1
|
Zhang Y, Lv F, Wan Z, Geng M, Chu L, Cai B, Zhuang J, Ge X, Schnittger A, Yang C. The synaptonemal complex stabilizes meiosis in allotetraploid Brassica napus and autotetraploid Arabidopsis thaliana. THE NEW PHYTOLOGIST 2025; 246:581-597. [PMID: 39963072 PMCID: PMC11923410 DOI: 10.1111/nph.70015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 01/31/2025] [Indexed: 03/21/2025]
Abstract
Polyploidy plays a key role in genome evolution and crop improvement. The formation of bivalents rather than multivalents during meiosis of polyploids is essential to ensure meiotic stability and optimal fertility of the species. However, the mechanisms preventing multivalent recombination in polyploids remain obscure. We studied the role of the synaptonemal complex in polyploid meiosis by mutating the transverse filament component ZYP1 in allotetraploid Brassica napus and autotetraploid Arabidopsis. In B. napus, a mutation of all four ZYP1 copies results in multivalent pairing accompanied by pairing partner switches, nonhomologous recombination, and interlocks, leading to severe chromosome entanglement and fertility abortion. The presence of only one functional allele of ZYP1 compromises synapsis and multivalent associations occur at nonsynaptic regions. Moreover, the disruption of ZYP1 causes a complete shift from predominantly multivalent pairing to exclusively multivalent pairing in pachytene cells of synthetic autotetraploid Arabidopsis thaliana, resulting in a dramatic increase in the frequency of multivalents at metaphase I. We conclude that the ZYP1-mediated assembly of the synaptonemal complex facilitates the pairwise homologous pairing and recombination in both allopolyploid and autopolyploid species and plays a key role in ensuring a diploid-like bivalent formation in polyploid meiosis.
Collapse
Affiliation(s)
- Yashi Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fei Lv
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ziyang Wan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Miaowei Geng
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lei Chu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bowei Cai
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jixin Zhuang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xianhong Ge
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Arp Schnittger
- Department of Developmental Biology, Institute of Plant Science and Microbiology, University of Hamburg, Hamburg, 22609, Germany
| | - Chao Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
2
|
Pelé A, Falque M, Lodé-Taburel M, Huteau V, Morice J, Coriton O, Martin OC, Chèvre AM, Rousseau-Gueutin M. Genomic Divergence Shaped the Genetic Regulation of Meiotic Homologous Recombination in Brassica Allopolyploids. Mol Biol Evol 2025; 42:msaf073. [PMID: 40173423 PMCID: PMC11982612 DOI: 10.1093/molbev/msaf073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 03/05/2025] [Accepted: 03/06/2025] [Indexed: 04/04/2025] Open
Abstract
The tight regulation of meiotic recombination between homologs is disrupted in Brassica AAC allotriploids, a genomic configuration that may have facilitated the formation of rapeseed (Brassica napus L.) ∼7,500 years ago. Indeed, the presence of the haploid C genome induces supernumerary crossovers between homologous A chromosomes with dramatically reshaped distribution. However, the genetic mechanisms driving this phenomenon and their divergence between nascent and established lineages remain unclear. To address these concerns, we generated hybrids carrying additional C chromosomes derived either from an established lineage of the allotetraploid B. napus or from its diploid progenitor B. oleracea. We then assessed recombination variation across twelve populations by mapping male meiotic crossovers using single nucleotide polymorphism markers evenly distributed across the sequenced A genome. Our findings reveal that the C09 chromosome of B. oleracea is responsible for the formation of additional crossovers near pericentromeric regions. Interestingly, its counterpart from an established lineage of B. napus shows no significant effect on its own, despite having a similar content of meiotic genes. However, we showed that the B. napus C09 chromosome influences crossover formation through inter-chromosomal epistatic interactions with other specific C chromosomes. These results provide new insights into the genetic regulation of homologous recombination in Brassica and emphasize the role of genomic divergence since the formation of the allopolyploid B. napus.
Collapse
Affiliation(s)
- Alexandre Pelé
- IGEPP, INRAE, Institut Agro, Univ Rennes, Le Rheu 35653, France
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University in Poznan, Poznan 61-614, Poland
| | - Matthieu Falque
- INRAE, CNRS, AgroParisTech, GQE—Le Moulon, Université Paris-Saclay, Gif-sur-Yvette 91190, France
| | | | - Virginie Huteau
- IGEPP, INRAE, Institut Agro, Univ Rennes, Le Rheu 35653, France
| | - Jérôme Morice
- IGEPP, INRAE, Institut Agro, Univ Rennes, Le Rheu 35653, France
| | - Olivier Coriton
- IGEPP, INRAE, Institut Agro, Univ Rennes, Le Rheu 35653, France
| | - Olivier C Martin
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette 91190, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette 91190, France
| | | | | |
Collapse
|
3
|
Burke PMJ, Boerman SA, Perrichon G, Martin JE, Smith T, Vellekoop J, Mannion PD. Endocranial anatomy and phylogenetic position of the crocodylian Eosuchus lerichei from the late Paleocene of northwestern Europe and potential adaptations for transoceanic dispersal in gavialoids. Anat Rec (Hoboken) 2025; 308:636-670. [PMID: 39228104 PMCID: PMC11725715 DOI: 10.1002/ar.25569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/19/2024] [Accepted: 07/03/2024] [Indexed: 09/05/2024]
Abstract
Eosuchus lerichei is a gavialoid crocodylian from late Paleocene marine deposits of northwestern Europe, known from a skull and lower jaws, as well as postcrania. Its sister taxon relationship with the approximately contemporaneous species Eosuchus minor from the east coast of the USA has been explained through transoceanic dispersal, indicating a capability for salt excretion that is absent in extant gavialoids. However, there is currently no anatomical evidence to support marine adaptation in extinct gavialoids. Furthermore, the placement of Eosuchus within Gavialoidea is labile, with some analyses supporting affinities with the Late Cretaceous to early Paleogene "thoracosaurs." Here we present novel data on the internal and external anatomy of the skull of E. lerichei that enables a revised diagnosis, with 6 autapormorphies identified for the genus and 10 features that enable differentiation of the species from Eosuchus minor. Our phylogenetic analyses recover Eosuchus as an early diverging gavialid gavialoid that is not part of the "thoracosaur" group. In addition to thickened semi-circular canal walls of the endosseous labyrinth and paratympanic sinus reduction, we identify potential osteological correlates for salt glands in the internal surface of the prefrontal and lacrimal bones of E. lerichei. These salt glands potentially provide anatomical evidence for the capability of transoceanic dispersal within Eosuchus, and we also identify them in the Late Cretaceous "thoracosaur" Portugalosuchus. Given that the earliest diverging and stratigraphically oldest gavialoids either have evidence for a nasal salt gland and/or have been recovered from marine deposits, this suggests the capacity for salt excretion might be ancestral for Gavialoidea. Mapping osteological and geological evidence for marine adaptation onto a phylogeny indicates that there was probably more than one independent loss/reduction in the capacity for salt excretion in gavialoids.
Collapse
Affiliation(s)
| | - Sophie A. Boerman
- Department of Earth and Environmental SciencesKU LeuvenLeuvenBelgium
- Directorate Earth and History of LifeRoyal Belgian Institute of Natural SciencesBrusselsBelgium
| | | | | | - Thierry Smith
- Directorate Earth and History of LifeRoyal Belgian Institute of Natural SciencesBrusselsBelgium
| | - Johan Vellekoop
- Department of Earth and Environmental SciencesKU LeuvenLeuvenBelgium
- Directorate Earth and History of LifeRoyal Belgian Institute of Natural SciencesBrusselsBelgium
| | | |
Collapse
|
4
|
Reis Soares N, Costa ZP, Marques JPR, Garsmeur O, Sampaio Carneiro M, Monteiro Vitorello CB, D'Hont A, Vieira MLC. First investigation into the genetic control of meiosis in sugarcane. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:2094-2107. [PMID: 38523577 DOI: 10.1111/tpj.16731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/28/2024] [Accepted: 03/05/2024] [Indexed: 03/26/2024]
Abstract
The sugarcane (Saccharum spp.) genome is one of the most complex of all. Modern varieties are highly polyploid and aneuploid as a result of hybridization between Saccharum officinarum and S. spontaneum. Little research has been done on meiotic control in polyploid species, with the exception of the wheat Ph1 locus harboring the ZIP4 gene (TaZIP4-B2) which promotes pairing between homologous chromosomes while suppressing crossover between homeologs. In sugarcane, despite its interspecific origin, bivalent association is favored, and multivalents, if any, are resolved at the end of prophase I. Thus, our aim herein was to investigate the purported genetic control of meiosis in the parental species and in sugarcane itself. We investigated the ZIP4 gene and immunolocalized meiotic proteins, namely synaptonemal complex proteins Zyp1 and Asy1. The sugarcane ZIP4 gene is located on chromosome 2 and expressed more abundantly in flowers, a similar profile to that found for TaZIP4-B2. ZIP4 expression is higher in S. spontaneum a neoautopolyploid, with lower expression in S. officinarum, a stable octoploid species. The sugarcane Zip4 protein contains a TPR domain, essential for scaffolding. Its 3D structure was also predicted, and it was found to be very similar to that of TaZIP4-B2, reflecting their functional relatedness. Immunolocalization of the Asy1 and Zyp1 proteins revealed that S. officinarum completes synapsis. However, in S. spontaneum and SP80-3280 (a modern variety), no nuclei with complete synapsis were observed. Importantly, our results have implications for sugarcane cytogenetics, genetic mapping, and genomics.
Collapse
Affiliation(s)
- Nina Reis Soares
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, 13418-900, Piracicaba, São Paulo, Brazil
| | - Zirlane Portugal Costa
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, 13418-900, Piracicaba, São Paulo, Brazil
| | - João Paulo Rodrigues Marques
- Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, SP, 13635-900, Pirassununga, São Paulo, Brazil
| | - Olivier Garsmeur
- CIRAD (Centre de Coopération Internationale en Recherche Agronomique pour le Développement), UMR AGAP, F-34398, Montpellier, France
- AGAP, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, 34060, Montpellier, France
| | - Monalisa Sampaio Carneiro
- Departamento de Biotecnologia e Produção Vegetal e Animal, Centro de Ciências Agrárias, Universidade Federal de São Carlos, 13604-900, Araras, São Paulo, Brazil
| | - Cláudia Barros Monteiro Vitorello
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, 13418-900, Piracicaba, São Paulo, Brazil
| | - Angélique D'Hont
- CIRAD (Centre de Coopération Internationale en Recherche Agronomique pour le Développement), UMR AGAP, F-34398, Montpellier, France
- AGAP, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, 34060, Montpellier, France
| | - Maria Lucia Carneiro Vieira
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, 13418-900, Piracicaba, São Paulo, Brazil
| |
Collapse
|
5
|
Chéron F, Petiot V, Lambing C, White C, Serra H. Incorrect recombination partner associations contribute to meiotic instability of neo-allopolyploid Arabidopsis suecica. THE NEW PHYTOLOGIST 2024; 241:2025-2038. [PMID: 38158491 DOI: 10.1111/nph.19487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024]
Abstract
Combining two or more related homoeologous genomes in a single nucleus, newly formed allopolyploids must rapidly adapt meiosis to restore balanced chromosome segregation, production of euploid gametes and fertility. The poor fertility of such neo-allopolyploids thus strongly selects for the limitation or avoidance of genetic crossover formation between homoeologous chromosomes. In this study, we have reproduced the interspecific hybridization between Arabidopsis thaliana and Arabidopsis arenosa leading to the allotetraploid Arabidopsis suecica and have characterized the first allopolyploid meioses. First-generation neo-allopolyploid siblings vary considerably in fertility, meiotic behavior and levels of homoeologous recombination. We show that centromere dynamics at early meiosis is altered in synthetic neo-allopolyploids compared with evolved A. suecica, with a significant increase in homoeologous centromere interactions at zygotene. At metaphase I, the presence of multivalents involving homoeologous chromosomes confirms that homoeologous recombination occurs in the first-generation synthetic allopolyploid plants and this is associated with a significant reduction in homologous recombination, compared to evolved A. suecica. Together, these data strongly suggest that the fidelity of recombination partner choice, likely during the DNA invasion step, is strongly impaired during the first meiosis of neo-allopolyploids and requires subsequent adaptation.
Collapse
Affiliation(s)
- Floriane Chéron
- Genetics, Reproduction and Development Institute (iGReD), CNRS UMR 6293, Inserm U1103, Université Clermont Auvergne, 63000, Clermont-Ferrand, France
| | - Valentine Petiot
- Genetics, Reproduction and Development Institute (iGReD), CNRS UMR 6293, Inserm U1103, Université Clermont Auvergne, 63000, Clermont-Ferrand, France
| | | | - Charles White
- Genetics, Reproduction and Development Institute (iGReD), CNRS UMR 6293, Inserm U1103, Université Clermont Auvergne, 63000, Clermont-Ferrand, France
| | - Heïdi Serra
- Genetics, Reproduction and Development Institute (iGReD), CNRS UMR 6293, Inserm U1103, Université Clermont Auvergne, 63000, Clermont-Ferrand, France
| |
Collapse
|
6
|
Majka M, Janáková E, Jakobson I, Järve K, Cápal P, Korchanová Z, Lampar A, Juračka J, Valárik M. The chromatin determinants and Ph1 gene effect at wheat sites with contrasting recombination frequency. J Adv Res 2023; 53:75-85. [PMID: 36632886 PMCID: PMC10658417 DOI: 10.1016/j.jare.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/14/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
INTRODUCTION Meiotic recombination is one of the most important processes of evolution and adaptation to environmental conditions. Even though there is substantial knowledge about proteins involved in the process, targeting specific DNA loci by the recombination machinery is not well understood. OBJECTIVES This study aims to investigate a wheat recombination hotspot (H1) in comparison with a "regular" recombination site (Rec7) on the sequence and epigenetic level in conditions with functional and non-functional Ph1 locus. METHODS The DNA sequence, methylation pattern, and recombination frequency were analyzed for the H1 and Rec7 in three mapping populations derived by crossing introgressive wheat line 8.1 with cv. Chinese Spring (with Ph1 and ph1 alleles) and cv. Tähti. RESULTS The H1 and Rec7 loci are 1.586 kb and 2.538 kb long, respectively. High-density mapping allowed to delimit the Rec7 and H1 to 19 and 574 bp and 593 and 571 bp CO sites, respectively. A new method (ddPing) allowed screening recombination frequency in almost 66 thousand gametes. The screening revealed a 5.94-fold higher recombination frequency at the H1 compared to the Rec7. The H1 was also found out of the Ph1 control, similarly as gamete distortion. The recombination was strongly affected by larger genomic rearrangements but not by the SNP proximity. Moreover, chromatin markers for open chromatin and DNA hypomethylation were found associated with crossover occurrence except for the CHH methylation. CONCLUSION Our results, for the first time, allowed study of wheat recombination directly on sequence, shed new light on chromatin landmarks associated with particular recombination sites, and deepened knowledge about role of the Ph1 locus in control of wheat recombination processes. The results are suggesting more than one recombination control pathway. Understanding this phenomenon may become a base for more efficient wheat genome manipulation, gene pool enrichment, breeding, and study processes of recombination itself.
