canada
| | - Ryan B. Jensen
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
29
|
Carver A, Zhang X. Rad51 filament dynamics and its antagonistic modulators. Semin Cell Dev Biol 2021; 113:3-13. [PMID: 32631783 DOI: 10.1016/j.semcdb.2020.06.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/10/2020] [Accepted: 06/20/2020] [Indexed: 02/07/2023]
Abstract
Rad51 recombinase is the central player in homologous recombination, the faithful repair pathway for double-strand breaks and key event during meiosis. Rad51 forms nucleoprotein filaments on single-stranded DNA, exposed by a double-strand break. These filaments are responsible for homology search and strand invasion, which lead to homology-directed repair. Due to its central roles in DNA repair and genome stability, Rad51 is modulated by multiple factors and post-translational modifications. In this review, we summarize our current understanding of the dynamics of Rad51 filaments, the roles of other factors and their modes of action in modulating key stages of Rad51 filaments: formation, stability and disassembly.
Collapse
Affiliation(s)
- Alexander Carver
- Section of Structural Biology, Department of Infectious Diseases, Sir Alexander Fleming Building, Imperial College London, SW7 2AZ, UK
| | - Xiaodong Zhang
- Section of Structural Biology, Department of Infectious Diseases, Sir Alexander Fleming Building, Imperial College London, SW7 2AZ, UK.
| |
Collapse
|
30
|
Jenkins T, Northall SJ, Ptchelkine D, Lever R, Cubbon A, Betts H, Taresco V, Cooper CDO, McHugh PJ, Soultanas P, Bolt EL. The HelQ human DNA repair helicase utilizes a PWI-like domain for DNA loading through interaction with RPA, triggering DNA unwinding by the HelQ helicase core. NAR Cancer 2021; 3:zcaa043. [PMID: 34316696 PMCID: PMC8210318 DOI: 10.1093/narcan/zcaa043] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/30/2020] [Accepted: 12/16/2020] [Indexed: 01/04/2023] Open
Abstract
Genome instability is a characteristic enabling factor for carcinogenesis. HelQ helicase is a component of human DNA maintenance systems that prevent or reverse genome instability arising during DNA replication. Here, we provide details of the molecular mechanisms that underpin HelQ function-its recruitment onto ssDNA through interaction with replication protein A (RPA), and subsequent translocation of HelQ along ssDNA. We describe for the first time a functional role for the non-catalytic N-terminal region of HelQ, by identifying and characterizing its PWI-like domain. We present evidence that this domain of HelQ mediates interaction with RPA that orchestrates loading of the helicase domains onto ssDNA. Once HelQ is loaded onto the ssDNA, ATP-Mg2+ binding in the catalytic site activates the helicase core and triggers translocation along ssDNA as a dimer. Furthermore, we identify HelQ-ssDNA interactions that are critical for the translocation mechanism. Our data are novel and detailed insights into the mechanisms of HelQ function relevant for understanding how human cells avoid genome instability provoking cancers, and also how cells can gain resistance to treatments that rely on DNA crosslinking agents.
Collapse
Affiliation(s)
- Tabitha Jenkins
- School of Life Sciences, The University of Nottingham, NG7 2UH, Nottingham, UK
| | - Sarah J Northall
- School of Life Sciences, The University of Nottingham, NG7 2UH, Nottingham, UK
| | | | - Rebecca Lever
- School of Life Sciences, The University of Nottingham, NG7 2UH, Nottingham, UK
| | - Andrew Cubbon
- School of Life Sciences, The University of Nottingham, NG7 2UH, Nottingham, UK
| | - Hannah Betts
- School of Chemistry, The University of Nottingham, NG7 2RD, Nottingham, UK
| | - Vincenzo Taresco
- School of Pharmacy, The University of Nottingham, NG7 2RD, Nottingham, UK
| | - Christopher D O Cooper
- Department of Biological and Geographical Sciences, School of Applied Sciences, The University of Huddersfield, HD1 3DH, Huddersfield, UK
| | - Peter J McHugh
- MRC Weatherall Institute of Molecular Medicine (WIMM), University of Oxford, OX3 9DS, Oxford, UK
| | - Panos Soultanas
- School of Chemistry, The University of Nottingham, NG7 2RD, Nottingham, UK
| | - Edward L Bolt
- School of Life Sciences, The University of Nottingham, NG7 2UH, Nottingham, UK
| |
Collapse
|
31
|
Pérez-Arnaiz P, Dattani A, Smith V, Allers T. Haloferax volcanii-a model archaeon for studying DNA replication and repair. Open Biol 2020; 10:200293. [PMID: 33259746 PMCID: PMC7776575 DOI: 10.1098/rsob.200293] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/09/2020] [Indexed: 12/16/2022] Open
Abstract
The tree of life shows the relationship between all organisms based on their common ancestry. Until 1977, it comprised two major branches: prokaryotes and eukaryotes. Work by Carl Woese and other microbiologists led to the recategorization of prokaryotes and the proposal of three primary domains: Eukarya, Bacteria and Archaea. Microbiological, genetic and biochemical techniques were then needed to study the third domain of life. Haloferax volcanii, a halophilic species belonging to the phylum Euryarchaeota, has provided many useful tools to study Archaea, including easy culturing methods, genetic manipulation and phenotypic screening. This review will focus on DNA replication and DNA repair pathways in H. volcanii, how this work has advanced our knowledge of archaeal cellular biology, and how it may deepen our understanding of bacterial and eukaryotic processes.
Collapse
Affiliation(s)
| | | | | | - Thorsten Allers
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| |
Collapse
|
32
|
Huselid E, Bunting SF. The Regulation of Homologous Recombination by Helicases. Genes (Basel) 2020; 11:genes11050498. [PMID: 32369918 PMCID: PMC7290689 DOI: 10.3390/genes11050498] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/29/2020] [Accepted: 04/29/2020] [Indexed: 11/16/2022] Open
Abstract
Homologous recombination is essential for DNA repair, replication and the exchange of genetic material between parental chromosomes during meiosis. The stages of recombination involve complex reorganization of DNA structures, and the successful completion of these steps is dependent on the activities of multiple helicase enzymes. Helicases of many different families coordinate the processing of broken DNA ends, and the subsequent formation and disassembly of the recombination intermediates that are necessary for template-based DNA repair. Loss of recombination-associated helicase activities can therefore lead to genomic instability, cell death and increased risk of tumor formation. The efficiency of recombination is also influenced by the ‘anti-recombinase’ effect of certain helicases, which can direct DNA breaks toward repair by other pathways. Other helicases regulate the crossover versus non-crossover outcomes of repair. The use of recombination is increased when replication forks and the transcription machinery collide, or encounter lesions in the DNA template. Successful completion of recombination in these situations is also regulated by helicases, allowing normal cell growth, and the maintenance of genomic integrity.
