1
|
Verkerke M, Werkman MH, Donega V. Neural stem cells of the subventricular zone: A potential stem cell pool for brain repair in Parkinson's disease. Stem Cell Reports 2025:102533. [PMID: 40513565 DOI: 10.1016/j.stemcr.2025.102533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 05/16/2025] [Accepted: 05/16/2025] [Indexed: 06/16/2025] Open
Abstract
Parkinson's disease is a neurodegenerative disease caused by the degeneration of dopaminergic neurons in the substantia nigra. There are no curative treatments, and therefore, there is an urgent need for new approaches. One potential strategy being investigated is stem cell-based approaches to replace lost neurons, by, for example, harnessing endogenous neural stem cells (NSCs). These cells are found in the subventricular zone (SVZ) aligning the lateral ventricles and remain in a dormant state in the aged and diseased mammalian brain. However, with the appropriate stimuli, NSCs can shift into an activated state, proliferate, and differentiate. In this review, we discuss how PD pathology affects the behavior of NSCs and current pharmacological strategies to boost regeneration in PD. NSCs of the SVZ could be a stem cell source for brain repair, and future studies should shed light on whether these stem cells have the potential to produce functional neuronal cells.
Collapse
Affiliation(s)
- Marloes Verkerke
- Amsterdam UMC, Department of Anatomy and Neurosciences, Location Vrije Universiteit Amsterdam Section Clinical Neuroanatomy and Biobanking, De Boelelaan 1108, Amsterdam, the Netherlands; Amsterdam Neuroscience, Neurodegeneration, Amsterdam, the Netherlands
| | - Maarten H Werkman
- Amsterdam UMC, Department of Anatomy and Neurosciences, Location Vrije Universiteit Amsterdam Section Clinical Neuroanatomy and Biobanking, De Boelelaan 1108, Amsterdam, the Netherlands
| | - Vanessa Donega
- Amsterdam UMC, Department of Anatomy and Neurosciences, Location Vrije Universiteit Amsterdam Section Clinical Neuroanatomy and Biobanking, De Boelelaan 1108, Amsterdam, the Netherlands; Amsterdam Neuroscience, Neurodegeneration, Amsterdam, the Netherlands.
| |
Collapse
|
2
|
Bai X, Guo T, Guan X, Zhou C, Wu J, Wu H, Liu X, Wu C, Chen J, Wen J, Qin J, Tan S, DuanMu X, Gu L, Gao T, Huang P, Zhang B, Xu X, Zheng X, Zhang M. Cortical microstructural alterations in different stages of Parkinson's disease. Brain Imaging Behav 2024; 18:1438-1447. [PMID: 39331345 DOI: 10.1007/s11682-024-00931-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2024] [Indexed: 09/28/2024]
Abstract
To explore the cortical microstructural alterations in Parkinson's disease (PD) at different stages. 149 PD patients and 76 healthy controls were included. PD patients were divided into early stage PD (EPD) (Hoehn-Yahr stage ≤ 2) and moderate-to-late stage PD (MLPD) (Hoehn-Yahr stage ≥ 2.5) according to their Hoehn-Yahr stages. All participants underwent two-shell diffusion MRI and the images were fitted to Neurite Orientation Dispersion and Density Imaging (NODDI) model to obtain the neurite density index (NDI) and orientation dispersion index (ODI) to reflect the cortical microstructure. We used gray matter-based spatial statistics method to compare the voxel-wise cortical NODDI metrics between groups. Partial correlation was used to correlate the NODDI metrics and global composite outcome in PD patients. Compared with healthy controls, EPD patients showed lower ODI in widespread regions, covering bilateral frontal, temporal, parietal and occipital cortices, as well as regional lower NDI in bilateral cingulate and frontal lobes. Compared with healthy controls, MLPD patients showed lower ODI and NDI in more widespread regions. Compared with EPD patients, MLPD patients showed lower ODI in bilateral temporal, parietal and occipital cortices, where the ODI values were negatively correlated with global composite outcome in PD patients. PD patients showed widespread cortical microstructural degeneration, characterized by reduced neurite density and orientation dispersion, and the cortical neuritic microstructure exhibit progressive degeneration during the progression of PD.
Collapse
Affiliation(s)
- Xueqin Bai
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009, China
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Tao Guo
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009, China
| | - Xiaojun Guan
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009, China
| | - Cheng Zhou
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009, China
| | - Jingjing Wu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009, China
| | - Haoting Wu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009, China
| | - Xiaocao Liu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009, China
| | - Chengqing Wu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009, China
| | - Jingwen Chen
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009, China
| | - Jiaqi Wen
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009, China
| | - Jianmei Qin
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009, China
| | - Sijia Tan
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009, China
| | - Xiaojie DuanMu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009, China
| | - Luyan Gu
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Ting Gao
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Peiyu Huang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009, China
| | - Baorong Zhang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Xiaojun Xu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009, China
| | - Xiangwu Zheng
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Minming Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009, China.
| |
Collapse
|
3
|
Bosch PJ, Kerr G, Cole R, Warwick CA, Wendt LH, Pradeep A, Bagnall E, Aldridge GM. Enhanced Spine Stability and Survival Lead to Increases in Dendritic Spine Density as an Early Response to Local Alpha-Synuclein Overexpression in Mouse Prefrontal Cortex. Cell Mol Neurobiol 2024; 44:42. [PMID: 38668880 PMCID: PMC11052719 DOI: 10.1007/s10571-024-01472-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/18/2024] [Indexed: 04/29/2024]
Abstract
Lewy Body Dementias (LBD), including Parkinson's disease dementia and Dementia with Lewy Bodies, are characterized by widespread accumulation of intracellular alpha-Synuclein protein deposits in regions beyond the brainstem, including in the cortex. However, the impact of local pathology in the cortex is unknown. To investigate this, we employed viral overexpression of human alpha-Synuclein protein targeting the mouse prefrontal cortex (PFC). We then used in vivo 2-photon microscopy to image awake head-fixed mice via an implanted chronic cranial window to assess the early consequences of alpha-Synuclein overexpression in the weeks following overexpression. We imaged apical tufts of Layer V pyramidal neurons in the PFC of Thy1-YFP transgenic mice at 1-week intervals from 1 to 2 weeks before and 9 weeks following viral overexpression, allowing analysis of dynamic changes in dendritic spines. We found an increase in the relative dendritic spine density following local overexpression of alpha-Synuclein, beginning at 5 weeks post-injection, and persisting for the remainder of the study. We found that alpha-Synuclein overexpression led to an increased percentage and longevity of newly-persistent spines, without significant changes in the total density of newly formed or eliminated spines. A follow-up study utilizing confocal microscopy revealed that the increased spine density is found in cortical cells within the alpha-Synuclein injection site, but negative for alpha-Synuclein phosphorylation at Serine-129, highlighting the potential for effects of dose and local circuits on spine survival. These findings have important implications for the physiological role and early pathological stages of alpha-Synuclein in the cortex.
