1
|
Li M, Fan Q, Gao L, Liang K, Huang Q. Chemical Intercalation of Layered Materials: From Structure Tailoring to Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312918. [PMID: 38821561 DOI: 10.1002/adma.202312918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/02/2024] [Indexed: 06/02/2024]
Abstract
The intercalation of layered materials offers a flexible approach for tailoring their structures and generating unexpected properties. This review provides perspectives on the chemical intercalation of layered materials, including graphite/graphene, transition metal dichalcogenides, MXenes, and some particular materials. The characteristics of the different intercalation methods and their chemical mechanisms are discussed. The influence of intercalation on the structural changes of the host materials and the structural change how to affect the intrinsic properties of the intercalation compounds are discussed. Furthermore, a perspective on the applications of intercalation compounds in fields such as energy conversion and storage, catalysis, smart devices, biomedical applications, and environmental remediation is provided. Finally, brief insights into the challenges and future opportunities for the chemical intercalation of layered materials are provided.
Collapse
Affiliation(s)
- Mian Li
- Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Qianwan Institute of CNiTECH, Ningbo, Zhejiang, 315336, China
| | - Qi Fan
- Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Qianwan Institute of CNiTECH, Ningbo, Zhejiang, 315336, China
- University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Lin Gao
- Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Qianwan Institute of CNiTECH, Ningbo, Zhejiang, 315336, China
| | - Kun Liang
- Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Qianwan Institute of CNiTECH, Ningbo, Zhejiang, 315336, China
| | - Qing Huang
- Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Qianwan Institute of CNiTECH, Ningbo, Zhejiang, 315336, China
| |
Collapse
|
2
|
Yang R, Mei L, Lin Z, Fan Y, Lim J, Guo J, Liu Y, Shin HS, Voiry D, Lu Q, Li J, Zeng Z. Intercalation in 2D materials and in situ studies. Nat Rev Chem 2024; 8:410-432. [PMID: 38755296 DOI: 10.1038/s41570-024-00605-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2024] [Indexed: 05/18/2024]
Abstract
Intercalation of atoms, ions and molecules is a powerful tool for altering or tuning the properties - interlayer interactions, in-plane bonding configurations, Fermi-level energies, electronic band structures and spin-orbit coupling - of 2D materials. Intercalation can induce property changes in materials related to photonics, electronics, optoelectronics, thermoelectricity, magnetism, catalysis and energy storage, unlocking or improving the potential of 2D materials in present and future applications. In situ imaging and spectroscopy technologies are used to visualize and trace intercalation processes. These techniques provide the opportunity for deciphering important and often elusive intercalation dynamics, chemomechanics and mechanisms, such as the intercalation pathways, reversibility, uniformity and speed. In this Review, we discuss intercalation in 2D materials, beginning with a brief introduction of the intercalation strategies, then we look into the atomic and intrinsic effects of intercalation, followed by an overview of their in situ studies, and finally provide our outlook.
Collapse
Affiliation(s)
- Ruijie Yang
- Department of Materials Science and Engineering and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, P. R. China
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, Alberta, Canada
| | - Liang Mei
- Department of Materials Science and Engineering and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, P. R. China
| | - Zhaoyang Lin
- Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Tsinghua University, Beijing, China
| | - Yingying Fan
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, Alberta, Canada
| | - Jongwoo Lim
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Jinghua Guo
- Advanced Light Source, Energy Storage and Distributed Resources Division, and Material Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Yijin Liu
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Hyeon Suk Shin
- Center for 2D Quantum Heterostructures, Institute for Basic Science, and Department of Energy Science, Sungkyunkwan University (SKKU), Suwon, Republic of Korea
| | - Damien Voiry
- Institut Européen des Membranes, IEM, UMR, Université Montpellier, ENSCM, CNRS, Montpellier, France
| | - Qingye Lu
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, Alberta, Canada.
| | - Ju Li
- Department of Nuclear Science and Engineering and Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Zhiyuan Zeng
- Department of Materials Science and Engineering and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, P. R. China.
