1
|
Butola T, Hernández-Frausto M, Blankvoort S, Flatset MS, Peng L, Hairston A, Johnson CD, Elmaleh M, Amilcar A, Hussain F, Clopath C, Kentros C, Basu J. Hippocampus shapes entorhinal cortical output through a direct feedback circuit. Nat Neurosci 2025; 28:811-822. [PMID: 39966537 DOI: 10.1038/s41593-025-01883-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 01/16/2025] [Indexed: 02/20/2025]
Abstract
Our brains integrate sensory, cognitive and internal state information with memories to extract behavioral relevance. Cortico-hippocampal interactions likely mediate this interplay, but underlying circuit mechanisms remain elusive. Unlike the entorhinal cortex-to-hippocampus pathway, we know little about the organization and function of the hippocampus-to-cortex feedback circuit. Here we report in mice, two functionally distinct parallel hippocampus-to-entorhinal cortex feedback pathways: the canonical disynaptic route via layer 5 and a novel monosynaptic input to layer 2/3. Circuit mapping reveals that hippocampal input predominantly drives excitation in layer 5 but feed-forward inhibition in layer 2/3. Upon repetitive pairing with cortical layer 1 inputs, hippocampal inputs undergo homosynaptic potentiation in layer 5, but induce heterosynaptic plasticity and spike output in layer 2/3. Behaviorally, hippocampal inputs to layer 5 and layer 2/3 support object memory encoding versus recall, respectively. Two-photon imaging during navigation reveals hippocampal suppression reduces spatially tuned cortical axonal activity. We present a model, where hippocampal feedback could iteratively shape ongoing cortical processing.
Collapse
Affiliation(s)
- Tanvi Butola
- Neuroscience Institute, New York University Langone Health, New York City, NY, USA
| | | | - Stefan Blankvoort
- Centre for Neural Computation, Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
| | - Marcus Sandbukt Flatset
- Centre for Neural Computation, Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
| | - Lulu Peng
- Neuroscience Institute, New York University Langone Health, New York City, NY, USA
| | - Ariel Hairston
- Neuroscience Institute, New York University Langone Health, New York City, NY, USA
| | - Cara Deanna Johnson
- Neuroscience Institute, New York University Langone Health, New York City, NY, USA
| | - Margot Elmaleh
- Neuroscience Institute, New York University Langone Health, New York City, NY, USA
| | - Amanda Amilcar
- Neuroscience Institute, New York University Langone Health, New York City, NY, USA
| | - Fabliha Hussain
- Neuroscience Institute, New York University Langone Health, New York City, NY, USA
| | - Claudia Clopath
- Department of Bioengineering, Imperial College London, London, UK
| | - Clifford Kentros
- Centre for Neural Computation, Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | - Jayeeta Basu
- Neuroscience Institute, New York University Langone Health, New York City, NY, USA.
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York City, NY, USA.
- Department of Psychiatry, New York University Grossman School of Medicine, New York City, NY, USA.
- Center for Neural Science, New York University, New York, NY, USA.
| |
Collapse
|
2
|
O'Sullivan M. Localisation of function in the brain: a rethink. Pract Neurol 2025; 25:109-115. [PMID: 39288985 DOI: 10.1136/pn-2023-003773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2024] [Indexed: 09/19/2024]
Abstract
A modular view of brain function dominates the teaching of medical students and clinical psychologists and is implicit in day-to-day clinical practice. This view glosses over a long-standing debate. The extent of one-to-one mappings between region and function remains a controversial topic. For the cortex, localisation of function versus 'cerebral equipotentiality' was debated less than 150 years ago, and traces of this debate remain active in systems neuroscience today. The advent of functional brain imaging led to an explosion of evidence on localisation of function studied in vivo, and a gold rush to map an ever-increasing range of 'functions'. Rapid growth in knowledge was accompanied, to some extent, by a flourishing neuromythology. There are currently few clinical applications of brain mapping techniques, but new areas are emerging. An understanding of the central debate on functional localisation will bring a more nuanced view of problems encountered in clinical practice.
Collapse
Affiliation(s)
- Michael O'Sullivan
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
3
|
Lyu J, Li J, Ding R, Zhao H, Liu C, Qin S. Emotional salience network involved in constructing two-dimensional fear space in humans. Neurobiol Stress 2025; 34:100677. [PMID: 39649148 PMCID: PMC11621499 DOI: 10.1016/j.ynstr.2024.100677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 06/20/2024] [Accepted: 10/02/2024] [Indexed: 12/10/2024] Open
Abstract
Fear learning is pivotal for organismal survival, ensuring the ability to avoid potential threats through learning based on experiencing minimal fear information. In reality, fear learning requires to form a structured representation of fear experiences from multiple dimensions in order to support flexible use in ever-changing environment. Yet, the underlying neural mechanisms of constructing dimensional fear space remain elusive. Here we set up an innovative approach with two-dimensional fear learning, by utilizing the probability (uncertainty) and subjective pain intensity of threatening mild electric shock with five levels of each dimension. Behaviorally, individuals constructed a two-dimensional fear space after learning phase, as evidenced by significant changes in participant's fearful ratings for each cue associated with a five-by-five grid after (relative to before) learning phase. Analysis of neuroimaging data revealed that the medial temporal lobe, in conjunction with the amygdala, the insula, the anterior cingulate cortex (ACC), the hippocampus, and the dorsolateral prefrontal cortex (dlPFC), collectively contribute to the construction of a two-dimensional fear space consisting of uncertainty and intensity. Activation in the parahippocampal gyrus, insula, and dlPFC was associated with mental navigation within two-dimensional fear space, whereas the engagement of insula, ACC, amygdala, the hippocampus, the dlPFC was associated with a unified fearful scoring cross uncertainty and intensity dimensions after fear learning. Our findings suggest a neurocognitive model through which emotional salience network underlies the construction of a structured representation of fear experiences from multiple dimensions.
Collapse
Affiliation(s)
- Jing Lyu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Jiayue Li
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Rui Ding
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Hui Zhao
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Chao Liu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Shaozheng Qin
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
- IDG / Mc Govern Institute for Brain Research, Beijing Normal University, China
- Beijing Key Lab of Brain Imaging and Connectomics, Beijing Normal University, China
| |
Collapse
|
4
|
Corriveau-Lecavalier N, Adams JN, Fischer L, Molloy EN, Maass A. Cerebral hyperactivation across the Alzheimer's disease pathological cascade. Brain Commun 2024; 6:fcae376. [PMID: 39513091 PMCID: PMC11542485 DOI: 10.1093/braincomms/fcae376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/18/2024] [Accepted: 10/23/2024] [Indexed: 11/15/2024] Open
Abstract
Neuronal dysfunction in specific brain regions or across distributed brain networks is a known feature of Alzheimer's disease. An often reported finding in the early stage of the disease is the presence of increased functional MRI (fMRI) blood oxygenation level-dependent signal under task conditions relative to cognitively normal controls, a phenomenon known as 'hyperactivation'. However, research in the past decades yielded complex, sometimes conflicting results. The magnitude and topology of fMRI hyperactivation patterns have been found to vary across the preclinical and clinical spectrum of Alzheimer's disease, including concomitant 'hypoactivation' in some cases. These incongruences are likely due to a range of factors, including the disease stage at which the cohort is examined, the brain areas or networks studied and the fMRI paradigm utilized to evoke these functional abnormalities. Additionally, a perennial question pertains to the nature of hyperactivation in the context of Alzheimer's disease. Some propose it reflects compensatory mechanisms to sustain cognitive performance, while others suggest it is linked to the pathological disruption of a highly regulated homeostatic cycle that contributes to, or even drives, disease progression. Providing a coherent narrative for these empirical and conceptual discrepancies is paramount to develop disease models, understand the synergy between hyperactivation and the Alzheimer's disease pathological cascade and tailor effective interventions. We first provide a comprehensive overview of functional brain changes spanning the course from normal ageing to the clinical spectrum of Alzheimer's disease. We then highlight evidence supporting a close relationship between fMRI hyperactivation and in vivo markers of Alzheimer's pathology. We primarily focus on task-based fMRI studies in humans, but also consider studies using different functional imaging techniques and animal models. We then discuss the potential mechanisms underlying hyperactivation in the context of Alzheimer's disease and provide a testable framework bridging hyperactivation, ageing, cognition and the Alzheimer's disease pathological cascade. We conclude with a discussion of future challenges and opportunities to advance our understanding of the fundamental disease mechanisms of Alzheimer's disease, and the promising development of therapeutic interventions incorporating or aimed at hyperactivation and large-scale functional systems.
Collapse
Affiliation(s)
- Nick Corriveau-Lecavalier
- Department of Neurology, Mayo Clinic, Rochester, Minnesota 55902, USA
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota 55902 USA
| | - Jenna N Adams
- Department of Neurobiology and Behavior, University of California, Irvine 92697, CA, USA
| | - Larissa Fischer
- German Center for Neurodegenerative Diseases, Magdeburg 39120, Germany
| | - Eóin N Molloy
- German Center for Neurodegenerative Diseases, Magdeburg 39120, Germany
- Division of Nuclear Medicine, Department of Radiology & Nuclear Medicine, Faculty of Medicine, Otto von Guericke University Magdeburg, Magdeburg 39120, Germany
| | - Anne Maass
- German Center for Neurodegenerative Diseases, Magdeburg 39120, Germany
- Institute for Biology, Otto-von-Guericke University Magdeburg, Magdeburg 39120, Germany
| |
Collapse
|
5
|
Kuhn HM, Serrano LC, Stys GA, Smith BL, Speckmaier J, Dawson BD, Murray BR, He J, Robison AJ, Eagle AL. Lateral entorhinal cortex neurons that project to nucleus accumbens mediate contextual associative memory. Learn Mem 2024; 31:a054026. [PMID: 39592189 PMCID: PMC11606517 DOI: 10.1101/lm.054026.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024]
Abstract
The lateral entorhinal cortex (LEC) contains glutamatergic projections that innervate the nucleus accumbens (NAc) and may be involved in the encoding of contextual associations with both positive and negative valences, such as those encountered in drug cues or fear conditioning. To determine whether LEC-NAc neurons are activated by the encoding and recall of contexts associated with cocaine or footshock, we measured c-fos expression in these neurons and found that LEC-NAc neurons are activated in both contexts. Specifically, activation patterns of the LEC-NAc were observed in a novel context and reexposure to the same context, highlighting the specific role for LEC-NAc neurons in encoding rather than the valence of a specific event-related memory. Using a combination of circuit-specific chemogenetic tools and behavioral assays, we selectively inactivated LEC-NAc neurons in mice during the encoding and retrieval of memories of contexts associated with cocaine or footshock. Chemogenetic inactivation of LEC-NAc neurons impaired the formation of both positive and negative context-associated memories without affecting the retrieval of an established memory. This finding suggests a critical role for this circuit in the initial encoding of contextual associations. In summary, LEC-NAc neurons facilitate the encoding of contextual information, guiding motivational behaviors without directly mediating the hedonic or aversive properties of these associations.
Collapse
Affiliation(s)
- Hayley M Kuhn
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824, USA
| | | | - Grace A Stys
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Brianna L Smith
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | - Brooklynn R Murray
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Jin He
- Department of Biochemistry, Michigan State University, East Lansing, Michigan 48824, USA
| | - Alfred J Robison
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Andrew L Eagle
- Department of Neuroscience, The University of Texas at Dallas, Richardson, Texas 75080, USA
| |
Collapse
|
6
|
Hernández-Frausto M, Vivar C. Entorhinal cortex-hippocampal circuit connectivity in health and disease. Front Hum Neurosci 2024; 18:1448791. [PMID: 39372192 PMCID: PMC11449717 DOI: 10.3389/fnhum.2024.1448791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/03/2024] [Indexed: 10/08/2024] Open
Abstract
The entorhinal cortex (EC) and hippocampal (HC) connectivity is the main source of episodic memory formation and consolidation. The entorhinal-hippocampal (EC-HC) connection is classified as canonically glutamatergic and, more recently, has been characterized as a non-canonical GABAergic connection. Recent evidence shows that both EC and HC receive inputs from dopaminergic, cholinergic, and noradrenergic projections that modulate the mnemonic processes linked to the encoding and consolidation of memories. In the present review, we address the latest findings on the EC-HC connectivity and the role of neuromodulations during the mnemonic mechanisms of encoding and consolidation of memories and highlight the value of the cross-species approach to unravel the underlying cellular mechanisms known. Furthermore, we discuss how EC-HC connectivity early neurodegeneration may contribute to the dysfunction of episodic memories observed in aging and Alzheimer's disease (AD). Finally, we described how exercise may be a fundamental tool to prevent or decrease neurodegeneration.
Collapse
Affiliation(s)
- Melissa Hernández-Frausto
- NYU Neuroscience Institute, Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York University Langone Medical Center, New York, NY, United States
| | - Carmen Vivar
- Laboratory of Neurogenesis and Neuroplasticity, Department of Physiology, Biophysics and Neuroscience, Centro de Investigacion y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
7
|
Nicola L, Loo SJQ, Lyon G, Turknett J, Wood TR. Does resistance training in older adults lead to structural brain changes associated with a lower risk of Alzheimer's dementia? A narrative review. Ageing Res Rev 2024; 98:102356. [PMID: 38823487 DOI: 10.1016/j.arr.2024.102356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
Dementia, particularly Alzheimer's Disease (AD), has links to several modifiable risk factors, especially physical inactivity. When considering the relationship between physcial activity and dementia risk, cognitive benefits are generally attributed to aerobic exercise, with resistance exercise (RE) receiving less attention. This review aims to address this gap by evaluating the impact of RE on brain structures and cognitive deficits associated with AD. Drawing insights from randomized controlled trials (RCTs) utilizing structural neuroimaging, the specific influence of RE on AD-affected brain structures and their correlation with cognitive function are discussed. Preliminary findings suggest that RE induces structural brain changes in older adults that could reduce the risk of AD or mitigate AD progression. Importantly, the impacts of RE appear to follow a dose-response effect, reversing pathological structural changes and improving associated cognitive functions if performed at least twice per week for at least six months, with greatest effects in those already experiencing some element of cognitive decline. While more research is eagerly awaited, this review contributes insights into the potential benefits of RE for cognitive health in the context of AD-related changes in brain structure and function.
