1
|
Lv X, Zheng T, Lei X, Ren L, Zhao S, Wang J, Zhuo Z, Wang J. RTP4 restricts influenza A virus infection by targeting the viral NS1 protein. Virology 2025; 603:110397. [PMID: 39798334 DOI: 10.1016/j.virol.2025.110397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/22/2024] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
The influenza A virus evades the host innate immune response to establish infection by inhibiting RIG-I activation through its nonstructural protein 1 (NS1). Here, we reported that receptor-transporting protein 4 (RTP4), an interferon-stimulated gene (ISG), targets NS1 to inhibit influenza A virus infection. Depletion of RTP4 significantly increased influenza A virus multiplication, while NS1-deficient viruses were unaffected. Mechanistically, RTP4 interacts with NS1 in an RNA-dependent manner and sequesters it from the TRIM25-RIG-I complex, thereby restoring TRIM25-mediated RIG-I K63-linked ubiquitination and subsequent activation of IRF3. Antiviral activity of RTP4 requires the evolutionarily conserved CXXC motifs and an H149 residue in the zinc finger domain, mutations of which disrupted RTP4-NS1 interaction and abrogated the ability of RTP4 to rescue RIG-I-mediated signaling. Collectively, our findings provided insights into the mechanism by which an ISG restricts influenza A virus replication by reactivating host antiviral signaling.
Collapse
Affiliation(s)
- Xueying Lv
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Merieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences, Beijing, China; State Key Laboratory of Common Mechanism Research for Major Diseases, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, Jiangsu, China; Department of Microbiology and Parasitology, College of Basic Medical Sciences, China Medical University, Shenyang, 110122, China
| | - Tian Zheng
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Merieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaobo Lei
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Merieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences, Beijing, China
| | - Lili Ren
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Merieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences, Beijing, China
| | - Shiyi Zhao
- State Key Laboratory of Common Mechanism Research for Major Diseases, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, Jiangsu, China
| | - Jingfeng Wang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, Jiangsu, China
| | - Zhou Zhuo
- State Key Laboratory of Common Mechanism Research for Major Diseases, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, Jiangsu, China.
| | - Jianwei Wang
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Merieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences, Beijing, China; National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, Jiangsu, 215123, China.
| |
Collapse
|
2
|
Rozek W, Kwasnik M, Socha W, Czech B, Rola J. Profiling of snoRNAs in Exosomes Secreted from Cells Infected with Influenza A Virus. Int J Mol Sci 2024; 26:12. [PMID: 39795871 PMCID: PMC11720657 DOI: 10.3390/ijms26010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/18/2024] [Accepted: 12/21/2024] [Indexed: 01/13/2025] Open
Abstract
Small nucleolar RNAs (snoRNAs) are non-coding RNAs (ncRNAs) that regulate many cellular processes. Changes in the profiles of cellular ncRNAs and those secreted in exosomes are observed during viral infection. In our study, we analysed differences in expression profiles of snoRNAs isolated from exosomes of influenza (IAV)-infected and non-infected MDCK cells using high-throughput sequencing. The analysis revealed 133 significantly differentially regulated snoRNAs (131 upregulated and 2 downregulated), including 93 SNORD, 38 SNORA, and 2 SCARNA. The most upregulated was SNORD58 (log2FoldChange = 9.61), while the only downregulated snoRNAs were SNORD3 (log2FC = -2.98) and SNORA74 (log2FC = -2.67). Several snoRNAs previously described as involved in viral infections were upregulated, including SNORD27, SNORD28, SNORD29, SNORD58, and SNORD44. In total, 533 interactors of dysregulated snoRNAs were identified using the RNAinter database with an assigned confidence score ≥ 0.25. The main groups of predicted interactors were transcription factors (TFs, 169 interactors) and RNA-binding proteins (RBPs, 130 interactors). Among the most important were pioneer TFs such as POU5F1, SOX2, CEBPB, and MYC, while in the RBP category, notable interactors included Polr2a, TNRC6A, IGF2BP3, and FMRP. Our results suggest that snoRNAs are involved in pro-viral activity, although follow-up studies including experimental validation would be beneficial.
Collapse
Affiliation(s)
- Wojciech Rozek
- Department of Virology, National Veterinary Research Institute, 24-100 Pulawy, Poland; (M.K.); (W.S.); (J.R.)
| | - Malgorzata Kwasnik
- Department of Virology, National Veterinary Research Institute, 24-100 Pulawy, Poland; (M.K.); (W.S.); (J.R.)
| | - Wojciech Socha
- Department of Virology, National Veterinary Research Institute, 24-100 Pulawy, Poland; (M.K.); (W.S.); (J.R.)
| | | | - Jerzy Rola
- Department of Virology, National Veterinary Research Institute, 24-100 Pulawy, Poland; (M.K.); (W.S.); (J.R.)
| |
Collapse
|
3
|
Juárez JCC, Gómez AA, Díaz AES, Arévalo GS. Understanding pathophysiology in fragile X syndrome: a comprehensive review. Neurogenetics 2024; 26:6. [PMID: 39585476 DOI: 10.1007/s10048-024-00794-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 11/20/2024] [Indexed: 11/26/2024]
Abstract
Fragile X syndrome (FXS) is the leading hereditary cause of intellectual disability and the most commonly associated genetic cause of autism. Historically, research into its pathophysiology has focused predominantly on neurons; however, emerging evidence suggests involvement of additional cell types and systems. The objective of this study was to review and synthesize current evidence regarding the pathophysiology of Fragile X syndrome. A comprehensive literature review was conducted using databases such as PubMed and Google Scholar, employing MeSH terms including "Fragile X Syndrome," "FMR1 gene," and "FMRP." Studies on both human and animal models, from inception to 2022, published in recognized journals were included. The evidence supports those neurons, glial cells, stem cells, the immune system, and lipid metabolism pathways contribute to the pathophysiology of Fragile X syndrome. Further research is necessary to explore these fields independently and to elucidate their interactions.
Collapse
Affiliation(s)
| | - Alejandro Aguilar Gómez
- Faculty of Medical Sciences, Universidad of San Carlos of Guatemala, Guatemala City, Guatemala
| | | | - Gabriel Silva Arévalo
- Genetics and Metabolic Clinic Coordinator, Hospital Obras Sociales del Santo Hermano Pedro, Antigua Guatemala City, Guatemala
| |
Collapse
|
4
|
Li W, Lin Y, Wang X, Yang H, Ding Y, Chen Z, He Z, Zhang J, Zhao L, Jiao P. Chicken UFL1 Restricts Avian Influenza Virus Replication by Disrupting the Viral Polymerase Complex and Facilitating Type I IFN Production. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1479-1492. [PMID: 38477617 DOI: 10.4049/jimmunol.2300613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 02/12/2024] [Indexed: 03/14/2024]
Abstract
During avian influenza virus (AIV) infection, host defensive proteins promote antiviral innate immunity or antagonize viral components to limit viral replication. UFM1-specific ligase 1 (UFL1) is involved in regulating innate immunity and DNA virus replication in mammals, but the molecular mechanism by which chicken (ch)UFL1 regulates AIV replication is unclear. In this study, we first identified chUFL1 as a negative regulator of AIV replication by enhancing innate immunity and disrupting the assembly of the viral polymerase complex. Mechanistically, chUFL1 interacted with chicken stimulator of IFN genes (chSTING) and contributed to chSTING dimerization and the formation of the STING-TBK1-IRF7 complex. We further demonstrated that chUFL1 promoted K63-linked polyubiquitination of chSTING at K308 to facilitate chSTING-mediated type I IFN production independent of UFMylation. Additionally, chUFL1 expression was upregulated in response to AIV infection. Importantly, chUFL1 also interacted with the AIV PA protein to inhibit viral polymerase activity. Furthermore, chUFL1 impeded the nuclear import of the AIV PA protein and the assembly of the viral polymerase complex to suppress AIV replication. Collectively, these findings demonstrate that chUFL1 restricts AIV replication by disrupting the viral polymerase complex and facilitating type I IFN production, which provides new insights into the regulation of AIV replication in chickens.
