1
|
Tan Y, Liu J, Yong D, Hu J, Seeberger PH, Fu J, Yin J. Tandem activated caged galactoside prodrugs: advancing beyond single galactosidase dependence. Chem Sci 2025; 16:7173-7190. [PMID: 40134665 PMCID: PMC11932646 DOI: 10.1039/d5sc00722d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 03/13/2025] [Indexed: 03/27/2025] Open
Abstract
β-Galactoside prodrugs, activated by β-galactosidase (β-gal) highly expressed in some cancer cells, have been explored as anticancer agents for three decades. However, the distribution of β-gal lacks sufficient specificity to ensure precise drug release at cancer sites. By utilizing the highly stringent substrate specificity of β-gal, we chose the naturally occurring hydroxyl group of galactose as a prodrug modification site and developed a new class of tandem activated caged galactoside (TACG) prodrugs that require an additional trigger for more controlled on-demand drug release. We demonstrated that attaching various masking groups to the 6-hydroxyl group of galactose renders the galactosides resistant to β-gal hydrolysis. Focusing on the photosensitive mask 4,5-dimethoxy-2-nitrobenzyl (DMNB), we synthesized O6-DMNB modified galactosides of combretastatin A4 and 8-hydroxyquinoline, showcasing their UV/β-gal-dependent anticancer activities. We further established synthetic routes for O2-, O3-, and O4-DMNB modified TACGs. Comparative intracellular studies highlighted the O2-DMNB modified TACG as the most effective positional isomer, offering superior light-dependent selectivity. This insight led to the discovery of the O2-DMNB modified galactoside of combretastatin A4 as a potent UV-dependent microtubule assembly inhibitor. Our work provides a straightforward, effective, and universally applicable strategy for constructing dual-stimulus responsive galactoside prodrugs, extendable to various glycoside prodrugs, advancing carbohydrate-based drug discovery.
Collapse
Affiliation(s)
- Yunying Tan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology & School of Life Sciences and Health Engineering, Jiangnan University Wuxi 214122 PR China
| | - Jie Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology & School of Life Sciences and Health Engineering, Jiangnan University Wuxi 214122 PR China
| | - Dianya Yong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology & School of Life Sciences and Health Engineering, Jiangnan University Wuxi 214122 PR China
| | - Jing Hu
- Wuxi School of Medicine, Jiangnan University Wuxi 214122 PR China
| | - Peter H Seeberger
- Biomolecular Systems Department, Max Planck Institute of Colloids and Interfaces Potsdam 14476 Germany
| | - Junjie Fu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology & School of Life Sciences and Health Engineering, Jiangnan University Wuxi 214122 PR China
- Innovation Center for Vaccine Engineering, Jiangnan University Wuxi 214122 PR China
| | - Jian Yin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology & School of Life Sciences and Health Engineering, Jiangnan University Wuxi 214122 PR China
- School of Life Sciences and Health Engineering, Jiangnan University Wuxi 214122 PR China
- Innovation Center for Vaccine Engineering, Jiangnan University Wuxi 214122 PR China
| |
Collapse
|
2
|
Liu C, Lu S, Yan C, Zhao X, Yang J, Zhang W, Zhao X, Ge Y, You X, Guo Z. Sequential metabolic probes illuminate nuclear DNA for discrimination of cancerous and normal cells. Chem Sci 2025; 16:6837-6844. [PMID: 40110524 PMCID: PMC11915456 DOI: 10.1039/d5sc00360a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/05/2025] [Indexed: 03/22/2025] Open
Abstract
Elucidating the timing and spatial distribution of DNA synthesis within cancer cells is vital for cancer diagnosis and targeted therapy. However, current probes for staining nucleic acids rely on electrostatic interactions and hydrogen bonds with the nucleic acid, resulting in "static" DNA staining and the inability to distinguish cell types. Here, we present a proof-of-concept study of sequential metabolic probes, for the first time allowing for cancer-cell-specific illumination of DNA. This breakthrough is achieved by the combination of a "dual-locked" nucleoside analog VdU-Lys, and a new tetrazine-based bioorthogonal probe. Specifically, 5-vinyl-2'-deoxyuridine (VdU) release is only conducted in programmatically triggered histone deacetylases (HDACs) and cathepsin L (CTSL) as "sequential keys", enabling the modification of vinyl groups into the nuclear DNA of cancerous cells rather than normal cells. Subsequently, tetrazine-based Et-PT-Tz could in situ light-up DNA containing VdUs with significant fluorescence illumination (120-fold enhancement) through rapid bioorthogonal reaction. We demonstrated the compatibility of our probe in cancer-specific sensing of DNA with a high signal-to-noise ratio ranging from in vitro multiple cell lines to whole-organism scale. This approach would serve as a benchmark for the development of cell-specific metabolic reporters for DNA labelling, to characterize DNA metabolism in various types of cell lines.
Collapse
Affiliation(s)
- Caiqi Liu
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Sirui Lu
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Chenxu Yan
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Xingyuan Zhao
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Jing Yang
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Weixu Zhang
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Xiuyan Zhao
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Yao Ge
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Xiaofan You
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Zhiqian Guo
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology Shanghai 200237 China
| |
Collapse
|
3
|
Dutta R, Devarajan A, Talluri A, Das R, Thayumanavan S. Dual-Action-Only PROTACs. J Am Chem Soc 2025; 147:9074-9078. [PMID: 40063962 DOI: 10.1021/jacs.5c00131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Proteolysis targeting chimera (PROTAC)-based degraders are highly potent pseudocatalytic drugs, but on-target off-site homing could yield undesirable consequences. We report here a generalizable AND-logic gated PROTAC, where the concurrent presence of two different disease-relevant endogenous stimuli liberates an active protein degrader. We design Dual-Action-Only PROTAC (DAO-PROTAC) molecules that are dormant and can only be activated in the presence of both hypoxia and cathepsin-L to degrade the protein of interest (POI). We also show that the dormancy of DAO-PROTACs translates to considerable mitigation of cytotoxicity, demonstrating the potential advantages over the corresponding free PROTAC and single-stimulus triggerable pro-PROTACs.
Collapse
Affiliation(s)
- Ranit Dutta
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Anirudh Devarajan
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Amelia Talluri
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Ritam Das
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - S Thayumanavan
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
4
|
Shi J, Han W, Wang J, Kong X. Anti-Tumor Strategies Targeting Nutritional Deprivation: Challenges and Opportunities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2415550. [PMID: 39895165 DOI: 10.1002/adma.202415550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 01/04/2025] [Indexed: 02/04/2025]
Abstract
Higher and richer nutrient requirements are typical features that distinguish tumor cells from AU: cells, ensuring adequate substrates and energy sources for tumor cell proliferation and migration. Therefore, nutrient deprivation strategies based on targeted technologies can induce impaired cell viability in tumor cells, which are more sensitive than normal cells. In this review, nutrients that are required by tumor cells and related metabolic pathways are introduced, and anti-tumor strategies developed to target nutrient deprivation are described. In addition to tumor cells, the nutritional and metabolic characteristics of other cells in the tumor microenvironment (including macrophages, neutrophils, natural killer cells, T cells, and cancer-associated fibroblasts) and related new anti-tumor strategies are also summarized. In conclusion, recent advances in anti-tumor strategies targeting nutrient blockade are reviewed, and the challenges and prospects of these anti-tumor strategies are discussed, which are of theoretical significance for optimizing the clinical application of tumor nutrition deprivation strategies.
Collapse
Affiliation(s)
- Jinsheng Shi
- Qingdao Key Lab of Common Diseases, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, Shandong, 266000, China
| | - Wei Han
- Qingdao Key Lab of Common Diseases, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, Shandong, 266000, China
| | - Jie Wang
- Pharmacy Department, Qingdao Traditional Chinese Medicine Hospital (Qingdao Hiser Hospital), Qingdao, Shandong, 266000, China
| | - Xiaoying Kong
- Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao, Shandong, 266071, China
| |
Collapse
|
5
|
Wu C, Wei H, Shi S, Wang Z, Zhang Z, Osama A, Wu J, Zhang H, Zhang B. A smart cascade theranostic prodrug system activated by hydrogen peroxide for podophyllotoxin delivery. J Mater Chem B 2025; 13:2067-2073. [PMID: 39760278 DOI: 10.1039/d4tb02182g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
The construction of selectively activated prodrugs serves as a crucial strategy for reducing the adverse effects associated with disease treatment. Cascade self-assembled visual prodrugs have been applied to the construction of selective activated prodrugs with low background interference and in situ fluorescence. In this work, we rationally designed an anticancer theranostic prodrug (CM-PPT) consisting of an anticancer drug podophyllotoxin, a fluorescent dye precursor, and an H2O2 trigger boronate ester group, which could be activated by H2O2 oxidation, thereby releasing active anticancer molecules and forming fluorescent fragments concurrently. In vitro experiments revealed that the prodrug has potent anticancer efficacy, and the drug release rate could be visualized by the fluorescence intensity. In addition, intraperitoneal administration of the prodrug to mice demonstrated outstanding antitumor activities. Thus, this design of H2O2-responsive prodrug may provide a promising strategy for selective imaging of H2O2 status, real-time tracking of drug release, and personalized tumor treatment.
Collapse
Affiliation(s)
- Chengcheng Wu
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China.
| | - Haopai Wei
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China.
| | - Suntao Shi
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China.
| | - Zhiyuan Wang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China.
| | - Zhibin Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China.
| | - Alsiddig Osama
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China.
| | - Jiang Wu
- Key Laboratory for Tibet Plateau Phytochemistry of Qinghai Province, College of Pharmacy, Qinghai Minzu University, Xining, 810007, China
| | - Haijuan Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, Gansu 730000, China.
| | - Baoxin Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China.
| |
Collapse
|
6
|
Cheng W, Yang Y, Zhang B, Shao CW, Chen W, Xia R, Sun W, Zhao X, Zhang B, Luo X, James TD, Qian Y. An enzyme-responsive double-locked amonafide prodrug for the treatment of glioblastoma with minimal side effects. Chem Sci 2024:d4sc04555f. [PMID: 39494374 PMCID: PMC11528907 DOI: 10.1039/d4sc04555f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024] Open
Abstract
Amonafide (ANF), a topoisomerase II inhibitor and DNA intercalator, has exhibited promise in phase II trials but faces significant limitations due to adverse side effects. Here, we have developed a novel enzyme-triggered fluorogenic prodrug, AcKLP, that incorporates dual-locked enzyme activation, ensuring that the prodrug remains inactive until it confronts the unique enzymatic environment of glioblastoma cells. This approach minimizes premature activation and reduces toxicity to normal cells, with an IC50 > 100 μM for human umbilical vein endothelial cells (HUVEC) and ∼2.3 μM for human glioblastoma cells (U87). Upon activation of AcKLP by two distinct enzymes prevalent in glioblastoma cells, amonafide is released and emits a fluorescence signal response, facilitating treatment and the monitoring of real-time drug distribution. Mechanistic studies indicate that AcKLP mainly induces autophagic cell death in U87 cells. Moreover, three-dimensional multicellular U87 tumor spheroid assays and in vivo experiments confirm the potent antiproliferative activity of AcKLP against glioblastoma cells. This work demonstrates a novel de-caging strategy to improve the selectivity and efficacy of amonafide for cancer therapy.
