1
|
Weaver AA, Shrout JD. Use of analytical strategies to understand spatial chemical variation in bacterial surface communities. J Bacteriol 2025; 207:e0040224. [PMID: 39873490 PMCID: PMC11841061 DOI: 10.1128/jb.00402-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025] Open
Abstract
Not only do surface-growing microbes such as biofilms display specific traits compared to planktonic cells, but also they display many heterogeneous behaviors over many spatial and temporal contexts. While the application of molecular genetics tools to extract or visualize gene expression or regulatory function data is now common in studying surface growth, the use of analytical chemistry tools to visualize the spatiotemporal distribution of chemical products synthesized by these surface microbes is less common. Here, we review chemical imaging tools that have been used to inform our understanding of surface-growing microbes. We highlight the use of confocal Raman Microscopy, surface-enhanced Raman spectroscopy, matrix-assisted laser desorption/ionization, secondary ion mass spectrometry, desorption electrospray ionization, and electrochemical imaging that have been applied to assess two-dimensional chemical profiles of bacteria. We specifically discuss the use of these tools to study rhamnolipids, alkylquinolones, and phenazines of the bacterium Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Abigail A. Weaver
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Joshua D. Shrout
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana, USA
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
2
|
Chen X, Wang C, Zheng QY, Hu WC, Xia XH. Emerging advances in biosensor technologies for quorum sensing signal molecules. Anal Bioanal Chem 2025; 417:33-50. [PMID: 39609273 DOI: 10.1007/s00216-024-05659-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/09/2024] [Accepted: 11/11/2024] [Indexed: 11/30/2024]
Abstract
Quorum sensing is a physiological phenomenon of microbial cell-to-cell information exchange, which relies on the quorum sensing signal molecules (QSSMs) to communicate and coordinate collective processes. Quorum sensing enables bacteria to alter their behavior as the population density and species composition of the bacterial community change. Effective detection of QSSMs is paramount for regulating microbial community behavior. However, traditional detection methods face the shortcomings of complex operation, high costs, and lack of portability. By combining the advantage of biosensing and nanomaterials, the biosensors play a pivotal significance in QSSM detection. In this review, we first briefly describe the QSSM classification and common detection techniques. Then, we provide a comprehensive summary of research progress in biosensor-based QSSM detection according to the transduction mechanism. Finally, challenges and development trends of biosensors for QSSM detection are discussed. We believe it offers valuable insights into this burgeoning research area.
Collapse
Affiliation(s)
- Xi Chen
- School of Special Education and Rehabilitation, School of Stomatology, Binzhou Medical University, Yantai, 264003, China
| | - Chen Wang
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Qing Yin Zheng
- School of Special Education and Rehabilitation, School of Stomatology, Binzhou Medical University, Yantai, 264003, China
- Department of Otolaryngology, Case Western Reserve University, Cleveland, OH, USA
| | - Wen-Chao Hu
- School of Special Education and Rehabilitation, School of Stomatology, Binzhou Medical University, Yantai, 264003, China.
| | - Xing-Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
3
|
Desbiolles B, Hanna J, Ausilio R, Leccardi MA, Yu Y, Sarkar D. Organic electro-scattering antenna: Wireless and multisite probing of electrical potentials with high spatial resolution. SCIENCE ADVANCES 2024; 10:eadr8380. [PMID: 39705344 DOI: 10.1126/sciadv.adr8380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 11/18/2024] [Indexed: 12/22/2024]
Abstract
Monitoring electrical potentials with high recording site density and micrometer spatial resolution in liquid is critical in biosensing. Organic electronic materials have driven remarkable advances in the field because of their unique material properties, yet limitations in spatial resolution and recording density remain. Here, we introduce organic electro-scattering antennas (OCEANs) for wireless, light-based probing of electrical signals with micrometer spatial resolution, potentially from thousands of sites. The technology relies on the unique dependence of poly(3,4-ethylenedioxythiophene):polystyrene sulfonate light scattering properties to its doping level. Electro-optic characteristics of individual antennas varying in diameters and operating voltages were systematically characterized in saline solution. Signal-to-noise ratios up to 48 were achieved in response to 100-mV stimuli, with 2.5-mV detection limits. OCEANs demonstrated millisecond time constants and exceptional long-term stability, enabling continuous recordings over 10 hours. By offering spatial resolution of 5 μm and a recording density of 4 × 106 cm-2, OCEANs unlock new readout capabilities, potentially accelerating fundamental and clinical research.
Collapse
Affiliation(s)
- Benoit Desbiolles
- Nano-Cybernetic Biotrek, Media Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jad Hanna
- Nano-Cybernetic Biotrek, Media Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Raphael Ausilio
- Nano-Cybernetic Biotrek, Media Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Marta Airaghi Leccardi
- Nano-Cybernetic Biotrek, Media Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Deblina Sarkar
- Nano-Cybernetic Biotrek, Media Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
4
|
Dawes J, Chou TH, Shen B, Johnston ML. Microfluidic Lab-on-CMOS Packaging Using Wafer-Level Molding and 3D-Printed Interconnects. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2024; 18:821-833. [PMID: 39167525 DOI: 10.1109/tbcas.2024.3419804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Lab-on-a-chip (LoC) technologies continue to promise lower cost and more accessible platforms for performing biomedical testing in low-cost and disposable form factors. Lab-on-CMOS or lab-on-microchip methods extend this paradigm by merging passive LoC systems with active complementary metal-oxide semiconductor (CMOS) integrated circuits (IC) to enable front-end signal conditioning and digitization immediately next to sensors in fluid channels. However, integrating ICs with microfluidics remains a challenge due to size mismatch and geometric constraints, such as non-planar wirebonds or flip-chip approaches in conflict with planar microfluidics. In this work, we present a hybrid packaging solution for IC-enabled microfluidic sensor systems. Our approach uses a combination of wafer-level molding and direct-write 3D printed interconnects, which are compatible with post-fabrication of planar dielectric and microfluidic layers. In addition, high-resolution direct-write printing can be used to rapidly fabricate electrical interconnects at a scale compatible with IC packaging without the need for fixed tooling. Two demonstration sensor-in-package systems with integrated microfluidics are shown, including measurement of electrical impedance and optical scattering to detect and size particles flowing through microfluidic channels over or adjacent to CMOS sensor and read-out ICs. The approach enables fabrication of impedance measurement electrodes less than 1 mm from the readout IC, directly on package surface. As shown, direct fluid contact with the IC surface is prevented by passivation, but long-term this approach can also enable fluid access to IC-integrated electrodes or other top-level IC features, making it broadly enabling for lab-on-CMOS applications.
Collapse
|
5
|
Costa JNY, Pimentel GJC, Poker JA, Merces L, Paschoalino WJ, Vieira LCS, Castro ACH, Alves WA, Ayres LB, Kubota LT, Santhiago M, Garcia CD, Piazzetta MHO, Gobbi AL, Shimizu FM, Lima RS. Single-Response Duplexing of Electrochemical Label-Free Biosensor from the Same Tag. Adv Healthc Mater 2024; 13:e2303509. [PMID: 38245830 PMCID: PMC11468374 DOI: 10.1002/adhm.202303509] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/16/2024] [Indexed: 01/22/2024]
Abstract
Multiplexing is a valuable strategy to boost throughput and improve clinical accuracy. Exploiting the vertical, meshed design of reproducible and low-cost ultra-dense electrochemical chips, the unprecedented single-response multiplexing of typical label-free biosensors is reported. Using a cheap, handheld one-channel workstation and a single redox probe, that is, ferro/ferricyanide, the recognition events taking place on two spatially resolved locations of the same working electrode can be tracked along a single voltammetry scan by collecting the electrochemical signatures of the probe in relation to different quasi-reference electrodes, Au (0 V) and Ag/AgCl ink (+0.2 V). This spatial isolation prevents crosstalk between the redox tags and interferences over functionalization and binding steps, representing an advantage over the existing non-spatially resolved single-response multiplex strategies. As proof of concept, peptide-tethered immunosensors are demonstrated to provide the duplex detection of COVID-19 antibodies, thereby doubling the throughput while achieving 100% accuracy in serum samples. The approach is envisioned to enable broad applications in high-throughput and multi-analyte platforms, as it can be tailored to other biosensing devices and formats.
Collapse
Affiliation(s)
- Juliana N. Y. Costa
- Brazilian Nanotechnology National LaboratoryBrazilian Center for Research in Energy and MaterialsCampinasSão Paulo13083‐970Brazil
- Center for Natural and Human SciencesFederal University of ABCSanto AndréSão Paulo09210‐580Brazil
| | - Gabriel J. C. Pimentel
- Brazilian Nanotechnology National LaboratoryBrazilian Center for Research in Energy and MaterialsCampinasSão Paulo13083‐970Brazil
- Institute of ChemistryUniversity of CampinasCampinasSão Paulo13083‐970Brazil
| | - Júlia A. Poker
- Brazilian Nanotechnology National LaboratoryBrazilian Center for Research in Energy and MaterialsCampinasSão Paulo13083‐970Brazil
- Institute of ChemistryUniversity of CampinasCampinasSão Paulo13083‐970Brazil
| | - Leandro Merces
- Research Center for MaterialsArchitectures and Integration of Nanomembranes (MAIN)Chemnitz University of Technology09126ChemnitzGermany
| | - Waldemir J. Paschoalino
- Brazilian Nanotechnology National LaboratoryBrazilian Center for Research in Energy and MaterialsCampinasSão Paulo13083‐970Brazil
| | - Luis C. S. Vieira
- Brazilian Nanotechnology National LaboratoryBrazilian Center for Research in Energy and MaterialsCampinasSão Paulo13083‐970Brazil
| | - Ana C. H. Castro
- Center for Natural and Human SciencesFederal University of ABCSanto AndréSão Paulo09210‐580Brazil
| | - Wendel A. Alves
- Center for Natural and Human SciencesFederal University of ABCSanto AndréSão Paulo09210‐580Brazil
| | - Lucas B. Ayres
- Department of ChemistryClemson UniversityClemsonSC29634USA
| | - Lauro T. Kubota
- Center for Natural and Human SciencesFederal University of ABCSanto AndréSão Paulo09210‐580Brazil
| | - Murilo Santhiago
- Brazilian Nanotechnology National LaboratoryBrazilian Center for Research in Energy and MaterialsCampinasSão Paulo13083‐970Brazil
| | | | - Maria H. O. Piazzetta
- Brazilian Nanotechnology National LaboratoryBrazilian Center for Research in Energy and MaterialsCampinasSão Paulo13083‐970Brazil
| | - Angelo L. Gobbi
- Brazilian Nanotechnology National LaboratoryBrazilian Center for Research in Energy and MaterialsCampinasSão Paulo13083‐970Brazil
| | - Flávio M. Shimizu
- Brazilian Nanotechnology National LaboratoryBrazilian Center for Research in Energy and MaterialsCampinasSão Paulo13083‐970Brazil
| | - Renato S. Lima
- Brazilian Nanotechnology National LaboratoryBrazilian Center for Research in Energy and MaterialsCampinasSão Paulo13083‐970Brazil
- Center for Natural and Human SciencesFederal University of ABCSanto AndréSão Paulo09210‐580Brazil
- Institute of ChemistryUniversity of CampinasCampinasSão Paulo13083‐970Brazil
- Department of ChemistryClemson UniversityClemsonSC29634USA
- São Carlos Institute of ChemistryUniversity of São PauloSão CarlosSão Paulo13565‐590Brazil
| |
Collapse
|
6
|
Thirabowonkitphithan P, Žalnėravičius R, Shafaat A, Jakubauskas D, Neilands J, Laiwattanapaisal W, Ruzgas T. Electrogenicity of microbial biofilms of medically relevant microorganisms: potentiometric, amperometric and wireless detection. Biosens Bioelectron 2024; 246:115892. [PMID: 38056343 DOI: 10.1016/j.bios.2023.115892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
Since the progression of biofilm formation is related to the success of infection treatment, detecting microbial biofilms is of great interest. Biofilms of Gram-positive Staphylococcus aureus and Streptococcus gordonii bacteria, Gram-negative Pseudomonas aeruginosa and Escherichia coli bacteria, and Candida albicans yeast were examined using potentiometric, amperometric, and wireless readout modes in this study. As a biofilm formed, the open circuit potential (OCP) of biofilm hosting electrode (bioanode) became increasingly negative. Depending on the microorganism, the OCP ranged from -70 to -250 mV. The co-culture generated the most negative OCP (-300 mV vs Ag/AgCl), while the single-species biofilm formed by E. coli developed the least negative (-70 mV). The OCP of a fungal biofilm formed by C. albicans was -100 mV. The difference in electrode currents generated by biofilms was more pronounced. The current density of the S. aureus biofilm was 0.9‧10-7 A cm-2, while the value of the P. aeruginosa biofilm was 1.3‧10-6 A cm-2. Importantly, a biofilm formed by a co-culture of S. aureus and P. aeruginosa had a slightly higher negative OCP value and current density than the most electrogenic P. aeruginosa single-species biofilm. We present evidence that bacteria can share redox mediators found in multi-species biofilms. This synergy, enabling higher current and OCP values of multi-species biofilm hosting electrodes, could be beneficial for electrochemical detection of infectious biofilms in clinics. We demonstrate that the electrogenic biofilm can provide basis to construct novel wireless, chip-free, and battery-free biofilm detection method.
