1
|
Marx M, Sjövall P, Kear BP, Jarenmark M, Eriksson ME, Sachs S, Nilkens K, Op De Beeck M, Lindgren J. Skin, scales, and cells in a Jurassic plesiosaur. Curr Biol 2025; 35:1113-1120.e3. [PMID: 39919740 DOI: 10.1016/j.cub.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 10/28/2024] [Accepted: 01/03/2025] [Indexed: 02/09/2025]
Abstract
Plesiosaurs are an iconic group of Mesozoic marine reptiles with an evolutionary history spanning over 140 million years (Ma).1 Their skeletal remains have been discovered worldwide; however, accompanying fossilized soft tissues are exceptionally rare.2 Here, we report a virtually complete plesiosaur from the Lower Jurassic (∼183 Ma)3 Posidonia Shale of Germany that preserves skin traces from around the tail and front flipper. The tail integument was apparently scale-less and retains identifiable melanosomes, keratinocytes with cell nuclei, and the stratum corneum, stratum spinosum, and stratum basale of the epidermis. Molecular analysis reveals aromatic and aliphatic hydrocarbons that likely denote degraded original organics. The flipper integument otherwise integrates small, sub-triangular structures reminiscent of modern reptilian scales. These may have influenced flipper hydrodynamics and/or provided traction on the substrate during benthic feeding. Similar to other sea-going reptiles,4,5,6,7,8,9,10 scalation covering at least part of the body therefore probably augmented the paleoecology of plesiosaurs.
Collapse
Affiliation(s)
- Miguel Marx
- Department of Geology, Lund University, Sölvegatan 12, 223 62 Lund, Sweden.
| | - Peter Sjövall
- RISE Research Institutes of Sweden, Materials and Production, P.O. Box 857, 501 15 Borås, Sweden
| | - Benjamin P Kear
- The Museum of Evolution, Uppsala University, Norbyvägen 16, 752 36 Uppsala, Sweden
| | - Martin Jarenmark
- Department of Geology, Lund University, Sölvegatan 12, 223 62 Lund, Sweden
| | - Mats E Eriksson
- Department of Geology, Lund University, Sölvegatan 12, 223 62 Lund, Sweden
| | - Sven Sachs
- Naturkunde-Museum Bielefeld, Abteilung Geowissenschaften, Adenauerplatz 2, 33602 Bielefeld, Germany
| | - Klaus Nilkens
- Urwelt-Museum Hauff, Aichelberger Straße 90, 73271 Holzmaden, Germany
| | - Michiel Op De Beeck
- Centre for Environmental and Climate Science, Lund University, Sölvegatan 37, 223 62 Lund, Sweden
| | - Johan Lindgren
- Department of Geology, Lund University, Sölvegatan 12, 223 62 Lund, Sweden
| |
Collapse
|
2
|
Bindellini G, Wolniewicz AS, Miedema F, Dal Sasso C, Scheyer TM. Postcranial anatomy of Besanosaurus leptorhynchus (Reptilia: Ichthyosauria) from the Middle Triassic Besano Formation of Monte San Giorgio (Italy/Switzerland), with implications for reconstructing the swimming styles of Triassic ichthyosaurs. SWISS JOURNAL OF PALAEONTOLOGY 2024; 143:32. [PMID: 39263671 PMCID: PMC11384637 DOI: 10.1186/s13358-024-00330-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 08/13/2024] [Indexed: 09/13/2024]
Abstract
Besanosaurus leptorhynchus Dal Sasso & Pinna, 1996 was originally described on the basis of a single complete fossil specimen excavated near Besano (Italy). However, a recent taxonomic revision and re-examination of the cranial osteology allowed for the assignment of five additional specimens to the taxon. Here, we analyse, describe and discuss the postcranial anatomy of Besanosaurus leptorhynchus in detail. The size of the specimens examined herein ranged from slightly more than one meter to eight meters. Overall, several diagnostic character states for this taxon are proposed, demonstrating a mosaic of plesiomorphic and derived features. This is best exemplified by the limbs, which show very rounded elements in the forelimbs, and pedal phalanges with retained rudimentary shafts. We suggest that the widely spaced phalanges in the forefins of Besanosaurus leptorhynchus were embedded in a fibrocartilage-rich connective tissue, like in modern cetaceans. We also review the similarities of Besanosaurus with Pessopteryx and Pessosaurus, allowing us to conclude that Besanosaurus is not a junior synonym of either of the two taxa. Lastly, to test the swimming capabilities of Besanosaurus leptorhynchus, we expanded on a previously published study focussing on reconstructing the swimming styles of ichthyosaurs. Besanosaurus leptorhynchus was found to possess a peculiar locomotory mode, somewhat intermediate between anguilliform swimmers, such as Cymbospondylus and Utatsusaurus, and some shastasaur-grade (e.g., Guizhouichthyosaurus) and early-diverging euichthyosaurian (e.g., Californosaurus) ichthyosaurs. Based on our results, we furthermore suggest that mixosaurids acquired their characteristic body profile (dorsal fin and forefins that are distinctly enlarged compared to the hindfins) independently and convergently to the one that later appeared in Parvipelvia. Moreover, the different swimming styles inferred for Cymbospondylus, Mixosauridae, and Besanosaurus strengthen the earlier hypothesis of niche partitioning among these three distinct ichthyosaur taxa from the Besano Formation. Supplementary Information The online version contains supplementary material available at 10.1186/s13358-024-00330-9.
