1
|
Tomasini M, Caporaso L, Szostak M, Poater A. Towards the activity of twisted acyclic amides. RSC Adv 2025; 15:8207-8212. [PMID: 40129490 PMCID: PMC11932378 DOI: 10.1039/d5ra00229j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/10/2025] [Indexed: 03/26/2025] Open
Abstract
N,N-Boc2 amides have emerged as the most common class of acyclic twisted amides that have been engaged in a range of C-N activation and cross-coupling processes of ubiquitous amide bonds. These amides are readily synthesized from primary amides through a site-selective tert-butoxycarbonylation. Due to the steric bulk of di-tert-butoxy groups, these amides exhibit significant C[double bond, length as m-dash]N bond twisting, which promotes N-C bond cleavage, facilitating their use in cross-coupling reactions. Herein, we present a computational blueprint for the C[double bond, length as m-dash]N bond rotation in N,N-Boc2 amides, revealing that the rotational barrier and twist angle (τ) are influenced by the nature of the substituents at the sp2 carbon position. Sterically hindered substituents exhibit the highest distortions, leading to lower rotation barriers. Rotation along the C[double bond, length as m-dash]N bond is accompanied by phenyl ring rotation to minimize steric clashes. A strong correlation between the rotational barriers and the HOMO energies is observed. These findings provide key insights into the fundamental role of amide bond distortion in C-N activation processes.
Collapse
Affiliation(s)
- Michele Tomasini
- Institut de Química Computacional i Catàlisi, Departament de Química, Universitat de Girona C/Maria Aurèlia Capmany 69 17003 Girona Catalonia Spain
- Dipartimento di Chimica e Biologia, Università di Salerno Via Ponte don Melillo 84084 Fisciano Italy
| | - Lucia Caporaso
- Dipartimento di Chimica e Biologia, Università di Salerno Via Ponte don Melillo 84084 Fisciano Italy
| | - Michal Szostak
- Department of Chemistry, Rutgers University 73 Warren Street Newark NJ 07102 USA
| | - Albert Poater
- Institut de Química Computacional i Catàlisi, Departament de Química, Universitat de Girona C/Maria Aurèlia Capmany 69 17003 Girona Catalonia Spain
| |
Collapse
|
2
|
Wei B, Huang P, Wang X, Liu Z, Tang F, Huang W, Liu B, Ye F, Wang P. Site-Selective Construction of N-Linked Glycopeptides through Photoredox Catalysis. Angew Chem Int Ed Engl 2025; 64:e202415565. [PMID: 39420756 DOI: 10.1002/anie.202415565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/07/2024] [Accepted: 10/17/2024] [Indexed: 10/19/2024]
Abstract
The glycosylation of peptides and proteins can significantly impact their intrinsic properties, such as conformation, stability, antigenicity, and immunogenicity. Current methods for preparing N-linked glycopeptides typically rely on amide bond formation, which can be limited by the presence of reactive functional groups like acids and amines. Late-stage functionalization of peptides offers a promising approach to obtaining N-linked glycopeptides. In this study, we demonstrate the preparation of N-linked glycopeptides through a photoredox-catalyzed site-selective Giese addition between N-glycosyl oxamic acid and peptides containing dehydroalanine (Dha) under visible light conditions. Unlike traditional methods that rely on the coupling of aspartic acid and glycosylamine, this approach utilizes the conjugation of N-glycosylated carbamoyl radicals with Dha, facilitating the straightforward modification of complex peptides.
Collapse
Affiliation(s)
- Bingcheng Wei
- Center for Chemical Glycobiology, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Zhang jiang Institute for Advanced Study, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ping Huang
- Center for Chemical Glycobiology, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Zhang jiang Institute for Advanced Study, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- National Key Laboratory of Innovative Immunotherapy, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
- Shanghai Jiao Tong University Sichuan Research Institute, Chengdu, 610213, China
| | - Xinyao Wang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Zhi Liu
- State Key Laboratory of Drug Research, Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Feng Tang
- State Key Laboratory of Drug Research, Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Wei Huang
- State Key Laboratory of Drug Research, Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Bing Liu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Farong Ye
- Center for Chemical Glycobiology, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Zhang jiang Institute for Advanced Study, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ping Wang
- Center for Chemical Glycobiology, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Zhang jiang Institute for Advanced Study, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- National Key Laboratory of Innovative Immunotherapy, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
- Shanghai Jiao Tong University Sichuan Research Institute, Chengdu, 610213, China
| |
Collapse
|
3
|
Gao P, Zhu Y, Zhou T, Utecht-Jarzyńska G, Szostak R, Szostak M. Pd-Catalyzed Decarbonylative Suzuki-Miyaura Cross-Coupling of Pyramidalized N-Mesyl Amides by a Tandem N-C(O)/C-C Bond Activation. J Org Chem 2024; 89:17463-17474. [PMID: 39580811 PMCID: PMC12035879 DOI: 10.1021/acs.joc.4c02152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
The Suzuki-Miyaura biaryl cross-coupling is the pivotal technology for carbon-carbon coupling in pharmaceutical, polymer, and agrochemical fields. A long-standing challenge has been the development of efficient precursors for the decarbonylative cross-coupling of amide bonds. Herein, we report a highly chemoselective palladium-catalyzed Suzuki-Miyaura cross-coupling of N-mesyl amides for the synthesis of biaryls by a tandem N-C(O)/C-C bond activation with high selectivity for decarbonylative cleavage. The results demonstrate the first example of a decarbonylative coupling (-CO) of amide bonds activated by an atom-economic, low-cost, and benign N-pyramidalized mesyl group (>30 examples). The reaction shows high generality and functional group tolerance and can be applied in late-stage functionalization of pharmaceuticals. Notably, N-mesyl amides are significantly more reactive than other classes of amides in the decarbonylative Suzuki cross-coupling manifold. Density functional theory (DFT) studies demonstrate considerably lower barrier for rate-limiting transmetalation using N-mesyl amides. The study establishes N-mesyl amides as versatile precursors for Suzuki-Miyaura cross-coupling to afford valuable biaryls and opens the door to deploy N-mesyl amides in challenging cross-couplings of amides by decarbonylation.
Collapse
Affiliation(s)
- Pengcheng Gao
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Yawei Zhu
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Tongliang Zhou
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | | | - Roman Szostak
- Department of Chemistry, Wroclaw University, F. Joliot-Curie 14, Wroclaw 50-383, Poland
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
4
|
DeWinter MA, Wong DA, Fernandez R, Kightlinger W, Thames AH, DeLisa MP, Jewett MC. Establishing a Cell-Free Glycoprotein Synthesis System for Enzymatic N-GlcNAcylation. ACS Chem Biol 2024; 19:1570-1582. [PMID: 38934647 DOI: 10.1021/acschembio.4c00228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
N-linked glycosylation plays a key role in the efficacy of many therapeutic proteins. One limitation to the bacterial glycoengineering of human N-linked glycans is the difficulty of installing a single N-acetylglucosamine (GlcNAc), the reducing end sugar of many human-type glycans, onto asparagine in a single step (N-GlcNAcylation). Here, we develop an in vitro method for N-GlcNAcylating proteins using the oligosaccharyltransferase PglB from Campylobacter jejuni. We use cell-free protein synthesis (CFPS) to test promiscuous PglB variants previously reported in the literature for the ability to produce N-GlcNAc and successfully determine that PglB with an N311V mutation (PglBN311V) exhibits increased GlcNAc transferase activity relative to the wild-type enzyme. We then improve the transfer efficiency by producing CFPS extracts enriched with PglBN311V and further optimize the reaction conditions, achieving a 98.6 ± 0.5% glycosylation efficiency. We anticipate this method will expand the glycoengineering toolbox for therapeutic research and biomanufacturing.
Collapse
Affiliation(s)
- Madison A DeWinter
- Medical Scientist Training Program, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Derek A Wong
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Regina Fernandez
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Weston Kightlinger
- Cell-free Protein Synthesis and Microbial Process Development, National Resilience Inc.,, Oakland, California 94606, United States
| | - Ariel Helms Thames
- Medical Scientist Training Program, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Matthew P DeLisa
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
- Cornell Institute of Biotechnology, Cornell University, Ithaca, New York 14853, United States
| | - Michael C Jewett
- Department of Bioengineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
5
|
Ramírez AS, Locher KP. Structural and mechanistic studies of the N-glycosylation machinery: from lipid-linked oligosaccharide biosynthesis to glycan transfer. Glycobiology 2023; 33:861-872. [PMID: 37399117 PMCID: PMC10859629 DOI: 10.1093/glycob/cwad053] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/05/2023] Open
Abstract
N-linked protein glycosylation is a post-translational modification that exists in all domains of life. It involves two consecutive steps: (i) biosynthesis of a lipid-linked oligosaccharide (LLO), and (ii) glycan transfer from the LLO to asparagine residues in secretory proteins, which is catalyzed by the integral membrane enzyme oligosaccharyltransferase (OST). In the last decade, structural and functional studies of the N-glycosylation machinery have increased our mechanistic understanding of the pathway. The structures of bacterial and eukaryotic glycosyltransferases involved in LLO elongation provided an insight into the mechanism of LLO biosynthesis, whereas structures of OST enzymes revealed the molecular basis of sequon recognition and catalysis. In this review, we will discuss approaches used and insight obtained from these studies with a special emphasis on the design and preparation of substrate analogs.
Collapse
Affiliation(s)
- Ana S Ramírez
- Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule (ETH), Zürich 8093, Switzerland
| | - Kaspar P Locher
- Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule (ETH), Zürich 8093, Switzerland
| |
Collapse
|
6
|
Creutznacher R, Schulze-Niemand E, König P, Stanojlovic V, Mallagaray A, Peters T, Stein M, Schubert M. Conformational Control of Fast Asparagine Deamidation in a Norovirus Capsid Protein. Biochemistry 2023; 62:1032-1043. [PMID: 36808948 PMCID: PMC9996831 DOI: 10.1021/acs.biochem.2c00656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Accelerated spontaneous deamidation of asparagine 373 and subsequent conversion into an isoaspartate has been shown to attenuate the binding of histo blood group antigens (HBGAs) to the protruding domain (P-domain) of the capsid protein of a prevalent norovirus strain (GII.4). Here, we link an unusual backbone conformation of asparagine 373 to its fast site-specific deamidation. NMR spectroscopy and ion exchange chromatography have been used to monitor the deamidation reaction of P-domains of two closely related GII.4 norovirus strains, specific point mutants, and control peptides. MD simulations over several microseconds have been instrumental to rationalize the experimental findings. While conventional descriptors such as available surface area, root-mean-square fluctuations, or nucleophilic attack distance fail as explanations, the population of a rare syn-backbone conformation distinguishes asparagine 373 from all other asparagine residues. We suggest that stabilization of this unusual conformation enhances the nucleophilicity of the backbone nitrogen of aspartate 374, in turn accelerating the deamidation of asparagine 373. This finding should be relevant to the development of reliable prediction algorithms for sites of rapid asparagine deamidation in proteins.