Collapse
Affiliation(s)
- Maciej Majka
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, Olomouc 779 00, Czech Republic; Polish Academy of Sciences, Institute of Plant Genetics, Strzeszyńska 34, Poznań 60-479, Poland
| | - Eva Janáková
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, Olomouc 779 00, Czech Republic
| | - Irena Jakobson
- Tallinn University of Technology, Department of Chemistry and Biotechnology, Akadeemia tee 15, Tallinn 19086, Estonia
| | - Kadri Järve
- Tallinn University of Technology, Department of Chemistry and Biotechnology, Akadeemia tee 15, Tallinn 19086, Estonia
| | - Petr Cápal
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, Olomouc 779 00, Czech Republic
| | - Zuzana Korchanová
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, Olomouc 779 00, Czech Republic; Department of Cell Biology and Genetics, Faculty of Science, Palacký University, 17. listopadu 1192/12, Olomouc 779 00, Czech Republic
| | - Adam Lampar
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, Olomouc 779 00, Czech Republic; Department of Cell Biology and Genetics, Faculty of Science, Palacký University, 17. listopadu 1192/12, Olomouc 779 00, Czech Republic
| | - Jakub Juračka
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, Olomouc 779 00, Czech Republic; Department of Computer Science, Faculty of Science, Palacký University, 17. listopadu 1192/12, Olomouc 779 00, Czech Republic; Department of Physical Chemistry, Faculty of Science, Palacký University, 17. listopadu 1192/12, Olomouc 779 00, Czech Republic
| | - Miroslav Valárik
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, Olomouc 779 00, Czech Republic.
| |
Collapse
|
7
|
Draeger TN, Rey MD, Hayta S, Smedley M, Martin AC, Moore G. DMC1 stabilizes crossovers at high and low temperatures during wheat meiosis. FRONTIERS IN PLANT SCIENCE 2023; 14:1208285. [PMID: 37615022 PMCID: PMC10442654 DOI: 10.3389/fpls.2023.1208285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/17/2023] [Indexed: 08/25/2023]
Abstract
Effective chromosome synapsis and crossover formation during meiosis are essential for fertility, especially in grain crops such as wheat. These processes function most efficiently in wheat at temperatures between 17-23 °C, although the genetic mechanisms for such temperature dependence are unknown. In a previously identified mutant of the hexaploid wheat reference variety 'Chinese Spring' lacking the long arm of chromosome 5D, exposure to low temperatures during meiosis resulted in asynapsis and crossover failure. In a second mutant (ttmei1), containing a 4 Mb deletion in chromosome 5DL, exposure to 13 °C led to similarly high levels of asynapsis and univalence. Moreover, exposure to 30 °C led to a significant, but less extreme effect on crossovers. Previously, we proposed that, of 41 genes deleted in this 4 Mb region, the major meiotic gene TaDMC1-D1 was the most likely candidate for preservation of synapsis and crossovers at low (and possibly high) temperatures. In the current study, using RNA-guided Cas9, we developed a new Chinese Spring CRISPR mutant, containing a 39 bp deletion in the 5D copy of DMC1, representing the first reported CRISPR-Cas9 targeted mutagenesis in Chinese Spring, and the first CRISPR mutant for DMC1 in wheat. In controlled environment experiments, wild-type Chinese Spring, CRISPR dmc1-D1 and backcrossed ttmei1 mutants were exposed to either high or low temperatures during the temperature-sensitive period from premeiotic interphase to early meiosis I. After 6-7 days at 13 °C, crossovers decreased by over 95% in the dmc1-D1 mutants, when compared with wild-type plants grown under the same conditions. After 24 hours at 30 °C, dmc1-D1 mutants exhibited a reduced number of crossovers and increased univalence, although these differences were less marked than at 13 °C. Similar results were obtained for ttmei1 mutants, although their scores were more variable, possibly reflecting higher levels of background mutation. These experiments confirm our previous hypothesis that DMC1-D1 is responsible for preservation of normal crossover formation at low and, to a certain extent, high temperatures. Given that reductions in crossovers have significant effects on grain yield, these results have important implications for wheat breeding, particularly in the face of climate change.
Collapse
Affiliation(s)
| | - María-Dolores Rey
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Córdoba, Córdoba, Spain
| | - Sadiye Hayta
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Mark Smedley
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Azahara C. Martin
- Department of Plant Genetic Improvement, Institute for Sustainable Agriculture, Spanish National Research Council (CSIC), Córdoba, Spain
| | - Graham Moore
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
8
|
Draeger TN, Rey MD, Hayta S, Smedley M, Alabdullah AK, Moore G, Martín AC. ZIP4 is required for normal progression of synapsis and for over 95% of crossovers in wheat meiosis. FRONTIERS IN PLANT SCIENCE 2023; 14:1189998. [PMID: 37324713 PMCID: PMC10266424 DOI: 10.3389/fpls.2023.1189998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/26/2023] [Indexed: 06/17/2023]
Abstract
Tetraploid (AABB) and hexaploid (AABBDD) wheat have multiple sets of similar chromosomes, with successful meiosis and preservation of fertility relying on synapsis and crossover (CO) formation only taking place between homologous chromosomes. In hexaploid wheat, the major meiotic gene TaZIP4-B2 (Ph1) on chromosome 5B, promotes CO formation between homologous chromosomes, whilst suppressing COs between homeologous (related) chromosomes. In other species, ZIP4 mutations eliminate approximately 85% of COs, consistent with loss of the class I CO pathway. Tetraploid wheat has three ZIP4 copies: TtZIP4-A1 on chromosome 3A, TtZIP4-B1 on 3B and TtZIP4-B2 on 5B. Here, we have developed single, double and triple zip4 TILLING mutants and a CRISPR Ttzip4-B2 mutant, to determine the effect of ZIP4 genes on synapsis and CO formation in the tetraploid wheat cultivar 'Kronos'. We show that disruption of two ZIP4 gene copies in Ttzip4-A1B1 double mutants, results in a 76-78% reduction in COs when compared to wild-type plants. Moreover, when all three copies are disrupted in Ttzip4-A1B1B2 triple mutants, COs are reduced by over 95%, suggesting that the TtZIP4-B2 copy may also affect class II COs. If this is the case, the class I and class II CO pathways may be interlinked in wheat. When ZIP4 duplicated and diverged from chromosome 3B on wheat polyploidization, the new 5B copy, TaZIP4-B2, could have acquired an additional function to stabilize both CO pathways. In tetraploid plants deficient in all three ZIP4 copies, synapsis is delayed and does not complete, consistent with our previous studies in hexaploid wheat, when a similar delay in synapsis was observed in a 59.3 Mb deletion mutant, ph1b, encompassing the TaZIP4-B2 gene on chromosome 5B. These findings confirm the requirement of ZIP4-B2 for efficient synapsis, and suggest that TtZIP4 genes have a stronger effect on synapsis than previously described in Arabidopsis and rice. Thus, ZIP4-B2 in wheat accounts for the two major phenotypes reported for Ph1, promotion of homologous synapsis and suppression of homeologous COs.
Collapse
Affiliation(s)
| | - María-Dolores Rey
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Córdoba, Córdoba, Spain
| | - Sadiye Hayta
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Mark Smedley
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | | | - Graham Moore
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Azahara C. Martín
- Department of Plant Genetic Improvement, Institute for Sustainable Agriculture, Spanish National Research Council (CSIC), Córdoba, Spain
| |
Collapse
|
9
|
Di Dio C, Serra H, Sourdille P, Higgins JD. ASYNAPSIS 1 ensures crossover fidelity in polyploid wheat by promoting homologous recombination and suppressing non-homologous recombination. FRONTIERS IN PLANT SCIENCE 2023; 14:1188347. [PMID: 37284727 PMCID: PMC10239940 DOI: 10.3389/fpls.2023.1188347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/17/2023] [Indexed: 06/08/2023]
Abstract
During meiosis, the chromosome axes and synaptonemal complex mediate chromosome pairing and homologous recombination to maintain genomic stability and accurate chromosome segregation. In plants, ASYNAPSIS 1 (ASY1) is a key component of the chromosome axis that promotes inter-homolog recombination, synapsis and crossover formation. Here, the function of ASY1 has been cytologically characterized in a series of hypomorphic wheat mutants. In tetraploid wheat, asy1 hypomorphic mutants experience a reduction in chiasmata (crossovers) in a dosage-specific manner, resulting in failure to maintain crossover (CO) assurance. In mutants with only one functional copy of ASY1, distal chiasmata are maintained at the expense of proximal and interstitial chiasmata, indicating that ASY1 is required to promote chiasma formation away from the chromosome ends. Meiotic prophase I progression is delayed in asy1 hypomorphic mutants and is arrested in asy1 null mutants. In both tetraploid and hexaploid wheat, single asy1 mutants exhibit a high degree of ectopic recombination between multiple chromosomes at metaphase I. To explore the nature of the ectopic recombination, Triticum turgidum asy1b-2 was crossed with wheat-wild relative Aegilops variabilis. Homoeologous chiasmata increased 3.75-fold in Ttasy1b-2/Ae. variabilis compared to wild type/Ae. variabilis, indicating that ASY1 suppresses chiasma formation between divergent, but related chromosomes. These data suggest that ASY1 promotes recombination along the chromosome arms of homologous chromosomes whilst suppressing recombination between non-homologous chromosomes. Therefore, asy1 mutants could be utilized to increase recombination between wheat wild relatives and elite varieties for expediting introgression of important agronomic traits.
Collapse
Affiliation(s)
- Chiara Di Dio
- Department of Genetics and Genome Biology, Adrian Building, University of Leicester, Leicester, United Kingdom
| | - Heïdi Serra
- Genetics, Diversity and Ecophysiology of Cereals, Unité Mixte de Recherche (UMR) 1095, The Institut National de la Recherche Agronomique (INRAE), Université Clermont Auvergne, Clermont-Ferrand, France
| | - Pierre Sourdille
- Genetics, Diversity and Ecophysiology of Cereals, Unité Mixte de Recherche (UMR) 1095, The Institut National de la Recherche Agronomique (INRAE), Université Clermont Auvergne, Clermont-Ferrand, France
| | - James D. Higgins
- Department of Genetics and Genome Biology, Adrian Building, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
10
|
Abstract
KEY MESSAGE Chromatin state, and dynamic loading of pro-crossover protein HEI10 at recombination intermediates shape meiotic chromosome patterning in plants. Meiosis is the basis of sexual reproduction, and its basic progression is conserved across eukaryote kingdoms. A key feature of meiosis is the formation of crossovers which result in the reciprocal exchange of segments of maternal and paternal chromosomes. This exchange generates chromosomes with new combinations of alleles, increasing the efficiency of both natural and artificial selection. Crossovers also form a physical link between homologous chromosomes at metaphase I which is critical for accurate chromosome segregation and fertility. The patterning of crossovers along the length of chromosomes is a highly regulated process, and our current understanding of its regulation forms the focus of this review. At the global scale, crossover patterning in plants is largely governed by the classically observed phenomena of crossover interference, crossover homeostasis and the obligatory crossover which regulate the total number of crossovers and their relative spacing. The molecular actors behind these phenomena have long remained obscure, but recent studies in plants implicate HEI10 and ZYP1 as key players in their coordination. In addition to these broad forces, a wealth of recent studies has highlighted how genomic and epigenomic features shape crossover formation at both chromosomal and local scales, revealing that crossovers are primarily located in open chromatin associated with gene promoters and terminators with low nucleosome occupancy.
Collapse
Affiliation(s)
- Andrew Lloyd
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Penglais, Aberystwyth, SY23 3DA, Ceredigion, UK.
| |
Collapse
|
11
|
Soriano J, Belmonte-Tebar A, de la Casa-Esperon E. Synaptonemal & CO analyzer: A tool for synaptonemal complex and crossover analysis in immunofluorescence images. Front Cell Dev Biol 2023; 11:1005145. [PMID: 36743415 PMCID: PMC9894712 DOI: 10.3389/fcell.2023.1005145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 01/09/2023] [Indexed: 01/20/2023] Open
Abstract
During the formation of ova and sperm, homologous chromosomes get physically attached through the synaptonemal complex and exchange DNA at crossover sites by a process known as meiotic recombination. Chromosomes that do not recombine or have anomalous crossover distributions often separate poorly during the subsequent cell division and end up in abnormal numbers in ova or sperm, which can lead to miscarriage or developmental defects. Crossover numbers and distribution along the synaptonemal complex can be visualized by immunofluorescent microscopy. However, manual analysis of large numbers of cells is very time-consuming and a major bottleneck for recombination studies. Some image analysis tools have been created to overcome this situation, but they are not readily available, do not provide synaptonemal complex data, or do not tackle common experimental difficulties, such as overlapping chromosomes. To overcome these limitations, we have created and validated an open-source ImageJ macro routine that facilitates and speeds up the crossover and synaptonemal complex analyses in mouse chromosome spreads, as well as in other vertebrate species. It is free, easy to use and fulfills the recommendations for enhancing rigor and reproducibility in biomedical studies.