Collapse
Affiliation(s)
- Weiqiang Li
- College of Veterinary Medicine, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China; and
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Guangzhou, China
| | - Yu Lin
- College of Veterinary Medicine, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China; and
| | - Xiyi Wang
- College of Veterinary Medicine, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China; and
| | - Huixing Yang
- College of Veterinary Medicine, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China; and
| | - Yangbao Ding
- College of Veterinary Medicine, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China; and
| | - Zuxian Chen
- College of Veterinary Medicine, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China; and
| | - Zhuoliang He
- College of Veterinary Medicine, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China; and
| | - Junsheng Zhang
- College of Veterinary Medicine, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China; and
| | - Luxiang Zhao
- College of Veterinary Medicine, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China; and
| | - Peirong Jiao
- College of Veterinary Medicine, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China; and
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Guangzhou, China
| |
Collapse
|
5
|
Yu J, Woo Y, Kim H, An S, Park SK, Jang SK. FMRP Enhances the Translation of 4EBP2 mRNA during Neuronal Differentiation. Int J Mol Sci 2023; 24:16319. [PMID: 38003508 PMCID: PMC10671300 DOI: 10.3390/ijms242216319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
FMRP is a multifunctional protein encoded by the Fragile X Messenger Ribonucleoprotein 1 gene (FMR1). The inactivation of the FMR1 gene results in fragile X syndrome (FXS), a serious neurodevelopmental disorder. FMRP deficiency causes abnormal neurite outgrowth, which is likely to lead to abnormal learning and memory capabilities. However, the mechanism of FMRP in modulating neuronal development remains unknown. We found that FMRP enhances the translation of 4EBP2, a neuron-specific form of 4EBPs that inactivates eIF4E by inhibiting the interaction between eIF4E and eIF4G. Depletion of 4EBP2 results in abnormal neurite outgrowth. Moreover, the impairment of neurite outgrowth upon FMRP depletion was overcome by the ectopic expression of 4EBP2. These results suggest that FMRP controls neuronal development by enhancing 4EBP2 expression at the translational level. In addition, treatment with 4EGI-1, a chemical that blocks eIF4E activity, restored neurite length in FMRP-depleted and 4EBP2-depleted cells. In conclusion, we discovered that 4EBP2 functions as a key downstream regulator of FMRP activity in neuronal development and that FMRP represses eIF4E activity by enhancing 4EBP2 translation.
Collapse
Affiliation(s)
| | | | | | | | - Sang Ki Park
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Gyeongsangbuk, Republic of Korea; (J.Y.); (Y.W.); (H.K.); (S.A.)
| | - Sung Key Jang
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Gyeongsangbuk, Republic of Korea; (J.Y.); (Y.W.); (H.K.); (S.A.)
| |
Collapse
|
6
|
Zhang L, Wang Y, Shao Y, Guo J, Gao GF, Deng T. Fine Regulation of Influenza Virus RNA Transcription and Replication by Stoichiometric Changes in Viral NS1 and NS2 Proteins. J Virol 2023; 97:e0033723. [PMID: 37166301 PMCID: PMC10231140 DOI: 10.1128/jvi.00337-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/14/2023] [Indexed: 05/12/2023] Open
Abstract
In the influenza virus life cycle, viral RNA (vRNA) transcription (vRNA→mRNA) and replication (vRNA→cRNA→vRNA), catalyzed by the viral RNA-dependent RNA polymerase in the host cell nucleus, are delicately controlled, and the levels of the three viral RNA species display very distinct synthesis dynamics. However, the underlying mechanisms remain elusive. Here, we demonstrate that in the context of virus infection with cycloheximide treatment, the expression of viral nonstructural protein 1 (NS1) can stimulate primary transcription, while the expression of viral NS2 inhibits primary transcription. It is known that the NS1 and NS2 proteins are expressed with different timings from unspliced and spliced mRNAs of the viral NS segment. We then simulated the synthesis dynamics of NS1 and NS2 proteins during infection by dose-dependent transfection experiments in ribonucleoprotein (RNP) reconstitution systems. We found that the early-expressed NS1 protein can stimulate viral mRNA synthesis, while the late-expressed NS2 protein can inhibit mRNA synthesis but can promote vRNA synthesis in a manner highly consistent with the dynamic changes in mRNA/vRNA in the virus life cycle. Furthermore, we observed that the coexistence of sufficient NS1 and NS2, close to the status of the NS1 and NS2 levels in the late stage of infection, could boost vRNA synthesis to the highest efficiency. We also identified key functional amino acids of NS1 and NS2 involved in these regulations. Together, we propose that the stoichiometric changes in the viral NS1 and NS2 proteins during infection are responsible for the fine regulation of viral RNA transcription and replication. IMPORTANCE In order to ensure efficient multiplication, influenza virus transcribes and replicates its segmented, negative-sense viral RNA genome in highly ordered dynamics across the virus life cycle. How the virus achieves such regulation remains poorly understood. Here, we demonstrate that the stoichiometric changes in the viral NS1 and NS2 proteins during infection could be responsible for the fine regulation of the distinct dynamics of viral RNA transcription and replication. We thus propose a fundamental mechanism exploited by influenza virus to dynamically regulate the synthesis of its viral RNA through the delicate control of viral NS1 and NS2 protein expression.
Collapse
Affiliation(s)
- Lei Zhang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yingying Wang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yuekun Shao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiamei Guo
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - George F. Gao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tao Deng
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Zhang Q, Zhang X, Lei X, Wang H, Jiang J, Wang Y, Bi K, Diao H. Influenza A virus NS1 protein hijacks YAP/TAZ to suppress TLR3-mediated innate immune response. PLoS Pathog 2022; 18:e1010505. [PMID: 35503798 PMCID: PMC9122210 DOI: 10.1371/journal.ppat.1010505] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 05/20/2022] [Accepted: 04/06/2022] [Indexed: 12/20/2022] Open
Abstract
The Hippo signaling pathway, which is historically considered as a dominator of organ development and homeostasis has recently been implicated as an immune regulator. However, its role in host defense against influenza A virus (IAV) has not been widely investigated. Here, we found that IAV could activate the Hippo effectors Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) through physical binding of the IAV non-structural protein 1 (NS1) with C-terminal domain of YAP/TAZ, facilitating their nuclear location. Meanwhile, YAP/TAZ downregulated the expression of pro-inflammatory and anti-viral cytokines against IAV infection, therefore benefiting virus replication and host cell apoptosis. A mouse model of IAV infection further demonstrated Yap deficiency protected mice against IAV infection, relieving lung injury. Mechanistically, YAP/TAZ blocked anti-viral innate immune signaling via downregulation of Toll-like receptor 3 (TLR3) expression. YAP directly bound to the putative TEADs binding site on the promoter region of TLR3. The elimination of acetylated histone H3 occupancy in the TLR3 promoter resulted in its transcriptional silence. Moreover, treatment of Trichostatin A, a histone deacetylases (HDACs) inhibitor or disruption of HDAC4/6 reversed the inhibition of TLR3 expression by YAP/TAZ, suggesting HDAC4/6 mediated the suppression function of YAP/TAZ. Taken together, we uncovered a novel immunomodulatory mechanism employed by IAV, where YAP/TAZ antagonize TLR3-mediated innate immunity. The mechanisms of influenza A virus (IAV) infection, host immune responses and interplay of host cells and virus have been under intensive study for decades of years. This has largely improved our understanding on how human immune system responses against virus and how virus evolves and develops various strategies to evade host immune surveillance. However, the panorama is far from fully elucidated, and therapeutic strategies with higher specificity of IAV are still in urgent need. In this study, we uncovered a new strategy employed by IAV to mute host innate immune response, of which NS1, a multi-functional protein of IAV activates host proteins YAP/TAZ to antagonize TLR3 expression. TLR3 mediates important innate immune signaling that produces pro-inflammatory and anti-viral cytokines against infection, thus, loss of YAP/TAZ enhances host innate immune response and protects mice from lung injuries induced by IAV infection. Our study may provide a new potential target for prevention and treatment of IAV infection.
Collapse
Affiliation(s)
- Qiong Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xujun Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaobo Lei
- NHC Key Laboratory of System Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P.R. China
- * E-mail: (XL); (HD)
| | - Hai Wang
- Department of Laboratory, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jingjing Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yuchong Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Kefan Bi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hongyan Diao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- * E-mail: (XL); (HD)
| |
Collapse
|
8
|
Basu DS, Bhavsar R, Gulami I, Chavda S, Lingamallu SM, Muddashetty R, Veeranna C, Chattarji S, Thimmulappa R, Bhattacharya A, Guha A. FMRP protects the lung from xenobiotic stress by facilitating the Integrated Stress Response. J Cell Sci 2022; 135:275343. [DOI: 10.1242/jcs.258652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 03/08/2022] [Indexed: 11/20/2022] Open
Abstract
Stress response pathways protect the lung from the damaging effects of environmental toxicants. Here we investigate the role of the Fragile X Mental Retardation Protein (FMRP), a multifunctional protein implicated in stress responses, in the lung. We report that FMRP is expressed in murine and human lungs, in the airways and more broadly. Analysis of airway stress responses in mice and in a murine cell line ex vivo, using the well-established Naphthalene (Nap) injury model, reveals that FMRP-deficient cells exhibit increased expression of markers of oxidative and genotoxic stress and increased cell death. Further inquiry shows that FMRP-deficient cells fail to actuate the Integrated Stress Response Pathway (ISR) and upregulate the transcription factor ATF4. Knockdown of ATF4 expression phenocopies the loss of FMRP. We extend our analysis of the role of FMRP to human bronchial BEAS-2B cells, using a 9, 10-Phenanthrenequinone air pollutant model, to find FMRP-deficient BEAS-2B also fail to actuate the ISR and exhibit greater susceptibility. Taken together, our data suggest that FMRP has a conserved role in protecting the airways by facilitating the ISR.