Collapse
Affiliation(s)
- Pannawich Thirabowonkitphithan
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, 205 06, Malmö, Sweden; Biofilms - Research Center for Biointerfaces, Malmö University, 205 06, Malmö, Sweden; Graduate Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Patumwan, Bangkok, 10330, Thailand
| | - Rokas Žalnėravičius
- Center for Physical Sciences and Technology, Department of Electrochemical Material Science, Sauletekio av. 3, LT-10257, Vilnius, Lithuania; Institute of Biochemistry, Life Sciences Centre, Vilnius University, Sauletekio av. 7, LT-10257, Vilnius, Lithuania.
| | - Atefeh Shafaat
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, 205 06, Malmö, Sweden; Biofilms - Research Center for Biointerfaces, Malmö University, 205 06, Malmö, Sweden
| | - Dainius Jakubauskas
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, 205 06, Malmö, Sweden; Biofilms - Research Center for Biointerfaces, Malmö University, 205 06, Malmö, Sweden
| | - Jessica Neilands
- Section for Oral Biology and Pathology, Faculty of Odontology, Malmö University, 205 06, Malmö, Sweden
| | - Wanida Laiwattanapaisal
- Centre of Excellence for Biosensors and Bioengineering (CEBB), Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand; Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Patumwan, Bangkok, 10330, Thailand.
| | - Tautgirdas Ruzgas
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, 205 06, Malmö, Sweden; Biofilms - Research Center for Biointerfaces, Malmö University, 205 06, Malmö, Sweden
| |
Collapse
|
7
|
Haghighian N, Kataky R. Rapid fingerprinting of bacterial species using nanocavities created on screen-printed electrodes modified by β-cyclodextrin. SENSORS & DIAGNOSTICS 2023; 2:1228-1235. [PMID: 38014404 PMCID: PMC10501327 DOI: 10.1039/d3sd00074e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/29/2023] [Indexed: 11/07/2023]
Abstract
Rapid and precise identification of infectious microorganisms is important across a range of applications where microbial contamination can cause serious issues ranging from microbial resistance to corrosion. In this paper a screen-printed, polymeric β-cyclodextrin (β-CD) modified electrode, affording nanocavities for inclusion of the analytes, is shown as a disposable sensor capable of identifying bacteria by their metabolites. Three bacterial species were tested: two from the Pseudomonas genus, Pseudomonas fluorescens (P. fluorescens) and Pseudomonas aeruginosa (P. aeruginosa), and Serratia marcescens (S. marcescens), a member of the family, Enterobacteriaceae. On biofilm formation each species gave distinct, reproducible, redox fingerprints with a detection limit of 4 × 10-8 M. Square wave adsorptive stripping voltammetry (SWAdSV) was used for detection. Scanning electron microscopy (SEM) and cyclic voltammetry (CV) techniques were used to characterize the morphology and electrical conductivity of the modified electrode. In comparison to the bare screen-printed electrode, the modified electrode showed a considerably higher performance and offered an excellent sensitivity along with a relatively fast analysis time.
Collapse
Affiliation(s)
- Niloofar Haghighian
- Department of Chemistry, University of Durham Lower Mountjoy Durham DH1 3LE UK
| | - Ritu Kataky
- Department of Chemistry, University of Durham Lower Mountjoy Durham DH1 3LE UK
| |
Collapse
|
8
|
Thalhammer KO, Newman DK. A phenazine-inspired framework for identifying biological functions of microbial redox-active metabolites. Curr Opin Chem Biol 2023; 75:102320. [PMID: 37201291 PMCID: PMC10524139 DOI: 10.1016/j.cbpa.2023.102320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 05/20/2023]
Abstract
While the list of small molecules known to be secreted by environmental microbes continues to grow, our understanding of their in situ biological functions remains minimal. The time has come to develop a framework to parse the meaning of these "secondary metabolites," which are ecologically ubiquitous and have direct applications in medicine and biotechnology. Here, we focus on a particular subset of molecules, redox active metabolites (RAMs), and review the well-studied phenazines as archetypes of this class. We argue that efforts to characterize the chemical, physical and biological makeup of the microenvironments, wherein these molecules are produced, coupled with measurements of the molecules' basic chemical properties, will enable significant progress in understanding the precise roles of novel RAMs.
Collapse
Affiliation(s)
- Korbinian O Thalhammer
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Dianne K Newman
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA; Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
9
|
Thulasinathan B, D S, Murugan S, Panda SK, Veerapandian M, Manickam P. DNA-functionalized carbon quantum dots for electrochemical detection of pyocyanin: A quorum sensing molecule in Pseudomonas aeruginosa. Biosens Bioelectron 2023; 227:115156. [PMID: 36842368 DOI: 10.1016/j.bios.2023.115156] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/03/2023] [Accepted: 02/14/2023] [Indexed: 02/21/2023]
Abstract
The electrochemical biosensing strategy for pyocyanin (PYO), a virulent quorum-sensing molecule responsible for Pseudomonas aeruginosa infections, was developed by mimicking its extracellular DNA interaction. Calf thymus DNA (ct-DNA) functionalized amine-containing carbon quantum dots (CQDs) were used as a biomimetic receptor for electrochemical sensing of PYO as low as 37 nM in real urine sample. The ct-DNA-based biosensor enabled the selective measurement of PYO in the presence of other interfering species. Calibration and validation of the PYO sensor platform were demonstrated in buffer solution (0-100 μM), microbial culture media (0-100 μM), artificial urine (0-400 μM), and real urine sample (0-250 μM). The sensor capability was successfully implemented for point-of-care (POC) detection of PYO release from Pseudomonas aeruginosa strains during lag and stationary phases. Cross-reactivity of the sensing platform was also tested in other bacterial species such as Bacillus subtilis, Escherichia coli, Klebsiella pneumoniae, Shigella dysenteriae, Staphylococcus aureus, and Streptococcus pneumoniae. Potential clinical implementation of the ct-DNA-based sensor was manifested in detecting the PYO in P. aeruginosa cultured baby diaper and sanitary napkin. Our results highlight that the newly developed ct-DNA-based sensing platform can be used as a potential candidate for real-time POC diagnosis of Pseudomonas aeruginosa infection in clinical samples.
Collapse
Affiliation(s)
- Boobalan Thulasinathan
- Electrodics & Electrocatalysis Division, CSIR - Central Electrochemical Research Institute (CECRI), Karaikudi, 630003, India
| | - Sujatha D
- Electroplating and Metal Finishing Division, CSIR - Central Electrochemical Research Institute (CECRI), Karaikudi, 630003, India
| | - Sethupathi Murugan
- Electroplating and Metal Finishing Division, CSIR - Central Electrochemical Research Institute (CECRI), Karaikudi, 630003, India
| | - Subhendu K Panda
- Electroplating and Metal Finishing Division, CSIR - Central Electrochemical Research Institute (CECRI), Karaikudi, 630003, India
| | - Murugan Veerapandian
- Electrodics & Electrocatalysis Division, CSIR - Central Electrochemical Research Institute (CECRI), Karaikudi, 630003, India
| | - Pandiaraj Manickam
- Electrodics & Electrocatalysis Division, CSIR - Central Electrochemical Research Institute (CECRI), Karaikudi, 630003, India.
| |
Collapse
|
10
|
Butler D, Kammarchedu V, Zhou K, Peeke L, Lyle L, Snyder DW, Ebrahimi A. Cellulose-Based Laser-Induced Graphene Devices for Electrochemical Monitoring of Bacterial Phenazine Production and Viability. SENSORS AND ACTUATORS. B, CHEMICAL 2023; 378:133090. [PMID: 36644326 PMCID: PMC9835725 DOI: 10.1016/j.snb.2022.133090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
As an easily disposable substrate with a microporous texture, paper is a well-suited, generic substrate to build analytical devices for studying bacteria. Using a multi-pass lasing process, cellulose-based laser-induced graphene (cLIG) with a sheet resistance of 43.7 ± 2.3 Ωsq-1 is developed and utilized in the fabrication of low-cost and environmentally-friendly paper sensor arrays. Two case studies with Pseudomonas aeruginosa and Escherichia coli demonstrate the practicality of the cLIG sensors for the electrochemical analysis of bacteria. The first study measures the time-dependent profile of phenazines released from both planktonic (up to 60 h) and on-chip-grown (up to 22 h) Pseudomonas aeruginosa cultures. While similarities do exist, marked differences in phenazine production are seen with cells grown directly on cLIG compared to the planktonic culture. Moreover, in planktonic cultures, pyocyanin levels increase early on and plateau around 20 h, while optical density measurements increase monotonically over the duration of testing. The second study monitors the viability and metabolic activity of Escherichia coli using a resazurin-based electrochemical assay. These results demonstrate the utility of cLIG paper sensors as an inexpensive and versatile platform for monitoring bacteria and could enable new opportunities in high-throughput antibiotic susceptibility testing, ecological studies, and biofilm studies.
Collapse
Affiliation(s)
- Derrick Butler
- Department of Electrical Engineering, The Pennsylvania State University, University Park, PA 16802
- Center for Atomically Thin Multifunctional Coatings, The Pennsylvania State University, University Park, PA 16802
| | - Vinay Kammarchedu
- Department of Electrical Engineering, The Pennsylvania State University, University Park, PA 16802
- Center for Atomically Thin Multifunctional Coatings, The Pennsylvania State University, University Park, PA 16802
- Center for Biodevices, The Pennsylvania State University, University Park, PA 16802
| | - Keren Zhou
- Department of Electrical Engineering, The Pennsylvania State University, University Park, PA 16802
| | - Lachlan Peeke
- Applied Research Laboratory - Electronic Materials and Devices Department, The Pennsylvania State University, University Park, PA 16802
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802
| | - Luke Lyle
- Applied Research Laboratory - Electronic Materials and Devices Department, The Pennsylvania State University, University Park, PA 16802
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802
| | - David W Snyder
- Applied Research Laboratory - Electronic Materials and Devices Department, The Pennsylvania State University, University Park, PA 16802
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802
| | - Aida Ebrahimi
- Department of Electrical Engineering, The Pennsylvania State University, University Park, PA 16802
- Center for Atomically Thin Multifunctional Coatings, The Pennsylvania State University, University Park, PA 16802
- Center for Biodevices, The Pennsylvania State University, University Park, PA 16802
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
11
|
Abstract
Extracellular electron transfer (EET) is a process via which certain microorganisms, such as bacteria, exchange electrons with extracellular materials by creating an electrical link across their membranes. EET has been studied for the reactions on solid materials such as minerals and electrodes with implication in geobiology and biotechnology. EET-capable bacteria exhibit broad phylogenetic diversity, and some are found in environments with various types of electron acceptors/donors not limited to electrodes or minerals. Oxygen has also been shown to serve as the terminal electron acceptor for EET of Pseudomonas aeruginosa and Faecalibacterium prausnitzii. However, the physiological significance of such oxygen-terminating EETs, as well as the mechanisms underlying them, remain unclear. In order to understand the physiological advantage of oxygen-terminating EET and its link with energy metabolism, in this review, we compared oxygen-terminating EET with aerobic respiration, fermentation, and electrode-terminating EET. We also summarized benefits and limitations of oxygen-terminating EET in a biofilm setting, which indicate that EET capability enables bacteria to create a niche in the anoxic zone of aerobic biofilms, thereby remodeling bacterial metabolic activities in biofilms.