Collapse
Affiliation(s)
- Wei Cheng
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University Nanjing 210046 China
| | - Yanli Yang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University Nanjing 210046 China
| | - Bo Zhang
- School of Pharmacy, Changzhou University Changzhou 213164 China
| | - Chen-Wen Shao
- Wuxi School of Medicine, Jiangnan University Wuxi 214122 China
| | - Wei Chen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University Nanjing 210046 China
| | - Ruimin Xia
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University Nanjing 210046 China
| | - Wenwei Sun
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University Nanjing 210046 China
| | - Xiubo Zhao
- School of Pharmacy, Changzhou University Changzhou 213164 China
| | - Bing Zhang
- Department of Radiology, Nanjing Drum Tower Hospital, The Affiliated Drum Tower Hospital of Nanjing University Medical School Nanjing 210008 China
| | - Xiangjie Luo
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University Nanjing 210046 China
| | - Tony D James
- Department of Chemistry, University of Bath Bath BA2 7AY UK
- School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang 453007 China
| | - Yong Qian
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University Nanjing 210046 China
- Department of Radiology, Nanjing Drum Tower Hospital, The Affiliated Drum Tower Hospital of Nanjing University Medical School Nanjing 210008 China
- Department of Chemistry, University of Bath Bath BA2 7AY UK
| |
Collapse
|
7
|
Zhang Y, Lei F, Qian W, Zhang C, Wang Q, Liu C, Ji H, Liu Z, Wang F. Designing intelligent bioorthogonal nanozymes: Recent advances of stimuli-responsive catalytic systems for biomedical applications. J Control Release 2024; 373:929-951. [PMID: 39097195 DOI: 10.1016/j.jconrel.2024.07.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
Bioorthogonal nanozymes have emerged as a potent tool in biomedicine due to their unique ability to perform enzymatic reactions that do not interfere with native biochemical processes. The integration of stimuli-responsive mechanisms into these nanozymes has further expanded their potential, allowing for controlled activation and targeted delivery. As such, intelligent bioorthogonal nanozymes have received more and more attention in developing therapeutic approaches. This review provides a comprehensive overview of the recent advances in the development and application of stimuli-responsive bioorthogonal nanozymes. By summarizing the design outlines for anchoring bioorthogonal nanozymes with stimuli-responsive capability, this review seeks to offer valuable insights and guidance for the rational design of these remarkable materials. This review highlights the significant progress made in this exciting field with different types of stimuli and the various applications. Additionally, it also examines the current challenges and limitations in the design, synthesis, and application of these systems, and proposes potential solutions and research directions. This review aims to stimulate further research toward the development of more efficient and versatile stimuli-responsive bioorthogonal nanozymes for biomedical applications.
Collapse
Affiliation(s)
- Yan Zhang
- Institute of Special Environmental Medicine, Nantong University, Nantong 226019, China
| | - Fang Lei
- School of Public Health, Nantong University, Nantong 226019, China
| | - Wanlong Qian
- Institute of Special Environmental Medicine, Nantong University, Nantong 226019, China
| | - Chengfeng Zhang
- Institute of Special Environmental Medicine, Nantong University, Nantong 226019, China
| | - Qi Wang
- School of Public Health, Nantong University, Nantong 226019, China
| | - Chaoqun Liu
- School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Haiwei Ji
- School of Public Health, Nantong University, Nantong 226019, China
| | - Zhengwei Liu
- Precision Immunology Institute, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York 10029, USA.
| | - Faming Wang
- School of Public Health, Nantong University, Nantong 226019, China.
| |
Collapse
|
8
|
Chen Y, Zhang L, Fang L, Chen C, Zhang D, Peng T. Modular Development of Enzyme-Activatable Proteolysis Targeting Chimeras for Selective Protein Degradation and Cancer Targeting. JACS AU 2024; 4:2564-2577. [PMID: 39055140 PMCID: PMC11267540 DOI: 10.1021/jacsau.4c00298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/10/2024] [Accepted: 05/10/2024] [Indexed: 07/27/2024]
Abstract
As an emerging therapeutic modality, proteolysis targeting chimeras (PROTACs) indiscriminately degrade proteins in both healthy and diseased cells, posing a risk of on-target off-site toxicity in normal tissues. Herein, we present the modular development of enzyme-activatable PROTACs, which utilize enzyme-recognition moieties to block protein degradation activities and can be specifically activated by elevated enzymes in cancer cells to enable cell-selective protein degradation and cancer targeting. We identified the methylene alkoxy carbamate (MAC) unit as an optimal self-immolative linker, possessing high stability and release efficiency for conjugating enzyme-recognition moieties with PROTACs. Leveraging the MAC linker, we developed a series of enzyme-activatable PROTACs, harnessing distinct enzymes for cancer-cell-selective protein degradation. Significantly, we introduced the first dual-enzyme-activatable PROTAC that requires the presence of two cancer-associated enzymes for activation, demonstrating highly selective protein degradation in cancer cells over nonmalignant cells, potent in vivo antitumor efficacy, and no off-tumor toxicity to normal tissues. The broad applicability of enzyme-activatable PROTACs was further demonstrated by caging other PROTACs via the MAC linker to target different proteins and E3 ligases. Our work underscores the substantial potential of enzyme-activatable PROTACs in overcoming the off-site toxicity associated with conventional PROTACs and offers new opportunities for targeted cancer treatment.
Collapse
Affiliation(s)
- Yanchi Chen
- State
Key Laboratory of Chemical Oncogenomics, School of Chemical Biology
and Biotechnology, Peking University Shenzhen
Graduate School, Shenzhen 518055, China
- National
Key Laboratory of Non-Food Biomass Energy Technology, National Engineering
Research Center for Non-Food Biorefinery, Institute of Grand Health, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China
| | - Lina Zhang
- State
Key Laboratory of Chemical Oncogenomics, School of Chemical Biology
and Biotechnology, Peking University Shenzhen
Graduate School, Shenzhen 518055, China
| | - Lincheng Fang
- State
Key Laboratory of Chemical Oncogenomics, School of Chemical Biology
and Biotechnology, Peking University Shenzhen
Graduate School, Shenzhen 518055, China
| | - Chengjie Chen
- State
Key Laboratory of Chemical Oncogenomics, School of Chemical Biology
and Biotechnology, Peking University Shenzhen
Graduate School, Shenzhen 518055, China
| | - Dong Zhang
- State
Key Laboratory of Chemical Oncogenomics, School of Chemical Biology
and Biotechnology, Peking University Shenzhen
Graduate School, Shenzhen 518055, China
| | - Tao Peng
- State
Key Laboratory of Chemical Oncogenomics, School of Chemical Biology
and Biotechnology, Peking University Shenzhen
Graduate School, Shenzhen 518055, China
- Institute
of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| |
Collapse
|
9
|
Novotná K, Tenora L, Slusher BS, Rais R. Therapeutic resurgence of 6-diazo-5-oxo-l-norleucine (DON) through tissue-targeted prodrugs. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2024; 100:157-180. [PMID: 39034051 DOI: 10.1016/bs.apha.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
The recognition that rapidly proliferating cancer cells rely heavily on glutamine for their survival and growth has renewed interest in the development of glutamine antagonists for cancer therapy. Glutamine plays a pivotal role as a carbon source for synthesizing lipids and metabolites through the TCA cycle, as well as a nitrogen source for synthesis of amino acid and nucleotides. Numerous studies have explored the significance of glutamine metabolism in cancer, providing a robust rationale for targeting this metabolic pathway in cancer treatment. The glutamine antagonist 6-diazo-5-oxo-l-norleucine (DON) has been explored as an anticancer therapeutic for nearly six decades. Initial investigations revealed remarkable efficacy in preclinical studies and promising outcomes in early clinical trials. However, further advancement of DON was hindered due to dose-limiting gastrointestinal (GI) toxicities as the GI system is highly dependent on glutamine for regulating growth and repair. In an effort to repurpose DON and mitigate gastrointestinal (GI) toxicity concerns, prodrug strategies were utilized. These strategies aimed to enhance the delivery of DON to specific target tissues, such as tumors and the central nervous system (CNS), while sparing DON delivery to normal tissues, particularly the GI tract. When administered at low daily doses, optimized for metabolic inhibition, these prodrugs exhibit remarkable effectiveness without inducing significant toxicity to normal tissues. This approach holds promise for overcoming past challenges associated with DON, offering an avenue for its successful utilization in cancer treatment.
Collapse
Affiliation(s)
- Kateřina Novotná
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD, United States; Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic v.v.i., Prague, Czech Republic; Department of Organic Chemistry, Charles University, Faculty of Science, Prague, Czech Republic
| | - Lukáš Tenora
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD, United States; Department of Organic Chemistry, Charles University, Faculty of Science, Prague, Czech Republic
| | - Barbara S Slusher
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD, United States; Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, United States; Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States; Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States; Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, United States; Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, United States; Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, United States.
| | - Rana Rais
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD, United States; Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, United States; Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
10
|
Shanmugam G, Subramaniyam K, George M, Sarkar K. HDAC inhibition regulates oxidative stress in CD4 +Thelper cells of chronic obstructive pulmonary disease and non-small cell lung cancer patients via mitochondrial transcription factor a (mtTFA) modulating NF-κB/HIF1α axis. Int Immunopharmacol 2023; 122:110661. [PMID: 37473712 DOI: 10.1016/j.intimp.2023.110661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/14/2023] [Accepted: 07/14/2023] [Indexed: 07/22/2023]
Abstract
Histone deacetylases (HDACs) play a crucial role in the epigenetic regulation of gene expression by remodelling chromatin. Isoenzymes of the HDAC family exhibit aberrant regulation in a wide variety of cancers as well as several inflammatory lung disorders like chronic obstructive pulmonary disease (COPD). Inhibition of HDACs is a potential therapeutic strategy that could be used to reverse epigenetic modification. Trichostatin A (TSA), a powerful histone deacetylase (HDAC) inhibitor, has anti-cancer effects in numerous cancer types. However, it is not yet apparent how HDAC inhibitors affect human non-small cell lung cancer cells (NSCLC) and COPD. This study aims to investigate TSA's role in restoring mitochondrial dysfunction and its effect on hypoxia and inflammation in CD4+T cells obtained from patients with COPD and lung cancer. As a result of treatment with TSA, there is a reduction in the expression of inflammatory cytokines and a decreased enrichment of transcriptional factors associated with inflammation at VEGFA gene loci. We have seen a substantial decrease in the expression of NF-κB and HIF1α, which are the critical mediators of inflammation and hypoxia, respectively. Following TSA treatment, mtTFA expression was increased, facilitating patients with COPD and NSCLC in the recovery of their dysfunctional mitochondria. Furthermore, we have discovered that TSA treatment in patients with COPD and NSCLC may lead to immunoprotective ness by inducing Th1ness. Our finding gives a new insight into the existing body of knowledge regarding TSA-based therapeutic methods and highlights the necessity of epigenetic therapy for these devastating lung disorders.
Collapse
Affiliation(s)
- Geetha Shanmugam
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Krishnaveni Subramaniyam
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Melvin George
- Department of Clinical Pharmacology, SRM Medical College Hospital and Research Centre, Kattankulathur, Tamil Nadu 603203, India
| | - Koustav Sarkar
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India.
| |
Collapse
|
11
|
Wang M, Qu K, Zhao P, Yin X, Meng Y, Herdewijn P, Liu C, Zhang L, Xia X. Synthesis and anticancer evaluation of acetylated-lysine conjugated gemcitabine prodrugs. RSC Med Chem 2023; 14:1572-1580. [PMID: 37593582 PMCID: PMC10429768 DOI: 10.1039/d3md00190c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 07/04/2023] [Indexed: 08/19/2023] Open
Abstract
Gemcitabine is an antimetabolite drug approved for the treatment of various cancers. However, its use is limited due to several issues such as stability, toxicity and drug resistance. Herein, we present the design and synthesis of a series of gemcitabine prodrugs with modifications on the 4-N-amino group by employing an acetylated l- or d-lysine moiety masked by different substitutions. Prodrugs 1-3 and 6-8 showed up to 2.4 times greater anticancer activity than gemcitabine in A549 lung cells, while they exhibited potent activity against BxPC-3 pancreatic cells with IC50 values in the range of 7-40 nM. Moreover, prodrugs 2-3 and 7-8 were found to be less potent against CTSL low expression Caco-2 cells and at least 69-fold less toxic towards human normal HEK-293T cells compared to gemcitabine, leading to improved selectivity and safety profiles. Further stability studies showed that representative prodrugs 2 and 7 exhibited enhanced metabolic stability in human plasma, human liver microsomes and cytidine deaminase. Prodrug 1 can be cleaved by tumor cell-enriched CTSL to release parent drug gemcitabine. Overall, these results demonstrated that acetylated lysine conjugated gemcitabine prodrugs could serve as promising leads for further evaluation as new anticancer drugs.
