1
|
Baede VO, Jlassi O, Lesiczka PM, Younsi H, Jansen HJ, Dachraoui K, Segobola J, Ben Said M, Veneman WJ, Dirks RP, Sprong H, Zhioua E. Similarities between Ixodes ricinus and Ixodes inopinatus genomes and horizontal gene transfer from their endosymbionts. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2024; 6:100229. [PMID: 39640918 PMCID: PMC11617991 DOI: 10.1016/j.crpvbd.2024.100229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/30/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024]
Abstract
The taxa Ixodes ricinus and Ixodes inopinatus are sympatric in Tunisia. The genetics underlying their morphological differences are unresolved. In this study, ticks collected in Jouza-Amdoun, Tunisia, were morphologically identified and sequenced using Oxford Nanopore Technologies. Three complete genome assemblies of I. inopinatus and three of I. ricinus with BUSCO scores of ∼98% were generated, including the reconstruction of mitochondrial genomes and separation of both alleles of the TRPA1, TROSPA and calreticulin genes. Deep sequencing allowed the first descriptions of complete bacterial genomes for "Candidatus Midichloria mitochondrii", Rickettsia helvetica and R. monacensis from North Africa, and the discovery of extensive integration of parts of the Spiroplasma ixodetis and "Ca. M. mitochondrii" into the nuclear genome of these ticks. Phylogenetic analyses of the mitochondrial genome, the nuclear genes, and symbionts showed differentiation between Tunisian and Dutch ticks, but high genetic similarities between Tunisian I. ricinus and I. inopinatus. Subtraction of the genome assemblies identified the presence of some unique sequences, which could not be confirmed when screening a larger batch of I. ricinus and I. inopinatus ticks using PCR. Our findings yield compelling evidence that I. inopinatus is genetically highly similar, if not identical, to sympatric I. ricinus. Defined morphological differences might be caused by extrinsic factors such as micro-climatic conditions or bloodmeal composition. Our findings support the existence of different lineages of I. ricinus as well of its symbionts/pathogens from geographically dispersed locations.
Collapse
Affiliation(s)
- Valérie O. Baede
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Oumayma Jlassi
- Unit of Vector Ecology, Pasteur Institute of Tunis, Tunis, Tunisia
- Laboratory of Epidemiology and Veterinary Microbiology, Pasteur Institute of Tunis, Tunis, Tunisia
- Faculty of Sciences of Bizerte (FSB), University of Carthage, Tunis, Tunisia
| | - Paulina M. Lesiczka
- Centre for Monitoring of Vectors (CMV), Netherlands Institute for Vectors, Invasive Plants and Plant Health (NIVIP), Netherlands Food and Consumer Product Safety Authority (NVWA), Wageningen, the Netherlands
| | - Hend Younsi
- Higher Institute of Applied Biological Sciences of Tunis, University Tunis El Manar, Tunis, Tunisia
- Laboratory of Biodiversity, Parasitology, and Ecology of Aquatic Ecosystems, University Tunis El Manar, Tunis, Tunisia
| | - Hans J. Jansen
- Future Genomics Technologies BV, Leiden, the Netherlands
| | - Khalil Dachraoui
- Unit of Vector Ecology, Pasteur Institute of Tunis, Tunis, Tunisia
- Laboratory of Epidemiology and Veterinary Microbiology, Pasteur Institute of Tunis, Tunis, Tunisia
| | - Jane Segobola
- Future Genomics Technologies BV, Leiden, the Netherlands
| | - Mourad Ben Said
- Laboratory of Microbiology, National School of Veterinary Medicine of Sidi Thabet, University of Manouba, Manouba, Tunisia
- Department of Basic Sciences, Higher Institute of Biotechnology of Sidi Thabet, University of Manouba, Manouba, Tunisia
| | | | - Ron P. Dirks
- Future Genomics Technologies BV, Leiden, the Netherlands
| | - Hein Sprong
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Elyes Zhioua
- Unit of Vector Ecology, Pasteur Institute of Tunis, Tunis, Tunisia
- Laboratory of Epidemiology and Veterinary Microbiology, Pasteur Institute of Tunis, Tunis, Tunisia
| |
Collapse
|
2
|
Tang X, Arora G, Matias J, Hart T, Cui Y, Fikrig E. A tick C1q protein alters infectivity of the Lyme disease agent by modulating interferon γ. Cell Rep 2022; 41:111673. [PMID: 36417869 PMCID: PMC9909562 DOI: 10.1016/j.celrep.2022.111673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/04/2022] [Accepted: 10/25/2022] [Indexed: 11/23/2022] Open
Abstract
In North America, the Lyme disease agent, Borrelia burgdorferi, is commonly transmitted by the black-legged tick, Ixodes scapularis. Tick saliva facilitates blood feeding and enhances pathogen survival and transmission. Here, we demonstrate that I. scapularis complement C1q-like protein 3 (IsC1ql3), a tick salivary protein, directly interacts with B. burgdorferi and is important during the initial stage of spirochetal infection of mice. Mice fed upon by B. burgdorferi-infected IsC1ql3-silenced ticks, or IsC1ql3-immunized mice fed upon by B. burgdorferi-infected ticks, have a lower spirochete burden during the early phase of infection compared with control animals. Mechanically, IsC1ql3 interacts with the globular C1q receptor present on the surface of CD4+ and CD8+ T cells, resulting in decreased production of interferon γ. IsC1ql3 is a C1q-domain-containing protein identified in arthropod vectors and has an important role in B. burgdorferi infectivity as the spirochete transitions from the tick to vertebrate host.