Collapse
Affiliation(s)
- Joaquim Soriano
- Centro Regional de Investigaciones Biomédicas (CRIB), Universidad de Castilla-La Mancha, Albacete, Spain
| | - Angela Belmonte-Tebar
- Centro Regional de Investigaciones Biomédicas (CRIB), Universidad de Castilla-La Mancha, Albacete, Spain
| | - Elena de la Casa-Esperon
- Centro Regional de Investigaciones Biomédicas (CRIB), Universidad de Castilla-La Mancha, Albacete, Spain,Biology of Cell Growth, Differentiation and Activation Group, Department of Inorganic and Organic Chemistry and Biochemistry, School of Pharmacy, Universidad de Castilla-La Mancha, Albacete, Spain,*Correspondence: Elena de la Casa-Esperon,
| |
Collapse
|
12
|
Darrier B, Colas I, Rimbert H, Choulet F, Bazile J, Sortais A, Jenczewski E, Sourdille P. Location and Identification on Chromosome 3B of Bread Wheat of Genes Affecting Chiasma Number. PLANTS (BASEL, SWITZERLAND) 2022; 11:2281. [PMID: 36079661 PMCID: PMC9460588 DOI: 10.3390/plants11172281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022]
Abstract
Understanding meiotic crossover (CO) variation in crops like bread wheat (Triticum aestivum L.) is necessary as COs are essential to create new, original and powerful combinations of genes for traits of agronomical interest. We cytogenetically characterized a set of wheat aneuploid lines missing part or all of chromosome 3B to identify the most influential regions for chiasma formation located on this chromosome. We showed that deletion of the short arm did not change the total number of chiasmata genome-wide, whereas this latter was reduced by ~35% while deleting the long arm. Contrary to what was hypothesized in a previous study, deletion of the long arm does not disturb the initiation of the synaptonemal complex (SC) in early meiotic stages. However, progression of the SC is abnormal, and we never observed its completion when the long arm is deleted. By studying six different deletion lines (missing different parts of the long arm), we revealed that at least two genes located in both the proximal (C-3BL2-0.22) and distal (3BL7-0.63-1.00) deletion bins are involved in the control of chiasmata, each deletion reducing the number of chiasmata by ~15%. We combined sequence analyses of deletion bins with RNA-Seq data derived from meiotic tissues and identified a set of genes for which at least the homoeologous copy on chromosome 3B is expressed and which are involved in DNA processing. Among these genes, eight (CAP-E1/E2, DUO1, MLH1, MPK4, MUS81, RTEL1, SYN4, ZIP4) are known to be involved in the recombination pathway.
Collapse
Affiliation(s)
- Benoit Darrier
- UMR 1095 Genetics, Diversity and Ecophysiology of Cereals, 5, INRAE–Université Clermont-Auvergne, Chemin de Beaulieu, 63000 Clermont-Ferrand, France
- Syngenta, Toulouse Innovation Centre 12 Chemin de l’Hobit, 31790 Saint-Sauveur, France
| | - Isabelle Colas
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Hélène Rimbert
- UMR 1095 Genetics, Diversity and Ecophysiology of Cereals, 5, INRAE–Université Clermont-Auvergne, Chemin de Beaulieu, 63000 Clermont-Ferrand, France
| | - Frédéric Choulet
- UMR 1095 Genetics, Diversity and Ecophysiology of Cereals, 5, INRAE–Université Clermont-Auvergne, Chemin de Beaulieu, 63000 Clermont-Ferrand, France
| | - Jeanne Bazile
- UMR 1095 Genetics, Diversity and Ecophysiology of Cereals, 5, INRAE–Université Clermont-Auvergne, Chemin de Beaulieu, 63000 Clermont-Ferrand, France
| | - Aurélien Sortais
- UMR 1095 Genetics, Diversity and Ecophysiology of Cereals, 5, INRAE–Université Clermont-Auvergne, Chemin de Beaulieu, 63000 Clermont-Ferrand, France
| | - Eric Jenczewski
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
| | - Pierre Sourdille
- UMR 1095 Genetics, Diversity and Ecophysiology of Cereals, 5, INRAE–Université Clermont-Auvergne, Chemin de Beaulieu, 63000 Clermont-Ferrand, France
| |
Collapse
|
13
|
Bouquet Formation Failure in Meiosis of F1 Wheat–Rye Hybrids with Mitotic-Like Division. PLANTS 2022; 11:plants11121582. [PMID: 35736732 PMCID: PMC9229938 DOI: 10.3390/plants11121582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/09/2022] [Indexed: 12/05/2022]
Abstract
Bouquet formation is believed to be involved in initiating homologous chromosome pairings in meiosis. A bouquet is also formed in the absence of chromosome pairing, such as in F1 wheat–rye hybrids. In some hybrids, meiosis is characterized by a single, mitotic-like division that leads to the formation of unreduced gametes. In this study, FISH with the telomere and centromere-specific probe, and immunoFISH with ASY1, CENH3 and rye subtelomere repeat pSc200 were employed to perform a comparative analysis of early meiotic prophase nuclei in four combinations of wheat–rye hybrids. One of these, with disomic rye chromosome 2R, is known to undergo normal meiosis, and here, 78.9% of the meiocytes formed a normal-appearing telomere bouquet and rye subtelomeres clustered in 83.2% of the meiocytes. In three combinations with disomic rye chromosomes 1R, 5R and 6R, known to undergo a single division of meiosis, telomeres clustered in 11.4%, 44.8% and 27.6% of the meiocytes, respectively. In hybrids with chromosome 1R, rye subtelomeres clustered in 12.19% of the meiocytes. In the remaining meiocytes, telomeres and subtelomeres were scattered along the nucleus circumference, forming large and small groups. We conclude that in wheat–rye hybrids with mitotic-like meiosis, chromosome behavior is altered already in the early prophase.
Collapse
|
14
|
All Ways Lead to Rome—Meiotic Stabilization Can Take Many Routes in Nascent Polyploid Plants. Genes (Basel) 2022; 13:genes13010147. [PMID: 35052487 PMCID: PMC8775444 DOI: 10.3390/genes13010147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 02/01/2023] Open
Abstract
Newly formed polyploids often show extensive meiotic defects, resulting in aneuploid gametes, and thus reduced fertility. However, while many neopolyploids are meiotically unstable, polyploid lineages that survive in nature are generally stable and fertile; thus, those lineages that survive are those that are able to overcome these challenges. Several genes that promote polyploid stabilization are now known in plants, allowing speculation on the evolutionary origin of these meiotic adjustments. Here, I discuss results that show that meiotic stability can be achieved through the differentiation of certain alleles of certain genes between ploidies. These alleles, at least sometimes, seem to arise by novel mutation, while standing variation in either ancestral diploids or related polyploids, from which alleles can introgress, may also contribute. Growing evidence also suggests that the coevolution of multiple interacting genes has contributed to polyploid stabilization, and in allopolyploids, the return of duplicated genes to single copies (genome fractionation) may also play a role in meiotic stabilization. There is also some evidence that epigenetic regulation may be important, which can help explain why some polyploid lineages can partly stabilize quite rapidly.
Collapse
|
15
|
Martín AC, Alabdullah AK, Moore G. A separation-of-function ZIP4 wheat mutant allows crossover between related chromosomes and is meiotically stable. Sci Rep 2021; 11:21811. [PMID: 34750469 PMCID: PMC8575954 DOI: 10.1038/s41598-021-01379-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/27/2021] [Indexed: 12/12/2022] Open
Abstract
Many species, including most flowering plants, are polyploid, possessing multiple genomes. During polyploidisation, fertility is preserved via the evolution of mechanisms to control the behaviour of these multiple genomes during meiosis. On the polyploidisation of wheat, the major meiotic gene ZIP4 duplicated and diverged, with the resulting new gene TaZIP4-B2 being inserted into chromosome 5B. Previous studies showed that this TaZIP4-B2 promotes pairing and synapsis between wheat homologous chromosomes, whilst suppressing crossover between related (homoeologous) chromosomes. Moreover, in wheat, the presence of TaZIP4-B2 preserves up to 50% of grain number. The present study exploits a 'separation-of-function' wheat Tazip4-B2 mutant named zip4-ph1d, in which the Tazip4-B2 copy still promotes correct pairing and synapsis between homologues (resulting in the same pollen profile and fertility normally found in wild type wheat), but which also allows crossover between the related chromosomes in wheat haploids of this mutant. This suggests an improved utility for the new zip4-ph1d mutant line during wheat breeding, compared to the previously described CRISPR Tazip4-B2 and ph1 mutant lines. The results also reveal that loss of suppression of homoeologous crossover between wheat chromosomes does not in itself reduce wheat fertility when promotion of homologous pairing and synapsis by TaZIP4-B2 is preserved.
Collapse
Affiliation(s)
- Azahara C Martín
- Crop Genetics Department, John Innes Centre, Colney, Norwich, NR4 7UH, UK.
| | | | - Graham Moore
- Crop Genetics Department, John Innes Centre, Colney, Norwich, NR4 7UH, UK
| |
Collapse
|
16
|
Soares NR, Mollinari M, Oliveira GK, Pereira GS, Vieira MLC. Meiosis in Polyploids and Implications for Genetic Mapping: A Review. Genes (Basel) 2021; 12:genes12101517. [PMID: 34680912 PMCID: PMC8535482 DOI: 10.3390/genes12101517] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 02/06/2023] Open
Abstract
Plant cytogenetic studies have provided essential knowledge on chromosome behavior during meiosis, contributing to our understanding of this complex process. In this review, we describe in detail the meiotic process in auto- and allopolyploids from the onset of prophase I through pairing, recombination, and bivalent formation, highlighting recent findings on the genetic control and mode of action of specific proteins that lead to diploid-like meiosis behavior in polyploid species. During the meiosis of newly formed polyploids, related chromosomes (homologous in autopolyploids; homologous and homoeologous in allopolyploids) can combine in complex structures called multivalents. These structures occur when multiple chromosomes simultaneously pair, synapse, and recombine. We discuss the effectiveness of crossover frequency in preventing multivalent formation and favoring regular meiosis. Homoeologous recombination in particular can generate new gene (locus) combinations and phenotypes, but it may destabilize the karyotype and lead to aberrant meiotic behavior, reducing fertility. In crop species, understanding the factors that control pairing and recombination has the potential to provide plant breeders with resources to make fuller use of available chromosome variations in number and structure. We focused on wheat and oilseed rape, since there is an abundance of elucidating studies on this subject, including the molecular characterization of the Ph1 (wheat) and PrBn (oilseed rape) loci, which are known to play a crucial role in regulating meiosis. Finally, we exploited the consequences of chromosome pairing and recombination for genetic map construction in polyploids, highlighting two case studies of complex genomes: (i) modern sugarcane, which has a man-made genome harboring two subgenomes with some recombinant chromosomes; and (ii) hexaploid sweet potato, a naturally occurring polyploid. The recent inclusion of allelic dosage information has improved linkage estimation in polyploids, allowing multilocus genetic maps to be constructed.
Collapse
Affiliation(s)
- Nina Reis Soares
- Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, Piracicaba 13400-918, Brazil; (N.R.S.); (G.K.O.); (G.S.P.)
| | - Marcelo Mollinari
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27695-7566, USA;
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695-7555, USA
| | - Gleicy K. Oliveira
- Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, Piracicaba 13400-918, Brazil; (N.R.S.); (G.K.O.); (G.S.P.)
| | - Guilherme S. Pereira
- Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, Piracicaba 13400-918, Brazil; (N.R.S.); (G.K.O.); (G.S.P.)
- Department of Agronomy, Federal University of Viçosa, Viçosa 36570-900, Brazil
| | - Maria Lucia Carneiro Vieira
- Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, Piracicaba 13400-918, Brazil; (N.R.S.); (G.K.O.); (G.S.P.)
- Correspondence:
| |
Collapse
|
17
|
Li Z, McKibben MTW, Finch GS, Blischak PD, Sutherland BL, Barker MS. Patterns and Processes of Diploidization in Land Plants. ANNUAL REVIEW OF PLANT BIOLOGY 2021; 72:387-410. [PMID: 33684297 DOI: 10.1146/annurev-arplant-050718-100344] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Most land plants are now known to be ancient polyploids that have rediploidized. Diploidization involves many changes in genome organization that ultimately restore bivalent chromosome pairing and disomic inheritance, and resolve dosage and other issues caused by genome duplication. In this review, we discuss the nature of polyploidy and its impact on chromosome pairing behavior. We also provide an overview of two major and largely independent processes of diploidization: cytological diploidization and genic diploidization/fractionation. Finally, we compare variation in gene fractionation across land plants and highlight the differences in diploidization between plants and animals. Altogether, we demonstrate recent advancements in our understanding of variation in the patterns and processes of diploidization in land plants and provide a road map for future research to unlock the mysteries of diploidization and eukaryotic genome evolution.