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, China.
| |
Collapse
|
3
|
Kastuar SM, Ekuma CE. Chemically tuned intermediate band states in atomically thin Cu xGeSe/SnS quantum material for photovoltaic applications. SCIENCE ADVANCES 2024; 10:eadl6752. [PMID: 38598620 PMCID: PMC11006210 DOI: 10.1126/sciadv.adl6752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/07/2024] [Indexed: 04/12/2024]
Abstract
A new generation of quantum material derived from intercalating zerovalent atoms such as Cu into the intrinsic van der Waals gap at the interface of atomically thin two-dimensional GeSe/SnS heterostructure is designed, and their optoelectronic features are explored for next-generation photovoltaic applications. Advanced ab initio modeling reveals that many-body effects induce intermediate band (IB) states, with subband gaps (~0.78 and 1.26 electron volts) ideal for next-generation solar devices, which promise efficiency greater than the Shockley-Queisser limit of ~32%. The charge carriers across the heterojunction are both energetically and spontaneously spatially confined, reducing nonradiative recombination and boosting quantum efficiency. Using this IB material in a solar cell prototype enhances absorption and carrier generation in the near-infrared to visible light range. Tuning the active layer's thickness increases optical activity at wavelengths greater than 600 nm, achieving ~190% external quantum efficiency over a broad solar wavelength range, underscoring its potential in advanced photovoltaic technology.
Collapse
|
4
|
Huynh V, Rivera KR, Teoh T, Chen E, Ura J, Koski KJ. Hafnium, Titanium, and Zirconium Intercalation in 2D Layered Nanomaterials. ACS NANOSCIENCE AU 2023; 3:475-481. [PMID: 38144706 PMCID: PMC10740116 DOI: 10.1021/acsnanoscienceau.3c00027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 12/26/2023]
Abstract
Altering the physical and chemical properties of a layered material through intercalation has emerged as a unique strategy toward tunable applications. In this work, we demonstrate a wet chemical method to intercalate titanium, hafnium, and zirconium into 2D layered nanomaterials. The metals are intercalated using bis-tetrahydrofuran metal halide complexes. Metal intercalation is demonstrated in nanomaterials of Bi2Se3, Si2Te3, MoO3, and GeS. This strategy intercalates, on average, 3 atm % or less of Hf, Ti, and Zr that share charge with the host nanomaterial. This methodology is used to chemochromically alter MoO3 from transparent white to dark blue.
Collapse
Affiliation(s)
| | | | - Tiffany Teoh
- Department of Chemistry, University of California Davis, Davis, California 95616, United States
| | - Ethan Chen
- Department of Chemistry, University of California Davis, Davis, California 95616, United States
| | - Jared Ura
- Department of Chemistry, University of California Davis, Davis, California 95616, United States
| | - Kristie J. Koski
- Department of Chemistry, University of California Davis, Davis, California 95616, United States
| |
Collapse
|
5
|
He Q, Sheng B, Zhu K, Zhou Y, Qiao S, Wang Z, Song L. Phase Engineering and Synchrotron-Based Study on Two-Dimensional Energy Nanomaterials. Chem Rev 2023; 123:10750-10807. [PMID: 37581572 DOI: 10.1021/acs.chemrev.3c00389] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
In recent years, there has been significant interest in the development of two-dimensional (2D) nanomaterials with unique physicochemical properties for various energy applications. These properties are often derived from the phase structures established through a range of physical and chemical design strategies. A concrete analysis of the phase structures and real reaction mechanisms of 2D energy nanomaterials requires advanced characterization methods that offer valuable information as much as possible. Here, we present a comprehensive review on the phase engineering of typical 2D nanomaterials with the focus of synchrotron radiation characterizations. In particular, the intrinsic defects, atomic doping, intercalation, and heterogeneous interfaces on 2D nanomaterials are introduced, together with their applications in energy-related fields. Among them, synchrotron-based multiple spectroscopic techniques are emphasized to reveal their intrinsic phases and structures. More importantly, various in situ methods are employed to provide deep insights into their structural evolutions under working conditions or reaction processes of 2D energy nanomaterials. Finally, conclusions and research perspectives on the future outlook for the further development of 2D energy nanomaterials and synchrotron radiation light sources and integrated techniques are discussed.