Collapse
Affiliation(s)
- Gabriele Bindellini
- Dipartimento di Scienze della Terra "Ardito Desio", Università degli Studi di Milano, Milan, Italy
- Dipartimento di Scienze della Terra, Sapienza Università di Roma, Rome, Italy
| | - Andrzej S Wolniewicz
- Department of Earth Sciences, University of Cambridge, Cambridge, UK
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, China
- Institute of Paleobiology, Polish Academy of Sciences, Warsaw, Poland
| | - Feiko Miedema
- Staatliches Museum Für Naturkunde Stuttgart, Stuttgart, Germany
| | - Cristiano Dal Sasso
- Sezione di Paleontologia dei Vertebrati, Museo di Storia Naturale di Milano, Milan, Italy
| | | |
Collapse
|
3
|
Gillet A, Jones KE, Pierce SE. Repatterning of mammalian backbone regionalization in cetaceans. Nat Commun 2024; 15:7587. [PMID: 39217194 PMCID: PMC11365943 DOI: 10.1038/s41467-024-51963-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Cetacean reinvasion of the aquatic realm is an iconic ecological transition that led to drastic modifications of the mammalian body plan, especially in the axial skeleton. Relative to the vertebral column of other mammals that is subdivided into numerous anatomical regions, regional boundaries of the cetacean backbone appear obscured. Whether the traditional mammalian regions are present in cetaceans but hard to detect due to anatomical homogenization or if regions have been entirely repatterned remains unresolved. Here we combine a segmented linear regression approach with spectral clustering to quantitatively investigate the number, position, and homology of vertebral regions across 62 species from all major cetacean clades. We propose the Nested Regions hypothesis under which the cetacean backbone is composed of six homologous modules subdivided into six to nine post-cervical regions, with the degree of regionalization dependent on vertebral count and ecology. Compared to terrestrial mammals, the cetacean backbone is less regionalized in the precaudal segment but more regionalized in the caudal segment, indicating repatterning of the vertebral column associated with the transition from limb-powered to axial-driven locomotion.
Collapse
Affiliation(s)
- Amandine Gillet
- Department of Earth and Environmental Sciences, University of Manchester, Manchester, UK.
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.
| | - Katrina E Jones
- Department of Earth and Environmental Sciences, University of Manchester, Manchester, UK.
| | - Stephanie E Pierce
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
4
|
Formoso KK, Habib MB, Vélez-Juarbe J. The Role of Locomotory Ancestry on Secondarily Aquatic Transitions. Integr Comp Biol 2023; 63:1140-1153. [PMID: 37591628 DOI: 10.1093/icb/icad112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 08/19/2023] Open
Abstract
Land-to-sea evolutionary transitions are great transformations where terrestrial amniote clades returned to aquatic environments. These secondarily aquatic amniote clades include charismatic marine mammal and marine reptile groups, as well as countless semi-aquatic forms that modified their terrestrial locomotor anatomy to varying degrees to be suited for swimming via axial and/or appendicular propulsion. The terrestrial ancestors of secondarily aquatic groups would have started off swimming strikingly differently from one another given their evolutionary histories, as inferred by the way modern terrestrial amniotes swim. With such stark locomotor functional differences between reptiles and mammals, we ask if this impacted these transitions. Axial propulsion appears favored by aquatic descendants of terrestrially sprawling quadrupedal reptiles, with exceptions. Appendicular propulsion is more prevalent across the aquatic descendants of ancestrally parasagittal-postured mammals, particularly early transitioning forms. Ancestral terrestrial anatomical differences that precede secondarily aquatic invasions between mammals and reptiles, as well as the distribution of axial and appendicular swimming in secondarily aquatic clades, may indicate that ancestral terrestrial locomotor anatomy played a role, potentially in both constraint and facilitation, in certain aquatic locomotion styles. This perspective of the land-to-sea transition can lead to new avenues of functional, biomechanical, and developmental study of secondarily aquatic transitions.
Collapse
Affiliation(s)
- Kiersten K Formoso
- Department of Earth Sciences, University of Southern California, 3651 Trousedale Pkwy, Zumberge Hall, Los Angeles, CA 90089, USA
- Dinosaur Institute, Natural History Museum of Los Angeles County, 900 Exposition Blvd, Los Angeles, CA 90007-4057, USA
| | - Michael B Habib
- Dinosaur Institute, Natural History Museum of Los Angeles County, 900 Exposition Blvd, Los Angeles, CA 90007-4057, USA
- UCLA Cardiac Arrhythmia Center, Division of Cardiology, 100 Medical Plaza, Suite 660, Los Angeles, CA 90095, USA
| | - Jorge Vélez-Juarbe
- Department of Mammalogy, Natural History Museum of Los Angeles County, 900 Exposition Blvd, Los Angelss, CA 90007-4057, USA
| |
Collapse
|
5
|
Motani R, Shimada K. Skeletal convergence in thunniform sharks, ichthyosaurs, whales, and tunas, and its possible ecological links through the marine ecosystem evolution. Sci Rep 2023; 13:16664. [PMID: 37794094 PMCID: PMC10550938 DOI: 10.1038/s41598-023-41812-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/31/2023] [Indexed: 10/06/2023] Open
Abstract
Tunas, lamnid sharks, modern whales, and derived ichthyosaurs converged on the thunniform body plan, with a fusiform body, lunate caudal fin, compressed peduncle, and peduncle joint. This evolutionary convergence has been studied for a long time but little is known about whether all four clades share any skeletal characteristics. Comparisons of vertebral centrum dimensions along the body reveal that the four clades indeed share three skeletal characteristics (e.g., thick vertebral column for its length), while an additional feature is shared by cetaceans, lamnid sharks, and ichthyosaurs and two more by lamnid sharks and ichthyosaurs alone. These vertebral features are all related to the mechanics of thunniform swimming through contributions to posterior concentration of tail-stem oscillation, tail stem stabilization, peduncle joint flexibility, and caudal fin angle fixation. Quantitative identifications of these features in fossil vertebrates would allow an inference of whether they were a thunniform swimmer. Based on measurements in the literature, mosasaurs lacked these features and were probably not thunniform swimmers, whereas a Cretaceous lamniform shark had a mosaic of thunniform and non-thunniform features. The evolution of thunniform swimming appears to be linked with the evolution of prey types and, in part, niche availability through geologic time.