Collapse
|
12
|
Metabolomics and modelling approaches for systems metabolic engineering. Metab Eng Commun 2022; 15:e00209. [PMID: 36281261 PMCID: PMC9587336 DOI: 10.1016/j.mec.2022.e00209] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/21/2022] Open
Abstract
Metabolic engineering involves the manipulation of microbes to produce desirable compounds through genetic engineering or synthetic biology approaches. Metabolomics involves the quantitation of intracellular and extracellular metabolites, where mass spectrometry and nuclear magnetic resonance based analytical instrumentation are often used. Here, the experimental designs, sample preparations, metabolite quenching and extraction are essential to the quantitative metabolomics workflow. The resultant metabolomics data can then be used with computational modelling approaches, such as kinetic and constraint-based modelling, to better understand underlying mechanisms and bottlenecks in the synthesis of desired compounds, thereby accelerating research through systems metabolic engineering. Constraint-based models, such as genome scale models, have been used successfully to enhance the yield of desired compounds from engineered microbes, however, unlike kinetic or dynamic models, constraint-based models do not incorporate regulatory effects. Nevertheless, the lack of time-series metabolomic data generation has hindered the usefulness of dynamic models till today. In this review, we show that improvements in automation, dynamic real-time analysis and high throughput workflows can drive the generation of more quality data for dynamic models through time-series metabolomics data generation. Spatial metabolomics also has the potential to be used as a complementary approach to conventional metabolomics, as it provides information on the localization of metabolites. However, more effort must be undertaken to identify metabolites from spatial metabolomics data derived through imaging mass spectrometry, where machine learning approaches could prove useful. On the other hand, single-cell metabolomics has also seen rapid growth, where understanding cell-cell heterogeneity can provide more insights into efficient metabolic engineering of microbes. Moving forward, with potential improvements in automation, dynamic real-time analysis, high throughput workflows, and spatial metabolomics, more data can be produced and studied using machine learning algorithms, in conjunction with dynamic models, to generate qualitative and quantitative predictions to advance metabolic engineering efforts.
Collapse
|
13
|
Zhou K, Kammarchedu V, Butler D, Soltan Khamsi P, Ebrahimi A. Electrochemical Sensors Based on MoS x -Functionalized Laser-Induced Graphene for Real-Time Monitoring of Phenazines Produced by Pseudomonas aeruginosa. Adv Healthc Mater 2022; 11:e2200773. [PMID: 35853169 PMCID: PMC9547893 DOI: 10.1002/adhm.202200773] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/21/2022] [Indexed: 01/27/2023]
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is an opportunistic pathogen causing infections in blood and implanted devices. Traditional identification methods take more than 24 h to produce results. Molecular biology methods expedite detection, but require an advanced skill set. To address these challenges, this work demonstrates functionalization of laser-induced graphene (LIG) for developing flexible electrochemical sensors for P. aeruginosa based on phenazines. Electrodeposition as a facile approach is used to functionalize LIG with molybdenum polysulfide (MoSx ). The sensor's limit of detection (LOD), sensitivity, and specificity are determined in broth, agar, and wound simulating medium (WSM). Control experiments with Escherichia coli, which does not produce phenazines, demonstrate specificity of sensors for P. aeruginosa. The LOD for pyocyanin (PYO) and phenazine-1-carboxylic acid (PCA) is 0.19 × 10-6 and 1.2 × 10-6 m, respectively. Furthermore, the highly stable sensors enable real-time monitoring of P. aeruginosa biofilms over several days. Comparing square wave voltammetry data over time shows time-dependent generation of phenazines. In particular, two configurations-"Normal" and "Flipped"-are studied, showing that the phenazines time dynamics vary depending on how cells interact with sensors. The reported results demonstrate the potential of the developed sensors for integration with wound dressings for early diagnosis of P. aeruginosa infection.
Collapse
Affiliation(s)
- Keren Zhou
- School of Electrical Engineering and Computer Science, The Pennsylvania State University, University Park, PA 16802, USA
- Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, USA
| | - Vinay Kammarchedu
- School of Electrical Engineering and Computer Science, The Pennsylvania State University, University Park, PA 16802, USA
- Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, USA
| | - Derrick Butler
- School of Electrical Engineering and Computer Science, The Pennsylvania State University, University Park, PA 16802, USA
- Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, USA
| | - Pouya Soltan Khamsi
- School of Electrical Engineering and Computer Science, The Pennsylvania State University, University Park, PA 16802, USA
- Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, USA
| | - Aida Ebrahimi
- School of Electrical Engineering and Computer Science, The Pennsylvania State University, University Park, PA 16802, USA
- Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
14
|
McLean C, Brown K, Windmill J, Dennany L. Innovations In Point-Of-Care Electrochemical Detection Of Pyocyanin. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Li Y, Hu Y, Chen T, Chen Y, Li Y, Zhou H, Yang D. Advanced detection and sensing strategies of Pseudomonas aeruginosa and quorum sensing biomarkers: A review. Talanta 2022; 240:123210. [PMID: 35026633 DOI: 10.1016/j.talanta.2022.123210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/31/2021] [Accepted: 01/04/2022] [Indexed: 11/25/2022]
Abstract
Pseudomonas aeruginosa (P. aeruginosa), a ubiquitous opportunistic pathogen, can frequently cause chronic obstructive pulmonary disease, cystic fibrosis and chronic wounds, and potentially lead to severe morbidity and mortality. Timely and adequate treatment of nosocomial infection in clinic depends on rapid detection and accurate identification of P. aeruginosa and its early-stage antibiotic susceptibility test. Traditional methods like plating culture, polymerase chain reaction, and enzyme-linked immune sorbent assays are time-consuming and require expensive equipment, limiting the rapid diagnostic application. Advanced sensing strategy capable of fast, sensitive and simple detection with low cost has therefore become highly desired in point of care testing (POCT) of nosocomial pathogens. Within this review, advanced detection and sensing strategies for P. aeruginosa cells along with associated quorum sensing (QS) molecules over the last ten years are discussed and summarized. Firstly, the principles of four commonly used sensing strategies including localized surface plasmon resonance (LSPR), surface-enhanced Raman spectroscopy (SERS), electrochemistry, and fluorescence are briefly overviewed. Then, the advancement of the above sensing techniques for P. aeruginosa cells and its QS biomarkers detection are introduced, respectively. In addition, the integration with novel compatible platforms towards clinical application is highlighted in each section. Finally, the current achievements are summarized along with proposed challenges and prospects.
Collapse
Affiliation(s)
- Yingying Li
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang Province, 315211, People's Republic of China; Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province, 315211, People's Republic of China
| | - Yang Hu
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province, 315211, People's Republic of China
| | - Tao Chen
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province, 315211, People's Republic of China
| | - Yan Chen
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province, 315211, People's Republic of China
| | - Yi Li
- Graduate School of Biomedical Engineering and ARC Centre of Excellence in Nanoscale Biophotonics, University of New South Wales, Sydney, 2052, Australia
| | - Haibo Zhou
- College of Pharmacy, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Danting Yang
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang Province, 315211, People's Republic of China; Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province, 315211, People's Republic of China.
| |
Collapse
|
16
|
Khoshroo A, Mavaei M, Rostami M, Valinezhad-Saghezi B, Fattahi A. Recent advances in electrochemical strategies for bacteria detection. BIOIMPACTS : BI 2022; 12:567-588. [PMID: 36644549 PMCID: PMC9809139 DOI: 10.34172/bi.2022.23616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/20/2022] [Accepted: 04/05/2022] [Indexed: 11/06/2022]
Abstract
Introduction: Bacterial infections have always been a major threat to public health and humans' life, and fast detection of bacteria in various samples is significant to provide early and effective treatments. Cell-culture protocols, as well-established methods, involve labor-intensive and complicated preparation steps. For overcoming this drawback, electrochemical methods may provide promising alternative tools for fast and reliable detection of bacterial infections. Methods: Therefore, this review study was done to present an overview of different electrochemical strategy based on recognition elements for detection of bacteria in the studies published during 2015-2020. For this purpose, many references in the field were reviewed, and the review covered several issues, including (a) enzymes, (b) receptors, (c) antimicrobial peptides, (d) lectins, (e) redox-active metabolites, (f) aptamer, (g) bacteriophage, (h) antibody, and (i) molecularly imprinted polymers. Results: Different analytical methods have developed are used to bacteria detection. However, most of these methods are highly time, and cost consuming, requiring trained personnel to perform the analysis. Among of these methods, electrochemical based methods are well accepted powerful tools for the detection of various analytes due to the inherent properties. Electrochemical sensors with different recognition elements can be used to design diagnostic system for bacterial infections. Recent studies have shown that electrochemical assay can provide promising reliable method for detection of bacteria. Conclusion: In general, the field of bacterial detection by electrochemical sensors is continuously growing. It is believed that this field will focus on portable devices for detection of bacteria based on electrochemical methods. Development of these devices requires close collaboration of various disciplines, such as biology, electrochemistry, and biomaterial engineering.
Collapse
Affiliation(s)
- Alireza Khoshroo
- Nutrition Health Research center, Hamadan University of Medical Sciences, Hamadan, Iran
,Corresponding authors: Alireza Khoshroo, ; Ali Fattahi,
| | - Maryamosadat Mavaei
- Pharmaceutical Sciences Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Masoume Rostami
- Student Research Committe, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Ali Fattahi
- Pharmaceutical Sciences Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
,Medical Biology Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
,Corresponding authors: Alireza Khoshroo, ; Ali Fattahi,
| |
Collapse
|
17
|
Wang YX, Wang DX, Wang J, Liu B, Tang AN, Kong DM. DNA nanolantern-mediated catalytic hairpin assembly nanoamplifiers for simultaneous detection of multiple microRNAs. Talanta 2022; 236:122846. [PMID: 34635236 DOI: 10.1016/j.talanta.2021.122846] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 12/17/2022]
Abstract
Simultaneous detection of multiple microRNAs (miRNAs) with high sensitivity can give accurate and reliable information for clinical applications. By uniformly anchoring hairpin probes on the surface of DNA nanolantern, a three-dimensional DNA nanostructure contains abundant and adjustable modification sites, highly integrated DNA nanoprobes were designed and developed as catalytic hairpin assembly (CHA)-based signal amplifiers for enzyme-free signal amplification detection of target miRNAs. The nanolantern-based CHA (NLC) amplifiers, which were facilely prepared via a simple "one-pot" annealing method, showed enhanced biostability, improved cell internalization efficiency, accelerated CHA reaction kinetics, and increased signal amplification capability compared to the single-stranded DNA hairpin probes used in traditional CHA reaction. By co-assembling multiple hairpin probes on a DNA nanolantern surface, as-prepared NLC amplifiers were demonstrated to work well for highly sensitive and specific imaging, expression level fluctuation analysis of two miRNAs in living cells, and miRNAs-guided tumor imaging in living mice. The proposed DNA nanolantern-based nanoamplifier strategy might provide a feasible way to promote the cellular and in vivo applications of nucleic acid probes.
Collapse
Affiliation(s)
- Ya-Xin Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin, 300071, PR China; School of Pharmacy, Binzhou Medical University, Yantai, Shandong, 264003, PR China
| | - Dong-Xia Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin, 300071, PR China
| | - Jing Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin, 300071, PR China
| | - Bo Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin, 300071, PR China
| | - An-Na Tang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin, 300071, PR China
| | - De-Ming Kong
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin, 300071, PR China.
| |
Collapse
|
18
|
Ino K, Pai HJ, Hiramoto K, Utagawa Y, Nashimoto Y, Shiku H. Electrochemical Imaging of Endothelial Permeability Using a Large-Scale Integration-Based Device. ACS OMEGA 2021; 6:35476-35483. [PMID: 34984279 PMCID: PMC8717544 DOI: 10.1021/acsomega.1c04931] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/19/2021] [Indexed: 06/14/2023]
Abstract
It is important to clarify the transport of biomolecules and chemicals to tissues. Herein, we present an electrochemical imaging method for evaluating the endothelial permeability. In this method, the diffusion of electrochemical tracers, [Fe(CN)6]4-, through a monolayer of human umbilical vein endothelial cells (HUVECs) was monitored using a large-scale integration-based device containing 400 electrodes. In conventional tracer-based assays, tracers that diffuse through an HUVEC monolayer into another channel are detected. In contrast, the present method does not employ separated channels. In detail, a HUVEC monolayer is immersed in a solution containing [Fe(CN)6]4- on the device. As [Fe(CN)6]4- is oxidized and consumed at the packed electrodes, [Fe(CN)6]4- begins to diffuse through the monolayer from the bulk solution to the electrodes and the obtained currents depend on the endothelial permeability. As a proof-of-concept, the effects of histamine on the monolayer were monitored. Also, an HUVEC monolayer was cocultured with cancer spheroids, and the endothelial permeability was monitored to evaluate the metastasis of the cancer spheroids. Unlike conventional methods, the device can provide spatial information, allowing the interaction between the monolayer and the spheroids to be monitored. The developed method is a promising tool for organs-on-a-chip and drug screening in vitro.