Collapse
Affiliation(s)
- Qun He
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Beibei Sheng
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Kefu Zhu
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Yuzhu Zhou
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Sicong Qiao
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Zhouxin Wang
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Li Song
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, China
- Zhejiang Institute of Photonelectronics, Jinhua, Zhejiang 321004, China
| |
Collapse
|
6
|
Zhu K, Tao Y, Clark DE, Hong W, Li CW. Solution-Phase Synthesis of Vanadium Intercalated 1T'-WS 2 with Tunable Electronic Properties. NANO LETTERS 2023; 23:4471-4478. [PMID: 37155184 DOI: 10.1021/acs.nanolett.3c00826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Metal ion intercalation into Group VI transition metal dichalcogenides enables control over their carrier transport properties. In this work, we demonstrate a low-temperature, solution-phase synthetic method to intercalate cationic vanadium complexes into bulk WS2. Vanadium intercalation expands the interlayer spacing from 6.2 to 14.2 Å and stabilizes the 1T' phase of WS2. Kelvin-probe force microscopy measurements indicate that vanadium binding in the van der Waals gap causes an increase in the Fermi level of 1T'-WS2 by 80 meV due to hybridization of vanadium 3d orbitals with the conduction band of the TMD. As a result, the carrier type switches from p-type to n-type, and carrier mobility increases by an order of magnitude relative to the Li-intercalated precursor. Both the conductivity and thermal activation barrier for carrier transport are readily tuned by varying the concentration of VCl3 during the cation-exchange reaction.
Collapse
Affiliation(s)
- Kuixin Zhu
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Yiyin Tao
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Daniel E Clark
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Wei Hong
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Christina W Li
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
7
|
Batool S, Idrees M, Han ST, Roy VAL, Zhou Y. Electrical Contacts With 2D Materials: Current Developments and Future Prospects. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206550. [PMID: 36587964 DOI: 10.1002/smll.202206550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Current electrical contact models are occasionally insufficient at the nanoscale owing to the wide variations in outcomes between 2D mono and multi-layered and bulk materials that result from their distinctive electrostatics and geometries. Contrarily, devices based on 2D semiconductors present a significant challenge due to the requirement for electrical contact with resistances close to the quantum limit. The next generation of low-power devices is already hindered by the lack of high-quality and low-contact-resistance contacts on 2D materials. The physics and materials science of electrical contact resistance in 2D materials-based nanoelectronics, interface configurations, charge injection mechanisms, and numerical modeling of electrical contacts, as well as the most pressing issues that need to be resolved in the field of research and development, will all be covered in this review.
Collapse
Affiliation(s)
- Saima Batool
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Muhammad Idrees
- Additive Manufacturing Institute, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Su-Ting Han
- College of Electronics Science & Technology, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Vellaisamy A L Roy
- James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Ye Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
| |
Collapse
|
8
|
He Z, Qi Z, Yang B, Lu P, Shen J, Dilley NR, Zhang X, Wang H. Controllable Phase Transition Properties in VO 2 Films via Metal-Ion Intercalation. NANO LETTERS 2023; 23:1119-1127. [PMID: 36719402 DOI: 10.1021/acs.nanolett.2c03286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
VO2 has shown great promise for sensors, smart windows, and energy storage devices, because of its drastic semiconductor-to-metal transition (SMT) near 340 K coupled with a structural transition. To push its application toward room-temperature, effective transition temperature (Tc) tuning in VO2 is desired. In this study, tailorable SMT characteristics in VO2 films have been achieved by the electrochemical intercalation of foreign ions (e.g., Li ions). By controlling the relative potential with respect to Li/Li+ during the intercalation process, Tc of VO2 can be effectively and systematically tuned in the window from 326.7 to 340.8 K. The effective Tc tuning could be attributed to the observed strain and lattice distortion and the change of the charge carrier density in VO2 introduced by the intercalation process. This demonstration opens up a new approach in tuning the VO2 phase transition toward room-temperature device applications and enables future real-time phase change property tuning.