Collapse
Affiliation(s)
- Peter J Bosch
- Department of Neurology, Carver College of Medicine, University of Iowa, 169 Newton Road, Pappajohn Biomedical Discovery Building, Iowa City, 52242, USA
| | - Gemma Kerr
- Department of Neurology, Carver College of Medicine, University of Iowa, 169 Newton Road, Pappajohn Biomedical Discovery Building, Iowa City, 52242, USA
| | - Rachel Cole
- Department of Neurology, Carver College of Medicine, University of Iowa, 169 Newton Road, Pappajohn Biomedical Discovery Building, Iowa City, 52242, USA
| | | | - Linder H Wendt
- Institute for Clinical and Translational Science, University of Iowa, Iowa City, IA, USA
| | - Akash Pradeep
- Department of Neurology, Carver College of Medicine, University of Iowa, 169 Newton Road, Pappajohn Biomedical Discovery Building, Iowa City, 52242, USA
| | - Emma Bagnall
- Department of Neurology, Carver College of Medicine, University of Iowa, 169 Newton Road, Pappajohn Biomedical Discovery Building, Iowa City, 52242, USA
| | - Georgina M Aldridge
- Department of Neurology, Carver College of Medicine, University of Iowa, 169 Newton Road, Pappajohn Biomedical Discovery Building, Iowa City, 52242, USA.
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
4
|
Bosch PJ, Kerr G, Cole R, Warwick CA, Wendt LH, Pradeep A, Bagnall E, Aldridge GM. Enhanced spine stability and survival lead to increases in dendritic spine density as an early response to local alpha-synuclein overexpression in mouse prefrontal cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.28.559765. [PMID: 37808820 PMCID: PMC10557684 DOI: 10.1101/2023.09.28.559765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Lewy Body Dementias (LBD), including Parkinson's disease dementia and Dementia with Lewy Bodies, are characterized by widespread accumulation of intracellular alpha-Synuclein protein deposits in regions beyond the brainstem, including in the cortex. Patients with LBDs develop cognitive changes, including abnormalities in executive function, attention, hallucinations, slowed processing, and cognitive fluctuations. The causes of these non-motor symptoms remain unclear; however, accumulation of alpha-Synuclein aggregates in the cortex and subsequent interference of synaptic and cellular function could contribute to psychiatric and cognitive symptoms. It is unknown how the cortex responds to local pathology in the absence of significant secondary effects of alpha-Synuclein pathology in the brainstem. To investigate this, we employed viral overexpression of human alpha-Synuclein protein targeting the mouse prefrontal cortex (PFC). We then used in vivo 2-photon microscopy to image awake head-fixed mice via an implanted chronic cranial window to assess the early consequences of alpha-Synuclein overexpression in the weeks following overexpression. We imaged apical tufts of Layer V pyramidal neurons in the PFC of Thy1-YFP transgenic mice at 1-week intervals from 1-2 weeks before and 9 weeks following viral overexpression, allowing analysis of dynamic changes in dendritic spines. We found an increase in the relative dendritic spine density following local overexpression of alpha-Synuclein, beginning at 5 weeks post-injection, and persisting for the remainder of the study. We found that alpha-Synuclein overexpression led to an increased percentage and longevity of newly-persistent spines, without significant changes in the total density of newly formed or eliminated spines. A follow up study utilizing confocal microscopy revealed that the increased spine density is found in cortical cells within the alpha-Synuclein injection site, but negative for alpha-Synuclein phosphorylation at Serine-129, highlighting the potential for effects of dose and local circuits on spine survival. These findings have important implications for the physiological role and early pathological stages of alpha-Synuclein in the cortex.
Collapse
|
5
|
Liu XY, Wang K, Deng XH, Wei YH, Guo R, Liu SF, Zhu YF, Zhong JJ, Zheng JY, Wang MD, Ye QH, He JQ, Guo KH, Zhu JR, Huang SQ, Chen ZX, Lv CS, Wen L. Amelioration of olfactory dysfunction in a mouse model of Parkinson's disease via enhancing GABAergic signaling. Cell Biosci 2023; 13:101. [PMID: 37270503 DOI: 10.1186/s13578-023-01049-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/06/2023] [Indexed: 06/05/2023] Open
Abstract
BACKGROUND Olfactory dysfunction is among the earliest non-motor symptoms of Parkinson's disease (PD). As the foremost pathological hallmark, α-synuclein initiates the pathology in the olfactory pathway at the early stage of PD, particularly in the olfactory epithelium (OE) and olfactory bulb (OB). However, the local neural microcircuit mechanisms underlying olfactory dysfunction between OE and OB in early PD remain unknown. RESULTS We observed that odor detection and discrimination were impaired in 6-month-old SNCA-A53T mice, while their motor ability remained unaffected. It was confirmed that α-synuclein increased and accumulated in OB but not in OE. Notably, the hyperactivity of mitral/tufted cells and the excitation/inhibition imbalance in OB were found in 6-month-old SNCA-A53T mice, which was attributed to the impaired GABAergic transmission and aberrant expression of GABA transporter 1 and vesicular GABA transporter in OB. We further showed that tiagabine, a potent and selective GABA reuptake inhibitor, could reverse the impaired olfactory function and GABAergic signaling in OB of SNCA-A53T mice. CONCLUSIONS Taken together, our findings demonstrate potential synaptic mechanisms of local neural microcircuit underlying olfactory dysfunction at the early stage of PD. These results highlight the critical role of aberrant GABAergic signaling of OB in early diagnosis and provide a potential therapeutic strategy for early-stage PD.