Collapse
Affiliation(s)
- Robert Creutznacher
- Institute of Chemistry and Metabolomics, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Eric Schulze-Niemand
- Molecular Simulations and Design Group, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany
| | - Patrick König
- Institute of Chemistry and Metabolomics, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Vesna Stanojlovic
- Department of Biosciences and Medical Biology, University of Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
| | - Alvaro Mallagaray
- Institute of Chemistry and Metabolomics, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Thomas Peters
- Institute of Chemistry and Metabolomics, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Matthias Stein
- Molecular Simulations and Design Group, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany
| | - Mario Schubert
- Department of Biosciences and Medical Biology, University of Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
| |
Collapse
|
7
|
Ramírez AS, de Capitani M, Pesciullesi G, Kowal J, Bloch JS, Irobalieva RN, Reymond JL, Aebi M, Locher KP. Molecular basis for glycan recognition and reaction priming of eukaryotic oligosaccharyltransferase. Nat Commun 2022; 13:7296. [PMID: 36435935 PMCID: PMC9701220 DOI: 10.1038/s41467-022-35067-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/17/2022] [Indexed: 11/28/2022] Open
Abstract
Oligosaccharyltransferase (OST) is the central enzyme of N-linked protein glycosylation. It catalyzes the transfer of a pre-assembled glycan, GlcNAc2Man9Glc3, from a dolichyl-pyrophosphate donor to acceptor sites in secretory proteins in the lumen of the endoplasmic reticulum. Precise recognition of the fully assembled glycan by OST is essential for the subsequent quality control steps of glycoprotein biosynthesis. However, the molecular basis of the OST-donor glycan interaction is unknown. Here we present cryo-EM structures of S. cerevisiae OST in distinct functional states. Our findings reveal that the terminal glucoses (Glc3) of a chemo-enzymatically generated donor glycan analog bind to a pocket formed by the non-catalytic subunits WBP1 and OST2. We further find that binding either donor or acceptor substrate leads to distinct primed states of OST, where subsequent binding of the other substrate triggers conformational changes required for catalysis. This alternate priming allows OST to efficiently process closely spaced N-glycosylation sites.
Collapse
Affiliation(s)
- Ana S. Ramírez
- grid.5801.c0000 0001 2156 2780Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule (ETH), Zürich, Switzerland
| | - Mario de Capitani
- grid.5734.50000 0001 0726 5157Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Giorgio Pesciullesi
- grid.5734.50000 0001 0726 5157Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Julia Kowal
- grid.5801.c0000 0001 2156 2780Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule (ETH), Zürich, Switzerland
| | - Joël S. Bloch
- grid.5801.c0000 0001 2156 2780Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule (ETH), Zürich, Switzerland
| | - Rossitza N. Irobalieva
- grid.5801.c0000 0001 2156 2780Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule (ETH), Zürich, Switzerland
| | - Jean-Louis Reymond
- grid.5734.50000 0001 0726 5157Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Markus Aebi
- grid.5801.c0000 0001 2156 2780Institute of Microbiology, Eidgenössische Technische Hochschule (ETH), Zürich, Switzerland
| | - Kaspar P. Locher
- grid.5801.c0000 0001 2156 2780Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule (ETH), Zürich, Switzerland
| |
Collapse
|
8
|
Zhao Q, Li G, Nareddy P, Jordan F, Lalancette R, Szostak R, Szostak M. Structures of the Most Twisted Thioamide and Selenoamide: Effect of Higher Chalcogens of Twisted Amides on N-C(X) Resonance. Angew Chem Int Ed Engl 2022; 61:e202207346. [PMID: 35776856 PMCID: PMC9398953 DOI: 10.1002/anie.202207346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Indexed: 11/09/2022]
Abstract
Amide bond replacement with planar isosteric chalcogen analogues has an important implication for the properties of the N-C(X) linkage in structural chemistry, biochemistry and organic synthesis. Herein, we report the first higher chalcogen derivatives of non-planar twisted amides. The synthesis of twisted thioamide in a versatile system has been accomplished by direct thionation without cleavage of the σ N-C bond. The synthesis of twisted selenoamide has been accomplished by selenation with Woollins' reagent. The structures of higher chalcogen analogues of non-planar amides were unambiguously confirmed by X-ray crystallography. Reactivity studies were conducted to determine the effect of isologous N-C(O) to N-C(X) replacement on the properties of the amide linkage. Computational studies were employed to evaluate structural and energetic parameters of amide bond alteration in higher chalcogen amides. The study provides the first experimental evidence on the effect of chalcogen isologues on the structural and electronic properties of the non-planar amide N-C(X) linkage.
Collapse
Affiliation(s)
- Qun Zhao
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA
| | - Guangchen Li
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA
| | - Pradeep Nareddy
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA
| | - Frank Jordan
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA
| | - Roger Lalancette
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA
| | - Roman Szostak
- Department of Chemistry, Wroclaw University, F. Joliot-Curie 14, Wroclaw, 50-383, Poland
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA
| |
Collapse
|
9
|
Zhao Q, Li G, Nareddy P, Jordan F, Lalancette R, Szostak R, Szostak M. Structures of the Most Twisted Thioamide and Selenoamide: Effect of Higher Chalcogens of Twisted Amides on N–C(X) Resonance. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Qun Zhao
- Rutgers University: Rutgers The State University of New Jersey Chemistry UNITED STATES
| | - Guangchen Li
- Rutgers University: Rutgers The State University of New Jersey Chemistry UNITED STATES
| | - Pradeep Nareddy
- Rutgers University: Rutgers The State University of New Jersey Chemistry UNITED STATES
| | - Frank Jordan
- Rutgers University System: Rutgers The State University of New Jersey Chemistry UNITED STATES
| | - Roger Lalancette
- Rutgers University System: Rutgers The State University of New Jersey Chemistry UNITED STATES
| | - Roman Szostak
- Uniwersytet Wroclawski Wydzial Chemii Chemistry UNITED STATES
| | - Michal Szostak
- Rutgers University Department of Chemistry 73 Warren St. 07102 Newark UNITED STATES
| |
Collapse
|
10
|
Abstract
In this contribution, we provide a comprehensive overview of acyclic twisted amides, covering the literature since 1993 (the year of the first recognized report on acyclic twisted amides) through June 2020. The review focuses on classes of acyclic twisted amides and their key structural properties, such as amide bond twist and nitrogen pyramidalization, which are primarily responsible for disrupting nN to π*C═O conjugation. Through discussing acyclic twisted amides in comparison with the classic bridged lactams and conformationally restricted cyclic fused amides, the reader is provided with an overview of amidic distortion that results in novel conformational features of acyclic amides that can be exploited in various fields of chemistry ranging from organic synthesis and polymers to biochemistry and structural chemistry and the current position of acyclic twisted amides in modern chemistry.
Collapse
Affiliation(s)
- Guangrong Meng
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Jin Zhang
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
11
|
Cain JA, Dale AL, Sumer-Bayraktar Z, Solis N, Cordwell SJ. Identifying the targets and functions of N-linked protein glycosylation in Campylobacter jejuni. Mol Omics 2021; 16:287-304. [PMID: 32347268 DOI: 10.1039/d0mo00032a] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Campylobacter jejuni is a major cause of bacterial gastroenteritis in humans that is primarily associated with the consumption of inadequately prepared poultry products, since the organism is generally thought to be asymptomatic in avian species. Unlike many other microorganisms, C. jejuni is capable of performing extensive post-translational modification (PTM) of proteins by N- and O-linked glycosylation, both of which are required for optimal chicken colonization and human virulence. The biosynthesis and attachment of N-glycans to C. jejuni proteins is encoded by the pgl (protein glycosylation) locus, with the PglB oligosaccharyltransferase (OST) enabling en bloc transfer of a heptasaccharide N-glycan from a lipid carrier in the inner membrane to proteins exposed within the periplasm. Seventy-eight C. jejuni glycoproteins (represented by 134 sites of experimentally verified N-glycosylation) have now been identified, and include inner and outer membrane proteins, periplasmic proteins and lipoproteins, which are generally of poorly defined or unknown function. Despite our extensive knowledge of the targets of this apparently widespread process, we still do not fully understand the role N-glycosylation plays biologically, although several phenotypes, including wild-type stress resistance, biofilm formation, motility and chemotaxis have been related to a functional pgl system. Recent work has described enzymatic processes (nitrate reductase NapAB) and antibiotic efflux (CmeABC) as major targets requiring N-glycan attachment for optimal function, and experimental evidence also points to roles in cell binding via glycan-glycan interactions, protein complex formation and protein stability by conferring protection against host and bacterial proteolytic activity. Here we examine the biochemistry of the N-linked glycosylation system, define its currently known protein targets and discuss evidence for the structural and functional roles of this PTM in individual proteins and globally in C. jejuni pathogenesis.