Collapse
Affiliation(s)
| | | | | | | | - Thomas R Wood
- Department of Pediatrics, University of Washington, Seattle, WA, USA; Institute for Human and Machine Cognition, Pensacola, FL, USA.
| |
Collapse
|
8
|
Haast RAM, Kashyap S, Ivanov D, Yousif MD, DeKraker J, Poser BA, Khan AR. Insights into hippocampal perfusion using high-resolution, multi-modal 7T MRI. Proc Natl Acad Sci U S A 2024; 121:e2310044121. [PMID: 38446857 PMCID: PMC10945835 DOI: 10.1073/pnas.2310044121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 12/26/2023] [Indexed: 03/08/2024] Open
Abstract
We present a comprehensive study on the non-invasive measurement of hippocampal perfusion. Using high-resolution 7 tesla arterial spin labeling (ASL) data, we generated robust perfusion maps and observed significant variations in perfusion among hippocampal subfields, with CA1 exhibiting the lowest perfusion levels. Notably, these perfusion differences were robust and already detectable with 50 perfusion-weighted images per subject, acquired in 5 min. To understand the underlying factors, we examined the influence of image quality metrics, various tissue microstructure and morphometric properties, macrovasculature, and cytoarchitecture. We observed higher perfusion in regions located closer to arteries, demonstrating the influence of vascular proximity on hippocampal perfusion. Moreover, ex vivo cytoarchitectonic features based on neuronal density differences appeared to correlate stronger with hippocampal perfusion than morphometric measures like gray matter thickness. These findings emphasize the interplay between microvasculature, macrovasculature, and metabolic demand in shaping hippocampal perfusion. Our study expands the current understanding of hippocampal physiology and its relevance to neurological disorders. By providing in vivo evidence of perfusion differences between hippocampal subfields, our findings have implications for diagnosis and potential therapeutic interventions. In conclusion, our study provides a valuable resource for extensively characterizing hippocampal perfusion.
Collapse
Affiliation(s)
- Roy A. M. Haast
- Centre of Functional and Metabolic Mapping, Robarts Research Institute, Western University, London, ONN6A 3K7, Canada
| | - Sriranga Kashyap
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht6200, The Netherlands
- Krembil Brain Institute, University Health Network, Toronto, ONM5G 2C4, Canada
| | - Dimo Ivanov
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht6200, The Netherlands
| | - Mohamed D. Yousif
- Centre of Functional and Metabolic Mapping, Robarts Research Institute, Western University, London, ONN6A 3K7, Canada
| | - Jordan DeKraker
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QCH3A 0G4, Canada
| | - Benedikt A. Poser
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht6200, The Netherlands
| | - Ali R. Khan
- Centre of Functional and Metabolic Mapping, Robarts Research Institute, Western University, London, ONN6A 3K7, Canada
| |
Collapse
|
9
|
Haast RAM, Kashyap S, Ivanov D, Yousif MD, DeKraker J, Poser BA, Khan AR. Novel insights into hippocampal perfusion using high-resolution, multi-modal 7T MRI. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.19.549533. [PMID: 37503042 PMCID: PMC10370151 DOI: 10.1101/2023.07.19.549533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
We present a comprehensive study on the non-invasive measurement of hippocampal perfusion. Using high-resolution 7 Tesla arterial spin labelling data, we generated robust perfusion maps and observed significant variations in perfusion among hippocampal subfields, with CA1 exhibiting the lowest perfusion levels. Notably, these perfusion differences were robust and detectable even within five minutes and just fifty perfusion-weighted images per subject. To understand the underlying factors, we examined the influence of image quality metrics, various tissue microstructure and morphometry properties, macrovasculature and cytoarchitecture. We observed higher perfusion in regions located closer to arteries, demonstrating the influence of vascular proximity on hippocampal perfusion. Moreover, ex vivo cytoarchitectonic features based on neuronal density differences appeared to correlate stronger with hippocampal perfusion than morphometric measures like gray matter thickness. These findings emphasize the interplay between microvasculature, macrovasculature, and metabolic demand in shaping hippocampal perfusion. Our study expands the current understanding of hippocampal physiology and its relevance to neurological disorders. By providing in vivo evidence of perfusion differences between hippocampal subfields, our findings have implications for diagnosis and potential therapeutic interventions. In conclusion, our study provides a valuable resource for extensively characterising hippocampal perfusion.
Collapse
Affiliation(s)
- Roy A M Haast
- Centre of Functional and Metabolic Mapping, Western University, London, Ontario, Canada
| | - Sriranga Kashyap
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
- Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada
| | - Dimo Ivanov
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Mohamed D Yousif
- Centre of Functional and Metabolic Mapping, Western University, London, Ontario, Canada
| | - Jordan DeKraker
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Benedikt A Poser
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Ali R Khan
- Centre of Functional and Metabolic Mapping, Western University, London, Ontario, Canada
| |
Collapse
|
10
|
Wang C, Lee H, Rao G, Doreswamy Y, Savelli F, Knierim JJ. Superficial-layer versus deep-layer lateral entorhinal cortex: Coding of allocentric space, egocentric space, speed, boundaries, and corners. Hippocampus 2023; 33:448-464. [PMID: 36965194 PMCID: PMC11717144 DOI: 10.1002/hipo.23528] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 02/06/2023] [Accepted: 03/08/2023] [Indexed: 03/27/2023]
Abstract
Entorhinal cortex is the major gateway between the neocortex and the hippocampus and thus plays an essential role in subserving episodic memory and spatial navigation. It can be divided into the medial entorhinal cortex (MEC) and the lateral entorhinal cortex (LEC), which are commonly theorized to be critical for spatial (context) and non-spatial (content) inputs, respectively. Consistent with this theory, LEC neurons are found to carry little information about allocentric self-location, even in cue-rich environments, but they exhibit egocentric spatial information about external items in the environment. The superficial and deep layers of LEC are believed to mediate the input to and output from the hippocampus, respectively. As earlier studies mainly examined the spatial firing properties of superficial-layer LEC neurons, here we characterized the deep-layer LEC neurons and made direct comparisons with their superficial counterparts in single unit recordings from behaving rats. Because deep-layer LEC cells received inputs from hippocampal regions, which have strong selectivity for self-location, we hypothesized that deep-layer LEC neurons would be more informative about allocentric position than superficial-layer LEC neurons. We found that deep-layer LEC cells showed only slightly more allocentric spatial information and higher spatial consistency than superficial-layer LEC cells. Egocentric coding properties were comparable between these two subregions. In addition, LEC neurons demonstrated preferential firing at lower speeds, as well as at the boundary or corners of the environment. These results suggest that allocentric spatial outputs from the hippocampus are transformed in deep-layer LEC into the egocentric coding dimensions of LEC, rather than maintaining the allocentric spatial tuning of the CA1 place fields.
Collapse
Affiliation(s)
- Cheng Wang
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, Maryland, USA
| | - Heekyung Lee
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, Maryland, USA
| | - Geeta Rao
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, Maryland, USA
| | - Yoganarasimha Doreswamy
- Department of Neurobiology and Anatomy, University of Texas Medical School at Houston, Houston, Texas, USA
| | - Francesco Savelli
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, Maryland, USA
| | - James J Knierim
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, Maryland, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
11
|
Raschick M, Richter A, Fischer L, Knopf L, Schult A, Yakupov R, Behnisch G, Guttek K, Düzel E, Dunay IR, Seidenbecher CI, Schraven B, Reinhold D, Schott BH. Plasma concentrations of anti-inflammatory cytokine TGF-β are associated with hippocampal structure related to explicit memory performance in older adults. J Neural Transm (Vienna) 2023:10.1007/s00702-023-02638-1. [PMID: 37115329 PMCID: PMC10374779 DOI: 10.1007/s00702-023-02638-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/19/2023] [Indexed: 04/29/2023]
Abstract
Human cognitive abilities, and particularly hippocampus-dependent memory performance typically decline with increasing age. Immunosenescence, the age-related disintegration of the immune system, is increasingly coming into the focus of research as a considerable factor contributing to cognitive decline. In the present study, we investigated potential associations between plasma levels of pro- and anti-inflammatory cytokines and learning and memory performance as well as hippocampal anatomy in young and older adults. Plasma concentrations of the inflammation marker CRP as well as the pro-inflammatory cytokines IL-6 and TNF-α and the anti-inflammatory cytokine TGF-β1 were measured in 142 healthy adults (57 young, 24.47 ± 4.48 years; 85 older, 63.66 ± 7.32 years) who performed tests of explicit memory (Verbal Learning and Memory Test, VLMT; Wechsler Memory Scale, Logical Memory, WMS) with an additional delayed recall test after 24 h. Hippocampal volumetry and hippocampal subfield segmentation were performed using FreeSurfer, based on T1-weighted and high-resolution T2-weighted MR images. When investigating the relationship between memory performance, hippocampal structure, and plasma cytokine levels, we found that TGF-β1 concentrations were positively correlated with the volumes of the hippocampal CA4-dentate gyrus region in older adults. These volumes were in turn positively associated with better performance in the WMS, particularly in the delayed memory test. Our results support the notion that endogenous anti-inflammatory mechanisms may act as protective factors in neurocognitive aging.
Collapse
Affiliation(s)
- Matthias Raschick
- Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany
| | - Anni Richter
- Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany
| | - Larissa Fischer
- Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Lea Knopf
- Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany
| | - Annika Schult
- Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany
| | - Renat Yakupov
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research, Medical Faculty, Otto-Von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Gusalija Behnisch
- Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany
| | - Karina Guttek
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-Von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Emrah Düzel
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research, Medical Faculty, Otto-Von-Guericke-University Magdeburg, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Ildiko Rita Dunay
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
- Institute for Inflammation and Neurodegeneration, Medical Faculty, Otto-Von-Guericke-University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GC-I3), Medical Faculty, Otto-Von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Constanze I Seidenbecher
- Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Burkhart Schraven
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-Von-Guericke-University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GC-I3), Medical Faculty, Otto-Von-Guericke-University Magdeburg, Magdeburg, Germany
- Center for Health and Medical Prevention (CHaMP), Otto-Von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Dirk Reinhold
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-Von-Guericke-University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GC-I3), Medical Faculty, Otto-Von-Guericke-University Magdeburg, Magdeburg, Germany
- Center for Health and Medical Prevention (CHaMP), Otto-Von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Björn H Schott
- Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany.
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany.
- Department of Psychiatry and Psychotherapy, University Medical Center, Göttingen, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany.
| |
Collapse
|
12
|
Zhang K, Chen L, Li Y, Paez AG, Miao X, Cao D, Gu C, Pekar JJ, van Zijl PCM, Hua J, Bakker A. Differential Laminar Activation Dissociates Encoding and Retrieval in the Human Medial and Lateral Entorhinal Cortex. J Neurosci 2023; 43:2874-2884. [PMID: 36948584 PMCID: PMC10124959 DOI: 10.1523/jneurosci.1488-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 02/28/2023] [Accepted: 03/12/2023] [Indexed: 03/24/2023] Open
Abstract
The hierarchically organized structures of the medial temporal lobe are critically important for episodic memory function. Accumulating evidence suggests dissociable information processing pathways are maintained throughout these structures including in the medial and lateral entorhinal cortex. Cortical layers provide an additional dimension of dissociation as the primary input to the hippocampus derives from layer 2 neurons in the entorhinal cortex, whereas the deeper layers primarily receive output from the hippocampus. Here, novel high-resolution T2-prepared functional MRI methods were successfully used to mitigate susceptibility artifacts typically affecting MRI signals in this region providing uniform sensitivity across the medial and lateral entorhinal cortex. During the performance of a memory task, healthy human subjects (age 25-33 years, mean age 28.2 ± 3.3 years, 4 female) showed differential functional activation in the superficial and deep layers of the entorhinal cortex associated with task-related encoding and retrieval conditions, respectively. The methods provided here offer an approach to probe layer-specific activation in normal cognition and conditions contributing to memory impairment.SIGNIFICANCE STATEMENT This study provides new evidence for differential neuronal activation in the superficial versus deep layers of the entorhinal cortex associated with encoding and retrieval memory processes, respectively, in cognitively normal adults. The study further shows that this dissociation can be observed in both the medial and the lateral entorhinal cortex. The study was achieved by using a novel functional MRI method allowing us to measure robust functional MRI signals in both the medial and lateral entorhinal cortex that was not possible in previous studies. The methodology established here in healthy human subjects lays a solid foundation for subsequent studies investigating layer-specific and region-specific changes in the entorhinal cortex associated with memory impairment in various conditions such as Alzheimer's disease.
Collapse
Affiliation(s)
- Kaihua Zhang
- School of Psychology, Shandong Normal University, Jinan 250014, China
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland 21205
- Neurosection, Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | - Liuyi Chen
- Departments of Psychiatry and Behavioral Sciences
| | - Yinghao Li
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland 21205
- Neurosection, Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
- Biomedical Engineering
| | - Adrian G Paez
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland 21205
- Neurosection, Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | - Xinyuan Miao
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland 21205
- Neurosection, Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | - Di Cao
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland 21205
- Neurosection, Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
- Biomedical Engineering
| | - Chunming Gu
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland 21205
- Neurosection, Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
- Biomedical Engineering
| | - James J Pekar
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland 21205
- Neurosection, Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | - Peter C M van Zijl
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland 21205
- Neurosection, Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | - Jun Hua
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland 21205
- Neurosection, Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | - Arnold Bakker
- Departments of Psychiatry and Behavioral Sciences
- Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
13
|
Richter A, Soch J, Kizilirmak JM, Fischer L, Schütze H, Assmann A, Behnisch G, Feldhoff H, Knopf L, Raschick M, Schult A, Seidenbecher CI, Yakupov R, Düzel E, Schott BH. Single‐value scores of memory‐related brain activity reflect dissociable neuropsychological and anatomical signatures of neurocognitive aging. Hum Brain Mapp 2023; 44:3283-3301. [PMID: 36972323 PMCID: PMC10171506 DOI: 10.1002/hbm.26281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 02/27/2023] [Accepted: 03/08/2023] [Indexed: 03/29/2023] Open
Abstract
Memory-related functional magnetic resonance imaging (fMRI) activations show age-related differences across multiple brain regions that can be captured in summary statistics like single-value scores. Recently, we described two single-value scores reflecting deviations from prototypical whole-brain fMRI activity of young adults during novelty processing and successful encoding. Here, we investigate the brain-behavior associations of these scores with age-related neurocognitive changes in 153 healthy middle-aged and older adults. All scores were associated with episodic recall performance. The memory network scores, but not the novelty network scores, additionally correlated with medial temporal gray matter and other neuropsychological measures including flexibility. Our results thus suggest that novelty-network-based fMRI scores show high brain-behavior associations with episodic memory and that encoding-network-based fMRI scores additionally capture individual differences in other aging-related functions. More generally, our results suggest that single-value scores of memory-related fMRI provide a comprehensive measure of individual differences in network dysfunction that may contribute to age-related cognitive decline.