Collapse
Affiliation(s)
- Xing-Yang Liu
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
- Xiamen Key Laboratory for TCM Dampness Disease, Neurology & Immunology Research, Department of Traditional Chinese Medicine, Longyan Hospital of Traditional Chinese Medicine, School of Medicine, Xiamen University, Longyan, Fujian, 364000, China
| | - Ke Wang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
- Xiamen Key Laboratory for TCM Dampness Disease, Neurology & Immunology Research, Department of Traditional Chinese Medicine, Longyan Hospital of Traditional Chinese Medicine, School of Medicine, Xiamen University, Longyan, Fujian, 364000, China
| | - Xian-Hua Deng
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
- Xiamen Key Laboratory for TCM Dampness Disease, Neurology & Immunology Research, Department of Traditional Chinese Medicine, Longyan Hospital of Traditional Chinese Medicine, School of Medicine, Xiamen University, Longyan, Fujian, 364000, China
| | - Yi-Hua Wei
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
- Xiamen Key Laboratory for TCM Dampness Disease, Neurology & Immunology Research, Department of Traditional Chinese Medicine, Longyan Hospital of Traditional Chinese Medicine, School of Medicine, Xiamen University, Longyan, Fujian, 364000, China
| | - Rui Guo
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
- Xiamen Key Laboratory for TCM Dampness Disease, Neurology & Immunology Research, Department of Traditional Chinese Medicine, Longyan Hospital of Traditional Chinese Medicine, School of Medicine, Xiamen University, Longyan, Fujian, 364000, China
| | - Sui-Feng Liu
- Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361100, China
| | - Yi-Fan Zhu
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
- Xiamen Key Laboratory for TCM Dampness Disease, Neurology & Immunology Research, Department of Traditional Chinese Medicine, Longyan Hospital of Traditional Chinese Medicine, School of Medicine, Xiamen University, Longyan, Fujian, 364000, China
| | - Jia-Jun Zhong
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
- Xiamen Key Laboratory for TCM Dampness Disease, Neurology & Immunology Research, Department of Traditional Chinese Medicine, Longyan Hospital of Traditional Chinese Medicine, School of Medicine, Xiamen University, Longyan, Fujian, 364000, China
| | - Jing-Yuan Zheng
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
- Xiamen Key Laboratory for TCM Dampness Disease, Neurology & Immunology Research, Department of Traditional Chinese Medicine, Longyan Hospital of Traditional Chinese Medicine, School of Medicine, Xiamen University, Longyan, Fujian, 364000, China
| | - Meng-Dan Wang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
- Xiamen Key Laboratory for TCM Dampness Disease, Neurology & Immunology Research, Department of Traditional Chinese Medicine, Longyan Hospital of Traditional Chinese Medicine, School of Medicine, Xiamen University, Longyan, Fujian, 364000, China
| | - Qiu-Hong Ye
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
- Xiamen Key Laboratory for TCM Dampness Disease, Neurology & Immunology Research, Department of Traditional Chinese Medicine, Longyan Hospital of Traditional Chinese Medicine, School of Medicine, Xiamen University, Longyan, Fujian, 364000, China
| | - Jian-Quan He
- Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361100, China
| | - Kai-Hang Guo
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
- Xiamen Key Laboratory for TCM Dampness Disease, Neurology & Immunology Research, Department of Traditional Chinese Medicine, Longyan Hospital of Traditional Chinese Medicine, School of Medicine, Xiamen University, Longyan, Fujian, 364000, China
| | - Jun-Rong Zhu
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
- Xiamen Key Laboratory for TCM Dampness Disease, Neurology & Immunology Research, Department of Traditional Chinese Medicine, Longyan Hospital of Traditional Chinese Medicine, School of Medicine, Xiamen University, Longyan, Fujian, 364000, China
| | - Shu-Qiong Huang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
- Xiamen Key Laboratory for TCM Dampness Disease, Neurology & Immunology Research, Department of Traditional Chinese Medicine, Longyan Hospital of Traditional Chinese Medicine, School of Medicine, Xiamen University, Longyan, Fujian, 364000, China
| | - Ze-Xu Chen
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
- Xiamen Key Laboratory for TCM Dampness Disease, Neurology & Immunology Research, Department of Traditional Chinese Medicine, Longyan Hospital of Traditional Chinese Medicine, School of Medicine, Xiamen University, Longyan, Fujian, 364000, China
| | - Chong-Shan Lv
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
- Xiamen Key Laboratory for TCM Dampness Disease, Neurology & Immunology Research, Department of Traditional Chinese Medicine, Longyan Hospital of Traditional Chinese Medicine, School of Medicine, Xiamen University, Longyan, Fujian, 364000, China
| | - Lei Wen
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China.
- Xiamen Key Laboratory for TCM Dampness Disease, Neurology & Immunology Research, Department of Traditional Chinese Medicine, Longyan Hospital of Traditional Chinese Medicine, School of Medicine, Xiamen University, Longyan, Fujian, 364000, China.
| |
Collapse
|
6
|
Xiong H, Tang F, Guo Y, Xu R, Lei P. Neural Circuit Changes in Neurological Disorders: Evidence from in vivo Two-photon Imaging. Ageing Res Rev 2023; 87:101933. [PMID: 37061201 DOI: 10.1016/j.arr.2023.101933] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 04/11/2023] [Indexed: 04/17/2023]
Abstract
Neural circuits, such as synaptic plasticity and neural activity, are critical components of healthy brain function. The consequent dynamic remodeling of neural circuits is an ongoing procedure affecting neuronal activities. Disruption of this essential process results in diseases. Advanced microscopic applications such as two-photon laser scanning microscopy have recently been applied to understand neural circuit changes during disease since it can visualize fine structural and functional cellular activation in living animals. In this review, we have summarized the latest work assessing the dynamic rewiring of postsynaptic dendritic spines and modulation of calcium transients in neurons of the intact living brain, focusing on their potential roles in neurological disorders (e.g. Alzheimer's disease, stroke, and epilepsy). Understanding the fine changes that occurred in the brain during disease is crucial for future clinical intervention developments.