Collapse
Affiliation(s)
- Xiaotian Tang
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA.
| | - Gunjan Arora
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
| | - Jaqueline Matias
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
| | - Thomas Hart
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
| | - Yingjun Cui
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
| |
Collapse
|
3
|
Abstract
Infections caused by antibiotic-resistant pathogens pose high risks to human and animal health worldwide. In recent years, the environment and wildlife as major sources and reservoirs of antibiotic resistance genes (ARGs) are being increasingly investigated. There have been many reports on bacterial community in ticks, but little is known about ARGs they carry, and the correlation between bacterial and ARGs in wild ticks also remains unknown. Here, the profiles of microbial community and antibiotic resistome in wild tick species were investigated using high-throughput 16S rRNA sequencing and smart chip-based high-throughput quantitative PCR approach (HT-qPCR), respectively. We found that bacterial composition in wild tick species is variable; the sequenced reads from all samples were assigned to 37 different phyla at the phylum level. The dominant phylum was Proteobacteria, which accounted for 75.60 ± 10.34%, followed by Bacteroidetes accounting for 13.78 ± 11.68% of the total bacterial community. In total, 100 different ARGs across 12 antibiotic classes and 20 mobile genetic elements (MGEs) were identified by HT-qPCR, and among them aminoglycosides, multidrug, macrolide-clinolamide-streptogramin B, and tetracycline resistance genes were the dominant ARG types. Co-occurrence patterns revealed by network analysis showed that eight bacterial genera may serve as the potential hosts for different ARGs. For the first time, this study provides comprehensive overview of the diversity and abundance of ARGs in wild ticks and highlights the possible role of wild ticks as ARG disseminators into the environment and vertebrate hosts, with implications for human and animal health. IMPORTANCE The emergence of antibiotic-resistant bacteria poses serious threat to the public health around the world. Ticks are obligate hematophagous ectoparasites, surviving via feeding on the blood of various animal hosts. Although some previous studies have confirmed wild ticks carried various bacterial community, the role of wild ticks in the antibiotic resistance remains unknown. Here, identification of microbial community and antibiotic resistome in wild tick species revealed that wild ticks are the reservoir, postulated potential spreaders of antibiotic resistance. Our findings highlight the contribution of wild ticks to the maintenance and dissemination of ARGs, and the associated health risks.
Collapse
|
4
|
Martin-Martin I, Valenzuela Leon PC, Amo L, Shrivastava G, Iniguez E, Aryan A, Brooks S, Kojin BB, Williams AE, Bolland S, Ackerman H, Adelman ZN, Calvo E. Aedes aegypti sialokinin facilitates mosquito blood feeding and modulates host immunity and vascular biology. Cell Rep 2022; 39:110648. [PMID: 35417706 PMCID: PMC9082008 DOI: 10.1016/j.celrep.2022.110648] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/01/2022] [Accepted: 03/17/2022] [Indexed: 11/28/2022] Open
Abstract
Saliva from mosquitoes contains vasodilators that antagonize vasoconstrictors produced at the bite site. Sialokinin is a vasodilator present in the saliva of Aedes aegypti. Here, we investigate its function and describe its mechanism of action during blood feeding. Sialokinin induces nitric oxide release similar to substance P. Sialokinin-KO mosquitoes produce lower blood perfusion than parental mosquitoes at the bite site during probing and have significantly longer probing times, which result in lower blood feeding success. In contrast, there is no difference in feeding between KO and parental mosquitoes when using artificial membrane feeders or mice that are treated with a substance P receptor antagonist, confirming that sialokinin interferes with host hemostasis via NK1R signaling. While sialokinin-KO saliva does not affect virus infection in vitro, it stimulates macrophages and inhibits leukocyte recruitment in vivo. This work highlights the biological functionality of salivary proteins in blood feeding.