Collapse
Affiliation(s)
- Ryosuke Motani
- Department of Earth and Planetary Sciences, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA.
| | - Kenshu Shimada
- Department of Environmental Science and Studies, DePaul University, 1110 West Belden Avenue, Chicago, IL, 60614, USA
- Department of Biological Sciences, DePaul University, 2325 North Clifton Avenue, Chicago, IL, 60614, USA
- Sternberg Museum of Natural History, Fort Hays State University, Hays, KS, 67601, USA
| |
Collapse
|
6
|
Sereno PC, Myhrvold N, Henderson DM, Fish FE, Vidal D, Baumgart SL, Keillor TM, Formoso KK, Conroy LL. Spinosaurus is not an aquatic dinosaur. eLife 2022; 11:e80092. [PMID: 36448670 PMCID: PMC9711522 DOI: 10.7554/elife.80092] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 10/05/2022] [Indexed: 12/03/2022] Open
Abstract
A predominantly fish-eating diet was envisioned for the sail-backed theropod dinosaur Spinosaurus aegyptiacus when its elongate jaws with subconical teeth were unearthed a century ago in Egypt. Recent discovery of the high-spined tail of that skeleton, however, led to a bolder conjecture that S. aegyptiacus was the first fully aquatic dinosaur. The 'aquatic hypothesis' posits that S. aegyptiacus was a slow quadruped on land but a capable pursuit predator in coastal waters, powered by an expanded tail. We test these functional claims with skeletal and flesh models of S. aegyptiacus. We assembled a CT-based skeletal reconstruction based on the fossils, to which we added internal air and muscle to create a posable flesh model. That model shows that on land S. aegyptiacus was bipedal and in deep water was an unstable, slow-surface swimmer (<1 m/s) too buoyant to dive. Living reptiles with similar spine-supported sails over trunk and tail are used for display rather than aquatic propulsion, and nearly all extant secondary swimmers have reduced limbs and fleshy tail flukes. New fossils also show that Spinosaurus ranged far inland. Two stages are clarified in the evolution of Spinosaurus, which is best understood as a semiaquatic bipedal ambush piscivore that frequented the margins of coastal and inland waterways.
Collapse
Affiliation(s)
- Paul C Sereno
- 1Department of Organismal Biology, University of ChicagoChicagoUnited States
- Committee on Evolutionary Biology, University of ChicagoChicagoUnited States
| | | | | | - Frank E Fish
- Department of Biology, West Chester UniversityWest ChesterUnited States
| | | | | | - Tyler M Keillor
- 1Department of Organismal Biology, University of ChicagoChicagoUnited States
| | - Kiersten K Formoso
- Department of Earth Sciences, University of Southern CaliforniaLos AngelesUnited States
- Dinosaur Institute, Natural History Museum of Los Angeles CountyLos AngelesUnited States
| | - Lauren L Conroy
- 1Department of Organismal Biology, University of ChicagoChicagoUnited States
| |
Collapse
|
7
|
Hendrickx C, Bell PR, Pittman M, Milner ARC, Cuesta E, O'Connor J, Loewen M, Currie PJ, Mateus O, Kaye TG, Delcourt R. Morphology and distribution of scales, dermal ossifications, and other non-feather integumentary structures in non-avialan theropod dinosaurs. Biol Rev Camb Philos Soc 2022; 97:960-1004. [PMID: 34991180 DOI: 10.1111/brv.12829] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/10/2021] [Accepted: 12/14/2021] [Indexed: 12/14/2022]
Abstract
Modern birds are typified by the presence of feathers, complex evolutionary innovations that were already widespread in the group of theropod dinosaurs (Maniraptoriformes) that include crown Aves. Squamous or scaly reptilian-like skin is, however, considered the plesiomorphic condition for theropods and dinosaurs more broadly. Here, we review the morphology and distribution of non-feathered integumentary structures in non-avialan theropods, covering squamous skin and naked skin as well as dermal ossifications. The integumentary record of non-averostran theropods is limited to tracks, which ubiquitously show a covering of tiny reticulate scales on the plantar surface of the pes. This is consistent also with younger averostran body fossils, which confirm an arthral arrangement of the digital pads. Among averostrans, squamous skin is confirmed in Ceratosauria (Carnotaurus), Allosauroidea (Allosaurus, Concavenator, Lourinhanosaurus), Compsognathidae (Juravenator), and Tyrannosauroidea (Santanaraptor, Albertosaurus, Daspletosaurus, Gorgosaurus, Tarbosaurus, Tyrannosaurus), whereas dermal ossifications consisting of sagittate and mosaic osteoderms are restricted to Ceratosaurus. Naked, non-scale bearing skin is found in the contentious tetanuran Sciurumimus, ornithomimosaurians (Ornithomimus) and possibly tyrannosauroids (Santanaraptor), and also on the patagia of scansoriopterygids (Ambopteryx, Yi). Scales are surprisingly conservative among non-avialan theropods compared to some dinosaurian groups (e.g. hadrosaurids); however, the limited preservation of tegument on most specimens hinders further interrogation. Scale patterns vary among and/or within body regions in Carnotaurus, Concavenator and Juravenator, and include polarised, snake-like ventral scales on the tail of the latter two genera. Unusual but more uniformly distributed patterning also occurs in Tyrannosaurus, whereas feature scales are present only in Albertosaurus and Carnotaurus. Few theropods currently show compelling evidence for the co-occurrence of scales and feathers (e.g. Juravenator, Sinornithosaurus), although reticulate scales were probably retained on the mani and pedes of many theropods with a heavy plumage. Feathers and filamentous structures appear to have replaced widespread scaly integuments in maniraptorans. Theropod skin, and that of dinosaurs more broadly, remains a virtually untapped area of study and the appropriation of commonly used techniques in other palaeontological fields to the study of skin holds great promise for future insights into the biology, taphonomy and relationships of these extinct animals.