Collapse
Affiliation(s)
- Huan Xiong
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China; Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan, Chengdu, 610041, China
| | - Fei Tang
- Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan, Chengdu, 610041, China
| | - Yujie Guo
- Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan, Chengdu, 610041, China
| | - Ruxiang Xu
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China
| | - Peng Lei
- Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan, Chengdu, 610041, China.
| |
Collapse
|
7
|
Bai X, Guo T, Chen J, Guan X, Zhou C, Wu J, Liu X, Wu H, Wen J, Gu L, Gao T, Xuan M, Huang P, Zhang B, Xu X, Zhang M. Microstructural but not macrostructural cortical degeneration occurs in Parkinson’s disease with mild cognitive impairment. NPJ Parkinsons Dis 2022; 8:151. [DOI: 10.1038/s41531-022-00416-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 10/14/2022] [Indexed: 11/11/2022] Open
Abstract
AbstractThis study aimed to investigate the cortical microstructural/macrostructural degenerative patterns in Parkinson’s disease (PD) patients with mild cognitive impairment (MCI). Overall, 38 PD patients with normal cognition (PD-NC), 38 PD-MCI, and 32 healthy controls (HC) were included. PD-MCI was diagnosed according to the MDS Task Force level II criteria. Cortical microstructural alterations were evaluated with Neurite Orientation Dispersion and Density Imaging. Cortical thickness analyses were derived from T1-weighted imaging using the FreeSurfer software. For cortical microstructural analyses, compared with HC, PD-NC showed lower orientation dispersion index (ODI) in bilateral cingulate and paracingulate gyri, supplementary motor area, right paracentral lobule, and precuneus (PFWE < 0.05); while PD-MCI showed lower ODI in widespread regions covering bilateral frontal, parietal, occipital, and right temporal areas and lower neurite density index in left frontal area, left cingulate, and paracingulate gyri (PFWE < 0.05). Furthermore, compared with PD-NC, PD-MCI showed reduced ODI in right frontal area and bilateral caudate nuclei (voxel P < 0.01 and cluster >100 voxels) and the ODI values were associated with the Montreal Cognitive Assessment scores (r = 0.440, P < 0.001) and the memory performance (r = 0.333, P = 0.004) in the PD patients. However, for cortical thickness analyses, there was no difference in the between-group comparisons. In conclusion, cortical microstructural alterations may precede macrostructural changes in PD-MCI. This study provides insightful evidence for the degenerative patterns in PD-MCI and contributes to our understanding of the latent biological basis of cortical neurite changes for early cognitive impairment in PD.
Collapse
|
8
|
Weerasinghe-Mudiyanselage PDE, Ang MJ, Kang S, Kim JS, Moon C. Structural Plasticity of the Hippocampus in Neurodegenerative Diseases. Int J Mol Sci 2022; 23:3349. [PMID: 35328770 PMCID: PMC8955928 DOI: 10.3390/ijms23063349] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 12/10/2022] Open
Abstract
Neuroplasticity is the capacity of neural networks in the brain to alter through development and rearrangement. It can be classified as structural and functional plasticity. The hippocampus is more susceptible to neuroplasticity as compared to other brain regions. Structural modifications in the hippocampus underpin several neurodegenerative diseases that exhibit cognitive and emotional dysregulation. This article reviews the findings of several preclinical and clinical studies about the role of structural plasticity in the hippocampus in neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease, and multiple sclerosis. In this study, literature was surveyed using Google Scholar, PubMed, Web of Science, and Scopus, to review the mechanisms that underlie the alterations in the structural plasticity of the hippocampus in neurodegenerative diseases. This review summarizes the role of structural plasticity in the hippocampus for the etiopathogenesis of neurodegenerative diseases and identifies the current focus and gaps in knowledge about hippocampal dysfunctions. Ultimately, this information will be useful to propel future mechanistic and therapeutic research in neurodegenerative diseases.
Collapse
Affiliation(s)
- Poornima D. E. Weerasinghe-Mudiyanselage
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Korea; (P.D.E.W.-M.); (M.J.A.); (S.K.); (J.-S.K.)
| | - Mary Jasmin Ang
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Korea; (P.D.E.W.-M.); (M.J.A.); (S.K.); (J.-S.K.)
- College of Veterinary Medicine, University of the Philippines Los Baños, Los Baños 4031, Philippines
| | - Sohi Kang
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Korea; (P.D.E.W.-M.); (M.J.A.); (S.K.); (J.-S.K.)
| | - Joong-Sun Kim
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Korea; (P.D.E.W.-M.); (M.J.A.); (S.K.); (J.-S.K.)
| | - Changjong Moon
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Korea; (P.D.E.W.-M.); (M.J.A.); (S.K.); (J.-S.K.)
| |
Collapse
|
9
|
Chen F, Liu W, Liu P, Wang Z, Zhou Y, Liu X, Li A. α-Synuclein aggregation in the olfactory bulb induces olfactory deficits by perturbing granule cells and granular-mitral synaptic transmission. NPJ Parkinsons Dis 2021; 7:114. [PMID: 34903719 PMCID: PMC8668919 DOI: 10.1038/s41531-021-00259-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 11/21/2021] [Indexed: 11/10/2022] Open
Abstract
Olfactory dysfunction is an early pre-motor symptom of Parkinson's disease (PD) but the neural mechanisms underlying this dysfunction remain largely unknown. Aggregation of α-synuclein is observed in the olfactory bulb (OB) during the early stages of PD, indicating a relationship between α-synuclein pathology and hyposmia. Here we investigate whether and how α-synuclein aggregates modulate neural activity in the OB at the single-cell and synaptic levels. We induced α-synuclein aggregation specifically in the OB via overexpression of double-mutant human α-synuclein by an adeno-associated viral (AAV) vector. We found that α-synuclein aggregation in the OB decreased the ability of mice to detect odors and to perceive attractive odors. The spontaneous activity and odor-evoked firing rates of single mitral/tufted cells (M/Ts) were increased by α-synuclein aggregates with the amplitude of odor-evoked high-gamma oscillations increased. Furthermore, the decreased activity in granule cells (GCs) and impaired inhibitory synaptic function were responsible for the observed hyperactivity of M/Ts induced by α-synuclein aggregates. These results provide direct evidences of the role of α-synuclein aggregates on PD-related olfactory dysfunction and reveal the neural circuit mechanisms by which olfaction is modulated by α-synuclein pathology.