Collapse
Affiliation(s)
- Joel A Cain
- School of Life and Environmental Sciences, The University of Sydney, 2006, Australia and Charles Perkins Centre, The University of Sydney, Level 4 East, The Hub Building (D17), 2006, Australia.
| | - Ashleigh L Dale
- School of Life and Environmental Sciences, The University of Sydney, 2006, Australia and Charles Perkins Centre, The University of Sydney, Level 4 East, The Hub Building (D17), 2006, Australia.
| | - Zeynep Sumer-Bayraktar
- School of Life and Environmental Sciences, The University of Sydney, 2006, Australia and Charles Perkins Centre, The University of Sydney, Level 4 East, The Hub Building (D17), 2006, Australia.
| | - Nestor Solis
- School of Life and Environmental Sciences, The University of Sydney, 2006, Australia
| | - Stuart J Cordwell
- School of Life and Environmental Sciences, The University of Sydney, 2006, Australia and Charles Perkins Centre, The University of Sydney, Level 4 East, The Hub Building (D17), 2006, Australia. and Discipline of Pathology, School of Medical Sciences, The University of Sydney, 2006, Australia and Sydney Mass Spectrometry, The University of Sydney, 2006, Australia
| |
Collapse
|
12
|
Eyring J, Lin CW, Ngwa EM, Boilevin J, Pesciullesi G, Locher KP, Darbre T, Reymond JL, Aebi M. Substrate specificities and reaction kinetics of the yeast oligosaccharyltransferase isoforms. J Biol Chem 2021; 296:100809. [PMID: 34023382 PMCID: PMC8191290 DOI: 10.1016/j.jbc.2021.100809] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 05/07/2021] [Accepted: 05/19/2021] [Indexed: 12/02/2022] Open
Abstract
Oligosaccharyltransferase (OST) catalyzes the central step in N-linked protein glycosylation, the transfer of a preassembled oligosaccharide from its lipid carrier onto asparagine residues of secretory proteins. The prototypic hetero-octameric OST complex from the yeast Saccharomyces cerevisiae exists as two isoforms that contain either Ost3p or Ost6p, both noncatalytic subunits. These two OST complexes have different protein substrate specificities in vivo. However, their detailed biochemical mechanisms and the basis for their different specificities are not clear. The two OST complexes were purified from genetically engineered strains expressing only one isoform. The kinetic properties and substrate specificities were characterized using a quantitative in vitro glycosylation assay with short peptides and different synthetic lipid-linked oligosaccharide (LLO) substrates. We found that the peptide sequence close to the glycosylation sequon affected peptide affinity and turnover rate. The length of the lipid moiety affected LLO affinity, while the lipid double-bond stereochemistry had a greater influence on LLO turnover rates. The two OST complexes had similar affinities for both the peptide and LLO substrates but showed significantly different turnover rates. These data provide the basis for a functional analysis of the Ost3p and Ost6p subunits.
Collapse
Affiliation(s)
- Jillianne Eyring
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Chia-Wei Lin
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland; Functional Genomics Center Zürich, University of Zürich/ETH Zürich, Zürich, Switzerland
| | - Elsy Mankah Ngwa
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Jérémy Boilevin
- Department of Chemistry and Biochemistry, University of Berne, Bern, Switzerland
| | - Giorgio Pesciullesi
- Department of Chemistry and Biochemistry, University of Berne, Bern, Switzerland
| | - Kaspar P Locher
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Tamis Darbre
- Department of Chemistry and Biochemistry, University of Berne, Bern, Switzerland
| | - Jean-Louis Reymond
- Department of Chemistry and Biochemistry, University of Berne, Bern, Switzerland
| | - Markus Aebi
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
13
|
Yakovlieva L, Wood TM, Kemmink J, Kotsogianni I, Koller F, Lassak J, Martin NI, Walvoort MTC. A β-hairpin epitope as novel structural requirement for protein arginine rhamnosylation. Chem Sci 2020; 12:1560-1567. [PMID: 34163919 PMCID: PMC8179230 DOI: 10.1039/d0sc05823h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
For canonical asparagine glycosylation, the primary amino acid sequence that directs glycosylation at specific asparagine residues is well-established. Here we reveal that a recently discovered bacterial enzyme EarP, that transfers rhamnose to a specific arginine residue in its acceptor protein EF-P, specifically recognizes a β-hairpin loop. Notably, while the in vitro rhamnosyltransferase activity of EarP is abolished when presented with linear substrate peptide sequences derived from EF-P, the enzyme readily glycosylates the same sequence in a cyclized β-hairpin mimic. Additional studies with other substrate-mimicking cyclic peptides revealed that EarP activity is sensitive to the method used to induce cyclization and in some cases is tolerant to amino acid sequence variation. Using detailed NMR approaches, we established that the active peptide substrates all share some degree of β-hairpin formation, and therefore conclude that the β-hairpin epitope is the major determinant of arginine-rhamnosylation by EarP. Our findings add a novel recognition motif to the existing knowledge on substrate specificity of protein glycosylation, and are expected to guide future identifications of rhamnosylation sites in other protein substrates.
Collapse
Affiliation(s)
- Liubov Yakovlieva
- Chemical Biology Group, Stratingh Institute for Chemistry, University of Groningen Groningen The Netherlands
| | - Thomas M Wood
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University Leiden The Netherlands .,Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University Utrecht The Netherlands
| | - Johan Kemmink
- Chemical Biology Group, Stratingh Institute for Chemistry, University of Groningen Groningen The Netherlands
| | - Ioli Kotsogianni
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University Leiden The Netherlands
| | - Franziska Koller
- Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München Planegg/Martinsried Germany
| | - Jürgen Lassak
- Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München Planegg/Martinsried Germany
| | - Nathaniel I Martin
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University Leiden The Netherlands
| | - Marthe T C Walvoort
- Chemical Biology Group, Stratingh Institute for Chemistry, University of Groningen Groningen The Netherlands
| |
Collapse
|
14
|
|
15
|
Takezawa H, Shitozawa K, Fujita M. Enhanced reactivity of twisted amides inside a molecular cage. Nat Chem 2020; 12:574-578. [PMID: 32313238 DOI: 10.1038/s41557-020-0455-y] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 03/09/2020] [Indexed: 11/09/2022]
Abstract
When an amide group is distorted from its planar conformation, the conjugation between the nitrogen lone pair and the π* orbital of the carbonyl is disrupted and the reactivity towards nucleophiles is enhanced. Although there are several reports on the synthesis of activated twisted amides, amide activation through mechanical twisting is much less common. Here, we report twisted amides that are stabilized through their inclusion in a self-assembled coordination cage. When secondary aromatic amides are included in a Td-symmetric cage, the cis-twisted conformation is favoured over the trans-planar one-as evidenced by single-crystal X-ray diffraction analysis-revealing that the amide can twist by up to 34°. As a consequence of this distortion, the hydrolysis of amides is significantly accelerated upon inclusion.
Collapse
Affiliation(s)
- Hiroki Takezawa
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| | - Kosuke Shitozawa
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Makoto Fujita
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, Japan. .,Division of Advanced Molecular Science, Institute for Molecular Science (IMS), Okazaki, Aichi, Japan.
| |
Collapse
|
16
|
Structural Insight into the Mechanism of N-Linked Glycosylation by Oligosaccharyltransferase. Biomolecules 2020; 10:biom10040624. [PMID: 32316603 PMCID: PMC7226087 DOI: 10.3390/biom10040624] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/06/2020] [Accepted: 04/10/2020] [Indexed: 02/06/2023] Open
Abstract
Asparagine-linked glycosylation, also known as N-linked glycosylation is an essential and highly conserved post-translational protein modification that occurs in all three domains of life. This modification is essential for specific molecular recognition, protein folding, sorting in the endoplasmic reticulum, cell-cell communication, and stability. Defects in N-linked glycosylation results in a class of inherited diseases known as congenital disorders of glycosylation (CDG). N-linked glycosylation occurs in the endoplasmic reticulum (ER) lumen by a membrane associated enzyme complex called the oligosaccharyltransferase (OST). In the central step of this reaction, an oligosaccharide group is transferred from a lipid-linked dolichol pyrophosphate donor to the acceptor substrate, the side chain of a specific asparagine residue of a newly synthesized protein. The prokaryotic OST enzyme consists of a single polypeptide chain, also known as single subunit OST or ssOST. In contrast, the eukaryotic OST is a complex of multiple non-identical subunits. In this review, we will discuss the biochemical and structural characterization of the prokaryotic, yeast, and mammalian OST enzymes. This review explains the most recent high-resolution structures of OST determined thus far and the mechanistic implication of N-linked glycosylation throughout all domains of life. It has been shown that the ssOST enzyme, AglB protein of the archaeon Archaeoglobus fulgidus, and the PglB protein of the bacterium Campylobactor lari are structurally and functionally similar to the catalytic Stt3 subunit of the eukaryotic OST enzyme complex. Yeast OST enzyme complex contains a single Stt3 subunit, whereas the human OST complex is formed with either STT3A or STT3B, two paralogues of Stt3. Both human OST complexes, OST-A (with STT3A) and OST-B (containing STT3B), are involved in the N-linked glycosylation of proteins in the ER. The cryo-EM structures of both human OST-A and OST-B complexes were reported recently. An acceptor peptide and a donor substrate (dolichylphosphate) were observed to be bound to the OST-B complex whereas only dolichylphosphate was bound to the OST-A complex suggesting disparate affinities of two OST complexes for the acceptor substrates. However, we still lack an understanding of the independent role of each eukaryotic OST subunit in N-linked glycosylation or in the stabilization of the enzyme complex. Discerning the role of each subunit through structure and function studies will potentially reveal the mechanistic details of N-linked glycosylation in higher organisms. Thus, getting an insight into the requirement of multiple non-identical subunits in the N-linked glycosylation process in eukaryotes poses an important future goal.
Collapse
|
17
|
Zhao Q, Lalancette R, Szostak R, Szostak M. Ring-Opening Olefin Metathesis of Twisted Amides: Activation of Amide Bonds by C═C Cleavage. ACS Catal 2019. [DOI: 10.1021/acscatal.9b04033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Qun Zhao
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Roger Lalancette
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Roman Szostak
- Department of Chemistry, Wroclaw University, F. Joliot-Curie 14, Wroclaw 50-383, Poland
| | - Michal Szostak
- College of Chemistry and Chemical Engineering and Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi’an 710021, China
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
18
|
Zhou T, Ji CL, Hong X, Szostak M. Palladium-catalyzed decarbonylative Suzuki-Miyaura cross-coupling of amides by carbon-nitrogen bond activation. Chem Sci 2019; 10:9865-9871. [PMID: 32015810 PMCID: PMC6977462 DOI: 10.1039/c9sc03169c] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 08/31/2019] [Indexed: 12/12/2022] Open
Abstract
Palladium-catalyzed Suzuki-Miyaura cross-coupling or aryl halides is widely employed in the synthesis of many important molecules in synthetic chemistry, including pharmaceuticals, polymers and functional materials. Herein, we disclose the first palladium-catalyzed decarbonylative Suzuki-Miyaura cross-coupling of amides for the synthesis of biaryls through the selective activation of the N-C(O) bond of amides. This new method relies on the precise sequence engineering of the catalytic cycle, wherein decarbonylation occurs prior to the transmetallation step. The reaction is compatible with a wide range of boronic acids and amides, providing valuable biaryls in high yields (>60 examples). DFT studies support a mechanism involving oxidative addition, decarbonylation and transmetallation and provide insight into high N-C(O) bond activation selectivity. Most crucially, the reaction establishes the use of palladium catalysis in the biaryl Suzuki-Miyaura cross-coupling of the amide bond and should enable the design of a wide variety of cross-coupling methods in which palladium rivals the traditional biaryl synthesis from aryl halides and pseudohalides.