Collapse
|
14
|
Corriveau-Lecavalier N, Gunter JL, Kamykowski M, Dicks E, Botha H, Kremers WK, Graff-Radford J, Wiepert DA, Schwarz CG, Yacoub E, Knopman DS, Boeve BF, Ugurbil K, Petersen RC, Jack CR, Terpstra MJ, Jones DT. Default mode network failure and neurodegeneration across aging and amnestic and dysexecutive Alzheimer's disease. Brain Commun 2023; 5:fcad058. [PMID: 37013176 PMCID: PMC10066575 DOI: 10.1093/braincomms/fcad058] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 12/15/2022] [Accepted: 03/07/2023] [Indexed: 03/09/2023] Open
Abstract
From a complex systems perspective, clinical syndromes emerging from neurodegenerative diseases are thought to result from multiscale interactions between aggregates of misfolded proteins and the disequilibrium of large-scale networks coordinating functional operations underpinning cognitive phenomena. Across all syndromic presentations of Alzheimer's disease, age-related disruption of the default mode network is accelerated by amyloid deposition. Conversely, syndromic variability may reflect selective neurodegeneration of modular networks supporting specific cognitive abilities. In this study, we leveraged the breadth of the Human Connectome Project-Aging cohort of non-demented individuals (N = 724) as a normative cohort to assess the robustness of a biomarker of default mode network dysfunction in Alzheimer's disease, the network failure quotient, across the aging spectrum. We then examined the capacity of the network failure quotient and focal markers of neurodegeneration to discriminate patients with amnestic (N = 8) or dysexecutive (N = 10) Alzheimer's disease from the normative cohort at the patient level, as well as between Alzheimer's disease phenotypes. Importantly, all participants and patients were scanned using the Human Connectome Project-Aging protocol, allowing for the acquisition of high-resolution structural imaging and longer resting-state connectivity acquisition time. Using a regression framework, we found that the network failure quotient related to age, global and focal cortical thickness, hippocampal volume, and cognition in the normative Human Connectome Project-Aging cohort, replicating previous results from the Mayo Clinic Study of Aging that used a different scanning protocol. Then, we used quantile curves and group-wise comparisons to show that the network failure quotient commonly distinguished both dysexecutive and amnestic Alzheimer's disease patients from the normative cohort. In contrast, focal neurodegeneration markers were more phenotype-specific, where the neurodegeneration of parieto-frontal areas associated with dysexecutive Alzheimer's disease, while the neurodegeneration of hippocampal and temporal areas associated with amnestic Alzheimer's disease. Capitalizing on a large normative cohort and optimized imaging acquisition protocols, we highlight a biomarker of default mode network failure reflecting shared system-level pathophysiological mechanisms across aging and dysexecutive and amnestic Alzheimer's disease and biomarkers of focal neurodegeneration reflecting distinct pathognomonic processes across the amnestic and dysexecutive Alzheimer's disease phenotypes. These findings provide evidence that variability in inter-individual cognitive impairment in Alzheimer's disease may relate to both modular network degeneration and default mode network disruption. These results provide important information to advance complex systems approaches to cognitive aging and degeneration, expand the armamentarium of biomarkers available to aid diagnosis, monitor progression and inform clinical trials.
Collapse
Affiliation(s)
| | | | - Michael Kamykowski
- Department of Information Technology, Mayo Clinic, Rochester, MN 55905, USA
| | - Ellen Dicks
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Hugo Botha
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Walter K Kremers
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | - Essa Yacoub
- Department of Radiology, University of Minnesota, Minneapolis, MN 55455, USA
| | - David S Knopman
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Bradley F Boeve
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Kamil Ugurbil
- Department of Radiology, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Clifford R Jack
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Melissa J Terpstra
- Department of Radiology, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Radiology, University of Missouri, Columbia, MO 65211, USA
| | - David T Jones
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
15
|
Szymanski HV. Hippocampal dysfunction underlies delusions of control in schizophrenia. Med Hypotheses 2023. [DOI: 10.1016/j.mehy.2023.111043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
16
|
Safron A, Çatal O, Verbelen T. Generalized Simultaneous Localization and Mapping (G-SLAM) as unification framework for natural and artificial intelligences: towards reverse engineering the hippocampal/entorhinal system and principles of high-level cognition. Front Syst Neurosci 2022; 16:787659. [PMID: 36246500 PMCID: PMC9563348 DOI: 10.3389/fnsys.2022.787659] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 09/02/2022] [Indexed: 11/24/2022] Open
Abstract
Simultaneous localization and mapping (SLAM) represents a fundamental problem for autonomous embodied systems, for which the hippocampal/entorhinal system (H/E-S) has been optimized over the course of evolution. We have developed a biologically-inspired SLAM architecture based on latent variable generative modeling within the Free Energy Principle and Active Inference (FEP-AI) framework, which affords flexible navigation and planning in mobile robots. We have primarily focused on attempting to reverse engineer H/E-S "design" properties, but here we consider ways in which SLAM principles from robotics may help us better understand nervous systems and emergent minds. After reviewing LatentSLAM and notable features of this control architecture, we consider how the H/E-S may realize these functional properties not only for physical navigation, but also with respect to high-level cognition understood as generalized simultaneous localization and mapping (G-SLAM). We focus on loop-closure, graph-relaxation, and node duplication as particularly impactful architectural features, suggesting these computational phenomena may contribute to understanding cognitive insight (as proto-causal-inference), accommodation (as integration into existing schemas), and assimilation (as category formation). All these operations can similarly be describable in terms of structure/category learning on multiple levels of abstraction. However, here we adopt an ecological rationality perspective, framing H/E-S functions as orchestrating SLAM processes within both concrete and abstract hypothesis spaces. In this navigation/search process, adaptive cognitive equilibration between assimilation and accommodation involves balancing tradeoffs between exploration and exploitation; this dynamic equilibrium may be near optimally realized in FEP-AI, wherein control systems governed by expected free energy objective functions naturally balance model simplicity and accuracy. With respect to structure learning, such a balance would involve constructing models and categories that are neither too inclusive nor exclusive. We propose these (generalized) SLAM phenomena may represent some of the most impactful sources of variation in cognition both within and between individuals, suggesting that modulators of H/E-S functioning may potentially illuminate their adaptive significances as fundamental cybernetic control parameters. Finally, we discuss how understanding H/E-S contributions to G-SLAM may provide a unifying framework for high-level cognition and its potential realization in artificial intelligences.
Collapse
Affiliation(s)
- Adam Safron
- Center for Psychedelic and Consciousness Research, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Cognitive Science Program, Indiana University, Bloomington, IN, United States
- Institute for Advanced Consciousness Studies, Santa Monica, CA, United States
| | - Ozan Çatal
- IDLab, Department of Information Technology, Ghent University—imec, Ghent, Belgium
| | - Tim Verbelen
- IDLab, Department of Information Technology, Ghent University—imec, Ghent, Belgium
| |
Collapse
|
17
|
Aitken F, Kok P. Hippocampal representations switch from errors to predictions during acquisition of predictive associations. Nat Commun 2022; 13:3294. [PMID: 35676285 PMCID: PMC9178037 DOI: 10.1038/s41467-022-31040-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 05/11/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractWe constantly exploit the statistical regularities in our environment to help guide our perception. The hippocampus has been suggested to play a pivotal role in both learning environmental statistics, as well as exploiting them to generate perceptual predictions. However, it is unclear how the hippocampus balances encoding new predictive associations with the retrieval of existing ones. Here, we present the results of two high resolution human fMRI studies (N = 24 for both experiments) directly investigating this. Participants were exposed to auditory cues that predicted the identity of an upcoming visual shape (with 75% validity). Using multivoxel decoding analysis, we find that the hippocampus initially preferentially represents unexpected shapes (i.e., those that violate the cue regularities), but later switches to representing the cue-predicted shape regardless of which was actually presented. These findings demonstrate that the hippocampus is involved both acquiring and exploiting predictive associations, and is dominated by either errors or predictions depending on whether learning is ongoing or complete.
Collapse
|
18
|
Düzel E, Ziegler G, Berron D, Maass A, Schütze H, Cardenas-Blanco A, Glanz W, Metzger C, Dobisch L, Reuter M, Spottke A, Brosseron F, Fliessbach K, Heneka MT, Laske C, Peters O, Priller J, Spruth EJ, Ramirez A, Speck O, Schneider A, Teipel S, Kilimann I, Jens W, Schott BH, Preis L, Gref D, Maier F, Munk MH, Roy N, Ballarini T, Yakupov R, Haynes JD, Dechent P, Scheffler K, Wagner M, Jessen F. Amyloid pathology but not APOE ε4 status is permissive for tau-related hippocampal dysfunction. Brain 2022; 145:1473-1485. [PMID: 35352105 PMCID: PMC9128811 DOI: 10.1093/brain/awab405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 09/16/2021] [Accepted: 09/27/2021] [Indexed: 02/06/2023] Open
Abstract
We investigated whether the impact of tau-pathology on memory performance and on hippocampal/medial temporal memory function in non-demented individuals depends on the presence of amyloid pathology, irrespective of diagnostic clinical stage. We conducted a cross-sectional analysis of the observational, multicentric DZNE-Longitudinal Cognitive Impairment and Dementia Study (DELCODE). Two hundred and thirty-five participants completed task functional MRI and provided CSF (92 cognitively unimpaired, 100 experiencing subjective cognitive decline and 43 with mild cognitive impairment). Presence (A+) and absence (A−) of amyloid pathology was defined by CSF amyloid-β42 (Aβ42) levels. Free recall performance in the Free and Cued Selective Reminding Test, scene recognition memory accuracy and hippocampal/medial temporal functional MRI novelty responses to scene images were related to CSF total-tau and phospho-tau levels separately for A+ and A− individuals. We found that total-tau and phospho-tau levels were negatively associated with memory performance in both tasks and with novelty responses in the hippocampus and amygdala, in interaction with Aβ42 levels. Subgroup analyses showed that these relationships were only present in A+ and remained stable when very high levels of tau (>700 pg/ml) and phospho-tau (>100 pg/ml) were excluded. These relationships were significant with diagnosis, age, education, sex, assessment site and Aβ42 levels as covariates. They also remained significant after propensity score based matching of phospho-tau levels across A+ and A− groups. After classifying this matched sample for phospho-tau pathology (T−/T+), individuals with A+/T+ were significantly more memory-impaired than A−/T+ despite the fact that both groups had the same amount of phospho-tau pathology. ApoE status (presence of the E4 allele), a known genetic risk factor for Alzheimer’s disease, did not mediate the relationship between tau pathology and hippocampal function and memory performance. Thus, our data show that the presence of amyloid pathology is associated with a linear relationship between tau pathology, hippocampal dysfunction and memory impairment, although the actual severity of amyloid pathology is uncorrelated. Our data therefore indicate that the presence of amyloid pathology provides a permissive state for tau-related hippocampal dysfunction and hippocampus-dependent recognition and recall impairment. This raises the possibility that in the predementia stage of Alzheimer’s disease, removing the negative impact of amyloid pathology could improve memory and hippocampal function even if the amount of tau-pathology in CSF is not changed, whereas reducing increased CSF tau-pathology in amyloid-negative individuals may not proportionally improve memory function.