Collapse
|
33
|
Sobh A, Loguinov A, Stornetta A, Balbo S, Tagmount A, Zhang L, Vulpe CD. Genome-Wide CRISPR Screening Identifies the Tumor Suppressor Candidate OVCA2 As a Determinant of Tolerance to Acetaldehyde. Toxicol Sci 2020; 169:235-245. [PMID: 31059574 DOI: 10.1093/toxsci/kfz037] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Acetaldehyde, a metabolite of ethanol, is a cellular toxicant and a human carcinogen. A genome-wide CRISPR-based loss-of-function screen in erythroleukemic K562 cells revealed candidate genetic contributors affecting acetaldehyde cytotoxicity. Secondary screening exposing cells to a lower acetaldehyde dose simultaneously validated multiple candidate genes whose loss results in increased sensitivity to acetaldehyde. Disruption of genes encoding components of various DNA repair pathways increased cellular sensitivity to acetaldehyde. Unexpectedly, the tumor suppressor gene OVCA2, whose function is unknown, was identified in our screen as a determinant of acetaldehyde tolerance. Disruption of the OVCA2 gene resulted in increased acetaldehyde sensitivity and higher accumulation of the acetaldehyde-derived DNA adduct N2-ethylidene-dG. Together these results are consistent with a role for OVCA2 in adduct removal and/or DNA repair.
Collapse
Affiliation(s)
- Amin Sobh
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida.,Department of Nutritional Sciences & Toxicology, Comparative Biochemistry Program, University of California, Berkeley, California
| | - Alex Loguinov
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | - Alessia Stornetta
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Silvia Balbo
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota.,Division of Environmental Health Sciences, University of Minnesota, Minneapolis, Minnesota
| | - Abderrahmane Tagmount
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | - Luoping Zhang
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, California
| | - Chris D Vulpe
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| |
Collapse
|
34
|
Abstract
This Outlook discusses the findings by Hustedt et al. in this issue of Genes & Development that report the identification of HROB, a novel factor required for loading MCM8–9 onto HR intermediates to facilitate DNA repair synthesis. Homologous recombination (HR) is an important route for repairing DNA double-strand breaks (DSBs). The early stages of HR are well understood, but later stages remain mysterious. In this issue of Genes & Development, Hustedt and colleagues (pp. 1397–1415) reveal HROB as a new player in HR required for recruitment of the MCM8–9 complex, which is paralogous to the MCM2–7 replicative helicase. HROB functions closely with MCM8–9 to promote postsynaptic DNA repair synthesis. This study sheds valuable light on late events in HR and suggests that HROB may load MCM8–9 onto HR intermediates to facilitate the DNA unwinding required for DNA repair synthesis.
Collapse
Affiliation(s)
- Giulia Saredi
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| | - John Rouse
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| |
Collapse
|
35
|
Rojano-Nisimura AM, Haning K, Janovsky J, Vasquez KA, Thompson JP, Contreras LM. Codon Selection Affects Recruitment of Ribosome-Associating Factors during Translation. ACS Synth Biol 2020; 9:329-342. [PMID: 31769967 DOI: 10.1021/acssynbio.9b00344] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An intriguing aspect of protein synthesis is how cotranslational events are managed inside the cell. In this study, we developed an in vivo bimolecular fluorescence complementation assay coupled to SecM stalling (BiFC-SecM) to study how codon usage influences the interactions of ribosome-associating factors that occur cotranslationally. We profiled ribosomal associations of a number of proteins, and observed differential association of chaperone proteins TF, DnaK, GroEL, and translocation factor Ffh as a result of introducing synonymous codon substitutions that change the affinity of the translating sequence to the ribosomal anti-Shine-Dalgarno (aSD) sequence. The use of pausing sequences within proteins regulates their transit within the translating ribosome. Our results indicate that the dynamics between cellular factors and the new polypeptide chain are affected by how codon composition is designed. Furthermore, associating factors may play a role in processes including protein quality control (folding and degradation) and cellular respiration.
Collapse
Affiliation(s)
- Alejandra M. Rojano-Nisimura
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway Stop A4800, Austin, Texas 78712, United States
| | - Katie Haning
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton Street Stop C0400, Austin, Texas 78712, United States
| | - Justin Janovsky
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway Stop A4800, Austin, Texas 78712, United States
| | - Kevin A. Vasquez
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton Street Stop C0400, Austin, Texas 78712, United States
| | - Jeffrey P. Thompson
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton Street Stop C0400, Austin, Texas 78712, United States
| | - Lydia M. Contreras
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton Street Stop C0400, Austin, Texas 78712, United States
| |
Collapse
|
36
|
West S, Kumar S, Batra SK, Ali H, Ghersi D. Uncovering and characterizing splice variants associated with survival in lung cancer patients. PLoS Comput Biol 2019; 15:e1007469. [PMID: 31652257 PMCID: PMC6834284 DOI: 10.1371/journal.pcbi.1007469] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 11/06/2019] [Accepted: 10/08/2019] [Indexed: 12/16/2022] Open
Abstract
Splice variants have been shown to play an important role in tumor initiation and progression and can serve as novel cancer biomarkers. However, the clinical importance of individual splice variants and the mechanisms by which they can perturb cellular functions are still poorly understood. To address these issues, we developed an efficient and robust computational method to: (1) identify splice variants that are associated with patient survival in a statistically significant manner; and (2) predict rewired protein-protein interactions that may result from altered patterns of expression of such variants. We applied our method to the lung adenocarcinoma dataset from TCGA and identified splice variants that are significantly associated with patient survival and can alter protein-protein interactions. Among these variants, several are implicated in DNA repair through homologous recombination. To computationally validate our findings, we characterized the mutational signatures in patients, grouped by low and high expression of a splice variant associated with patient survival and involved in DNA repair. The results of the mutational signature analysis are in agreement with the molecular mechanism suggested by our method. To the best of our knowledge, this is the first attempt to build a computational approach to systematically identify splice variants associated with patient survival that can also generate experimentally testable, mechanistic hypotheses. Code for identifying survival-significant splice variants using the Null Empirically Estimated P-value method can be found at https://github.com/thecodingdoc/neep. Code for construction of Multi-Granularity Graphs to discover potential rewired protein interactions can be found at https://github.com/scwest/SINBAD.