Collapse
Affiliation(s)
- Tongliang Zhou
- Department of Chemistry , Rutgers University , 73 Warren Street , Newark , NJ 07102 , USA .
| | - Chong-Lei Ji
- Department of Chemistry , Zhejiang University , Hangzhou 310027 , China .
| | - Xin Hong
- Department of Chemistry , Zhejiang University , Hangzhou 310027 , China .
| | - Michal Szostak
- College of Chemistry and Chemical Engineering , Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry , Ministry of Education, Shaanxi University of Science and Technology , Xi'an 710021 , China
- Department of Chemistry , Rutgers University , 73 Warren Street , Newark , NJ 07102 , USA .
| |
Collapse
|
19
|
|
20
|
Lassak J, Koller F, Krafczyk R, Volkwein W. Exceptionally versatile – arginine in bacterial post-translational protein modifications. Biol Chem 2019; 400:1397-1427. [DOI: 10.1515/hsz-2019-0182] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/01/2019] [Indexed: 12/24/2022]
Abstract
Abstract
Post-translational modifications (PTM) are the evolutionary solution to challenge and extend the boundaries of genetically predetermined proteomic diversity. As PTMs are highly dynamic, they also hold an enormous regulatory potential. It is therefore not surprising that out of the 20 proteinogenic amino acids, 15 can be post-translationally modified. Even the relatively inert guanidino group of arginine is subject to a multitude of mostly enzyme mediated chemical changes. The resulting alterations can have a major influence on protein function. In this review, we will discuss how bacteria control their cellular processes and develop pathogenicity based on post-translational protein-arginine modifications.
Collapse
Affiliation(s)
- Jürgen Lassak
- Center for Integrated Protein Science Munich (CiPSM), Department of Biology I, Microbiology , Ludwig-Maximilians-Universität München , Grosshaderner Strasse 2-4 , D-82152 Planegg , Germany
| | - Franziska Koller
- Center for Integrated Protein Science Munich (CiPSM), Department of Biology I, Microbiology , Ludwig-Maximilians-Universität München , Grosshaderner Strasse 2-4 , D-82152 Planegg , Germany
| | - Ralph Krafczyk
- Center for Integrated Protein Science Munich (CiPSM), Department of Biology I, Microbiology , Ludwig-Maximilians-Universität München , Grosshaderner Strasse 2-4 , D-82152 Planegg , Germany
| | - Wolfram Volkwein
- Center for Integrated Protein Science Munich (CiPSM), Department of Biology I, Microbiology , Ludwig-Maximilians-Universität München , Grosshaderner Strasse 2-4 , D-82152 Planegg , Germany
| |
Collapse
|
21
|
Shrimal S, Gilmore R. Oligosaccharyltransferase structures provide novel insight into the mechanism of asparagine-linked glycosylation in prokaryotic and eukaryotic cells. Glycobiology 2019; 29:288-297. [PMID: 30312397 DOI: 10.1093/glycob/cwy093] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/26/2018] [Accepted: 10/09/2018] [Indexed: 11/12/2022] Open
Abstract
Asparagine-linked (N-linked) glycosylation is one of the most common protein modification reactions in eukaryotic cells, occurring upon the majority of proteins that enter the secretory pathway. X-ray crystal structures of the single subunit OSTs from eubacterial and archaebacterial organisms revealed the location of donor and acceptor substrate binding sites and provided the basis for a catalytic mechanism. Cryoelectron microscopy structures of the octameric yeast OST provided substantial insight into the organization and assembly of the multisubunit oligosaccharyltransferases. Furthermore, the cryoelectron microscopy structure of a complex consisting of a mammalian OST complex, the protein translocation channel and a translating ribosome revealed new insight into the mechanism of cotranslational glycosylation.
Collapse
Affiliation(s)
- Shiteshu Shrimal
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA, USA
| | - Reid Gilmore
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA, USA
| |
Collapse
|
22
|
Pace V, Holzer W, Ielo L, Shi S, Meng G, Hanna M, Szostak R, Szostak M. 17O NMR and 15N NMR chemical shifts of sterically-hindered amides: ground-state destabilization in amide electrophilicity. Chem Commun (Camb) 2019; 55:4423-4426. [PMID: 30916689 DOI: 10.1039/c9cc01402k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The structure and spectroscopic properties of the amide bond are a topic of fundamental interest in chemistry and biology. Herein, we report 17O NMR and 15N NMR spectroscopic data for four series of sterically-hindered acyclic amides. Despite the utility of 17O NMR and 15N NMR spectroscopy, these methods are severely underutilized in the experimental determination of electronic properties of the amide bond. The data demonstrate that a combined use of 17O NMR and 15N NMR serves as a powerful tool in assessing electronic effects of the amide bond substitution as a measure of electrophilicity of the amide bond. Notably, we demonstrate that steric destabilization of the amide bond results in electronically-activated amides that are comparable in terms of electrophilicity to acyl fluorides and carboxylic acid anhydrides.
Collapse
Affiliation(s)
- Vittorio Pace
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, Vienna A-1090, Austria.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
A modular and efficient synthesis of highly twisted N-acylimidazoles is reported. These twist amides were characterized via X-ray crystallography, NMR spectroscopy, IR spectroscopy, and DFT calculations. Modification of the substituent proximal to the amide revealed a maximum torsional angle of 88.6° in the solid state, which may be the most twisted amide reported for a nonbicyclic system to date. Reactivity and stability studies indicate that these twisted N-acylimidazoles may be valuable, namely as acyl transfer reagents.
Collapse
Affiliation(s)
- Elizabeth A. Stone
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520-8107, United States
| | - Brandon Q. Mercado
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520-8107, United States
| | - Scott J. Miller
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520-8107, United States
| |
Collapse
|
24
|
Szostak R, Szostak M. Tröger's Base Twisted Amides: High Amide Bond Twist and N-/O-Protonation Aptitude. J Org Chem 2019; 84:1510-1516. [PMID: 30571109 DOI: 10.1021/acs.joc.8b02937] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Tröger's base twisted amides have emerged as attractive scaffolds to readily achieve substantial nonplanarity of the amide bond in a bicyclic lactam framework. Herein, we report structures and proton affinities of a diverse set of Tröger's base twisted amides and compare them with related nonplanar bridged lactams. The data demonstrate that Tröger's base twisted amides embedded in a [3.3.1] scaffold are among the most twisted bridged lactams prepared to date. Intriguingly, while these amides also favor N-protonation, our data show that the best model for probing N-protonation aptitude in the series of nonplanar amides are less twisted benzofused 1-azabicyclo[3.3.1]nonan-2-one derivatives. This work (1) provides the understanding for future design of nonplanar bridged lactams to directly access N-protonated amide bonds, (2) validates the use of the additive Winkler-Dunitz distortion parameter, and (3) emphasizes the importance of peripheral modification to modulate properties of nonplanar amides.
Collapse
Affiliation(s)
- Roman Szostak
- Department of Chemistry , Wroclaw University , F. Joliot-Curie 14 , Wroclaw 50-383 , Poland
| | - Michal Szostak
- Department of Chemistry , Rutgers University , 73 Warren Street , Newark , New Jersey 07102 , United States
| |
Collapse
|
25
|
Chemistry of Bridged Lactams: Recent Developments. Molecules 2019; 24:molecules24020274. [PMID: 30642094 PMCID: PMC6359620 DOI: 10.3390/molecules24020274] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 12/15/2022] Open
Abstract
Bridged lactams represent the most effective and wide-ranging method of constraining the amide bond in a non-planar conformation. A previous comprehensive review on this topic was published in 2013 (Chem. Rev.2013, 113, 5701–5765). In the present review, which is published as a part of the Special Issue on Amide Bond Activation, we present an overview of the recent developments in the field of bridged lactams that have taken place in the last five years and present a critical assessment of the current status of bridged lactams in synthetic and physical organic chemistry. This review covers the period from 2014 until the end of 2018 and is intended as an update to Chem. Rev.2013, 113, 5701–5765. In addition to bridged lactams, the review covers recent advances in the chemistry of bridged sultams, bridged enamines and related non-planar structures.
Collapse
|
26
|
Liu C, Shi S, Liu Y, Liu R, Lalancette R, Szostak R, Szostak M. The Most Twisted Acyclic Amides: Structures and Reactivity. Org Lett 2018; 20:7771-7774. [DOI: 10.1021/acs.orglett.8b03175] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Chengwei Liu
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Shicheng Shi
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Yongmei Liu
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
- College of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou 225002, China
| | - Ruzhang Liu
- College of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou 225002, China
| | - Roger Lalancette
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Roman Szostak
- Department of Chemistry, Wroclaw University, F. Joliot-Curie 14, Wroclaw 50-383, Poland
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
27
|
Jervis AJ, Wood AG, Cain JA, Butler JA, Frost H, Lord E, Langdon R, Cordwell SJ, Wren BW, Linton D. Functional analysis of the Helicobacter pullorum N-linked protein glycosylation system. Glycobiology 2018; 28:233-244. [PMID: 29340583 PMCID: PMC6025236 DOI: 10.1093/glycob/cwx110] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 01/10/2018] [Indexed: 11/23/2022] Open
Abstract
N-linked protein glycosylation systems operate in species from all three domains of life. The model bacterial N-linked glycosylation system from Campylobacter jejuni is encoded by pgl genes present at a single chromosomal locus. This gene cluster includes the pglB oligosaccharyltransferase responsible for transfer of glycan from lipid carrier to protein. Although all genomes from species of the Campylobacter genus contain a pgl locus, among the related Helicobacter genus only three evolutionarily related species (H. pullorum, H. canadensis and H. winghamensis) potentially encode N-linked protein glycosylation systems. Helicobacter putative pgl genes are scattered in five chromosomal loci and include two putative oligosaccharyltransferase-encoding pglB genes per genome. We have previously demonstrated the in vitro N-linked glycosylation activity of H. pullorum resulting in transfer of a pentasaccharide to a peptide at asparagine within the sequon (D/E)XNXS/T. In this study, we identified the first H. pullorum N-linked glycoprotein, termed HgpA. Production of histidine-tagged HgpA in the background of insertional knockout mutants of H. pullorum pgl/wbp genes followed by analysis of HgpA glycan structures demonstrated the role of individual gene products in the PglB1-dependent N-linked protein glycosylation pathway. Glycopeptide purification by zwitterionic-hydrophilic interaction liquid chromatography coupled with tandem mass spectrometry identified six glycosites from five H. pullorum proteins, which was consistent with proteins reactive with a polyclonal antiserum generated against glycosylated HgpA. This study demonstrates functioning of a H. pullorum N-linked general protein glycosylation system.