Collapse
Affiliation(s)
- Zihao He
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Zhimin Qi
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Bo Yang
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ping Lu
- Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Jianan Shen
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Neil R Dilley
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Xinghang Zhang
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Haiyan Wang
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
9
|
Aggarwal D, Narula R, Ghosh S. A primer on twistronics: a massless Dirac fermion's journey to moiré patterns and flat bands in twisted bilayer graphene. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2023; 35:143001. [PMID: 36745922 DOI: 10.1088/1361-648x/acb984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
The recent discovery of superconductivity in magic-angle twisted bilayer graphene (TBLG) has sparked a renewed interest in the strongly-correlated physics ofsp2carbons, in stark contrast to preliminary investigations which were dominated by the one-body physics of the massless Dirac fermions. We thus provide a self-contained, theoretical perspective of the journey of graphene from its single-particle physics-dominated regime to the strongly-correlated physics of the flat bands. Beginning from the origin of the Dirac points in condensed matter systems, we discuss the effect of the superlattice on the Fermi velocity and Van Hove singularities in graphene and how it leads naturally to investigations of the moiré pattern in van der Waals heterostructures exemplified by graphene-hexagonal boron-nitride and TBLG. Subsequently, we illuminate the origin of flat bands in TBLG at the magic angles by elaborating on a broad range of prominent theoretical works in a pedagogical way while linking them to available experimental support, where appropriate. We conclude by providing a list of topics in the study of the electronic properties of TBLG not covered by this review but may readily be approached with the help of this primer.
Collapse
Affiliation(s)
| | - Rohit Narula
- Department of Physics, IIT Delhi, Hauz Khas, New Delhi, India
| | - Sankalpa Ghosh
- Department of Physics, IIT Delhi, Hauz Khas, New Delhi, India
| |
Collapse
|
10
|
Batool S, Idrees M, Han S, Zhou Y. 2D Layers of Group VA Semiconductors: Fundamental Properties and Potential Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 10:e2203956. [PMID: 36285813 PMCID: PMC9811453 DOI: 10.1002/advs.202203956] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Members of the 2D group VA semiconductors (phosphorene, arsenene, antimonene, and bismuthine) present a new class of 2D materials, which are recently gaining a lot of research interest. These materials possess layered morphology, tunable direct bandgap, high charge carrier mobility, high stability, unique in-plane anisotropy, and negative Poisson's ratio. They prepare the ground for novel and multifunctional applications in electronics, optoelectronics, and batteries. The most recent analytical and empirical developments in the fundamental characteristics, fabrication techniques, and potential implementation of 2D group VA materials in this review, along with presenting insights and concerns for the field's future are analyzed.