Collapse
Affiliation(s)
- Mengmeng Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250103 China
| | - Kunyu Qu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250103 China
| | - Peipei Zhao
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250103 China
| | - Xin Yin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250103 China
| | - Yiwei Meng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250103 China
| | - Piet Herdewijn
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven 3000 Leuven Belgium
| | - Chao Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University Jinan 250012 China
| | - Lixin Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250103 China
- State Key Laboratory of Bioreactor Engineering, and School of Biotechnology, East China University of Science and Technology (ECUST) Shanghai 200237 China
| | - Xuekui Xia
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250103 China
| |
Collapse
|
12
|
Paneque A, Fortus H, Zheng J, Werlen G, Jacinto E. The Hexosamine Biosynthesis Pathway: Regulation and Function. Genes (Basel) 2023; 14:genes14040933. [PMID: 37107691 PMCID: PMC10138107 DOI: 10.3390/genes14040933] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
The hexosamine biosynthesis pathway (HBP) produces uridine diphosphate-N-acetyl glucosamine, UDP-GlcNAc, which is a key metabolite that is used for N- or O-linked glycosylation, a co- or post-translational modification, respectively, that modulates protein activity and expression. The production of hexosamines can occur via de novo or salvage mechanisms that are catalyzed by metabolic enzymes. Nutrients including glutamine, glucose, acetyl-CoA, and UTP are utilized by the HBP. Together with availability of these nutrients, signaling molecules that respond to environmental signals, such as mTOR, AMPK, and stress-regulated transcription factors, modulate the HBP. This review discusses the regulation of GFAT, the key enzyme of the de novo HBP, as well as other metabolic enzymes that catalyze the reactions to produce UDP-GlcNAc. We also examine the contribution of the salvage mechanisms in the HBP and how dietary supplementation of the salvage metabolites glucosamine and N-acetylglucosamine could reprogram metabolism and have therapeutic potential. We elaborate on how UDP-GlcNAc is utilized for N-glycosylation of membrane and secretory proteins and how the HBP is reprogrammed during nutrient fluctuations to maintain proteostasis. We also consider how O-GlcNAcylation is coupled to nutrient availability and how this modification modulates cell signaling. We summarize how deregulation of protein N-glycosylation and O-GlcNAcylation can lead to diseases including cancer, diabetes, immunodeficiencies, and congenital disorders of glycosylation. We review the current pharmacological strategies to inhibit GFAT and other enzymes involved in the HBP or glycosylation and how engineered prodrugs could have better therapeutic efficacy for the treatment of diseases related to HBP deregulation.
Collapse
Affiliation(s)
- Alysta Paneque
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Harvey Fortus
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Julia Zheng
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Guy Werlen
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Estela Jacinto
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
13
|
Chang B, Xu Q, Guo H, Zhong M, Shen R, Zhao L, Zhao J, Ma T, Chu Y, Zhang J, Fang J. Puromycin Prodrug Activation by Thioredoxin Reductase Overcomes Its Promiscuous Cytotoxicity. J Med Chem 2023; 66:3250-3261. [PMID: 36855911 DOI: 10.1021/acs.jmedchem.2c01509] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Overexpression of the selenoprotein thioredoxin reductase (TrxR) has been documented in malignant tissues and is of pathological significance for many types of tumors. The antibiotic puromycin (Puro) is a protein synthesis inhibitor causing premature polypeptide chain termination during translation. The well-defined action mechanism of Puro makes it a useful tool in biomedical studies. However, the nonselective cytotoxicity of Puro limits its therapeutic applications. We report herein the construction and evaluation of two Puro prodrugs, that is, S1-Puro with a five-membered cyclic disulfide trigger and S2-Puro with a linear disulfide trigger. S1-Puro is selectively activated by TrxR and shows the TrxR-dependent cytotoxicity to cancer cells, while S2-Puro is readily activated by thiols. Furthermore, S1-Puro displays higher stability in plasma than S2-Puro. We expect that this prodrug strategy may promote the further development of Puro as a therapeutic agent.
Collapse
Affiliation(s)
- Bingbing Chang
- State Key Laboratory of Applied Organic Chemistry, School of Pharmacy, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Qianhe Xu
- State Key Laboratory of Applied Organic Chemistry, School of Pharmacy, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Hairui Guo
- Department of Oncology, The First Affiliated Hospital of Xinxiang Medical College, Weihui, Henan 453100, China
| | - Miao Zhong
- State Key Laboratory of Applied Organic Chemistry, School of Pharmacy, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Ruipeng Shen
- State Key Laboratory of Applied Organic Chemistry, School of Pharmacy, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Lanning Zhao
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| | - Jintao Zhao
- State Key Laboratory of Applied Organic Chemistry, School of Pharmacy, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Tao Ma
- State Key Laboratory of Applied Organic Chemistry, School of Pharmacy, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Yajun Chu
- State Key Laboratory of Applied Organic Chemistry, School of Pharmacy, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Junmin Zhang
- State Key Laboratory of Applied Organic Chemistry, School of Pharmacy, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry, School of Pharmacy, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China.,School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing, Jiangsu 210094, China
| |
Collapse
|
14
|
Rais R, Lemberg KM, Tenora L, Arwood ML, Pal A, Alt J, Wu Y, Lam J, Aguilar JMH, Zhao L, Peters DE, Tallon C, Pandey R, Thomas AG, Dash RP, Seiwert T, Majer P, Leone RD, Powell JD, Slusher BS. Discovery of DRP-104, a tumor-targeted metabolic inhibitor prodrug. SCIENCE ADVANCES 2022; 8:eabq5925. [PMID: 36383674 PMCID: PMC9668306 DOI: 10.1126/sciadv.abq5925] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 09/27/2022] [Indexed: 05/23/2023]
Abstract
6-Diazo-5-oxo-l-norleucine (DON) is a glutamine antagonist that suppresses cancer cell metabolism but concurrently enhances the metabolic fitness of tumor CD8+ T cells. DON showed promising efficacy in clinical trials; however, its development was halted by dose-limiting gastrointestinal (GI) toxicities. Given its clinical potential, we designed DON peptide prodrugs and found DRP-104 [isopropyl(S)-2-((S)-2-acetamido-3-(1H-indol-3-yl)-propanamido)-6-diazo-5-oxo-hexanoate] that was preferentially bioactivated to DON in tumor while bioinactivated to an inert metabolite in GI tissues. In drug distribution studies, DRP-104 delivered a prodigious 11-fold greater exposure of DON to tumor versus GI tissues. DRP-104 affected multiple metabolic pathways in tumor, including decreased glutamine flux into the TCA cycle. In efficacy studies, both DRP-104 and DON caused complete tumor regression; however, DRP-104 had a markedly improved tolerability profile. DRP-104's effect was CD8+ T cell dependent and resulted in robust immunologic memory. DRP-104 represents a first-in-class prodrug with differential metabolism in target versus toxicity tissue. DRP-104 is now in clinical trials under the FDA Fast Track designation.
Collapse
Affiliation(s)
- Rana Rais
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Kathryn M. Lemberg
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Lukáš Tenora
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic v.v.i., Prague 16000, Czech Republic
| | - Matthew L. Arwood
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Arindom Pal
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Jesse Alt
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Ying Wu
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Jenny Lam
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | | | - Liang Zhao
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Diane E. Peters
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Carolyn Tallon
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Rajeev Pandey
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Ajit G. Thomas
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Ranjeet P. Dash
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Tanguy Seiwert
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Pavel Majer
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic v.v.i., Prague 16000, Czech Republic
| | - Robert D. Leone
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Jonathan D. Powell
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Barbara S. Slusher
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
15
|
Huang M, Xiong D, Pan J, Zhang Q, Sei S, Shoemaker RH, Lubet RA, Montuenga LM, Wang Y, Slusher BS, You M. Targeting Glutamine Metabolism to Enhance Immunoprevention of EGFR-Driven Lung Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105885. [PMID: 35861366 PMCID: PMC9475521 DOI: 10.1002/advs.202105885] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Lung cancer is the leading cause of cancer death worldwide. Vaccination against EGFR can be one of the venues to prevent lung cancer. Blocking glutamine metabolism has been shown to improve anticancer immunity. Here, the authors report that JHU083, an orally active glutamine antagonist prodrug designed to be preferentially activated in the tumor microenvironment, has potent anticancer effects on EGFR-driven mouse lung tumorigenesis. Lung tumor development is significantly suppressed when treatment with JHU083 is combined with an EGFR peptide vaccine (EVax) than either single treatment. Flow cytometry and single-cell RNA sequencing of the lung tumors reveal that JHU083 increases CD8+ T cell and CD4+ Th1 cell infiltration, while EVax elicits robust Th1 cell-mediated immune responses and protects mice against EGFRL858R mutation-driven lung tumorigenesis. JHU083 treatment decreases immune suppressive cells, including both monocytic- and granulocytic-myeloid-derived suppressor cells, regulatory T cells, and pro-tumor CD4+ Th17 cells in mouse models. Interestingly, Th1 cells are found to robustly upregulate oxidative metabolism and adopt a highly activated and memory-like phenotype upon glutamine inhibition. These results suggest that JHU083 is highly effective against EGFR-driven lung tumorigenesis and promotes an adaptive T cell-mediated tumor-specific immune response that enhances the efficacy of EVax.
Collapse
Affiliation(s)
- Mofei Huang
- Center for Cancer PreventionHouston Methodist Cancer CenterHouston Methodist Research InstituteHoustonTX77030USA
| | - Donghai Xiong
- Center for Cancer PreventionHouston Methodist Cancer CenterHouston Methodist Research InstituteHoustonTX77030USA
| | - Jing Pan
- Center for Cancer PreventionHouston Methodist Cancer CenterHouston Methodist Research InstituteHoustonTX77030USA
| | - Qi Zhang
- Center for Cancer PreventionHouston Methodist Cancer CenterHouston Methodist Research InstituteHoustonTX77030USA
| | - Shizuko Sei
- Chemopreventive Agent Development Research GroupDivision of Cancer PreventionNational Cancer InstituteBethesdaMD20850USA
| | - Robert H. Shoemaker
- Chemopreventive Agent Development Research GroupDivision of Cancer PreventionNational Cancer InstituteBethesdaMD20850USA
| | - Ronald A. Lubet
- Chemopreventive Agent Development Research GroupDivision of Cancer PreventionNational Cancer InstituteBethesdaMD20850USA
| | - Luis M. Montuenga
- Program in Solid Tumors and BiomarkersCenter for Applied Medical Research (CIMA)University of NavarraPamplona31009Spain
- Department of Histology and PathologyUniversity of NavarraPamplona31009Spain
- Respiratory Tract Tumors GroupIdisnaPamplona31000Spain
- Respiratory Tract Tumors ProgramCIBERONCMadrid28013Spain
| | - Yian Wang
- Center for Cancer PreventionHouston Methodist Cancer CenterHouston Methodist Research InstituteHoustonTX77030USA
| | - Barbara S. Slusher
- Johns Hopkins Drug DiscoveryJohns Hopkins University School of MedicineBaltimoreMD21205USA
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMD2128USA
| | - Ming You
- Center for Cancer PreventionHouston Methodist Cancer CenterHouston Methodist Research InstituteHoustonTX77030USA
| |
Collapse
|
16
|
Kaupbayeva B, Murata H, Rule GS, Matyjaszewski K, Russell AJ. Rational Control of Protein-Protein Interactions with Protein-ATRP-Generated Protease-Sensitive Polymer Cages. Biomacromolecules 2022; 23:3831-3846. [PMID: 35984406 DOI: 10.1021/acs.biomac.2c00679] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protease-protease interactions lie at the heart of the biological cascades that provide rapid molecular responses to living systems. Blood clotting cascades, apoptosis signaling networks, bacterial infection, and virus trafficking have all evolved to be activated and sustained by protease-protease interactions. Biomimetic strategies designed to target drugs to specific locations have generated proprotein drugs that can be activated by proteolytic cleavage to release native protein. We have previously demonstrated that the modification of enzymes with a custom-designed comb-shaped polymer nanoarmor can shield the enzyme surface and eliminate almost all protein-protein interactions. We now describe the synthesis and characterization of protease-sensitive comb-shaped nanoarmor cages using poly(ethylene glycol) [Sundy, J. S. Arthritis Rheum. 2008, 58(9), 2882-2891]methacrylate macromonomers where the PEG tines of the comb are connected to the backbone of the growing polymer chain by peptide linkers. Protease-induced cleavage of the tines of the comb releases a polymer-modified protein that can once again participate in protein-protein interactions. Atom transfer radical polymerization (ATRP) was used to copolymerize the macromonomer and carboxybetaine methacrylate from initiator-labeled chymotrypsin and trypsin enzymes, yielding proprotease conjugates that retained activity toward small peptide substrates but prevented activity against proteins. Native proteases triggered the release of the PEG side chains from the polymer backbone within 20 min, thereby increasing the activity of the conjugate toward larger protein substrates by 100%. Biomimetic cascade initiation of nanoarmored protease-sensitive protein-polymer conjugates may open the door to a new class of responsive targeted therapies.