Collapse
Affiliation(s)
- Christophe Hendrickx
- Unidad Ejecutora Lillo, CONICET-Fundación Miguel Lillo, 251 Miguel Lillo, San Miguel de Tucumán, Tucumán, 4000, Argentina
| | - Phil R Bell
- School of Environmental and Rural Science, University of New England, Armidale, NSW, 2351, Australia
| | - Michael Pittman
- Vertebrate Palaeontology Laboratory, Department of Earth Sciences, The University of Hong Kong, Pokfulam, Hong Kong, SAR, China.,Department of Earth Sciences, University College London, WC1E 6BT, United Kingdom
| | - Andrew R C Milner
- St. George Dinosaur Discovery Site at Johnson Farm, 2180 East Riverside Drive, St. George, UT, U.S.A
| | - Elena Cuesta
- Bayerische Staatssammlung für Paläontologie und Geologie, Richard-Wagner-Str. 10, Munich, 80333, Germany
| | - Jingmai O'Connor
- Field Museum of Natural History, 1400 S Lake Shore Drive, Chicago, IL, 60605, U.S.A
| | - Mark Loewen
- Department of Geology and Geophysics, University of Utah, Frederick Albert Sutton Building, 115 South 1460 East, Salt Lake City, UT, 84112, U.S.A.,Natural History Museum of Utah, 301 Wakara Way, Salt Lake City, UT, 84108, U.S.A
| | - Philip J Currie
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Octávio Mateus
- GeoBioTec, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal.,Museu da Lourinhã, 95 Rua João Luis de Moura, Lourinhã, 2530-158, Portugal
| | - Thomas G Kaye
- Foundation for Scientific Advancement, 7023 Alhambra Dr., Sierra Vista, AZ, 85650, U.S.A
| | - Rafael Delcourt
- Universidade Estadual de Campinas (UNICAMP), Instituto de Geociências, Cidade Universitária, Rua Carlos Gomes, 250, Campinas, SP, 13083-855, Brazil
| |
Collapse
|
8
|
Gutarra S, Rahman IA. The locomotion of extinct secondarily aquatic tetrapods. Biol Rev Camb Philos Soc 2021; 97:67-98. [PMID: 34486794 DOI: 10.1111/brv.12790] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 08/14/2021] [Accepted: 08/18/2021] [Indexed: 02/06/2023]
Abstract
The colonisation of freshwater and marine ecosystems by land vertebrates has repeatedly occurred in amphibians, reptiles, birds and mammals over the course of 300 million years. Functional interpretations of the fossil record are crucial to understanding the forces shaping these evolutionary transitions. Secondarily aquatic tetrapods have acquired a suite of anatomical, physiological and behavioural adaptations to locomotion in water. However, much of this information is lost for extinct clades, with fossil evidence often restricted to osteological data and a few extraordinary specimens with soft tissue preservation. Traditionally, functional morphology in fossil secondarily aquatic tetrapods was investigated through comparative anatomy and correlation with living functional analogues. However, in the last two decades, biomechanics in palaeobiology has experienced a remarkable methodological shift. Anatomy-based approaches are increasingly rigorous, informed by quantitative techniques for analysing shape. Moreover, the incorporation of physics-based methods has enabled objective tests of functional hypotheses, revealing the importance of hydrodynamic forces as drivers of evolutionary innovation and adaptation. Here, we present an overview of the latest research on the locomotion of extinct secondarily aquatic tetrapods, with a focus on amniotes, highlighting the state-of-the-art experimental approaches used in this field. We discuss the suitability of these techniques for exploring different aspects of locomotory adaptation, analysing their advantages and limitations and laying out recommendations for their application, with the aim to inform future experimental strategies. Furthermore, we outline some unexplored research avenues that have been successfully deployed in other areas of palaeobiomechanical research, such as the use of dynamic models in feeding mechanics and terrestrial locomotion, thus providing a new methodological synthesis for the field of locomotory biomechanics in extinct secondarily aquatic vertebrates. Advances in imaging technology and three-dimensional modelling software, new developments in robotics, and increased availability and awareness of numerical methods like computational fluid dynamics make this an exciting time for analysing form and function in ancient vertebrates.