Collapse
Affiliation(s)
- Kosuke Ino
- Graduate
School of Engineering, Tohoku University, 6-6-11 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Hao-Jen Pai
- Graduate
School of Environmental Studies, Tohoku
University, 6-6-11 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Kaoru Hiramoto
- Graduate
School of Environmental Studies, Tohoku
University, 6-6-11 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Yoshinobu Utagawa
- Graduate
School of Environmental Studies, Tohoku
University, 6-6-11 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Yuji Nashimoto
- Graduate
School of Engineering, Tohoku University, 6-6-11 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8579, Japan
- Frontier
Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8578, Japan
| | - Hitoshi Shiku
- Graduate
School of Engineering, Tohoku University, 6-6-11 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8579, Japan
| |
Collapse
|
19
|
Sundaresan V, Do H, Shrout JD, Bohn PW. Electrochemical and spectroelectrochemical characterization of bacteria and bacterial systems. Analyst 2021; 147:22-34. [PMID: 34874024 PMCID: PMC8791413 DOI: 10.1039/d1an01954f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Microbes, such as bacteria, can be described, at one level, as small, self-sustaining chemical factories. Based on the species, strain, and even the environment, bacteria can be useful, neutral or pathogenic to human life, so it is increasingly important that we be able to characterize them at the molecular level with chemical specificity and spatial and temporal resolution in order to understand their behavior. Bacterial metabolism involves a large number of internal and external electron transfer processes, so it is logical that electrochemical techniques have been employed to investigate these bacterial metabolites. In this mini-review, we focus on electrochemical and spectroelectrochemical methods that have been developed and used specifically to chemically characterize bacteria and their behavior. First, we discuss the latest mechanistic insights and current understanding of microbial electron transfer, including both direct and mediated electron transfer. Second, we summarize progress on approaches to spatiotemporal characterization of secreted factors, including both metabolites and signaling molecules, which can be used to discern how natural or external factors can alter metabolic states of bacterial cells and change either their individual or collective behavior. Finally, we address in situ methods of single-cell characterization, which can uncover how heterogeneity in cell behavior is reflected in the behavior and properties of collections of bacteria, e.g. bacterial communities. Recent advances in (spectro)electrochemical characterization of bacteria have yielded important new insights both at the ensemble and the single-entity levels, which are furthering our understanding of bacterial behavior. These insights, in turn, promise to benefit applications ranging from biosensors to the use of bacteria in bacteria-based bioenergy generation and storage.
Collapse
Affiliation(s)
- Vignesh Sundaresan
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Hyein Do
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Joshua D Shrout
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Paul W Bohn
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
20
|
Fu K, Seo J, Kesler V, Maganzini N, Wilson BD, Eisenstein M, Murmann B, Soh HT. Accelerated Electron Transfer in Nanostructured Electrodes Improves the Sensitivity of Electrochemical Biosensors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102495. [PMID: 34668339 PMCID: PMC8655170 DOI: 10.1002/advs.202102495] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/29/2021] [Indexed: 05/20/2023]
Abstract
Electrochemical biosensors hold the exciting potential to integrate molecular detection with signal processing and wireless communication in a miniaturized, low-cost system. However, as electrochemical biosensors are miniaturized to the micrometer scale, their signal-to-noise ratio degrades and reduces their utility for molecular diagnostics. Studies have reported that nanostructured electrodes can improve electrochemical biosensor signals, but since the underlying mechanism remains poorly understood, it remains difficult to fully exploit this phenomenon to improve biosensor performance. In this work, electrochemical aptamer biosensors on nanoporous electrode are optimized to achieve improved sensitivity by tuning pore size, probe density, and electrochemical measurement parameters. Further, a novel mechanism in which electron transfer is physically accelerated within nanostructured electrodes due to reduced charge screening, resulting in enhanced sensitivity is proposed and experimentally validated. In concert with the increased surface areas achieved with this platform, this newly identified effect can yield an up to 24-fold increase in signal level and nearly fourfold lower limit of detection relative to planar electrodes with the same footprint. Importantly, this strategy can be generalized to virtually any electrochemical aptamer sensor, enabling sensitive detection in applications where miniaturization is a necessity, and should likewise prove broadly applicable for improving electrochemical biosensor performance in general.
Collapse
Affiliation(s)
- Kaiyu Fu
- Department of Electrical EngineeringStanford UniversityStanfordCA94305USA
- Department of RadiologyStanford UniversityStanfordCA94305USA
| | - Ji‐Won Seo
- Department of Electrical EngineeringStanford UniversityStanfordCA94305USA
- Department of RadiologyStanford UniversityStanfordCA94305USA
| | - Vladimir Kesler
- Department of Electrical EngineeringStanford UniversityStanfordCA94305USA
| | - Nicolo Maganzini
- Department of Electrical EngineeringStanford UniversityStanfordCA94305USA
| | - Brandon D. Wilson
- Department of Chemical EngineeringStanford UniversityStanfordCA94305USA
| | - Michael Eisenstein
- Department of Electrical EngineeringStanford UniversityStanfordCA94305USA
- Department of RadiologyStanford UniversityStanfordCA94305USA
| | - Boris Murmann
- Department of Electrical EngineeringStanford UniversityStanfordCA94305USA
| | - H. Tom Soh
- Department of Electrical EngineeringStanford UniversityStanfordCA94305USA
- Department of RadiologyStanford UniversityStanfordCA94305USA
- Chan Zuckerberg BiohubSan FranciscoCA94158USA
| |
Collapse
|
21
|
Jia J, Kwon SR, Baek S, Sundaresan V, Cao T, Cutri AR, Fu K, Roberts B, Shrout JD, Bohn PW. Actively Controllable Solid-Phase Microextraction in a Hierarchically Organized Block Copolymer-Nanopore Electrode Array Sensor for Charge-Selective Detection of Bacterial Metabolites. Anal Chem 2021; 93:14481-14488. [PMID: 34661405 DOI: 10.1021/acs.analchem.1c02998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pseudomonas aeruginosa produces a number of phenazine metabolites, including pyocyanin (PYO), phenazine-1-carboxamide (PCN), and phenazine-1-carboxylic acid (PCA). Among these, PYO has been most widely studied as a biomarker of P. aeruginosa infection. However, despite its broad-spectrum antibiotic properties and its role as a precursor in the biosynthetic route leading to other secondary phenazines, PCA has attracted less attention, partially due to its relatively low concentration and interference from other highly abundant phenazines. This challenge is addressed here by constructing a hierarchically organized nanostructure consisting of a pH-responsive block copolymer (BCP) membrane with nanopore electrode arrays (NEAs) filled with gold nanoparticles (AuNPs) to separate and detect PCA in bacterial environments. The BCP@NEA strategy is designed such that adjusting the pH of the bacterial medium to 4.5, which is above the pKa of PCA but below the pKa of PYO and PCN, ensures that PCA is negatively charged and can be selectively transported across the BCP membrane. At pH 4.5, only PCA is transported into the AuNP-filled NEAs, while PYO and PCN are blocked. Structural characterization illustrates the rigorous spatial segregation of the AuNPs in the NEA nanopore volume, allowing PCA secreted from P. aeruginosa to be quantitatively determined as a function of incubation time using square-wave voltammetry and surface-enhanced Raman spectroscopy. The strategy proposed in this study can be extended by changing the nature of the hydrophilic block and subsequently applied to detect other redox-active metabolites at a low concentration in complex biological samples and, thus, help understand metabolism in microbial communities.
Collapse
Affiliation(s)
- Jin Jia
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Seung-Ryong Kwon
- Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, South Korea
| | - Seol Baek
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Vignesh Sundaresan
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Tianyuan Cao
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Allison R Cutri
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Kaiyu Fu
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States.,Department of Radiology, Stanford University, Stanford, California 94305, United States
| | - Bridget Roberts
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Joshua D Shrout
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States.,Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Paul W Bohn
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States.,Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
22
|
Chen H, Yu J, Zhang J, Sun K, Ding Z, Jiang Y, Hu Q, Wu C, Chiu DT. Monitoring Metabolites Using an NAD(P)H‐sensitive Polymer Dot and a Metabolite‐Specific Enzyme. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Haobin Chen
- Department of Chemistry and Bioengineering University of Washington Seattle WA 98195 USA
| | - Jiangbo Yu
- Department of Chemistry and Bioengineering University of Washington Seattle WA 98195 USA
| | - Jicheng Zhang
- Department of Chemistry and Bioengineering University of Washington Seattle WA 98195 USA
| | - Kai Sun
- Department of Chemistry and Bioengineering University of Washington Seattle WA 98195 USA
| | - Zhaoyang Ding
- Department of Chemistry and Bioengineering University of Washington Seattle WA 98195 USA
| | - Yifei Jiang
- Department of Chemistry and Bioengineering University of Washington Seattle WA 98195 USA
| | - Qiongzheng Hu
- Department of Chemistry and Bioengineering University of Washington Seattle WA 98195 USA
| | - Changfeng Wu
- Department of Biomedical Engineering Southern University of Science and Technology Shenzhen Guangdong 510855 China
| | - Daniel T. Chiu
- Department of Chemistry and Bioengineering University of Washington Seattle WA 98195 USA
| |
Collapse
|
23
|
Chen H, Yu J, Zhang J, Sun K, Ding Z, Jiang Y, Hu Q, Wu C, Chiu DT. Monitoring Metabolites Using an NAD(P)H-sensitive Polymer Dot and a Metabolite-Specific Enzyme. Angew Chem Int Ed Engl 2021; 60:19331-19336. [PMID: 34146440 DOI: 10.1002/anie.202106156] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/06/2021] [Indexed: 12/24/2022]
Abstract
We introduce an NAD(P)H-sensitive polymer dot (Pdot) biosensor for point-of-care monitoring of metabolites. The Pdot is combined with a metabolite-specific NAD(P)H-dependent enzyme that catalyzes the oxidation of the metabolite, generating NAD(P)H. Upon UV illumination, the NAD(P)H quenches the fluorescence emission of Pdot at 627 nm via electron transfer, and also fluoresces at 458 nm, resulting in a shift from red to blue emission at higher NAD(P)H concentrations. Metabolite concentration is quantified ratiometrically-based on the ratio of blue-to-red channel emission intensities, with a digital camera-with high sensitivity and specificity. We demonstrate phenylalanine biosensing in human plasma for a phenylketonuria screening test, quantifying several other disease-related metabolites (lactate, glucose, glutamate, and β-hydroxybutyrate), and a paper-based assay with smartphore imaging for point-of-care use.
Collapse
Affiliation(s)
- Haobin Chen
- Department of Chemistry and Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Jiangbo Yu
- Department of Chemistry and Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Jicheng Zhang
- Department of Chemistry and Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Kai Sun
- Department of Chemistry and Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Zhaoyang Ding
- Department of Chemistry and Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Yifei Jiang
- Department of Chemistry and Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Qiongzheng Hu
- Department of Chemistry and Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Changfeng Wu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 510855, China
| | - Daniel T Chiu
- Department of Chemistry and Bioengineering, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
24
|
Mukherjee P, Pichiah S, Packirisamy G, Jang M. Biocatalyst physiology and interplay: a protagonist of MFC operation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:43217-43233. [PMID: 34165738 DOI: 10.1007/s11356-021-15015-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
Microbial fuel cells (MFC) have been foreseen as a sustainable renewable energy resource to meet future energy demand. In the past, several studies have been executed in both benchtop and pilot scale to produce electrical energy from wastewater. The key role players in this technology that leads to the operation are microbes, mainly bacteria. The dominant among them is termed as "exoelectrogens" that have the capability to produce and transport electron by utilizing waste source. The current review focuses on such electrogenic bacteria's involvement for enhanced power generation of MFC. The pathway of electron transfer in their cell along and its conduction to the extracellular environment of the MFC system are critically discussed. The interaction of the microbes in various MFC operational conditions, including the role of substrate and solid electron acceptors, i.e., anode, external resistance, temperature, and pH, was also discussed in depth along with biotechnological advancement and future research perspective.