Collapse
Affiliation(s)
- Sean West
- College of Information Science & Technology, University of Nebraska at Omaha, Omaha, Nebraska, United States of America
| | - Sushil Kumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Hesham Ali
- College of Information Science & Technology, University of Nebraska at Omaha, Omaha, Nebraska, United States of America
| | - Dario Ghersi
- College of Information Science & Technology, University of Nebraska at Omaha, Omaha, Nebraska, United States of America
| |
Collapse
|
37
|
Hustedt N, Saito Y, Zimmermann M, Álvarez-Quilón A, Setiaputra D, Adam S, McEwan A, Yuan JY, Olivieri M, Zhao Y, Kanemaki MT, Jurisicova A, Durocher D. Control of homologous recombination by the HROB-MCM8-MCM9 pathway. Genes Dev 2019; 33:1397-1415. [PMID: 31467087 PMCID: PMC6771392 DOI: 10.1101/gad.329508.119] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 08/08/2019] [Indexed: 12/17/2022]
Abstract
In this study, Hustedt et al. use CRISPR-based genetic screens to build a clear picture of the postsynaptic steps of homologous recombination in mammalian cells. They report the identification of C17orf53/HROB, a factor required for cell survival after exposure to a variety of replication stress-inducing genotoxins and for the resolution but not formation of Rad51 foci. DNA repair by homologous recombination (HR) is essential for genomic integrity, tumor suppression, and the formation of gametes. HR uses DNA synthesis to repair lesions such as DNA double-strand breaks and stalled DNA replication forks, but despite having a good understanding of the steps leading to homology search and strand invasion, we know much less of the mechanisms that establish recombination-associated DNA polymerization. Here, we report that C17orf53/HROB is an OB-fold-containing factor involved in HR that acts by recruiting the MCM8–MCM9 helicase to sites of DNA damage to promote DNA synthesis. Mice with targeted mutations in Hrob are infertile due to depletion of germ cells and display phenotypes consistent with a prophase I meiotic arrest. The HROB–MCM8–MCM9 pathway acts redundantly with the HELQ helicase, and cells lacking both HROB and HELQ have severely impaired HR, suggesting that they underpin two major routes for the completion of HR downstream from RAD51. The function of HROB in HR is reminiscent of that of gp59, which acts as the replicative helicase loader during bacteriophage T4 recombination-dependent DNA replication. We therefore propose that the loading of MCM8–MCM9 by HROB may similarly be a key step in the establishment of mammalian recombination-associated DNA synthesis.
Collapse
Affiliation(s)
- Nicole Hustedt
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Yuichiro Saito
- Department of Chromosome Science, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Michal Zimmermann
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | | | - Dheva Setiaputra
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Salomé Adam
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Andrea McEwan
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Jing Yi Yuan
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Michele Olivieri
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Yichao Zhao
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Masato T Kanemaki
- Department of Chromosome Science, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan.,Department of Genetics, SOKENDAI, Mishima, Shizuoka 411-8540, Japan
| | - Andrea Jurisicova
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Department of Obstetrics and Gynecology, University of Toronto, Toronto, Ontario M5G 0D8, Canada
| | - Daniel Durocher
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
38
|
Griffin WC, Trakselis MA. The MCM8/9 complex: A recent recruit to the roster of helicases involved in genome maintenance. DNA Repair (Amst) 2019; 76:1-10. [PMID: 30743181 DOI: 10.1016/j.dnarep.2019.02.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 02/03/2019] [Indexed: 12/11/2022]
Abstract
There are several DNA helicases involved in seemingly overlapping aspects of homologous and homoeologous recombination. Mutations of many of these helicases are directly implicated in genetic diseases including cancer, rapid aging, and infertility. MCM8/9 are recent additions to the catalog of helicases involved in recombination, and so far, the evidence is sparse, making assignment of function difficult. Mutations in MCM8/9 correlate principally with primary ovarian failure/insufficiency (POF/POI) and infertility indicating a meiotic defect. However, they also act when replication forks collapse/break shuttling products into mitotic recombination and several mutations are found in various somatic cancers. This review puts MCM8/9 in context with other replication and recombination helicases to narrow down its genomic maintenance role. We discuss the known structure/function relationship, the mutational spectrum, and dissect the available cellular and organismal data to better define its role in recombination.
Collapse
Affiliation(s)
- Wezley C Griffin
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, 76798, USA
| | - Michael A Trakselis
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, 76798, USA.
| |
Collapse
|
39
|
Abstract
XRCC2 is one of five somatic RAD51 paralogs, all of which have Walker A and B ATPase motifs. Each of the paralogs, including XRCC2, has a function in DNA double-strand break repair by homologous recombination (HR). However, their individual roles are not as well understood as that of RAD51 itself. The XRCC2 protein forms a complex (BCDX2) with three other RAD51 paralogs, RAD51B, RAD51C and RAD51D. It is believed that the BCDX2 complex mediates HR downstream of BRCA2 but upstream of RAD51, as XRCC2 is involved in the assembly of RAD51 into DNA damage foci. XRCC2 can bind DNA and, along with RAD51D, can promote homologous pairing in vitro. Consistent with its role in HR, XRCC2-deficient cells have increased levels of spontaneous chromosome instability, and exhibit hypersensitivity to DNA interstrand crosslinking agents such as mitomycin C and cisplatin as well as ionizing radiation, alkylating agents and aldehydes. XRCC2 also functions in promoting DNA replication and chromosome segregation. Biallelic mutation of XRCC2 (FANCU) causes the FA-U subtype of FA, while heterozygosity for deleterious mutations in XRCC2 may be associated with an increased breast cancer risk. XRCC2 appears to function 'downstream' in the FA pathway, since it is not required for FANCD2 monoubiquitination, which is the central step in the FA pathway. Clinically, the only known FA-U patient in the world exhibits severe congenital abnormalities, but had not developed, by seven years of age, the bone marrow failure and cancer that are often seen in patients from other FA complementation groups.