Collapse
Affiliation(s)
- Ines Martin-Martin
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA.
| | - Paola Carolina Valenzuela Leon
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Laura Amo
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Gaurav Shrivastava
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Eva Iniguez
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Azadeh Aryan
- Department of Entomology and Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
| | - Steven Brooks
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Bianca B Kojin
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | - Adeline E Williams
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA; Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins 80523, CO, USA
| | - Silvia Bolland
- Department of Entomology and Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
| | - Hans Ackerman
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Zach N Adelman
- Department of Entomology and Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA; Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | - Eric Calvo
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA.
| |
Collapse
|
5
|
Reck J, Webster A, Dall'Agnol B, Pienaar R, de Castro MH, Featherston J, Mans BJ. Transcriptomic Analysis of Salivary Glands of Ornithodoros brasiliensis Aragão, 1923, the Agent of a Neotropical Tick-Toxicosis Syndrome in Humans. Front Physiol 2021; 12:725635. [PMID: 34421661 PMCID: PMC8378177 DOI: 10.3389/fphys.2021.725635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/12/2021] [Indexed: 12/04/2022] Open
Abstract
Tick salivary glands produce and secrete a variety of compounds that modulate host responses and ensure a successful blood meal. Despite great progress made in the identification of ticks salivary compounds in recent years, there is still a paucity of information concerning salivary molecules of Neotropical argasid ticks. Among this group of ticks, considering the number of human cases of parasitism, including severe syndromes and hospitalization, Ornithodoros brasiliensis can be considered one of the major Neotropical argasid species with impact in public health. Here, we describe the transcriptome analysis of O. brasiliensis salivary glands (ObSG). The transcriptome yielded ~14,957 putative contigs. A total of 368 contigs were attributed to secreted proteins (SP), which represent approximately 2.5% of transcripts but ~53% expression coverage transcripts per million. Lipocalins are the major protein family among the most expressed SP, accounting for ~16% of the secretory transcripts and 51% of secretory protein abundance. The most expressed transcript is an ortholog of TSGP4 (tick salivary gland protein 4), a lipocalin first identified in Ornithodoros kalahariensis that functions as a leukotriene C4 scavenger. A total of 55 lipocalin transcripts were identified in ObSG. Other transcripts potentially involved in tick-host interaction included as: basic/acid tail secretory proteins (second most abundant expressed group), serine protease inhibitors (including Kunitz inhibitors), 5' nucleotidases (tick apyrases), phospholipase A2, 7 disulfide bond domain, cystatins, and tick antimicrobial peptides. Another abundant group of proteins in ObSG is metalloproteases. Analysis of these major protein groups suggests that several duplication events after speciation were responsible for the abundance of redundant compounds in tick salivary glands. A full mitochondrial genome could be assembled from the transcriptome data and confirmed the close genetic identity of the tick strain sampled in the current study, to a tick strain previously implicated in tick toxicoses. This study provides novel information on the molecular composition of ObSG, a Brazilian endemic tick associated with several human cases of parasitism. These results could be helpful in the understanding of clinical findings observed in bitten patients, and also, could provide more information on the evolution of Neotropical argasids.