Collapse
Affiliation(s)
- Emrah Düzel
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany.,German Center for Neurodegenerative Diseases (DZNE), Magdeburg, 39120 Magdeburg, Germany.,Institute of Cognitive Neuroscience, University College London, London, UK
| | - Gabriel Ziegler
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany.,German Center for Neurodegenerative Diseases (DZNE), Magdeburg, 39120 Magdeburg, Germany
| | - David Berron
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany.,German Center for Neurodegenerative Diseases (DZNE), Magdeburg, 39120 Magdeburg, Germany
| | - Anne Maass
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, 39120 Magdeburg, Germany
| | - Hartmut Schütze
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany.,German Center for Neurodegenerative Diseases (DZNE), Magdeburg, 39120 Magdeburg, Germany
| | - Arturo Cardenas-Blanco
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany.,German Center for Neurodegenerative Diseases (DZNE), Magdeburg, 39120 Magdeburg, Germany
| | - Wenzel Glanz
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany.,German Center for Neurodegenerative Diseases (DZNE), Magdeburg, 39120 Magdeburg, Germany.,Clinic for Neurology, Medical Faculty, University Hospital Magdeburg, 39120 Magdeburg, Germany
| | - Coraline Metzger
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany.,German Center for Neurodegenerative Diseases (DZNE), Magdeburg, 39120 Magdeburg, Germany.,Department of Psychiatry and Psychotherapy, Medical Faculty, University Hospital Magdeburg, 39120 Magdeburg, Germany
| | - Laura Dobisch
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, 39120 Magdeburg, Germany
| | - Martin Reuter
- German Center for Neurodegenerative Diseases (DZNE), Bonn, 53127 Bonn, Germany
| | - Annika Spottke
- German Center for Neurodegenerative Diseases (DZNE), Bonn, 53127 Bonn, Germany.,Department of Neurology, University of Bonn, 53127 Bonn, Germany
| | - Frederic Brosseron
- German Center for Neurodegenerative Diseases (DZNE), Bonn, 53127 Bonn, Germany.,Department of Neurodegeneration and Geriatric Psychiatry, University Hospital Bonn, 53127 Bonn, Germany
| | - Klaus Fliessbach
- German Center for Neurodegenerative Diseases (DZNE), Bonn, 53127 Bonn, Germany.,Department of Neurodegeneration and Geriatric Psychiatry, University Hospital Bonn, 53127 Bonn, Germany
| | - Michael T Heneka
- German Center for Neurodegenerative Diseases (DZNE), Bonn, 53127 Bonn, Germany.,Department of Neurodegeneration and Geriatric Psychiatry, University Hospital Bonn, 53127 Bonn, Germany
| | - Christoph Laske
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, 72076 Tübingen, Germany.,Section for Dementia Research, Hertie Institute for Clinical Brain Research and Department of Psychiatry and Psychotherapy, University of Tübingen, 72076 Tübingen, Germany
| | - Oliver Peters
- German Center for Neurodegenerative Diseases (DZNE), Berlin, 10117 Berlin, Germany.,Clinic for Psychiatry and Psychotherapy, Charité, Campus Benjamin Franklin, 12203 Berlin, Germany
| | - Josef Priller
- German Center for Neurodegenerative Diseases (DZNE), Berlin, 10117 Berlin, Germany.,Department of Psychiatry and Psychotherapy, School of Medicine, Technical University of Munich, Munich, Germany
| | - Eike Jakob Spruth
- Department of Psychiatry and Psychotherapy, School of Medicine, Technical University of Munich, Munich, Germany
| | - Alfredo Ramirez
- Department of Psychiatry, Medical Faculty, University of Cologne, 50924 Cologne, Germany
| | - Oliver Speck
- Department of Biomedical Magnetic Resonance, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Anja Schneider
- German Center for Neurodegenerative Diseases (DZNE), Bonn, 53127 Bonn, Germany.,Department of Neurodegeneration and Geriatric Psychiatry, University Hospital Bonn, 53127 Bonn, Germany
| | - Stefan Teipel
- German Center for Neurodegenerative Diseases (DZNE), Rostock, 18147 Rostock, Germany.,Department of Psychosomatic Medicine, Rostock University Medical Center, 18147 Rostock, Germany
| | - Ingo Kilimann
- German Center for Neurodegenerative Diseases (DZNE), Rostock, 18147 Rostock, Germany.,Department of Psychosomatic Medicine, Rostock University Medical Center, 18147 Rostock, Germany
| | - Wiltfang Jens
- German Center for Neurodegenerative Diseases (DZNE), Goettingen, 37075 Goettingen, Germany.,Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, University of Goettingen, 37075 Goettingen, Germany
| | - Björn-Hendrik Schott
- German Center for Neurodegenerative Diseases (DZNE), Goettingen, 37075 Goettingen, Germany.,Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, University of Goettingen, 37075 Goettingen, Germany
| | - Lukas Preis
- German Center for Neurodegenerative Diseases (DZNE), Berlin, 10117 Berlin, Germany.,Clinic for Psychiatry and Psychotherapy, Charité, Campus Benjamin Franklin, 12203 Berlin, Germany
| | - Daria Gref
- German Center for Neurodegenerative Diseases (DZNE), Berlin, 10117 Berlin, Germany.,Clinic for Psychiatry and Psychotherapy, Charité, Campus Benjamin Franklin, 12203 Berlin, Germany
| | - Franziska Maier
- Department of Psychiatry, Medical Faculty, University of Cologne, 50924 Cologne, Germany
| | - Matthias H Munk
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, 72076 Tübingen, Germany.,Section for Dementia Research, Hertie Institute for Clinical Brain Research and Department of Psychiatry and Psychotherapy, University of Tübingen, 72076 Tübingen, Germany
| | - Nina Roy
- German Center for Neurodegenerative Diseases (DZNE), Bonn, 53127 Bonn, Germany.,Department of Neurology, University of Bonn, 53127 Bonn, Germany
| | - Tomasso Ballarini
- German Center for Neurodegenerative Diseases (DZNE), Bonn, 53127 Bonn, Germany.,Department of Neurodegeneration and Geriatric Psychiatry, University Hospital Bonn, 53127 Bonn, Germany
| | - Renat Yakupov
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, 39120 Magdeburg, Germany
| | - John Dylan Haynes
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
| | - Peter Dechent
- Department of Cognitive Neurology, University Medical Center Goettingen, University of Goettingen, Goettingen, Germany
| | - Klaus Scheffler
- Department of Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
| | - Michael Wagner
- German Center for Neurodegenerative Diseases (DZNE), Bonn, 53127 Bonn, Germany.,Department of Neurodegeneration and Geriatric Psychiatry, University Hospital Bonn, 53127 Bonn, Germany
| | - Frank Jessen
- German Center for Neurodegenerative Diseases (DZNE), Bonn, 53127 Bonn, Germany.,Department of Psychiatry, Medical Faculty, University of Cologne, 50924 Cologne, Germany
| |
Collapse
|
19
|
Roux F, Parish G, Chelvarajah R, Rollings DT, Sawlani V, Hamer H, Gollwitzer S, Kreiselmeyer G, ter Wal MJ, Kolibius L, Staresina BP, Wimber M, Self MW, Hanslmayr S. Oscillations support short latency co-firing of neurons during human episodic memory formation. eLife 2022; 11:78109. [PMID: 36448671 PMCID: PMC9731574 DOI: 10.7554/elife.78109] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022] Open
Abstract
Theta and gamma oscillations in the medial temporal lobe are suggested to play a critical role for human memory formation via establishing synchrony in neural assemblies. Arguably, such synchrony facilitates efficient information transfer between neurons and enhances synaptic plasticity, both of which benefit episodic memory formation. However, to date little evidence exists from humans that would provide direct evidence for such a specific role of theta and gamma oscillations for episodic memory formation. Here, we investigate how oscillations shape the temporal structure of neural firing during memory formation in the medial temporal lobe. We measured neural firing and local field potentials in human epilepsy patients via micro-wire electrode recordings to analyze whether brain oscillations are related to co-incidences of firing between neurons during successful and unsuccessful encoding of episodic memories. The results show that phase-coupling of neurons to faster theta and gamma oscillations correlates with co-firing at short latencies (~20-30 ms) and occurs during successful memory formation. Phase-coupling at slower oscillations in these same frequency bands, in contrast, correlates with longer co-firing latencies and occurs during memory failure. Thus, our findings suggest that neural oscillations play a role for the synchronization of neural firing in the medial temporal lobe during the encoding of episodic memories.
Collapse
Affiliation(s)
- Frédéric Roux
- School of Psychology, Centre for Human Brain Health, University of BirminghamBirminghamUnited Kingdom
| | - George Parish
- School of Psychology, Centre for Human Brain Health, University of BirminghamBirminghamUnited Kingdom
| | - Ramesh Chelvarajah
- School of Psychology, Centre for Human Brain Health, University of BirminghamBirminghamUnited Kingdom,Complex Epilepsy and Surgery Service, Neuroscience Department, Queen Elizabeth Hospital BirminghamBirminghamUnited Kingdom
| | - David T Rollings
- Complex Epilepsy and Surgery Service, Neuroscience Department, Queen Elizabeth Hospital BirminghamBirminghamUnited Kingdom
| | - Vijay Sawlani
- School of Psychology, Centre for Human Brain Health, University of BirminghamBirminghamUnited Kingdom,Complex Epilepsy and Surgery Service, Neuroscience Department, Queen Elizabeth Hospital BirminghamBirminghamUnited Kingdom
| | - Hajo Hamer
- Epilepsy Center, Department of Neurology, University Hospital ErlangenErlangenGermany
| | - Stephanie Gollwitzer
- Epilepsy Center, Department of Neurology, University Hospital ErlangenErlangenGermany
| | - Gernot Kreiselmeyer
- Epilepsy Center, Department of Neurology, University Hospital ErlangenErlangenGermany
| | - Marije J ter Wal
- School of Psychology, Centre for Human Brain Health, University of BirminghamBirminghamUnited Kingdom
| | - Luca Kolibius
- School of Psychology and Neuroscience, Centre for Cognitive Neuroimaging, University of GlasgowGlasgowUnited Kingdom
| | - Bernhard P Staresina
- School of Psychology, Centre for Human Brain Health, University of BirminghamBirminghamUnited Kingdom,Department of Experimental Psychology, University of OxfordOxfordUnited Kingdom
| | - Maria Wimber
- School of Psychology, Centre for Human Brain Health, University of BirminghamBirminghamUnited Kingdom,School of Psychology and Neuroscience, Centre for Cognitive Neuroimaging, University of GlasgowGlasgowUnited Kingdom
| | - Matthew W Self
- Department of Vision and Cognition, Netherlands Institute for Neuroscience, an institute of the Royal Netherlands Academy of Art and SciencesAmsterdamNetherlands
| | - Simon Hanslmayr
- School of Psychology, Centre for Human Brain Health, University of BirminghamBirminghamUnited Kingdom,School of Psychology and Neuroscience, Centre for Cognitive Neuroimaging, University of GlasgowGlasgowUnited Kingdom
| |
Collapse
|
20
|
Lurie SM, Kragel JE, Schuele SU, Voss JL. Human hippocampal responses to network intracranial stimulation vary with theta phase. eLife 2022; 11:78395. [PMID: 36453717 PMCID: PMC9733942 DOI: 10.7554/elife.78395] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 11/30/2022] [Indexed: 12/03/2022] Open
Abstract
Hippocampal-dependent memory is thought to be supported by distinct connectivity states, with strong input to the hippocampus benefitting encoding and weak input benefitting retrieval. Previous research in rodents suggests that the hippocampal theta oscillation orchestrates the transition between these states, with opposite phase angles predicting minimal versus maximal input. We investigated whether this phase dependence exists in humans using network-targeted intracranial stimulation. Intracranial local field potentials were recorded from individuals with epilepsy undergoing medically necessary stereotactic electroencephalographic recording. In each subject, biphasic bipolar direct electrical stimulation was delivered to lateral temporal sites with demonstrated connectivity to hippocampus. Lateral temporal stimulation evoked ipsilateral hippocampal potentials with distinct early and late components. Using evoked component amplitude to measure functional connectivity, we assessed whether the phase of hippocampal theta predicted relatively high versus low connectivity. We observed an increase in the continuous phase-amplitude relationship selective to the early and late components of the response evoked by lateral temporal stimulation. The maximal difference in these evoked component amplitudes occurred across 180 degrees of separation in the hippocampal theta rhythm; that is, the greatest difference in component amplitude was observed when stimulation was delivered at theta peak versus trough. The pattern of theta-phase dependence observed for hippocampus was not identified for control locations. These findings demonstrate that hippocampal receptivity to input varies with theta phase, suggesting that theta phase reflects connectivity states of human hippocampal networks. These findings confirm a putative mechanism by which neural oscillations modulate human hippocampal function.
Collapse
Affiliation(s)
- Sarah M Lurie
- Interdepartmental Neuroscience Program, Northwestern UniversityChicagoUnited States
| | - James E Kragel
- Department of Neurology, University of ChicagoChicagoUnited States
| | - Stephan U Schuele
- Department of Neurology, Northwestern UniversityChicagoUnited States
| | - Joel L Voss
- Department of Neurology, University of ChicagoChicagoUnited States
| |
Collapse
|
21
|
Willems T, Henke K. Imaging human engrams using 7 Tesla magnetic resonance imaging. Hippocampus 2021; 31:1257-1270. [PMID: 34739173 PMCID: PMC9298259 DOI: 10.1002/hipo.23391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 12/15/2022]
Abstract
The investigation of the physical traces of memories (engrams) has made significant progress in the last decade due to optogenetics and fluorescent cell tagging applied in rodents. Engram cells were identified. The ablation of engram cells led to the loss of the associated memory, silent memories were reactivated, and artificial memories were implanted in the brain. Human engram research lags behind engram research in rodents due to methodological and ethical constraints. However, advances in multivariate analysis techniques of functional magnetic resonance imaging (fMRI) data and machine learning algorithms allowed the identification of stable engram patterns in humans. In addition, MRI scanners with an ultrahigh field strength of 7 Tesla (T) have left their prototype state and became more common around the world to assist human engram research. Although most engram research in humans is still being performed with a field strength of 3T, fMRI at 7T will push engram research. Here, we summarize the current state and findings of human engram research and discuss the advantages and disadvantages of applying 7 versus 3T fMRI to image human memory traces.
Collapse
Affiliation(s)
- Tom Willems
- Institute of Psychology, University of Bern, Bern, Switzerland
| | - Katharina Henke
- Institute of Psychology, University of Bern, Bern, Switzerland
| |
Collapse
|
22
|
Santos-Pata D, Amil AF, Raikov IG, Rennó-Costa C, Mura A, Soltesz I, Verschure PF. Entorhinal mismatch: A model of self-supervised learning in the hippocampus. iScience 2021; 24:102364. [PMID: 33997671 PMCID: PMC8091892 DOI: 10.1016/j.isci.2021.102364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/30/2021] [Accepted: 03/24/2021] [Indexed: 12/03/2022] Open
Abstract
The hippocampal formation displays a wide range of physiological responses to different spatial manipulations of the environment. However, very few attempts have been made to identify core computational principles underlying those hippocampal responses. Here, we capitalize on the observation that the entorhinal-hippocampal complex (EHC) forms a closed loop and projects inhibitory signals "countercurrent" to the trisynaptic pathway to build a self-supervised model that learns to reconstruct its own inputs by error backpropagation. The EHC is then abstracted as an autoencoder, with the hidden layers acting as an information bottleneck. With the inputs mimicking the firing activity of lateral and medial entorhinal cells, our model is shown to generate place cells and to respond to environmental manipulations as observed in rodent experiments. Altogether, we propose that the hippocampus builds conjunctive compressed representations of the environment by learning to reconstruct its own entorhinal inputs via gradient descent.
Collapse
Affiliation(s)
- Diogo Santos-Pata
- Laboratory of Synthetic, Perceptive, Emotive and Cognitive Systems (SPECS), Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain
| | - Adrián F. Amil
- Laboratory of Synthetic, Perceptive, Emotive and Cognitive Systems (SPECS), Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | | | - César Rennó-Costa
- Digital Metropolis Institute, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Anna Mura
- Laboratory of Synthetic, Perceptive, Emotive and Cognitive Systems (SPECS), Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain
| | - Ivan Soltesz
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Paul F.M.J. Verschure
- Laboratory of Synthetic, Perceptive, Emotive and Cognitive Systems (SPECS), Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| |
Collapse
|
23
|
Tian Q, Zaretskaya N, Fan Q, Ngamsombat C, Bilgic B, Polimeni JR, Huang SY. Improved cortical surface reconstruction using sub-millimeter resolution MPRAGE by image denoising. Neuroimage 2021; 233:117946. [PMID: 33711484 PMCID: PMC8421085 DOI: 10.1016/j.neuroimage.2021.117946] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 02/28/2021] [Accepted: 03/03/2021] [Indexed: 11/24/2022] Open
Abstract
Automatic cerebral cortical surface reconstruction is a useful tool for cortical anatomy quantification, analysis and visualization. Recently, the Human Connectome Project and several studies have shown the advantages of using T1-weighted magnetic resonance (MR) images with sub-millimeter isotropic spatial resolution instead of the standard 1-mm isotropic resolution for improved accuracy of cortical surface positioning and thickness estimation. Nonetheless, sub-millimeter resolution images are noisy by nature and require averaging multiple repetitions to increase the signal-to-noise ratio for precisely delineating the cortical boundary. The prolonged acquisition time and potential motion artifacts pose significant barriers to the wide adoption of cortical surface reconstruction at sub-millimeter resolution for a broad range of neuroscientific and clinical applications. We address this challenge by evaluating the cortical surface reconstruction resulting from denoised single-repetition sub-millimeter T1-weighted images. We systematically characterized the effects of image denoising on empirical data acquired at 0.6 mm isotropic resolution using three classical denoising methods, including denoising convolutional neural network (DnCNN), block-matching and 4-dimensional filtering (BM4D) and adaptive optimized non-local means (AONLM). The denoised single-repetition images were found to be highly similar to 6-repetition averaged images, with a low whole-brain averaged mean absolute difference of ~0.016, high whole-brain averaged peak signal-to-noise ratio of ~33.5 dB and structural similarity index of ~0.92, and minimal gray matter–white matter contrast loss (2% to 9%). The whole-brain mean absolute discrepancies in gray matter–white matter surface placement, gray matter–cerebrospinal fluid surface placement and cortical thickness estimation were lower than 165 μm, 155 μm and 145 μm—sufficiently accurate for most applications. These discrepancies were approximately one third to half of those from 1-mm isotropic resolution data. The denoising performance was equivalent to averaging ~2.5 repetitions of the data in terms of image similarity, and 1.6–2.2 repetitions in terms of the cortical surface placement accuracy. The scan-rescan variability of the cortical surface positioning and thickness estimation was lower than 170 μm. Our unique dataset and systematic characterization support the use of denoising methods for improved cortical surface reconstruction at sub-millimeter resolution.