Collapse
Affiliation(s)
- Paul R Andreassen
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati OH, USA; (PRA); Department of Pediatrics III, University Children's Hospital Essen, University Duisburg-Essen, Essen Germany; (HH)
| | - Helmut Hanenberg
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati OH, USA; (PRA); Department of Pediatrics III, University Children's Hospital Essen, University Duisburg-Essen, Essen Germany; (HH)
| |
Collapse
|
40
|
CRISPR-Cas immunity, DNA repair and genome stability. Biosci Rep 2018; 38:BSR20180457. [PMID: 30209206 PMCID: PMC6147917 DOI: 10.1042/bsr20180457] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/08/2018] [Accepted: 09/10/2018] [Indexed: 12/24/2022] Open
Abstract
Co-opting of CRISPR-Cas 'Interference' reactions for editing the genomes of eukaryotic and prokaryotic cells has highlighted crucial support roles for DNA repair systems that strive to maintain genome stability. As front-runners in genome editing that targets DNA, the class 2 CRISPR-Cas enzymes Cas9 and Cas12a rely on repair of DNA double-strand breaks (DDSBs) by host DNA repair enzymes, using mechanisms that vary in how well they are understood. Data are emerging about the identities of DNA repair enzymes that support genome editing in human cells. At the same time, it is becoming apparent that CRISPR-Cas systems functioning in their native environment, bacteria or archaea, also need DNA repair enzymes. In this short review, we survey how DNA repair and CRISPR-Cas systems are intertwined. We consider how understanding DNA repair and CRISPR-Cas interference reactions in nature might help improve the efficacy of genome editing procedures that utilise homologous or analogous systems in human and other cells.
Collapse
|
41
|
CRISPR-Cas9 genome editing in human cells occurs via the Fanconi anemia pathway. Nat Genet 2018; 50:1132-1139. [PMID: 30054595 DOI: 10.1038/s41588-018-0174-0] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 06/12/2018] [Indexed: 01/01/2023]
Abstract
CRISPR-Cas genome editing creates targeted DNA double-strand breaks (DSBs) that are processed by cellular repair pathways, including the incorporation of exogenous DNA via single-strand template repair (SSTR). To determine the genetic basis of SSTR in human cells, we developed a coupled inhibition-cutting system capable of interrogating multiple editing outcomes in the context of thousands of individual gene knockdowns. We found that human Cas9-induced SSTR requires the Fanconi anemia (FA) pathway, which is normally implicated in interstrand cross-link repair. The FA pathway does not directly impact error-prone, non-homologous end joining, but instead diverts repair toward SSTR. Furthermore, FANCD2 protein localizes to Cas9-induced DSBs, indicating a direct role in regulating genome editing. Since FA is itself a genetic disease, these data imply that patient genotype and/or transcriptome may impact the effectiveness of gene editing treatments and that treatments biased toward FA repair pathways could have therapeutic value.
Collapse
|
42
|
Tomida J, Takata KI, Bhetawal S, Person MD, Chao HP, Tang DG, Wood RD. FAM35A associates with REV7 and modulates DNA damage responses of normal and BRCA1-defective cells. EMBO J 2018; 37:e99543. [PMID: 29789392 PMCID: PMC6003645 DOI: 10.15252/embj.201899543] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 05/03/2018] [Accepted: 05/07/2018] [Indexed: 12/24/2022] Open
Abstract
To exploit vulnerabilities of tumors, it is urgent to identify associated defects in genome maintenance. One unsolved problem is the mechanism of regulation of DNA double-strand break repair by REV7 in complex with 53BP1 and RIF1, and its influence on repair pathway choice between homologous recombination and non-homologous end-joining. We searched for REV7-associated factors in human cells and found FAM35A, a previously unstudied protein with an unstructured N-terminal region and a C-terminal region harboring three OB-fold domains similar to single-stranded DNA-binding protein RPA, as novel interactor of REV7/RIF1/53BP1. FAM35A re-localized in damaged cell nuclei, and its knockdown caused sensitivity to DNA-damaging agents. In a BRCA1-mutant cell line, however, depletion of FAM35A increased resistance to camptothecin, suggesting that FAM35A participates in processing of DNA ends to allow more efficient DNA repair. We found FAM35A absent in one widely used BRCA1-mutant cancer cell line (HCC1937) with anomalous resistance to PARP inhibitors. A survey of FAM35A alterations revealed that the gene is altered at the highest frequency in prostate cancers (up to 13%) and significantly less expressed in metastatic cases, revealing promise for FAM35A as a therapeutically relevant cancer marker.
Collapse
Affiliation(s)
- Junya Tomida
- Department of Epigenetics & Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX, USA
| | - Kei-Ichi Takata
- Department of Epigenetics & Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX, USA
| | - Sarita Bhetawal
- Department of Epigenetics & Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX, USA
| | - Maria D Person
- Proteomics Facility, University of Texas at Austin, Austin, TX, USA
| | - Hsueh-Ping Chao
- Department of Epigenetics & Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX, USA
| | - Dean G Tang
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Richard D Wood
- Department of Epigenetics & Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX, USA
| |
Collapse
|
43
|
Ozdemir AY, Rusanov T, Kent T, Siddique LA, Pomerantz RT. Polymerase θ-helicase efficiently unwinds DNA and RNA-DNA hybrids. J Biol Chem 2018; 293:5259-5269. [PMID: 29444826 PMCID: PMC5892577 DOI: 10.1074/jbc.ra117.000565] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 02/07/2018] [Indexed: 11/06/2022] Open
Abstract
POLQ is a unique multifunctional replication and repair gene that encodes for a N-terminal superfamily 2 helicase and a C-terminal A-family polymerase. Although the function of the polymerase domain has been investigated, little is understood regarding the helicase domain. Multiple studies have reported that polymerase θ-helicase (Polθ-helicase) is unable to unwind DNA. However, it exhibits ATPase activity that is stimulated by single-stranded DNA, which presents a biochemical conundrum. In contrast to previous reports, we demonstrate that Polθ-helicase (residues 1-894) efficiently unwinds DNA with 3'-5' polarity, including DNA with 3' or 5' overhangs, blunt-ended DNA, and replication forks. Polθ-helicase also efficiently unwinds RNA-DNA hybrids and exhibits a preference for unwinding the lagging strand at replication forks, similar to related HELQ helicase. Finally, we find that Polθ-helicase can facilitate strand displacement synthesis by Polθ-polymerase, suggesting a plausible function for the helicase domain. Taken together, these findings indicate nucleic acid unwinding as a relevant activity for Polθ in replication repair.