Collapse
Affiliation(s)
- Saima Batool
- Institute for Advanced StudyShenzhen UniversityShenzhen518060P. R. China
| | - Muhammad Idrees
- Additive Manufacturing InstituteCollege of Mechatronics and Control EngineeringShenzhen UniversityShenzhen518060P. R. China
| | - Su‐Ting Han
- College of Electronics Science & TechnologyShenzhen UniversityShenzhen518060P. R. China
| | - Ye Zhou
- Institute for Advanced StudyShenzhen UniversityShenzhen518060P. R. China
| |
Collapse
|
11
|
Zhou J, Zhang W, Lin YC, Cao J, Zhou Y, Jiang W, Du H, Tang B, Shi J, Jiang B, Cao X, Lin B, Fu Q, Zhu C, Guo W, Huang Y, Yao Y, Parkin SSP, Zhou J, Gao Y, Wang Y, Hou Y, Yao Y, Suenaga K, Wu X, Liu Z. Heterodimensional superlattice with in-plane anomalous Hall effect. Nature 2022; 609:46-51. [PMID: 36045238 DOI: 10.1038/s41586-022-05031-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/28/2022] [Indexed: 11/10/2022]
Abstract
Superlattices-a periodic stacking of two-dimensional layers of two or more materials-provide a versatile scheme for engineering materials with tailored properties1,2. Here we report an intrinsic heterodimensional superlattice consisting of alternating layers of two-dimensional vanadium disulfide (VS2) and a one-dimensional vanadium sulfide (VS) chain array, deposited directly by chemical vapour deposition. This unique superlattice features an unconventional 1T stacking with a monoclinic unit cell of VS2/VS layers identified by scanning transmission electron microscopy. An unexpected Hall effect, persisting up to 380 kelvin, is observed when the magnetic field is in-plane, a condition under which the Hall effect usually vanishes. The observation of this effect is supported by theoretical calculations, and can be attributed to an unconventional anomalous Hall effect owing to an out-of-plane Berry curvature induced by an in-plane magnetic field, which is related to the one-dimensional VS chain. Our work expands the conventional understanding of superlattices and will stimulate the synthesis of more extraordinary superstructures.
Collapse
Affiliation(s)
- Jiadong Zhou
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, China.
| | - Wenjie Zhang
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, and Collaborative Innovation Center of Quantum Matter, Peking University, Beijing, China
- Max Planck Institute of Microstructure Physics, Halle, Germany
| | - Yung-Chang Lin
- The Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
| | - Jin Cao
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, China
| | - Yao Zhou
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
- Advanced Research Institute of Multidisciplinary Science, and School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Wei Jiang
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, China
| | - Huifang Du
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, China
| | - Bijun Tang
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Jia Shi
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Bingyan Jiang
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, and Collaborative Innovation Center of Quantum Matter, Peking University, Beijing, China
| | - Xun Cao
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Bo Lin
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Qundong Fu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Chao Zhu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Wei Guo
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, China
| | - Yizhong Huang
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Yuan Yao
- Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | | | - Jianhui Zhou
- Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, HFIPS, Anhui, Chinese Academy of Sciences, Hefei, China
| | - Yanfeng Gao
- School of Materials Science and Engineering, Shanghai University, Shanghai, China
| | - Yeliang Wang
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing, China
| | - Yanglong Hou
- Beijing Key Laboratory for Magnetoelectric Materials and Devices, Beijing Innovation Center for Engineering Science and Advanced Technology, School of Materials Science and Engineering, Peking University, Beijing, China
| | - Yugui Yao
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, China.
| | - Kazu Suenaga
- The Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan.
| | - Xiaosong Wu
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, and Collaborative Innovation Center of Quantum Matter, Peking University, Beijing, China.
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen, China.
| | - Zheng Liu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore.
- CINTRA CNRS/NTU/THALES, UMI 3288, Singapore, Singapore.
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
12
|
Lin H, Zhang Z, Zhang H, Lin KT, Wen X, Liang Y, Fu Y, Lau AKT, Ma T, Qiu CW, Jia B. Engineering van der Waals Materials for Advanced Metaphotonics. Chem Rev 2022; 122:15204-15355. [PMID: 35749269 DOI: 10.1021/acs.chemrev.2c00048] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The outstanding chemical and physical properties of 2D materials, together with their atomically thin nature, make them ideal candidates for metaphotonic device integration and construction, which requires deep subwavelength light-matter interaction to achieve optical functionalities beyond conventional optical phenomena observed in naturally available materials. In addition to their intrinsic properties, the possibility to further manipulate the properties of 2D materials via chemical or physical engineering dramatically enhances their capability, evoking new science on light-matter interaction, leading to leaped performance of existing functional devices and giving birth to new metaphotonic devices that were unattainable previously. Comprehensive understanding of the intrinsic properties of 2D materials, approaches and capabilities for chemical and physical engineering methods, the resulting property modifications and novel functionalities, and applications of metaphotonic devices are provided in this review. Through reviewing the detailed progress in each aspect and the state-of-the-art achievement, insightful analyses of the outstanding challenges and future directions are elucidated in this cross-disciplinary comprehensive review with the aim to provide an overall development picture in the field of 2D material metaphotonics and promote rapid progress in this fast emerging and prosperous field.