Collapse
Affiliation(s)
- Deblina Sain Basu
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK Campus, Bangalore -560065, India
- Trans Disciplinary University, Yelahanka, Bangalore -560064, India
| | - Rital Bhavsar
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK Campus, Bangalore -560065, India
| | - Imtiyaz Gulami
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK Campus, Bangalore -560065, India
- Trans Disciplinary University, Yelahanka, Bangalore -560064, India
| | - Saraswati Chavda
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK Campus, Bangalore -560065, India
| | - Sai Manoz Lingamallu
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK Campus, Bangalore -560065, India
- Manipal Academy of Higher Education, Madhav Nagar, Manipal-576104, India
| | - Ravi Muddashetty
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK Campus, Bangalore -560065, India
| | | | - Sumantra Chattarji
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK Campus, Bangalore -560065, India
- Brain Development and Disease Mechanisms (BDDM), inStem, GKVK Campus, Bangalore -560065, India
- National Centre for Biological Sciences, GKVK Campus, Bangalore- 560065, India
| | - Rajesh Thimmulappa
- JSS Medical College, JSS Academy of Higher Education & Research, Mysore- 570015, India
| | - Aditi Bhattacharya
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK Campus, Bangalore -560065, India
- Brain Development and Disease Mechanisms (BDDM), inStem, GKVK Campus, Bangalore -560065, India
| | - Arjun Guha
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK Campus, Bangalore -560065, India
| |
Collapse
|
9
|
Migration of Influenza Virus Nucleoprotein into the Nucleolus Is Essential for Ribonucleoprotein Complex Formation. mBio 2022. [PMCID: PMC8725578 DOI: 10.1128/mbio.03315-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Influenza A virus double-helical ribonucleoprotein complex (RNP) performs transcription and replication of viral genomic RNA (vRNA). Although RNP formation occurs in the nuclei of virus-infected cells, the nuclear domains involved in this process remain unclear. Here, we show that the nucleolus is an essential site for functional RNP formation. Viral nucleoprotein (NP), a major RNP component, temporarily localized to the nucleoli of virus-infected cells. Mutations in a nucleolar localization signal (NoLS) on NP abolished double-helical RNP formation, resulting in a loss of viral RNA synthesis ability, whereas ectopic fusion of the NoLS enabled the NP mutant to form functional double-helical RNPs. Furthermore, nucleolar disruption of virus-infected cells inhibited NP assembly into double-helical RNPs, resulting in decreased viral RNA synthesis. Collectively, our findings demonstrate that NP migration into the nucleolus is a critical step for functional RNP formation, showing the importance of the nucleolus in the influenza virus life cycle.
Collapse
|
10
|
Xin Y, Chen S, Tang K, Wu Y, Guo Y. Identification of Nifurtimox and Chrysin as Anti-Influenza Virus Agents by Clinical Transcriptome Signature Reversion. Int J Mol Sci 2022; 23:ijms23042372. [PMID: 35216485 PMCID: PMC8876279 DOI: 10.3390/ijms23042372] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/12/2022] [Accepted: 02/18/2022] [Indexed: 12/28/2022] Open
Abstract
The rapid development in the field of transcriptomics provides remarkable biomedical insights for drug discovery. In this study, a transcriptome signature reversal approach was conducted to identify the agents against influenza A virus (IAV) infection through dissecting gene expression changes in response to disease or compounds’ perturbations. Two compounds, nifurtimox and chrysin, were identified by a modified Kolmogorov–Smirnov test statistic based on the transcriptional signatures from 81 IAV-infected patients and the gene expression profiles of 1309 compounds. Their activities were verified in vitro with half maximal effective concentrations (EC50s) from 9.1 to 19.1 μM against H1N1 or H3N2. It also suggested that the two compounds interfered with multiple sessions in IAV infection by reversing the expression of 28 IAV informative genes. Through network-based analysis of the 28 reversed IAV informative genes, a strong synergistic effect of the two compounds was revealed, which was confirmed in vitro. By using the transcriptome signature reversion (TSR) on clinical datasets, this study provides an efficient scheme for the discovery of drugs targeting multiple host factors regarding clinical signs and symptoms, which may also confer an opportunity for decelerating drug-resistant variant emergence.
Collapse
Affiliation(s)
- Yijing Xin
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (Y.X.); (S.C.); (K.T.); (Y.W.)
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shubing Chen
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (Y.X.); (S.C.); (K.T.); (Y.W.)
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ke Tang
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (Y.X.); (S.C.); (K.T.); (Y.W.)
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - You Wu
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (Y.X.); (S.C.); (K.T.); (Y.W.)
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ying Guo
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (Y.X.); (S.C.); (K.T.); (Y.W.)
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Correspondence: ; Tel.: +86-010-63161716
| |
Collapse
|
11
|
p21 restricts influenza A virus by perturbing the viral polymerase complex and upregulating type I interferon signaling. PLoS Pathog 2022; 18:e1010295. [PMID: 35180274 PMCID: PMC8920271 DOI: 10.1371/journal.ppat.1010295] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/14/2022] [Accepted: 01/20/2022] [Indexed: 11/19/2022] Open
Abstract
Many cellular genes and networks induced in human lung epithelial cells infected with the influenza virus remain uncharacterized. Here, we find that p21 levels are elevated in response to influenza A virus (IAV) infection, which is independent of p53. Silencing, pharmacological inhibition or deletion of p21 promotes virus replication in vitro and in vivo, indicating that p21 is an influenza restriction factor. Mechanistically, p21 binds to the C-terminus of IAV polymerase subunit PA and competes with PB1 to limit IAV polymerase activity. Besides, p21 promotes IRF3 activation by blocking K48-linked ubiquitination degradation of HO-1 to enhance type I interferons expression. Furthermore, a synthetic p21 peptide (amino acids 36 to 43) significantly inhibits IAV replication in vitro and in vivo. Collectively, our findings reveal that p21 restricts IAV by perturbing the viral polymerase complex and activating the host innate immune response, which may aid the design of desperately needed new antiviral therapeutics. Influenza A virus (IAV) poses a continuous threat to public health and economic stability. The ribonucleoprotein (RNP) of IAV is responsible for the transcription and replication of the viral RNA. These processes require interplay between host factors and RNP components. Here, we report that p21 can be activated by IAV infection and is controlled by a p53-independent pathway. We demonstrate that p21 directly binds to the viral polymerase acidic protein and limits IAV polymerase activity through disrupting the formation of the ribonucleoprotein complex. Additionally, p21 activation promotes IRF3 activation by blocking K48-linked polyubiquitination degradation of HO-1, thereby activating the type I interferon pathway. We further identify an 8-amino-acid peptide of p21 as the minimum motif that effectively inhibits IAV replication and presents therapeutic efficacy both in vitro and in vivo. Thus, our studies not only identify p21 as an antiviral protein, but also provide mechanistic insight to facilitate drug development.
Collapse
|
12
|
Training associated alterations in equine respiratory immunity using a multiomics comparative approach. Sci Rep 2022; 12:427. [PMID: 35013475 PMCID: PMC8748960 DOI: 10.1038/s41598-021-04137-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 12/07/2021] [Indexed: 12/19/2022] Open
Abstract
Neutrophilic airway inflammation is highly prevalent in racehorses in training, with the term mild to moderate equine asthma (MMEA) being applied to the majority of such cases. Our proposed study is largely derived from the strong association between MMEA in racehorses and their entry into a race training program. The objectives of this study are to characterise the effect of training on the local pulmonary immune system by defining the gene and protein expression of tracheal wash (TW) derived samples from Thoroughbred racehorses prior to and following commencement of race training. Multiomics analysis detected 2138 differentially expressed genes and 260 proteins during the training period. Gene and protein sets were enriched for biological processes related to acute phase response, oxidative stress, haemopoietic processes, as well as to immune response and inflammation. This study demonstrated TW samples to represent a rich source of airway cells, protein and RNA to study airway immunity in the horse and highlighted the benefits of a multiomics methodological approach to studying the dynamics of equine airway immunity. Findings likely reflect the known associations between race-training and both airway inflammation and bleeding, offering further insight into the potential mechanisms which underpin training associated airway inflammation.