Collapse
Affiliation(s)
- Adrian J Jervis
- Manchester Institute of Biotechnology, SYNBIOCHEM, University of Manchester, Manchester, UK
| | - Alison G Wood
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - Joel A Cain
- School of Molecular Bioscience and Charles Perkins Centre, The University of Sydney, 2006Australia
| | - Jonathan A Butler
- School of Healthcare Science, Manchester Metropolitan University, Manchester M1 5GD, UK
| | - Helen Frost
- Faculty of Biology, Medicine and Health, Michael Smith Building, University of Manchester, Manchester M13 9PT, UK
| | - Elizabeth Lord
- Faculty of Biology, Medicine and Health, Michael Smith Building, University of Manchester, Manchester M13 9PT, UK
| | - Rebecca Langdon
- Pathogen Molecular Biology Unit, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Stuart J Cordwell
- School of Molecular Bioscience and Charles Perkins Centre, The University of Sydney, 2006Australia
| | - Brendan W Wren
- Pathogen Molecular Biology Unit, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Dennis Linton
- Faculty of Biology, Medicine and Health, Michael Smith Building, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
28
|
Napiórkowska M, Boilevin J, Darbre T, Reymond JL, Locher KP. Structure of bacterial oligosaccharyltransferase PglB bound to a reactive LLO and an inhibitory peptide. Sci Rep 2018; 8:16297. [PMID: 30389987 PMCID: PMC6215017 DOI: 10.1038/s41598-018-34534-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/15/2018] [Indexed: 12/12/2022] Open
Abstract
Oligosaccharyltransferase (OST) is a key enzyme of the N-glycosylation pathway, where it catalyzes the transfer of a glycan from a lipid-linked oligosaccharide (LLO) to an acceptor asparagine within the conserved sequon N-X-T/S. A previous structure of a ternary complex of bacterial single subunit OST, PglB, bound to a non-hydrolyzable LLO analog and a wild type acceptor peptide showed how both substrates bind and how an external loop (EL5) of the enzyme provided specific substrate-binding contacts. However, there was a relatively large separation of the substrates at the active site. Here we present the X-ray structure of PglB bound to a reactive LLO analog and an inhibitory peptide, revealing previously unobserved interactions in the active site. We found that the atoms forming the N-glycosidic bond (C-1 of the GlcNAc moiety of LLO and the –NH2 group of the peptide) are closer than in the previous structure, suggesting that we have captured a conformation closer to the transition state of the reaction. We find that the distance between the divalent metal ion and the glycosidic oxygen of LLO is now 4 Å, suggesting that the metal stabilizes the leaving group of the nucleophilic substitution reaction. Further, the carboxylate group of a conserved aspartate of PglB mediates an interaction network between the reducing-end sugar of the LLO, the asparagine side chain of the acceptor peptide, and a bound divalent metal ion. The interactions identified in this novel state are likely to be relevant in the catalytic mechanisms of all OSTs.
Collapse
Affiliation(s)
- Maja Napiórkowska
- Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Jérémy Boilevin
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Tamis Darbre
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Jean-Louis Reymond
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Kaspar P Locher
- Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
29
|
Abstract
Glycosylation is one of the most prevalent posttranslational modifications that profoundly affects the structure and functions of proteins in a wide variety of biological recognition events. However, the structural complexity and heterogeneity of glycoproteins, usually resulting from the variations of glycan components and/or the sites of glycosylation, often complicates detailed structure-function relationship studies and hampers the therapeutic applications of glycoproteins. To address these challenges, various chemical and biological strategies have been developed for producing glycan-defined homogeneous glycoproteins. This review highlights recent advances in the development of chemoenzymatic methods for synthesizing homogeneous glycoproteins, including the generation of various glycosynthases for synthetic purposes, endoglycosidase-catalyzed glycoprotein synthesis and glycan remodeling, and direct enzymatic glycosylation of polypeptides and proteins. The scope, limitation, and future directions of each method are discussed.
Collapse
Affiliation(s)
- Chao Li
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Lai-Xi Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
30
|
Metabolic engineering of glycoprotein biosynthesis in bacteria. Emerg Top Life Sci 2018; 2:419-432. [PMID: 33525794 DOI: 10.1042/etls20180004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 07/12/2018] [Accepted: 08/06/2018] [Indexed: 02/07/2023]
Abstract
The demonstration more than a decade ago that glycoproteins could be produced in Escherichia coli cells equipped with the N-linked protein glycosylation machinery from Campylobacter jejuni opened the door to using simple bacteria for the expression and engineering of complex glycoproteins. Since that time, metabolic engineering has played an increasingly important role in developing and optimizing microbial cell glyco-factories for the production of diverse glycoproteins and other glycoconjugates. It is becoming clear that future progress in creating efficient glycoprotein expression platforms in bacteria will depend on the adoption of advanced strain engineering strategies such as rational design and assembly of orthogonal glycosylation pathways, genome-wide identification of metabolic engineering targets, and evolutionary engineering of pathway performance. Here, we highlight recent advances in the deployment of metabolic engineering tools and strategies to develop microbial cell glyco-factories for the production of high-value glycoprotein targets with applications in research and medicine.
Collapse
|
31
|
Song H, van der Velden NS, Shiran SL, Bleiziffer P, Zach C, Sieber R, Imani AS, Krausbeck F, Aebi M, Freeman MF, Riniker S, Künzler M, Naismith JH. A molecular mechanism for the enzymatic methylation of nitrogen atoms within peptide bonds. SCIENCE ADVANCES 2018; 4:eaat2720. [PMID: 30151425 PMCID: PMC6108569 DOI: 10.1126/sciadv.aat2720] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 07/17/2018] [Indexed: 05/04/2023]
Abstract
The peptide bond, the defining feature of proteins, governs peptide chemistry by abolishing nucleophilicity of the nitrogen. This and the planarity of the peptide bond arise from the delocalization of the lone pair of electrons on the nitrogen atom into the adjacent carbonyl. While chemical methylation of an amide bond uses a strong base to generate the imidate, OphA, the precursor protein of the fungal peptide macrocycle omphalotin A, self-hypermethylates amides at pH 7 using S-adenosyl methionine (SAM) as cofactor. The structure of OphA reveals a complex catenane-like arrangement in which the peptide substrate is clamped with its amide nitrogen aligned for nucleophilic attack on the methyl group of SAM. Biochemical data and computational modeling suggest a base-catalyzed reaction with the protein stabilizing the reaction intermediate. Backbone N-methylation of peptides enhances their protease resistance and membrane permeability, a property that holds promise for applications to medicinal chemistry.
Collapse
Affiliation(s)
- Haigang Song
- Biomedical Sciences Research Complex, North Haugh, University of St. Andrews, Fife KY16 9ST, UK
- Division of Structural Biology, Wellcome Trust Centre of Human Genomics, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Niels S. van der Velden
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland
| | - Sally L. Shiran
- Biomedical Sciences Research Complex, North Haugh, University of St. Andrews, Fife KY16 9ST, UK
| | - Patrick Bleiziffer
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland
| | - Christina Zach
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland
| | - Ramon Sieber
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland
| | - Aman S. Imani
- Department of Biochemistry, Molecular Biology, and Biophysics, and BioTechnology Institute, University of Minnesota–Twin Cities, St. Paul, MN 55108, USA
| | - Florian Krausbeck
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland
| | - Markus Aebi
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland
| | - Michael F. Freeman
- Department of Biochemistry, Molecular Biology, and Biophysics, and BioTechnology Institute, University of Minnesota–Twin Cities, St. Paul, MN 55108, USA
| | - Sereina Riniker
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland
- Corresponding author. (S.R.); (M.K.); (J.H.N.)
| | - Markus Künzler
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland
- Corresponding author. (S.R.); (M.K.); (J.H.N.)
| | - James H. Naismith
- Division of Structural Biology, Wellcome Trust Centre of Human Genomics, Roosevelt Drive, Oxford OX3 7BN, UK
- State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
- Research Complex at Harwell, Rutherford Laboratory, Didcot, Oxfordshire OX11 0FA, UK
- Corresponding author. (S.R.); (M.K.); (J.H.N.)
| |
Collapse
|
32
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2013-2014. MASS SPECTROMETRY REVIEWS 2018; 37:353-491. [PMID: 29687922 DOI: 10.1002/mas.21530] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 11/29/2016] [Indexed: 06/08/2023]
Abstract
This review is the eighth update of the original article published in 1999 on the application of Matrix-assisted laser desorption/ionization mass spectrometry (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2014. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly- saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. © 2018 Wiley Periodicals, Inc. Mass Spec Rev 37:353-491, 2018.
Collapse
Affiliation(s)
- David J Harvey
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
33
|
Ramírez AS, Boilevin J, Biswas R, Gan BH, Janser D, Aebi M, Darbre T, Reymond JL, Locher KP. Characterization of the single-subunit oligosaccharyltransferase STT3A from Trypanosoma brucei using synthetic peptides and lipid-linked oligosaccharide analogs. Glycobiology 2018; 27:525-535. [PMID: 28204532 PMCID: PMC5421464 DOI: 10.1093/glycob/cwx017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 02/10/2017] [Indexed: 01/11/2023] Open
Abstract
The initial transfer of a complex glycan in protein N-glycosylation is catalyzed by oligosaccharyltransferase (OST), which is generally a multisubunit membrane protein complex in the endoplasmic reticulum but a single-subunit enzyme (ssOST) in some protists. To investigate the reaction mechanism of ssOST, we recombinantly expressed, purified and characterized the STT3A protein from Trypanosoma brucei (TbSTT3A). We analyzed the in vitro activity of TbSTT3A by synthesizing fluorescently labeled acceptor peptides as well as lipid-linked oligosaccharide (LLO) analogs containing a chitobiose moiety coupled to oligoprenyl carriers of distinct lengths (C10, C15, C20 and C25) and with different double bond stereochemistry. We found that in addition to proline, charged residues at the +1 position of the sequon inhibited glycan transfer. An acidic residue at the −2 position significantly increased catalytic turnover but was not essential, in contrast to the bacterial OST. While all synthetic LLO analogs were processed by TbSTT3A, the length of the polyprenyl tail, but not the stereochemistry of the double bonds, determined their apparent affinity. We also synthesized phosphonate analogs of the LLOs, which were found to be competitive inhibitors of the reaction, although with lower apparent affinity to TbSTT3A than the active pyrophosphate analogs.