Collapse
Affiliation(s)
- Priya Mukherjee
- Environmental Nanotechnology Laboratory, Department of Environmental Science and Engineering, Indian Institute of Technology (ISM), Dhanbad, Jharkhand, 826004, India
| | - Saravanan Pichiah
- Environmental Nanotechnology Laboratory, Department of Environmental Science and Engineering, Indian Institute of Technology (ISM), Dhanbad, Jharkhand, 826004, India.
| | - Gopinath Packirisamy
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Min Jang
- Department of Environmental Engineering, Kwangwoon University, 447-1, Wolgye-dong Nowon-Gu, Seoul, South Korea
| |
Collapse
|
25
|
Chukwubuikem A, Berger C, Mady A, Rosenbaum MA. Role of phenazine-enzyme physiology for current generation in a bioelectrochemical system. Microb Biotechnol 2021; 14:1613-1626. [PMID: 34000093 PMCID: PMC8313257 DOI: 10.1111/1751-7915.13827] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/14/2021] [Accepted: 04/27/2021] [Indexed: 02/06/2023] Open
Abstract
Pseudomonas aeruginosa produces phenazine-1-carboxylic acid (PCA) and pyocyanin (PYO), which aid its anaerobic survival by mediating electron transfer to distant oxygen. These natural secondary metabolites are being explored in biotechnology to mediate electron transfer to the anode of bioelectrochemical systems. A major challenge is that only a small fraction of electrons from microbial substrate conversion is recovered. It remained unclear whether phenazines can re-enter the cell and thus, if the electrons accessed by the phenazines arise mainly from cytoplasmic or periplasmic pathways. Here, we prove that the periplasmic glucose dehydrogenase (Gcd) of P. aeruginosa and P. putida is involved in the reduction of natural phenazines. PYO displayed a 60-fold faster enzymatic reduction than PCA; PCA was, however, more stable for long-term electron shuttling to the anode. Evaluation of a Gcd knockout and overexpression strain showed that up to 9% of the anodic current can be designated to this enzymatic reaction. We further assessed phenazine uptake with the aid of two molecular biosensors, which experimentally confirm the phenazines' ability to re-enter the cytoplasm. These findings significantly advance the understanding of the (electro) physiology of phenazines for future tailoring of phenazine electron discharge in biotechnological applications.
Collapse
Affiliation(s)
- Anthony Chukwubuikem
- Bio Pilot PlantLeibniz Institute for Natural Product Research and Infection Biology – Hans‐Knöll‐Institute (HKI)JenaGermany
- Faculty of Biological SciencesFriedrich Schiller University (FSU)JenaGermany
| | - Carola Berger
- Faculty of Biological SciencesFriedrich Schiller University (FSU)JenaGermany
| | - Ahmed Mady
- Faculty of Biological SciencesFriedrich Schiller University (FSU)JenaGermany
| | - Miriam A. Rosenbaum
- Bio Pilot PlantLeibniz Institute for Natural Product Research and Infection Biology – Hans‐Knöll‐Institute (HKI)JenaGermany
- Faculty of Biological SciencesFriedrich Schiller University (FSU)JenaGermany
| |
Collapse
|
26
|
Tobramycin Adaptation Enhances Policing of Social Cheaters in Pseudomonas aeruginosa. Appl Environ Microbiol 2021; 87:e0002921. [PMID: 33837019 DOI: 10.1128/aem.00029-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The Pseudomonas aeruginosa LasR-LasI (LasR-I) quorum sensing system regulates secreted proteases that can be exploited by cheaters, such as quorum sensing receptor-defective (lasR) mutants. lasR mutants emerge in populations growing on casein as a sole source of carbon and energy. These mutants are exploitative cheaters because they avoid the substantial cost of engaging in quorum sensing. Previous studies showed that quorum sensing increases resistance to some antibiotics, such as tobramycin. Here, we show that tobramycin suppressed the emergence of lasR mutants in casein-passaged populations. Several mutations accumulated in those populations, indicating evidence of antibiotic adaptation. We found that mutations in one gene, ptsP, increased antibiotic resistance and also pleiotropically increased production of a quorum sensing-controlled phenazine, pyocyanin. When passaged on casein, ptsP mutants suppressed cheaters in a manner that was tobramycin independent. We found that the mechanism of cheater suppression in ptsP mutants relied on pyocyanin, which acts as a policing toxin by selectively blocking growth of cheaters. Thus, tobramycin suppresses lasR mutants through two mechanisms: first, through direct effects on cheaters and, second, by selecting mutations in ptsP that suppressed cheating in a tobramycin-independent manner. This work demonstrates how adaptive mutations can alter the dynamics of cooperator-cheater relationships, which might be important for populations adapting to antibiotics during interspecies competition or infections. IMPORTANCE The opportunistic pathogen Pseudomonas aeruginosa is a model for understanding quorum sensing, a type of cell-cell signaling important for cooperation. Quorum sensing controls production of cooperative goods, such as exoenzymes, which are vulnerable to cheating by quorum sensing-defective mutants. Because uncontrolled cheating can ultimately cause a population to collapse, much focus has been on understanding how P. aeruginosa can control cheaters. We show that an antibiotic, tobramycin, can suppress cheaters in cooperating P. aeruginosa populations. Tobramycin suppresses cheaters directly because the cheaters are more susceptible to tobramycin than cooperators. Tobramycin also selects for mutations in a gene, ptsP, that suppresses cheaters independent of tobramycin through pleiotropic regulation of a policing toxin, pyocyanin. This work supports the idea that adaptation to antibiotics can have unexpected effects on the evolution of quorum sensing and has implications for understanding how cooperation evolves in dynamic bacterial communities.
Collapse
|
27
|
Burgoyne ED, Molina-Osorio AF, Moshrefi R, Shanahan R, McGlacken GP, Stockmann TJ, Scanlon MD. Detection of Pseudomonas aeruginosa quorum sensing molecules at an electrified liquid|liquid micro-interface through facilitated proton transfer. Analyst 2021; 145:7000-7008. [PMID: 32869782 DOI: 10.1039/d0an01245a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Miniaturization of electrochemical detection methods for point-of-care-devices is ideal for their integration and use within healthcare environments. Simultaneously, the prolific pathogenic bacteria Pseudomonas aeruginosa poses a serious health risk to patients with compromised immune systems. Recognizing these two factors, a proof-of-concept electrochemical method employing a micro-interface between water and oil (w/o) held at the tip of a pulled borosilicate glass capillary is presented. This method targets small molecules produced by P. aeruginosa colonies as signalling factors that control colony growth in a pseudo-multicellular process known as quorum sensing (QS). The QS molecules of interest are 4-hydroxy-2-heptylquinoline (HHQ) and 2-heptyl-3,4-dihydroxyquinoline (PQS, Pseudomonas quinolone signal). Hydrophobic HHQ and PQS molecules, dissolved in the oil phase, were observed electrochemically to facilitate proton transfer across the w/o interface. This interfacial complexation can be exploited as a facile electrochemical detection method for P. aeruginosa and is advantageous as it does not depend on the redox activity of HHQ/PQS. Interestingly, the limit-of-linearity is reached as [H+] ≈ [ligand]. Density functional theory calculations were performed to determine the proton affinities and gas-phase basicities of HHQ/PQS, as well as elucidate the likely site of stepwise protonation within each molecule.
Collapse
Affiliation(s)
- Edward D Burgoyne
- The Bernal Institute and Department of Chemical Sciences, School of Natural Sciences, University of Limerick (UL), Limerick V94 T9PX, Ireland.
| | | | | | | | | | | | | |
Collapse
|
28
|
Mojsoska B, Ghoul M, Perron GG, Jenssen H, Alatraktchi FA. Changes in toxin production of environmental Pseudomonas aeruginosa isolates exposed to sub-inhibitory concentrations of three common antibiotics. PLoS One 2021; 16:e0248014. [PMID: 33662048 PMCID: PMC7932067 DOI: 10.1371/journal.pone.0248014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/17/2021] [Indexed: 12/02/2022] Open
Abstract
Pseudomonas aeruginosa is an environmental pathogen that can cause severe infections in immunocompromised patients. P. aeruginosa infections are typically treated with multiple antibiotics including tobramycin, ciprofloxacin, and meropenem. However, antibiotics do not always entirely clear the bacteria from the infection site, where they may remain virulent. This is because the effective antibiotic concentration and diffusion in vitro may differ from the in vivo environment in patients. Therefore, it is important to understand the effect of non-lethal sub-inhibitory antibiotic concentrations on bacterial phenotype. Here, we investigate if sub-inhibitory antimicrobial concentrations cause alterations in bacterial virulence factor production using pyocyanin as a model toxin. We tested this using the aforementioned antibiotics on 10 environmental P. aeruginosa strains. Using on-the-spot electrochemical screening, we were able to directly quantify changes in production of pyocyanin in a measurement time of 17 seconds. Upon selecting 3 representative strains to further test the effects of sub-minimum inhibitory concentration (MICs), we found that pyocyanin production changed significantly when the bacteria were exposed to 10-fold MIC of the 3 antibiotics tested, and this was strain specific. A series of biologically relevant measured pyocyanin concentrations were also used to assess the effects of increased virulence on a culture of epithelial cells. We found a decreased viability of the epithelial cells when incubated with biologically relevant pyocyanin concentrations. This suggests that the antibiotic-induced virulence also is a value worth being enclosed in regular testing of pathogens.
Collapse
Affiliation(s)
- Biljana Mojsoska
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
- PreDiagnose, Karlslunde, Denmark
| | - Melanie Ghoul
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Gabriel G. Perron
- Department of Biology, Bard College, Annandale-On-Hudson, NY, United States of America
| | - Håvard Jenssen
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | | |
Collapse
|
29
|
De Chiara F, Ferret-Miñana A, Ramón-Azcón J. The Synergy between Organ-on-a-Chip and Artificial Intelligence for the Study of NAFLD: From Basic Science to Clinical Research. Biomedicines 2021; 9:248. [PMID: 33801289 PMCID: PMC7999375 DOI: 10.3390/biomedicines9030248] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/20/2021] [Accepted: 02/25/2021] [Indexed: 12/15/2022] Open
Abstract
Non-alcoholic fatty liver affects about 25% of global adult population. On the long-term, it is associated with extra-hepatic compliances, multiorgan failure, and death. Various invasive and non-invasive methods are employed for its diagnosis such as liver biopsies, CT scan, MRI, and numerous scoring systems. However, the lack of accuracy and reproducibility represents one of the biggest limitations of evaluating the effectiveness of drug candidates in clinical trials. Organ-on-chips (OOC) are emerging as a cost-effective tool to reproduce in vitro the main NAFLD's pathogenic features for drug screening purposes. Those platforms have reached a high degree of complexity that generate an unprecedented amount of both structured and unstructured data that outpaced our capacity to analyze the results. The addition of artificial intelligence (AI) layer for data analysis and interpretation enables those platforms to reach their full potential. Furthermore, the use of them do not require any ethic and legal regulation. In this review, we discuss the synergy between OOC and AI as one of the most promising ways to unveil potential therapeutic targets as well as the complex mechanism(s) underlying NAFLD.
Collapse
Affiliation(s)
- Francesco De Chiara
- Biosensors for Bioengineering Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri I Reixac 10–12, 08028 Barcelona, Spain; (A.F.-M.); (J.R.-A.)
| | - Ainhoa Ferret-Miñana
- Biosensors for Bioengineering Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri I Reixac 10–12, 08028 Barcelona, Spain; (A.F.-M.); (J.R.-A.)
| | - Javier Ramón-Azcón
- Biosensors for Bioengineering Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri I Reixac 10–12, 08028 Barcelona, Spain; (A.F.-M.); (J.R.-A.)
- ICREA-Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
| |
Collapse
|
30
|
Do H, Kwon SR, Baek S, Madukoma CS, Smiley MK, Dietrich LE, Shrout JD, Bohn PW. Redox cycling-based detection of phenazine metabolites secreted from Pseudomonas aeruginosa in nanopore electrode arrays. Analyst 2021; 146:1346-1354. [PMID: 33393560 PMCID: PMC7937416 DOI: 10.1039/d0an02022b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The opportunistic pathogen Pseudomonas aeruginosa (P. aeruginosa) produces several redox-active phenazine metabolites, including pyocyanin (PYO) and phenazine-1-carboxamide (PCN), which are electron carrier molecules that also aid in virulence. In particular, PYO is an exclusive metabolite produced by P. aeruginosa, which acts as a virulence factor in hospital-acquired infections and is therefore a good biomarker for identifying early stage colonization by this pathogen. Here, we describe the use of nanopore electrode arrays (NEAs) exhibiting metal-insulator-metal ring electrode architectures for enhanced detection of these phenazine metabolites. The size of the nanopores allows phenazine metabolites to freely diffuse into the interior and access the working electrodes, while the bacteria are excluded. Consequently, highly efficient redox cycling reactions in the NEAs can be accessed by free diffusion unhindered by the presence of bacteria. This strategy yields low limits of detection, i.e. 10.5 and 20.7 nM for PYO and PCN, respectively, values far below single molecule pore occupancy, e.g. at 10.5 nM 〈npore〉∼ 0.082 per nanopore - a limit which reflects the extraordinary signal amplification in the NEAs. Furthermore, experiments that compared results from minimal medium and rich medium show that P. aeruginosa produces the same types of phenazine metabolites even though growth rates and phenazine production patterns differ in these two media. The NEA measurement strategy developed here should be useful as a diagnostic for pathogens generally and for understanding metabolism in clinically important microbial communities.