Collapse
Affiliation(s)
- Bibifatima Kaupbayeva
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States.,Center for Polymer-Based Protein Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States.,National Laboratory Astana, Nazarbayev University, Nur-Sultan City 010000, Kazakhstan
| | - Hironobu Murata
- Center for Polymer-Based Protein Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States.,Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Gordon S Rule
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States.,Center for Polymer-Based Protein Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Center for Polymer-Based Protein Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States.,Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Alan J Russell
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States.,Center for Polymer-Based Protein Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States.,Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States.,Amgen, 1 Amgen Center Drive, Thousand Oaks, California 91320, United States
| |
Collapse
|
17
|
Cong X, Chen J, Xu R. Recent Progress in Bio-Responsive Drug Delivery Systems for Tumor Therapy. Front Bioeng Biotechnol 2022; 10:916952. [PMID: 35845404 PMCID: PMC9277442 DOI: 10.3389/fbioe.2022.916952] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 06/09/2022] [Indexed: 12/24/2022] Open
Abstract
Spatially- and/or temporally-controlled drug release has always been the pursuit of drug delivery systems (DDSs) to achieve the ideal therapeutic effect. The abnormal pathophysiological characteristics of the tumor microenvironment, including acidosis, overexpression of special enzymes, hypoxia, and high levels of ROS, GSH, and ATP, offer the possibility for the design of stimulus-responsive DDSs for controlled drug release to realize more efficient drug delivery and anti-tumor activity. With the help of these stimulus signals, responsive DDSs can realize controlled drug release more precisely within the local tumor site and decrease the injected dose and systemic toxicity. This review first describes the major pathophysiological characteristics of the tumor microenvironment, and highlights the recent cutting-edge advances in DDSs responding to the tumor pathophysiological environment for cancer therapy. Finally, the challenges and future directions of bio-responsive DDSs are discussed.
Collapse
Affiliation(s)
- Xiufeng Cong
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jun Chen
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ran Xu
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Ran Xu,
| |
Collapse
|
18
|
Beasley S, Vandewalle A, Singha M, Nguyen K, England W, Tarapore E, Dai N, Corrêa IR, Atwood SX, Spitale RC. Exploiting Endogenous Enzymes for Cancer-Cell Selective Metabolic Labeling of RNA in Vivo. J Am Chem Soc 2022; 144:7085-7088. [PMID: 35416650 PMCID: PMC10032647 DOI: 10.1021/jacs.2c02404] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tissues and organs are composed of many diverse cell types, making cell-specific gene expression profiling a major challenge. Herein we report that endogenous enzymes, unique to a cell of interest, can be utilized to enable cell-specific metabolic labeling of RNA. We demonstrate that appropriately designed "caged" nucleosides can be rendered active by serving as a substrate for cancer-cell specific enzymes to enable RNA metabolic labeling, only in cancer cells. We envision that the ease and high stringency of our approach will enable expression analysis of tumor cells in complex environments.
Collapse
Affiliation(s)
- Samantha Beasley
- Department of Pharmaceutical Sciences, University of California─Irvine, Irvine, California 92697, United States
| | - Abigail Vandewalle
- Department of Pharmaceutical Sciences, University of California─Irvine, Irvine, California 92697, United States
| | - Monika Singha
- Department of Pharmaceutical Sciences, University of California─Irvine, Irvine, California 92697, United States
| | - Kim Nguyen
- Department of Pharmaceutical Sciences, University of California─Irvine, Irvine, California 92697, United States
| | - Whitney England
- Department of Pharmaceutical Sciences, University of California─Irvine, Irvine, California 92697, United States
| | - Eric Tarapore
- Department of Developmental & Cellular Biology, University of California─Irvine, Irvine, California 92697, United States
| | - Nan Dai
- New England Biolabs, 240 County Road, Ipswich, Massachusetts 01938, United States
| | - Ivan R Corrêa
- New England Biolabs, 240 County Road, Ipswich, Massachusetts 01938, United States
| | - Scott X Atwood
- Department of Developmental & Cellular Biology, University of California─Irvine, Irvine, California 92697, United States
| | - Robert C Spitale
- Department of Pharmaceutical Sciences, University of California─Irvine, Irvine, California 92697, United States
- Department of Chemistry, University of California─Irvine, Irvine, California 92697, United States
| |
Collapse
|
19
|
Ciaramicoli LM, Kim HS, Alamudi SH, Chang YT. ABCB1 can actively pump-out the background-free tame fluorescent probe CO-1 from live cells. Chem Asian J 2022; 17:e202200229. [PMID: 35419982 DOI: 10.1002/asia.202200229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/12/2022] [Indexed: 11/07/2022]
Abstract
Cell labelling using a small fluorescent probe is an important technique in biomedical sciences. We previously developed a biocompatible and membrane-permeable probe, CO-1, which has low nonspecific binding affinity towards nontarget molecules. Although this background-free tame probe has been utilized for labelling of various intracellular biomolecules in live cells, the probes' backgroung-free staining mechanism was not fully understood. Here, we propose that Gating-Oriented Live-cell Distinction (GOLD) mechanism occurs when ABCB1 transporter removes unbound CO-1 molecules from mammalian cells and, in a minor role, DIRC2 pumps CO-1 out from lysosomes. We also showed that solute carrier transporters were not involved in carrying CO-1 inside of cells. The role of reporters in assisting the probes' influx-efflux was analyzed by the combination of CRISPR library sceenings and inhibitors test. In summary, tame probe CO-1 cellular staining occurs in a dual mechanism where the probe moves freely through the cells membrane, but its washable property can be directly related to the action of ABCB1 transporter.
Collapse
Affiliation(s)
- Larissa Miasiro Ciaramicoli
- Pohang University of Science and Technology Department of Chemistry, Department of Chemistry, 77 Cheongam-Ro, Nam-Gu, 37673, Pohang, KOREA, REPUBLIC OF
| | - Heon Seok Kim
- Stanford University School of Medicine, Division of Oncology, Department of Medicine, UNITED STATES
| | - Samira Husen Alamudi
- Genomics Hub, Genomik Solidaritas Indonesia (GSI) Lab, 12980, Jakarta, INDONESIA
| | - Young-Tae Chang
- POSTECH, Department of Chemistry, 77 Cheongam-Ro, Nam-Gu, 37673, Pohang, KOREA, REPUBLIC OF
| |
Collapse
|
20
|
li X, Huo F, Zhang Y, Cheng F, Yin C. Enzyme-activated Prodrugs and Their Release Mechanisms for Treatment of Cancer. J Mater Chem B 2022; 10:5504-5519. [DOI: 10.1039/d2tb00922f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Enzyme-activated prodrugs have received a lot of attention in recent years. These prodrugs have low toxicity to cells before they are activated, and when they interact with specific enzymes, they...
Collapse
|
21
|
Shin I, Park SH, Jung H, Kim Y. A fluorogenic probe targeting two spatially separated enzymes for selective imaging of cancer cells. Chem Commun (Camb) 2022; 58:4079-4082. [DOI: 10.1039/d2cc01082h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We describe a fluorogenic probe BocLys(Ac)-AB-FC targeting both histone deacetylases (HDACs) and cathepsin L, which are overexpressed in spatially separated subcellular organelles of cancer cells. The results show that the...
Collapse
|
22
|
Aydin B, Arslan S, Bayraklı F, Karademir B, Arga KY. MicroRNA-Mediated Drug Repurposing Unveiled Potential Candidate Drugs for Prolactinoma Treatment. Neuroendocrinology 2022; 112:161-173. [PMID: 33706313 DOI: 10.1159/000515801] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 03/08/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Prolactinomas, also called lactotroph adenomas, are the most encountered type of hormone-secreting pituitary neuroendocrine tumors in the clinic. The preferred first-line therapy is a medical treatment with dopamine agonists (DAs), mainly cabergoline, to reduce serum prolactin levels, tumor volume, and mass effect. However, in some cases, patients have displayed DA resistance with aggressive tumor behavior or are faced with recurrence after drug withdrawal. Also, currently used therapeutics have notorious side effects and impair the life quality of the patients. METHODS Since the amalgamation of clinical and laboratory data besides tumor histopathogenesis and transcriptional regulatory features of the tumor emerges to exhibit essential roles in the behavior and progression of prolactinomas; in this work, we integrated mRNA- and microRNA (miRNA)-level transcriptome data that exploit disease-specific signatures in addition to biological and pharmacological data to elucidate a rational prioritization of pathways and drugs in prolactinoma. RESULTS We identified 8 drug candidates through drug repurposing based on mRNA-miRNA-level data integration and evaluated their potential through in vitro assays in the MMQ cell line. Seven repurposed drugs including 5-fluorocytosine, nortriptyline, neratinib, puromycin, taxifolin, vorinostat, and zileuton were proposed as potential drug candidates for the treatment of prolactinoma. We further hypothesized possible mechanisms of drug action on MMQ cell viability through analyzing the PI3K/Akt signaling pathway and cell cycle arrest via flow cytometry and Western blotting. DISCUSSION We presented the transcriptomic landscape of prolactinoma through miRNA and mRNA-level data integration and proposed repurposed drug candidates based on this integration. We validated our findings through testing cell viability, cell cycle phases, and PI3K/Akt protein expressions. Effects of the drugs on cell cycle phases and inhibition of the PI3K/Akt pathway by all drugs gave us promising output for further studies using these drugs in the treatment of prolactinoma. This is the first study that reports miRNA-mediated repurposed drugs for prolactinoma treatment via in vitro experiments.
Collapse
Affiliation(s)
- Busra Aydin
- Department of Bioengineering, Marmara University, Istanbul, Turkey
| | - Sema Arslan
- Department of Biochemistry, Faculty of Medicine, Marmara University, Istanbul, Turkey
| | - Fatih Bayraklı
- Department of Neurosurgery, Faculty of Medicine, Marmara University, Istanbul, Turkey
- Institute of Neurological Sciences, Marmara University, Istanbul, Turkey
| | - Betul Karademir
- Department of Biochemistry, Faculty of Medicine, Marmara University, Istanbul, Turkey
- Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, Istanbul, Turkey
| | | |
Collapse
|
23
|
Vaidya SP, Patra M. X-rays Actuate Anticancer Drugs: Opening New Vistas in Prodrug Therapy. Chembiochem 2021; 22:2998-3000. [PMID: 34406685 DOI: 10.1002/cbic.202100373] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/18/2021] [Indexed: 02/04/2023]
Abstract
Chemotherapy is the primary treatment modality employed in the clinic for the treatment of cancer. Despite proven clinical success, adverse side effects are one of the drawbacks of this approach. The prodrug strategy has emerged as an alternative approach with the aim of alleviating these drawbacks. Prodrug activation is typically achieved by either endogenous or exogenous triggers. Exogenous triggers like light are appealing as they are independent of inherent patient and/or cancer-type variations. However, tissue penetration depth remains the Achilles' heel of this approach. In this context, usage of X-rays as the external trigger with infinite tissue penetration depth opens up exciting prospects in prodrug activation strategies.
Collapse
Affiliation(s)
- Shreyas P Vaidya
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Laboratory of Medicinal Chemistry and Cell Biology, Homi Bhabha Road, Navy Nagar, 400005, Mumbai, India
| | - Malay Patra
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Laboratory of Medicinal Chemistry and Cell Biology, Homi Bhabha Road, Navy Nagar, 400005, Mumbai, India
| |
Collapse
|
24
|
Ma D, Zong Q, Du Y, Yu F, Xiao X, Sun R, Guo Y, Wei X, Yuan Y. Sequential enzyme-activated macrotheranostic probe for selective tumor mitochondria targeting. Acta Biomater 2021; 135:628-637. [PMID: 34371167 DOI: 10.1016/j.actbio.2021.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/18/2021] [Accepted: 08/02/2021] [Indexed: 12/20/2022]
Abstract
Subcellular organelle targeted imaging and therapy are of enormous interest in cancer theranostics. However, the lack of tumor-selective organelle targeting has compromised their efficacy and safety. In this work, we found that the near-infrared (NIR) fluorophore hemicyanine (CyNH2) can selectively target mitochondria with strong cytotoxicity through decreasing the mitochondrial membrane potential and increasing the intracellular reactive oxygen species (ROS) levels. A macrotheranostic probe (denoted as PLCy) based on conjugating CyNH2 with an acetylated lysine group was developed with masked fluorescence and cytotoxicity, which could both be unmasked through sequential activation by cancer cells overexpressing histone deacetylases (HDACs) and cathepsin L (CTSL) enzymes for selective cancer cell mitochondria-targeted imaging and therapy. In vitro and in vivo studies confirmed that the specific fluorescence turn-on and toxicity were restored in cancer cells and efficiently inhibited tumor growth. This macrotheranostic probe with sequential enzyme activation and mitochondrial targeting is expected to have promising applications in imaging-guided cancer therapy with high specificity and efficiency. STATEMENT OF SIGNIFICANCE: To improve the targeting efficiency and enhance the anti-cancer activities of macrotheranostic probe. We designed macrotheranostic probe PLCy that can be activated via sequential enzymes for selective tumor mitochondria targeting. More importantly, the activated CyNH2 can decrease the mitochondrial membrane potential and elevate the reactive oxygen species level in cancer cells without light irradiation, which can further induce apoptosis of tumor cells for chemotherapy. Therefore, the use of sequential enzyme activation and mitochondria targeting strategies in the context of enzymatic activation may provide a general strategy for organelle-targeted imaging and therapy with high specificity and efficiency.