Collapse
Affiliation(s)
- Zheng Li
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA; , , , , ,
| | - Michael T W McKibben
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA; , , , , ,
| | - Geoffrey S Finch
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA; , , , , ,
| | - Paul D Blischak
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA; , , , , ,
| | - Brittany L Sutherland
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA; , , , , ,
| | - Michael S Barker
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA; , , , , ,
| |
Collapse
|
18
|
Alabdullah AK, Moore G, Martín AC. A Duplicated Copy of the Meiotic Gene ZIP4 Preserves up to 50% Pollen Viability and Grain Number in Polyploid Wheat. BIOLOGY 2021; 10:290. [PMID: 33918149 PMCID: PMC8065865 DOI: 10.3390/biology10040290] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 12/20/2022]
Abstract
Although most flowering plants are polyploid, little is known of how the meiotic process evolves after polyploidisation to stabilise and preserve fertility. On wheat polyploidisation, the major meiotic gene ZIP4 on chromosome 3B duplicated onto 5B and diverged (TaZIP4-B2). TaZIP4-B2 was recently shown to promote homologous pairing, synapsis and crossover, and suppress homoeologous crossover. We therefore suspected that these meiotic stabilising effects could be important for preserving wheat fertility. A CRISPR Tazip4-B2 mutant was exploited to assess the contribution of the 5B duplicated ZIP4 copy in maintaining pollen viability and grain setting. Analysis demonstrated abnormalities in 56% of meiocytes in the Tazip4-B2 mutant, with micronuclei in 50% of tetrads, reduced size in 48% of pollen grains and a near 50% reduction in grain number. Further studies showed that most of the reduced grain number occurred when Tazip4-B2 mutant plants were pollinated with the less viable Tazip4-B2 mutant pollen rather than with wild type pollen, suggesting that the stabilising effect of TaZIP4-B2 on meiosis has a greater consequence in subsequent male, rather than female gametogenesis. These studies reveal the extraordinary value of the wheat chromosome 5B TaZIP4-B2 duplication to agriculture and human nutrition. Future studies should further investigate the role of TaZIP4-B2 on female fertility and assess whether different TaZIP4-B2 alleles exhibit variable effects on meiotic stabilisation and/or resistance to temperature change.
Collapse
Affiliation(s)
| | - Graham Moore
- Crop Genetics Department, John Innes Centre, Colney, Norwich NR4 7UH, UK; (A.K.A.); (A.C.M.)
| | | |
Collapse
|
19
|
Osman K, Algopishi U, Higgins JD, Henderson IR, Edwards KJ, Franklin FCH, Sanchez-Moran E. Distal Bias of Meiotic Crossovers in Hexaploid Bread Wheat Reflects Spatio-Temporal Asymmetry of the Meiotic Program. FRONTIERS IN PLANT SCIENCE 2021; 12:631323. [PMID: 33679846 DOI: 10.33892/ffpls.2021.631323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/18/2021] [Indexed: 05/25/2023]
Abstract
Meiotic recombination generates genetic variation and provides physical links between homologous chromosomes (crossovers) essential for accurate segregation. In cereals the distribution of crossovers, cytologically evident as chiasmata, is biased toward the distal regions of chromosomes. This creates a bottleneck for plant breeders in the development of varieties with improved agronomic traits, as genes situated in the interstitial and centromere proximal regions of chromosomes rarely recombine. Recent advances in wheat genomics and genome engineering combined with well-developed wheat cytogenetics offer new opportunities to manipulate recombination and unlock genetic variation. As a basis for these investigations we have carried out a detailed analysis of meiotic progression in hexaploid wheat (Triticum aestivum) using immunolocalization of chromosome axis, synaptonemal complex and recombination proteins. 5-Bromo-2'-deoxyuridine (BrdU) labeling was used to determine the chronology of key events in relation to DNA replication. Axis morphogenesis, synapsis and recombination initiation were found to be spatio-temporally coordinated, beginning in the gene-dense distal chromosomal regions and later occurring in the interstitial/proximal regions. Moreover, meiotic progression in the distal regions was coordinated with the conserved chromatin cycles that are a feature of meiosis. This mirroring of the chiasma bias was also evident in the distribution of the gene-associated histone marks, H3K4me3 and H3K27me3; the repeat-associated mark, H3K27me1; and H3K9me3. We believe that this study provides a cytogenetic framework for functional studies and ongoing initiatives to manipulate recombination in the wheat genome.
Collapse
Affiliation(s)
- Kim Osman
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Uthman Algopishi
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - James D Higgins
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Ian R Henderson
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Keith J Edwards
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - F Chris H Franklin
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | | |
Collapse
|
20
|
Serra H, Svačina R, Baumann U, Whitford R, Sutton T, Bartoš J, Sourdille P. Ph2 encodes the mismatch repair protein MSH7-3D that inhibits wheat homoeologous recombination. Nat Commun 2021; 12:803. [PMID: 33547285 PMCID: PMC7865012 DOI: 10.1038/s41467-021-21127-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 01/13/2021] [Indexed: 02/06/2023] Open
Abstract
Meiotic recombination is a critical process for plant breeding, as it creates novel allele combinations that can be exploited for crop improvement. In wheat, a complex allohexaploid that has a diploid-like behaviour, meiotic recombination between homoeologous or alien chromosomes is suppressed through the action of several loci. Here, we report positional cloning of Pairing homoeologous 2 (Ph2) and functional validation of the wheat DNA mismatch repair protein MSH7-3D as a key inhibitor of homoeologous recombination, thus solving a half-century-old question. Similar to ph2 mutant phenotype, we show that mutating MSH7-3D induces a substantial increase in homoeologous recombination (up to 5.5 fold) in wheat-wild relative hybrids, which is also associated with a reduction in homologous recombination. These data reveal a role for MSH7-3D in meiotic stabilisation of allopolyploidy and provides an opportunity to improve wheat's genetic diversity through alien gene introgression, a major bottleneck facing crop improvement.
Collapse
Affiliation(s)
- Heïdi Serra
- Genetics, Diversity and Ecophysiology of Cereals, UMR 1095, INRAE, Université Clermont Auvergne, Clermont-Ferrand, France. .,Genetics, Reproduction and Development, CNRS, Inserm, Université Clermont Auvergne, Clermont-Ferrand, France.
| | - Radim Svačina
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Ute Baumann
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, PMB1, Glen Osmond, SA, Australia
| | - Ryan Whitford
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, PMB1, Glen Osmond, SA, Australia
| | - Tim Sutton
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, PMB1, Glen Osmond, SA, Australia.,South Australian Research and Development Institute, Adelaide, SA, Australia
| | - Jan Bartoš
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Pierre Sourdille
- Genetics, Diversity and Ecophysiology of Cereals, UMR 1095, INRAE, Université Clermont Auvergne, Clermont-Ferrand, France.
| |
Collapse
|
21
|
Cawley JJ, Marramà G, Carnevale G, Villafaña JA, López-Romero FA, Kriwet J. Rise and fall of †Pycnodontiformes: Diversity, competition and extinction of a successful fish clade. Ecol Evol 2021; 11:1769-1796. [PMID: 33614003 PMCID: PMC7882952 DOI: 10.1002/ece3.7168] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/04/2020] [Accepted: 12/11/2020] [Indexed: 12/25/2022] Open
Abstract
†Pycnodontiformes was a successful lineage of primarily marine fishes that broadly diversified during the Mesozoic. They possessed a wide variety of body shapes and were adapted to a broad range of food sources. Two other neopterygian clades possessing similar ecological adaptations in both body morphology (†Dapediiformes) and dentition (Ginglymodi) also occurred in Mesozoic seas. Although these groups occupied the same marine ecosystems, the role that competitive exclusion and niche partitioning played in their ability to survive alongside each other remains unknown. Using geometric morphometrics on both the lower jaw (as constraint for feeding adaptation) and body shape (as constraint for habitat adaptation), we show that while dapediiforms and ginglymodians occupy similar lower jaw morphospace, pycnodontiforms are completely separate. Separation also occurs between the clades in body shape so that competition reduction between pycnodontiforms and the other two clades would have resulted in niche partitioning. Competition within pycnodontiforms seemingly was reduced further by evolving different feeding strategies as shown by disparate jaw shapes that also indicate high levels of plasticity. Acanthomorpha was a teleostean clade that evolved later in the Mesozoic and which has been regarded as implicated in driving the pycnodontiforms to extinction. Although they share similar body shapes, no coeval acanthomorphs had similar jaw shapes or dentitions for dealing with hard prey like pycnodontiforms do and so their success being a factor in pycnodontiform extinction is unlikely. Sea surface temperature and eustatic variations also had no impact on pycnodontiform diversity patterns according to our results. Conversely, the occurrence and number of available reefs and hardgrounds as habitats through time seems to be the main factor in pycnodontiform success. Decline in such habitats during the Late Cretaceous and Palaeogene might have had deleterious consequences for pycnodontiform diversity. Acanthomorphs occupied the niches of pycnodontiforms during the terminal phase of their existence.
Collapse
Affiliation(s)
- John J Cawley
- Faculty of Earth Science, Geography and Astronomy Department of Palaeontology University of Vienna Geozentrum Vienna Austria
| | - Giuseppe Marramà
- Dipartimento di Scienze della Terra Università degli Studi di Torino Torino Italy
| | - Giorgio Carnevale
- Dipartimento di Scienze della Terra Università degli Studi di Torino Torino Italy
| | - Jaime A Villafaña
- Faculty of Earth Science, Geography and Astronomy Department of Palaeontology University of Vienna Geozentrum Vienna Austria.,Centro de Investigación en Recursos Naturales y Sustentabilidad Universidad Bernardo O'Higgins Santiago Chile.,Paleontological Institute and Museum University of Zurich Zurich Switzerland
| | - Faviel A López-Romero
- Faculty of Earth Science, Geography and Astronomy Department of Palaeontology University of Vienna Geozentrum Vienna Austria
| | - Jürgen Kriwet
- Faculty of Earth Science, Geography and Astronomy Department of Palaeontology University of Vienna Geozentrum Vienna Austria
| |
Collapse
|
22
|
Liu X, Li Q, Wang Z, Liu F. Identification of abnormal protein expressions associated with mouse spermatogenesis induced by cyclophosphamide. J Cell Mol Med 2021; 25:1624-1632. [PMID: 33438283 PMCID: PMC7875923 DOI: 10.1111/jcmm.16263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/28/2020] [Accepted: 12/22/2020] [Indexed: 12/11/2022] Open
Abstract
Cyclophosphamide (CP) is a clinical anticancer drug that can cause male reproductive abnormalities, but the underlying mechanisms for this remain unknown. The present study aimed to explore the potential toxicity induced by CP in spermatogenesis events of germ cell proliferation, meiosis, and blood-testis barrier integrity at the molecular level. CP-treated mice showed significantly reduced serum testosterone levels, sperm motility and concentration. The results of immunohistochemistry and Western blot showed that CP reduced the proliferation of germ cells (PCNA, PLZF) and increased germ cell apoptosis (Bax and TUNEL-positive cells) in CP-treated mice testes. The expression of meiotic related proteins (SYCP3, REC8, MLH1) decreased significantly in the fourth week after administration, and the expression of blood-testis barrier related proteins (β-catenin, ZO-1) and sperm quality-associated proteins (PGK2, HSPA4) decreased significantly in the first week after administration. CP leads to the apoptosis of male germ cells, inhibits the proliferation of germ cells, and affects meiosis and the blood-testis barrier, resulting in the decline of sperm quality. This study provides information to further the study of molecular mechanism and protective strategy of CP influence.
Collapse
Affiliation(s)
- Xuexia Liu
- Central Laboratory, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Qian Li
- Research Department, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Zhixin Wang
- Central Laboratory, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Fujun Liu
- Central Laboratory, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| |
Collapse
|
23
|
Spangenberg V, Arakelyan M, Galoyan E, Martirosyan I, Bogomazova A, Martynova E, de Bello Cioffi M, Liehr T, Al-Rikabi A, Osipov F, Petrosyan V, Kolomiets O. Meiotic synapsis of homeologous chromosomes and mismatch repair protein detection in the parthenogenetic rock lizard Darevskia unisexualis. Mol Reprod Dev 2021; 88:119-127. [PMID: 33438277 DOI: 10.1002/mrd.23450] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 11/08/2022]
Abstract
Parthenogenetic species of Caucasian rock lizards of the genus Darevksia are important evidence for reticulate evolution and speciation by hybridization in vertebrates. Female-only lineages formed through interspecific hybridization have been discovered in many groups. Nevertheless, critical mechanisms of oogenesis and specifics of meiosis that provide long-term stability of parthenogenetic species are still unknown. Here we report cytogenetic characteristics of somatic karyotypes and meiotic prophase I nuclei in the diploid parthenogenetic species Darevskia unisexualis from the new population "Keti" in Armenia which contains an odd number of chromosomes 2n = 37, instead of the usual 2n = 38. We revealed 36 acrocentric chromosomes and a single metacentric autosomal chromosome, resulting from Robertsonian translocation. Comparative genomic hybridization revealed that chromosome fusion occurred between two chromosomes inherited from the maternal species, similar to another parthenogenetic species D. rostombekowi. To trace the chromosome behaviour in meiosis, we performed an immunocytochemical study of primary oocytes' spread nuclei and studied chromosome synapsis during meiotic prophase I in D. unisexualis based on analysis of synaptonemal complexes (SCs). We found meiotic SC-trivalent composed of one metacentric and two acrocentric chromosomes. We confirmed that the SC was assembled between homeologous chromosomes inherited from two parental species. Immunostaining of the pachytene and diplotene nuclei revealed a mismatch repair protein MLH1 loaded to all autosomal SC bivalents. Possible mechanisms of meiotic recombination between homeologous chromosomes are discussed.