Collapse
|
13
|
Differential host circRNA expression profiles in human lung epithelial cells infected with SARS-CoV-2. INFECTION GENETICS AND EVOLUTION 2021; 93:104923. [PMID: 34004360 PMCID: PMC8123525 DOI: 10.1016/j.meegid.2021.104923] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 12/20/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an emerging and highly pathogenic coronavirus that causes coronavirus disease (COVID-19), and might even lead to death. Circular RNAs (circRNAs), a new type of RNAs, are implicated in viral pathogenesis and host immune responses. However, their dynamic expression patterns and functions during SARS-CoV-2 infection remain to be unclear. We herein performed genome-wide dynamic analysis of circRNAs in human lung epithelial cells infected with SARS-CoV-2 at four time points. A total of 6118 circRNAs were identified at different genomic locations, including 5641 known and 477 novel circRNAs. Notably, a total of 42 circRNAs were significantly dysregulated, wherein 17 were up-regulated and 25 were down-regulated following infection at multiple phases. The gene ontology and KEGG enrichment analyses revealed that the parental genes of circRNAs were mainly involved in immune and inflammatory responses. Further, the RNA binding protein (RBP) prediction analysis indicated that the dysregulated circRNAs could regulate mRNA stability, immunity, cell death by binding specific proteins. Additionally, the circRNA-miRNA-gene network analysis showed that circRNAs indirectly regulated gene expression by absorbing their targeted miRNAs. Collectively, these results shed light on the roles of circRNAs in virus-host interactions, facilitating future studies on SARS-CoV-2 infection and pathogenesis.
Collapse
|
14
|
Neurovirulence of avian influenza virus is dependent on the interaction of viral NP protein with host factor FMRP in the murine brain. J Virol 2021; 95:JVI.01272-20. [PMID: 33408179 PMCID: PMC8092684 DOI: 10.1128/jvi.01272-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Avian influenza viruses (AIVs) are zoonotic viruses that exhibit a range infectivity and severity in the human host. Severe human cases of AIVs infection are often accompanied by neurological symptoms, however, the factors involved in the infection of the central nervous system (CNS) are not well known. In this study, we discovered that avian-like sialic acid (SA)-α2, 3 Gal receptor is highly presented in mammalian (human and mouse) brains. In the generation of a mouse-adapted neurotropic H9N2 AIV (SD16-MA virus) in BALB/c mice, we identified key adaptive mutations in its hemagglutinin (HA) and polymerase basic protein 2 (PB2) genes that conferred viral replication ability in mice brain. The SD16-MA virus showed binding affinity for avian-like SA-α2, 3 Gal receptor, enhanced viral RNP polymerase activity, increased viral protein production and transport that culminated in elevated progeny virus production and severe pathogenicity. We further established that host Fragile X Mental Retardation Protein (FMRP), a highly expressed protein in the brain that physically associated with viral nucleocapsid protein (NP) to facilitate RNP assembly and export, was an essential host factor for the neuronal replication of neurotropic AIVs (H9N2, H5N1 and H10N7 viruses). Our study identified a mechanistic process for AIVs to acquire neurovirulence in mice.IMPORTANCE Infection of the CNS is a serious complication of human cases of AIVs infection. The viral and host factors associated with neurovirulence of AIVs infection are not well understood. We identified and functionally characterized specific changes in the viral HA and PB2 genes of a mouse-adapted neurotropic avian H9N2 virus responsible for enhanced virus replication in neuronal cells and pathogenicity in mice. Importantly, we showed that host FMRP was a crucial host factor that was necessary for neurotropic AIVs (H9N2, H5N1 and H10N7 viruses) to replicate in neuronal cells. Our findings have provided insights into the pathogenesis of neurovirulence of AIV infection.
Collapse
|
15
|
Malecki C, Hambly BD, Jeremy RW, Robertson EN. The RNA-binding fragile-X mental retardation protein and its role beyond the brain. Biophys Rev 2020; 12:903-916. [PMID: 32654068 DOI: 10.1007/s12551-020-00730-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/06/2020] [Indexed: 12/17/2022] Open
Abstract
It is well-established that variations of a CGG repeat expansion in the gene FMR1, which encodes the fragile-X mental retardation protein (FMRP), cause the neurocognitive disorder, fragile-X syndrome (FXS). However, multiple observations suggest a general and complex regulatory role of FMRP in processes outside the brain: (1) FMRP is ubiquitously expressed in the body, suggesting it functions in multiple organ systems; (2) patients with FXS can exhibit a physical phenotype that is consistent with an underlying abnormality in connective tissue; (3) different CGG repeat expansion lengths in FMR1 result in different clinical outcomes due to different pathogenic mechanisms; (4) the function of FMRP as an RNA-binding protein suggests it has a general regulatory role. This review details the complex nature of FMRP and the different CGG repeat expansion lengths and the evidence supporting the essential role of the protein in a variety of biological and pathological processes.
Collapse
Affiliation(s)
- Cassandra Malecki
- Discipline of Pathology and Bosch Institute, The University of Sydney, Level 4 West, Charles Perkins Centre D17, Sydney, NSW, 2006, Australia.
| | - Brett D Hambly
- Discipline of Pathology and Bosch Institute, The University of Sydney, Level 4 West, Charles Perkins Centre D17, Sydney, NSW, 2006, Australia
| | - Richmond W Jeremy
- Discipline of Pathology and Bosch Institute, The University of Sydney, Level 4 West, Charles Perkins Centre D17, Sydney, NSW, 2006, Australia.,Cardiology Department, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Elizabeth N Robertson
- Discipline of Pathology and Bosch Institute, The University of Sydney, Level 4 West, Charles Perkins Centre D17, Sydney, NSW, 2006, Australia.,Cardiology Department, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| |
Collapse
|
16
|
Qin Z, Qu X, Lei L, Xu L, Pan Z. Y-Box-Binding Protein 3 (YBX3) Restricts Influenza A Virus by Interacting with Viral Ribonucleoprotein Complex and Imparing its Function. J Gen Virol 2020; 101:385-398. [DOI: 10.1099/jgv.0.001390] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- Zhenqiao Qin
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | - Xiao Qu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | - Lei Lei
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | - Lulai Xu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | - Zishu Pan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| |
Collapse
|
17
|
Abstract
Influenza viruses are a leading cause of seasonal and pandemic respiratory illness. Influenza is a negative-sense single-stranded RNA virus that encodes its own RNA-dependent RNA polymerase (RdRp) for nucleic acid synthesis. The RdRp catalyzes mRNA synthesis, as well as replication of the virus genome (viral RNA) through a complementary RNA intermediate. Virus propagation requires the generation of these RNA species in a controlled manner while competing heavily with the host cell for resources. Influenza virus appropriates host factors to enhance and regulate RdRp activity at every step of RNA synthesis. This review describes such host factors and summarizes our current understanding of the roles they play in viral synthesis of RNA.
Collapse
Affiliation(s)
- Thomas P Peacock
- Department of Medicine, Imperial College London, London W2 1PG, United Kingdom; , , ,
| | - Carol M Sheppard
- Department of Medicine, Imperial College London, London W2 1PG, United Kingdom; , , ,
| | - Ecco Staller
- Department of Medicine, Imperial College London, London W2 1PG, United Kingdom; , , ,
| | - Wendy S Barclay
- Department of Medicine, Imperial College London, London W2 1PG, United Kingdom; , , ,
| |
Collapse
|
18
|
Laske T, Bachmann M, Dostert M, Karlas A, Wirth D, Frensing T, Meyer TF, Hauser H, Reichl U. Model-based analysis of influenza A virus replication in genetically engineered cell lines elucidates the impact of host cell factors on key kinetic parameters of virus growth. PLoS Comput Biol 2019; 15:e1006944. [PMID: 30973879 PMCID: PMC6478349 DOI: 10.1371/journal.pcbi.1006944] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 04/23/2019] [Accepted: 03/11/2019] [Indexed: 12/25/2022] Open
Abstract
The best measure to limit spread of contagious diseases caused by influenza A viruses (IAVs) is annual vaccination. The growing global demand for low-cost vaccines requires the establishment of high-yield production processes. One possible option to address this challenge is the engineering of novel vaccine producer cell lines by manipulating gene expression of host cell factors relevant for virus replication. To support detailed characterization of engineered cell lines, we fitted an ordinary differential equation (ODE)-based model of intracellular IAV replication previously established by our group to experimental data obtained from infection studies in human A549 cells. Model predictions indicate that steps of viral RNA synthesis, their regulation and particle assembly and virus budding are promising targets for cell line engineering. The importance of these steps was confirmed in four of five single gene overexpression cell lines (SGOs) that showed small, but reproducible changes in early dynamics of RNA synthesis and virus release. Model-based analysis suggests, however, that overexpression of the selected host cell factors negatively influences specific RNA synthesis rates. Still, virus yield was rescued by an increase in the virus release rate. Based on parameter estimations obtained for SGOs, we predicted that there is a potential benefit associated with overexpressing multiple host cell genes in one cell line, which was validated experimentally. Overall, this model-based study on IAV replication in engineered cell lines provides a step forward in the dynamic and quantitative characterization of IAV-host cell interactions. Furthermore, it suggests targets for gene editing and indicates that overexpression of multiple host cell factors may be beneficial for the design of novel producer cell lines.