Collapse
|
25
|
Zong Q, Zheng R, Xiao X, Jiang M, Li J, Yuan Y. Dual-locking nanoprobe based on hemicyanine for orthogonal stimuli-triggered precise cancer imaging and therapy. J Control Release 2021; 338:307-315. [PMID: 34454962 DOI: 10.1016/j.jconrel.2021.08.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/17/2021] [Accepted: 08/23/2021] [Indexed: 11/29/2022]
Abstract
Currently, stimulus-responsive nanomedicines are usually activated by a single cancer-associated biomarker and utilize different image/therapeutic agents for cancer imaging/therapy, which restricts the specificity of nanomedicine and complicates their design. Herein, we report a novel dual-locking theranostic nanoprobe (DL-P) based on near-infrared (NIR) hemicyanine CyNH2 with two orthogonal stimuli of cancer cell lysosomal pH (first "lock")- and lysosome-overexpressed cathepsin B (CTB, second "lock")-triggered NIR fluorescence turn-on and drug activation to improve the specificity of cancer imaging and therapy. The fluorescence of CyNH2 was initially quenched due to intramolecular charge transfer (ICT) but could be selectively activated under the dual-key stimulation of lysosomal pH and CTB to liberate CyNH2, resulting in strong NIR fluorescence turn-on for cancer imaging. Moreover, CyNH2 caused mitochondrial dysfunction to inhibit cancer cell proliferation in the absence of laser irradiation, which can be used in cancer therapy. Compared with previously reported probes that respond to a single stimulus, this dual-locking nanoprobe that is responsive to two orthogonal stimuli triggers with integrated imaging and therapy function in a single agent exhibits increased selectivity and specificity, which provides a prospective strategy for precise cancer imaging and therapy.
Collapse
Affiliation(s)
- Qingyu Zong
- Institute for Life Sciences, School of Medicine, South China University of Technology, Guangzhou 510006, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, PR China
| | - Rui Zheng
- Institute for Life Sciences, School of Medicine, South China University of Technology, Guangzhou 510006, PR China
| | - Xuan Xiao
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, PR China
| | - Maolin Jiang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, PR China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, PR China
| | - Jisi Li
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, PR China
| | - Youyong Yuan
- Institute for Life Sciences, School of Medicine, South China University of Technology, Guangzhou 510006, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, PR China; School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, PR China.
| |
Collapse
|
26
|
Phan HAT, Giannakoulias SG, Barrett TM, Liu C, Petersson EJ. Rational design of thioamide peptides as selective inhibitors of cysteine protease cathepsin L. Chem Sci 2021; 12:10825-10835. [PMID: 35355937 PMCID: PMC8901119 DOI: 10.1039/d1sc00785h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/30/2021] [Indexed: 12/24/2022] Open
Abstract
Aberrant levels of cathepsin L (Cts L), a ubiquitously expressed endosomal cysteine protease, have been implicated in many diseases such as cancer and diabetes. Significantly, Cts L has been identified as a potential target for the treatment of COVID-19 due to its recently unveiled critical role in SARS-CoV-2 entry into the host cells. However, there are currently no clinically approved specific inhibitors of Cts L, as it is often challenging to obtain specificity against the many highly homologous cathepsin family cysteine proteases. Peptide-based agents are often promising protease inhibitors as they offer high selectivity and potency, but unfortunately are subject to degradation in vivo. Thioamide substitution, a single-atom O-to-S modification in the peptide backbone, has been shown to improve the proteolytic stability of peptides addressing this issue. Utilizing this approach, we demonstrate herein that good peptidyl substrates can be converted into sub-micromolar inhibitors of Cts L by a single thioamide substitution in the peptide backbone. We have designed and scanned several thioamide stabilized peptide scaffolds, in which one peptide, RS 1A, was stabilized against proteolysis by all five cathepsins (Cts L, Cts V, Cts K, Cts S, and Cts B) while inhibiting Cts L with >25-fold specificity against the other cathepsins. We further showed that this stabilized RS 1A peptide could inhibit Cts L in human liver carcinoma lysates (IC50 = 19 μM). Our study demonstrates that one can rationally design a stabilized, specific peptidyl protease inhibitor by strategic placement of a thioamide and reaffirms the place of this single-atom modification in the toolbox of peptide-based rational drug design.
Collapse
Affiliation(s)
- Hoang Anh T Phan
- Department of Chemistry, University of Pennsylvania Philadelphia Pennsylvania 19104 USA
| | - Sam G Giannakoulias
- Department of Chemistry, University of Pennsylvania Philadelphia Pennsylvania 19104 USA
| | - Taylor M Barrett
- Department of Chemistry, University of Pennsylvania Philadelphia Pennsylvania 19104 USA
| | - Chunxiao Liu
- Department of Chemistry, University of Pennsylvania Philadelphia Pennsylvania 19104 USA
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture Beijing 102206 P. R. China
| | - E James Petersson
- Department of Chemistry, University of Pennsylvania Philadelphia Pennsylvania 19104 USA
| |
Collapse
|
27
|
Wang N, Brickute D, Braga M, Barnes C, Lu H, Allott L, Aboagye EO. Novel Non-Congeneric Derivatives of the Choline Kinase Alpha Inhibitor ICL-CCIC-0019. Pharmaceutics 2021; 13:1078. [PMID: 34371769 PMCID: PMC8309005 DOI: 10.3390/pharmaceutics13071078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/06/2021] [Accepted: 07/09/2021] [Indexed: 01/07/2023] Open
Abstract
Choline kinase alpha (CHKA) is a promising target for the development of cancer therapeutics. We have previously reported ICL-CCIC-0019, a potent CHKA inhibitor with high cellular activity but with some unfavorable pharmacological properties. In this work, we present an active analogue of ICL-CCIC-0019 bearing a piperazine handle (CK146) to facilitate further structural elaboration of the pharmacophore and thus improve the biological profile. Two different strategies were evaluated in this study: (1) a prodrug approach whereby selective CHKA inhibition could be achieved through modulating the activity of CK146, via the incorporation of an ε-(Ac) Lys motif, cleavable by elevated levels of histone deacetylase (HDAC) and cathepsin L (CTSL) in tumour cells; (2) a prostate-specific membrane antigen (PSMA) receptor targeted delivery strategy. Prodrug (CK145) and PSMA-targeted (CK147) derivatives were successfully synthesized and evaluated in vitro. While the exploitation of CK146 in those two strategies did not deliver the expected results, important and informative structure-activity relationships were observed and have been reported.
Collapse
Affiliation(s)
- Ning Wang
- Comprehensive Cancer Imaging Centre, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London W12 0NN, UK; (N.W.); (D.B.); (M.B.); (C.B.); (H.L.)
| | - Diana Brickute
- Comprehensive Cancer Imaging Centre, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London W12 0NN, UK; (N.W.); (D.B.); (M.B.); (C.B.); (H.L.)
| | - Marta Braga
- Comprehensive Cancer Imaging Centre, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London W12 0NN, UK; (N.W.); (D.B.); (M.B.); (C.B.); (H.L.)
| | - Chris Barnes
- Comprehensive Cancer Imaging Centre, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London W12 0NN, UK; (N.W.); (D.B.); (M.B.); (C.B.); (H.L.)
| | - Haonan Lu
- Comprehensive Cancer Imaging Centre, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London W12 0NN, UK; (N.W.); (D.B.); (M.B.); (C.B.); (H.L.)
| | - Louis Allott
- Comprehensive Cancer Imaging Centre, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London W12 0NN, UK; (N.W.); (D.B.); (M.B.); (C.B.); (H.L.)
- Positron Emission Tomography Research Centre, Faculty of Health Sciences, University of Hull, Kingston upon Hull HU6 7RX, UK
| | - Eric O. Aboagye
- Comprehensive Cancer Imaging Centre, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London W12 0NN, UK; (N.W.); (D.B.); (M.B.); (C.B.); (H.L.)
| |
Collapse
|
28
|
Inhibitory Effect of a Glutamine Antagonist on Proliferation and Migration of VSMCs via Simultaneous Attenuation of Glycolysis and Oxidative Phosphorylation. Int J Mol Sci 2021; 22:ijms22115602. [PMID: 34070527 PMCID: PMC8198131 DOI: 10.3390/ijms22115602] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 12/14/2022] Open
Abstract
Excessive proliferation and migration of vascular smooth muscle cells (VSMCs) contribute to the development of atherosclerosis and restenosis. Glycolysis and glutaminolysis are increased in rapidly proliferating VSMCs to support their increased energy requirements and biomass production. Thus, it is essential to develop new pharmacological tools that regulate metabolic reprogramming in VSMCs for treatment of atherosclerosis. The effects of 6-diazo-5-oxo-L-norleucine (DON), a glutamine antagonist, have been broadly investigated in highly proliferative cells; however, it is unclear whether DON inhibits proliferation of VSMCs and neointima formation. Here, we investigated the effects of DON on neointima formation in vivo as well as proliferation and migration of VSMCs in vitro. DON simultaneously inhibited FBS- or PDGF-stimulated glycolysis and glutaminolysis as well as mammalian target of rapamycin complex I activity in growth factor-stimulated VSMCs, and thereby suppressed their proliferation and migration. Furthermore, a DON-derived prodrug, named JHU-083, significantly attenuated carotid artery ligation-induced neointima formation in mice. Our results suggest that treatment with a glutamine antagonist is a promising approach to prevent progression of atherosclerosis and restenosis.
Collapse
|
29
|
Safarzadeh Kozani P, Safarzadeh Kozani P, Rahbarizadeh F, Khoshtinat Nikkhoi S. Strategies for Dodging the Obstacles in CAR T Cell Therapy. Front Oncol 2021; 11:627549. [PMID: 33869011 PMCID: PMC8047470 DOI: 10.3389/fonc.2021.627549] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/08/2021] [Indexed: 12/14/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy has offered cancer patients a new alternative therapeutic choice in recent years. This novel type of therapy holds tremendous promise for the treatment of various hematologic malignancies including B-cell acute lymphoblastic leukemia (B-ALL) and lymphoma. However, CAR T cell therapy has experienced its ups and downs in terms of toxicities and efficacy shortcomings. Adverse events such as cytokine release syndrome (CRS), neurotoxicity, graft rejection, on-target off-tumor toxicities, and tumor relapse have tied the rescuing hands of CAR T cell therapies. Moreover, in the case of solid tumor treatment, CAR T cell therapies have not yielded encouraging results mainly due to challenges such as the formidable network of the tumor microenvironments (TME) that operates in a suppressive fashion resulting in CAR T cell dysfunction. In this review, we tend to shine a light on emerging strategies and solutions for addressing the mentioned barriers. These solutions might dramatically help shorten the gap between a successful clinical outcome and the hope for it.
Collapse
Affiliation(s)
- Pooria Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Pouya Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran.,Student Research Committee, Medical Biotechnology Research Center, School of Nursing, Midwifery, and Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Fatemeh Rahbarizadeh
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.,Research and Development Center of Biotechnology, Tarbiat Modares University, Tehran, Iran
| | | |
Collapse
|
30
|
Hewton KG, Johal AS, Parker SJ. Transporters at the Interface between Cytosolic and Mitochondrial Amino Acid Metabolism. Metabolites 2021; 11:metabo11020112. [PMID: 33669382 PMCID: PMC7920303 DOI: 10.3390/metabo11020112] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/07/2021] [Accepted: 02/12/2021] [Indexed: 02/06/2023] Open
Abstract
Mitochondria are central organelles that coordinate a vast array of metabolic and biologic functions important for cellular health. Amino acids are intricately linked to the bioenergetic, biosynthetic, and homeostatic function of the mitochondrion and require specific transporters to facilitate their import, export, and exchange across the inner mitochondrial membrane. Here we review key cellular metabolic outputs of eukaryotic mitochondrial amino acid metabolism and discuss both known and unknown transporters involved. Furthermore, we discuss how utilization of compartmentalized amino acid metabolism functions in disease and physiological contexts. We examine how improved methods to study mitochondrial metabolism, define organelle metabolite composition, and visualize cellular gradients allow for a more comprehensive understanding of how transporters facilitate compartmentalized metabolism.