Collapse
Affiliation(s)
| | - Marine Arakelyan
- Department of Zoology, Yerevan State University, Yerevan, Armenia
| | - Eduard Galoyan
- Severtsov Institute of Ecology and Evolution RAS, Moscow, Russia
| | | | - Alexandra Bogomazova
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, Russia
| | - Elena Martynova
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Marcelo de Bello Cioffi
- Laboratório de Citogenética de Peixes, UniversidadeFederal de São Carlos, São Carlos, SP, Brazil
| | - Thomas Liehr
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Ahmed Al-Rikabi
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Fedor Osipov
- Severtsov Institute of Ecology and Evolution RAS, Moscow, Russia
| | - Varos Petrosyan
- Severtsov Institute of Ecology and Evolution RAS, Moscow, Russia
| | | |
Collapse
|
24
|
Wheat, Rye, and Barley Genomes Can Associate during Meiosis in Newly Synthesized Trigeneric Hybrids. PLANTS 2021; 10:plants10010113. [PMID: 33430522 PMCID: PMC7826760 DOI: 10.3390/plants10010113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 12/29/2020] [Accepted: 01/05/2021] [Indexed: 11/24/2022]
Abstract
Polyploidization, or whole genome duplication (WGD), has an important role in evolution and speciation. One of the biggest challenges faced by a new polyploid is meiosis, in particular, discriminating between multiple related chromosomes so that only homologs recombine to ensure regular chromosome segregation and fertility. Here, we report the production of two new hybrids formed by the genomes of species from three different genera: a hybrid between Aegilops tauschii (DD), Hordeum chilense (HchHch), and Secale cereale (RR) with the haploid genomic constitution HchDR (n = 7× = 21); and a hybrid between Triticum turgidum spp. durum (AABB), H. chilense, and S. cereale with the constitution ABHchR (n = 7× = 28). We used genomic in situ hybridization and immunolocalization of key meiotic proteins to establish the chromosome composition of the new hybrids and to study their meiotic behavior. Interestingly, there were multiple chromosome associations at metaphase I in both hybrids. A high level of crossover (CO) formation was observed in HchDR, which shows the possibility of meiotic recombination between the different genomes. We succeeded in the duplication of the ABHchR genome, and several amphiploids, AABBHchHchRR, were obtained and characterized. These results indicate that recombination between the genera of three economically important crops is possible.
Collapse
|
25
|
Osman K, Algopishi U, Higgins JD, Henderson IR, Edwards KJ, Franklin FCH, Sanchez-Moran E. Distal Bias of Meiotic Crossovers in Hexaploid Bread Wheat Reflects Spatio-Temporal Asymmetry of the Meiotic Program. FRONTIERS IN PLANT SCIENCE 2021; 12:631323. [PMID: 33679846 PMCID: PMC7928317 DOI: 10.3389/fpls.2021.631323] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/18/2021] [Indexed: 05/09/2023]
Abstract
Meiotic recombination generates genetic variation and provides physical links between homologous chromosomes (crossovers) essential for accurate segregation. In cereals the distribution of crossovers, cytologically evident as chiasmata, is biased toward the distal regions of chromosomes. This creates a bottleneck for plant breeders in the development of varieties with improved agronomic traits, as genes situated in the interstitial and centromere proximal regions of chromosomes rarely recombine. Recent advances in wheat genomics and genome engineering combined with well-developed wheat cytogenetics offer new opportunities to manipulate recombination and unlock genetic variation. As a basis for these investigations we have carried out a detailed analysis of meiotic progression in hexaploid wheat (Triticum aestivum) using immunolocalization of chromosome axis, synaptonemal complex and recombination proteins. 5-Bromo-2'-deoxyuridine (BrdU) labeling was used to determine the chronology of key events in relation to DNA replication. Axis morphogenesis, synapsis and recombination initiation were found to be spatio-temporally coordinated, beginning in the gene-dense distal chromosomal regions and later occurring in the interstitial/proximal regions. Moreover, meiotic progression in the distal regions was coordinated with the conserved chromatin cycles that are a feature of meiosis. This mirroring of the chiasma bias was also evident in the distribution of the gene-associated histone marks, H3K4me3 and H3K27me3; the repeat-associated mark, H3K27me1; and H3K9me3. We believe that this study provides a cytogenetic framework for functional studies and ongoing initiatives to manipulate recombination in the wheat genome.
Collapse
Affiliation(s)
- Kim Osman
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
- *Correspondence: Kim Osman
| | - Uthman Algopishi
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - James D. Higgins
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Ian R. Henderson
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Keith J. Edwards
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | | | - Eugenio Sanchez-Moran
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
- Eugenio Sanchez-Moran
| |
Collapse
|
26
|
McKee CM, Coll RC. NLRP3 inflammasome priming: A riddle wrapped in a mystery inside an enigma. J Leukoc Biol 2020; 108:937-952. [PMID: 32745339 DOI: 10.1002/jlb.3mr0720-513r] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 12/12/2022] Open
Abstract
The NLRP3 (NOD-, LRR-, and pyrin domain-containing protein 3) inflammasome is an immunological sensor that detects a wide range of microbial- and host-derived signals. Inflammasome activation results in the release of the potent pro-inflammatory cytokines IL-1β and IL-18 and triggers a form of inflammatory cell death known as pyroptosis. Excessive NLRP3 activity is associated with the pathogenesis of a wide range of inflammatory diseases, thus NLRP3 activation mechanisms are an area of intensive research. NLRP3 inflammasome activation is a tightly regulated process that requires both priming and activation signals. In particular, recent research has highlighted the highly complex nature of the priming step, which involves transcriptional and posttranslational mechanisms, and numerous protein binding partners. This review will describe the current understanding of NLRP3 priming and will discuss the potential opportunities for targeting this process therapeutically to treat NLRP3-associated diseases.
Collapse
Affiliation(s)
- Chloe M McKee
- The Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, Antrim, UK
| | - Rebecca C Coll
- The Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, Antrim, UK
| |
Collapse
|
27
|
Svačina R, Sourdille P, Kopecký D, Bartoš J. Chromosome Pairing in Polyploid Grasses. FRONTIERS IN PLANT SCIENCE 2020; 11:1056. [PMID: 32733528 PMCID: PMC7363976 DOI: 10.3389/fpls.2020.01056] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/26/2020] [Indexed: 05/20/2023]
Abstract
Polyploids are species in which three or more sets of chromosomes coexist. Polyploidy frequently occurs in plants and plays a major role in their evolution. Based on their origin, polyploid species can be divided into two groups: autopolyploids and allopolyploids. The autopolyploids arise by multiplication of the chromosome sets from a single species, whereas allopolyploids emerge from the hybridization between distinct species followed or preceded by whole genome duplication, leading to the combination of divergent genomes. Having a polyploid constitution offers some fitness advantages, which could become evolutionarily successful. Nevertheless, polyploid species must develop mechanism(s) that control proper segregation of genetic material during meiosis, and hence, genome stability. Otherwise, the coexistence of more than two copies of the same or similar chromosome sets may lead to multivalent formation during the first meiotic division and subsequent production of aneuploid gametes. In this review, we aim to discuss the pathways leading to the formation of polyploids, the occurrence of polyploidy in the grass family (Poaceae), and mechanisms controlling chromosome associations during meiosis, with special emphasis on wheat.
Collapse
Affiliation(s)
- Radim Svačina
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czechia
| | - Pierre Sourdille
- INRA, Génétique, Diversité, Ecophysiologie des Céréales, Clermont-Ferrand, France
| | - David Kopecký
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czechia
| | - Jan Bartoš
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czechia
| |
Collapse
|
28
|
Active and repressed biosynthetic gene clusters have spatially distinct chromosome states. Proc Natl Acad Sci U S A 2020; 117:13800-13809. [PMID: 32493747 DOI: 10.1073/pnas.1920474117] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
While colocalization within a bacterial operon enables coexpression of the constituent genes, the mechanistic logic of clustering of nonhomologous monocistronic genes in eukaryotes is not immediately obvious. Biosynthetic gene clusters that encode pathways for specialized metabolites are an exception to the classical eukaryote rule of random gene location and provide paradigmatic exemplars with which to understand eukaryotic cluster dynamics and regulation. Here, using 3C, Hi-C, and Capture Hi-C (CHi-C) organ-specific chromosome conformation capture techniques along with high-resolution microscopy, we investigate how chromosome topology relates to transcriptional activity of clustered biosynthetic pathway genes in Arabidopsis thaliana Our analyses reveal that biosynthetic gene clusters are embedded in local hot spots of 3D contacts that segregate cluster regions from the surrounding chromosome environment. The spatial conformation of these cluster-associated domains differs between transcriptionally active and silenced clusters. We further show that silenced clusters associate with heterochromatic chromosomal domains toward the periphery of the nucleus, while transcriptionally active clusters relocate away from the nuclear periphery. Examination of chromosome structure at unrelated clusters in maize, rice, and tomato indicates that integration of clustered pathway genes into distinct topological domains is a common feature in plant genomes. Our results shed light on the potential mechanisms that constrain coexpression within clusters of nonhomologous eukaryotic genes and suggest that gene clustering in the one-dimensional chromosome is accompanied by compartmentalization of the 3D chromosome.
Collapse
|
29
|
Nibau C, Lloyd A, Dadarou D, Betekhtin A, Tsilimigka F, Phillips DW, Doonan JH. CDKG1 Is Required for Meiotic and Somatic Recombination Intermediate Processing in Arabidopsis. THE PLANT CELL 2020; 32:1308-1322. [PMID: 32047050 PMCID: PMC7145484 DOI: 10.1105/tpc.19.00942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/22/2020] [Accepted: 02/08/2020] [Indexed: 05/12/2023]
Abstract
The Arabidopsis (Arabidopsis thaliana) cyclin-dependent kinase G1 (CDKG1) is necessary for recombination and synapsis during male meiosis at high ambient temperature. In the cdkg1-1 mutant, synapsis is impaired and there is a dramatic reduction in the number of class I crossovers, resulting in univalents at metaphase I and pollen sterility. Here, we demonstrate that CDKG1 is necessary for the processing of recombination intermediates in the canonical ZMM recombination pathway and that loss of CDKG1 results in increased class II crossovers. While synapsis and events associated with class I crossovers are severely compromised in a cdkg1-1 mutant, they can be restored by increasing the number of recombination intermediates in the double cdkg1-1 fancm-1 mutant. Despite this, recombination intermediates are not correctly resolved, leading to the formation of chromosome aggregates at metaphase I. Our results show that CDKG1 acts early in the recombination process and is necessary to stabilize recombination intermediates. Finally, we show that the effect on recombination is not restricted to meiosis and that CDKG1 is also required for normal levels of DNA damage-induced homologous recombination in somatic tissues.
Collapse
Affiliation(s)
- Candida Nibau
- Institute of Biological, Rural and Environmental Sciences, Aberystwyth University, Gogerddan, Aberystwyth SY23 3EB, United Kingdom
| | - Andrew Lloyd
- Institute of Biological, Rural and Environmental Sciences, Aberystwyth University, Gogerddan, Aberystwyth SY23 3EB, United Kingdom
| | - Despoina Dadarou
- Institute of Biological, Rural and Environmental Sciences, Aberystwyth University, Gogerddan, Aberystwyth SY23 3EB, United Kingdom
| | - Alexander Betekhtin
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice 40-007, Poland
| | - Foteini Tsilimigka
- Institute of Biological, Rural and Environmental Sciences, Aberystwyth University, Gogerddan, Aberystwyth SY23 3EB, United Kingdom
| | - Dylan W Phillips
- Institute of Biological, Rural and Environmental Sciences, Aberystwyth University, Gogerddan, Aberystwyth SY23 3EB, United Kingdom
| | - John H Doonan
- Institute of Biological, Rural and Environmental Sciences, Aberystwyth University, Gogerddan, Aberystwyth SY23 3EB, United Kingdom
| |
Collapse
|
30
|
Draeger T, C Martin A, Alabdullah AK, Pendle A, Rey MD, Shaw P, Moore G. Dmc1 is a candidate for temperature tolerance during wheat meiosis. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:809-828. [PMID: 31853574 PMCID: PMC7021665 DOI: 10.1007/s00122-019-03508-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 12/10/2019] [Indexed: 05/21/2023]
Abstract
KEY MESSAGE The meiotic recombination gene Dmc1 on wheat chromosome 5D has been identified as a candidate for the maintenance of normal chromosome synapsis and crossover at low and possibly high temperatures. We initially assessed the effects of low temperature on meiotic chromosome synapsis and crossover formation in the hexaploid wheat (Triticum aestivum L.) variety 'Chinese Spring'. At low temperatures, asynapsis and chromosome univalence have been observed before in Chinese Spring lines lacking the long arm of chromosome 5D (5DL), which led to the proposal that 5DL carries a gene (Ltp1) that stabilises wheat chromosome pairing at low temperatures. In the current study, Chinese Spring wild type and 5DL interstitial deletion mutant plants were exposed to low temperature in a controlled environment room during a period from premeiotic interphase to early meiosis I. A 5DL deletion mutant was identified whose meiotic chromosomes exhibit extremely high levels of asynapsis and chromosome univalence at metaphase I after 7 days at 13 °C, suggesting that Ltp1 is deleted in this mutant. Immunolocalisation of the meiotic proteins ASY1 and ZYP1 on ltp1 mutants showed that low temperature results in a failure to complete synapsis at pachytene. KASP genotyping revealed that the ltp1 mutant has a 4-Mb deletion in 5DL. Of 41 genes within this deletion region, the strongest candidate for the stabilisation of chromosome pairing at low temperatures is the meiotic recombination gene Dmc1. The ltp1 mutants were subsequently treated at 30 °C for 24 h during meiosis and exhibited a reduced number of crossovers and increased univalence, though to a lesser extent than at 13 °C. We therefore renamed our ltp1 mutant 'ttmei1' (temperature-tolerant meiosis 1) to reflect this additional loss of high temperature tolerance.