Collapse
Affiliation(s)
- Ana S Ramírez
- Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule (ETH), CH-8093 Zürich, Switzerland
| | - Jérémy Boilevin
- Department of Chemistry and Biochemistry, University of Berne, CH-3012 Berne, Switzerland
| | - Rasomoy Biswas
- Department of Chemistry and Biochemistry, University of Berne, CH-3012 Berne, Switzerland
| | - Bee Ha Gan
- Department of Chemistry and Biochemistry, University of Berne, CH-3012 Berne, Switzerland
| | - Daniel Janser
- Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule (ETH), CH-8093 Zürich, Switzerland
| | - Markus Aebi
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH), CH-8093 Zürich, Switzerland
| | - Tamis Darbre
- Department of Chemistry and Biochemistry, University of Berne, CH-3012 Berne, Switzerland
| | - Jean-Louis Reymond
- Department of Chemistry and Biochemistry, University of Berne, CH-3012 Berne, Switzerland
| | - Kaspar P Locher
- Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule (ETH), CH-8093 Zürich, Switzerland
| |
Collapse
|
34
|
Meng G, Shi S, Lalancette R, Szostak R, Szostak M. Reversible Twisting of Primary Amides via Ground State N-C(O) Destabilization: Highly Twisted Rotationally Inverted Acyclic Amides. J Am Chem Soc 2018; 140:727-734. [PMID: 29240413 DOI: 10.1021/jacs.7b11309] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Since the seminal studies by Pauling in 1930s, planarity has become the defining characteristic of the amide bond. Planarity of amides has central implications for the reactivity and chemical properties of amides of relevance to a range of chemical disciplines. While the vast majority of amides are planar, nonplanarity has a profound effect on the properties of the amide bond, with the most common method to restrict the amide bond relying on the incorporation of the amide function into a rigid cyclic ring system. In a major departure from this concept, here, we report the first class of acyclic twisted amides that can be prepared, reversibly, from common primary amides in a single, operationally trivial step. Di-tert-butoxycarbonylation of the amide nitrogen atom yields twisted amides in which the amide bond exhibits nearly perpendicular twist. Full structural characterization of a range of electronically diverse compounds from this new class of twisted amides is reported. Through reactivity studies we demonstrate unusual properties of the amide bond, wherein selective cleavage of the amide bond can be achieved by a judicious choice of the reaction conditions. Through computational studies we evaluate structural and energetic details pertaining to the amide bond deformation. The ability to selectively twist common primary amides, in a reversible manner, has important implications for the design and application of the amide bond nonplanarity in structural chemistry, biochemistry and organic synthesis.
Collapse
Affiliation(s)
- Guangrong Meng
- Department of Chemistry, Rutgers University , 73 Warren Street, Newark, New Jersey 07102, United States
| | - Shicheng Shi
- Department of Chemistry, Rutgers University , 73 Warren Street, Newark, New Jersey 07102, United States
| | - Roger Lalancette
- Department of Chemistry, Rutgers University , 73 Warren Street, Newark, New Jersey 07102, United States
| | - Roman Szostak
- Department of Chemistry, Wroclaw University , F. Joliot-Curie 14, Wroclaw 50-383, Poland
| | - Michal Szostak
- Department of Chemistry, Rutgers University , 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
35
|
Wild R, Kowal J, Eyring J, Ngwa EM, Aebi M, Locher KP. Structure of the yeast oligosaccharyltransferase complex gives insight into eukaryotic N-glycosylation. Science 2018; 359:545-550. [PMID: 29301962 DOI: 10.1126/science.aar5140] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 12/22/2017] [Indexed: 12/18/2022]
Abstract
Oligosaccharyltransferase (OST) is an essential membrane protein complex in the endoplasmic reticulum, where it transfers an oligosaccharide from a dolichol-pyrophosphate-activated donor to glycosylation sites of secretory proteins. Here we describe the atomic structure of yeast OST determined by cryo-electron microscopy, revealing a conserved subunit arrangement. The active site of the catalytic STT3 subunit points away from the center of the complex, allowing unhindered access to substrates. The dolichol-pyrophosphate moiety binds to a lipid-exposed groove of STT3, whereas two noncatalytic subunits and an ordered N-glycan form a membrane-proximal pocket for the oligosaccharide. The acceptor polypeptide site faces an oxidoreductase domain in stand-alone OST complexes or is immediately adjacent to the translocon, suggesting how eukaryotic OSTs efficiently glycosylate a large number of polypeptides before their folding.
Collapse
Affiliation(s)
- Rebekka Wild
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Julia Kowal
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Jillianne Eyring
- Institute of Microbiology, Department of Biology, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Elsy M Ngwa
- Institute of Microbiology, Department of Biology, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Markus Aebi
- Institute of Microbiology, Department of Biology, ETH Zurich, CH-8093 Zurich, Switzerland.
| | - Kaspar P Locher
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, CH-8093 Zurich, Switzerland.
| |
Collapse
|
36
|
Kohda D. Structural Basis of Protein Asn-Glycosylation by Oligosaccharyltransferases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1104:171-199. [PMID: 30484249 DOI: 10.1007/978-981-13-2158-0_9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Glycosylation of asparagine residues is a ubiquitous protein modification. This N-glycosylation is essential in Eukaryotes, but principally nonessential in Prokaryotes (Archaea and Eubacteria), although it facilitates their survival and pathogenicity. In many reviews, Archaea have received far less attention than Eubacteria, but this review will cover the N-glycosylation in the three domains of life. The oligosaccharide chain is preassembled on a lipid-phospho carrier to form a donor substrate, lipid-linked oligosaccharide (LLO). The en bloc transfer of an oligosaccharide from LLO to selected Asn residues in the Asn-X-Ser/Thr (X≠Pro) sequons in a polypeptide chain is catalyzed by a membrane-bound enzyme, oligosaccharyltransferase (OST). Over the last 10 years, the three-dimensional structures of the catalytic subunits of the Stt3/AglB/PglB proteins, with an acceptor peptide and a donor LLO, have been determined by X-ray crystallography, and recently the complex structures with other subunits have been determined by cryo-electron microscopy . Structural comparisons within the same species and across the different domains of life yielded a unified view of the structures and functions of OSTs. A catalytic structure in the TM region accounts for the amide bond twisting, which increases the reactivity of the side-chain nitrogen atom of the acceptor Asn residue in the sequon. The Ser/Thr-binding pocket in the C-terminal domain explains the requirement for hydroxy amino acid residues in the sequon. As expected, the two functional structures are formed by the involvement of short amino acid motifs conserved across the three domains of life.
Collapse
Affiliation(s)
- Daisuke Kohda
- Division of Structural Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
37
|
Schoborg JA, Hershewe JM, Stark JC, Kightlinger W, Kath JE, Jaroentomeechai T, Natarajan A, DeLisa MP, Jewett MC. A cell-free platform for rapid synthesis and testing of active oligosaccharyltransferases. Biotechnol Bioeng 2017; 115:739-750. [PMID: 29178580 DOI: 10.1002/bit.26502] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 11/15/2017] [Accepted: 11/20/2017] [Indexed: 12/17/2022]
Abstract
Protein glycosylation, or the attachment of sugar moieties (glycans) to proteins, is important for protein stability, activity, and immunogenicity. However, understanding the roles and regulations of site-specific glycosylation events remains a significant challenge due to several technological limitations. These limitations include a lack of available tools for biochemical characterization of enzymes involved in glycosylation. A particular challenge is the synthesis of oligosaccharyltransferases (OSTs), which catalyze the attachment of glycans to specific amino acid residues in target proteins. The difficulty arises from the fact that canonical OSTs are large (>70 kDa) and possess multiple transmembrane helices, making them difficult to overexpress in living cells. Here, we address this challenge by establishing a bacterial cell-free protein synthesis platform that enables rapid production of a variety of OSTs in their active conformations. Specifically, by using lipid nanodiscs as cellular membrane mimics, we obtained yields of up to 420 μg/ml for the single-subunit OST enzyme, "Protein glycosylation B" (PglB) from Campylobacter jejuni, as well as for three additional PglB homologs from Campylobacter coli, Campylobacter lari, and Desulfovibrio gigas. Importantly, all of these enzymes catalyzed N-glycosylation reactions in vitro with no purification or processing needed. Furthermore, we demonstrate the ability of cell-free synthesized OSTs to glycosylate multiple target proteins with varying N-glycosylation acceptor sequons. We anticipate that this broadly applicable production method will advance glycoengineering efforts by enabling preparative expression of membrane-embedded OSTs from all kingdoms of life.