Collapse
Affiliation(s)
- Keeley G. Hewton
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (K.G.H.); (A.S.J.)
| | - Amritpal S. Johal
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (K.G.H.); (A.S.J.)
| | - Seth J. Parker
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (K.G.H.); (A.S.J.)
- British Columbia Children’s Hospital Research Institute, Vancouver, BC V6H 0B3, Canada
- Correspondence: ; Tel.: +1-604-875-3121
| |
Collapse
|
31
|
Koustas E, Sarantis P, Theodorakidou M, Karamouzis MV, Theocharis S. Autophagy and salivary gland cancer: A putative target for salivary gland tumors. Tumour Biol 2020; 42:1010428320980568. [PMID: 33319639 DOI: 10.1177/1010428320980568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Salivary gland carcinomas are a group of heterogeneous tumors of different histological subtypes, presenting relatively low incidence but the entire variable of types. Although novel treatment options for salivary gland carcinomas patients' outcomes have improved, the treatment of this type of cancer is still not standardized. In addition, a significant number of patients, with a lack of optimal treatment strategies, have reduced survival. In the last two decades, a plethora of evidence pointed to the importance of autophagy, an essential catabolic process of cytoplasmatic component digestion, in cancer. In vitro and in vivo studies highlight the importance of autophagy in salivary gland carcinomas development as a tumor suppressor or promoter mechanism. Despite the potential of autophagy in salivary gland carcinomas development, no therapies are currently available that specifically focus on autophagy modulation in salivary gland carcinomas. In this review, we summarize current knowledge and clinical trials in regard to the interplay between autophagy and the development of salivary gland carcinomas. Autophagy manipulation may be a putative therapeutic strategy for salivary gland carcinomas patients.
Collapse
Affiliation(s)
- Evangelos Koustas
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis Sarantis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Margarita Theodorakidou
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Michalis V Karamouzis
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- First Department of Internal Medicine, Laiko Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Laboratory of Experimental Surgery and Surgical Research "N.S.Christeas," Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
32
|
Poreba M. Protease-activated prodrugs: strategies, challenges, and future directions. FEBS J 2020; 287:1936-1969. [PMID: 31991521 DOI: 10.1111/febs.15227] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/14/2020] [Accepted: 01/23/2020] [Indexed: 02/06/2023]
Abstract
Proteases play critical roles in virtually all biological processes, including proliferation, cell death and survival, protein turnover, and migration. However, when dysregulated, these enzymes contribute to the progression of multiple diseases, with cancer, neurodegenerative disorders, inflammation, and blood disorders being the most prominent examples. For a long time, disease-associated proteases have been used for the activation of various prodrugs due to their well-characterized catalytic activity and ability to selectively cleave only those substrates that strictly correspond with their active site architecture. To date, versatile peptide sequences that are cleaved by proteases in a site-specific manner have been utilized as bioactive linkers for the targeted delivery of multiple types of cargo, including fluorescent dyes, photosensitizers, cytotoxic drugs, antibiotics, and pro-antibodies. This platform is highly adaptive, as multiple protease-labile conjugates have already been developed, some of which are currently in clinical use for cancer treatment. In this review, recent advancements in the development of novel protease-cleavable linkers for selective drug delivery are described. Moreover, the current limitations regarding the selectivity of linkers are discussed, and the future perspectives that rely on the application of unnatural amino acids for the development of highly selective peptide linkers are also presented.
Collapse
Affiliation(s)
- Marcin Poreba
- Department of Chemical Biology and Bioimaging, Wroclaw University of Science and Technology, Poland
| |
Collapse
|
33
|
The science of puromycin: From studies of ribosome function to applications in biotechnology. Comput Struct Biotechnol J 2020; 18:1074-1083. [PMID: 32435426 PMCID: PMC7229235 DOI: 10.1016/j.csbj.2020.04.014] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/19/2020] [Accepted: 04/19/2020] [Indexed: 11/20/2022] Open
Abstract
Puromycin is a naturally occurring aminonucleoside antibiotic that inhibits protein synthesis by ribosome-catalyzed incorporation into the C-terminus of elongating nascent chains, blocking further extension and resulting in premature termination of translation. It is most commonly known as a selection marker for cell lines genetically engineered to express a resistance transgene, but its additional uses as a probe for protein synthesis have proven invaluable across a wide variety of model systems, ranging from purified ribosomes and cell-free translation to intact cultured cells and whole animals. Puromycin is comprised of a nucleoside covalently bound to an amino acid, mimicking the 3′ end of aminoacylated tRNAs that participate in delivery of amino acids to elongating ribosomes. Both moieties can tolerate some chemical substitutions and modifications without significant loss of activity, generating a diverse toolbox of puromycin-based reagents with added functionality, such as biotin for affinity purification or fluorophores for fluorescent microscopy detection. These reagents, as well as anti-puromycin antibodies, have played a pivotal role in advancing our understanding of the regulation and dysregulation of protein synthesis in normal and pathological processes, including immune response and neurological function. This manuscript reviews the current state of puromycin-based research, including structure and mechanism of action, relevant derivatives, use in advanced methodologies and some of the major insights generated using such techniques both in the lab and the clinic.
Collapse
|
34
|
Li J, Pu K. Semiconducting Polymer Nanomaterials as Near-Infrared Photoactivatable Protherapeutics for Cancer. Acc Chem Res 2020; 53:752-762. [PMID: 32027481 DOI: 10.1021/acs.accounts.9b00569] [Citation(s) in RCA: 258] [Impact Index Per Article: 51.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cancer therapy is routinely performed in the clinic to cure cancer and control its progression, wherein therapeutic agents are generally used. To reduce side effects, protherapeutic agents that can be activated by overexpressed cancer biomarkers are under development. However, these agents still face certain extent of off-target activation in normal tissues, stimulating the interest to design external-stimuli activatable protherapeutics. In this regard, photoactivatable protherapeutic agents have been utilized for cancer treatments. However, because of the intrinsic features of photolabile moieties, most photoactivatable protherapeutic agents only respond to ultraviolet-visible light, limiting their in vivo applications. Thus, protherapeutic agents that can be activated by near-infrared (NIR) light with minimal phototoxicity and increased tissue penetration are highly desired.In this Account, we summarize our semiconducting polymer nanomaterials (SPNs) as NIR photoactivatable protherapeutic agents for cancer treatment. SPNs are transformed from π-conjugated polymers that efficiently convert NIR light into heat or singlet oxygen (1O2). With photothermal and photodynamic properties, SPNs can be directly used as photomedicine or serve as light transducers to activate heat or 1O2-responsive protherapeutic agents.The heat-activatable SPN-based protherapeutic agents are developed by loading or conjugating of SPNs with therapeutic agents (e.g., agonist, gene, and enzyme). For instance, photothermally triggered release of agonists specifically activates certain protein ion channels on the cellular membrane, leading to ion overinflux induced mitochondria dysfunction and consequently apoptosis of cancer cells. Moreover, photothermal activation of temperature-sensitive bromelain can promote the in situ degradation of collagens (the major components of extracellular matrix), resulting in an improved accumulation of agents in tumor tissues and thus amplified therapeutic outcome.The 1O2-activatable SPN-based protherapeutic agents are constructed through covalent conjugation of SPNs with caged therapeutic agents via hypoxia- or 1O2-cleavable linkers. Upon NIR photoirradiation, SPNs consume oxygen to generate 1O2, which leads to photodynamic therapy (PDT), and meanwhile breaks hypoxia- or 1O2-cleavable linkers for on-demand release and in situ activation of caged protherapeutic molecules (e.g., chemodrug, enzyme, and inhibitor). Such remote activation of SPN-based protherapeutic agents can be applied to induce DNA damage, ribonucleic acid degradation, inhibition of protein biosynthesis, or immune system activation in tumors of living animals. By synergizing PDT with NIR photoactivation of those biological actions, these protherapeutic agents effectively eliminate tumors and even fully inhibit tumor metastasis.This Account highlights the potential of SPNs for construction of versatile NIR photoactivatable protherapeutics to treat cancer at designated times and locations with high therapeutic outcome and precision.
Collapse
Affiliation(s)
- Jingchao Li
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
| |
Collapse
|
35
|
Jaiswal M, Zhu S, Jiang W, Guo Z. Synthesis and evaluation of N α,N ε-diacetyl-l-lysine-inositol conjugates as cancer-selective probes for metabolic engineering of GPIs and GPI-anchored proteins. Org Biomol Chem 2020; 18:2938-2948. [PMID: 32242600 DOI: 10.1039/d0ob00333f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Two myo-inositol derivatives having an Nα,Nε-diacetyl-l-lysine (Ac2Lys) moiety linked to the inositol 1-O-position through a self-cleavable linker and a metabolically stable 2-azidoethyl group linked to the inositol 3-O- and 4-O-positions, respectively, were designed and synthesized. The Ac2Lys moiety blocking the inositol 1-O-position required for GPI biosynthesis was expected to be removable by a combination of two enzymes, histone deacetylase (HDAC) and cathepsin L (CTSL), abundantly expressed in cancer cells, but not in normal cells, to transform these inositol derivatives into biosynthetically useful products with a free 1-O-position. As a result, it was found that these inositol derivatives could be incorporated into the glycosylphosphatidylinositol (GPI) biosynthetic pathway by cancer cells, but not by normal cells, to express azide-labeled GPIs and GPI-anchored proteins on cell surfaces. Consequently, this study has established a novel strategy and new molecular tools for selective metabolic labeling of cancer cells, which should be useful for various biological studies and applications.
Collapse
Affiliation(s)
- Mohit Jaiswal
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, FL 32611, USA.
| | - Sanyong Zhu
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, FL 32611, USA.
| | - Wenjie Jiang
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, FL 32611, USA.
| | - Zhongwu Guo
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, FL 32611, USA.
| |
Collapse
|
36
|
Song W, Das M, Chen X. Nanotherapeutics for Immuno-Oncology: A Crossroad for New Paradigms. Trends Cancer 2020; 6:288-298. [PMID: 32209444 PMCID: PMC7101275 DOI: 10.1016/j.trecan.2020.01.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 01/17/2020] [Accepted: 01/17/2020] [Indexed: 02/06/2023]
Abstract
With the rapid increase in the use of nanotechnology and immunotherapy for cancer management in the recent past, there are great implications for using nanotechnology in immuno-oncology. However, to deliver clinical success, the scientific and clinical rationale must be critically evaluated when applying nanotechnology to immuno-oncology challenges. This opinion article distinguishes between designing nanotherapeutics for immunotherapy and the past focus on the placement of chemotherapy agents in nanoparticles. We believe the integration of nanotechnology with cancer immunotherapy for nano-immunotherapeutics provides unique opportunities for both fields, paving the way for entirely new therapeutic paradigms. As a particular focus in our article, we envision the necessities and challenges of nanotechnology in the development of in situ cancer vaccines, immune checkpoint inhibitors, adoptive cell transfer, and bispecific antibody therapy.
Collapse
Affiliation(s)
- Wantong Song
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China; Jilin Biomedical Polymers Engineering Laboratory, Changchun, Jilin, 130022, China.
| | - Manisit Das
- Division of Pharmacoengineering and Molecular Pharmaceutics, and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China; Jilin Biomedical Polymers Engineering Laboratory, Changchun, Jilin, 130022, China
| |
Collapse
|
37
|
Sun IC, Yoon HY, Lim DK, Kim K. Recent Trends in In Situ Enzyme-Activatable Prodrugs for Targeted Cancer Therapy. Bioconjug Chem 2020; 31:1012-1024. [DOI: 10.1021/acs.bioconjchem.0c00082] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- In-Cheol Sun
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Hong Yeol Yoon
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Dong-Kwon Lim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Kwangmeyung Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
38
|
Dana D, Pathak SK. A Review of Small Molecule Inhibitors and Functional Probes of Human Cathepsin L. Molecules 2020; 25:E698. [PMID: 32041276 PMCID: PMC7038230 DOI: 10.3390/molecules25030698] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/29/2020] [Accepted: 02/04/2020] [Indexed: 01/06/2023] Open
Abstract
Human cathepsin L belongs to the cathepsin family of proteolytic enzymes with primarily an endopeptidase activity. Although its primary functions were originally thought to be only of a housekeeping enzyme that degraded intracellular and endocytosed proteins in lysosome, numerous recent studies suggest that it plays many critical and specific roles in diverse cellular settings. Not surprisingly, the dysregulated function of cathepsin L has manifested itself in several human diseases, making it an attractive target for drug development. Unfortunately, several redundant and isoform-specific functions have recently emerged, adding complexities to the drug discovery process. To address this, a series of chemical biology tools have been developed that helped define cathepsin L biology with exquisite precision in specific cellular contexts. This review elaborates on the recently developed small molecule inhibitors and probes of human cathepsin L, outlining their mechanisms of action, and describing their potential utilities in dissecting unknown function.