Collapse
Affiliation(s)
- Ahmet Y Ozdemir
- From the Fels Institute for Cancer Research, Department of Medical Genetics and Molecular Biochemistry, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, 19140
| | - Timur Rusanov
- From the Fels Institute for Cancer Research, Department of Medical Genetics and Molecular Biochemistry, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, 19140
| | - Tatiana Kent
- From the Fels Institute for Cancer Research, Department of Medical Genetics and Molecular Biochemistry, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, 19140
| | - Labiba A Siddique
- From the Fels Institute for Cancer Research, Department of Medical Genetics and Molecular Biochemistry, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, 19140
| | - Richard T Pomerantz
- From the Fels Institute for Cancer Research, Department of Medical Genetics and Molecular Biochemistry, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, 19140
| |
Collapse
|
44
|
Michlits G, Hubmann M, Wu SH, Vainorius G, Budusan E, Zhuk S, Burkard TR, Novatchkova M, Aichinger M, Lu Y, Reece-Hoyes J, Nitsch R, Schramek D, Hoepfner D, Elling U. CRISPR-UMI: single-cell lineage tracing of pooled CRISPR-Cas9 screens. Nat Methods 2017; 14:1191-1197. [PMID: 29039415 DOI: 10.1038/nmeth.4466] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 09/11/2017] [Indexed: 12/12/2022]
Abstract
Pooled CRISPR screens are a powerful tool for assessments of gene function. However, conventional analysis is based exclusively on the relative abundance of integrated single guide RNAs (sgRNAs) between populations, which does not discern distinct phenotypes and editing outcomes generated by identical sgRNAs. Here we present CRISPR-UMI, a single-cell lineage-tracing methodology for pooled screening to account for cell heterogeneity. We generated complex sgRNA libraries with unique molecular identifiers (UMIs) that allowed for screening of clonally expanded, individually tagged cells. A proof-of-principle CRISPR-UMI negative-selection screen provided increased sensitivity and robustness compared with conventional analysis by accounting for underlying cellular and editing-outcome heterogeneity and detection of outlier clones. Furthermore, a CRISPR-UMI positive-selection screen uncovered new roadblocks in reprogramming mouse embryonic fibroblasts as pluripotent stem cells, distinguishing reprogramming frequency and speed (i.e., effect size and probability). CRISPR-UMI boosts the predictive power, sensitivity, and information content of pooled CRISPR screens.
Collapse
Affiliation(s)
- Georg Michlits
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna Biocenter (VBC), Vienna, Austria
| | - Maria Hubmann
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna Biocenter (VBC), Vienna, Austria
| | - Szu-Hsien Wu
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna Biocenter (VBC), Vienna, Austria
| | - Gintautas Vainorius
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna Biocenter (VBC), Vienna, Austria
| | - Elena Budusan
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna Biocenter (VBC), Vienna, Austria
| | - Sergei Zhuk
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna Biocenter (VBC), Vienna, Austria
| | - Thomas R Burkard
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna Biocenter (VBC), Vienna, Austria
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC),Vienna, Austria
| | - Maria Novatchkova
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna Biocenter (VBC), Vienna, Austria
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC),Vienna, Austria
| | - Martin Aichinger
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC),Vienna, Austria
| | - Yiqing Lu
- Center for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - John Reece-Hoyes
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, USA
| | - Roberto Nitsch
- Discovery Sciences RAD, AstraZeneca R&D, Gothenburg, Sweden
| | - Daniel Schramek
- Center for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | | | - Ulrich Elling
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna Biocenter (VBC), Vienna, Austria
| |
Collapse
|
45
|
Northall SJ, Buckley R, Jones N, Penedo JC, Soultanas P, Bolt EL. DNA binding and unwinding by Hel308 helicase requires dual functions of a winged helix domain. DNA Repair (Amst) 2017; 57:125-132. [DOI: 10.1016/j.dnarep.2017.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/11/2017] [Accepted: 07/12/2017] [Indexed: 12/23/2022]
|
46
|
Analysis of DNA polymerase ν function in meiotic recombination, immunoglobulin class-switching, and DNA damage tolerance. PLoS Genet 2017; 13:e1006818. [PMID: 28570559 PMCID: PMC5472330 DOI: 10.1371/journal.pgen.1006818] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 06/15/2017] [Accepted: 05/13/2017] [Indexed: 11/20/2022] Open
Abstract
DNA polymerase ν (pol ν), encoded by the POLN gene, is an A-family DNA polymerase in vertebrates and some other animal lineages. Here we report an in-depth analysis of pol ν–defective mice and human cells. POLN is very weakly expressed in most tissues, with the highest relative expression in testis. We constructed multiple mouse models for Poln disruption and detected no anatomic abnormalities, alterations in lifespan, or changed causes of mortality. Mice with inactive Poln are fertile and have normal testis morphology. However, pol ν–disrupted mice have a modestly reduced crossover frequency at a meiotic recombination hot spot harboring insertion/deletion polymorphisms. These polymorphisms are suggested to generate a looped-out primer and a hairpin structure during recombination, substrates on which pol ν can operate. Pol ν-defective mice had no alteration in DNA end-joining during immunoglobulin class-switching, in contrast to animals defective in the related DNA polymerase θ (pol θ). We examined the response to DNA crosslinking agents, as purified pol ν has some ability to bypass major groove peptide adducts and residues of DNA crosslink repair. Inactivation of Poln in mouse embryonic fibroblasts did not alter cellular sensitivity to mitomycin C, cisplatin, or aldehydes. Depletion of POLN from human cells with shRNA or siRNA did not change cellular sensitivity to mitomycin C or alter the frequency of mitomycin C-induced radial chromosomes. Our results suggest a function of pol ν in meiotic homologous recombination in processing specific substrates. The restricted and more recent evolutionary appearance of pol ν (in comparison to pol θ) supports such a specialized role. The work described here fills a current gap in the study of the 16 known DNA polymerases in vertebrate genomes. Until now, experiments with genetically disrupted mice have been reported for all but pol ν, encoded by the POLN gene. To intensively analyze the role of mammalian pol ν we generated multiple Poln-deficient murine models. We discovered that Poln is uniquely upregulated during testicular development and that it is enriched in spermatocytes. This, and phylogenetic analysis indicate a testis-specific function. We observed a modest reduction in meiotic recombination at a recombination hotspot in Poln-deficient mice. Pol ν has been suggested to function in DNA crosslink repair. However, we found no increased DNA crosslink sensitivity in Poln-deficient mice or POLN-depleted human cells. This is a major difference from some previous findings, and we support our conclusion by multiple experimental approaches, and by the very low or absent expression of functional pol ν in mammalian somatic cells. The present work represents the first description and comprehensive analysis of mice deficient in pol ν, and the first thorough phenotypic analysis in human cells.