Collapse
Affiliation(s)
- Jose Reck
- Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Eldorado do Sul, Brazil
| | - Anelise Webster
- Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Eldorado do Sul, Brazil
| | - Bruno Dall'Agnol
- Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Eldorado do Sul, Brazil
| | - Ronel Pienaar
- Epidemiology, Parasites and Vectors, Agricultural Research Council, Onderstepoort Veterinary Research, Pretoria, South Africa
| | - Minique H de Castro
- Agricultural Research Council, Biotechnology Platform, Pretoria, South Africa
| | | | - Ben J Mans
- Epidemiology, Parasites and Vectors, Agricultural Research Council, Onderstepoort Veterinary Research, Pretoria, South Africa.,Department of Veterinary Tropical Diseases, Vector and Vector-borne Disease Research Programme, University of Pretoria, Pretoria, South Africa.,Department of Life and Consumer Sciences, University of South Africa, Pretoria, South Africa
| |
Collapse
|
6
|
Kern O, Valenzuela Leon PC, Gittis AG, Bonilla B, Cruz P, Chagas AC, Ganesan S, Ribeiro JMC, Garboczi DN, Martin-Martin I, Calvo E. The structures of two salivary proteins from the West Nile vector Culex quinquefasciatus reveal a beta-trefoil fold with putative sugar binding properties. Curr Res Struct Biol 2021; 3:95-105. [PMID: 34235489 PMCID: PMC8244437 DOI: 10.1016/j.crstbi.2021.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/01/2021] [Accepted: 03/04/2021] [Indexed: 01/22/2023] Open
Abstract
Female mosquitoes require blood meals for egg development. The saliva of blood feeding arthropods contains biochemically active molecules, whose anti-hemostatic and anti-inflammatory properties facilitate blood feeding on vertebrate hosts. While transcriptomics has presented new opportunities to investigate the diversity of salivary proteins from hematophagous arthropods, many of these proteins remain functionally undescribed. Previous transcriptomic analysis of female salivary glands from Culex quinquefasciatus, an important vector of parasitic and viral infections, uncovered a 12-member family of putatively secreted proteins of unknown function, named the Cysteine and Tryptophan-Rich (CWRC) proteins. Here, we present advances in the characterization of two C. quinquefasciatus CWRC family members, CqDVP-2 and CqDVP-4, including their enrichment in female salivary glands, their specific localization within salivary gland tissues, evidence that these proteins are secreted into the saliva, and their native crystal structures, at 2.3 Å and 1.87 Å, respectively. The β-trefoil fold common to CqDVP-2 and CqDVP-4 is similar to carbohydrate-binding proteins, including the B subunit of the AB toxin, ricin, from the castor bean Ricinus communis. Further, we used a glycan array approach, which identifies carbohydrate ligands associated with inflammatory processes and signal transduction. Glycan array 300 testing identified 100 carbohydrate moieties with positive binding to CqDVP-2, and 77 glycans with positive binding to CqDVP-4. The glycan with the highest relative fluorescence intensities, which exhibited binding to both CqDVP-2 and CqDVP-4, was used for molecular docking experiments. We hypothesize that these proteins bind to carbohydrates on the surface of cells important to host immunology. Given that saliva is deposited into the skin during a mosquito bite, and acts as the vehicle for arbovirus inoculation, understanding the role of these proteins in pathogen transmission is of critical importance. This work presents the first solved crystal structures of C. quinquefasciatus salivary proteins with unknown function. These two molecules are the second and third structures reported from salivary proteins from C. quinquefasciatus, an important, yet understudied disease vector.
Collapse
Affiliation(s)
- Olivia Kern
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Paola Carolina Valenzuela Leon
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Apostolos G Gittis
- Structural Biology Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Brian Bonilla
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Phillip Cruz
- Bioinformatics and Computational Biosciences Branch. Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Andrezza Campos Chagas
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Sundar Ganesan
- Biological Imaging Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Jose M C Ribeiro
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - David N Garboczi
- Structural Biology Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Ines Martin-Martin
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Eric Calvo
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| |
Collapse
|
7
|
Garelja M, Au M, Brimble MA, Gingell JJ, Hendrikse ER, Lovell A, Prodan N, Sexton PM, Siow A, Walker CS, Watkins HA, Williams GM, Wootten D, Yang SH, Harris PWR, Hay DL. Molecular Mechanisms of Class B GPCR Activation: Insights from Adrenomedullin Receptors. ACS Pharmacol Transl Sci 2020; 3:246-262. [PMID: 32296766 PMCID: PMC7155197 DOI: 10.1021/acsptsci.9b00083] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Indexed: 02/07/2023]
Abstract
Adrenomedullin (AM) is a 52 amino acid peptide that plays a regulatory role in the vasculature. Receptors for AM comprise the class B G protein-coupled receptor, the calcitonin-like receptor (CLR), in complex with one of three receptor activity-modifying proteins (RAMPs). The C-terminus of AM is involved in binding to the extracellular domain of the receptor, while the N-terminus is proposed to interact with the juxtamembranous portion of the receptor to activate signaling. There is currently limited information on the molecular determinants involved in AM signaling, thus we set out to define the importance of the AM N-terminus through five signaling pathways (cAMP production, ERK phosphorylation, CREB phosphorylation, Akt phosphorylation, and IP1 production). We characterized the three CLR:RAMP complexes through the five pathways, finding that each had a distinct repertoire of intracellular signaling pathways that it is able to regulate. We then performed an alanine scan of AM from residues 15-31 and found that most residues could be substituted with only small effects on signaling, and that most substitutions affected signaling through all receptors and pathways in a similar manner. We identify F18, T20, L26, and I30 as being critical for AM function, while also identifying an analogue (AM15-52 G19A) which has unique signaling properties relative to the unmodified AM. We interpret our findings in the context of new structural information, highlighting the complementary nature of structural biology and functional assays.