Collapse
Affiliation(s)
- Susana Gutarra
- School of Earth Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol, BS8 1TQ, U.K.,Department of Earth Sciences, the Natural History Museum, Cromwell Road, London, U.K
| | - Imran A Rahman
- Department of Earth Sciences, the Natural History Museum, Cromwell Road, London, U.K.,Oxford University Museum of Natural History, Parks Road, Oxford, OX1 3PW, U.K
| |
Collapse
|
9
|
Argyriou T, Davesne D. Offshore marine actinopterygian assemblages from the Maastrichtian-Paleogene of the Pindos Unit in Eurytania, Greece. PeerJ 2021; 9:e10676. [PMID: 33552722 PMCID: PMC7825367 DOI: 10.7717/peerj.10676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/09/2020] [Indexed: 11/20/2022] Open
Abstract
The fossil record of marine ray-finned fishes (Actinopterygii) from the time interval surrounding the Cretaceous–Paleogene (K–Pg) extinction is scarce at a global scale, hampering our understanding of the impact, patterns and processes of extinction and recovery in the marine realm, and its role in the evolution of modern marine ichthyofaunas. Recent fieldwork in the K–Pg interval of the Pindos Unit in Eurytania, continental Greece, shed new light on forgotten fossil assemblages and allowed for the collection of a diverse, but fragmentary sample of actinopterygians from both late Maastrichtian and Paleocene rocks. Late Maastrichtian assemblages are dominated by Aulopiformes (†Ichthyotringidae, †Enchodontidae), while †Dercetidae (also Aulopiformes), elopomorphs and additional, unidentified teleosts form minor components. Paleocene fossils include a clupeid, a stomiiform and some unidentified teleost remains. This study expands the poor record of body fossils from this critical time interval, especially for smaller sized taxa, while providing a rare, paleogeographically constrained, qualitative glimpse of open-water Tethyan ecosystems from both before and after the extinction event. Faunal similarities between the Maastrichtian of Eurytania and older Late Cretaceous faunas reveal a higher taxonomic continuum in offshore actinopterygian faunas and ecosystems spanning the entire Late Cretaceous of the Tethys. At the same time, the scarcity of Paleocene findings offers tentative clues for a depauperate state of Tethyan ichthyofaunas in the aftermath of the K–Pg Extinction.
Collapse
Affiliation(s)
- Thodoris Argyriou
- UMR 7207 (MNHN-Sorbonne Université-CNRS) Centre de Recherche en Paléontologie, Museum National d'Histoire naturelle, Paris, France
| | - Donald Davesne
- Department of Earth Sciences, University of Oxford, Oxford, UK.,UMR 7205 (MNHN-Sorbonne Université-CNRS-EPHE), Institut de Systématique, Évolution, Biodiversité, Museum National d'Histoire naturelle, Paris, France
| |
Collapse
|
10
|
Alfonso-Rojas A, Cadena EA. Exceptionally preserved 'skin' in an Early Cretaceous fish from Colombia. PeerJ 2020; 8:e9479. [PMID: 32714661 PMCID: PMC7353916 DOI: 10.7717/peerj.9479] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/14/2020] [Indexed: 01/13/2023] Open
Abstract
Studies of soft tissue, cells and original biomolecular constituents preserved in fossil vertebrates have increased greatly in recent years. Here we report preservation of 'skin' with chemical and molecular characterization from a three-dimensionally preserved caudal portion of an aspidorhynchid Cretaceous fish from the equatorial Barremian of Colombia, increasing the number of localities for which exceptional preservation is known. We applied several analytical techniques including SEM-EDS, FTIR and ToF-SIMS to characterize the micromorphology and molecular and elemental composition of this fossil. Here, we show that the fossilized 'skin' exhibits similarities with those from extant fish, including the wrinkles after suffering compression stress and flexibility, as well as architectural and tissue aspects of the two main layers (epidermis and dermis). This similarity extends also to the molecular level, with the demonstrated preservation of potential residues of original proteins not consistent with a bacterial source. Our results show a potential preservation mechanism where scales may have acted as an external barrier and together with an internal phosphate layer resulting from the degradation of the dermis itself creating an encapsulated environment for the integument.
Collapse
Affiliation(s)
- Andrés Alfonso-Rojas
- Facultad de Ciencias Naturales, Grupo de Investigación Paleontología Neotropical Tradicional y Molecular (PaleoNeo), Universidad del Rosario, Bogotá, Colombia
| | - Edwin-Alberto Cadena
- Facultad de Ciencias Naturales, Grupo de Investigación Paleontología Neotropical Tradicional y Molecular (PaleoNeo), Universidad del Rosario, Bogotá, Colombia
- Smithsonian Tropical Research Institute, Panama City, Panama
| |
Collapse
|
11
|
Madzia D, Cau A. Estimating the evolutionary rates in mosasauroids and plesiosaurs: discussion of niche occupation in Late Cretaceous seas. PeerJ 2020; 8:e8941. [PMID: 32322442 PMCID: PMC7164395 DOI: 10.7717/peerj.8941] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 03/18/2020] [Indexed: 12/30/2022] Open
Abstract
Observations of temporal overlap of niche occupation among Late Cretaceous marine amniotes suggest that the rise and diversification of mosasauroid squamates might have been influenced by competition with or disappearance of some plesiosaur taxa. We discuss that hypothesis through comparisons of the rates of morphological evolution of mosasauroids throughout their evolutionary history with those inferred for contemporary plesiosaur clades. We used expanded versions of two species-level phylogenetic datasets of both these groups, updated them with stratigraphic information, and analyzed using the Bayesian inference to estimate the rates of divergence for each clade. The oscillations in evolutionary rates of the mosasauroid and plesiosaur lineages that overlapped in time and space were then used as a baseline for discussion and comparisons of traits that can affect the shape of the niche structures of aquatic amniotes, such as tooth morphologies, body size, swimming abilities, metabolism, and reproduction. Only two groups of plesiosaurs are considered to be possible niche competitors of mosasauroids: the brachauchenine pliosaurids and the polycotylid leptocleidians. However, direct evidence for interactions between mosasauroids and plesiosaurs is scarce and limited only to large mosasauroids as the predators/scavengers and polycotylids as their prey. The first mosasauroids differed from contemporary plesiosaurs in certain aspects of all discussed traits and no evidence suggests that early representatives of Mosasauroidea diversified after competitions with plesiosaurs. Nevertheless, some mosasauroids, such as tylosaurines, might have seized the opportunity and occupied the niche previously inhabited by brachauchenines, around or immediately after they became extinct, and by polycotylids that decreased their phylogenetic diversity and disparity around the time the large-sized tylosaurines started to flourish.