Collapse
Affiliation(s)
- Tanja Laske
- Department of Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Mandy Bachmann
- Department of Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Melanie Dostert
- Department of Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Alexander Karlas
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Dagmar Wirth
- Research Group Model Systems for Infection and Immunity, Helmholtz Center for Infection Research, Braunschweig, Germany
- Division of Experimental Hematology, Medical University Hannover, Hannover, Germany
| | - Timo Frensing
- Department of Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Thomas F. Meyer
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Hansjörg Hauser
- Department of Gene Regulation and Differentiation, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Udo Reichl
- Department of Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
- Chair of Bioprocess Engineering, Faculty of Process and Systems Engineering, Otto von Guericke University, Magdeburg, Germany
| |
Collapse
|
19
|
Ren L, Zhang W, Han P, Zhang J, Zhu Y, Meng X, Zhang J, Hu Y, Yi Z, Wang R. Influenza A virus (H1N1) triggers a hypoxic response by stabilizing hypoxia-inducible factor-1α via inhibition of proteasome. Virology 2019; 530:51-58. [DOI: 10.1016/j.virol.2019.02.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 02/08/2019] [Accepted: 02/10/2019] [Indexed: 01/31/2023]
|
20
|
Wei X, Liu Z, Wang J, Yang R, Yang J, Guo Y, Tan H, Chen H, Liu Q, Liu L. The interaction of cellular protein ANP32A with influenza A virus polymerase component PB2 promotes vRNA synthesis. Arch Virol 2019; 164:787-798. [PMID: 30666459 DOI: 10.1007/s00705-018-04139-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 11/23/2018] [Indexed: 12/13/2022]
Abstract
The subunits PA, PB1, and PB2 of influenza A virus RNA polymerase are essential for efficient viral RNA synthesis and virus replication because of their role in recruiting multiple nuclear proteins. ANP32A is an acidic leucine-rich nuclear phosphoprotein 32 (ANP32) family member and a crucial cellular protein that determines the species specificity of the influenza virus RNA polymerase activity. However, how ANP32A modulates polymerase activity remains largely unknown. In this study, we showed that viral RNA synthesis was increased in A549 cells overexpressing ANP32A and decreased after treatment with ANP32A RNAi. This decrease in RNA synthesis was reversed by rescued ANP32A expression. The results of docking modeling, co-immunoprecipitation, and yeast two-hybrid assays showed that PB2 was the only subunit of the three that interacted with ANP32A. The C-terminal portion of ANP32A and the middle domains (residues 307-534) of PB2 were required for PB2-ANP32A interaction. Glu189 and Glu196 in ANP32A and Gly450 and Gln447 in PB2 were essential for interaction between ANP32A and PB2. These residues were located in conserved regions of the ANP32A or PB2 protein sequences. These data suggest that ANP32A is recruited to the polymerase through direct interaction with PB2 via critical amino acid residue interactions and promotes viral RNA synthesis. Our findings might provide new insights into the molecular mechanisms underlying influenza virus RNA synthesis and replication in infected human cells.
Collapse
Affiliation(s)
- Xiuli Wei
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, 442000, China
- Department of Infectious Diseases, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Zhixin Liu
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, 442000, China
| | - Jingjie Wang
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, 442000, China
| | - Ruiping Yang
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Jing Yang
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, 442000, China
| | - Yang Guo
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, 442000, China
| | - Huabing Tan
- Department of Infectious Diseases, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Hongying Chen
- College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Qiang Liu
- The First College of Clinical Medical Science, China Three Gorges University/Yichang Central People's Hospital, Yichang, 443000, China
| | - Long Liu
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, 442000, China.
- Department of Infectious Diseases, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China.
| |
Collapse
|
21
|
Soto-Acosta R, Xie X, Shan C, Baker CK, Shi PY, Rossi SL, Garcia-Blanco MA, Bradrick S. Fragile X mental retardation protein is a Zika virus restriction factor that is antagonized by subgenomic flaviviral RNA. eLife 2018; 7:39023. [PMID: 30511641 PMCID: PMC6279352 DOI: 10.7554/elife.39023] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 11/12/2018] [Indexed: 12/19/2022] Open
Abstract
Subgenomic flaviviral RNA (sfRNA) accumulates during infection due to incomplete degradation of viral genomes and interacts with cellular proteins to promote infection. Here we identify host proteins that bind the Zika virus (ZIKV) sfRNA. We identified fragile X mental retardation protein (FMRP) as a ZIKV sfRNA-binding protein and confirmed this interaction in cultured cells and mouse testes. Depletion of FMRP elevated viral translation and enhanced ZIKV infection, indicating that FMRP is a ZIKV restriction factor. We further observed that an attenuated ZIKV strain compromised for sfRNA production was disproportionately stimulated by FMRP knockdown, suggesting that ZIKV sfRNA antagonizes FMRP activity. Importantly, ZIKV infection and expression of ZIKV sfRNA upregulated endogenous FMRP target genes in cell culture and ZIKV-infected mice. Together, our observations identify FMRP as a ZIKV restriction factor whose activity is antagonized by the sfRNA. Interaction between ZIKV and FMRP has significant implications for the pathogenesis of ZIKV infections.
Collapse
Affiliation(s)
- Ruben Soto-Acosta
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, United States
| | - Xuping Xie
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, United States
| | - Chao Shan
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, United States
| | - Coleman K Baker
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, United States
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, United States.,Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, United States.,Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, United States.,Sealy Center for Structural Biology & Molecular Biophysics, University of Texas Medical Branch, Galveston, United States.,Institute for Human Infections & Immunity, University of Texas Medical Branch, Galveston, United States
| | - Shannan L Rossi
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, United States.,Institute for Human Infections & Immunity, University of Texas Medical Branch, Galveston, United States.,Department of Pathology, University of Texas Medical Branch, Galveston, United States.,Center for Biodefense & Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, United States
| | - Mariano A Garcia-Blanco
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, United States.,Institute for Human Infections & Immunity, University of Texas Medical Branch, Galveston, United States.,Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Shelton Bradrick
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, United States.,Institute for Human Infections & Immunity, University of Texas Medical Branch, Galveston, United States.,Center for Biodefense & Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, United States
| |
Collapse
|
22
|
The Nucleolar Protein LYAR Facilitates Ribonucleoprotein Assembly of Influenza A Virus. J Virol 2018; 92:JVI.01042-18. [PMID: 30209172 PMCID: PMC6232469 DOI: 10.1128/jvi.01042-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/01/2018] [Indexed: 12/13/2022] Open
Abstract
Influenza A viral ribonucleoprotein (vRNP) is responsible for transcription and replication of the viral genome in infected cells and depends on host factors for its functions. Identification of the host factors interacting with vRNP not only improves understanding of virus-host interactions but also provides insights into novel mechanisms of viral pathogenicity and the development of new antiviral strategies. Here, we have identified 80 host factors that copurified with vRNP using affinity purification followed by mass spectrometry. LYAR, a cell growth-regulating nucleolar protein, has been shown to be important for influenza A virus replication. During influenza A virus infection, LYAR expression is increased and partly translocates from the nucleolus to the nucleoplasm and cytoplasm. Furthermore, LYAR interacts with RNP subunits, resulting in enhancing viral RNP assembly, thereby facilitating viral RNA synthesis. Taken together, our studies identify a novel vRNP binding host partner important for influenza A virus replication and further reveal the mechanism of LYAR regulating influenza A viral RNA synthesis by facilitating viral RNP assembly.IMPORTANCE Influenza A virus (IAV) must utilize the host cell machinery to replicate, but many of the mechanisms of IAV-host interaction remain poorly understood. Improved understanding of interactions between host factors and vRNP not only increases our basic knowledge of the molecular mechanisms of virus replication and pathogenicity but also provides insights into possible novel antiviral targets that are necessary due to the widespread emergence of drug-resistant IAV strains. Here, we have identified LYAR, a cell growth-regulating nucleolar protein, which interacts with viral RNP components and is important for efficient replication of IAVs and whose role in the IAV life cycle has never been reported. In addition, we further reveal the role of LYAR in viral RNA synthesis. Our results extend and improve current knowledge on the mechanisms of IAV transcription and replication.