Collapse
Affiliation(s)
- Tracie Draeger
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK.
| | | | | | - Ali Pendle
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - María-Dolores Rey
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, Cordoba, Spain
| | - Peter Shaw
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Graham Moore
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| |
Collapse
|
31
|
Glombik M, Bačovský V, Hobza R, Kopecký D. Competition of Parental Genomes in Plant Hybrids. FRONTIERS IN PLANT SCIENCE 2020; 11:200. [PMID: 32158461 PMCID: PMC7052263 DOI: 10.3389/fpls.2020.00200] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 02/11/2020] [Indexed: 05/17/2023]
Abstract
Interspecific hybridization represents one of the main mechanisms of plant speciation. Merging of two genomes from different subspecies, species, or even genera is frequently accompanied by whole-genome duplication (WGD). Besides its evolutionary role, interspecific hybridization has also been successfully implemented in multiple breeding programs. Interspecific hybrids combine agronomic traits of two crop species or can be used to introgress specific loci of interests, such as those for resistance against abiotic or biotic stresses. The genomes of newly established interspecific hybrids (both allopolyploids and homoploids) undergo dramatic changes, including chromosome rearrangements, amplifications of tandem repeats, activation of mobile repetitive elements, and gene expression modifications. To ensure genome stability and proper transmission of chromosomes from both parental genomes into subsequent generations, allopolyploids often evolve mechanisms regulating chromosome pairing. Such regulatory systems allow only pairing of homologous chromosomes and hamper pairing of homoeologs. Despite such regulatory systems, several hybrid examples with frequent homoeologous chromosome pairing have been reported. These reports open a way for the replacement of one parental genome by the other. In this review, we provide an overview of the current knowledge of genomic changes in interspecific homoploid and allopolyploid hybrids, with strictly homologous pairing and with relaxed pairing of homoeologs.
Collapse
Affiliation(s)
- Marek Glombik
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, Olomouc, Czechia
| | - Václav Bačovský
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czechia
| | - Roman Hobza
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, Olomouc, Czechia
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czechia
| | - David Kopecký
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, Olomouc, Czechia
| |
Collapse
|
32
|
UHRF1-repressed 5'-hydroxymethylcytosine is essential for the male meiotic prophase I. Cell Death Dis 2020; 11:142. [PMID: 32081844 PMCID: PMC7035279 DOI: 10.1038/s41419-020-2333-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 01/29/2020] [Accepted: 01/30/2020] [Indexed: 12/23/2022]
Abstract
5’-hydroxymethylcytosine (5hmC), an important 5’-cytosine modification, is altered highly in order in male meiotic prophase. However, the regulatory mechanism of this dynamic change and the function of 5hmC in meiosis remain largely unknown. Using a knockout mouse model, we showed that UHRF1 regulated male meiosis. UHRF1 deficiency led to failure of meiosis and male infertility. Mechanistically, the deficiency of UHRF1 altered significantly the meiotic gene profile of spermatocytes. Uhrf1 knockout induced an increase of the global 5hmC level. The enrichment of hyper-5hmC at transcriptional start sites (TSSs) was highly associated with gene downregulation. In addition, the elevated level of the TET1 enzyme might have contributed to the higher 5hmC level in the Uhrf1 knockout spermatocytes. Finally, we reported Uhrf1, a key gene in male meiosis, repressed hyper-5hmC by downregulating TET1. Furthermore, UHRF1 facilitated RNA polymerase II (RNA-pol2) loading to promote gene transcription. Thus our study demonstrated a potential regulatory mechanism of 5hmC dynamic change and its involvement in epigenetic regulation in male meiosis.
Collapse
|
33
|
Abstract
Little is known how patterns of cross-over (CO) numbers and distribution during meiosis are established. Here, we reveal that cyclin-dependent kinase A;1 (CDKA;1), the homolog of human Cdk1 and Cdk2, is a major regulator of meiotic recombination in Arabidopsis Arabidopsis plants with reduced CDKA;1 activity experienced a decrease of class I COs, especially lowering recombination rates in centromere-proximal regions. Interestingly, this reduction of type I CO did not affect CO assurance, a mechanism by which each chromosome receives at least one CO, resulting in all chromosomes exhibiting similar genetic lengths in weak loss-of-function cdka ;1 mutants. Conversely, an increase of CDKA;1 activity resulted in elevated recombination frequencies. Thus, modulation of CDKA;1 kinase activity affects the number and placement of COs along the chromosome axis in a dose-dependent manner.
Collapse
|
34
|
Gonzalo A, Lucas MO, Charpentier C, Sandmann G, Lloyd A, Jenczewski E. Reducing MSH4 copy number prevents meiotic crossovers between non-homologous chromosomes in Brassica napus. Nat Commun 2019; 10:2354. [PMID: 31142748 PMCID: PMC6541637 DOI: 10.1038/s41467-019-10010-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 04/11/2019] [Indexed: 02/06/2023] Open
Abstract
In allopolyploids, correct chromosome segregation requires suppression of non-homologous crossovers while levels of homologous crossovers are ensured. To date, no mechanism able to specifically inhibit non-homologous crossovers has been described in allopolyploids other than in bread wheat. Here, we show that reducing the number of functional copies of MSH4, an essential gene for the main crossover pathway, prevents non-homologous crossovers in allotetraploid Brassica napus. We show that non-homologous crossovers originate almost exclusively from the MSH4-dependent recombination pathway and that their numbers decrease when MSH4 returns to single copy in B. napus; by contrast, homologous crossovers remain unaffected by MSH4 duplicate loss. We also demonstrate that MSH4 systematically returns to single copy following numerous independent polyploidy events, a pattern that is probably not by chance. These results suggest that stabilization of allopolyploid meiosis can be enhanced by loss of a key meiotic recombination gene.
Collapse
Affiliation(s)
- Adrián Gonzalo
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000, Versailles, France.,Department of Cell and Developmental Biology, John Innes Centre, Norwich, NR4 7UH, UK
| | - Marie-Odile Lucas
- INRA UMR1349 Institut de Génétique, Environnement et Protection des Plantes, Le Rheu, 35653, France
| | - Catherine Charpentier
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000, Versailles, France
| | - Greta Sandmann
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000, Versailles, France
| | - Andrew Lloyd
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000, Versailles, France.,Institute of Biological, Environmental, and Rural Sciences, Aberystwyth University, Aberystwyth, SY23 3EB, UK
| | - Eric Jenczewski
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000, Versailles, France.
| |
Collapse
|
35
|
Diversity and Determinants of Meiotic Recombination Landscapes. Trends Genet 2019; 35:359-370. [DOI: 10.1016/j.tig.2019.02.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/06/2019] [Accepted: 02/08/2019] [Indexed: 11/19/2022]
|
36
|
Chen AY, Zhu LL, Sun LG, Liu JB, Wang HT, Wang XY, Yang JH, Lu J. Scale law of complex deformation transitions of nanotwins in stainless steel. Nat Commun 2019; 10:1403. [PMID: 30926796 PMCID: PMC6440981 DOI: 10.1038/s41467-019-09360-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 02/27/2019] [Indexed: 11/09/2022] Open
Abstract
Understanding the deformation behavior of metallic materials containing nanotwins (NTs), which can enhance both strength and ductility, is useful for tailoring microstructures at the micro- and nano- scale to enhance mechanical properties. Here, we construct a clear deformation pattern of NTs in austenitic stainless steel by combining in situ tensile tests with a dislocation-based theoretical model and molecular dynamics simulations. Deformation NTs are observed in situ using a transmission electron microscope in different sample regions containing NTs with twin-lamella-spacing (λ) varying from a few nanometers to hundreds of nanometers. Two deformation transitions are found experimentally: from coactivated twinning/detwinning (λ < 5 nm) to secondary twinning (5 nm < λ < 129 nm), and then to the dislocation glide (λ > 129 nm). The simulation results are highly consistent with the observed strong λ-effect, and reveal the intrinsic transition mechanisms induced by partial dislocation slip.
Collapse
Affiliation(s)
- A Y Chen
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - L L Zhu
- Department of Engineering Mechanics and Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang, 310027, China.,Center for X-Mechanics, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - L G Sun
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
| | - J B Liu
- Center for X-Mechanics, Zhejiang University, Hangzhou, Zhejiang, 310027, China.,School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - H T Wang
- Department of Engineering Mechanics and Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang, 310027, China.,Center for X-Mechanics, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - X Y Wang
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - J H Yang
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - J Lu
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China. .,Hong Kong Branch of National Precious Metals Material Engineering Research Centre, Department of Material Science and Engineering, City University of Hong Kong, Hong Kong, China.
| |
Collapse
|
37
|
Martín AC, Borrill P, Higgins J, Alabdullah A, Ramírez-González RH, Swarbreck D, Uauy C, Shaw P, Moore G. Genome-Wide Transcription During Early Wheat Meiosis Is Independent of Synapsis, Ploidy Level, and the Ph1 Locus. FRONTIERS IN PLANT SCIENCE 2018; 9:1791. [PMID: 30564262 PMCID: PMC6288783 DOI: 10.3389/fpls.2018.01791] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 11/19/2018] [Indexed: 05/22/2023]
Abstract
Polyploidization is a fundamental process in plant evolution. One of the biggest challenges faced by a new polyploid is meiosis, particularly discriminating between multiple related chromosomes so that only homologous chromosomes synapse and recombine to ensure regular chromosome segregation and balanced gametes. Despite its large genome size, high DNA repetitive content and similarity between homoeologous chromosomes, hexaploid wheat completes meiosis in a shorter period than diploid species with a much smaller genome. Therefore, during wheat meiosis, mechanisms additional to the classical model based on DNA sequence homology, must facilitate more efficient homologous recognition. One such mechanism could involve exploitation of differences in chromosome structure between homologs and homoeologs at the onset of meiosis. In turn, these chromatin changes, can be expected to be linked to transcriptional gene activity. In this study, we present an extensive analysis of a large RNA-seq data derived from six different genotypes: wheat, wheat-rye hybrids and newly synthesized octoploid triticale, both in the presence and absence of the Ph1 locus. Plant material was collected at early prophase, at the transition leptotene-zygotene, when the telomere bouquet is forming and synapsis between homologs is beginning. The six genotypes exhibit different levels of synapsis and chromatin structure at this stage; therefore, recombination and consequently segregation, are also different. Unexpectedly, our study reveals that neither synapsis, whole genome duplication nor the absence of the Ph1 locus are associated with major changes in gene expression levels during early meiotic prophase. Overall wheat transcription at this meiotic stage is therefore highly resilient to such alterations, even in the presence of major chromatin structural changes. Further studies in wheat and other polyploid species will be required to reveal whether these observations are specific to wheat meiosis.
Collapse
Affiliation(s)
| | - Philippa Borrill
- John Innes Centre, Norwich, United Kingdom
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | | | | | | | | | | | - Peter Shaw
- John Innes Centre, Norwich, United Kingdom
| | | |
Collapse
|
38
|
Jordan KW, Wang S, He F, Chao S, Lun Y, Paux E, Sourdille P, Sherman J, Akhunova A, Blake NK, Pumphrey MO, Glover K, Dubcovsky J, Talbert L, Akhunov ED. The genetic architecture of genome-wide recombination rate variation in allopolyploid wheat revealed by nested association mapping. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:1039-1054. [PMID: 29952048 PMCID: PMC6174997 DOI: 10.1111/tpj.14009] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 05/21/2018] [Accepted: 06/06/2018] [Indexed: 05/18/2023]
Abstract
Recombination affects the fate of alleles in populations by imposing constraints on the reshuffling of genetic information. Understanding the genetic basis of these constraints is critical for manipulating the recombination process to improve the resolution of genetic mapping, and reducing the negative effects of linkage drag and deleterious genetic load in breeding. Using sequence-based genotyping of a wheat nested association mapping (NAM) population of 2,100 recombinant inbred lines created by crossing 29 diverse lines, we mapped QTL affecting the distribution and frequency of 102 000 crossovers (CO). Genome-wide recombination rate variation was mostly defined by rare alleles with small effects together explaining up to 48.6% of variation. Most QTL were additive and showed predominantly trans-acting effects. The QTL affecting the proximal COs also acted additively without increasing the frequency of distal COs. We showed that the regions with decreased recombination carry more single nucleotide polymorphisms (SNPs) with possible deleterious effects than the regions with a high recombination rate. Therefore, our study offers insights into the genetic basis of recombination rate variation in wheat and its effect on the distribution of deleterious SNPs across the genome. The identified trans-acting additive QTL can be utilized to manipulate CO frequency and distribution in the large polyploid wheat genome opening the possibility to improve the efficiency of gene pyramiding and reducing the deleterious genetic load in the low-recombining pericentromeric regions of chromosomes.
Collapse
Affiliation(s)
| | - Shichen Wang
- Department of Plant PathologyKansas State UniversityManhattanKSUSA
- Present address:
TEES‐AgriLife Center for Bioinformatics and Genomic Systems EngineeringTexas A&M University101 Gateway, Suite ACollege StationTX77845USA
| | - Fei He
- Department of Plant PathologyKansas State UniversityManhattanKSUSA
| | - Shiaoman Chao
- USDA‐ARS Cereal Crops Research Unit1605 Albrecht Blvd NFargoNDUSA
| | - Yanni Lun
- Department of Plant PathologyKansas State UniversityManhattanKSUSA
- Present address:
TEES‐AgriLife Center for Bioinformatics and Genomic Systems EngineeringTexas A&M University101 Gateway, Suite ACollege StationTX77845USA
| | - Etienne Paux
- INRA GDEC Auvergne‐Rhône‐AlpesClermont‐FerrandFrance
| | | | | | - Alina Akhunova
- Integrated Genomics FacilityKansas State UniversityManhattanKSUSA
| | | | | | - Karl Glover
- Department of Agronomy, Horticulture and Plant ScienceSouth Dakota State UniversityBrookingsSDUSA
| | - Jorge Dubcovsky
- Department of Plant SciencesUniversity of CaliforniaDavis, DavisCAUSA
- Howard Hughes Medical InstituteChevy ChaseMD20815USA
| | | | | |
Collapse
|
39
|
Pelé A, Rousseau-Gueutin M, Chèvre AM. Speciation Success of Polyploid Plants Closely Relates to the Regulation of Meiotic Recombination. FRONTIERS IN PLANT SCIENCE 2018; 9:907. [PMID: 30002669 PMCID: PMC6031745 DOI: 10.3389/fpls.2018.00907] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 06/08/2018] [Indexed: 05/18/2023]
Abstract
Polyploidization is a widespread phenomenon, especially in flowering plants that have all undergone at least one event of whole genome duplication during their evolutionary history. Consequently, a large range of plants, including many of the world's crops, combines more than two sets of chromosomes originating from the same (autopolyploids) or related species (allopolyploids). Depending on the polyploid formation pathway, different patterns of recombination will be promoted, conditioning the level of heterozygosity. A polyploid population harboring a high level of heterozygosity will produce more genetically diverse progenies. Some of these individuals may show a better adaptability to different ecological niches, increasing their chance for successful establishment through natural selection. Another condition for young polyploids to survive corresponds to the formation of well-balanced gametes, assuring a sufficient level of fertility. In this review, we discuss the consequences of polyploid formation pathways, meiotic behavior and recombination regulation on the speciation success and maintenance of polyploid species.