Collapse
Affiliation(s)
- Jennifer A Schoborg
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois.,Chemistry of Life Processes Institute, Evanston, Illinois
| | - Jasmine M Hershewe
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois.,Chemistry of Life Processes Institute, Evanston, Illinois.,Master of Biotechnology Program, Northwestern University, Evanston, Illinois
| | - Jessica C Stark
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois.,Chemistry of Life Processes Institute, Evanston, Illinois
| | - Weston Kightlinger
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois.,Chemistry of Life Processes Institute, Evanston, Illinois
| | - James E Kath
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois.,Chemistry of Life Processes Institute, Evanston, Illinois
| | - Thapakorn Jaroentomeechai
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York
| | | | - Matthew P DeLisa
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York.,Department of Microbiology, Cornell University, Ithaca, New York
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois.,Chemistry of Life Processes Institute, Evanston, Illinois.,Master of Biotechnology Program, Northwestern University, Evanston, Illinois.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois.,Simpson Querrey Institute, Northwestern University, Chicago, Illinois.,Center for Synthetic Biology, Northwestern University, Evanston, Illinois
| |
Collapse
|
38
|
Dutta D, Mandal C, Mandal C. Unusual glycosylation of proteins: Beyond the universal sequon and other amino acids. Biochim Biophys Acta Gen Subj 2017; 1861:3096-3108. [DOI: 10.1016/j.bbagen.2017.08.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 08/03/2017] [Accepted: 08/14/2017] [Indexed: 12/11/2022]
|
39
|
Napiórkowska M, Boilevin J, Sovdat T, Darbre T, Reymond JL, Aebi M, Locher KP. Molecular basis of lipid-linked oligosaccharide recognition and processing by bacterial oligosaccharyltransferase. Nat Struct Mol Biol 2017; 24:1100-1106. [PMID: 29058712 DOI: 10.1038/nsmb.3491] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 09/21/2017] [Indexed: 11/09/2022]
Abstract
Oligosaccharyltransferase (OST) is a membrane-integral enzyme that catalyzes the transfer of glycans from lipid-linked oligosaccharides (LLOs) onto asparagine side chains, the first step in protein N-glycosylation. Here, we report the X-ray structure of a single-subunit OST, PglB from Campylobacter lari, trapped in an intermediate state bound to an acceptor peptide and a synthetic LLO analog. The structure reveals the role of the external loop EL5, present in all OST enzymes, in substrate recognition. Whereas the N-terminal half of EL5 binds LLO, the C-terminal half interacts with the acceptor peptide. The glycan moiety of LLO must thread under EL5 to access the active site. Reducing EL5 mobility decreases the catalytic rate of OST when full-size heptasaccharide LLO is provided, but not for a monosaccharide-containing LLO analog. Our results define the chemistry of a ternary complex state, assign functional roles to conserved OST motifs, and provide opportunities for glycoengineering by rational design of PglB.
Collapse
Affiliation(s)
- Maja Napiórkowska
- Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Jérémy Boilevin
- Department of Chemistry and Biochemistry, University of Berne, Berne, Switzerland
| | - Tina Sovdat
- Department of Chemistry and Biochemistry, University of Berne, Berne, Switzerland
| | - Tamis Darbre
- Department of Chemistry and Biochemistry, University of Berne, Berne, Switzerland
| | - Jean-Louis Reymond
- Department of Chemistry and Biochemistry, University of Berne, Berne, Switzerland
| | - Markus Aebi
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Kaspar P Locher
- Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
40
|
Huang YW, Yang HI, Wu YT, Hsu TL, Lin TW, Kelly JW, Wong CH. Residues Comprising the Enhanced Aromatic Sequon Influence Protein N-Glycosylation Efficiency. J Am Chem Soc 2017; 139:12947-12955. [PMID: 28820257 DOI: 10.1021/jacs.7b03868] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
N-Glycosylation is an important co- and/or post-translational modification that occurs on the vast majority of the one-third of the mammalian proteome that traverses the cellular secretory pathway, regulating glycoprotein folding and functions. Previous studies on the sequence requirements for N-glycosylation have yielded the Asn-X-Ser/Thr (NXS/T) sequon and the enhanced aromatic sequons (Phe-X-Asn-X-Thr and Phe-X-X-Asn-X-Thr), which can be efficiently N-glycosylated. To further investigate the influence of sequence variation on N-glycosylation efficiency in the context of a five-residue enhanced aromatic sequon, we used the human CD2 adhesion domain (hCD2ad) to screen the i-2, i-1, i+1, and i+2 residues flanking Asn at the i position. We found that aromatic residues, especially Trp, and sulfur-containing residues at the i-2 position improved N-glycosylation efficiency, while positively charged residues such as Arg suppressed N-glycosylation. Thiol, hydroxyl, and aliphatic-based side chains at the i-1 position had higher N-glycosylation efficiency, and Cys, in particular, compensated for the negative effect of Arg at the i-2 position. Small residues and Ser at the i+1 position increased the likelihood of N-glycosylation, and Thr is better than Ser at the i+2 position. We devised an algorithm for prediction of N-glycosylation efficiency using the SAS software, employing the 120 sequences studied as a training set. We then introduced the optimized-enhanced aromatic sequons into other glycoproteins and observed an enhancement in N-glycan occupancy that was further supported by modeling the high-affinity interaction between the optimized sequence on hCD2ad and a human oligosaccharyltransferase (OST) subunit. The findings in this study provide useful information for enhancing or suppressing N-glycosylation at a site of interest and valuable data for a better understanding of OST-catalyzed N-glycosylation.
Collapse
Affiliation(s)
- Yen-Wen Huang
- Genomics Research Center Academia Sinica , Taipei 115, Taiwan.,Institute of Biochemical Sciences, National Taiwan University , Taipei 106, Taiwan
| | - Hwai-I Yang
- Genomics Research Center Academia Sinica , Taipei 115, Taiwan.,Institute of Clinical Medicine, National Yang-Ming University , Taipei 112, Taiwan
| | - Ying-Ta Wu
- Genomics Research Center Academia Sinica , Taipei 115, Taiwan
| | - Tsui-Ling Hsu
- Genomics Research Center Academia Sinica , Taipei 115, Taiwan
| | - Tzu-Wen Lin
- Genomics Research Center Academia Sinica , Taipei 115, Taiwan
| | | | - Chi-Huey Wong
- Genomics Research Center Academia Sinica , Taipei 115, Taiwan
| |
Collapse
|
41
|
Liu C, Szostak M. Twisted Amides: From Obscurity to Broadly Useful Transition-Metal-Catalyzed Reactions by N−C Amide Bond Activation. Chemistry 2017; 23:7157-7173. [DOI: 10.1002/chem.201605012] [Citation(s) in RCA: 246] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Indexed: 02/05/2023]
Affiliation(s)
- Chengwei Liu
- Department of Chemistry; Rutgers University; 73 Warren Street Newark NJ 07102 USA
| | - Michal Szostak
- Department of Chemistry; Rutgers University; 73 Warren Street Newark NJ 07102 USA
| |
Collapse
|
42
|
Matsumoto S, Taguchi Y, Shimada A, Igura M, Kohda D. Tethering an N-Glycosylation Sequon-Containing Peptide Creates a Catalytically Competent Oligosaccharyltransferase Complex. Biochemistry 2017; 56:602-611. [PMID: 27997792 DOI: 10.1021/acs.biochem.6b01089] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Oligosaccharyltransferase (OST) transfers an oligosaccharide chain to the Asn residue in the Asn-X-Ser/Thr sequon in proteins, where X is not proline. A sequon was tethered to an archaeal OST enzyme via a disulfide bond. The positions of the cysteine residues in the OST protein and the sequon-containing acceptor peptide were selected by reference to the eubacterial OST structure in a noncovalent complex with an acceptor peptide. We determined the crystal structure of the cross-linked OST-sequon complex. The Ser/Thr-binding pocket recognizes the Thr residue in the sequon, and the catalytic structure termed the "carboxylate dyad" interacted with the Asn residue. Thus, the recognition and the catalytic mechanism of the sequon are conserved between the archaeal and eubacterial OSTs. We found that the tethered peptides in the complex were efficiently glycosylated in the presence of the oligosaccharide donor. The stringent requirements are greatly relaxed in the cross-linked state. The two conserved acidic residues in the catalytic structure were each dispensable, although the double mutation abolished the activity. A Gln residue at the Asn position in the sequon functioned as an acceptor, and the hydroxy group at position +2 was not required. In the standard assay using short free peptides, strong amino acid preferences were observed at the X position, but the preferences, except for Pro, completely disappeared in the cross-linked state. By skipping the initial binding process and stabilizing the complex state, the catalytically competent cross-linked complex offers a unique system for studying the oligosaccharyl transfer reaction.
Collapse
Affiliation(s)
- Shunsuke Matsumoto
- Division of Structural Biology, Medical Institute of Bioregulation, ‡Research Center for Advanced Immunology, and §Research Center for Live-Protein Dynamics, Kyushu University , Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yuya Taguchi
- Division of Structural Biology, Medical Institute of Bioregulation, ‡Research Center for Advanced Immunology, and §Research Center for Live-Protein Dynamics, Kyushu University , Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
| | - Atsushi Shimada
- Division of Structural Biology, Medical Institute of Bioregulation, ‡Research Center for Advanced Immunology, and §Research Center for Live-Protein Dynamics, Kyushu University , Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
| | - Mayumi Igura
- Division of Structural Biology, Medical Institute of Bioregulation, ‡Research Center for Advanced Immunology, and §Research Center for Live-Protein Dynamics, Kyushu University , Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
| | - Daisuke Kohda
- Division of Structural Biology, Medical Institute of Bioregulation, ‡Research Center for Advanced Immunology, and §Research Center for Live-Protein Dynamics, Kyushu University , Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
43
|
Abstract
The glycosylation systems of Campylobacter jejuni (C. jejuni) are considered archetypal examples of both N- and O-linked glycosylations in the field of bacterial glycosylation. The discovery and characterization of these systems both have revealed important biological insight into C. jejuni and have led to the refinement and enhancement of methodologies to characterize bacterial glycosylation. In general, mass spectrometry-based characterization has become the preferred methodology for the study of C. jejuni glycosylation because of its speed, sensitivity, and ability to enable both qualitative and quantitative assessments of glycosylation events. In these experiments the generation of insightful data requires the careful selection of experimental approaches and mass spectrometry (MS) instrumentation. As such, it is essential to have a deep understanding of the technologies and approaches used for characterization of glycosylation events. Here we describe protocols for the initial characterization of C. jejuni glycoproteins using protein-/peptide-centric approaches and discuss considerations that can enhance the generation of insightful data.
Collapse
Affiliation(s)
- Nichollas E Scott
- Department of Microbiology and Immunology, Doherty Institute, The University of Melbourne, 792 Elizabeth St., Melbourne, Victoria, 3001, Australia.
| |
Collapse
|
44
|
Wright TH, Bower BJ, Chalker JM, Bernardes GJL, Wiewiora R, Ng WL, Raj R, Faulkner S, Vallée MRJ, Phanumartwiwath A, Coleman OD, Thézénas ML, Khan M, Galan SRG, Lercher L, Schombs MW, Gerstberger S, Palm-Espling ME, Baldwin AJ, Kessler BM, Claridge TDW, Mohammed S, Davis BG. Posttranslational mutagenesis: A chemical strategy for exploring protein side-chain diversity. Science 2016; 354:science.aag1465. [PMID: 27708059 DOI: 10.1126/science.aag1465] [Citation(s) in RCA: 236] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 09/12/2016] [Indexed: 12/26/2022]
Abstract
Posttranslational modification of proteins expands their structural and functional capabilities beyond those directly specified by the genetic code. However, the vast diversity of chemically plausible (including unnatural but functionally relevant) side chains is not readily accessible. We describe C (sp3)-C (sp3) bond-forming reactions on proteins under biocompatible conditions, which exploit unusual carbon free-radical chemistry, and use them to form Cβ-Cγ bonds with altered side chains. We demonstrate how these transformations enable a wide diversity of natural, unnatural, posttranslationally modified (methylated, glycosylated, phosphorylated, hydroxylated), and labeled (fluorinated, isotopically labeled) side chains to be added to a common, readily accessible dehydroalanine precursor in a range of representative protein types and scaffolds. This approach, outside of the rigid constraints of the ribosome and enzymatic processing, may be modified more generally for access to diverse proteins.