Collapse
Affiliation(s)
- Qiyuan Tian
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, United States; Harvard Medical School, Boston, MA, United States.
| | - Natalia Zaretskaya
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, United States; Harvard Medical School, Boston, MA, United States; Institute of Psychology, University of Graz, Graz, Austria; BioTechMed-Graz, Austria
| | - Qiuyun Fan
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, United States; Harvard Medical School, Boston, MA, United States
| | - Chanon Ngamsombat
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, United States; Department of Radiology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Thailand
| | - Berkin Bilgic
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, United States; Harvard Medical School, Boston, MA, United States; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Jonathan R Polimeni
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, United States; Harvard Medical School, Boston, MA, United States; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Susie Y Huang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, United States; Harvard Medical School, Boston, MA, United States; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
24
|
Quent JA, Henson RN, Greve A. A predictive account of how novelty influences declarative memory. Neurobiol Learn Mem 2021; 179:107382. [PMID: 33476747 PMCID: PMC8024513 DOI: 10.1016/j.nlm.2021.107382] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/08/2020] [Accepted: 01/10/2021] [Indexed: 01/13/2023]
Abstract
A rich body of studies in the human and non-human literature has examined the question how novelty influences memory. For a variety of different stimuli, ranging from simple objects and words to vastly complex scenarios, the literature reports that novelty improves memory in some cases, but impairs memory in other cases. In recent attempts to reconcile these conflicting findings, novelty has been divided into different subtypes, such as relative versus absolute novelty, or stimulus versus contextual novelty. Nevertheless, a single overarching theory of novelty and memory has been difficult to attain, probably due to the complexities in the interactions among stimuli, environmental factors (e.g., spatial and temporal context) and level of prior knowledge (but see Duszkiewicz et al., 2019; Kafkas & Montaldi, 2018b; Schomaker & Meeter, 2015). Here we describe how a predictive coding framework might be able to shed new light on different types of novelty and how they affect declarative memory in humans. More precisely, we consider how prior expectations modulate the influence of novelty on encoding episodes into memory, e.g., in terms of surprise, and how novelty/surprise affect memory for surrounding information. By reviewing a range of behavioural findings and their possible underlying neurobiological mechanisms, we highlight where a predictive coding framework succeeds and where it appears to struggle.
Collapse
Affiliation(s)
| | - Richard N Henson
- MRC Cognition and Brain Sciences Unit, University of Cambridge, United Kingdom; Department of Psychiatry, University of Cambridge, United Kingdom
| | - Andrea Greve
- MRC Cognition and Brain Sciences Unit, University of Cambridge, United Kingdom
| |
Collapse
|
25
|
Markuerkiaga I, Marques JP, Bains LJ, Norris DG. An in-vivo study of BOLD laminar responses as a function of echo time and static magnetic field strength. Sci Rep 2021; 11:1862. [PMID: 33479362 PMCID: PMC7820587 DOI: 10.1038/s41598-021-81249-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 12/22/2020] [Indexed: 11/18/2022] Open
Abstract
Layer specific functional MRI requires high spatial resolution data. To compensate the associated poor signal to noise ratio it is common to integrate the signal from voxels at a given cortical depth. If the region is sufficiently large then physiological noise will be the dominant noise source. In this work, activation profiles in response to the same visual stimulus are compared at 1.5 T, 3 T and 7 T using a multi-echo, gradient echo (GE) FLASH sequence, with a 0.75 mm isotropic voxel size and the cortical integration approach. The results show that after integrating over a cortical volume of 40, 60 and 100 mm3 (at 7 T, 3 T, and 1.5 T, respectively), the signal is in the physiological noise dominated regime. The activation profiles obtained are similar for equivalent echo times. BOLD-like noise is found to be the dominant source of physiological noise. Consequently, the functional contrast to noise ratio is not strongly echo-time or field-strength dependent. We conclude that laminar GE-BOLD fMRI at lower field strengths is feasible but that larger patches of cortex will need to be examined, and that the acquisition efficiency is reduced.
Collapse
Affiliation(s)
- Irati Markuerkiaga
- Donders Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, The Netherlands
| | - José P Marques
- Donders Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, The Netherlands
| | - Lauren J Bains
- Donders Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, The Netherlands
| | - David G Norris
- Donders Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, The Netherlands. .,Erwin L. Hahn Institute for Magnetic Resonance Imaging, 45141, Essen, Germany.
| |
Collapse
|
26
|
Tian Q, Bilgic B, Fan Q, Ngamsombat C, Zaretskaya N, Fultz NE, Ohringer NA, Chaudhari AS, Hu Y, Witzel T, Setsompop K, Polimeni JR, Huang SY. Improving in vivo human cerebral cortical surface reconstruction using data-driven super-resolution. Cereb Cortex 2021; 31:463-482. [PMID: 32887984 PMCID: PMC7727379 DOI: 10.1093/cercor/bhaa237] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 07/30/2020] [Accepted: 07/30/2020] [Indexed: 11/14/2022] Open
Abstract
Accurate and automated reconstruction of the in vivo human cerebral cortical surface from anatomical magnetic resonance (MR) images facilitates the quantitative analysis of cortical structure. Anatomical MR images with sub-millimeter isotropic spatial resolution improve the accuracy of cortical surface and thickness estimation compared to the standard 1-millimeter isotropic resolution. Nonetheless, sub-millimeter resolution acquisitions require averaging multiple repetitions to achieve sufficient signal-to-noise ratio and are therefore long and potentially vulnerable to subject motion. We address this challenge by synthesizing sub-millimeter resolution images from standard 1-millimeter isotropic resolution images using a data-driven supervised machine learning-based super-resolution approach achieved via a deep convolutional neural network. We systematically characterize our approach using a large-scale simulated dataset and demonstrate its efficacy in empirical data. The super-resolution data provide improved cortical surfaces similar to those obtained from native sub-millimeter resolution data. The whole-brain mean absolute discrepancy in cortical surface positioning and thickness estimation is below 100 μm at the single-subject level and below 50 μm at the group level for the simulated data, and below 200 μm at the single-subject level and below 100 μm at the group level for the empirical data, making the accuracy of cortical surfaces derived from super-resolution sufficient for most applications.
Collapse
Affiliation(s)
- Qiyuan Tian
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Berkin Bilgic
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, United States
- Harvard Medical School, Boston, MA, United States
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Qiuyun Fan
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Chanon Ngamsombat
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, United States
| | - Natalia Zaretskaya
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, United States
- Harvard Medical School, Boston, MA, United States
- Department of Experimental Psychology and Cognitive Neuroscience, Institute of Psychology, University of Graz, Graz, Austria
- BioTechMed-Graz, Austria
| | - Nina E Fultz
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, United States
| | - Ned A Ohringer
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, United States
| | - Akshay S Chaudhari
- Radiological Sciences Laboratory, Department of Radiology, Stanford University, Stanford, CA, United States
| | - Yuxin Hu
- Radiological Sciences Laboratory, Department of Radiology, Stanford University, Stanford, CA, United States
| | - Thomas Witzel
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Kawin Setsompop
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, United States
- Harvard Medical School, Boston, MA, United States
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Jonathan R Polimeni
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, United States
- Harvard Medical School, Boston, MA, United States
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Susie Y Huang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, United States
- Harvard Medical School, Boston, MA, United States
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
27
|
Genetic Alzheimer’s Disease Risk Affects the Neural Mechanisms of Pattern Separation in Hippocampal Subfields. Curr Biol 2020; 30:4201-4212.e3. [DOI: 10.1016/j.cub.2020.08.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/30/2020] [Accepted: 08/11/2020] [Indexed: 01/13/2023]
|
28
|
Ejaz HW, Wang W, Lang M. Copper Toxicity Links to Pathogenesis of Alzheimer's Disease and Therapeutics Approaches. Int J Mol Sci 2020; 21:E7660. [PMID: 33081348 PMCID: PMC7589751 DOI: 10.3390/ijms21207660] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/24/2020] [Accepted: 09/29/2020] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) is an irreversible, age-related progressive neurological disorder, and the most common type of dementia in aged people. Neuropathological lesions of AD are neurofibrillary tangles (NFTs), and senile plaques comprise the accumulated amyloid-beta (Aβ), loaded with metal ions including Cu, Fe, or Zn. Some reports have identified metal dyshomeostasis as a neurotoxic factor of AD, among which Cu ions seem to be a central cationic metal in the formation of plaque and soluble oligomers, and have an essential role in the AD pathology. Cu-Aβ complex catalyzes the generation of reactive oxygen species (ROS) and results in oxidative damage. Several studies have indicated that oxidative stress plays a crucial role in the pathogenesis of AD. The connection of copper levels in AD is still ambiguous, as some researches indicate a Cu deficiency, while others show its higher content in AD, and therefore there is a need to increase and decrease its levels in animal models, respectively, to study which one is the cause. For more than twenty years, many in vitro studies have been devoted to identifying metals' roles in Aβ accumulation, oxidative damage, and neurotoxicity. Towards the end, a short review of the modern therapeutic approach in chelation therapy, with the main focus on Cu ions, is discussed. Despite the lack of strong proofs of clinical advantage so far, the conjecture that using a therapeutic metal chelator is an effective strategy for AD remains popular. However, some recent reports of genetic-regulating copper transporters in AD models have shed light on treating this refractory disease. This review aims to succinctly present a better understanding of Cu ions' current status in several AD features, and some conflicting reports are present herein.
Collapse
Affiliation(s)
- Hafza Wajeeha Ejaz
- CAS Center for Excellence in Biotic Interactions, College of Life Science, University of Chinese Academy of Sciences, Yuquan Road 19, Beijing 100049, China;
| | - Wei Wang
- School of Medical and Health Sciences, Edith Cowan University, Perth WA6027, Australia;
| | - Minglin Lang
- CAS Center for Excellence in Biotic Interactions, College of Life Science, University of Chinese Academy of Sciences, Yuquan Road 19, Beijing 100049, China;
- College of Life Science, Agricultural University of Hebei, Baoding 071000, China
| |
Collapse
|
29
|
Ultra-high-resolution fMRI of Human Ventral Temporal Cortex Reveals Differential Representation of Categories and Domains. J Neurosci 2020; 40:3008-3024. [PMID: 32094202 DOI: 10.1523/jneurosci.2106-19.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 02/10/2020] [Accepted: 02/12/2020] [Indexed: 11/21/2022] Open
Abstract
Human ventral temporal cortex (VTC) is critical for visual recognition. It is thought that this ability is supported by large-scale patterns of activity across VTC that contain information about visual categories. However, it is unknown how category representations in VTC are organized at the submillimeter scale and across cortical depths. To fill this gap in knowledge, we measured BOLD responses in medial and lateral VTC to images spanning 10 categories from five domains (written characters, bodies, faces, places, and objects) at an ultra-high spatial resolution of 0.8 mm using 7 Tesla fMRI in both male and female participants. Representations in lateral VTC were organized most strongly at the general level of domains (e.g., places), whereas medial VTC was also organized at the level of specific categories (e.g., corridors and houses within the domain of places). In both lateral and medial VTC, domain-level and category-level structure decreased with cortical depth, and downsampling our data to standard resolution (2.4 mm) did not reverse differences in representations between lateral and medial VTC. The functional diversity of representations across VTC partitions may allow downstream regions to read out information in a flexible manner according to task demands. These results bridge an important gap between electrophysiological recordings in single neurons at the micron scale in nonhuman primates and standard-resolution fMRI in humans by elucidating distributed responses at the submillimeter scale with ultra-high-resolution fMRI in humans.SIGNIFICANCE STATEMENT Visual recognition is a fundamental ability supported by human ventral temporal cortex (VTC). However, the nature of fine-scale, submillimeter distributed representations in VTC is unknown. Using ultra-high-resolution fMRI of human VTC, we found differential distributed visual representations across lateral and medial VTC. Domain representations (e.g., faces, bodies, places, characters) were most salient in lateral VTC, whereas category representations (e.g., corridors/houses within the domain of places) were equally salient in medial VTC. These results bridge an important gap between electrophysiological recordings in single neurons at a micron scale and fMRI measurements at a millimeter scale.
Collapse
|
30
|
Mohammad N, Rezapour T, Kormi-Nouri R, Abdekhodaie E, Ghamsari AM, Ehsan HB, Hatami J. The effects of different proxies of cognitive reserve on episodic memory performance: aging study in Iran. Int Psychogeriatr 2020; 32:25-34. [PMID: 31656218 DOI: 10.1017/s1041610219001613] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE The main aim of the present study is to investigate the association between different measures of cognitive reserve including bilingualism, mental activities, type of education (continuous versus distributed), age, educational level, and episodic memory in a healthy aging sample. METHODS Four hundred and fifteen participants aged between 50 and 83 years participated in this cross-sectional study and were assessed with the Psychology Experimental Building Language Test battery tapping episodic memory. Demographic variables were collected from a questionnaire designed by the research team. RESULTS Compared to participants with continuous type of education, those with distributed type performed better in tests of episodic memory, while no differences were found between bilingual and monolingual participants. We additionally found that age negatively predicts episodic memory, whereas playing mind teasers and educational level have positive relationships with episodic memory. CONCLUSIONS Our results indicate that higher cognitive reserve, as measured by distributed educational training, higher level of education, and doing regular mental activities, is associated with better performance on episodic memory tasks in older adults. These results were discussed in connection with successful aging and protection against memory decline with aging.