Collapse
Affiliation(s)
- Alexandre Pelé
- Plant Breeding, Wageningen University & Research, Wageningen, Netherlands
- Institut de Génétique, Environnement et Protection des Plantes, Institut National de la Recherche Agronomique, Agrocampus Ouest, Université de Rennes 1, Rennes, France
| | - Mathieu Rousseau-Gueutin
- Institut de Génétique, Environnement et Protection des Plantes, Institut National de la Recherche Agronomique, Agrocampus Ouest, Université de Rennes 1, Rennes, France
| | - Anne-Marie Chèvre
- Institut de Génétique, Environnement et Protection des Plantes, Institut National de la Recherche Agronomique, Agrocampus Ouest, Université de Rennes 1, Rennes, France
| |
Collapse
|
40
|
Rey MD, Martín AC, Smedley M, Hayta S, Harwood W, Shaw P, Moore G. Magnesium Increases Homoeologous Crossover Frequency During Meiosis in ZIP4 ( Ph1 Gene) Mutant Wheat-Wild Relative Hybrids. FRONTIERS IN PLANT SCIENCE 2018; 9:509. [PMID: 29731763 PMCID: PMC5920029 DOI: 10.3389/fpls.2018.00509] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 04/03/2018] [Indexed: 05/18/2023]
Abstract
Wild relatives provide an important source of useful traits in wheat breeding. Wheat and wild relative hybrids have been widely used in breeding programs to introduce such traits into wheat. However, successful introgression is limited by the low frequency of homoeologous crossover (CO) between wheat and wild relative chromosomes. Hybrids between wheat carrying a 70 Mb deletion on chromosome 5B (ph1b) and wild relatives, have been exploited to increase the level of homoeologous CO, allowing chromosome exchange between their chromosomes. In ph1b-rye hybrids, CO number increases from a mean of 1 CO to 7 COs per cell. CO number can be further increased up to a mean of 12 COs per cell in these ph1b hybrids by treating the plants with Hoagland solution. More recently, it was shown that the major meiotic crossover gene ZIP4 on chromosome 5B (TaZIP4-B2) within the 70 Mb deletion, was responsible for the restriction of homoeologous COs in wheat-wild relative hybrids, confirming the ph1b phenotype as a complete Tazip4-B2 deletion mutant (Tazip4-B2 ph1b). In this study, we have identified the particular Hoagland solution constituent responsible for the increased chiasma frequency in Tazip4-B2 ph1b mutant-rye hybrids and extended the analysis to Tazip4-B2 TILLING and CRISPR mutant-Ae variabilis hybrids. Chiasma frequency at meiotic metaphase I, in the absence of each Hoagland solution macronutrient (NH4 H2PO4, KNO3, Ca (NO3)2·4H2O or Mg SO4·7H2O) was analyzed. A significant decrease in homoeologous CO frequency was observed when the Mg2+ ion was absent. A significant increase of homoeologous CO frequency was observed in all analyzed hybrids, when plants were irrigated with a 1 mM Mg2+ solution. These observations suggest a role for magnesium supplementation in improving the success of genetic material introgression from wild relatives into wheat.
Collapse
Affiliation(s)
- María-Dolores Rey
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Azahara C. Martín
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Mark Smedley
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Sadiye Hayta
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Wendy Harwood
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Peter Shaw
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Graham Moore
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
41
|
Rey MD, Martín AC, Smedley M, Hayta S, Harwood W, Shaw P, Moore G. Magnesium Increases Homoeologous Crossover Frequency During Meiosis in ZIP4 ( Ph1 Gene) Mutant Wheat-Wild Relative Hybrids. FRONTIERS IN PLANT SCIENCE 2018; 9:509. [PMID: 29731763 DOI: 10.1101/278341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 04/03/2018] [Indexed: 05/28/2023]
Abstract
Wild relatives provide an important source of useful traits in wheat breeding. Wheat and wild relative hybrids have been widely used in breeding programs to introduce such traits into wheat. However, successful introgression is limited by the low frequency of homoeologous crossover (CO) between wheat and wild relative chromosomes. Hybrids between wheat carrying a 70 Mb deletion on chromosome 5B (ph1b) and wild relatives, have been exploited to increase the level of homoeologous CO, allowing chromosome exchange between their chromosomes. In ph1b-rye hybrids, CO number increases from a mean of 1 CO to 7 COs per cell. CO number can be further increased up to a mean of 12 COs per cell in these ph1b hybrids by treating the plants with Hoagland solution. More recently, it was shown that the major meiotic crossover gene ZIP4 on chromosome 5B (TaZIP4-B2) within the 70 Mb deletion, was responsible for the restriction of homoeologous COs in wheat-wild relative hybrids, confirming the ph1b phenotype as a complete Tazip4-B2 deletion mutant (Tazip4-B2 ph1b). In this study, we have identified the particular Hoagland solution constituent responsible for the increased chiasma frequency in Tazip4-B2 ph1b mutant-rye hybrids and extended the analysis to Tazip4-B2 TILLING and CRISPR mutant-Ae variabilis hybrids. Chiasma frequency at meiotic metaphase I, in the absence of each Hoagland solution macronutrient (NH4 H2PO4, KNO3, Ca (NO3)2·4H2O or Mg SO4·7H2O) was analyzed. A significant decrease in homoeologous CO frequency was observed when the Mg2+ ion was absent. A significant increase of homoeologous CO frequency was observed in all analyzed hybrids, when plants were irrigated with a 1 mM Mg2+ solution. These observations suggest a role for magnesium supplementation in improving the success of genetic material introgression from wild relatives into wheat.
Collapse
Affiliation(s)
- María-Dolores Rey
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Azahara C Martín
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Mark Smedley
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Sadiye Hayta
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Wendy Harwood
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Peter Shaw
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Graham Moore
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
42
|
Calderón MC, Rey MD, Martín A, Prieto P. Homoeologous Chromosomes From Two Hordeum Species Can Recognize and Associate During Meiosis in Wheat in the Presence of the Ph1 Locus. FRONTIERS IN PLANT SCIENCE 2018; 9:585. [PMID: 29765389 PMCID: PMC5938817 DOI: 10.3389/fpls.2018.00585] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 04/13/2018] [Indexed: 05/20/2023]
Abstract
Understanding the system of a basic eukaryotic cellular mechanism like meiosis is of fundamental importance in plant biology. Moreover, it is also of great strategic interest in plant breeding since unzipping the mechanism of chromosome specificity/pairing during meiosis will allow its manipulation to introduce genetic variability from related species into a crop. The success of meiosis in a polyploid like wheat strongly depends on regular pairing of homologous (identical) chromosomes and recombination, processes mainly controlled by the Ph1 locus. This means that pairing and recombination of related chromosomes rarely occur in the presence of this locus, making difficult wheat breeding trough the incorporation of genetic variability from related species. In this work, we show that wild and cultivated barley chromosomes associate in the wheat background even in the presence of the Ph1 locus. We have developed double monosomic wheat lines carrying two chromosomes from two barley species for the same and different homoeology chromosome group, respectively. Genetic in situ hybridization revealed that homoeologous Hordeum chromosomes recognize each other and pair during early meiosis in wheat. However, crossing over does not occur at any time and they remained always as univalents during meiosis metaphase I. Our results suggest that the Ph1 locus does not prevent chromosome recognition and pairing but crossing over between homoeologous. The role of subtelomeres in chromosome recognition is also discussed.
Collapse
Affiliation(s)
- María C. Calderón
- Plant Breeding Department, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Córdoba, Spain
| | | | - Antonio Martín
- Plant Breeding Department, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Córdoba, Spain
| | - Pilar Prieto
- Plant Breeding Department, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Córdoba, Spain
- *Correspondence: Pilar Prieto
| |
Collapse
|
43
|
Lawrence EJ, Griffin CH, Henderson IR. Modification of meiotic recombination by natural variation in plants. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:5471-5483. [PMID: 28992351 DOI: 10.1093/jxb/erx306] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Meiosis is a specialized cell division that produces haploid gametes required for sexual reproduction. During the first meiotic division, homologous chromosomes pair and undergo reciprocal crossing over, which recombines linked sequence variation. Meiotic recombination frequency varies extensively both within and between species. In this review, we will examine the molecular basis of meiotic recombination rate variation, with an emphasis on plant genomes. We first consider cis modification caused by polymorphisms at the site of recombination, or elsewhere on the same chromosome. We review cis effects caused by mismatches within recombining joint molecules, the effect of structural hemizygosity, and the role of specific DNA sequence motifs. In contrast, trans modification of recombination is exerted by polymorphic loci encoding diffusible molecules, which are able to modulate recombination on the same and/or other chromosomes. We consider trans modifiers that act to change total recombination levels, hotspot locations, or interactions between homologous and homeologous chromosomes in polyploid species. Finally, we consider the significance of genetic variation that modifies meiotic recombination for adaptation and evolution of plant species.
Collapse
Affiliation(s)
- Emma J Lawrence
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Catherine H Griffin
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Ian R Henderson
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| |
Collapse
|
44
|
Pawar VK, Singh Y, Sharma K, Shrivastav A, Sharma A, Singh A, Meher JG, Singh P, Raval K, Bora HK, Datta D, Lal J, Chourasia MK. Doxorubicin Hydrochloride Loaded Zymosan-Polyethylenimine Biopolymeric Nanoparticles for Dual 'Chemoimmunotherapeutic' Intervention in Breast Cancer. Pharm Res 2017; 34:1857-1871. [PMID: 28608139 DOI: 10.1007/s11095-017-2195-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 05/26/2017] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To utilize nanoparticles produced by condensation of zymosan (an immunotherapeutic polysaccharide) with pegylated polyethylenimine (PEG-PEI) for dual intervention in breast cancer by modulating tumor microenvironment and direct chemotherapy. METHOD Positively charged PEG-PEI and negatively charged sulphated zymosan were utilized for electrostatic complexation of chemoimmunotherapeutic nanoparticles (ChiNPs). ChiNPs were loaded with doxorubicin hydrochloride (DOX) for improved delivery at tumor site and were tested for in-vivo tolerability. Biodistribution studies were conducted to showcase their effective accumulation in tumor hypoxic regions where tumor associated macrophages (TAMs) are preferentially recruited. RESULTS ChiNPs modulated TAMs differentiation resulting in decrement of CD206 positive population. This immunotherapeutic action was furnished by enhanced expression of Th1 specific cytokines. ChiNPs also facilitated an anti-angiogenetic effect which further reduces the possibility of tumor progression and metastasis.
Collapse
Affiliation(s)
- Vivek K Pawar
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow, U.P, 226031, India.,Academy of Scientific & Innovative Research,, New Delhi, 110025, India
| | - Yuvraj Singh
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow, U.P, 226031, India.,Academy of Scientific & Innovative Research,, New Delhi, 110025, India
| | - Komal Sharma
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow, U.P, 226031, India.,Academy of Scientific & Innovative Research,, New Delhi, 110025, India
| | - Arpita Shrivastav
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow, U.P, 226031, India
| | - Abhisheak Sharma
- Academy of Scientific & Innovative Research,, New Delhi, 110025, India.,Pharmacokinetics & Metabolism Division, CSIR-Central Drug Research Institute, Lucknow, U.P, 226031, India
| | - Akhilesh Singh
- Biochemistry Division, CSIR-Central Drug Research Institute, Lucknow, U.P, 226031, India
| | - Jaya Gopal Meher
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow, U.P, 226031, India
| | - Pankaj Singh
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow, U.P, 226031, India.,Academy of Scientific & Innovative Research,, New Delhi, 110025, India
| | - Kavit Raval
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow, U.P, 226031, India.,Academy of Scientific & Innovative Research,, New Delhi, 110025, India
| | - Himangshu K Bora
- Laboratory Animals Facility, CSIR-Central Drug Research Institute, Lucknow, U.P, 226031, India
| | - Dipak Datta
- Biochemistry Division, CSIR-Central Drug Research Institute, Lucknow, U.P, 226031, India
| | - Jawahar Lal
- Pharmacokinetics & Metabolism Division, CSIR-Central Drug Research Institute, Lucknow, U.P, 226031, India
| | - Manish K Chourasia
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow, U.P, 226031, India. .,Academy of Scientific & Innovative Research,, New Delhi, 110025, India.
| |
Collapse
|
45
|
Martín AC, Rey MD, Shaw P, Moore G. Dual effect of the wheat Ph1 locus on chromosome synapsis and crossover. Chromosoma 2017; 126:669-680. [PMID: 28365783 PMCID: PMC5688220 DOI: 10.1007/s00412-017-0630-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 03/15/2017] [Accepted: 03/20/2017] [Indexed: 11/28/2022]
Abstract
Allopolyploids must possess a mechanism for facilitating synapsis and crossover (CO) between homologues, in preference to homoeologues (related chromosomes), to ensure successful meiosis. In hexaploid wheat, the Ph1 locus has a major effect on the control of these processes. Studying a wheat mutant lacking Ph1 provides an opportunity to explore the underlying mechanisms. Recently, it was proposed that Ph1 stabilises wheat during meiosis, both by promoting homologue synapsis during early meiosis and preventing MLH1 sites on synapsed homoeologues from becoming COs later in meiosis. Here, we explore these two effects and demonstrate firstly that whether or not Ph1 is present, synapsis between homoeologues does not take place during the telomere bouquet stage, with only homologous synapsis taking place during this stage. Furthermore, in wheat lacking Ph1, overall synapsis is delayed with respect to the telomere bouquet, with more synapsis occurring after the bouquet stage, when homoeologous synapsis is also possible. Secondly, we show that in the absence of Ph1, we can increase the number of MLH1 sites progressing to COs by altering environmental growing conditions; we show that higher nutrient levels in the soil or lower temperatures increase the level of both homologue and homoeologue COs. These observations suggest opportunities to improve the exploitation of the Ph1 wheat mutant in breeding programmes.