Collapse
Affiliation(s)
- Tom H Wright
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Ben J Bower
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Justin M Chalker
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | | | - Rafal Wiewiora
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Wai-Lung Ng
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Ritu Raj
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Sarah Faulkner
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | | | | | - Oliver D Coleman
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Marie-Laëtitia Thézénas
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Headington, Oxford OX3 7FZ, UK
| | - Maola Khan
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | | | - Lukas Lercher
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | | | | | | | - Andrew J Baldwin
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Benedikt M Kessler
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Headington, Oxford OX3 7FZ, UK
| | | | - Shabaz Mohammed
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Benjamin G Davis
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK.
| |
Collapse
|
45
|
Sugar and Spice Make Bacteria Not Nice: Protein Glycosylation and Its Influence in Pathogenesis. J Mol Biol 2016; 428:3206-3220. [DOI: 10.1016/j.jmb.2016.04.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 04/04/2016] [Accepted: 04/08/2016] [Indexed: 01/08/2023]
|
46
|
Petrou VI, Herrera CM, Schultz KM, Clarke OB, Vendome J, Tomasek D, Banerjee S, Rajashankar KR, Belcher Dufrisne M, Kloss B, Kloppmann E, Rost B, Klug CS, Trent MS, Shapiro L, Mancia F. Structures of aminoarabinose transferase ArnT suggest a molecular basis for lipid A glycosylation. Science 2016; 351:608-12. [PMID: 26912703 DOI: 10.1126/science.aad1172] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Polymyxins are antibiotics used in the last line of defense to combat multidrug-resistant infections by Gram-negative bacteria. Polymyxin resistance arises through charge modification of the bacterial outer membrane with the attachment of the cationic sugar 4-amino-4-deoxy-l-arabinose to lipid A, a reaction catalyzed by the integral membrane lipid-to-lipid glycosyltransferase 4-amino-4-deoxy-L-arabinose transferase (ArnT). Here, we report crystal structures of ArnT from Cupriavidus metallidurans, alone and in complex with the lipid carrier undecaprenyl phosphate, at 2.8 and 3.2 angstrom resolution, respectively. The structures show cavities for both lipidic substrates, which converge at the active site. A structural rearrangement occurs on undecaprenyl phosphate binding, which stabilizes the active site and likely allows lipid A binding. Functional mutagenesis experiments based on these structures suggest a mechanistic model for ArnT family enzymes.
Collapse
Affiliation(s)
- Vasileios I Petrou
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
| | - Carmen M Herrera
- Department of Infectious Diseases, University of Georgia, College of Veterinary Medicine, Athens, GA 30602, USA
| | - Kathryn M Schultz
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Oliver B Clarke
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Jérémie Vendome
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA. Department of Systems Biology, Columbia University, New York, NY 10032, USA
| | - David Tomasek
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
| | - Surajit Banerjee
- Department of Chemistry and Chemical Biology, Cornell University, Northeastern Collaborative Access Team, Advanced Photon Source, Argonne, IL 60439, USA
| | - Kanagalaghatta R Rajashankar
- Department of Chemistry and Chemical Biology, Cornell University, Northeastern Collaborative Access Team, Advanced Photon Source, Argonne, IL 60439, USA
| | - Meagan Belcher Dufrisne
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
| | - Brian Kloss
- New York Consortium on Membrane Protein Structure, New York Structural Biology Center, 89 Convent Avenue, New York, NY 10027, USA
| | - Edda Kloppmann
- Department of Informatics, Bioinformatics and Computational Biology, Technische Universität München, Boltzmannstrasse 3, 85748 Garching, Germany
| | - Burkhard Rost
- Department of Informatics, Bioinformatics and Computational Biology, Technische Universität München, Boltzmannstrasse 3, 85748 Garching, Germany. Institute for Advanced Study (TUM-IAS), Technische Universität München, Boltzmannstrasse 3, 85748 Garching, Germany
| | - Candice S Klug
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - M Stephen Trent
- Department of Infectious Diseases, University of Georgia, College of Veterinary Medicine, Athens, GA 30602, USA
| | - Lawrence Shapiro
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Filippo Mancia
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
47
|
Daubenspeck JM, Jordan DS, Simmons W, Renfrow MB, Dybvig K. General N-and O-Linked Glycosylation of Lipoproteins in Mycoplasmas and Role of Exogenous Oligosaccharide. PLoS One 2015; 10:e0143362. [PMID: 26599081 PMCID: PMC4657876 DOI: 10.1371/journal.pone.0143362] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 11/03/2015] [Indexed: 12/21/2022] Open
Abstract
The lack of a cell wall, flagella, fimbria, and other extracellular appendages and the possession of only a single membrane render the mycoplasmas structurally simplistic and ideal model organisms for the study of glycoconjugates. Most species have genomes of about 800 kb and code for few proteins predicted to have a role in glycobiology. The murine pathogens Mycoplasma arthritidis and Mycoplasma pulmonis have only a single gene annotated as coding for a glycosyltransferase but synthesize glycolipid, polysaccharide and glycoproteins. Previously, it was shown that M. arthritidis glycosylated surface lipoproteins through O-linkage. In the current study, O-linked glycoproteins were similarly found in M. pulmonis and both species of mycoplasma were found to also possess N-linked glycans at residues of asparagine and glutamine. Protein glycosylation occurred at numerous sites on surface-exposed lipoproteins with no apparent amino acid sequence specificity. The lipoproteins of Mycoplasma pneumoniae also are glycosylated. Glycosylation was dependent on the glycosidic linkages from host oligosaccharides. As far as we are aware, N-linked glycoproteins have not been previously described in Gram-positive bacteria, the organisms to which the mycoplasmas are phylogenetically related. The findings indicate that the mycoplasma cell surface is heavily glycosylated with implications for the modulation of mycoplasma-host interactions.
Collapse
Affiliation(s)
- James M. Daubenspeck
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - David S. Jordan
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Warren Simmons
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Matthew B. Renfrow
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Kevin Dybvig
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail:
| |
Collapse
|
48
|
Perez C, Gerber S, Boilevin J, Bucher M, Darbre T, Aebi M, Reymond JL, Locher KP. Structure and mechanism of an active lipid-linked oligosaccharide flippase. Nature 2015; 524:433-8. [PMID: 26266984 DOI: 10.1038/nature14953] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 07/15/2015] [Indexed: 02/06/2023]
Abstract
The flipping of membrane-embedded lipids containing large, polar head groups is slow and energetically unfavourable, and is therefore catalysed by flippases, the mechanisms of which are unknown. A prominent example of a flipping reaction is the translocation of lipid-linked oligosaccharides that serve as donors in N-linked protein glycosylation. In Campylobacter jejuni, this process is catalysed by the ABC transporter PglK. Here we present a mechanism of PglK-catalysed lipid-linked oligosaccharide flipping based on crystal structures in distinct states, a newly devised in vitro flipping assay, and in vivo studies. PglK can adopt inward- and outward-facing conformations in vitro, but only outward-facing states are required for flipping. While the pyrophosphate-oligosaccharide head group of lipid-linked oligosaccharides enters the translocation cavity and interacts with positively charged side chains, the lipidic polyprenyl tail binds and activates the transporter but remains exposed to the lipid bilayer during the reaction. The proposed mechanism is distinct from the classical alternating-access model applied to other transporters.
Collapse
Affiliation(s)
- Camilo Perez
- Institute of Molecular Biology and Biophysics, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Sabina Gerber
- Institute of Molecular Biology and Biophysics, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Jérémy Boilevin
- Department of Chemistry and Biochemistry, University of Berne, CH-3012 Berne, Switzerland
| | - Monika Bucher
- Institute of Molecular Biology and Biophysics, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Tamis Darbre
- Department of Chemistry and Biochemistry, University of Berne, CH-3012 Berne, Switzerland
| | - Markus Aebi
- Institute of Microbiology, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Jean-Louis Reymond
- Department of Chemistry and Biochemistry, University of Berne, CH-3012 Berne, Switzerland
| | - Kaspar P Locher
- Institute of Molecular Biology and Biophysics, ETH Zürich, CH-8093 Zürich, Switzerland
| |
Collapse
|
49
|
Pedebos C, Arantes PR, Giesel GM, Verli H. In silicoInvestigation of the PglB Active Site Reveals Transient Catalytic States and Octahedral Metal Ion Coordination. Glycobiology 2015. [DOI: 10.1093/glycob/cwv053] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
50
|
Komarov IV, Yanik S, Ishchenko AY, Davies JE, Goodman JM, Kirby AJ. The most reactive amide as a transition-state mimic for cis-trans interconversion. J Am Chem Soc 2015; 137:926-30. [PMID: 25533746 DOI: 10.1021/ja511460a] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
1-Azatricyclo[3.3.1.1(3,7)]decan-2-one (3), the parent compound of a rare class of 90°-twisted amides, has finally been synthesized, using an unprecedented transformation. These compounds are of special interest as transition-state mimics for the enzyme-catalyzed cis-trans rotamer interconversion of amides involved in peptide and protein folding and function. The stabilization of the amide group in its high energy, perpendicular conformation common to both systems is shown for the rigid tricyclic system to depend, as predicted by calculation, on its methyl group substitution pattern, making 3 by some way the most reactive known "amide".
Collapse
Affiliation(s)
- Igor V Komarov
- Institute of High Technologies and ‡Chemistry Department, Taras Shevchenko National University of Kyiv , Volodymyrska 60 and 64, 01601 Kyiv, Ukraine
| | | | | | | | | | | |
Collapse
|