Collapse
Affiliation(s)
- Neda Mohammad
- Department of Psychology, University of Tehran, Tehran, Iran
| | - Tara Rezapour
- Translational Neuroscience Program, Institute for Cognitive Science Studies, Tehran, Iran
| | - Reza Kormi-Nouri
- Center for Health and Medical Psychology, Örebro University, Örebro, Sweden
| | | | | | - Hadi B Ehsan
- Department of Psychology, University of Tehran, Tehran, Iran
| | - Javad Hatami
- Department of Psychology, University of Tehran, Tehran, Iran
- Translational Neuroscience Program, Institute for Cognitive Science Studies, Tehran, Iran
| |
Collapse
|
31
|
Kok P, Rait LI, Turk-Browne NB. Content-based Dissociation of Hippocampal Involvement in Prediction. J Cogn Neurosci 2019; 32:527-545. [PMID: 31820676 DOI: 10.1162/jocn_a_01509] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent work suggests that a key function of the hippocampus is to predict the future. This is thought to depend on its ability to bind inputs over time and space and to retrieve upcoming or missing inputs based on partial cues. In line with this, previous research has revealed prediction-related signals in the hippocampus for complex visual objects, such as fractals and abstract shapes. Implicit in such accounts is that these computations in the hippocampus reflect domain-general processes that apply across different types and modalities of stimuli. An alternative is that the hippocampus plays a more domain-specific role in predictive processing, with the type of stimuli being predicted determining its involvement. To investigate this, we compared hippocampal responses to auditory cues predicting abstract shapes (Experiment 1) versus oriented gratings (Experiment 2). We measured brain activity in male and female human participants using high-resolution fMRI, in combination with inverted encoding models to reconstruct shape and orientation information. Our results revealed that expectations about shape and orientation evoked distinct representations in the hippocampus. For complex shapes, the hippocampus represented which shape was expected, potentially serving as a source of top-down predictions. In contrast, for simple gratings, the hippocampus represented only unexpected orientations, more reminiscent of a prediction error. We discuss several potential explanations for this content-based dissociation in hippocampal function, concluding that the computational role of the hippocampus in predictive processing may depend on the nature and complexity of stimuli.
Collapse
Affiliation(s)
- Peter Kok
- Yale University.,University College London
| | | | | |
Collapse
|
32
|
Düzel E, Acosta-Cabronero J, Berron D, Biessels GJ, Björkman-Burtscher I, Bottlaender M, Bowtell R, Buchem MV, Cardenas-Blanco A, Boumezbeur F, Chan D, Clare S, Costagli M, de Rochefort L, Fillmer A, Gowland P, Hansson O, Hendrikse J, Kraff O, Ladd ME, Ronen I, Petersen E, Rowe JB, Siebner H, Stoecker T, Straub S, Tosetti M, Uludag K, Vignaud A, Zwanenburg J, Speck O. European Ultrahigh-Field Imaging Network for Neurodegenerative Diseases (EUFIND). ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2019; 11:538-549. [PMID: 31388558 PMCID: PMC6675944 DOI: 10.1016/j.dadm.2019.04.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION The goal of European Ultrahigh-Field Imaging Network in Neurodegenerative Diseases (EUFIND) is to identify opportunities and challenges of 7 Tesla (7T) MRI for clinical and research applications in neurodegeneration. EUFIND comprises 22 European and one US site, including over 50 MRI and dementia experts as well as neuroscientists. METHODS EUFIND combined consensus workshops and data sharing for multisite analysis, focusing on 7 core topics: clinical applications/clinical research, highest resolution anatomy, functional imaging, vascular systems/vascular pathology, iron mapping and neuropathology detection, spectroscopy, and quality assurance. Across these topics, EUFIND considered standard operating procedures, safety, and multivendor harmonization. RESULTS The clinical and research opportunities and challenges of 7T MRI in each subtopic are set out as a roadmap. Specific MRI sequences for each subtopic were implemented in a pilot study presented in this report. Results show that a large multisite 7T imaging network with highly advanced and harmonized imaging sequences is feasible and may enable future multicentre ultrahigh-field MRI studies and clinical trials. DISCUSSION The EUFIND network can be a major driver for advancing clinical neuroimaging research using 7T and for identifying use-cases for clinical applications in neurodegeneration.
Collapse
Affiliation(s)
- Emrah Düzel
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Magdeburg, Germany
- Institute of Cognitive Neuroscience, University College London, London, UK
- Center for Behavioral Brain Science, Magdeburg, Germany
| | - Julio Acosta-Cabronero
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Magdeburg, Germany
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - David Berron
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Magdeburg, Germany
- 7Lund University BioImaging Center, Lund University, Lund, Sweden
| | - Geert Jan Biessels
- Department of Neurology, UMC Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Isabella Björkman-Burtscher
- 7Lund University BioImaging Center, Lund University, Lund, Sweden
- Departement of Radiology, Sahlgrenska Akademy, University of Gothenburg, Gothenburg, Sweden
| | | | - Richard Bowtell
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Mark v Buchem
- Department of Radiology, University Medical Center Leiden, Leiden, The Netherlands
| | - Arturo Cardenas-Blanco
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Magdeburg, Germany
| | - Fawzi Boumezbeur
- NeuroSpin, CEA & Université Paris-Saclay, Gif-Sur-Yvette, France
| | - Dennis Chan
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Stuart Clare
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Mauro Costagli
- Imago 7 Research Foundation, Pisa, Italy
- Laboratory of Medical Physics and Magnetic Resonance, IRCCS Stella Maris, Pisa, Italy
| | - Ludovic de Rochefort
- Center for Magnetic Resonance in Biology and Medicine (UMR 7339), CRMBM, CNRS - Aix Marseille Université, Marseille, France
| | - Ariane Fillmer
- Physikalisch-Technische Bundesanstalt (PTB), Berlin, Germany
| | - Penny Gowland
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Oskar Hansson
- 7Lund University BioImaging Center, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Jeroen Hendrikse
- Department of Neurology, UMC Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Oliver Kraff
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, Essen, Germany
| | - Mark E. Ladd
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Physics and Astronomy and Faculty of Medicine, University of Heidelberg, Heidelberg, Germany
| | - Itamar Ronen
- Department of Radiology, University Medical Center Leiden, Leiden, The Netherlands
| | - Esben Petersen
- Danish Center for Magnetic Resonance, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - James B. Rowe
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Hartwig Siebner
- Danish Center for Magnetic Resonance, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
- Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
| | - Tony Stoecker
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Sina Straub
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michela Tosetti
- Imago 7 Research Foundation, Pisa, Italy
- Laboratory of Medical Physics and Magnetic Resonance, IRCCS Stella Maris, Pisa, Italy
| | - Kamil Uludag
- Center for Neuroscience Imaging Research, Institute for Basic Science and Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
- Techna Institute & Koerner Scientist in MR Imaging, University Health Network, Toronto, Ontario, Canada
| | | | - Jaco Zwanenburg
- Department of Neurology, UMC Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Oliver Speck
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Magdeburg, Germany
- Center for Behavioral Brain Science, Magdeburg, Germany
- Biomedical Magnetic Resonance, Otto-von-Guericke University, Magdeburg, Germany
- Leibniz-Institute for Neurobiology (LIN), Magdeburg, Germany
| |
Collapse
|
33
|
Fjell AM, Sneve MH, Sederevicius D, Sørensen Ø, Krogsrud SK, Mowinckel AM, Walhovd KB. Volumetric and microstructural regional changes of the hippocampus underlying development of recall performance after extended retention intervals. Dev Cogn Neurosci 2019; 40:100723. [PMID: 31678691 PMCID: PMC6974909 DOI: 10.1016/j.dcn.2019.100723] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 10/10/2019] [Accepted: 10/19/2019] [Indexed: 01/12/2023] Open
Abstract
Unique developmental effects on recall over days rather than minutes. Development of visual recall explainable by visuo-constructive ability. Development of verbal recall not explained by verbal ability. Modest relationships between recall performance and hippocampus structure.
Performance on recall tests improves through childhood and adolescence, in part due to structural maturation of the medial temporal cortex. Although partly different processes support successful recall over shorter vs. longer intervals, recall is usually tested after less than an hour. The aim of the present study was to test whether there are unique developmental changes in recall performance using extended retention intervals, and whether these are related to structural maturation of sub-regions of the hippocampus. 650 children and adolescents from 4.1 to 24.8 years were assessed in total 962 times (mean interval ≈ 1.8 years). The California Verbal Learning Test (CVLT) and the Rey Complex Figure Test (CFT) were used. Recall was tested 30 min and ≈ 10 days after encoding. We found unique developmental effects on recall in the extended retention interval condition independently of 30 min recall performance. For CVLT, major improvements happened between 10 and 15 years. For CFT, improvement was linear and was accounted for by visuo-constructive abilities. The relationships did not show anterior-posterior hippocampal axis differences. In conclusion, performance on recall tests using extended retention intervals shows unique development, likely due to changes in encoding depth or efficacy, or improvements of long-term consolidation processes.
Collapse
Affiliation(s)
- Anders M Fjell
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Norway; Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway.
| | - Markus H Sneve
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Norway
| | | | - Øystein Sørensen
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Norway
| | - Stine K Krogsrud
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Norway
| | | | - Kristine B Walhovd
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Norway; Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
34
|
Massot C, Jagadisan UK, Gandhi NJ. Sensorimotor transformation elicits systematic patterns of activity along the dorsoventral extent of the superior colliculus in the macaque monkey. Commun Biol 2019; 2:287. [PMID: 31396567 PMCID: PMC6677725 DOI: 10.1038/s42003-019-0527-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 06/27/2019] [Indexed: 12/21/2022] Open
Abstract
The superior colliculus (SC) is an excellent substrate to study sensorimotor transformations. To date, the spatial and temporal properties of population activity along its dorsoventral axis have been inferred from single electrode studies. Here, we recorded SC population activity in non-human primates using a linear multi-contact array during delayed saccade tasks. We show that during the visual epoch, information appeared first in dorsal layers and systematically later in ventral layers. During the delay period, the laminar organization of low-spiking rate activity matched that of the visual epoch. During the pre-saccadic epoch, spiking activity emerged first in a more ventral layer, ~ 100 ms before saccade onset. This buildup of activity appeared later on nearby neurons situated both dorsally and ventrally, culminating in a synchronous burst across the dorsoventral axis, ~ 28 ms before saccade onset. Collectively, these results reveal a principled spatiotemporal organization of SC population activity underlying sensorimotor transformation for the control of gaze.
Collapse
Affiliation(s)
- Corentin Massot
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260 USA
- Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15260 USA
| | - Uday K. Jagadisan
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260 USA
- Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15260 USA
| | - Neeraj J. Gandhi
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260 USA
- Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15260 USA
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260 USA
| |
Collapse
|
35
|
|
36
|
Koster R, Chadwick MJ, Chen Y, Berron D, Banino A, Düzel E, Hassabis D, Kumaran D. Big-Loop Recurrence within the Hippocampal System Supports Integration of Information across Episodes. Neuron 2019; 99:1342-1354.e6. [PMID: 30236285 DOI: 10.1016/j.neuron.2018.08.009] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 02/28/2018] [Accepted: 08/07/2018] [Indexed: 01/07/2023]
Abstract
Recent evidence challenges the widely held view that the hippocampus is specialized for episodic memory, by demonstrating that it also underpins the integration of information across experiences. Contemporary computational theories propose that these two contrasting functions can be accomplished by big-loop recurrence, whereby the output of the system is recirculated back into the hippocampus. We use ultra-high-resolution fMRI to provide support for this hypothesis, by showing that retrieved information is presented as a new input on the superficial entorhinal cortex-driven by functional connectivity between the deep and superficial entorhinal layers. Further, the magnitude of this laminar connectivity correlated with inferential performance, demonstrating its importance for behavior. Our findings offer a novel perspective on information processing within the hippocampus and support a unifying framework in which the hippocampus captures higher-order structure across experiences, by creating a dynamic memory space from separate episodic codes for individual experiences.
Collapse
Affiliation(s)
| | | | - Yi Chen
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany; German Center for Neurodegenerative Diseases (DZNE), Site Magdeburg, 39120 Magdeburg, Germany
| | - David Berron
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany; German Center for Neurodegenerative Diseases (DZNE), Site Magdeburg, 39120 Magdeburg, Germany; Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, 223 62 Lund, Sweden
| | | | - Emrah Düzel
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany; German Center for Neurodegenerative Diseases (DZNE), Site Magdeburg, 39120 Magdeburg, Germany; Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London WC1N 3AR, UK
| | - Demis Hassabis
- DeepMind, 5 New Street Square, London EC4A 3TW, UK; Gatsby Computational Neuroscience Unit, 25 Howland Street, London W1T 4JG, UK
| | - Dharshan Kumaran
- DeepMind, 5 New Street Square, London EC4A 3TW, UK; Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London WC1N 3AR, UK.
| |
Collapse
|
37
|
Dalton MA, McCormick C, Maguire EA. Differences in functional connectivity along the anterior-posterior axis of human hippocampal subfields. Neuroimage 2019; 192:38-51. [PMID: 30840906 PMCID: PMC6503073 DOI: 10.1016/j.neuroimage.2019.02.066] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 02/21/2019] [Accepted: 02/27/2019] [Indexed: 12/24/2022] Open
Abstract
There is a paucity of information about how human hippocampal subfields are functionally connected to each other and to neighbouring extra-hippocampal cortices. In particular, little is known about whether patterns of functional connectivity (FC) differ down the anterior-posterior axis of each subfield. Here, using high resolution structural MRI we delineated the hippocampal subfields in healthy young adults. This included the CA fields, separating DG/CA4 from CA3, separating the pre/parasubiculum from the subiculum, and also segmenting the uncus. We then used high resolution resting state functional MRI to interrogate FC. We first analysed the FC of each hippocampal subfield in its entirety, in terms of FC with other subfields and with the neighbouring regions, namely entorhinal, perirhinal, posterior parahippocampal and retrosplenial cortices. Next, we analysed FC for different portions of each hippocampal subfield along its anterior-posterior axis, in terms of FC between different parts of a subfield, FC with other subfield portions, and FC of each subfield portion with the neighbouring cortical regions of interest. We found that intrinsic functional connectivity between the subfields aligned generally with the tri-synaptic circuit but also extended beyond it. Our findings also revealed that patterns of functional connectivity between the subfields and neighbouring cortical areas differed markedly along the anterior-posterior axis of each hippocampal subfield. Overall, these results contribute to ongoing efforts to characterise human hippocampal subfield connectivity, with implications for understanding hippocampal function.