Collapse
Affiliation(s)
| | | | - Peter Shaw
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Graham Moore
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK.
| |
Collapse
|
46
|
Lambing C, Franklin FCH, Wang CJR. Understanding and Manipulating Meiotic Recombination in Plants. PLANT PHYSIOLOGY 2017; 173:1530-1542. [PMID: 28108697 PMCID: PMC5338670 DOI: 10.1104/pp.16.01530] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 01/18/2017] [Indexed: 05/18/2023]
Abstract
Meiosis is a specialized cell division, essential in most reproducing organisms to halve the number of chromosomes, thereby enabling the restoration of ploidy levels during fertilization. A key step of meiosis is homologous recombination, which promotes homologous pairing and generates crossovers (COs) to connect homologous chromosomes until their separation at anaphase I. These CO sites, seen cytologically as chiasmata, represent a reciprocal exchange of genetic information between two homologous nonsister chromatids. This gene reshuffling during meiosis has a significant influence on evolution and also plays an essential role in plant breeding, because a successful breeding program depends on the ability to bring the desired combinations of alleles on chromosomes. However, the number and distribution of COs during meiosis is highly constrained. There is at least one CO per chromosome pair to ensure accurate segregation of homologs, but in most organisms, the CO number rarely exceeds three regardless of chromosome size. Moreover, their positions are not random on chromosomes but exhibit regional preference. Thus, genes in recombination-poor regions tend to be inherited together, hindering the generation of novel allelic combinations that could be exploited by breeding programs. Recently, much progress has been made in understanding meiotic recombination. In particular, many genes involved in the process in Arabidopsis (Arabidopsis thaliana) have been identified and analyzed. With the coming challenges of food security and climate change, and our enhanced knowledge of how COs are formed, the interest and needs in manipulating CO formation are greater than ever before. In this review, we focus on advances in understanding meiotic recombination and then summarize the attempts to manipulate CO formation. Last, we pay special attention to the meiotic recombination in polyploidy, which is a common genomic feature for many crop plants.
Collapse
Affiliation(s)
- Christophe Lambing
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom (C.L.)
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom (F.C.H.F.); and
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529 Taiwan (C.-J.R.W.)
| | - F Chris H Franklin
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom (C.L.)
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom (F.C.H.F.); and
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529 Taiwan (C.-J.R.W.)
| | - Chung-Ju Rachel Wang
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom (C.L.);
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom (F.C.H.F.); and
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529 Taiwan (C.-J.R.W.)
| |
Collapse
|
47
|
Ziolkowski PA, Underwood CJ, Lambing C, Martinez-Garcia M, Lawrence EJ, Ziolkowska L, Griffin C, Choi K, Franklin FCH, Martienssen RA, Henderson IR. Natural variation and dosage of the HEI10 meiotic E3 ligase control Arabidopsis crossover recombination. Genes Dev 2017; 31:306-317. [PMID: 28223312 PMCID: PMC5358726 DOI: 10.1101/gad.295501.116] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 01/27/2017] [Indexed: 11/24/2022]
Abstract
During meiosis, homologous chromosomes undergo crossover recombination, which creates genetic diversity and balances homolog segregation. Despite these critical functions, crossover frequency varies extensively within and between species. Although natural crossover recombination modifier loci have been detected in plants, causal genes have remained elusive. Using natural Arabidopsis thaliana accessions, we identified two major recombination quantitative trait loci (rQTLs) that explain 56.9% of crossover variation in Col×Ler F2 populations. We mapped rQTL1 to semidominant polymorphisms in HEI10, which encodes a conserved ubiquitin E3 ligase that regulates crossovers. Null hei10 mutants are haploinsufficient, and, using genome-wide mapping and immunocytology, we show that transformation of additional HEI10 copies is sufficient to more than double euchromatic crossovers. However, heterochromatic centromeres remained recombination-suppressed. The strongest HEI10-mediated crossover increases occur in subtelomeric euchromatin, which is reminiscent of sex differences in Arabidopsis recombination. Our work reveals that HEI10 naturally limits Arabidopsis crossovers and has the potential to influence the response to selection.
Collapse
Affiliation(s)
- Piotr A Ziolkowski
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
- Department of Biotechnology, Adam Mickiewicz University, 61-614 Poznan, Poland
| | - Charles J Underwood
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
- Howard Hughes Medical Institute, Gordon and Betty Moore Foundation, Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Christophe Lambing
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | | | - Emma J Lawrence
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Liliana Ziolkowska
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Catherine Griffin
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Kyuha Choi
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - F Chris H Franklin
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Robert A Martienssen
- Howard Hughes Medical Institute, Gordon and Betty Moore Foundation, Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Ian R Henderson
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| |
Collapse
|
48
|
Kwiatek MT, Wiśniewska H, Ślusarkiewicz-Jarzina A, Majka J, Majka M, Belter J, Pudelska H. Gametocidal Factor Transferred from Aegilops geniculata Roth Can Be Adapted for Large-Scale Chromosome Manipulations in Cereals. FRONTIERS IN PLANT SCIENCE 2017; 8:409. [PMID: 28396677 PMCID: PMC5366343 DOI: 10.3389/fpls.2017.00409] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 03/09/2017] [Indexed: 05/16/2023]
Abstract
Segregation distorters are curious, evolutionarily selfish genetic elements, which distort Mendelian segregation in their favor at the expense of others. Those agents include gametocidal factors (Gc), which ensure their preferential transmission by triggering damages in cells lacking them via chromosome break induction. Hence, we hypothesized that the gametocidal system can be adapted for chromosome manipulations between Triticum and Secale chromosomes in hexaploid triticale (×Triticosecale Wittmack). In this work we studied the little-known gametocidal action of a Gc factor located on Aegilops geniculata Roth chromosome 4Mg. Our results indicate that the initiation of the gametocidal action takes place at anaphase II of meiosis of pollen mother cells. Hence, we induced androgenesis at postmeiotic pollen divisions (via anther cultures) in monosomic 4Mg addition plants of hexaploid triticale (AABBRR) followed by production of doubled haploids, to maintain the chromosome aberrations caused by the gametocidal action. This approach enabled us to obtain a large number of plants with two copies of particular chromosome translocations, which were identified by the use of cytomolecular methods. We obtained 41 doubled haploid triticale lines and 17 of them carried chromosome aberrations that included plants with the following chromosome sets: 40T+Dt2RS+Dt2RL (5 lines), 40T+N2R (1), 38T+D4RS.4BL (3), 38T+D5BS-5BL.5RL (5), and 38T+D7RS.3AL (3). The results show that the application of the Gc mechanism in combination with production of doubled haploid lines provides a sufficiently large population of homozygous doubled haploid individuals with two identical copies of translocation chromosomes. In our opinion, this approach will be a valuable tool for the production of novel plant material, which could be used for gene tracking studies, genetic mapping, and finally to enhance the diversity of cereals.
Collapse
Affiliation(s)
- Michał T. Kwiatek
- Cereal Genomics Team, Department of Genomics, Institute of Plant Genetics, Polish Academy of SciencesPoznań, Poland
- *Correspondence: Michał T. Kwiatek
| | - Halina Wiśniewska
- Cereal Genomics Team, Department of Genomics, Institute of Plant Genetics, Polish Academy of SciencesPoznań, Poland
| | - Aurelia Ślusarkiewicz-Jarzina
- Bioengineering Team, Department of Biotechnology, Institute of Plant Genetics, Polish Academy of SciencesPoznań, Poland
| | - Joanna Majka
- Cytogenetics and Molecular Physiology of Plants Team, Department of Environmental Stress Biology, Institute of Plant Genetics, Polish Academy of SciencesPoznań, Poland
| | - Maciej Majka
- Cereal Genomics Team, Department of Genomics, Institute of Plant Genetics, Polish Academy of SciencesPoznań, Poland
| | - Jolanta Belter
- Cereal Genomics Team, Department of Genomics, Institute of Plant Genetics, Polish Academy of SciencesPoznań, Poland
| | - Hanna Pudelska
- Bioengineering Team, Department of Biotechnology, Institute of Plant Genetics, Polish Academy of SciencesPoznań, Poland
- Cytogenetics and Molecular Physiology of Plants Team, Department of Environmental Stress Biology, Institute of Plant Genetics, Polish Academy of SciencesPoznań, Poland
| |
Collapse
|
49
|
Rey MD, Martín AC, Higgins J, Swarbreck D, Uauy C, Shaw P, Moore G. Exploiting the ZIP4 homologue within the wheat Ph1 locus has identified two lines exhibiting homoeologous crossover in wheat-wild relative hybrids. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2017; 37:95. [PMID: 28781573 PMCID: PMC5515957 DOI: 10.1007/s11032-017-0700-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 07/03/2017] [Indexed: 05/20/2023]
Abstract
Despite possessing related ancestral genomes, hexaploid wheat behaves as a diploid during meiosis. The wheat Ph1 locus promotes accurate synapsis and crossover of homologous chromosomes. Interspecific hybrids between wheat and wild relatives are exploited by breeders to introgress important traits from wild relatives into wheat, although in hybrids between hexaploid wheat and wild relatives, which possess only homoeologues, crossovers do not take place during meiosis at metaphase I. However, in hybrids between Ph1 deletion mutants and wild relatives, crossovers do take place. A single Ph1 deletion (ph1b) mutant has been exploited for the last 40 years for this activity. We show here that chemically induced mutant lines, selected for a mutation in TaZIP4-B2 within the Ph1 locus, exhibit high levels of homoeologous crossovers when crossed with wild relatives. Tazip4-B2 mutant lines may be more stable over multiple generations, as multivalents causing accumulation of chromosome translocations are less frequent. Exploitation of such Tazip4-B2 mutants, rather than mutants with whole Ph1 locus deletions, may therefore improve introgression of wild relative chromosome segments into wheat.
Collapse
Affiliation(s)
| | | | - Janet Higgins
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ UK
| | - David Swarbreck
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ UK
| | - Cristobal Uauy
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH UK
| | - Peter Shaw
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH UK
| | - Graham Moore
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH UK
| |
Collapse
|
50
|
Koo DH, Liu W, Friebe B, Gill BS. Homoeologous recombination in the presence of Ph1 gene in wheat. Chromosoma 2016; 126:531-540. [PMID: 27909815 DOI: 10.1007/s00412-016-0622-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 11/17/2016] [Accepted: 11/21/2016] [Indexed: 11/28/2022]
Abstract
A crossover (CO) and its cytological signature, the chiasma, are major features of eukaryotic meiosis. The formation of at least one CO/chiasma between homologous chromosome pairs is essential for accurate chromosome segregation at the first meiotic division and genetic recombination. Polyploid organisms with multiple sets of homoeologous chromosomes have evolved additional mechanisms for the regulation of CO/chiasma. In hexaploid wheat (2n = 6× = 42), this is accomplished by pairing homoeologous (Ph) genes, with Ph1 having the strongest effect on suppressing homoeologous recombination and homoeologous COs. In this study, we observed homoeologous COs between chromosome 5Mg of Aegilops geniculata and 5D of wheat in plants where Ph1 was fully active, indicating that chromosome 5Mg harbors a homoeologous recombination promoter factor(s). Further cytogenetic analysis, with different 5Mg/5D recombinants, showed that the homoeologous recombination promoting factor(s) may be located in proximal regions of 5Mg. In addition, we observed a higher frequency of homoeologous COs in the pericentromeric region between chromosome combination of rec5Mg#2S·5Mg#2L and 5D compared to 5Mg#1/5D, which may be caused by a small terminal region of 5DL homology present in chromosome rec5Mg#2. The genetic stocks reported here will be useful for analyzing the mechanism of Ph1 action and the nature of homoeologous COs.
Collapse
Affiliation(s)
- Dal-Hoe Koo
- Wheat Genetics Resource Center, Department of Plant Pathology, Throckmorton Plant Sciences Center, Kansas State University, Manhattan, KS, 66506-5502, USA
| | - Wenxuan Liu
- Wheat Genetics Resource Center, Department of Plant Pathology, Throckmorton Plant Sciences Center, Kansas State University, Manhattan, KS, 66506-5502, USA.,Laboratory of Cell and Chromosome Engineering, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Bernd Friebe
- Wheat Genetics Resource Center, Department of Plant Pathology, Throckmorton Plant Sciences Center, Kansas State University, Manhattan, KS, 66506-5502, USA.
| | - Bikram S Gill
- Wheat Genetics Resource Center, Department of Plant Pathology, Throckmorton Plant Sciences Center, Kansas State University, Manhattan, KS, 66506-5502, USA
| |
Collapse
|