Collapse
Affiliation(s)
- Michael
L. Garelja
- School
of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Maggie Au
- School
of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
- Maurice
Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand
| | - Margaret A. Brimble
- School
of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
- Maurice
Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand
- School
of Chemical Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Joseph J. Gingell
- School
of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
- Maurice
Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand
| | - Erica R. Hendrikse
- School
of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Annie Lovell
- School
of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Nicole Prodan
- School
of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Patrick M. Sexton
- Drug
Discovery Biology and Department of Pharmacology, Monash Institute
of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Andrew Siow
- School
of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
- School
of Chemical Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Christopher S. Walker
- School
of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
- Maurice
Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand
| | - Harriet A. Watkins
- School
of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
- Maurice
Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand
| | - Geoffrey M. Williams
- Maurice
Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand
- School
of Chemical Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Denise Wootten
- Drug
Discovery Biology and Department of Pharmacology, Monash Institute
of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Sung H. Yang
- School
of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
- Maurice
Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand
| | - Paul W. R. Harris
- School
of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
- Maurice
Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand
- School
of Chemical Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Debbie L. Hay
- School
of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
- Maurice
Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand
| |
Collapse
|
8
|
Mans BJ. Chemical Equilibrium at the Tick-Host Feeding Interface:A Critical Examination of Biological Relevance in Hematophagous Behavior. Front Physiol 2019; 10:530. [PMID: 31118903 PMCID: PMC6504839 DOI: 10.3389/fphys.2019.00530] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 04/15/2019] [Indexed: 12/14/2022] Open
Abstract
Ticks secrete hundreds to thousands of proteins into the feeding site, that presumably all play important functions in the modulation of host defense mechanisms. The current review considers the assumption that tick proteins have functional relevance during feeding. The feeding site may be described as a closed system and could be treated as an ideal equilibrium system, thereby allowing modeling of tick-host interactions in an equilibrium state. In this equilibrium state, the concentration of host and tick proteins and their affinities will determine functional relevance at the tick-host interface. Using this approach, many characterized tick proteins may have functional relevant concentrations and affinities at the feeding site. Conversely, the feeding site is not an ideal closed system, but is dynamic and changing, leading to possible overestimation of tick protein concentration at the feeding site and consequently an overestimation of functional relevance. Ticks have evolved different possible strategies to deal with this dynamic environment and overcome the barrier that equilibrium kinetics poses to tick feeding. Even so, cognisance of the limitations that equilibrium binding place on deductions of functional relevance should serve as an important incentive to determine both the concentration and affinity of tick proteins proposed to be functional at the feeding site.