Collapse
Affiliation(s)
- Marshall A Dalton
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, UK
| | - Cornelia McCormick
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, UK
| | - Eleanor A Maguire
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, UK.
| |
Collapse
|
38
|
Dalton MA, McCormick C, De Luca F, Clark IA, Maguire EA. Functional connectivity along the anterior-posterior axis of hippocampal subfields in the ageing human brain. Hippocampus 2019; 29:1049-1062. [PMID: 31058404 PMCID: PMC6849752 DOI: 10.1002/hipo.23097] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 04/02/2019] [Accepted: 04/22/2019] [Indexed: 12/19/2022]
Abstract
While age‐related volumetric changes in human hippocampal subfields have been reported, little is known about patterns of subfield functional connectivity (FC) in the context of healthy ageing. Here we investigated age‐related changes in patterns of FC down the anterior–posterior axis of each subfield. Using high resolution structural MRI we delineated the dentate gyrus (DG), CA fields (including separating DG from CA3), the subiculum, pre/parasubiculum, and the uncus in healthy young and older adults. We then used high resolution resting state functional MRI to measure FC in each group and to directly compare them. We first examined the FC of each subfield in its entirety, in terms of FC with other subfields and with neighboring cortical regions, namely, entorhinal, perirhinal, posterior parahippocampal, and retrosplenial cortices. Next, we analyzed subfield to subfield FC within different portions along the hippocampal anterior–posterior axis, and FC of each subfield portion with the neighboring cortical regions of interest. In general, the FC of the older adults was similar to that observed in the younger adults. We found that, as in the young group, the older group displayed intrinsic FC between the subfields that aligned with the tri‐synaptic circuit but also extended beyond it, and that FC between the subfields and neighboring cortical areas differed markedly along the anterior–posterior axis of each subfield. We observed only one significant difference between the young and older groups. Compared to the young group, the older participants had significantly reduced FC between the anterior CA1‐subiculum transition region and the transentorhinal cortex, two brain regions known to be disproportionately affected during the early stages of age‐related tau accumulation. Overall, these results contribute to ongoing efforts to characterize human hippocampal subfield connectivity, with implications for understanding hippocampal function and its modulation in the ageing brain.
Collapse
Affiliation(s)
- Marshall A Dalton
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Cornelia McCormick
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Flavia De Luca
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Ian A Clark
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Eleanor A Maguire
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, UK
| |
Collapse
|
39
|
van Mourik T, van der Eerden JPJM, Bazin PL, Norris DG. Laminar signal extraction over extended cortical areas by means of a spatial GLM. PLoS One 2019; 14:e0212493. [PMID: 30917123 PMCID: PMC6436691 DOI: 10.1371/journal.pone.0212493] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 02/05/2019] [Indexed: 01/06/2023] Open
Abstract
There is converging evidence that distinct neuronal processes leave distinguishable footprints in the laminar BOLD response. However, even though the achievable spatial resolution in functional MRI has much improved over the years, it is still challenging to separate signals arising from different cortical layers. In this work, we propose a new method to extract laminar signals. We use a spatial General Linear Model in combination with the equivolume principle of cortical layers to unmix laminar signals instead of interpolating through and integrating over a cortical area: thus reducing partial volume effects. Not only do we provide a mathematical framework for extracting laminar signals with a spatial GLM, we also illustrate that the best case scenarios of existing methods can be seen as special cases within the same framework. By means of simulation, we show that this approach has a sharper point spread function, providing better signal localisation. We further assess the partial volume contamination in cortical profiles from high resolution human ex vivo and in vivo structural data, and provide a full account of the benefits and potential caveats. We eschew here any attempt to validate the spatial GLM on the basis of fMRI data as a generally accepted ground-truth pattern of laminar activation does not currently exist. This approach is flexible in terms of the number of layers and their respective thickness, and naturally integrates spatial regularisation along the cortex, while preserving laminar specificity. Care must be taken, however, as this procedure of unmixing is susceptible to sources of noise in the data or inaccuracies in the laminar segmentation.
Collapse
Affiliation(s)
- Tim van Mourik
- Radboud University Nijmegen, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
- * E-mail:
| | - Jan P. J. M. van der Eerden
- Radboud University Nijmegen, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Pierre-Louis Bazin
- Integrative Model-based Cognitive Neuroscience research unit, Universiteit van Amsterdam, Amsterdam, the Netherlands
- Max Planck institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - David G. Norris
- Radboud University Nijmegen, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, Essen, Germany
| |
Collapse
|
40
|
Kizilirmak JM, Schott BH, Thuerich H, Sweeney-Reed CM, Richter A, Folta-Schoofs K, Richardson-Klavehn A. Learning of novel semantic relationships via sudden comprehension is associated with a hippocampus-independent network. Conscious Cogn 2019; 69:113-132. [DOI: 10.1016/j.concog.2019.01.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 01/09/2019] [Indexed: 11/29/2022]
|
41
|
Düzel E, Berron D, Schütze H, Cardenas-Blanco A, Metzger C, Betts M, Ziegler G, Chen Y, Dobisch L, Bittner D, Glanz W, Reuter M, Spottke A, Rudolph J, Brosseron F, Buerger K, Janowitz D, Fliessbach K, Heneka M, Laske C, Buchmann M, Nestor P, Peters O, Diesing D, Li S, Priller J, Spruth EJ, Altenstein S, Ramirez A, Schneider A, Kofler B, Speck O, Teipel S, Kilimann I, Dyrba M, Wiltfang J, Bartels C, Wolfsgruber S, Wagner M, Jessen F. CSF total tau levels are associated with hippocampal novelty irrespective of hippocampal volume. ALZHEIMER'S & DEMENTIA: DIAGNOSIS, ASSESSMENT & DISEASE MONITORING 2018; 10:782-790. [PMID: 30555890 PMCID: PMC6280588 DOI: 10.1016/j.dadm.2018.10.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Introduction We examined the association between cerebrospinal fluid (CSF) biomarkers of Alzheimer's disease, neural novelty responses, and brain volume in predementia old age. Methods We conducted a cross-sectional analysis of the observational, multicentric DZNE-Longitudinal Cognitive Impairment and Dementia Study (DELCODE) study. Seventy-six participants completed task functional magnetic resonance imaging and provided CSF (40 cognitively unimpaired, 21 experiencing subjective cognitive decline, and 15 with mild cognitive impairment). We assessed the correlation between CSF biomarkers and whole-brain functional magnetic resonance imaging novelty responses to scene images. Results Total tau levels were specifically and negatively associated with novelty responses in the right amygdala and right hippocampus. Mediation analyses showed no evidence that these associations were dependent on the volume of hippocampus/amygdala. No relationship was found between phosphorylated-tau or Aβ42 levels and novelty responses. Discussion Our data show that CSF levels of total tau are associated with anatomically specific reductions in novelty processing, which cannot be fully explained by atrophy.
Collapse
Affiliation(s)
- Emrah Düzel
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.,Institute of Cognitive Neuroscience, Univ. College London, London, UK
| | - David Berron
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Hartmut Schütze
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Arturo Cardenas-Blanco
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Coraline Metzger
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.,Department of Psychiatry and Psychotherapy, University Hospital Magdeburg, Medical Faculty, Magdeburg, Germany
| | - Matthew Betts
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Gabriel Ziegler
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Yi Chen
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Laura Dobisch
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Daniel Bittner
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.,Clinic for Neurology, University Hospital Magdeburg, Medical Faculty, Magdeburg, Germany
| | - Wenzel Glanz
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Martin Reuter
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Annika Spottke
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department of Neurology, University of Bonn, Bonn, Germany
| | - Janna Rudolph
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Frederic Brosseron
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department of Neurodegeneration and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
| | - Katharina Buerger
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Institute for Stroke and Dementia Research, University Hospital, Munich, Germany
| | - Daniel Janowitz
- Institute for Stroke and Dementia Research, University Hospital, Munich, Germany
| | - Klaus Fliessbach
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Michael Heneka
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department of Neurodegeneration and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
| | - Christoph Laske
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany.,Section for Dementia Research, Hertie Institute for Clinical Brain Research and Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Martina Buchmann
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany.,Section for Dementia Research, Hertie Institute for Clinical Brain Research and Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Peter Nestor
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Oliver Peters
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany.,Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Psychiatry and Psychotherapy, Berlin, Germany
| | - Dominik Diesing
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Psychiatry and Psychotherapy, Berlin, Germany
| | - Siyao Li
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Psychiatry and Psychotherapy, Berlin, Germany
| | - Josef Priller
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany.,Department of Psychiatry and Psychotherapy, Berlin, Germany
| | | | - Slawek Altenstein
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Alfredo Ramirez
- Department of Psychiatry, University of Cologne, Medical Faculty, Cologne, Germany
| | - Anja Schneider
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department of Neurodegeneration and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
| | - Barbara Kofler
- Department of Neurodegeneration and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
| | - Oliver Speck
- Department of Biomagnetical Resonance, Magdeburg, Germany
| | - Stefan Teipel
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany.,Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany
| | - Ingo Kilimann
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany.,Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany
| | - Martin Dyrba
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
| | - Jens Wiltfang
- German Center for Neurodegenerative Diseases (DZNE), Goettingen, Germany.,Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, University of Goettingen, Goettingen, Germany
| | - Claudia Bartels
- German Center for Neurodegenerative Diseases (DZNE), Goettingen, Germany.,Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, University of Goettingen, Goettingen, Germany
| | | | - Michael Wagner
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department of Neurodegeneration and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
| | - Frank Jessen
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department of Psychiatry, University of Cologne, Medical Faculty, Cologne, Germany
| |
Collapse
|
42
|
Langnes E, Vidal-Piñeiro D, Sneve MH, Amlien IK, Walhovd KB, Fjell AM. Development and Decline of the Hippocampal Long-Axis Specialization and Differentiation During Encoding and Retrieval of Episodic Memories. Cereb Cortex 2018; 29:3398-3414. [DOI: 10.1093/cercor/bhy209] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 08/02/2018] [Accepted: 08/05/2018] [Indexed: 01/28/2023] Open
Abstract
Abstract
Change in hippocampal function is a major factor in life span development and decline of episodic memory. Evidence indicates a long-axis specialization where anterior hippocampus is more engaged during encoding than during retrieval, and posterior more engaged during retrieval than during encoding. We tested the life span trajectory of hippocampal long-axis episodic memory-related activity and functional connectivity (FC) in 496 participants (6.8–80.8 years) encoding and retrieving associative memories. We found evidence for a long-axis encoding–retrieval specialization that declined linearly during development and aging, eventually vanishing in the older adults. This was mainly driven by age effects on retrieval, which was associated with gradually lower activity from childhood to adulthood, followed by positive age relationships until 70 years. This pattern of age effects characterized task engagement regardless of memory success or failure. Especially for retrieval, children engaged posterior hippocampus more than anterior, while anterior was relatively more activated already in teenagers. Significant intrahippocampal connectivity was found during task, which declined with age. The results suggest that hippocampal long-axis differentiation and communication during episodic memory tasks develop rapidly during childhood, are different in older compared with younger adults, and that the age effects are related to task engagement, not the successful retrieval of episodic memories specifically.
Collapse
Affiliation(s)
- Espen Langnes
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo, Norway
| | - Didac Vidal-Piñeiro
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo, Norway
| | - Markus H Sneve
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo, Norway
| | - Inge K Amlien
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo, Norway
| | - Kristine B Walhovd
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo, Norway
- Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Anders M Fjell
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo, Norway
- Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
43
|
Dalton MA, Zeidman P, McCormick C, Maguire EA. Differentiable Processing of Objects, Associations, and Scenes within the Hippocampus. J Neurosci 2018; 38:8146-8159. [PMID: 30082418 PMCID: PMC6146500 DOI: 10.1523/jneurosci.0263-18.2018] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 06/11/2018] [Accepted: 06/29/2018] [Indexed: 11/21/2022] Open
Abstract
The hippocampus is known to be important for a range of cognitive functions, including episodic memory, spatial navigation, and thinking about the future. However, researchers have found it difficult to agree on the exact nature of this brain structure's contribution to cognition. Some theories emphasize the role of the hippocampus in associative processes. Another theory proposes that scene construction is its primary role. To directly compare these accounts of hippocampal function in human males and females, we devised a novel mental imagery paradigm where different tasks were closely matched for associative processing and mental construction, but either did or did not evoke scene representations, and we combined this with high-resolution functional MRI. The results were striking in showing that different parts of the hippocampus, along with distinct cortical regions, were recruited for scene construction or nonscene-evoking associative processing. The contrasting patterns of neural engagement could not be accounted for by differences in eye movements, mnemonic processing, or the phenomenology of mental imagery. These results inform conceptual debates in the field by showing that the hippocampus does not seem to favor one type of process over another; it is not a story of exclusivity. Rather, there may be different circuits within the hippocampus, each associated with different cortical inputs, which become engaged depending on the nature of the stimuli and the task at hand. Overall, our findings emphasize the importance of considering the hippocampus as a heterogeneous structure, and that a focus on characterizing how specific portions of the hippocampus interact with other brain regions may promote a better understanding of its role in cognition.SIGNIFICANCE STATEMENT The hippocampus is known to be important for a range of cognitive functions, including episodic memory, spatial navigation, and thinking about the future. However, researchers have found it difficult to agree on the exact nature of this brain structure's contribution to cognition. Here we used a novel mental imagery paradigm and high-resolution functional MRI to compare accounts of hippocampal function that emphasize associative processes with a theory that proposes scene construction as a primary role. The results were striking in showing that different parts of the hippocampus, along with distinct cortical regions, were recruited for scene construction or nonscene-evoking associative processing. We conclude that a greater emphasis on characterizing how specific portions of the hippocampus interact with other brain regions may promote a better understanding of its role in cognition.