Collapse
Affiliation(s)
- Fengjiao Chen
- grid.417303.20000 0000 9927 0537Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Wei Liu
- grid.417303.20000 0000 9927 0537Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Penglai Liu
- grid.417303.20000 0000 9927 0537Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Zhen Wang
- grid.417303.20000 0000 9927 0537School of Life Science, Xuzhou Medical University, Xuzhou, China
| | - You Zhou
- grid.417303.20000 0000 9927 0537School of Life Science, Xuzhou Medical University, Xuzhou, China
| | - Xingyu Liu
- grid.417303.20000 0000 9927 0537School of Life Science, Xuzhou Medical University, Xuzhou, China
| | - Anan Li
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
10
|
Berry JK, Cox D. Increased oscillatory power in a computational model of the olfactory bulb due to synaptic degeneration. Phys Rev E 2021; 104:024405. [PMID: 34525666 DOI: 10.1103/physreve.104.024405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/30/2021] [Indexed: 11/07/2022]
Abstract
Several neurodegenerative diseases impact the olfactory system, and in particular the olfactory bulb, early in disease progression. One mechanism by which damage occurs is via synaptic dysfunction. Here, we implement a computational model of the olfactory bulb and investigate the effect of weakened connection weights on network oscillatory behavior. Olfactory bulb network activity can be modeled by a system of equations that describes a set of coupled nonlinear oscillators. In this modeling framework, we propagate damage to synaptic weights using several strategies, varying from localized to global. Damage propagated in a dispersed or spreading manner leads to greater oscillatory power at moderate levels of damage. This increase arises from a higher average level of mitral cell activity due to a shift in the balance between excitation and inhibition. That this shift leads to greater oscillations depends critically on the nonlinearity of the activation function. Linearized analysis of the network dynamics predicts when this shift leads to loss of oscillatory activity. We thus demonstrate one potential mechanism involved in the increased gamma oscillations seen in some animal models of Alzheimer's disease, and we highlight the potential that pathological olfactory bulb behavior presents as an early biomarker of disease.
Collapse
Affiliation(s)
- J Kendall Berry
- University of California, Davis, Davis, California 95616, USA
| | - Daniel Cox
- University of California, Davis, Davis, California 95616, USA
| |
Collapse
|
11
|
LIM-Kinases in Synaptic Plasticity, Memory, and Brain Diseases. Cells 2021; 10:cells10082079. [PMID: 34440848 PMCID: PMC8391678 DOI: 10.3390/cells10082079] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/30/2021] [Accepted: 08/04/2021] [Indexed: 12/12/2022] Open
Abstract
Learning and memory require structural and functional modifications of synaptic connections, and synaptic deficits are believed to underlie many brain disorders. The LIM-domain-containing protein kinases (LIMK1 and LIMK2) are key regulators of the actin cytoskeleton by affecting the actin-binding protein, cofilin. In addition, LIMK1 is implicated in the regulation of gene expression by interacting with the cAMP-response element-binding protein. Accumulating evidence indicates that LIMKs are critically involved in brain function and dysfunction. In this paper, we will review studies on the roles and underlying mechanisms of LIMKs in the regulation of long-term potentiation (LTP) and depression (LTD), the most extensively studied forms of long-lasting synaptic plasticity widely regarded as cellular mechanisms underlying learning and memory. We will also discuss the involvement of LIMKs in the regulation of the dendritic spine, the structural basis of synaptic plasticity, and memory formation. Finally, we will discuss recent progress on investigations of LIMKs in neurological and mental disorders, including Alzheimer’s, Parkinson’s, Williams–Beuren syndrome, schizophrenia, and autism spectrum disorders.
Collapse
|
12
|
Dendritic spine remodeling and plasticity under general anesthesia. Brain Struct Funct 2021; 226:2001-2017. [PMID: 34061250 PMCID: PMC8166894 DOI: 10.1007/s00429-021-02308-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/22/2021] [Indexed: 11/29/2022]
Abstract
Ever since its first use in surgery, general anesthesia has been regarded as a medical miracle enabling countless life-saving diagnostic and therapeutic interventions without pain sensation and traumatic memories. Despite several decades of research, there is a lack of understanding of how general anesthetics induce a reversible coma-like state. Emerging evidence suggests that even brief exposure to general anesthesia may have a lasting impact on mature and especially developing brains. Commonly used anesthetics have been shown to destabilize dendritic spines and induce an enhanced plasticity state, with effects on cognition, motor functions, mood, and social behavior. Herein, we review the effects of the most widely used general anesthetics on dendritic spine dynamics and discuss functional and molecular correlates with action mechanisms. We consider the impact of neurodevelopment, anatomical location of neurons, and their neurochemical profile on neuroplasticity induction, and review the putative signaling pathways. It emerges that in addition to possible adverse effects, the stimulation of synaptic remodeling with the formation of new connections by general anesthetics may present tremendous opportunities for translational research and neurorehabilitation.
Collapse
|
13
|
Parvand M, Rankin CH. Is There a Shared Etiology of Olfactory Impairments in Normal Aging and Neurodegenerative Disease? J Alzheimers Dis 2021; 73:1-21. [PMID: 31744002 DOI: 10.3233/jad-190636] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
As we age, our olfactory function declines. In addition to occurring in normal aging, more rapid decrement of olfactory decline has been associated with several neurodegenerative diseases including Alzheimer's disease (AD) and Parkinson's disease (PD). It has been argued that since olfactory deficits occur less frequently or are absent in diseases such as progressive supranuclear palsy, corticobasal degeneration, and multiple system atrophy, olfactory deficits can be used for differential diagnoses of AD and PD. The purpose of this review is to provide a survey of current knowledge about the molecular bases and differential patterns of olfactory deficits present in normal aging, AD, and PD. As substantial research has been conducted in this area, the majority of the content of this review focuses on articles published in the past decade. We hypothesize that olfactory deficits in normal aging, AD, and PD may have different underlying causes, and propose the use of model organisms with small, tractable nervous systems and/or easy to manipulate genomes to further investigate the cellular mechanisms responsible for these deficits.
Collapse
Affiliation(s)
- Mahraz Parvand
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Catharine H Rankin
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.,Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
14
|
Chung CG, Park SS, Park JH, Lee SB. Dysregulated Plasma Membrane Turnover Underlying Dendritic Pathology in Neurodegenerative Diseases. Front Cell Neurosci 2020; 14:556461. [PMID: 33192307 PMCID: PMC7580253 DOI: 10.3389/fncel.2020.556461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/03/2020] [Indexed: 12/29/2022] Open
Abstract
Due to their enormous surface area compared to other cell types, neurons face unique challenges in properly handling supply and retrieval of the plasma membrane (PM)-a process termed PM turnover-in their distal areas. Because of the length and extensiveness of dendritic branches in neurons, the transport of materials needed for PM turnover from soma to distal dendrites will be inefficient and quite burdensome for somatic organelles. To meet local demands, PM turnover in dendrites most likely requires local cellular machinery, such as dendritic endocytic and secretory systems, dysregulation of which may result in dendritic pathology observed in various neurodegenerative diseases (NDs). Supporting this notion, a growing body of literature provides evidence to suggest the pathogenic contribution of dysregulated PM turnover to dendritic pathology in certain NDs. In this article, we present our perspective view that impaired dendritic endocytic and secretory systems may contribute to dendritic pathology by encumbering PM turnover in NDs.