Collapse
Affiliation(s)
- Hyein Do
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Oziat J, Cohu T, Elsen S, Gougis M, Malliaras GG, Mailley P. Electrochemical detection of redox molecules secreted by Pseudomonas aeruginosa - Part 1: Electrochemical signatures of different strains. Bioelectrochemistry 2021; 140:107747. [PMID: 33618190 DOI: 10.1016/j.bioelechem.2021.107747] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/07/2021] [Accepted: 01/10/2021] [Indexed: 10/22/2022]
Abstract
During infections, fast identification of the microorganisms is critical to improve patient treatment and to better manage antibiotics use. Electrochemistry exhibits several advantages for rapid diagnostic: it enables easy, cheap and in situ analysis of redox molecules in most liquids. In this work, several culture supernatants of different Pseudomonas aeruginosa strains (including PAO1 and its isogenic mutants PAO1ΔpqsA, PA14, PAK and CHA) were analyzed by square wave voltammetry on glassy carbon electrode during the bacterial growth. The obtained voltamograms shown complex traces exhibiting numerous redox peaks with potential repartitions and current amplitudes depending on the studied bacterium and/or growth time. Among them, some peaks were clearly associated to the well-known redox toxin Pyocyanin (PYO) and the autoinducer Pseudomonas Quinolone Signal (PQS). Other peaks were observed that are not yet attributed to known secreted species. Each complex electrochemical response (number of peaks, peak potential and amplitude) can be interpreted as a fingerprint or "ID-card" of the studied strain that may be implemented for fast bacteria strain identification.
Collapse
Affiliation(s)
- Julie Oziat
- Univ. Grenoble-Alpes, CEA Leti, MINATEC Campus, F-38054 Grenoble, France; Department of Bioelectronics, Ecole Nationale Supérieure des Mines de Saint-Etienne, F-13541 Gardanne, France; Bioserenity, Institut du Cerveau et de la Moelle Epinière, 47 Bd de l'Hôpital, 75013 Paris, France
| | - Thibaut Cohu
- Univ. Grenoble-Alpes, CEA Leti, MINATEC Campus, F-38054 Grenoble, France
| | - Sylvie Elsen
- UMR 1036, INSERM-CEA-UJF, CNRS ERL5261, BIG, CEA-Grenoble, F-38054 Grenoble, France
| | - Maxime Gougis
- Univ. Grenoble-Alpes, CEA Leti, MINATEC Campus, F-38054 Grenoble, France
| | - George G Malliaras
- Department of Bioelectronics, Ecole Nationale Supérieure des Mines de Saint-Etienne, F-13541 Gardanne, France; Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge CB3 0FA, UK
| | - Pascal Mailley
- Univ. Grenoble-Alpes, CEA Leti, MINATEC Campus, F-38054 Grenoble, France.
| |
Collapse
|
32
|
Ndayisenga F, Yu Z, Yan G, Phulpoto IA, Li Q, Kumar H, Fu L, Zhou D. Using easy-to-biodegrade co-substrate to eliminate microcystin toxic on electrochemically active bacteria and enhance bioelectricity generation from cyanobacteria biomass. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 751:142292. [PMID: 33182012 DOI: 10.1016/j.scitotenv.2020.142292] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
Cyanobacterial biomass is a promising natural resource for power generation, through the reactions bio-catalyzed by electrochemically active bacteria (EAB). However, the major limitation is the involvement of Microcystin-LR (MC-LR) in inhibiting EAB activation. In this work, toxic M. aeruginosa biomass was employed as analyte of a microbial fuel cell (MFC), and sodium acetate was applied as easy-to-biodegrade co-substrate to alleviate the MC-LR stress on EAB survival. The running stability was continuously enhanced with the increment of co-substrate concentration. The sufficient co-substrate supply (6.0 mM) eliminated the negative effects of MC-LR on the cyanobacteria biomass fed-MFC performance; it contributed 12.7% extension on the electric cyclic terms and caused the productions of the power density which was comparable and even 3.8% higher than its corresponding control (MFC treated with acetate alone). The co-substrate addition also increased coulombic efficiency by 60.1%, microcystin-LR removal efficiency increased by 64.7%, and diversified the microbial community with more species able to biodegrade the MC-LR, bio-transforming the metabolites and EAB. Microcystin-degrading bacteria, such as Sphingopyxis sp., Burkholderia-Paraburkholderia, and Bacillus sp., were remarkably increased, and EAB, including Shewanella sp., Desulfovibrio desulfuricans, Aeromonas hydrophila, were also much more enriched in co-substrate use protocol. Therefore, this study verified a co-substrate strategy for simultaneously eliminating MC-LR toxin and enhancing bioelectricity generation from cyanobacterial biomass via an MFC.
Collapse
Affiliation(s)
- Fabrice Ndayisenga
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Zhisheng Yu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ge Yan
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Irfan Ali Phulpoto
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingcheng Li
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun 130117, China; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Haresh Kumar
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Liang Fu
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Dandan Zhou
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun 130117, China.
| |
Collapse
|
33
|
|
34
|
Rode DK, Singh PK, Drescher K. Multicellular and unicellular responses of microbial biofilms to stress. Biol Chem 2020; 401:1365-1374. [DOI: 10.1515/hsz-2020-0213] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/11/2020] [Indexed: 12/28/2022]
Abstract
AbstractBiofilms are a ubiquitous mode of microbial life and display an increased tolerance to different stresses. Inside biofilms, cells may experience both externally applied stresses and internal stresses that emerge as a result of growth in spatially structured communities. In this review, we discuss the spatial scales of different stresses in the context of biofilms, and if cells in biofilms respond to these stresses as a collection of individual cells, or if there are multicellular properties associated with the response. Understanding the organizational level of stress responses in microbial communities can help to clarify multicellular functions of biofilms.
Collapse
Affiliation(s)
- Daniel K.H. Rode
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 16, D-35043 Marburg, Germany
- Department of Physics, Philipps-Universität Marburg, Karl-von-Frisch-Str. 16, D-35043 Marburg, Germany
| | - Praveen K. Singh
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 16, D-35043 Marburg, Germany
| | - Knut Drescher
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 16, D-35043 Marburg, Germany
- Department of Physics, Philipps-Universität Marburg, Karl-von-Frisch-Str. 16, D-35043 Marburg, Germany
- SYNMIKRO Center for Synthetic Microbiology, Karl-von-Frisch-Str. 16, D-35043 Marburg, Germany
| |
Collapse
|
35
|
Simoska O, Duay J, Stevenson KJ. Electrochemical Detection of Multianalyte Biomarkers in Wound Healing Efficacy. ACS Sens 2020; 5:3547-3557. [PMID: 33175510 DOI: 10.1021/acssensors.0c01697] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The targeted diagnosis and effective treatments of chronic skin wounds remain a healthcare burden, requiring the development of sensors for real-time monitoring of wound healing activity. Herein, we describe an adaptable method for the fabrication of carbon ultramicroelectrode arrays (CUAs) on flexible substrates with the goal to utilize this sensor as a wearable device to monitor chronic wounds. As a proof-of-concept study, we demonstrate the electrochemical detection of three electroactive analytes as biomarkers for wound healing state in simulated wound media on flexible CUAs. Notably, to follow pathogenic responses, we characterize analytical figures of merit for identification and monitoring of bacterial warfare toxin pyocyanin (PYO) secreted by the opportunistic human pathogen Pseudomonas aeruginosa. We also demonstrate the detection of uric acid (UA) and nitric oxide (NO•), which are signaling molecules indicative of wound healing and immune responses, respectively. The electrochemically determined limit of detection (LOD) and linear dynamic range (LDR) for PYO, UA, and NO• fall within the clinically relevant concentrations. Additionally, we demonstrate the successful use of flexible CUAs for quantitative, electrochemical detection of PYO from P. aeruginosa strains and cellular NO• from immune cells in the wound matrix. Moreover, we present an electrochemical examination of the interaction between PYO and NO•, providing insight into pathogen-host responses. Finally, the effects of the antimicrobial agent, silver (Ag+), on P. aeruginosa PYO production rates are investigated on flexible CUAs. Our electrochemical results show that the addition of Ag+ to P. aeruginosa in wound simulant decreases PYO secretion rates.
Collapse
Affiliation(s)
- Olja Simoska
- Department of Chemistry, University of Texas at Austin, 1 University Station, Stop A5300, Austin, Texas 78712, United States
| | - Jonathon Duay
- Department of Chemistry, University of Texas at Austin, 1 University Station, Stop A5300, Austin, Texas 78712, United States
| | - Keith J. Stevenson
- Center for Energy Science and Technology, Skolkovo Institute of Science and Technology, Bolshoi Boulevard 30 Bld. 1, Moscow 121205, Russia
| |
Collapse
|
36
|
Alatraktchi FA, Svendsen WE, Molin S. Electrochemical Detection of Pyocyanin as a Biomarker for Pseudomonas aeruginosa: A Focused Review. SENSORS 2020; 20:s20185218. [PMID: 32933125 PMCID: PMC7570525 DOI: 10.3390/s20185218] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 12/13/2022]
Abstract
Pseudomonas aeruginosa (PA) is a pathogen that is recognized for its advanced antibiotic resistance and its association with serious diseases such as ventilator-associated pneumonia and cystic fibrosis. The ability to rapidly detect the presence of pathogenic bacteria in patient samples is crucial for the immediate eradication of the infection. Pyocyanin is one of PA’s virulence factors used to establish infections. Pyocyanin promotes virulence by interfering in numerous cellular functions in host cells due to its redox-activity. Fortunately, the redox-active nature of pyocyanin makes it ideal for detection with simple electrochemical techniques without sample pretreatment or sensor functionalization. The previous decade has seen an increased interest in the electrochemical detection of pyocyanin either as an indicator of the presence of PA in samples or as a tool for quantifying PA virulence. This review provides the first overview of the advances in electrochemical detection of pyocyanin and offers an input regarding the future directions in the field.
Collapse
Affiliation(s)
| | - Winnie E. Svendsen
- Department of Biomedicine and Bioengineering, Technical University of Denmark, 2800 Kgs.-Lyngby, Denmark;
| | - Søren Molin
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs.-Lyngby, Denmark;
| |
Collapse
|
37
|
VanArsdale E, Pitzer J, Payne GF, Bentley WE. Redox Electrochemistry to Interrogate and Control Biomolecular Communication. iScience 2020; 23:101545. [PMID: 33083771 PMCID: PMC7516135 DOI: 10.1016/j.isci.2020.101545] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cells often communicate by the secretion, transport, and perception of molecules. Information conveyed by molecules is encoded, transmitted, and decoded by cells within the context of the prevailing microenvironments. Conversely, in electronics, transmission reliability and message validation are predictable, robust, and less context dependent. In turn, many transformative advances have resulted by the formal consideration of information transfer. One way to explore this potential for biological systems is to create bio-device interfaces that facilitate bidirectional information transfer between biology and electronics. Redox reactions enable this linkage because reduction and oxidation mediate communication within biology and can be coupled with electronics. By manipulating redox reactions, one is able to combine the programmable features of electronics with the ability to interrogate and modulate biological function. In this review, we examine methods to electrochemically interrogate the various components of molecular communication using redox chemistry and to electronically control cell communication using redox electrogenetics.