Collapse
|
23
|
Wang J, Wang Y, Zhou R, Zhao J, Zhang Y, Yi D, Li Q, Zhou J, Guo F, Liang C, Li X, Cen S. Host Long Noncoding RNA lncRNA-PAAN Regulates the Replication of Influenza A Virus. Viruses 2018; 10:v10060330. [PMID: 29914164 PMCID: PMC6024364 DOI: 10.3390/v10060330] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/13/2018] [Accepted: 06/14/2018] [Indexed: 12/24/2022] Open
Abstract
The productive infection of influenza A virus (IAV) depends on host factors. However, the involvement of long non-coding RNAs (lncRNAs) in IAV infection remains largely uninvestigated. In this work, we have discovered a human lncRNA, named lncRNA-PAAN (PA-associated noncoding RNA) that enhances IAV replication. The level of lncRNA-PAAN increases upon infection of IAV, but not other viruses, nor interferon treatment, suggesting specific up-regulation of lncRNA-PAAN expression by IAV. Silencing lncRNA-PAAN significantly decreases IAV replication through impairing the activity of viral RNA-dependent RNA polymerase (RdRp). This function of lncRNA-PAAN is a result of its association with viral PA protein, a key component of IAV RNA polymerase complex. Consequently, depletion of lncRNA-PAAN prevents the formation of functional RdRp. Together, these results suggest that lncRNA-PAAN promotes the assembly of viral RNA polymerase, thus warranting efficient viral RNA synthesis. Elucidating the functions of lncRNAs in IAV infection is expected to advance our understanding of IAV pathogenesis and open new avenues to the development of novel anti-IAV therapeutics.
Collapse
Affiliation(s)
- Jing Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing 100050, China.
| | - Yujia Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing 100050, China.
| | - Rui Zhou
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing 100050, China.
| | - Jianyuan Zhao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing 100050, China.
| | - Yongxin Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing 100050, China.
| | - Dongrong Yi
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing 100050, China.
| | - Quanjie Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing 100050, China.
| | - Jinming Zhou
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing 100050, China.
| | - Fei Guo
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing 100730, China.
| | - Chen Liang
- Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montreal, QC H3T 1E2, Canada.
| | - Xiaoyu Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing 100050, China.
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing 100050, China.
| |
Collapse
|
24
|
Shaw AE, Hughes J, Gu Q, Behdenna A, Singer JB, Dennis T, Orton RJ, Varela M, Gifford RJ, Wilson SJ, Palmarini M. Fundamental properties of the mammalian innate immune system revealed by multispecies comparison of type I interferon responses. PLoS Biol 2017; 15:e2004086. [PMID: 29253856 PMCID: PMC5747502 DOI: 10.1371/journal.pbio.2004086] [Citation(s) in RCA: 235] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 12/29/2017] [Accepted: 11/22/2017] [Indexed: 12/31/2022] Open
Abstract
The host innate immune response mediated by type I interferon (IFN) and the resulting up-regulation of hundreds of interferon-stimulated genes (ISGs) provide an immediate barrier to virus infection. Studies of the type I ‘interferome’ have mainly been carried out at a single species level, often lacking the power necessary to understand key evolutionary features of this pathway. Here, using a single experimental platform, we determined the properties of the interferomes of multiple vertebrate species and developed a webserver to mine the dataset. This approach revealed a conserved ‘core’ of 62 ISGs, including genes not previously associated with IFN, underscoring the ancestral functions associated with this antiviral host response. We show that gene expansion contributes to the evolution of the IFN system and that interferomes are shaped by lineage-specific pressures. Consequently, each mammal possesses a unique repertoire of ISGs, including genes common to all mammals and others unique to their specific species or phylogenetic lineages. An analysis of genes commonly down-regulated by IFN suggests that epigenetic regulation of transcription is a fundamental aspect of the IFN response. Our study provides a resource for the scientific community highlighting key paradigms of the type I IFN response. The type I interferon (IFN) response is triggered upon sensing of an incoming pathogen in an infected cell and results in the expression of hundreds of IFN-stimulated genes (ISGs, collectively referred to as ‘the interferome’). Studies on the interferome have been carried out mainly in human cells and therefore often lack the power to understand comparative evolutionary aspects of this critical pathway. In this study, we characterized the interferome in several animal species (including humans) using a single experimental framework. This approach allowed us to identify fundamental properties of the innate immune system. In particular, we revealed 62 ‘core’ ISGs, up-regulated in response to IFN in all vertebrates, highlighting the ancestral functions of the IFN system. In addition, we show that many genes repressed by the IFN response normally function as regulators of cell transcription. ISGs shared by multiple species have a higher propensity than other genes to exist as multiple copies in the genome. Importantly, we observed that genes have arisen as ISGs throughout evolution. Hence, every animal species possesses a unique repertoire of ISGs that includes core and lineage-specific genes. Collectively, our data provide a framework on which it will be possible to test the role of the IFN response in pathogen emergence and cross-species transmission.
Collapse
Affiliation(s)
- Andrew E. Shaw
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Joseph Hughes
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Quan Gu
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Abdelkader Behdenna
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Joshua B. Singer
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Tristan Dennis
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Richard J. Orton
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Mariana Varela
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Robert J. Gifford
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Sam J. Wilson
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
- * E-mail: (SJW); (MP)
| | - Massimo Palmarini
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
- * E-mail: (SJW); (MP)
| |
Collapse
|
25
|
Enterovirus 3A Facilitates Viral Replication by Promoting Phosphatidylinositol 4-Kinase IIIβ-ACBD3 Interaction. J Virol 2017; 91:JVI.00791-17. [PMID: 28701404 DOI: 10.1128/jvi.00791-17] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/05/2017] [Indexed: 01/27/2023] Open
Abstract
Like other enteroviruses, enterovirus 71 (EV71) relies on phosphatidylinositol 4-kinase IIIβ (PI4KB) for genome RNA replication. However, how PI4KB is recruited to the genome replication sites of EV71 remains elusive. Recently, we reported that a host factor, ACBD3, is needed for EV71 replication by interacting with viral 3A protein. Here, we show that ACBD3 is required for the recruitment of PI4KB to RNA replication sites. Overexpression of viral 3A or EV71 infection stimulates the interaction of PI4KB and ACBD3. Consistently, EV71 infection induces the production of phosphatidylinositol-4-phosphate (PI4P). Furthermore, PI4KB, ACBD3, and 3A are all localized to the viral-RNA replication sites. Accordingly, PI4KB or ACBD3 depletion by small interfering RNA (siRNA) leads to a reduction in PI4P production after EV71 infection. I44A or H54Y substitution in 3A interrupts the stimulation of PI4KB and ACBD3. Further analysis suggests that stimulation of ACBD3-PI4KB interaction is also important for the replication of enterovirus 68 but disadvantageous to human rhinovirus 16. These results reveal a mechanism of enterovirus replication that involves a selective strategy for recruitment of PI4KB to the RNA replication sites.IMPORTANCE Enterovirus 71, like other human enteroviruses, replicates its genome within host cells, where viral proteins efficiently utilize cellular machineries. While multiple factors are involved, it is largely unclear how viral replication is controlled. We show that the 3A protein of enterovirus 71 recruits an enzyme, phosphatidylinositol 4-kinase IIIβ, by interacting with ACBD3, which alters cellular membranes through the production of a lipid, PI4P. Consequently, the viral and host proteins form a large complex that is necessary for RNA synthesis at replication sites. Notably, PI4KB-ACBD3 interaction also differentially mediates the replication of enterovirus 68 and rhinovirus 16. These results provide new insight into the molecular network of enterovirus replication.
Collapse
|
26
|
Lei X, Xiao X, Zhang Z, Ma Y, Qi J, Wu C, Xiao Y, Zhou Z, He B, Wang J. The Golgi protein ACBD3 facilitates Enterovirus 71 replication by interacting with 3A. Sci Rep 2017; 7:44592. [PMID: 28303920 PMCID: PMC5356004 DOI: 10.1038/srep44592] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 02/09/2017] [Indexed: 12/24/2022] Open
Abstract
Enterovirus 71 (EV71) is a human pathogen that causes hand, foot, mouth disease and neurological complications. Although EV71, as well as other enteroviruses, initiates a remodeling of intracellular membrane for genomic replication, the regulatory mechanism remains elusive. By screening human cDNA library, we uncover that the Golgi resident protein acyl-coenzyme A binding domain-containing 3 (ACBD3) serves as a target of the 3A protein of EV71. This interaction occurs in cells expressing 3A or infected with EV71. Genetic inhibition or deletion of ACBD3 drastically impairs viral RNA replication and plaque formation. Such defects are corrected upon restoration of ACBD3. In infected cells, EV71 3A redirects ACBD3, to the replication sites. I44A or H54Y substitution in 3A interrupts the binding to ACBD3. As such, viral replication is impeded. These results reveal a mechanism of EV71 replication that involves host ACBD3 for viral replication.