Collapse
Affiliation(s)
- Daniel Madzia
- Department of Evolutionary Paleobiology, Institute of Paleobiology, Polish Academy of Sciences, Warsaw, Poland
| | | |
Collapse
|
12
|
Sennikov AG. Peculiarities of the Structure and Locomotor Function of the Tail in Sauropterygia. BIOL BULL+ 2019. [DOI: 10.1134/s1062359019070100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
DeBlois MC, Motani R. Flipper bone distribution reveals flexible trailing edge in underwater flying marine tetrapods. J Morphol 2019; 280:908-924. [PMID: 31006912 DOI: 10.1002/jmor.20992] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 03/06/2019] [Accepted: 03/26/2019] [Indexed: 11/07/2022]
Abstract
Hydrofoil-shaped limbs (flipper-hydrofoils) have evolved independently several times in secondarily marine tetrapods and generally fall into two functional categories: (1) those that produce the majority of thrust during locomotion (propulsive flipper-hydrofoils); (2) those used primarily to steer and resist destabilizing movements such as yaw, pitch, and roll (controller flipper-hydrofoils). The morphological differences between these two types have been poorly understood. Theoretical and experimental studies on engineered hydrofoils suggest that flapping hydrofoils with a flexible trailing edge are more efficient at producing thrust whereas hydrofoils used in steering and stabilization benefit from a more rigid one. To investigate whether the trailing edge is generally more flexible in propulsive flipper-hydrofoils, we compared the bone distribution along the chord in both flipper types. The propulsive flipper-hydrofoil group consists of the forelimbs of Chelonioidea, Spheniscidae, and Otariidae. The controller flipper-hydrofoil group consists of the forelimbs of Cetacea. We quantified bone distribution from radiographs of species representing more than 50% of all extant genera for each clade. Our results show that the proportion of bone in both groups is similar along the leading edge (0-40% of the chord) but is significantly less along the trailing edge for propulsive flipper-hydrofoils (40-80% of the chord). Both flipper-hydrofoil types have little to no bony tissue along the very edge of the trailing edge (80-100% of the chord). This suggests a relatively flexible trailing edge for propulsive flipper-hydrofoils compared to controller flipper-hydrofoils in line with findings from prior studies. This study presents a morphological correlate for inferring flipper-hydrofoil function in extinct taxa and highlights the importance of a flexible trailing edge in the evolution of propulsive flipper-hydrofoils in marine tetrapods.
Collapse
Affiliation(s)
- Mark C DeBlois
- Department of Earth and Planetary Sciences, University of California, Davis, California
| | - Ryosuke Motani
- Department of Earth and Planetary Sciences, University of California, Davis, California
| |
Collapse
|
14
|
Crofts SB, Shehata R, Flammang BE. Flexibility of Heterocercal Tails: What Can the Functional Morphology of Shark Tails Tell Us about Ichthyosaur Swimming? Integr Org Biol 2019; 1:obz002. [PMID: 33791519 PMCID: PMC7671117 DOI: 10.1093/iob/obz002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The similarities between ichthyosaurs and sharks are a text-book example of convergence, and similarities in tail morphology have led many to theorize that they had similar swimming styles. The variation of ichthyosaur tail shapes is encompassed within the diversity of shark families. In particular early ichthyosaurs have asymmetrical tails like the heterocercal tails of carcharhinid sharks, while later occurring ichthyosaurs have lunate tails similar to those of lamnid sharks. Because it is not possible to measure ichthyosaur tail function, the goal of this study is to measure and compare the flexibility and stiffness of lunate and heterocercal shark tails, and to measure skeletal and connective tissue features that may affect tail flexibility. We measured flexibility in 10 species and focused on five species in particular, for dissection: one pelagic and one bottom-associated individual from each order, plus the common thresher shark (Alopias vulpinus), a tail-slapping specialist. As expected, lunate tails were overall less flexible than heterocercal tails and had greater flexural stiffness. Our results suggest that the cross-sectional profile of the skeletally supported dorsal lobe dictates flexural stiffness, but that changing tissue composition dictates flexural stiffness in the ventral lobe. We also found structural differences that may enable the tail slapping behavior of the common thresher shark. Finally, we discuss how our morphological measurements compare to ichthyosaur measurements from the literature; noting that similarities in functional morphology suggest sharks may be a good analog for understanding ichthyosaur swimming biomechanics.