Collapse
Affiliation(s)
- Eric VanArsdale
- Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall 8278 Paint Branch Drive, College Park, MD 20742, USA.,Institute of Bioscience and Biotechnology Research, University of Maryland, 5115 Plant Sciences Building, College Park, MD 20742, USA.,Robert E. Fischell Institute for Biomedical Devices, University of Maryland, Room 5102, A. James Clark Hall, College Park, MD 20742, USA
| | - Juliana Pitzer
- Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall 8278 Paint Branch Drive, College Park, MD 20742, USA
| | - Gregory F Payne
- Institute of Bioscience and Biotechnology Research, University of Maryland, 5115 Plant Sciences Building, College Park, MD 20742, USA.,Robert E. Fischell Institute for Biomedical Devices, University of Maryland, Room 5102, A. James Clark Hall, College Park, MD 20742, USA
| | - William E Bentley
- Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall 8278 Paint Branch Drive, College Park, MD 20742, USA.,Institute of Bioscience and Biotechnology Research, University of Maryland, 5115 Plant Sciences Building, College Park, MD 20742, USA.,Robert E. Fischell Institute for Biomedical Devices, University of Maryland, Room 5102, A. James Clark Hall, College Park, MD 20742, USA
| |
Collapse
|
38
|
Ward AC, Dubey P, Basnett P, Lika G, Newman G, Corrigan DK, Russell C, Kim J, Chakrabarty S, Connolly P, Roy I. Toward a Closed Loop, Integrated Biocompatible Biopolymer Wound Dressing Patch for Detection and Prevention of Chronic Wound Infections. Front Bioeng Biotechnol 2020; 8:1039. [PMID: 32984295 PMCID: PMC7493637 DOI: 10.3389/fbioe.2020.01039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 08/11/2020] [Indexed: 01/22/2023] Open
Abstract
Chronic wound infections represent a significant burden to healthcare providers globally. Often, chronic wound healing is impeded by the presence of infection within the wound or wound bed. This can result in an increased healing time, healthcare cost and poor patient outcomes. Thus, there is a need for dressings that help the wound heal, in combination with early detection of wound infections to support prompt treatment. In this study, we demonstrate a novel, biocompatible wound dressing material, based on Polyhydroxyalkanoates, doped with graphene platelets, which can be used as an electrochemical sensing substrate for the detection of a common wound pathogen, Pseudomonas aeruginosa. Through the detection of the redox active secondary metabolite, pyocyanin, we demonstrate that a dressing can be produced that will detect the presence of pyocyanin across clinically relevant concentrations. Furthermore, we show that this sensor can be used to identify the presence of pyocyanin in a culture of P. aeruginosa. Overall, the sensor substrate presented in this paper represents the first step toward a new dressing with the capacity to promote wound healing, detect the presence of infection and release antimicrobial drugs, on demand, to optimized healing.
Collapse
Affiliation(s)
- Andrew C. Ward
- Department of Biomedical Engineering, Faculty of Engineering, University of Strathclyde, Glasgow, United Kingdom
| | - Prachi Dubey
- School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, London, United Kingdom
| | - Pooja Basnett
- School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, London, United Kingdom
| | - Granit Lika
- School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, London, United Kingdom
| | - Gwenyth Newman
- Department of Biomedical Engineering, Faculty of Engineering, University of Strathclyde, Glasgow, United Kingdom
| | - Damion K. Corrigan
- Department of Biomedical Engineering, Faculty of Engineering, University of Strathclyde, Glasgow, United Kingdom
| | | | - Jongrae Kim
- School of Mechanical Engineering, Faculty of Engineering, University of Leeds, Leeds, United Kingdom
| | - Samit Chakrabarty
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Patricia Connolly
- Department of Biomedical Engineering, Faculty of Engineering, University of Strathclyde, Glasgow, United Kingdom
| | - Ipsita Roy
- Department of Materials Science and Engineering, Faculty of Engineering, The University of Sheffield, Sheffield, United Kingdom
- *Correspondence: Ipsita Roy,
| |
Collapse
|
39
|
Sharma A, Rejeeth C, Vivek R, Babu VN, Ding X. Novel Green Silver Nanoparticles as Matrix in the Detection of Small Molecules Using Matrix-Assisted Laser Desorption Ionization Mass Spectrometry (MALDI-MS). J Pharm Innov 2020. [DOI: 10.1007/s12247-020-09486-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
40
|
Gehre C, Flechner M, Kammerer S, Küpper JH, Coleman CD, Püschel GP, Uhlig K, Duschl C. Real time monitoring of oxygen uptake of hepatocytes in a microreactor using optical microsensors. Sci Rep 2020; 10:13700. [PMID: 32792676 PMCID: PMC7426412 DOI: 10.1038/s41598-020-70785-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/04/2020] [Indexed: 12/18/2022] Open
Abstract
Most in vitro test systems for the assessment of toxicity are based on endpoint measurements and cannot contribute much to the establishment of mechanistic models, which are crucially important for further progress in this field. Hence, in recent years, much effort has been put into the development of methods that generate kinetic data. Real time measurements of the metabolic activity of cells based on the use of oxygen sensitive microsensor beads have been shown to provide access to the mode of action of compounds in hepatocytes. However, for fully exploiting this approach a detailed knowledge of the microenvironment of the cells is required. In this work, we investigate the cellular behaviour of three types of hepatocytes, HepG2 cells, HepG2-3A4 cells and primary mouse hepatocytes, towards their exposure to acetaminophen when the availability of oxygen for the cell is systematically varied. We show that the relative emergence of two modes of action, one NAPQI dependent and the other one transient and NAPQI independent, scale with expression level of CYP3A4. The transient cellular response associated to mitochondrial respiration is used to characterise the influence of the initial oxygen concentration in the wells before exposure to acetaminophen on the cell behaviour. A simple model is presented to describe the behaviour of the cells in this scenario. It demonstrates the level of control over the role of oxygen supply in these experiments. This is crucial for establishing this approach into a reliable and powerful method for the assessment of toxicity.
Collapse
Affiliation(s)
- Christian Gehre
- Branch Bioanalytics and Bioprocesses (IZI-BB), Fraunhofer-Institute for Cell Therapy and Immunology, Potsdam, Germany
| | - Marie Flechner
- Branch Bioanalytics and Bioprocesses (IZI-BB), Fraunhofer-Institute for Cell Therapy and Immunology, Potsdam, Germany
| | - Sarah Kammerer
- Faculty of Science, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Jan-Heiner Küpper
- Faculty of Science, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Charles Dominic Coleman
- Department of Nutritional Biochemistry, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Gerhard Paul Püschel
- Department of Nutritional Biochemistry, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Katja Uhlig
- Branch Bioanalytics and Bioprocesses (IZI-BB), Fraunhofer-Institute for Cell Therapy and Immunology, Potsdam, Germany.
| | - Claus Duschl
- Branch Bioanalytics and Bioprocesses (IZI-BB), Fraunhofer-Institute for Cell Therapy and Immunology, Potsdam, Germany
| |
Collapse
|
41
|
Saunders SH, Tse ECM, Yates MD, Otero FJ, Trammell SA, Stemp EDA, Barton JK, Tender LM, Newman DK. Extracellular DNA Promotes Efficient Extracellular Electron Transfer by Pyocyanin in Pseudomonas aeruginosa Biofilms. Cell 2020; 182:919-932.e19. [PMID: 32763156 DOI: 10.1016/j.cell.2020.07.006] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 05/19/2020] [Accepted: 07/09/2020] [Indexed: 12/21/2022]
Abstract
Redox cycling of extracellular electron shuttles can enable the metabolic activity of subpopulations within multicellular bacterial biofilms that lack direct access to electron acceptors or donors. How these shuttles catalyze extracellular electron transfer (EET) within biofilms without being lost to the environment has been a long-standing question. Here, we show that phenazines mediate efficient EET through interactions with extracellular DNA (eDNA) in Pseudomonas aeruginosa biofilms. Retention of pyocyanin (PYO) and phenazine carboxamide in the biofilm matrix is facilitated by eDNA binding. In vitro, different phenazines can exchange electrons in the presence or absence of DNA and can participate directly in redox reactions through DNA. In vivo, biofilm eDNA can also support rapid electron transfer between redox active intercalators. Together, these results establish that PYO:eDNA interactions support an efficient redox cycle with rapid EET that is faster than the rate of PYO loss from the biofilm.
Collapse
Affiliation(s)
- Scott H Saunders
- Division of Biology and Biological Engineering, Caltech, Pasadena, CA, USA
| | - Edmund C M Tse
- Division of Chemistry and Chemical Engineering, Caltech, Pasadena, CA, USA; Department of Chemistry, University of Hong Kong, Hong Kong SAR, China
| | - Matthew D Yates
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC, USA
| | | | - Scott A Trammell
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC, USA
| | - Eric D A Stemp
- Department of Physical Sciences, Mt. Saint Mary's University, Los Angeles, CA, USA
| | | | - Leonard M Tender
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC, USA.
| | - Dianne K Newman
- Division of Biology and Biological Engineering, Caltech, Pasadena, CA, USA; Division of Geological and Planetary Sciences, Caltech, Pasadena, CA, USA.
| |
Collapse
|
42
|
Sokolovskaya OM, Shelton AN, Taga ME. Sharing vitamins: Cobamides unveil microbial interactions. Science 2020; 369:369/6499/eaba0165. [PMID: 32631870 DOI: 10.1126/science.aba0165] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Microbial communities are essential to fundamental processes on Earth. Underlying the compositions and functions of these communities are nutritional interdependencies among individual species. One class of nutrients, cobamides (the family of enzyme cofactors that includes vitamin B12), is widely used for a variety of microbial metabolic functions, but these structurally diverse cofactors are synthesized by only a subset of bacteria and archaea. Advances at different scales of study-from individual isolates, to synthetic consortia, to complex communities-have led to an improved understanding of cobamide sharing. Here, we discuss how cobamides affect microbes at each of these three scales and how integrating different approaches leads to a more complete understanding of microbial interactions.
Collapse
Affiliation(s)
- Olga M Sokolovskaya
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Amanda N Shelton
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Michiko E Taga
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
43
|
Liu Y, Moore JH, Kolling GL, McGrath JS, Papin JA, Swami NS. Minimum Bactericidal Concentration of Ciprofloxacin to Pseudomonas aeruginosa Determined Rapidly Based on Pyocyanin Secretion. SENSORS AND ACTUATORS. B, CHEMICAL 2020; 312:127936. [PMID: 32606491 PMCID: PMC7326315 DOI: 10.1016/j.snb.2020.127936] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Infections due to Pseudomonas aeruginosa (P. aeruginosa) often exhibit broad-spectrum resistance and persistence to common antibiotics. Persistence is especially problematic with immune-compromised subjects who are unable to eliminate the inhibited bacteria. Hence, antibiotics must be used at the appropriate minimum bactericidal concentration (MBC) rather than at minimum inhibitory concentration (MIC) levels. However, MBC determination by conventional methods requires a 24 h culture step in the antibiotic media to confirm inhibition, followed by a 24 h sub-culture step in antibiotic-free media to confirm the lack of bacterial growth. We show that electrochemical detection of pyocyanin (PYO), which is a redox-active bacterial metabolite secreted by P. aeruginosa, can be used to rapidly assess the critical ciprofloxacin level required for bactericidal deactivation of P. aeruginosa within just 2 hours in antibiotic-treated growth media. The detection sensitivity for PYO can be enhanced by using nanoporous gold that is modified with a self-assembled monolayer to lower interference from oxygen reduction, while maintaining a low charge transfer resistance level and preventing electrode fouling within biological sample matrices. In this manner, bactericidal efficacy of ciprofloxacin towards P. aeruginosa at the MBC level and bacterial persistence at the MIC level can be determined rapidly, as validated at later timepoints using bacterial subculture in antibiotic-free media.
Collapse
Affiliation(s)
- Yi Liu
- Electrical and Computer Engineering, University of Virginia, Charlottesville, Virginia 22904, USA
| | - John H. Moore
- Electrical and Computer Engineering, University of Virginia, Charlottesville, Virginia 22904, USA
| | - Glynis L. Kolling
- Biomedical Engineering, University of Virginia, Charlottesville, VA 22904, USA
| | - John S. McGrath
- Electrical and Computer Engineering, University of Virginia, Charlottesville, Virginia 22904, USA
| | - Jason A Papin
- Biomedical Engineering, University of Virginia, Charlottesville, VA 22904, USA
| | - Nathan S. Swami
- Electrical and Computer Engineering, University of Virginia, Charlottesville, Virginia 22904, USA
- Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| |
Collapse
|
44
|
VanArsdale E, Hörnström D, Sjöberg G, Järbur I, Pitzer J, Payne GF, van Maris AJA, Bentley WE. A Coculture Based Tyrosine-Tyrosinase Electrochemical Gene Circuit for Connecting Cellular Communication with Electronic Networks. ACS Synth Biol 2020; 9:1117-1128. [PMID: 32208720 DOI: 10.1021/acssynbio.9b00469] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
There is a growing interest in mediating information transfer between biology and electronics. By the addition of redox mediators to various samples and cells, one can both electronically obtain a redox "portrait" of a biological system and, conversely, program gene expression. Here, we have created a cell-based synthetic biology-electrochemical axis in which engineered cells process molecular cues, producing an output that can be directly recorded via electronics-but without the need for added redox mediators. The process is robust; two key components must act together to provide a valid signal. The system builds on the tyrosinase-mediated conversion of tyrosine to L-DOPA and L-DOPAquinone, which are both redox active. "Catalytic" transducer cells provide for signal-mediated surface expression of tyrosinase. Additionally, "reagent" transducer cells synthesize and export tyrosine, a substrate for tyrosinase. In cocultures, this system enables real-time electrochemical transduction of cell activating molecular cues. To demonstrate, we eavesdrop on quorum sensing signaling molecules that are secreted by Pseudomonas aeruginosa, N-(3-oxododecanoyl)-l-homoserine lactone and pyocyanin.