Collapse
Affiliation(s)
- Chang Geon Chung
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| | - Sung Soon Park
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| | - Jeong Hyang Park
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| | - Sung Bae Lee
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| |
Collapse
|
15
|
Wagner LM, Nathwani SM, Ten Eyck PP, Aldridge GM. Local cortical overexpression of human wild-type alpha-synuclein leads to increased dendritic spine density in mouse. Neurosci Lett 2020; 733:135051. [PMID: 32417387 DOI: 10.1016/j.neulet.2020.135051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/10/2020] [Accepted: 05/11/2020] [Indexed: 12/29/2022]
Abstract
Lewy body dementias are characterized by deposition of alpha-synuclein (α-syn) protein aggregates known as Lewy bodies and Lewy neurites in cortical regions, in addition to brainstem. These aggregates are thought to cause the death of dopaminergic neurons in the substantia nigra and other vulnerable cell types in patients, leading to parkinsonism. There is evidence from mice that localized overexpression of wild-type α-syn leads to dopaminergic cell death in the substantia nigra. However, it is not known how cortical neurons are affected by α-syn. In this study, we used viral overexpression of α-syn to investigate whether localized overexpression within the cortex affects the density, length, and morphology of dendritic spines, which serve as a measure of synaptic connectivity. An AAV2/6 viral vector coding for wild-type human α-syn was used to target overexpression bilaterally to the medial prefrontal cortex within adult mice. After ten weeks the brain was stained using the Golgi-Cox method. Density of dendritic spines in the injected region was increased in layer V pyramidal neurons compared with animals injected with control virus. Immunohistochemistry in separate animals showed human α-syn expression throughout the region of interest, especially in presynaptic terminals. However, phosphorylated α-syn was seen in a discrete number of cells at the region of highest overexpression, localized mainly to the soma and nucleus. These findings demonstrate that at early timepoints, α-syn overexpression may alter connectivity in the cortex, which may be relevant to early stages of the disease. In addition, these findings contribute to the understanding of α-syn, which when overexpressed in the wildtype, non-aggregated state may promote spine formation. Loss of spines secondary to α-syn in cortex may require higher expression, longer incubation, cellular damage, concomitant dopaminergic dysfunction or other two-hit factors to lead to synaptic degeneration.
Collapse
|
16
|
Fortuna JTS, Gralle M, Beckman D, Neves FS, Diniz LP, Frost PS, Barros-Aragão F, Santos LE, Gonçalves RA, Romão L, Zamberlan DC, Soares FAA, Braga C, Foguel D, Gomes FCA, De Felice FG, Ferreira ST, Clarke JR, Figueiredo CP. Brain infusion of α-synuclein oligomers induces motor and non-motor Parkinson's disease-like symptoms in mice. Behav Brain Res 2017; 333:150-160. [PMID: 28668282 DOI: 10.1016/j.bbr.2017.06.047] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 06/16/2017] [Accepted: 06/27/2017] [Indexed: 01/05/2023]
Abstract
Parkinson's disease (PD) is characterized by motor dysfunction, which is preceded by a number of non-motor symptoms including olfactory deficits. Aggregation of α-synuclein (α-syn) gives rise to Lewy bodies in dopaminergic neurons and is thought to play a central role in PD pathology. However, whether amyloid fibrils or soluble oligomers of α-syn are the main neurotoxic species in PD remains controversial. Here, we performed a single intracerebroventricular (i.c.v.) infusion of α-syn oligomers (α-SYOs) in mice and evaluated motor and non-motor symptoms. Familiar bedding and vanillin essence discrimination tasks showed that α-SYOs impaired olfactory performance of mice, and decreased TH and dopamine levels in the olfactory bulb early after infusion. The olfactory deficit persisted until 45days post-infusion (dpi). α- SYO-infused mice behaved normally in the object recognition and forced swim tests, but showed increased anxiety-like behavior in the open field and elevated plus maze tests 20 dpi. Finally, administration of α-SYOs induced late motor impairment in the pole test and rotarod paradigms, along with reduced TH and dopamine content in the caudate putamen, 45 dpi. Reduced number of TH-positive cells was also seen in the substantia nigra of α-SYO-injected mice compared to control. In conclusion, i.c.v. infusion of α-SYOs recapitulated some of PD-associated non-motor symptoms, such as increased anxiety and olfactory dysfunction, but failed to recapitulate memory impairment and depressive-like behavior typical of the disease. Moreover, α-SYOs i.c.v. administration induced motor deficits and loss of TH and dopamine levels, key features of PD. Results point to α-syn oligomers as the proximal neurotoxins responsible for early non-motor and motor deficits in PD and suggest that the i.c.v. infusion model characterized here may comprise a useful tool for identification of PD novel therapeutic targets and drug screening.
Collapse
Affiliation(s)
- Juliana T S Fortuna
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil
| | - Matthias Gralle
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil
| | - Danielle Beckman
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil
| | - Fernanda S Neves
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil
| | - Luan P Diniz
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil
| | - Paula S Frost
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil; Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil
| | - Fernanda Barros-Aragão
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil; Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil
| | - Luís E Santos
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil; Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil
| | - Rafaella A Gonçalves
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil
| | - Luciana Romão
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil; Campus Xerém, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil
| | - Daniele C Zamberlan
- Department of Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Felix A A Soares
- Department of Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Carolina Braga
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil; Campus Xerém, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil
| | - Debora Foguel
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil
| | - Flávia C A Gomes
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil
| | - Fernanda G De Felice
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil; Centre for Neuroscience Studies, Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Sergio T Ferreira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil; Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil
| | - Julia R Clarke
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil.
| | - Cláudia P Figueiredo
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil.
| |
Collapse
|
17
|
Blumenstock S, Rodrigues EF, Peters F, Blazquez-Llorca L, Schmidt F, Giese A, Herms J. Seeding and transgenic overexpression of alpha-synuclein triggers dendritic spine pathology in the neocortex. EMBO Mol Med 2017; 9:716-731. [PMID: 28351932 PMCID: PMC5412764 DOI: 10.15252/emmm.201607305] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 02/27/2017] [Accepted: 03/02/2017] [Indexed: 12/22/2022] Open
Abstract
Although misfolded and aggregated α-synuclein (α-syn) is recognized in the disease progression of synucleinopathies, its role in the impairment of cortical circuitries and synaptic plasticity remains incompletely understood. We investigated how α-synuclein accumulation affects synaptic plasticity in the mouse somatosensory cortex using two distinct approaches. Long-term in vivo imaging of apical dendrites was performed in mice overexpressing wild-type human α-synuclein. Additionally, intracranial injection of preformed α-synuclein fibrils was performed to induce cortical α-syn pathology. We find that α-synuclein overexpressing mice show decreased spine density and abnormalities in spine dynamics in an age-dependent manner. We also provide evidence for the detrimental effects of seeded α-synuclein aggregates on dendritic architecture. We observed spine loss as well as dystrophic deformation of dendritic shafts in layer V pyramidal neurons. Our results provide a link to the pathophysiology underlying dementia associated with synucleinopathies and may enable the evaluation of potential drug candidates on dendritic spine pathology in vivo.