Collapse
Affiliation(s)
- S B Crofts
- Department of Animal Biology, University of Illinois at Urbana–Champaign, Urbana, IL 61801, USA
- Department of Biological Sciences, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - R Shehata
- Department of Biological Sciences, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - B E Flammang
- Department of Biological Sciences, New Jersey Institute of Technology, Newark, NJ 07102, USA
| |
Collapse
|
15
|
Ferrón HG, Martínez-Pérez C, Botella H. Ecomorphological inferences in early vertebrates: reconstructing Dunkleosteus terrelli (Arthrodira, Placodermi) caudal fin from palaeoecological data. PeerJ 2017; 5:e4081. [PMID: 29230354 PMCID: PMC5723140 DOI: 10.7717/peerj.4081] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 11/01/2017] [Indexed: 11/20/2022] Open
Abstract
Our knowledge about the body morphology of many extinct early vertebrates is very limited, especially in regard to their post-thoracic region. The prompt disarticulation of the dermo-skeletal elements due to taphonomic processes and the lack of a well-ossified endoskeleton in a large number of groups hinder the preservation of complete specimens. Previous reconstructions of most early vertebrates known from partial remains have been wholly based on phylogenetically closely related taxa. However, body design of fishes is determined, to a large extent, by their swimming mode and feeding niche, making it possible to recognise different morphological traits that have evolved several times in non-closely related groups with similar lifestyles. Based on this well-known ecomorphological correlation, here we propose a useful comparative framework established on extant taxa for predicting some anatomical aspects in extinct aquatic vertebrates from palaeoecological data and vice versa. For this, we have assessed the relationship between the locomotory patterns and the morphological variability of the caudal region in extant sharks by means of geometric morphometrics and allometric regression analysis. Multivariate analyses reveal a strong morphological convergence in non-closely related shark species that share similar modes of life, enabling the characterization of the caudal fin morphology of different ecological subgroups. In addition, interspecific positive allometry, affecting mainly the caudal fin span, has been detected. This phenomenon seems to be stronger in sharks with more pelagic habits, supporting its role as a compensation mechanism for the loss of hydrodynamic lift associated with the increase in body size, as previously suggested for many other living and extinct aquatic vertebrates. The quantification of shape change per unit size in each ecological subgroup has allowed us to establish a basis for inferring not only qualitative aspects of the caudal fin morphology of extinct early vertebrates but also to predict absolute values of other variables such as the fin span or the hypocercal and heterocercal angles. The application of this ecomorphological approach to the specific case of Dunkleosteus terrelli has led to a new reconstruction of this emblematic placoderm. Our proposal suggests a caudal fin with a well-developed ventral lobe, narrow peduncle and wide span, in contrast to classical reconstructions founded on the phylogenetic proximity with much smaller placoderms known from complete specimens. Interestingly, this prediction gains support with the recent discovery of fin distal elements (ceratotrichia) in a well preserved D. terrelli, which suggests a possible greater morphological variability in placoderm caudal fins than previously thought.
Collapse
Affiliation(s)
- Humberto G. Ferrón
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Paterna, Spain
| | - Carlos Martínez-Pérez
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Paterna, Spain
- School of Earth Sciences, University of Bristol, Bristol, United Kingdom
| | - Héctor Botella
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Paterna, Spain
| |
Collapse
|
16
|
Cuthbertson RS, Maddin HC, Holmes RB, Anderson JS. The Braincase and Endosseous Labyrinth of Plioplatecarpus peckensis (Mosasauridae, Plioplatecarpinae), With Functional Implications for Locomotor Behavior. Anat Rec (Hoboken) 2015; 298:1597-611. [PMID: 26052684 DOI: 10.1002/ar.23180] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 04/06/2015] [Accepted: 04/07/2015] [Indexed: 11/06/2022]
Abstract
Adaptations of mosasaurs to the aquatic realm have been extensively studied from the perspective of modifications to the post-cranial skeleton. In recent years, imaging techniques such as computed tomography have permitted the acquisition of anatomical data from previously inaccessible sources. An exquisitely preserved specimen of the plioplatecarpine mosasaur Plioplatecarpus peckensis presents an opportunity to examine the detailed structure of the braincase, as well as the form of the otic capsule endocast. These data elaborate upon previous descriptions of the braincase of Plioplatecarpus, and provide a detailed, three dimensional reconstruction of the osseous labyrinth for the first time. The otic capsule endocasts reveal that the size of the labyrinth relative to head size is comparable to that of other squamates, suggesting that labyrinth size was not a factor in increasing sensitivity. However, all three semicircular canals are tall and strongly arced to a degree comparable to, and even exceeding, that observed in arboreal and aquatic lizards. Comparison of the sensitivity of the canals in each of the three major axes of rotation suggests Plioplatecarpus peckensis may have been most sensitive to movements in the pitch axis. Although early mosasaurs were probably anguilliform swimmers, most are thought to have been subcarangiform to thunniform locomotors with a near-rigid body form and likely decreased maneuverability. The data from the labyrinth presented here add a potential new dimension to this model of locomotion for further consideration, wherein changes in orientation, such as pitch, may have been more common locomotor behaviors than previously thought.
Collapse
Affiliation(s)
- Robin S Cuthbertson
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada, T2N 1N4
| | - Hillary C Maddin
- Department of Earth Sciences, Carleton University, Ottawa, Ontario, Canada, K1S 5B6
| | - Robert B Holmes
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada, T6G 2E9
| | - Jason S Anderson
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Alberta, Canada, T2N 4N1
| |
Collapse
|
17
|
Sclerotic rings in mosasaurs (Squamata: Mosasauridae): structures and taxonomic diversity. PLoS One 2015; 10:e0117079. [PMID: 25692667 PMCID: PMC4334958 DOI: 10.1371/journal.pone.0117079] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Accepted: 12/19/2014] [Indexed: 11/19/2022] Open
Abstract
Mosasaurs (Squamata: Mosasauridae) were a highly diverse, globally distributed group of aquatic lizards in the Late Cretaceous (98–66 million years ago) that exhibited a high degree of adaptation to life in water. To date, despite their rich fossil record, the anatomy of complete mosasaur sclerotic rings, embedded in the sclera of the eyeball, has not been thoroughly investigated. We here describe and compare sclerotic rings of four mosasaur genera, Tylosaurus, Platecarpus, Clidastes, and Mosasaurus, for the first time. Two specimens of Tylosaurus and Platecarpus share an exact scleral ossicle arrangement, excepting the missing portion in the specimen of Platecarpus. Furthermore, the exact arrangement and the total count of 14 ossicles per ring are shared between Tylosaurus and numerous living terrestrial lizard taxa, pertaining to both Iguania and Scleroglossa. In contrast, two species of Mosasaurus share the identical count of 12 ossicles and the arrangement with each other, while no living lizard taxa share exactly the same arrangement. Such a mosaic distribution of these traits both among squamates globally and among obligatorily aquatic mosasaurs specifically suggests that neither the ossicle count nor their arrangement played major roles in the aquatic adaptation in mosasaur eyes. All the mosasaur sclerotic rings examined consistently exhibit aperture eccentricity and the scleral ossicles with gently convex outer side. Hitherto unknown to any squamate taxa, one specimen of Platecarpus unexpectedly shows a raised, concentric band of roughened surface on the inner surface of the sclerotic ring. It is possible that one or both of these latter features may have related to adaptation towards aquatic vision in mosasaurs, but further quantitative study of extant reptilian clades containing both terrestrial and aquatic taxa is critical and necessary in order to understand possible adaptive significances of such osteological features.