Collapse
Affiliation(s)
- Dibyendu Dana
- Chemistry and Biochemistry Department, Queens College of The City University of New York, 65-30 Kissena Blvd, Flushing, NY 11367, USA
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York (CUNY), 365 5th Ave, New York, NY 10016, USA
| | - Sanjai K. Pathak
- Chemistry and Biochemistry Department, Queens College of The City University of New York, 65-30 Kissena Blvd, Flushing, NY 11367, USA
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York (CUNY), 365 5th Ave, New York, NY 10016, USA
| |
Collapse
|
39
|
Yang Y, Yang C, Li T, Yu S, Gan T, Hu J, Cui J, Zheng X. The Deubiquitinase USP38 Promotes NHEJ Repair through Regulation of HDAC1 Activity and Regulates Cancer Cell Response to Genotoxic Insults. Cancer Res 2019; 80:719-731. [PMID: 31874856 DOI: 10.1158/0008-5472.can-19-2149] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/16/2019] [Accepted: 12/13/2019] [Indexed: 11/16/2022]
Abstract
The DNA damage response (DDR) is essential for maintaining genome integrity. Mounting evidence reveals that protein modifications play vital roles in the DDR. Here, we show that USP38 is involved in the DDR by regulating the activity of HDAC1. In response to DNA damage, USP38 interacted with HDAC1 and specifically removed the K63-linked ubiquitin chain promoting the deacetylase activity of HDAC1. As a result, HDAC1 was able to deacetylate H3K56. USP38 deletion resulted in persistent focal accumulation of nonhomologous end joining (NHEJ) factors at DNA damage sites and impaired NHEJ efficiency, causing genome instability and sensitizing cancer cells to genotoxic insults. Knockout of USP38 rendered mice hypersensitive to irradiation and shortened survival. In addition, USP38 was expressed at low levels in certain types of cancers including renal cell carcinoma, indicating dysregulation of USP38 expression contributes to genomic instability and may lead to tumorigenesis. In summary, this study identifies a critical role of USP38 in modulating genome integrity and cancer cell resistance to genotoxic insults by deubiquitinating HDAC1 and regulating its deacetylation activity. SIGNIFICANCE: This study demonstrates that USP38 regulates genome stability and mediates cancer cell resistance to DNA-damaging therapy, providing insight into tumorigenesis and implicating USP38 as a potential target for cancer diagnosis.
Collapse
Affiliation(s)
- Yongfeng Yang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China.,Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing, China
| | - Chuanzhen Yang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China.,Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing, China
| | - Tingting Li
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Institute of Basic Medical Sciences, Beijing, China
| | - Shuyu Yu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China.,Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing, China
| | - Tingting Gan
- Department of Cell Biology, School of Life Sciences, Peking University, Beijing, China
| | - Jiazhi Hu
- Department of Cell Biology, School of Life Sciences, Peking University, Beijing, China
| | - Jun Cui
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiaofeng Zheng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China. .,Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing, China
| |
Collapse
|
40
|
Petushkova AI, Savvateeva LV, Korolev DO, Zamyatnin AA. Cysteine Cathepsins: Potential Applications in Diagnostics and Therapy of Malignant Tumors. BIOCHEMISTRY (MOSCOW) 2019; 84:746-761. [PMID: 31509726 DOI: 10.1134/s000629791907006x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cysteine cathepsins are proteolytic enzymes involved in protein degradation in lysosomes and endosomes. Cysteine cathepsins have been also found in the tumor microenvironment during carcinogenesis, where they are implicated in proliferation, invasion and metastasis of tumor cells through the degradation of extracellular matrix, suppression of cell-cell interactions, and promotion of angiogenesis. In this regard, cathepsins can have a diagnostic value and represent promising targets for antitumor drugs aimed at inhibition of these proteases. Moreover, cysteine cathepsins can be used as activators of novel targeted therapeutic agents. This review summarizes recent discovered roles of cysteine cathepsins in carcinogenesis and discusses new trends in cancer therapy and diagnostics using cysteine cathepsins as markers, targets, or activators.
Collapse
Affiliation(s)
- A I Petushkova
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Moscow, 119991, Russia
| | - L V Savvateeva
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Moscow, 119991, Russia
| | - D O Korolev
- Sechenov First Moscow State Medical University, Institute of Uronephrology and Human Reproductive Health, Moscow, 119991, Russia
| | - A A Zamyatnin
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Moscow, 119991, Russia. .,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| |
Collapse
|
41
|
Lee SK, Han MS, Zhang W, Tung CH. Multilayered Activatable Nanoprobe for Ultra-Bright Tumor Imaging. Macromol Biosci 2019; 19:e1900260. [PMID: 31743618 DOI: 10.1002/mabi.201900260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/02/2019] [Indexed: 11/06/2022]
Abstract
The development of tumor targeted probes with strong signal and high contrast is always challenging in cancer imaging. Here, a unique multilayered activatable nanoprobe (MAN) is prepared to fulfill this long-standing goal. MAN adopts a versatile layer-by-layer fabrication technique that sequentially assembles multifunctional polyelectrolytes onto nanoparticles via charge-charge interaction. Unlike the common one-probe-one-fluorochrome construct, MAN offers a dramatic fluorescence enhancement by transporting a large quantity of quenched fluorochromes for maximal signal and contrast. Excellent signal amplification and retention with negligible cytotoxicity is observed in cell study. Upon systemic injection into mice, MAN quickly accumulates in tumor and its fluorescent signal is turned on by proteases overexpressed in tumors, resulting in >700% tumor-to-normal-tissue contrast. This multilayered fabrication provides a simple and powerful universal platform to design sensitive tumor imaging probes.
Collapse
Affiliation(s)
- Seung Koo Lee
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, 413 East 69th Street, Box 290, New York, NY, 10021, USA
| | - Myung Shin Han
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, 413 East 69th Street, Box 290, New York, NY, 10021, USA
| | - Weiqi Zhang
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, 413 East 69th Street, Box 290, New York, NY, 10021, USA
| | - Ching-Hsuan Tung
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, 413 East 69th Street, Box 290, New York, NY, 10021, USA
| |
Collapse
|
42
|
Li J, Cui D, Jiang Y, Huang J, Cheng P, Pu K. Near-Infrared Photoactivatable Semiconducting Polymer Nanoblockaders for Metastasis-Inhibited Combination Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1905091. [PMID: 31566279 DOI: 10.1002/adma.201905091] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/12/2019] [Indexed: 05/20/2023]
Abstract
Inhibition of protein biosynthesis is a promising strategy to develop new therapeutic modalities for cancers; however, noninvasive precise regulation of this cellular event in living systems has been rarely reported. In this study, a semiconducting polymer nanoblockader (SPNB ) is developed that can inhibit intracellular protein synthesis upon near-infrared (NIR) photoactivation to synergize with photodynamic therapy (PDT) for metastasis-inhibited cancer therapy. SPNB is self-assembled from an amphiphilic semiconducting polymer which is grafted with poly(ethylene glycol) conjugated with a protein biosynthesis blockader through a singlet oxygen (1 O2 ) cleavable linker. Such a designed molecular structure not only enables generation of 1 O2 under NIR photoirradiation for PDT, but also permits photoactivation of blockaders to terminate protein translation. Thereby, SPNB exerts a synergistic action to afford an enhanced therapeutic efficacy in tumor ablation. More importantly, SPNB -mediated photoactivation of protein synthesis inhibition precisely and remotely downregulates the expression levels of metastasis-related proteins in tumor tissues, eventually contributing to the complete inhibition of lung metastasis. This study thus proposes a photoactivatable protherapeutic design for metastasis-inhibited cancer therapy.
Collapse
Affiliation(s)
- Jingchao Li
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Dong Cui
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Yuyan Jiang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Jiaguo Huang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Penghui Cheng
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| |
Collapse
|
43
|
Peng X, Gao J, Yuan Y, Liu H, Lei W, Li S, Zhang J, Wang S. Hypoxia-Activated and Indomethacin-Mediated Theranostic Prodrug Releasing Drug On-Demand for Tumor Imaging and Therapy. Bioconjug Chem 2019; 30:2828-2843. [DOI: 10.1021/acs.bioconjchem.9b00564] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
44
|
Lemberg KM, Vornov JJ, Rais R, Slusher BS. We're Not "DON" Yet: Optimal Dosing and Prodrug Delivery of 6-Diazo-5-oxo-L-norleucine. Mol Cancer Ther 2019; 17:1824-1832. [PMID: 30181331 DOI: 10.1158/1535-7163.mct-17-1148] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 03/29/2018] [Accepted: 06/29/2018] [Indexed: 12/22/2022]
Abstract
The broadly active glutamine antagonist 6-diazo-5-oxo-L-norleucine (DON) has been studied for 60 years as a potential anticancer therapeutic. Clinical studies of DON in the 1950s using low daily doses suggested antitumor activity, but later phase I and II trials of DON given intermittently at high doses were hampered by dose-limiting nausea and vomiting. Further clinical development of DON was abandoned. Recently, the recognition that multiple tumor types are glutamine-dependent has renewed interest in metabolic inhibitors such as DON. Here, we describe the prior experience with DON in humans. Evaluation of past studies suggests that the major impediments to successful clinical use included unacceptable gastrointestinal (GI) toxicities, inappropriate dosing schedules for a metabolic inhibitor, and lack of targeted patient selection. To circumvent GI toxicity, prodrug strategies for DON have been developed to enhance delivery of active compound to tumor tissues, including the CNS. When these prodrugs are administered in a low daily dosing regimen, appropriate for metabolic inhibition, they are robustly effective without significant toxicity. Patients whose tumors have genetic, metabolic, or imaging biomarker evidence of glutamine dependence should be prioritized as candidates for future clinical evaluations of novel DON prodrugs, given either as monotherapy or in rationally directed pharmacologic combinations. Mol Cancer Ther; 17(9); 1824-32. ©2018 AACR.
Collapse
Affiliation(s)
- Kathryn M Lemberg
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland.,Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - James J Vornov
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, Maryland.,Medpace, Cincinnati, Ohio.,Department of Neurology, Johns Hopkins School of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Rana Rais
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, Maryland.,Department of Neurology, Johns Hopkins School of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Barbara S Slusher
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland. .,Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, Maryland.,Department of Neurology, Johns Hopkins School of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland.,Departments of Medicine, Psychiatry, and Neuroscience, Johns Hopkins School of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| |
Collapse
|
45
|
Hwang JW, Jung SJ, Cheong TC, Kim Y, Shin EP, Heo I, Kim G, Cho NH, Wang KK, Kim YR. Smart Hybrid Nanocomposite for Photodynamic Inactivation of Cancer Cells with Selectivity. J Phys Chem B 2019; 123:6776-6783. [PMID: 31310131 DOI: 10.1021/acs.jpcb.9b04301] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Photodynamic therapy has been efficiently applied for cancer therapy. Here, we have fabricated the folic acid (FA)- and pheophorbide A (PA)-conjugated FA/PA@Fe3O4 nanoparticle (smart hybrid nanocomposite, SHN) to enhance the photodynamic inactivation (PDI) of specific cancer cells. SHN coated with the PDI agent is designed to have selectivity for the folate receptor (FR) expressed on cancer cells. Structural characteristics and morphology of the fabricated MNPs were studied with X-ray diffraction and scanning electron microscopy. The photophysical properties of SHN were investigated with absorption, emission spectroscopies, and Fourier transform infrared spectroscopy. In addition, the magnetic property of Fe3O4 nanoparticle (MNP) can be utilized for the collection of SHNs by an external magnetic field. The photofunctionality was given by the photosensitizer, PA, which generates reactive oxygen species by irradiation of visible light. Generation of singlet oxygen was directly evaluated with time-resolved phosphorescence spectroscopy. Biocompatibility and cellular interaction of SHN were also analyzed by using various cancer cells, such as KB, HeLa, and MCF-7 cells which express different levels of FR on the surface. Cellular adsorption and the PDI effect of SHN on the various cancer cells in vitro were correlated well with the surface expression levels of FR, suggesting potential applicability of SHN on specific targeting and PDI of FR-positive cancers.