Collapse
Affiliation(s)
- Sonja Blumenstock
- Center for Neuropathology and Prion Research, Ludwig-Maximilians University, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Eva F Rodrigues
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Finn Peters
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Lidia Blazquez-Llorca
- Departamento de Psicobiología, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Felix Schmidt
- Center for Neuropathology and Prion Research, Ludwig-Maximilians University, Munich, Germany
- Department of Neurology, Ludwig-Maximilians University, Munich, Germany
| | - Armin Giese
- Center for Neuropathology and Prion Research, Ludwig-Maximilians University, Munich, Germany
| | - Jochen Herms
- Center for Neuropathology and Prion Research, Ludwig-Maximilians University, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
18
|
Lee FHF, Su P, Xie YF, Wang KE, Wan Q, Liu F. Disrupting GluA2-GAPDH Interaction Affects Axon and Dendrite Development. Sci Rep 2016; 6:30458. [PMID: 27461448 PMCID: PMC4962050 DOI: 10.1038/srep30458] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 07/06/2016] [Indexed: 12/31/2022] Open
Abstract
GluA2-containing AMPA receptors (AMPARs) play a critical role in various aspects of neurodevelopment. However, the molecular mechanisms underlying these processes are largely unknown. We report here that the interaction between GluA2 and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is necessary for neuron and cortical development. Using an interfering peptide (GluA2-G-Gpep) that specifically disrupts this interaction, we found that primary neuron cultures with peptide treatment displayed growth cone development deficits, impairment of axon formation, less dendritic arborization and lower spine protrusion density. Consistently, in vivo data with mouse brains from pregnant dams injected with GluA2-G-Gpep daily during embryonic day 8 to 19 revealed a reduction of cortical tract axon integrity and neuronal density in post-natal day 1 offspring. Disruption of GluA2-GAPDH interaction also impairs the GluA2-Plexin A4 interaction and reduces p53 acetylation in mice, both of which are possible mechanisms leading to the observed neurodevelopmental abnormalities. Furthermore, electrophysiological experiments indicate altered long-term potentiation (LTP) in hippocampal slices of offspring mice. Our results provide novel evidence that AMPARs, specifically the GluA2 subunit via its interaction with GAPDH, play a critical role in cortical neurodevelopment.
Collapse
Affiliation(s)
- Frankie Hang Fung Lee
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, M5T 1R8 Canada
| | - Ping Su
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, M5T 1R8 Canada
| | - Yu-Feng Xie
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, M5T 1R8 Canada
| | - Kyle Ethan Wang
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, M5T 1R8 Canada
| | - Qi Wan
- Department of Physiology, School of Medicine, Wuhan University, Wuhan 430071, China
| | - Fang Liu
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, M5T 1R8 Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, M5T 1R8 Canada
| |
Collapse
|
19
|
Herms J, Dorostkar MM. Dendritic Spine Pathology in Neurodegenerative Diseases. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2016; 11:221-50. [PMID: 26907528 DOI: 10.1146/annurev-pathol-012615-044216] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Substantial progress has been made toward understanding the neuropathology, genetic origins, and epidemiology of neurodegenerative diseases, including Alzheimer's disease; tauopathies, such as frontotemporal dementia; α-synucleinopathies, such as Parkinson's disease or dementia with Lewy bodies; Huntington's disease; and amyotrophic lateral sclerosis with dementia, as well as prion diseases. Recent evidence has implicated dendritic spine dysfunction as an important substrate of the pathogenesis of dementia in these disorders. Dendritic spines are specialized structures, extending from the neuronal processes, on which excitatory synaptic contacts are formed, and the loss of dendritic spines correlates with the loss of synaptic function. We review the literature that has implicated direct or indirect structural alterations at dendritic spines in the pathogenesis of major neurodegenerative diseases, focusing on those that lead to dementias such as Alzheimer's, Parkinson's, and Huntington's diseases, as well as frontotemporal dementia and prion diseases. We stress the importance of in vivo studies in animal models.
Collapse
Affiliation(s)
- Jochen Herms
- Center for Neuropathology and Prion Research, Ludwig Maximilian University, 81377 Munich, Germany; .,Munich Cluster for Systems Neurology, Ludwig Maximilian University, 81377 Munich, Germany.,German Center for Neurodegenerative Diseases, 81377 Munich, Germany
| | - Mario M Dorostkar
- Center for Neuropathology and Prion Research, Ludwig Maximilian University, 81377 Munich, Germany;
| |
Collapse
|
20
|
Smail S, Bahga D, McDole B, Guthrie K. Increased Olfactory Bulb BDNF Expression Does Not Rescue Deficits in Olfactory Neurogenesis in the Huntington's Disease R6/2 Mouse. Chem Senses 2016; 41:221-32. [PMID: 26783111 DOI: 10.1093/chemse/bjv076] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2015] [Indexed: 11/13/2022] Open
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disorder caused by expansion of CAG trinucleotide repeats in the huntingtin gene. Mutant huntingtin protein (mhtt) interferes with the actions of brain-derived neurotrophic factor (BDNF), and BDNF signaling is reduced in the diseased striatum. Loss of this trophic support is thought to contribute to loss of striatal medium spiny neurons in HD. Increasing BDNF in the adult striatum or ventricular ependyma slows disease progression in HD mouse models, and diverts subventricular zone (SVZ)-derived neuroblasts from their normal destination, the olfactory bulb, to the striatum, where some survive and develop features of mature neurons. Most neuroblasts that migrate to the olfactory bulb differentiate as granule cells, with approximately half surviving whereas others undergo apoptosis. In the R6/2 HD mouse model, survival of adult-born granule cells is reduced. Newly maturing cells express the BDNF receptor TrkB, suggesting that mhtt may interfere with normal BDNF trophic activity, increasing their loss. To determine if augmenting BDNF counteracts this, we examined granule cell survival in R6/2 mice that overexpress BDNF in olfactory bulb. Although we detected a decline in apoptosis, increased BDNF was not sufficient to normalize granule cell survival within their normal target in R6/2 mice.