Collapse
|
47
|
Liu DN, Zhou YF, Peng AF, Long XH, Chen XY, Liu ZL, Xia H. HELQ reverses the malignant phenotype of osteosarcoma cells via CHK1-RAD51 signaling pathway. Oncol Rep 2016; 37:1107-1113. [PMID: 28000895 DOI: 10.3892/or.2016.5329] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 11/03/2016] [Indexed: 11/05/2022] Open
Abstract
HELQ is a DNA helicase important for repair of DNA lesions and has been linked to several types of cancer. However, little is known about its relationship with osteosarcoma (OS) and its mechanism. In the present study, the expression of HELQ and its downstream mediators in OS cells was assayed by quantitative PCR and western blot analysis. The function of HELQ in OS cells was investigated by Transwell invasion, wound healing, CCK8 assays and Comet assay. The results demonstrated that HELQ gene and protein were expressed in OS cells. OS cell invasion, migration, proliferation and DNA damage repair were enhanced by HELQ knock-down with shRNA-lentivirus and inhibited by HELQ overexpression with lentivirus transfection. Furthermore, the antitumor activities of HELQ may be associated with upregulated expression of the DNA damage-related proteins CHK1 and RAD51. Our findings indicated that HELQ confers an anti-invasive phenotype on OS cells by activating the CHK1-RAD51 signaling pathway and suggested that HELQ could be recognized as a promising therapeutic target for OS and other types of malignant tumors.
Collapse
Affiliation(s)
- Dong Ning Liu
- Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Yun Fei Zhou
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Ai Fen Peng
- Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, P.R. China
| | - Xin Hua Long
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Xuan Yin Chen
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Zhi Li Liu
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Hong Xia
- Southern Medical University, Guangzhou, Guangdong, P.R. China
| |
Collapse
|
48
|
Hamdi Y, Soucy P, Adoue V, Michailidou K, Canisius S, Lemaçon A, Droit A, Andrulis IL, Anton-Culver H, Arndt V, Baynes C, Blomqvist C, Bogdanova NV, Bojesen SE, Bolla MK, Bonanni B, Borresen-Dale AL, Brand JS, Brauch H, Brenner H, Broeks A, Burwinkel B, Chang-Claude J, Couch FJ, Cox A, Cross SS, Czene K, Darabi H, Dennis J, Devilee P, Dörk T, Dos-Santos-Silva I, Eriksson M, Fasching PA, Figueroa J, Flyger H, García-Closas M, Giles GG, Goldberg MS, González-Neira A, Grenaker-Alnæs G, Guénel P, Haeberle L, Haiman CA, Hamann U, Hallberg E, Hooning MJ, Hopper JL, Jakubowska A, Jones M, Kabisch M, Kataja V, Lambrechts D, Marchand LL, Lindblom A, Lubinski J, Mannermaa A, Maranian M, Margolin S, Marme F, Milne RL, Neuhausen SL, Nevanlinna H, Neven P, Olswold C, Peto J, Plaseska-Karanfilska D, Pylkäs K, Radice P, Rudolph A, Sawyer EJ, Schmidt MK, Shu XO, Southey MC, Swerdlow A, Tollenaar RA, Tomlinson I, Torres D, Truong T, Vachon C, Van Den Ouweland AMW, Wang Q, Winqvist R, Investigators KC, Zheng W, Benitez J, Chenevix-Trench G, Dunning AM, Pharoah PDP, Kristensen V, Hall P, Easton DF, Pastinen T, Nord S, Simard J. Association of breast cancer risk with genetic variants showing differential allelic expression: Identification of a novel breast cancer susceptibility locus at 4q21. Oncotarget 2016; 7:80140-80163. [PMID: 27792995 PMCID: PMC5340257 DOI: 10.18632/oncotarget.12818] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 10/13/2016] [Indexed: 12/02/2022] Open
Abstract
There are significant inter-individual differences in the levels of gene expression. Through modulation of gene expression, cis-acting variants represent an important source of phenotypic variation. Consequently, cis-regulatory SNPs associated with differential allelic expression are functional candidates for further investigation as disease-causing variants. To investigate whether common variants associated with differential allelic expression were involved in breast cancer susceptibility, a list of genes was established on the basis of their involvement in cancer related pathways and/or mechanisms. Thereafter, using data from a genome-wide map of allelic expression associated SNPs, 313 genetic variants were selected and their association with breast cancer risk was then evaluated in 46,451 breast cancer cases and 42,599 controls of European ancestry ascertained from 41 studies participating in the Breast Cancer Association Consortium. The associations were evaluated with overall breast cancer risk and with estrogen receptor negative and positive disease. One novel breast cancer susceptibility locus on 4q21 (rs11099601) was identified (OR = 1.05, P = 5.6x10-6). rs11099601 lies in a 135 kb linkage disequilibrium block containing several genes, including, HELQ, encoding the protein HEL308 a DNA dependant ATPase and DNA Helicase involved in DNA repair, MRPS18C encoding the Mitochondrial Ribosomal Protein S18C and FAM175A (ABRAXAS), encoding a BRCA1 BRCT domain-interacting protein involved in DNA damage response and double-strand break (DSB) repair. Expression QTL analysis in breast cancer tissue showed rs11099601 to be associated with HELQ (P = 8.28x10-14), MRPS18C (P = 1.94x10-27) and FAM175A (P = 3.83x10-3), explaining about 20%, 14% and 1%, respectively of the variance inexpression of these genes in breast carcinomas.