Collapse
Affiliation(s)
- Xiaobo Lei
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing P.R. China
| | - Xia Xiao
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing P.R. China
| | - Zhenzhen Zhang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing P.R. China
| | - Yijie Ma
- Department of Microbiology and Immunology, College of Medicine, University of Illinois, Chicago, United States of America
| | - Jianli Qi
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing P.R. China
| | - Chao Wu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing P.R. China
| | - Yan Xiao
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing P.R. China
| | - Zhuo Zhou
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing P.R. China
| | - Bin He
- Department of Microbiology and Immunology, College of Medicine, University of Illinois, Chicago, United States of America
| | - Jianwei Wang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing P.R. China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hanzhou 310003, Zhejiang Province, China
| |
Collapse
|
27
|
Te Velthuis AJW, Fodor E. Influenza virus RNA polymerase: insights into the mechanisms of viral RNA synthesis. Nat Rev Microbiol 2016; 14:479-93. [PMID: 27396566 DOI: 10.1038/nrmicro.2016.87] [Citation(s) in RCA: 316] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The genomes of influenza viruses consist of multiple segments of single-stranded negative-sense RNA. Each of these segments is bound by the heterotrimeric viral RNA-dependent RNA polymerase and multiple copies of nucleoprotein, which form viral ribonucleoprotein (vRNP) complexes. It is in the context of these vRNPs that the viral RNA polymerase carries out transcription of viral genes and replication of the viral RNA genome. In this Review, we discuss our current knowledge of the structure of the influenza virus RNA polymerase, and insights that have been gained into the molecular mechanisms of viral transcription and replication, and their regulation by viral and host factors. Furthermore, we discuss how advances in our understanding of the structure and function of polymerases could help in identifying new antiviral targets.
Collapse
Affiliation(s)
- Aartjan J W Te Velthuis
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Ervin Fodor
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| |
Collapse
|
28
|
Thulasi Raman SN, Zhou Y. Networks of Host Factors that Interact with NS1 Protein of Influenza A Virus. Front Microbiol 2016; 7:654. [PMID: 27199973 PMCID: PMC4855030 DOI: 10.3389/fmicb.2016.00654] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 04/19/2016] [Indexed: 11/13/2022] Open
Abstract
Pigs are an important host of influenza A viruses due to their ability to generate reassortant viruses with pandemic potential. NS1 protein of influenza A viruses is a key virulence factor and a major antagonist of innate immune responses. It is also involved in enhancing viral mRNA translation and regulation of virus replication. Being a protein with pleiotropic functions, NS1 has a variety of cellular interaction partners. Hence, studies on swine influenza viruses (SIV) and identification of swine influenza NS1-interacting host proteins is of great interest. Here, we constructed a recombinant SIV carrying a Strep-tag in the NS1 protein and infected primary swine respiratory epithelial cells (SRECs) with this virus. The Strep-tag sequence in the NS1 protein enabled us to purify intact, the NS1 protein and its interacting protein complex specifically. We identified cellular proteins present in the purified complex by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and generated a dataset of these proteins. 445 proteins were identified by LC-MS/MS and among them 192 proteins were selected by setting up a threshold based on MS parameters. The selected proteins were analyzed by bioinformatics and were categorized as belonging to different functional groups including translation, RNA processing, cytoskeleton, innate immunity, and apoptosis. Protein interaction networks were derived using these data and the NS1 interactions with some of the specific host factors were verified by immunoprecipitation. The novel proteins and the networks revealed in our study will be the potential candidates for targeted study of the molecular interaction of NS1 with host proteins, which will provide insights into the identification of new therapeutic targets to control influenza infection and disease pathogenesis.
Collapse
Affiliation(s)
- Sathya N Thulasi Raman
- Vaccine and Infectious Disease Organization - International Vaccine Centre, University of Saskatchewan, SaskatoonSK, Canada; Vaccinology and Immunotherapeutics Program, School of Public Health, University of Saskatchewan, SaskatoonSK, Canada
| | - Yan Zhou
- Vaccine and Infectious Disease Organization - International Vaccine Centre, University of Saskatchewan, SaskatoonSK, Canada; Vaccinology and Immunotherapeutics Program, School of Public Health, University of Saskatchewan, SaskatoonSK, Canada
| |
Collapse
|
29
|
Host Protein Moloney Leukemia Virus 10 (MOV10) Acts as a Restriction Factor of Influenza A Virus by Inhibiting the Nuclear Import of the Viral Nucleoprotein. J Virol 2016; 90:3966-3980. [PMID: 26842467 DOI: 10.1128/jvi.03137-15] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 01/25/2016] [Indexed: 01/06/2023] Open
Abstract
UNLABELLED The viral ribonucleoprotein (vRNP) complex of influenza A viruses (IAVs) contains an RNA-dependent RNA polymerase complex (RdRp) and nucleoprotein (NP) and is the functional unit for viral RNA transcription and replication. The vRNP complex is an important determinant of virus pathogenicity and host adaptation, implying that its function can be affected by host factors. In our study, we identified host protein Moloney leukemia virus 10 (MOV10) as an inhibitor of IAV replication, since depletion of MOV10 resulted in a significant increase in virus yield. MOV10 inhibited the polymerase activity in a minigenome system through RNA-mediated interaction with the NP subunit of vRNP complex. Importantly, we found that the interaction between MOV10 and NP prevented the binding of NP to importin-α, resulting in the retention of NP in the cytoplasm. Both the binding of MOV10 to NP and its inhibitory effect on polymerase activity were independent of its helicase activity. These results suggest that MOV10 acts as an anti-influenza virus factor through specifically inhibiting the nuclear transportation of NP and subsequently inhibiting the function of the vRNP complex. IMPORTANCE The interaction between the influenza virus vRNP complex and host factors is a major determinant of viral tropism and pathogenicity. Our study identified MOV10 as a novel host restriction factor for the influenza virus life cycle since it inhibited the viral growth rate. Conversely, importin-α has been shown as a determinant for influenza tropism and a positive regulator for viral polymerase activity in mammalian cells but not in avian cells. MOV10 disrupted the interaction between NP and importin-α, suggesting that MOV10 could also be an important host factor for influenza virus transmission and pathogenicity. Importantly, as an interferon (IFN)-inducible protein, MOV10 exerted a novel mechanism for IFNs to inhibit the replication of influenza viruses. Furthermore, our study potentially provides a new drug design strategy, the use of molecules that mimic the antiviral mechanism of MOV10.
Collapse
|
30
|
DDX3 Interacts with Influenza A Virus NS1 and NP Proteins and Exerts Antiviral Function through Regulation of Stress Granule Formation. J Virol 2016; 90:3661-75. [PMID: 26792746 DOI: 10.1128/jvi.03010-15] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 01/14/2016] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED DDX3 belongs to the DEAD box RNA helicase family and is a multifunctional protein affecting the life cycle of a variety of viruses. However, its role in influenza virus infection is unknown. In this study, we explored the potential role of DDX3 in influenza virus life cycle and discovered that DDX3 is an antiviral protein. Since many host proteins affect virus life cycle by interacting with certain components of the viral machinery, we first verified whether DDX3 has any viral interaction partners. Immunoprecipitation studies revealed NS1 and NP as direct interaction partners of DDX3. Stress granules (SGs) are known to be antiviral and do form in influenza virus-infected cells expressing defective NS1 protein. Additionally, a recent study showed that DDX3 is an important SG-nucleating factor. We thus explored whether DDX3 plays a role in influenza virus infection through regulation of SGs. Our results showed that SGs were formed in infected cells upon infection with a mutant influenza virus lacking functional NS1 (del NS1) protein, and DDX3 colocalized with NP in SGs. We further determined that the DDX3 helicase domain did not interact with NS1 and NP; however, it was essential for DDX3 localization in virus-induced SGs. Knockdown of DDX3 resulted in impaired SG formation and led to increased virus titers. Taken together, our results identified DDX3 as an antiviral protein with a role in virus-induced SG formation. IMPORTANCE DDX3 is a multifunctional RNA helicase and has been reported to be involved in regulating various virus life cycles. However, its function during influenza A virus infection remains unknown. In this study, we demonstrated that DDX3 is capable of interacting with influenza virus NS1 and NP proteins; DDX3 and NP colocalize in the del NS1 virus-induced SGs. Furthermore, knockdown of DDX3 impaired SG formation and led to a decreased virus titer. Thus, we provided evidence that DDX3 is an antiviral protein during influenza virus infection and its antiviral activity is through regulation of SG formation. Our findings provide knowledge about the function of DDX3 in the influenza virus life cycle and information for future work on manipulating the SG pathway and its components to fight influenza virus infection.