Collapse
Affiliation(s)
- Shamayra Smail
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431, USA
| | - Dalbir Bahga
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431, USA
| | - Brittnee McDole
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431, USA
| | - Kathleen Guthrie
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431, USA
| |
Collapse
|
21
|
Oliveira LMA, Falomir-Lockhart LJ, Botelho MG, Lin KH, Wales P, Koch JC, Gerhardt E, Taschenberger H, Outeiro TF, Lingor P, Schüle B, Arndt-Jovin DJ, Jovin TM. Elevated α-synuclein caused by SNCA gene triplication impairs neuronal differentiation and maturation in Parkinson's patient-derived induced pluripotent stem cells. Cell Death Dis 2015; 6:e1994. [PMID: 26610207 PMCID: PMC4670926 DOI: 10.1038/cddis.2015.318] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Accepted: 09/23/2015] [Indexed: 12/20/2022]
Abstract
We have assessed the impact of α-synuclein overexpression on the differentiation potential and phenotypic signatures of two neural-committed induced pluripotent stem cell lines derived from a Parkinson's disease patient with a triplication of the human SNCA genomic locus. In parallel, comparative studies were performed on two control lines derived from healthy individuals and lines generated from the patient iPS-derived neuroprogenitor lines infected with a lentivirus incorporating a small hairpin RNA to knock down the SNCA mRNA. The SNCA triplication lines exhibited a reduced capacity to differentiate into dopaminergic or GABAergic neurons and decreased neurite outgrowth and lower neuronal activity compared with control cultures. This delayed maturation phenotype was confirmed by gene expression profiling, which revealed a significant reduction in mRNA for genes implicated in neuronal differentiation such as delta-like homolog 1 (DLK1), gamma-aminobutyric acid type B receptor subunit 2 (GABABR2), nuclear receptor related 1 protein (NURR1), G-protein-regulated inward-rectifier potassium channel 2 (GIRK-2) and tyrosine hydroxylase (TH). The differentiated patient cells also demonstrated increased autophagic flux when stressed with chloroquine. We conclude that a two-fold overexpression of α-synuclein caused by a triplication of the SNCA gene is sufficient to impair the differentiation of neuronal progenitor cells, a finding with implications for adult neurogenesis and Parkinson's disease progression, particularly in the context of bioenergetic dysfunction.
Collapse
Affiliation(s)
- L M A Oliveira
- Laboratory of Cellular Dynamics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen, Germany
| | - L J Falomir-Lockhart
- Laboratory of Cellular Dynamics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen, Germany
| | - M G Botelho
- Laboratory of Cellular Dynamics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen, Germany
| | - K-H Lin
- Group of Membrane Biophysics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen, Germany
| | - P Wales
- Department of Neurodegeneration and Restorative Research, University Medical Center Göttingen, Waldweg 33, Göttingen, Germany
| | - J C Koch
- Department of Neurology, University Medical Center Göttingen, Robert-Koch-Str. 40, Göttingen, Germany
| | - E Gerhardt
- Department of Neurodegeneration and Restorative Research, University Medical Center Göttingen, Waldweg 33, Göttingen, Germany
| | - H Taschenberger
- Group of Membrane Biophysics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen, Germany
- DFG-Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - T F Outeiro
- Department of Neurodegeneration and Restorative Research, University Medical Center Göttingen, Waldweg 33, Göttingen, Germany
- DFG-Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - P Lingor
- Department of Neurology, University Medical Center Göttingen, Robert-Koch-Str. 40, Göttingen, Germany
- DFG-Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - B Schüle
- The Parkinson's Institute, 675 Almanor Ave., Sunnyvale, CA, USA
| | - D J Arndt-Jovin
- Laboratory of Cellular Dynamics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen, Germany
| | - T M Jovin
- Laboratory of Cellular Dynamics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen, Germany
- Laboratory of Cellular Dynamics, Max Planck Institute for Biophysical Chemistry, Am FaÃberg 11, Göttingen 37077, Germany. Tel: +49 551 201 1381; Fax: +49 551 201 1467; E-mail:
| |
Collapse
|
22
|
Le Grand JN, Gonzalez-Cano L, Pavlou MA, Schwamborn JC. Neural stem cells in Parkinson's disease: a role for neurogenesis defects in onset and progression. Cell Mol Life Sci 2015; 72:773-97. [PMID: 25403878 PMCID: PMC11113294 DOI: 10.1007/s00018-014-1774-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 10/09/2014] [Accepted: 11/03/2014] [Indexed: 12/27/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder, leading to a variety of motor and non-motor symptoms. Interestingly, non-motor symptoms often appear a decade or more before the first signs of motor symptoms. Some of these non-motor symptoms are remarkably similar to those observed in cases of impaired neurogenesis and several PD-related genes have been shown to play a role in embryonic or adult neurogenesis. Indeed, animal models deficient in Nurr1, Pitx3, SNCA and PINK1 display deregulated embryonic neurogenesis and LRRK2 and VPS35 have been implicated in neuronal development-related processes such as Wnt/β-catenin signaling and neurite outgrowth. Moreover, adult neurogenesis is affected in both PD patients and PD animal models and is regulated by dopamine and dopaminergic (DA) receptors, by chronic neuroinflammation, such as that observed in PD, and by differential expression of wild-type or mutant forms of PD-related genes. Indeed, an increasing number of in vivo studies demonstrate a role for SNCA and LRRK2 in adult neurogenesis and in the generation and maintenance of DA neurons. Finally, the roles of PD-related genes, SNCA, LRRK2, VPS35, Parkin, PINK1 and DJ-1 have been studied in NSCs, progenitor cells and induced pluripotent stem cells, demonstrating a role for some of these genes in stem/progenitor cell proliferation and maintenance. Together, these studies strongly suggest a link between deregulated neurogenesis and the onset and progression of PD and present strong evidence that, in addition to a neurodegenerative disorder, PD can also be regarded as a developmental disorder.
Collapse
Affiliation(s)
- Jaclyn Nicole Le Grand
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg
| | - Laura Gonzalez-Cano
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg
| | - Maria Angeliki Pavlou
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg
| | - Jens C. Schwamborn
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg
| |
Collapse
|