Collapse
Affiliation(s)
- Yosr Hamdi
- Genomics Center, Centre Hospitalier Universitaire de Québec Research Center, Laval University, Quebec, Canada
| | - Penny Soucy
- Genomics Center, Centre Hospitalier Universitaire de Québec Research Center, Laval University, Quebec, Canada
| | - Véronique Adoue
- Institut National de la Santé et de la Recherche Médicale U1043, Toulouse, France
- Centre National de la Recherche Scientifique, Toulouse, France
- Université de Toulouse, Université Paul Sabatier, Centre de Physiopathologie de Toulouse Purpan, Toulouse, France
| | - Kyriaki Michailidou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Department of Electron Microscopy/Molecular Pathology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Sander Canisius
- Netherlands Cancer Institute, Antoni van Leeuwenhoek hospital, Amsterdam, The Netherlands
| | - Audrey Lemaçon
- Centre de Recherche du CHU de Québec – Université Laval, Faculté de Médecine, Département de Médecine Moléculaire, Université Laval, Quebec, Canada
| | - Arnaud Droit
- Centre de Recherche du CHU de Québec – Université Laval, Faculté de Médecine, Département de Médecine Moléculaire, Université Laval, Quebec, Canada
| | - Irene L Andrulis
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Hoda Anton-Culver
- Department of Epidemiology, University of California Irvine, Irvine, CA, USA
| | - Volker Arndt
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany
| | - Caroline Baynes
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Carl Blomqvist
- Department of Oncology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Natalia V. Bogdanova
- Department of Radiation Oncology, Hannover Medical School, Hannover, Germany
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
| | - Stig E. Bojesen
- Copenhagen General Population Study, Herlevand Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Manjeet K. Bolla
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Bernardo Bonanni
- Division of Cancer Prevention and Genetics, Istituto Europeo di Oncologia, Milan, Italy
| | - Anne-Lise Borresen-Dale
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
| | - Judith S. Brand
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Hiltrud Brauch
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
- German Cancer Consortium, German Cancer Research Center, Heidelberg, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany
- German Cancer Consortium, German Cancer Research Center, Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center and National Center for Tumor Diseases, Heidelberg, Germany
| | - Annegien Broeks
- Netherlands Cancer Institute, Antoni van Leeuwenhoek hospital, Amsterdam, The Netherlands
| | - Barbara Burwinkel
- Department of Obstetrics and Gynecology, University of Heidelberg, Heidelberg, Germany
- Molecular Epidemiology Group, German Cancer Research Center, Heidelberg, Germany
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center, Heidelberg, Germany
- University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - NBCS Collaborators
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
- Department of Oncology, Haukeland University Hospital, Bergen, Norway
- Section of Oncology, Institute of Medicine, University of Bergen, Bergen, Norway
- Department of Pathology, Akershus University Hospital, Lørenskog, Norway
- Department of Breast-Endocrine Surgery, Akershus University Hospital, Lørenskog, Norway
- Department of Breast and Endocrine Surgery, Oslo University Hospital, Ullevål, Oslo, Norway
- Department of Research, Vestre Viken, Drammen, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- National Advisory Unit on Late Effects after Cancer Treatment, Oslo University Hospital Radiumhospitalet, Oslo, Norway
- Department of Oncology, Oslo University Hospital Radiumhospitalet, Oslo, Norway
- Department of Radiology and Nuclear Medicine, Oslo University Hospital Radiumhospitalet, Oslo, Norway
- Oslo University Hospital, Oslo, Norway
| | - Fergus J. Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Angela Cox
- Sheffield Cancer Research, Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Simon S. Cross
- Academic Unit of Pathology, Department of Neuroscience, University of Sheffield, Sheffield, UK
| | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Hatef Darabi
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Peter Devilee
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Thilo Dörk
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
| | - Isabel Dos-Santos-Silva
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
| | - Mikael Eriksson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Peter A. Fasching
- Department of Gynaecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
- David Geffen School of Medicine, Department of Medicine Division of Hematology and Oncology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Jonine Figueroa
- Usher Institute of Population Health Sciences and Informatics, The University of Edinburgh Medical School, Edinburgh, UK
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Henrik Flyger
- Department of Breast Surgery, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
| | | | - Graham G. Giles
- Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Mark S. Goldberg
- Department of Medicine, McGill University, Montreal, Canada
- Division of Clinical Epidemiology, Royal Victoria Hospital, McGill University, Montreal, Canada
| | - Anna González-Neira
- Human Cancer Genetics Program, Spanish National Cancer Research Centre, Madrid, Spain
| | - Grethe Grenaker-Alnæs
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
| | - Pascal Guénel
- Cancer & Environment Group, Center for Research in Epidemiology and Population Health (CESP), INSERM, University Paris-Sud, University Paris-Saclay, VilleJuif, France
| | - Lothar Haeberle
- Department of Gynaecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Christopher A. Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ute Hamann
- Molecular Genetics of Breast Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Emily Hallberg
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Maartje J. Hooning
- Department of Medical Oncology, Family Cancer Clinic, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - John L. Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Anna Jakubowska
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Michael Jones
- Division of Genetics and Epidemiology, the Institute of Cancer Research, London, UK
| | - Maria Kabisch
- Molecular Genetics of Breast Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Vesa Kataja
- Cancer Center of Eastern Finland, University of Eastern Finland, Kuopio, Finland
- Central Finland Hospital District, Jyväskylä Central Hospital, Jyväskylä, Finland
| | - Diether Lambrechts
- Vesalius Research Center, Leuven, Belgium
- Laboratory for Translational Genetics, Department of Oncology, University of Leuven, Leuven, Belgium
| | | | - Annika Lindblom
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Jan Lubinski
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Arto Mannermaa
- Cancer Center of Eastern Finland, University of Eastern Finland, Kuopio, Finland
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland
- Imaging Center, Department of Clinical Pathology, Kuopio University Hospital, Kuopio, Finland
| | - Mel Maranian
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Sara Margolin
- Department of Oncology - Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Frederik Marme