Collapse
|
31
|
Wilk E, Pandey AK, Leist SR, Hatesuer B, Preusse M, Pommerenke C, Wang J, Schughart K. RNAseq expression analysis of resistant and susceptible mice after influenza A virus infection identifies novel genes associated with virus replication and important for host resistance to infection. BMC Genomics 2015; 16:655. [PMID: 26329040 PMCID: PMC4557482 DOI: 10.1186/s12864-015-1867-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 08/19/2015] [Indexed: 12/20/2022] Open
Abstract
Background The host response to influenza A infections is strongly influenced by host genetic factors. Animal models of genetically diverse mouse strains are well suited to identify host genes involved in severe pathology, viral replication and immune responses. Here, we have utilized a dual RNAseq approach that allowed us to investigate both viral and host gene expression in the same individual mouse after H1N1 infection. Results We performed a detailed expression analysis to identify (i) correlations between changes in expression of host and virus genes, (ii) host genes involved in viral replication, and (iii) genes showing differential expression between two mouse strains that strongly differ in resistance to influenza infections. These genes may be key players involved in regulating the differences in pathogenesis and host defense mechanisms after influenza A infections. Expression levels of influenza segments correlated well with the viral load and may thus be used as surrogates for conventional viral load measurements. Furthermore, we investigated the functional role of two genes, Reg3g and Irf7, in knock-out mice and found that deletion of the Irf7 gene renders the host highly susceptible to H1N1 infection. Conclusions Using RNAseq analysis we identified novel genes important for viral replication or the host defense. This study adds further important knowledge to host-pathogen-interactions and suggests additional candidates that are crucial for host susceptibility or survival during influenza A infections. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1867-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Esther Wilk
- Department of Infection Genetics, Helmholtz Centre for Infection Research and University of Veterinary Medicine Hannover, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Ashutosh K Pandey
- Department of Genetics, Genomics and Informatics, Center for Integrative and Translational Genomics, University of Tennessee Health Science Center, 855 Madison Avenue, Memphis, TN, 38163, USA
| | - Sarah Rebecca Leist
- Department of Infection Genetics, Helmholtz Centre for Infection Research and University of Veterinary Medicine Hannover, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Bastian Hatesuer
- Department of Infection Genetics, Helmholtz Centre for Infection Research and University of Veterinary Medicine Hannover, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Matthias Preusse
- Institute for Experimental Infection Research, TWINCORE Centre for Experimental and Clinical Infection Research, Hannover, Germany.,Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Claudia Pommerenke
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Inhoffenstr. 7B, 38124, Braunschweig, Germany
| | - Junxi Wang
- Bioinformatics and Statistics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Klaus Schughart
- Department of Infection Genetics, Helmholtz Centre for Infection Research and University of Veterinary Medicine Hannover, Inhoffenstr. 7, 38124, Braunschweig, Germany. .,Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, USA.
| |
Collapse
|
32
|
Hu Y, Chen Z, Fu Y, He Q, Jiang L, Zheng J, Gao Y, Mei P, Chen Z, Ren X. The amino-terminal structure of human fragile X mental retardation protein obtained using precipitant-immobilized imprinted polymers. Nat Commun 2015; 6:6634. [DOI: 10.1038/ncomms7634] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 02/11/2015] [Indexed: 01/04/2023] Open
|
33
|
Abstract
Influenza A viral ribonucleoprotein (vRNP) complexes comprise the eight genomic negative-sense RNAs, each of which is bound to multiple copies of the vRNP and a trimeric viral polymerase complex. The influenza virus life cycle centres on the vRNPs, which in turn rely on host cellular processes to carry out functions that are necessary for the successful completion of the virus life cycle. In this Review, we discuss our current knowledge about vRNP trafficking within host cells and the function of these complexes in the context of the virus life cycle, highlighting how structure contributes to function and the crucial interactions with host cell pathways, as well as on the information gaps that remain. An improved understanding of how vRNPs use host cell pathways is essential to identify mechanisms of virus pathogenicity, host adaptation and, ultimately, new targets for antiviral intervention.
Collapse
|
34
|
DnaJA1/Hsp40 is co-opted by influenza A virus to enhance its viral RNA polymerase activity. J Virol 2014; 88:14078-89. [PMID: 25253355 DOI: 10.1128/jvi.02475-14] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
UNLABELLED The RNA-dependent RNA polymerase (RdRp) of influenza A virus is a heterotrimeric complex composed of the PB1, PB2, and PA subunits. The interplay between host factors and the three subunits of the RdRp is critical to enable viral RNA synthesis to occur in the nuclei of infected cells. In this study, we newly identified host factor DnaJA1, a member of the type I DnaJ/Hsp40 family, acting as a positive regulator for influenza virus replication. We found that DnaJA1 associates with the bPB2 and PA subunits and enhances viral RNA synthesis both in vivo and in vitro. Moreover, DnaJA1 could be translocated from cytoplasm into the nucleus upon influenza virus infection. The translocation of DnaJA1 is specifically accompanied by PB1-PA nuclear import. Interestingly, we observed that the effect of DnaJA1 on viral RNA synthesis is mainly dependent on its C-terminal substrate-binding domain and not on its typical J domain, while the J domain normally mediates the Hsp70-DnaJ interaction required for regulating Hsp70 ATPase activity. Therefore, we propose that DnaJA1 is co-opted by the influenza A virus to enter the nucleus and to enhance its RNA polymerase activity in an Hsp70 cochaperone-independent manner. IMPORTANCE The interplay between host factors and influenza virus RNA polymerase plays a critical role in determining virus pathogenicity and host adaptation. In this study, we newly identified a host protein, DnaJA1/Hsp40, that is co-opted by influenza A virus RNA polymerase to enhance its viral RNA synthesis in the nuclei of infected cells. We found that DnaJA1 associates with both PB2 and PA subunits and translocates into the nucleus along with the nuclear import of the PB1-PA dimer during influenza virus replication. Interestingly, the effect of DnaJA1 is mainly dependent on its C-terminal substrate-binding domain and not on its typical J domain, which is required for its Hsp70 cochaperone function. To our knowledge, this is the first report on a member of the Hsp40s that is specifically involved in regulating influenza virus RNA polymerase. Targeting the interactions between polymerase subunits and DnaJA1 may provide a novel strategy to develop antiviral drugs.
Collapse
|
35
|
Khaperskyy DA, Emara MM, Johnston BP, Anderson P, Hatchette TF, McCormick C. Influenza a virus host shutoff disables antiviral stress-induced translation arrest. PLoS Pathog 2014; 10:e1004217. [PMID: 25010204 PMCID: PMC4092144 DOI: 10.1371/journal.ppat.1004217] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 05/14/2014] [Indexed: 12/22/2022] Open
Abstract
Influenza A virus (IAV) polymerase complexes function in the nucleus of infected cells, generating mRNAs that bear 5′ caps and poly(A) tails, and which are exported to the cytoplasm and translated by host machinery. Host antiviral defences include mechanisms that detect the stress of virus infection and arrest cap-dependent mRNA translation, which normally results in the formation of cytoplasmic aggregates of translationally stalled mRNA-protein complexes known as stress granules (SGs). It remains unclear how IAV ensures preferential translation of viral gene products while evading stress-induced translation arrest. Here, we demonstrate that at early stages of infection both viral and host mRNAs are sensitive to drug-induced translation arrest and SG formation. By contrast, at later stages of infection, IAV becomes partially resistant to stress-induced translation arrest, thereby maintaining ongoing translation of viral gene products. To this end, the virus deploys multiple proteins that block stress-induced SG formation: 1) non-structural protein 1 (NS1) inactivates the antiviral double-stranded RNA (dsRNA)-activated kinase PKR, thereby preventing eIF2α phosphorylation and SG formation; 2) nucleoprotein (NP) inhibits SG formation without affecting eIF2α phosphorylation; 3) host-shutoff protein polymerase-acidic protein-X (PA-X) strongly inhibits SG formation concomitant with dramatic depletion of cytoplasmic poly(A) RNA and nuclear accumulation of poly(A)-binding protein. Recombinant viruses with disrupted PA-X host shutoff function fail to effectively inhibit stress-induced SG formation. The existence of three distinct mechanisms of IAV-mediated SG blockade reveals the magnitude of the threat of stress-induced translation arrest during viral replication. Like all viruses, Influenza A virus (IAV) is absolutely dependent on host-cell protein synthesis machinery. This dependence makes the virus vulnerable to the innate ability of cells to inhibit protein synthesis in response to various types of stress. This inhibition, termed translation arrest, helps cells survive adverse conditions by re-dedicating their energy to stress responses. When cells arrest translation, they form stress granules: depots of untranslated mRNAs and associated proteins. Translation arrest and formation of stress granules can be induced pharmacologically, and in this work we sought to determine whether stress granule induction would be effective in blocking IAV replication. Here we demonstrate that treatment of cells with inducers of stress granules at early times after infection resulted in blockade of viral protein synthesis and stopped viral replication. At later times post-infection, by contrast, IAV proteins prevented pharmacological induction of stress granules. We identified three viral proteins – more than in any virus to date – that work in concert to prevent stress granule formation. Taken together, our studies reveal a multipronged approach for viral suppression of translation arrest, and identify a window of opportunity early in infection when pharmacological induction of stress granules has a strong antiviral effect.
Collapse
Affiliation(s)
- Denys A. Khaperskyy
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Mohamed M. Emara
- Laboratory of Stem Cell Research, Qatar Biomedical Research Institute, Doha, Qatar
- Department of Virology, School of Veterinary Medicine, Cairo University, Giza, Egypt
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Benjamin P. Johnston
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Paul Anderson
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Todd F. Hatchette
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Craig McCormick
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- * E-mail:
| |
Collapse
|