Collapse
Affiliation(s)
- Jeong-Wook Hwang
- Department of Chemistry , Yonsei University , 50 Yonsei-ro , Seodaemun-gu Seoul 03722 , Republic of Korea
| | - Seung-Jin Jung
- Department of Chemistry , Yonsei University , 50 Yonsei-ro , Seodaemun-gu Seoul 03722 , Republic of Korea
| | - Taek-Chin Cheong
- Department of Microbiology and Immunology , Seoul National University College of Medicine , 103 Daehak-ro , Jongno-gu Seoul 03080 , Republic of Korea.,Department of Biomedical Sciences , Seoul National University College of Medicine , 103 Daehak-ro , Jongno-gu Seoul 03080 , Republic of Korea
| | - Yuri Kim
- Department of Microbiology and Immunology , Seoul National University College of Medicine , 103 Daehak-ro , Jongno-gu Seoul 03080 , Republic of Korea.,Department of Biomedical Sciences , Seoul National University College of Medicine , 103 Daehak-ro , Jongno-gu Seoul 03080 , Republic of Korea
| | - Eon Pil Shin
- Department of Chemistry , Yonsei University , 50 Yonsei-ro , Seodaemun-gu Seoul 03722 , Republic of Korea
| | - Il Heo
- Department of Chemistry , Yonsei University , 50 Yonsei-ro , Seodaemun-gu Seoul 03722 , Republic of Korea
| | - Gwanghun Kim
- Department of Microbiology and Immunology , Seoul National University College of Medicine , 103 Daehak-ro , Jongno-gu Seoul 03080 , Republic of Korea.,Department of Biomedical Sciences , Seoul National University College of Medicine , 103 Daehak-ro , Jongno-gu Seoul 03080 , Republic of Korea
| | - Nam-Hyuk Cho
- Department of Microbiology and Immunology , Seoul National University College of Medicine , 103 Daehak-ro , Jongno-gu Seoul 03080 , Republic of Korea.,Department of Biomedical Sciences , Seoul National University College of Medicine , 103 Daehak-ro , Jongno-gu Seoul 03080 , Republic of Korea
| | - Kang-Kyun Wang
- Department of Chemistry , Yonsei University , 50 Yonsei-ro , Seodaemun-gu Seoul 03722 , Republic of Korea
| | - Yong-Rok Kim
- Department of Chemistry , Yonsei University , 50 Yonsei-ro , Seodaemun-gu Seoul 03722 , Republic of Korea
| |
Collapse
|
46
|
Vasiljeva O, Hostetter DR, Moore SJ, Winter MB. The multifaceted roles of tumor-associated proteases and harnessing their activity for prodrug activation. Biol Chem 2019; 400:965-977. [PMID: 30913028 DOI: 10.1515/hsz-2018-0451] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 03/18/2019] [Indexed: 02/06/2023]
Abstract
The role of proteases in cancer was originally thought to be limited to the breakdown of basement membranes and extracellular matrix (ECM), thereby promoting cancer cell invasion into surrounding normal tissues. It is now well understood that proteases play a much more complicated role in all stages of cancer progression and that not only tumor cells, but also stromal cells are an important source of proteases in the tumor microenvironment. Among all the proteolytic enzymes potentially associated with cancer, some proteases have taken on heightened importance due to their significant up-regulation and ability to participate at multiple stages of cancer progression and metastasis. In this review, we discuss some of the advances in understanding of the roles of several key proteases from different classes in the development and progression of cancer and the potential to leverage their upregulated activity for the development of novel targeted treatment strategies.
Collapse
Affiliation(s)
- Olga Vasiljeva
- CytomX Therapeutics Inc., Platform Biology, 151 Oyster Point Blvd, South San Francisco, CA 94080, USA
| | - Daniel R Hostetter
- CytomX Therapeutics Inc., Platform Biology, 151 Oyster Point Blvd, South San Francisco, CA 94080, USA
| | - Stephen J Moore
- CytomX Therapeutics Inc., Platform Biology, 151 Oyster Point Blvd, South San Francisco, CA 94080, USA
| | - Michael B Winter
- CytomX Therapeutics Inc., Platform Biology, 151 Oyster Point Blvd, South San Francisco, CA 94080, USA
| |
Collapse
|
47
|
Meng T, Han J, Zhang P, Hu J, Fu J, Yin J. Introduction of the α-ketoamide structure: en route to develop hydrogen peroxide responsive prodrugs. Chem Sci 2019; 10:7156-7162. [PMID: 31588282 PMCID: PMC6761880 DOI: 10.1039/c9sc00910h] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/28/2019] [Indexed: 12/12/2022] Open
Abstract
New light on H2O2-activated prodrugs: the first α-ketoamide based prodrug opens up new alternatives for designing non-boron based H2O2-responsive promoieties.
Leveraging the elevated levels of hydrogen peroxide (H2O2) in cancer, inflammatory diseases and cardiovascular disorders, H2O2-activated promoieties have been widely used in drugs and biomaterials design. However, the overwhelming majority of the promoieties only share the common structure of a H2O2-responsive arylboronic acid/ester moiety with low diversity. We report here an unprecedented strategy to construct novel H2O2-responsive prodrugs based on an α-ketoamide structure. As a proof of concept, we designed and synthesized a panel of α-ketoamide based nitrogen mustard prodrugs, among which KAM-2 showed potent growth inhibitory activity and high selectivity toward cancer cells. The H2O2-trigged decomposition of KAM-2 was validated, and the DNA damaging and apoptosis promoting activity attributed to the released nitrogen mustard were demonstrated. Our work unveils α-ketoamide as a new scaffold for prodrug design and may quickly inspire future developments.
Collapse
Affiliation(s)
- Tingting Meng
- Key Laboratory of Carbohydrate Chemistry and Biotechnology , Ministry of Education , School of Biotechnology , Jiangnan University , Wuxi 214122 , P. R. China . ; .,School of Pharmacy , Nanjing Medical University , Nanjing 211166 , P. R. China
| | - Jing Han
- School of Chemistry & Materials Science , Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials , Jiangsu Normal University , Xuzhou 221116 , P. R. China
| | - Pengfei Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology , Ministry of Education , School of Biotechnology , Jiangnan University , Wuxi 214122 , P. R. China . ;
| | - Jing Hu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology , Ministry of Education , School of Biotechnology , Jiangnan University , Wuxi 214122 , P. R. China . ;
| | - Junjie Fu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology , Ministry of Education , School of Biotechnology , Jiangnan University , Wuxi 214122 , P. R. China . ; .,School of Pharmacy , Nanjing Medical University , Nanjing 211166 , P. R. China
| | - Jian Yin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology , Ministry of Education , School of Biotechnology , Jiangnan University , Wuxi 214122 , P. R. China . ;
| |
Collapse
|
48
|
Tenora L, Alt J, Dash RP, Gadiano AJ, Novotná K, Veeravalli V, Lam J, Kirkpatrick QR, Lemberg KM, Majer P, Rais R, Slusher BS. Tumor-Targeted Delivery of 6-Diazo-5-oxo-l-norleucine (DON) Using Substituted Acetylated Lysine Prodrugs. J Med Chem 2019; 62:3524-3538. [PMID: 30892035 DOI: 10.1021/acs.jmedchem.8b02009] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
6-Diazo-5-oxo-l-norleucine (DON) is a glutamine antagonist with robust anticancer efficacy; however, its therapeutic potential was hampered by its biodistribution and toxicity to normal tissues, specifically gastrointestinal (GI) tissues. To circumvent DON's toxicity, we synthesized a series of tumor-targeted DON prodrugs designed to circulate inert in plasma and preferentially activate over DON in tumor. Our best prodrug 6 (isopropyl 2-(6-acetamido-2-(adamantane-1-carboxamido)hexanamido)-6-diazo-5-oxohexanoate) showed stability in plasma, liver, and intestinal homogenates yet was readily cleaved to DON in P493B lymphoma cells, exhibiting a 55-fold enhanced tumor cell-to-plasma ratio versus that of DON and resulting in a dose-dependent inhibition of cell proliferation. Using carboxylesterase 1 knockout mice that were shown to mimic human prodrug metabolism, systemic administration of 6 delivered 11-fold higher DON exposure to tumor (target tissue; AUC0- t = 5.1 nmol h/g) versus GI tissues (toxicity tissue; AUC0- t = 0.45 nmol h/g). In summary, these studies describe the discovery of a glutamine antagonist prodrug that provides selective tumor exposure.
Collapse
Affiliation(s)
- Lukáš Tenora
- Institute of Organic Chemistry and Biochemistry , Academy of Sciences of the Czech Republic v.v.i. , Prague 166 10 , Czech Republic
| | | | | | | | - Kateřina Novotná
- Institute of Organic Chemistry and Biochemistry , Academy of Sciences of the Czech Republic v.v.i. , Prague 166 10 , Czech Republic
| | | | | | | | | | - Pavel Majer
- Institute of Organic Chemistry and Biochemistry , Academy of Sciences of the Czech Republic v.v.i. , Prague 166 10 , Czech Republic
| | | | | |
Collapse
|
49
|
Li Y, Du L, Wu C, Yu B, Zhang H, An F. Peptide Sequence-Dominated Enzyme-Responsive Nanoplatform for Anticancer Drug Delivery. Curr Top Med Chem 2019; 19:74-97. [PMID: 30686257 DOI: 10.2174/1568026619666190125144621] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/06/2018] [Accepted: 11/23/2018] [Indexed: 02/08/2023]
Abstract
Enzymatic dysregulation in tumor and intracellular microenvironments has made this property
a tremendously promising responsive element for efficient diagnostics, carrier targeting, and drug
release. When combined with nanotechnology, enzyme-responsive drug delivery systems (DDSs) have
achieved substantial advancements. In the first part of this tutorial review, changes in tumor and intracellular
microenvironmental factors, particularly the enzymatic index, are described. Subsequently, the
peptide sequences of various enzyme-triggered nanomaterials are summarized for their uses in various
drug delivery applications. Then, some other enzyme responsive nanostructures are discussed. Finally,
the future opportunities and challenges are discussed. In brief, this review can provide inspiration and
impetus for exploiting more promising internal enzyme stimuli-responsive nanoDDSs for targeted tumor
diagnosis and treatment.
Collapse
Affiliation(s)
- Yanan Li
- First Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Liping Du
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Science, Health Science Center, Xi’an Jiaotong University, No.76 Yanta West Road, Xi'an, Shaanxi 710061, China
| | - Chunsheng Wu
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Science, Health Science Center, Xi’an Jiaotong University, No.76 Yanta West Road, Xi'an, Shaanxi 710061, China
| | - Bin Yu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Hui Zhang
- First Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Feifei An
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Science, Health Science Center, Xi’an Jiaotong University, No.76 Yanta West Road, Xi'an, Shaanxi 710061, China
| |
Collapse
|
50
|
Ding N, Li Z, Tian X, Zhang J, Guo K, Wang P. Azo-based near-infrared fluorescent theranostic probe for tracking hypoxia-activated cancer chemotherapy in vivo. Chem Commun (Camb) 2019; 55:13172-13175. [DOI: 10.1039/c9cc06727b] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A novel azo-based near-infrared fluorescent therabostic probe activated by hypoxia is applied to real-time visualization of drug delivery in vivo.
Collapse
Affiliation(s)
- Ning Ding
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control
- College of Food Engineering and Nutritional Science
- Shaanxi Normal University
- Xi'an 710062
- China
| | - Zhao Li
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control
- College of Food Engineering and Nutritional Science
- Shaanxi Normal University
- Xi'an 710062
- China
| | - Xinwei Tian
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control
- College of Food Engineering and Nutritional Science
- Shaanxi Normal University
- Xi'an 710062
- China
| | - Jiahang Zhang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control
- College of Food Engineering and Nutritional Science
- Shaanxi Normal University
- Xi'an 710062
- China
| | - Kaili Guo
- Ministry of Education Key Laboratory of Medicinal Resources and Natural
- Pharmaceutical Chemistry
- National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China
- College of Life Sciences
- Shaanxi Normal University
| | - Pan Wang
- Ministry of Education Key Laboratory of Medicinal Resources and Natural
- Pharmaceutical Chemistry
- National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China
- College of Life Sciences
- Shaanxi Normal University
| |
Collapse
|