- Department of Obstetrics and Gynecology, University of Heidelberg, Heidelberg, Germany
- National Center for Tumor Diseases, University of Heidelberg, Heidelberg, Germany
| | - Roger L. Milne
- Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Susan L. Neuhausen
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Heli Nevanlinna
- Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Patrick Neven
- Multidisciplinary Breast Center, Department of Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Curtis Olswold
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Julian Peto
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
| | - Dijana Plaseska-Karanfilska
- Research Center for Genetic Engineering and Biotechnology “Georgi D. Efremov”, Macedonian Academy of Sciences and Arts, Skopje, Republic of Macedonia
| | - Katri Pylkäs
- Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit, Biocenter Oulu, University of Oulu, Oulu, Finland
- Laboratory of Cancer Genetics and Tumor Biology, Northern Finland Laboratory Centre Oulu, Oulu, Finland
| | - Paolo Radice
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Preventive and Predictive Medicine, Fondazione Istituto Di Ricovero e Cura a Carattere, Scientifico, Istituto Nazionale Tumori, Milan, Italy
| | - Anja Rudolph
- Division of Cancer Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | - Elinor J. Sawyer
- Research Oncology, Guy's Hospital, King's College London, London, UK
| | - Marjanka K. Schmidt
- Netherlands Cancer Institute, Antoni van Leeuwenhoek hospital, Amsterdam, The Netherlands
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Melissa C. Southey
- Department of Pathology, The University of Melbourne, Melbourne, Australia
| | - Anthony Swerdlow
- Division of Genetics and Epidemiology & Division of Breast Cancer Research, The Institute of Cancer Research, London, UK
| | - Rob A.E.M. Tollenaar
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Ian Tomlinson
- Wellcome Trust Centre for Human Genetics and Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Diana Torres
- Molecular Genetics of Breast Cancer, German Cancer Research Center, Heidelberg, Germany
- Institute of Human Genetics, Pontificia Universidad Javeriana, Bogota, Colombia
| | - Thérèse Truong
- Cancer & Environment Group, Center for Research in Epidemiology and Population Health (CESP), INSERM, University Paris-Sud, University Paris-Saclay, VilleJuif, France
| | - Celine Vachon
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | | | - Qin Wang
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Robert Winqvist
- Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit, Biocenter Oulu, University of Oulu, Oulu, Finland
- Laboratory of Cancer Genetics and Tumor Biology, Northern Finland Laboratory Centre Oulu, Oulu, Finland
| | | | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Javier Benitez
- Human Cancer Genetics Program, Spanish National Cancer Research Centre, Madrid, Spain
- Centro de Investigación en Red de Enfermedades Raras, Valencia, Spain
| | | | - Alison M. Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Paul D. P. Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Vessela Kristensen
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
- Department of Clinical Molecular Biology, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Per Hall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Douglas F. Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Tomi Pastinen
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- McGill University and Genome Quebec Innovation Centre, Montreal, Quebec, Canada
| | - Silje Nord
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
| | - Jacques Simard
- Genomics Center, Centre Hospitalier Universitaire de Québec Research Center, Laval University, Quebec, Canada
| |
Collapse
|
49
|
Black SJ, Kashkina E, Kent T, Pomerantz RT. DNA Polymerase θ: A Unique Multifunctional End-Joining Machine. Genes (Basel) 2016; 7:E67. [PMID: 27657134 PMCID: PMC5042397 DOI: 10.3390/genes7090067] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 09/02/2016] [Accepted: 09/08/2016] [Indexed: 01/01/2023] Open
Abstract
The gene encoding DNA polymerase θ (Polθ) was discovered over ten years ago as having a role in suppressing genome instability in mammalian cells. Studies have now clearly documented an essential function for this unique A-family polymerase in the double-strand break (DSB) repair pathway alternative end-joining (alt-EJ), also known as microhomology-mediated end-joining (MMEJ), in metazoans. Biochemical and cellular studies show that Polθ exhibits a unique ability to perform alt-EJ and during this process the polymerase generates insertion mutations due to its robust terminal transferase activity which involves template-dependent and independent modes of DNA synthesis. Intriguingly, the POLQ gene also encodes for a conserved superfamily 2 Hel308-type ATP-dependent helicase domain which likely assists in alt-EJ and was reported to suppress homologous recombination (HR) via its anti-recombinase activity. Here, we review our current knowledge of Polθ-mediated end-joining, the specific activities of the polymerase and helicase domains, and put into perspective how this multifunctional enzyme promotes alt-EJ repair of DSBs formed during S and G2 cell cycle phases.
Collapse
Affiliation(s)
- Samuel J Black
- Fels Institute for Cancer Research, Department of Medical Genetics and Molecular Biochemistry, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA.
| | - Ekaterina Kashkina
- Fels Institute for Cancer Research, Department of Medical Genetics and Molecular Biochemistry, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA.
| | - Tatiana Kent
- Fels Institute for Cancer Research, Department of Medical Genetics and Molecular Biochemistry, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA.
| | - Richard T Pomerantz
- Fels Institute for Cancer Research, Department of Medical Genetics and Molecular Biochemistry, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA.
| |
Collapse
|
50
|
Remodeling and Control of Homologous Recombination by DNA Helicases and Translocases that Target Recombinases and Synapsis. Genes (Basel) 2016; 7:genes7080052. [PMID: 27548227 PMCID: PMC4999840 DOI: 10.3390/genes7080052] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 07/24/2016] [Accepted: 08/12/2016] [Indexed: 11/16/2022] Open
Abstract
Recombinase enzymes catalyse invasion of single-stranded DNA (ssDNA) into homologous duplex DNA forming "Displacement loops" (D-loops), a process called synapsis. This triggers homologous recombination (HR), which can follow several possible paths to underpin DNA repair and restart of blocked and collapsed DNA replication forks. Therefore, synapsis can be a checkpoint for controlling whether or not, how far, and by which pathway, HR proceeds to overcome an obstacle or break in a replication fork. Synapsis can be antagonized by limiting access of a recombinase to ssDNA and by dissociation of D-loops or heteroduplex formed by synapsis. Antagonists include DNA helicases and translocases that are identifiable in eukaryotes, bacteria and archaea, and which target synaptic and pre-synaptic DNA structures thereby controlling HR at early stages. Here we survey these events with emphasis on enabling DNA replication to be resumed from sites of blockage or collapse. We also note how knowledge of anti-recombination activities could be useful to improve efficiency of CRISPR-based genome editing.
Collapse
|