Collapse
|
18
|
Palmer C, Young MT. Surface drag reduction and flow separation control in pelagic vertebrates, with implications for interpreting scale morphologies in fossil taxa. ROYAL SOCIETY OPEN SCIENCE 2015; 2:140163. [PMID: 26064576 PMCID: PMC4448786 DOI: 10.1098/rsos.140163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 12/15/2014] [Indexed: 06/04/2023]
Abstract
Living in water imposes severe constraints on the evolution of the vertebrate body. As a result of these constraints, numerous extant and extinct aquatic vertebrate groups evolved convergent osteological and soft-tissue adaptations. However, one important suite of adaptations is still poorly understood: dermal cover morphologies and how they influence surface fluid dynamics. This is especially true for fossil aquatic vertebrates where the soft tissue of the dermis is rarely preserved. Recent studies have suggested that the keeled scales of mosasaurids (pelagic lizards that lived during the Late Cretaceous) aided in surface frictional drag reduction in a manner analogous to the riblets on shark placoid scales. However, here we demonstrate that mosasaurid scales were over an order of magnitude too large to have this effect. More likely they increased the frictional drag of the body and may have played a role in controlling flow separation by acting as surface roughness that turbulated the boundary layer. Such a role could have reduced pressure drag and enhanced manoeuvrability. We caution those studying fossil aquatic vertebrates from positing the presence of surface drag reducing morphologies, because as we show herein, to be effective such features need to have a spacing of approximately 0.1 mm or less.
Collapse
Affiliation(s)
- Colin Palmer
- Ocean and Earth Science, National Oceanography Centre, University of Southampton, Southampton SO14 3ZH, UK
- School of Earth Sciences, University of Bristol, Bristol BS8 1RJ, UK
| | - Mark T. Young
- Ocean and Earth Science, National Oceanography Centre, University of Southampton, Southampton SO14 3ZH, UK
- Grant Institute, School of GeoSciences, University of Edinburgh, The King's Buildings, Edinburgh EH9 3FE, UK
| |
Collapse
|
19
|
Lindgren J, Sjövall P, Carney RM, Uvdal P, Gren JA, Dyke G, Schultz BP, Shawkey MD, Barnes KR, Polcyn MJ. Skin pigmentation provides evidence of convergent melanism in extinct marine reptiles. Nature 2014; 506:484-8. [PMID: 24402224 DOI: 10.1038/nature12899] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 11/22/2013] [Indexed: 01/19/2023]
Abstract
Throughout the animal kingdom, adaptive colouration serves critical functions ranging from inconspicuous camouflage to ostentatious sexual display, and can provide important information about the environment and biology of a particular organism. The most ubiquitous and abundant pigment, melanin, also has a diverse range of non-visual roles, including thermoregulation in ectotherms. However, little is known about the functional evolution of this important biochrome through deep time, owing to our limited ability to unambiguously identify traces of it in the fossil record. Here we present direct chemical evidence of pigmentation in fossilized skin, from three distantly related marine reptiles: a leatherback turtle, a mosasaur and an ichthyosaur. We demonstrate that dark traces of soft tissue in these fossils are dominated by molecularly preserved eumelanin, in intimate association with fossilized melanosomes. In addition, we suggest that contrary to the countershading of many pelagic animals, at least some ichthyosaurs were uniformly dark-coloured in life. Our analyses expand current knowledge of pigmentation in fossil integument beyond that of feathers, allowing for the reconstruction of colour over much greater ranges of extinct taxa and anatomy. In turn, our results provide evidence of convergent melanism in three disparate lineages of secondarily aquatic tetrapods. Based on extant marine analogues, we propose that the benefits of thermoregulation and/or crypsis are likely to have contributed to this melanisation, with the former having implications for the ability of each group to exploit cold environments.
Collapse
Affiliation(s)
- Johan Lindgren
- Department of Geology, Lund University, SE-223 62 Lund, Sweden
| | - Peter Sjövall
- SP Technical Research Institute of Sweden, Chemistry, Materials and Surfaces, SE-501 15 Borås, Sweden
| | - Ryan M Carney
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island 02906, USA
| | - Per Uvdal
- 1] MAX-IV laboratory, Lund University, SE-221 00 Lund, Sweden [2] Chemical Physics, Department of Chemistry, Lund University, SE-221 00 Lund, Sweden
| | - Johan A Gren
- Department of Geology, Lund University, SE-223 62 Lund, Sweden
| | - Gareth Dyke
- 1] Ocean and Earth Sciences, University of Southampton, Southampton SO14 3ZH, UK [2] Institute for Life Sciences, University of Southampton, Southampton SO14 3ZH, UK
| | - Bo Pagh Schultz
- MUSERUM, Natural History Division, Havnevej 14, 7800 Skive, Denmark
| | - Matthew D Shawkey
- Integrated Bioscience Program, University of Akron, Akron, Ohio 44325, USA
| | | | - Michael J Polcyn
- Roy M. Huffington Department of Earth Sciences, Southern Methodist University, Dallas, Texas 75275, USA
| |
Collapse
|