Collapse
Affiliation(s)
- Ben J. Mans
- Epidemiology, Parasites and Vectors, Agricultural Research Council-Onderstepoort Veterinary Research, Pretoria, South Africa
- Department of Veterinary Tropical Diseases, University of Pretoria, Pretoria, South Africa
- Department of Life and Consumer Sciences, University of South Africa, Pretoria, South Africa
| |
Collapse
|
9
|
Mans BJ, de Castro MH, Pienaar R, de Klerk D, Gaven P, Genu S, Latif AA. Ancestral reconstruction of tick lineages. Ticks Tick Borne Dis 2016; 7:509-35. [DOI: 10.1016/j.ttbdis.2016.02.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/26/2016] [Accepted: 02/02/2016] [Indexed: 01/15/2023]
|
10
|
Sharma P, Das De T, Sharma S, Kumar Mishra A, Thomas T, Verma S, Kumari V, Lata S, Singh N, Valecha N, Chand Pandey K, Dixit R. Deep sequencing revealed molecular signature of horizontal gene transfer of plant like transcripts in the mosquito Anopheles culicifacies: an evolutionary puzzle. F1000Res 2015; 4:1523. [PMID: 26998230 PMCID: PMC4786938 DOI: 10.12688/f1000research.7534.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/15/2015] [Indexed: 02/05/2023] Open
Abstract
In prokaryotes, horizontal gene transfer (HGT) has been regarded as an important evolutionary drive to acquire and retain beneficial genes for their survival in diverse ecologies. However, in eukaryotes, the functional role of HGTs remains questionable, although current genomic tools are providing increased evidence of acquisition of novel traits within non-mating metazoan species. Here, we provide another transcriptomic evidence for the acquisition of massive plant genes in the mosquito, Anopheles culicifacies. Our multiple experimental validations including genomic PCR, RT-PCR, real-time PCR, immuno-blotting and immuno-florescence microscopy, confirmed that plant like transcripts (PLTs) are of mosquito origin and may encode functional proteins. A comprehensive molecular analysis of the PLTs and ongoing metagenomic analysis of salivary microbiome provide initial clues that mosquitoes may have survival benefits through the acquisition of nuclear as well as chloroplast encoded plant genes. Our findings of PLTs further support the similar questionable observation of HGTs in other higher organisms, which is still a controversial and debatable issue in the community of evolutionists. We believe future understanding of the underlying mechanism of the feeding associated molecular responses may shed new insights in the functional role of PLTs in the mosquito.
Collapse
Affiliation(s)
- Punita Sharma
- Host-Parasite Interaction Biology Group, National Institute of Malaria Research, Delhi, India
- Nano and Biotechnology Department, Guru Jambheshwar University, Haryana, India
| | - Tanwee Das De
- Host-Parasite Interaction Biology Group, National Institute of Malaria Research, Delhi, India
| | - Swati Sharma
- Host-Parasite Interaction Biology Group, National Institute of Malaria Research, Delhi, India
| | | | - Tina Thomas
- Host-Parasite Interaction Biology Group, National Institute of Malaria Research, Delhi, India
| | - Sonia Verma
- Host-Parasite Interaction Biology Group, National Institute of Malaria Research, Delhi, India
| | - Vandana Kumari
- Host-Parasite Interaction Biology Group, National Institute of Malaria Research, Delhi, India
| | - Suman Lata
- Host-Parasite Interaction Biology Group, National Institute of Malaria Research, Delhi, India
| | - Namita Singh
- Nano and Biotechnology Department, Guru Jambheshwar University, Haryana, India
| | - Neena Valecha
- Host-Parasite Interaction Biology Group, National Institute of Malaria Research, Delhi, India
| | - Kailash Chand Pandey
- Host-Parasite Interaction Biology Group, National Institute of Malaria Research, Delhi, India
| | - Rajnikant Dixit
- Host-Parasite Interaction Biology Group, National Institute of Malaria Research, Delhi, India
| |
Collapse
|
11
|
Kotsyfakis M, Kopáček P, Franta Z, Pedra JHF, Ribeiro JMC. Deep Sequencing Analysis of the Ixodes ricinus Haemocytome. PLoS Negl Trop Dis 2015; 9:e0003754. [PMID: 25970599 PMCID: PMC4430169 DOI: 10.1371/journal.pntd.0003754] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 04/13/2015] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Ixodes ricinus is the main tick vector of the microbes that cause Lyme disease and tick-borne encephalitis in Europe. Pathogens transmitted by ticks have to overcome innate immunity barriers present in tick tissues, including midgut, salivary glands epithelia and the hemocoel. Molecularly, invertebrate immunity is initiated when pathogen recognition molecules trigger serum or cellular signalling cascades leading to the production of antimicrobials, pathogen opsonization and phagocytosis. We presently aimed at identifying hemocyte transcripts from semi-engorged female I. ricinus ticks by mass sequencing a hemocyte cDNA library and annotating immune-related transcripts based on their hemocyte abundance as well as their ubiquitous distribution. METHODOLOGY/PRINCIPAL FINDINGS De novo assembly of 926,596 pyrosequence reads plus 49,328,982 Illumina reads (148 nt length) from a hemocyte library, together with over 189 million Illumina reads from salivary gland and midgut libraries, generated 15,716 extracted coding sequences (CDS); these are displayed in an annotated hyperlinked spreadsheet format. Read mapping allowed the identification and annotation of tissue-enriched transcripts. A total of 327 transcripts were found significantly over expressed in the hemocyte libraries, including those coding for scavenger receptors, antimicrobial peptides, pathogen recognition proteins, proteases and protease inhibitors. Vitellogenin and lipid metabolism transcription enrichment suggests fat body components. We additionally annotated ubiquitously distributed transcripts associated with immune function, including immune-associated signal transduction proteins and transcription factors, including the STAT transcription factor. CONCLUSIONS/SIGNIFICANCE This is the first systems biology approach to describe the genes expressed in the haemocytes of this neglected disease vector. A total of 2,860 coding sequences were deposited to GenBank, increasing to 27,547 the number so far deposited by our previous transcriptome studies that serves as a discovery platform for studies with I. ricinus biochemistry and physiology.