Collapse
Affiliation(s)
- Marshall A Dalton
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, London WC1N 3AR, United Kingdom
| | - Peter Zeidman
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, London WC1N 3AR, United Kingdom
| | - Cornelia McCormick
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, London WC1N 3AR, United Kingdom
| | - Eleanor A Maguire
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, London WC1N 3AR, United Kingdom
| |
Collapse
|
44
|
Wu PY, Chu YH, Lin JFL, Kuo WJ, Lin FH. Feature-dependent intrinsic functional connectivity across cortical depths in the human auditory cortex. Sci Rep 2018; 8:13287. [PMID: 30185951 PMCID: PMC6125583 DOI: 10.1038/s41598-018-31292-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 08/13/2018] [Indexed: 12/25/2022] Open
Abstract
Frequency preference and spectral tuning are two cardinal features of information processing in the auditory cortex. However, sounds should not only be processed in separate frequency bands because information needs to be integrated to be meaningful. One way to better understand the integration of acoustic information is to examine the functional connectivity across cortical depths, as neurons are already connected differently across laminar layers. Using a tailored receiver array and surface-based cortical depth analysis, we revealed the frequency-preference as well as tuning-width dependent intrinsic functional connectivity (iFC) across cortical depths in the human auditory cortex using functional magnetic resonance imaging (fMRI). We demonstrated feature-dependent iFC in both core and noncore regions at all cortical depths. The selectivity of frequency-preference dependent iFC was higher at deeper depths than at intermediate and superficial depths in the core region. Both the selectivity of frequency-preference and tuning-width dependent iFC were stronger in the core than in the noncore region at deep cortical depths. Taken together, our findings provide evidence for a cortical depth-specific feature-dependent functional connectivity in the human auditory cortex.
Collapse
Affiliation(s)
- Pu-Yeh Wu
- Institute of Biomedical Engineering, National Taiwan University, Taipei, 106, Taiwan
| | - Ying-Hua Chu
- Institute of Biomedical Engineering, National Taiwan University, Taipei, 106, Taiwan
| | - Jo-Fu Lotus Lin
- Institute of Biomedical Engineering, National Taiwan University, Taipei, 106, Taiwan
| | - Wen-Jui Kuo
- Institute of Neuroscience, National Yang-Ming University, Taipei, 112, Taiwan
| | - Fa-Hsuan Lin
- Institute of Biomedical Engineering, National Taiwan University, Taipei, 106, Taiwan.
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, 02150, Finland.
| |
Collapse
|
45
|
Increased Prefrontal Activity with Aging Reflects Nonspecific Neural Responses Rather than Compensation. J Neurosci 2018; 38:7303-7313. [PMID: 30037829 PMCID: PMC6096047 DOI: 10.1523/jneurosci.1701-17.2018] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 03/15/2018] [Accepted: 03/21/2018] [Indexed: 11/29/2022] Open
Abstract
Elevated prefrontal cortex activity is often observed in healthy older adults despite declines in their memory and other cognitive functions. According to one view, this activity reflects a compensatory functional posterior-to-anterior shift, which contributes to maintenance of cognitive performance when posterior cortical function is impaired. Alternatively, the increased prefrontal activity may be less efficient or less specific because of structural and neurochemical changes accompanying aging. These accounts are difficult to distinguish on the basis of average activity levels within brain regions. Instead, we used a novel, model-based multivariate analysis technique applied to two independent fMRI datasets from an adult-lifespan human sample (N = 123 and N = 115; approximately half female). Standard analysis replicated the age-related increase in average prefrontal activation, but multivariate tests revealed that this activity did not carry additional information. The results contradict the hypothesis of a compensatory posterior-to-anterior shift. Instead, they suggest that the increased prefrontal activation reflects reduced efficiency or specificity rather than compensation. SIGNIFICANCE STATEMENT Functional brain imaging studies have often shown increased activity in prefrontal brain regions in older adults. This has been proposed to reflect a compensatory shift to greater reliance on prefrontal cortex (PFC), helping to maintain cognitive function. Alternatively, activity may become less specific as people age. This is a key question in the neuroscience of aging. In this study, we used novel tests of how different brain regions contribute to long- and short-term memory. We found increased activity in PFC in older adults, but this activity carried less information about memory outcomes than activity in visual regions. These findings are relevant for understanding why cognitive abilities decline with age, suggesting that optimal function depends on successful brain maintenance rather than compensation.
Collapse
|
46
|
Associative Prediction of Visual Shape in the Hippocampus. J Neurosci 2018; 38:6888-6899. [PMID: 29986875 DOI: 10.1523/jneurosci.0163-18.2018] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 04/29/2018] [Accepted: 06/20/2018] [Indexed: 11/21/2022] Open
Abstract
Perception can be cast as a process of inference, in which bottom-up signals are combined with top-down predictions in sensory systems. In line with this, neural activity in sensory cortex is strongly modulated by prior expectations. Such top-down predictions often arise from cross-modal associations, such as when a sound (e.g., bell or bark) leads to an expectation of the visual appearance of the corresponding object (e.g., bicycle or dog). We hypothesized that the hippocampus, which rapidly learns arbitrary relationships between stimuli over space and time, may be involved in forming such associative predictions. We exposed male and female human participants to auditory cues predicting visual shapes, while measuring high-resolution fMRI signals in visual cortex and the hippocampus. Using multivariate reconstruction methods, we discovered a dissociation between these regions: representations in visual cortex were dominated by whichever shape was presented, whereas representations in the hippocampus reflected only which shape was predicted by the cue. The strength of hippocampal predictions correlated across participants with the amount of expectation-related facilitation in visual cortex. These findings help bridge the gap between memory and sensory systems in the human brain.SIGNIFICANCE STATEMENT The way we perceive the world is to a great extent determined by our prior knowledge. Despite this intimate link between perception and memory, these two aspects of cognition have mostly been studied in isolation. Here we investigate their interaction by asking how memory systems that encode and retrieve associations can inform perception. We find that upon hearing a familiar auditory cue, the hippocampus represents visual information that had previously co-occurred with the cue, even when this expectation differs from what is currently visible. Furthermore, the strength of this hippocampal expectation correlates with facilitation of perceptual processing in visual cortex. These findings help bridge the gap between memory and sensory systems in the human brain.
Collapse
|
47
|
Polimeni JR, Renvall V, Zaretskaya N, Fischl B. Analysis strategies for high-resolution UHF-fMRI data. Neuroimage 2018; 168:296-320. [PMID: 28461062 PMCID: PMC5664177 DOI: 10.1016/j.neuroimage.2017.04.053] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 04/21/2017] [Accepted: 04/22/2017] [Indexed: 12/22/2022] Open
Abstract
Functional MRI (fMRI) benefits from both increased sensitivity and specificity with increasing magnetic field strength, making it a key application for Ultra-High Field (UHF) MRI scanners. Most UHF-fMRI studies utilize the dramatic increases in sensitivity and specificity to acquire high-resolution data reaching sub-millimeter scales, which enable new classes of experiments to probe the functional organization of the human brain. This review article surveys advanced data analysis strategies developed for high-resolution fMRI at UHF. These include strategies designed to mitigate distortion and artifacts associated with higher fields in ways that attempt to preserve spatial resolution of the fMRI data, as well as recently introduced analysis techniques that are enabled by these extremely high-resolution data. Particular focus is placed on anatomically-informed analyses, including cortical surface-based analysis, which are powerful techniques that can guide each step of the analysis from preprocessing to statistical analysis to interpretation and visualization. New intracortical analysis techniques for laminar and columnar fMRI are also reviewed and discussed. Prospects for single-subject individualized analyses are also presented and discussed. Altogether, there are both specific challenges and opportunities presented by UHF-fMRI, and the use of proper analysis strategies can help these valuable data reach their full potential.
Collapse
Affiliation(s)
- Jonathan R Polimeni
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, United States; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, United States.
| | - Ville Renvall
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, United States; Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
| | - Natalia Zaretskaya
- Centre for Integrative Neuroscience, Department of Psychology, University of Tübingen, Tübingen, Germany; Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Bruce Fischl
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, United States; Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
48
|
Steed TC, Treiber JM, Brandel MG, Patel KS, Dale AM, Carter BS, Chen CC. Quantification of glioblastoma mass effect by lateral ventricle displacement. Sci Rep 2018; 8:2827. [PMID: 29434275 PMCID: PMC5809591 DOI: 10.1038/s41598-018-21147-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 01/26/2018] [Indexed: 11/08/2022] Open
Abstract
Mass effect has demonstrated prognostic significance for glioblastoma, but is poorly quantified. Here we define and characterize a novel neuroimaging parameter, lateral ventricle displacement (LVd), which quantifies mass effect in glioblastoma patients. LVd is defined as the magnitude of displacement from the center of mass of the lateral ventricle volume in glioblastoma patients relative to that a normal reference brain. Pre-operative MR images from 214 glioblastoma patients from The Cancer Imaging Archive (TCIA) were segmented using iterative probabilistic voxel labeling (IPVL). LVd, contrast enhancing volumes (CEV) and FLAIR hyper-intensity volumes (FHV) were determined. Associations with patient survival and tumor genomics were investigated using data from The Cancer Genome Atlas (TCGA). Glioblastoma patients had significantly higher LVd relative to patients without brain tumors. The variance of LVd was not explained by tumor volume, as defined by CEV or FLAIR. LVd was robustly associated with glioblastoma survival in Cox models which accounted for both age and Karnofsky's Performance Scale (KPS) (p = 0.006). Glioblastomas with higher LVd demonstrated increased expression of genes associated with tumor proliferation and decreased expression of genes associated with tumor invasion. Our results suggest LVd is a quantitative measure of glioblastoma mass effect and a prognostic imaging biomarker.
Collapse
Affiliation(s)
- Tyler C Steed
- Department of Neurosurgery, Emory University, Atlanta, GA, USA
| | - Jeffrey M Treiber
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Michael G Brandel
- Department of Neurosurgery, University of California San Diego, La Jolla, CA, USA
| | - Kunal S Patel
- Department of Neurosurgery, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA
| | - Anders M Dale
- Multimodal Imaging Laboratory, University of California San Diego, La Jolla, CA, USA
- Department of Radiology, University of California San Diego, La Jolla, CA, USA
| | - Bob S Carter
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
| | - Clark C Chen
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
49
|
Ianov L, De Both M, Chawla MK, Rani A, Kennedy AJ, Piras I, Day JJ, Siniard A, Kumar A, Sweatt JD, Barnes CA, Huentelman MJ, Foster TC. Hippocampal Transcriptomic Profiles: Subfield Vulnerability to Age and Cognitive Impairment. Front Aging Neurosci 2017; 9:383. [PMID: 29276487 PMCID: PMC5727020 DOI: 10.3389/fnagi.2017.00383] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 11/07/2017] [Indexed: 01/11/2023] Open
Abstract
The current study employed next-generation RNA sequencing to examine gene expression differences related to brain aging, cognitive decline, and hippocampal subfields. Young and aged rats were trained on a spatial episodic memory task. Hippocampal regions CA1, CA3, and the dentate gyrus were isolated. Poly-A mRNA was examined using two different sequencing platforms, Illumina, and Ion Proton. The Illumina platform was used to generate seed lists of genes that were statistically differentially expressed across regions, ages, or in association with cognitive function. The gene lists were then retested using the data from the Ion Proton platform. The results indicate hippocampal subfield differences in gene expression and point to regional differences in vulnerability to aging. Aging was associated with increased expression of immune response-related genes, particularly in the dentate gyrus. For the memory task, impaired performance of aged animals was linked to the regulation of Ca2+ and synaptic function in region CA1. Finally, we provide a transcriptomic characterization of the three subfields regardless of age or cognitive status, highlighting and confirming a correspondence between cytoarchitectural boundaries and molecular profiling.
Collapse
Affiliation(s)
- Lara Ianov
- Departments of Neuroscience and Genetics and Genomics Program, Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, United States.,Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Matt De Both
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, United States
| | - Monica K Chawla
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, United States
| | - Asha Rani
- Departments of Neuroscience and Genetics and Genomics Program, Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Andrew J Kennedy
- Evelyn F. McKnight Brain Institute, University of Alabama, Birmingham, AL, United States
| | - Ignazio Piras
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, United States
| | - Jeremy J Day
- Evelyn F. McKnight Brain Institute, University of Alabama, Birmingham, AL, United States
| | - Ashley Siniard
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, United States
| | - Ashok Kumar
- Departments of Neuroscience and Genetics and Genomics Program, Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - J David Sweatt
- Evelyn F. McKnight Brain Institute, University of Alabama, Birmingham, AL, United States.,Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
| | - Carol A Barnes
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, United States.,Departments of Psychology, Neurology and Neuroscience, University of Arizona, Tucson, AZ, United States
| | - Matthew J Huentelman
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, United States.,Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, United States
| | - Thomas C Foster
- Departments of Neuroscience and Genetics and Genomics Program, Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| |
Collapse
|
50
|
Voets NL, Hodgetts CJ, Sen A, Adcock JE, Emir U. Hippocampal MRS and subfield volumetry at 7T detects dysfunction not specific to seizure focus. Sci Rep 2017; 7:16138. [PMID: 29170537 PMCID: PMC5700920 DOI: 10.1038/s41598-017-16046-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 11/03/2017] [Indexed: 01/06/2023] Open
Abstract
Ultra high-field 7T MRI offers sensitivity to localize hippocampal pathology in temporal lobe epilepsy (TLE), but has rarely been evaluated in patients with normal-appearing clinical MRI. We applied multimodal 7T MRI to assess if focal subfield atrophy and deviations in brain metabolites characterize epileptic hippocampi. Twelve pre-surgical TLE patients (7 MRI-negative) and age-matched healthy volunteers were scanned at 7T. Hippocampal subfields were manually segmented from 600μm isotropic resolution susceptibility-weighted images. Hippocampal metabolite spectra were acquired to determine absolute concentrations of glutamate, glutamine, myo-inositol, NAA, creatine and choline. We performed case-controls analyses, using permutation testing, to identify abnormalities in hippocampal imaging measures in individual patients, for evaluation against clinical evidence of seizure lateralisation and neuropsychological memory test scores. Volume analyses identified hippocampal subfield atrophy in 9/12 patients (75%), commonly affecting CA3. 7/8 patients had altered metabolite concentrations, most showing reduced glutamine levels (62.5%). However, neither volume nor metabolite deviations consistently lateralized the epileptogenic hippocampus. Rather, lower subiculum volumes and glutamine concentrations correlated with impaired verbal memory performance. Hippocampal subfield and metabolic abnormalities detected at 7T appear to reflect pathophysiological processes beyond epileptogenesis. Despite limited diagnostic contributions, these markers show promise to help elucidate mnemonic processing in TLE.
Collapse
Affiliation(s)
- Natalie L Voets
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK. .,Oxford Epilepsy Research Group, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK.
| | - Carl J Hodgetts
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK.,Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Arjune Sen
- Oxford Epilepsy Research Group, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Jane E Adcock
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK.,Oxford Epilepsy Research Group, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Uzay Emir
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| |
Collapse
|