Collapse
Affiliation(s)
- Eric VanArsdale
- Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall, 8278 Paint Branch Drive, College Park, Maryland 20742, United States
| | - David Hörnström
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, SE 10691 Stockholm, Sweden
| | - Gustav Sjöberg
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, SE 10691 Stockholm, Sweden
| | - Ida Järbur
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, SE 10691 Stockholm, Sweden
| | - Juliana Pitzer
- Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall, 8278 Paint Branch Drive, College Park, Maryland 20742, United States
| | - Gregory F. Payne
- Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall, 8278 Paint Branch Drive, College Park, Maryland 20742, United States
| | - Antonius J. A. van Maris
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, SE 10691 Stockholm, Sweden
| | - William E. Bentley
- Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall, 8278 Paint Branch Drive, College Park, Maryland 20742, United States
| |
Collapse
|
45
|
Din MO, Martin A, Razinkov I, Csicsery N, Hasty J. Interfacing gene circuits with microelectronics through engineered population dynamics. SCIENCE ADVANCES 2020; 6:eaaz8344. [PMID: 32494744 PMCID: PMC7244307 DOI: 10.1126/sciadv.aaz8344] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 03/18/2020] [Indexed: 05/27/2023]
Abstract
While there has been impressive progress connecting bacterial behavior with electrodes, an attractive observation to facilitate advances in synthetic biology is that the growth of a bacterial colony can be determined from impedance changes over time. Here, we interface synthetic biology with microelectronics through engineered population dynamics that regulate the accumulation of charged metabolites. We demonstrate electrical detection of the bacterial response to heavy metals via a population control circuit. We then implement this approach to a synchronized genetic oscillator where we obtain an oscillatory impedance profile from engineered bacteria. We lastly miniaturize an array of electrodes to form "bacterial integrated circuits" and demonstrate its applicability as an interface with genetic circuits. This approach paves the way for new advances in synthetic biology, analytical chemistry, and microelectronic technologies.
Collapse
Affiliation(s)
- M. Omar Din
- BioCircuits Institute, University of California, San Diego, La Jolla, CA, USA
| | - Aida Martin
- BioCircuits Institute, University of California, San Diego, La Jolla, CA, USA
| | - Ivan Razinkov
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Nicholas Csicsery
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Jeff Hasty
- BioCircuits Institute, University of California, San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
- Molecular Biology Section, Division of Biological Science, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
46
|
Simoska O, Stevenson KJ. Electrochemical sensors for rapid diagnosis of pathogens in real time. Analyst 2020; 144:6461-6478. [PMID: 31603150 DOI: 10.1039/c9an01747j] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Microbial infections remain the principal cause for high morbidity and mortality rates. While approximately 1400 human pathogens have been recognized, the majority of healthcare-associated infectious diseases are caused by only a few opportunistic pathogens (e.g., Pseudomonas aeruginosa, Staphylococcus aureus, Escherichia coli), which are associated with increased antibiotic and antimicrobial resistance. Rapid detection, reliable identification and real-time monitoring of these pathogens remain not only a scientific problem but also a practical challenge of vast importance, especially in tailoring effective treatment strategies. Although the development of vaccinations and antibacterial drug treatments are the leading research, progress, and implementation of early warning, quantitative systems indicative of confirming pathogen presence are necessary. Over the years, various approaches, such as conventional culturing, straining, molecular methods (e.g., polymerase chain reaction and immunological assays), microscopy-based and mass spectrometry techniques, have been employed to identify and quantify pathogenic agents. While being sensitive in some cases, these procedures are costly, time-consuming, mostly qualitative, and are indirect detection methods. A great challenge is therefore to develop rapid, highly sensitive, specific devices with adequate figures of merit to corroborate the presence of microbes and enable dynamic real-time measurements of metabolism. As an alternative, electrochemical sensor platforms have been developed as powerful quantitative tools for label-free detection of infection-related biomarkers with high sensitivity. This minireview is focused on the latest electrochemical-based approaches for pathogen sensing, putting them into the context of standard sensing methods, such as cell culturing, mass spectrometry, and fluorescent-based approaches. Description of the latest, impactful electrochemical sensors for pathogen detection will be presented. Recent breakthroughs will be highlighted, including the use of micro- and nano-electrode arrays for real-time detection of bacteria in polymicrobial infections and microfluidic devices for pathogen separation analysis. We will conclude with perspectives and outlooks to understand shortcomings in designing future sensing schemes. The need for high sensitivity and selectivity, low-cost implementation, fast detection, and screening increases provides an impetus for further development in electrochemical detectors for microorganisms and biologically relevant targets.
Collapse
Affiliation(s)
- Olja Simoska
- Department of Chemistry, University of Texas at Austin, 1 University Station, Stop A5300, Austin, TX 78712, USA
| | | |
Collapse
|
47
|
Ino K, Yaegaki R, Hiramoto K, Nashimoto Y, Shiku H. Closed Bipolar Electrode Array for On-Chip Analysis of Cellular Respiration by Cell Aggregates. ACS Sens 2020; 5:740-745. [PMID: 31997640 DOI: 10.1021/acssensors.9b02061] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cell aggregates have attracted much attention owing to their potential applications in tissue engineering and drug screening. To evaluate cellular respiration of individual cell aggregates in these applications, noninvasive and on-chip high-throughput analytical tools are necessary. Electrochemical methods for detecting oxygen concentrations are useful because of their noninvasiveness. However, these conventional methods may be unsuitable for high-throughput detection because it is difficult to prepare many electrodes on a small chip owing to the limitation of area for connecting electrodes. Alternatively, a bipolar electrode (BPE) system offers clear advantages. In this system, electrochemical reactions are induced at both ends of a BPE without complex wiring. In this study, we present a BPE array for detecting the respiratory activity of cell aggregates. Oxygen concentrations near cell aggregates at cathodic poles of BPEs were converted to electrochemiluminescence (ECL) signals of [Ru(bpy)3]2+/tripropylamine at anodic poles of BPEs. To separate ECL chemicals from cell aggregates, we fabricated a closed BPE device containing analytical and reporter chambers. As a proof of concept, 32 BPEs were controlled wirelessly using a pair of driving electrodes, and the respiratory activities of individual MCF-7 cell aggregates as a cancer model were successfully detected by monitoring ECL signals. Compared with conventional electrode arrays for cell analysis, the wiring of the current device was simple because the multiple BPEs functioned with only a single power supply. To the best of our knowledge, this is the first study of on-chip analysis of cellular activity using a BPE system.
Collapse
Affiliation(s)
- Kosuke Ino
- Graduate School of Engineering, Tohoku University, 6-6-11 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Ryosuke Yaegaki
- Graduate School of Engineering, Tohoku University, 6-6-11 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Kaoru Hiramoto
- Graduate School of Environmental Studies, Tohoku University, 6-6-11 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Yuji Nashimoto
- Graduate School of Engineering, Tohoku University, 6-6-11 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8579, Japan
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8578, Japan
| | - Hitoshi Shiku
- Graduate School of Engineering, Tohoku University, 6-6-11 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8579, Japan
| |
Collapse
|
48
|
Kang M, Mun C, Jung HS, Ansah IB, Kim E, Yang H, Payne GF, Kim DH, Park SG. Tethered molecular redox capacitors for nanoconfinement-assisted electrochemical signal amplification. NANOSCALE 2020; 12:3668-3676. [PMID: 31793610 DOI: 10.1039/c9nr08136d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Nanostructured materials offer the potential to drive future developments and applications of electrochemical devices, but are underutilized because their nanoscale cavities can impose mass transfer limitations that constrain electrochemical signal generation. Here, we report a new signal-generating mechanism that employs a molecular redox capacitor to enable nanostructured electrodes to amplify electrochemical signals even without an enhanced reactant mass transfer. The surface-tethered molecular redox capacitor engages diffusible reactants and products in redox-cycling reactions with the electrode. Such redox-cycling reactions are facilitated by the nanostructure that increases the probabilities of both reactant-electrode and product-redox-capacitor encounters (i.e., the nanoconfinement effect), resulting in substantial signal amplification. Using redox-capacitor-tethered Au nanopillar electrodes, we demonstrate improved sensitivity for measuring pyocyanin (bacterial metabolite). This study paves a new way of using nanostructured materials in electrochemical applications by engineering the reaction pathway within the nanoscale cavities of the materials.
Collapse
Affiliation(s)
- Mijeong Kang
- Advanced Nano-Surface Department, Korea Institute of Materials Science (KIMS), Changwon, Gyeongnam 51508, South Korea.
| | - ChaeWon Mun
- Advanced Nano-Surface Department, Korea Institute of Materials Science (KIMS), Changwon, Gyeongnam 51508, South Korea.
| | - Ho Sang Jung
- Advanced Nano-Surface Department, Korea Institute of Materials Science (KIMS), Changwon, Gyeongnam 51508, South Korea.
| | - Iris Baffour Ansah
- Advanced Nano-Surface Department, Korea Institute of Materials Science (KIMS), Changwon, Gyeongnam 51508, South Korea.
| | - Eunkyoung Kim
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, USA
| | - Haesik Yang
- Department of Chemistry, Pusan National University, Busan 46241, South Korea
| | - Gregory F Payne
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, USA
| | - Dong-Ho Kim
- Advanced Nano-Surface Department, Korea Institute of Materials Science (KIMS), Changwon, Gyeongnam 51508, South Korea.
| | - Sung-Gyu Park
- Advanced Nano-Surface Department, Korea Institute of Materials Science (KIMS), Changwon, Gyeongnam 51508, South Korea.
| |
Collapse
|
49
|
Schwarz M, Jendrusch M, Constantinou I. Spatially resolved electrical impedance methods for cell and particle characterization. Electrophoresis 2019; 41:65-80. [PMID: 31663624 DOI: 10.1002/elps.201900286] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/25/2019] [Accepted: 10/25/2019] [Indexed: 12/24/2022]
Abstract
Electrical impedance is an established technique used for cell and particle characterization. The temporal and spectral resolution of electrical impedance have been used to resolve basic cell characteristics like size and type, as well as to determine cell viability and activity. Such electrical impedance measurements are typically performed across the entire sample volume and can only provide an overall indication concerning the properties and state of that sample. For the study of heterogeneous structures such as cell layers, biological tissue, or polydisperse particle mixtures, an overall measured impedance value can only provide limited information and can lead to data misinterpretation. For the investigation of localized sample properties in complex heterogeneous structures/mixtures, the addition of spatial resolution to impedance measurements is necessary. Several spatially resolved impedance measurement techniques have been developed and applied to cell and particle research, including electrical impedance tomography, scanning electrochemical microscopy, and microelectrode arrays. This review provides an overview of spatially resolved impedance measurement methods and assesses their applicability for cell and particle characterization.
Collapse
Affiliation(s)
- Marvin Schwarz
- Institute of Microtechnology, Technische Universität Braunschweig, Braunschweig, Germany.,Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Braunschweig, Germany
| | | | - Iordania Constantinou
- Institute of Microtechnology, Technische Universität Braunschweig, Braunschweig, Germany.,Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
50
|
Simoska O, Sans M, Eberlin LS, Shear JB, Stevenson KJ. Electrochemical monitoring of the impact of polymicrobial infections on Pseudomonas aeruginosa and growth dependent medium. Biosens Bioelectron 2019; 142:111538. [DOI: 10.1016/j.bios.2019.111538] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/16/2019] [Accepted: 07/24/2019] [Indexed: 01/04/2023]
|