Collapse
Affiliation(s)
- Michalis Kotsyfakis
- Institute of Parasitology, Biology Center of the Czech Academy of Sciences, Budweis, Czech Republic
- * E-mail:
| | - Petr Kopáček
- Institute of Parasitology, Biology Center of the Czech Academy of Sciences, Budweis, Czech Republic
| | - Zdeněk Franta
- Institute of Parasitology, Biology Center of the Czech Academy of Sciences, Budweis, Czech Republic
| | - Joao H. F. Pedra
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - José M. C. Ribeiro
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| |
Collapse
|
12
|
Garcia GR, Gardinassi LG, Ribeiro JM, Anatriello E, Ferreira BR, Moreira HNS, Mafra C, Martins MM, Szabó MPJ, de Miranda-Santos IKF, Maruyama SR. The sialotranscriptome of Amblyomma triste, Amblyomma parvum and Amblyomma cajennense ticks, uncovered by 454-based RNA-seq. Parasit Vectors 2014; 7:430. [PMID: 25201527 PMCID: PMC4261526 DOI: 10.1186/1756-3305-7-430] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 08/22/2014] [Indexed: 12/19/2022] Open
Abstract
Background Tick salivary constituents antagonize inflammatory, immune and hemostatic host responses, favoring tick blood feeding and the establishment of tick-borne pathogens in hosts during hematophagy. Amblyomma triste, A. cajennense and A. parvum ticks are very important in veterinary and human health because they are vectors of the etiological agents for several diseases. Insights into the tick salivary components involved in blood feeding are essential to understanding vector-pathogen-host interactions, and transcriptional profiling of salivary glands is a powerful tool to do so. Here, we functionally annotated the sialotranscriptomes of these three Amblyomma species, which allowed comparisons between these and other hematophagous arthropod species. Methods mRNA from the salivary glands of A. triste, A. cajennense and A. parvum ticks fed on different host species were pyrosequenced on a 454-Roche platform to generate four A. triste (nymphs fed on guinea pigs and females fed on dogs) libraries, one A. cajennense (females fed on rabbits) library and one was A. parvum (females fed on dogs) library. Bioinformatic analyses used in-house programs with a customized pipeline employing standard assembly and alignment algorithms, protein databases and protein servers. Results Each library yielded an average of 100,000 reads, which were assembled to obtain contigs of coding sequences (CDSs). The sialotranscriptome analyses of A. triste, A. cajennense and A. parvum ticks produced 11,240, 4,604 and 3,796 CDSs, respectively. These CDSs were classified into over 100 distinct protein families with a wide range of putative functions involved in physiological and blood feeding processes and were catalogued in annotated, hyperlinked spreadsheets. We highlighted the putative transcripts encoding saliva components with critical roles during parasitism, such as anticoagulants, immunosuppressants and anti-inflammatory molecules. The salivary content underwent changes in the abundance and repertoire of many transcripts, which depended on the tick and host species. Conclusions The annotated sialotranscriptomes described herein richly expand the biological knowledge of these three Amblyomma species. These comprehensive databases will be useful for the characterization of salivary proteins and can be applied to control ticks and tick-borne diseases. Electronic supplementary material The online version of this article (doi:10.1186/1756-3305-7-430) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Sandra Regina Maruyama
- Department of Biochemistry and Immunology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|