Collapse
Affiliation(s)
- Han Lin
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia.,The Australian Research Council (ARC) Industrial Transformation Training, Centre in Surface Engineering for Advanced Materials (SEAM), Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Zhenfang Zhang
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, China
| | - Huihui Zhang
- Centre for Translational Atomaterials, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| | - Keng-Te Lin
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Xiaoming Wen
- Centre for Translational Atomaterials, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| | - Yao Liang
- Centre for Translational Atomaterials, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| | - Yang Fu
- Centre for Translational Atomaterials, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| | - Alan Kin Tak Lau
- Centre for Translational Atomaterials, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| | - Tianyi Ma
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia.,Centre for Translational Atomaterials, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Baohua Jia
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia.,The Australian Research Council (ARC) Industrial Transformation Training, Centre in Surface Engineering for Advanced Materials (SEAM), Swinburne University of Technology, Hawthorn, Victoria 3122, Australia.,Centre for Translational Atomaterials, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| |
Collapse
|
13
|
Kim VV, Bundulis A, Popov VS, Lavrentyev NA, Lizunova AA, Shuklov IA, Ponomarenko VP, Grube J, Ganeev RA. Third-order optical nonlinearities of exfoliated Bi 2Te 3 nanoparticle films in UV, visible and near-infrared ranges measured by tunable femtosecond pulses. OPTICS EXPRESS 2022; 30:6970-6980. [PMID: 35299470 DOI: 10.1364/oe.449490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
We characterize the nonlinear optical properties of synthesized Bi2Te3 nanoparticle-contained thin films using the tunable femtosecond laser in the spectral range of 400-1000 nm. These nanoparticles possess a strong saturable absorption and positive nonlinear refraction (-6.8×10-5 cm W-1 in the case of 500 nm, 150 fs probe pulses, and 3×10-10 cm2 W-1 in the case of 400 nm, 150 fs probe pulses, respectively). The spectral, intensity, and temporal variation of saturable absorption and nonlinear refraction of the thin films containing exfoliated Bi2Te3 nanoparticles are discussed.
Collapse
|
14
|
Nanoribbons of 2D materials: A review on emerging trends, recent developments and future perspectives. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214335] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
15
|
Wang Z, Dai J, Wang J, Li X, Pei C, Liu Y, Yan J, Wang L, Li S, Li H, Wang X, Huang X, Huang W. Realization of Oriented and Nanoporous Bismuth Chalcogenide Layers via Topochemical Heteroepitaxy for Flexible Gas Sensors. RESEARCH (WASHINGTON, D.C.) 2022; 2022:9767651. [PMID: 35935140 PMCID: PMC9275095 DOI: 10.34133/2022/9767651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/24/2022] [Indexed: 11/06/2022]
Abstract
Most van der Waals two-dimensional (2D) materials without surface dangling bonds show limited surface activities except for their edge sites. Ultrathin Bi2Se3, a topological insulator that behaves metal-like under ambient conditions, has been overlooked on its surface activities. Herein, through a topochemical conversion process, ultrathin nanoporous Bi2Se3 layers were epitaxially deposited on BiOCl nanosheets with strong electronic coupling, leading to hybrid electronic states with further bandgap narrowing. Such oriented nanoporous Bi2Se3 layers possessed largely exposed active edge sites, along with improved surface roughness and film forming ability even on inkjet-printed flexible electrodes. Superior room-temperature NO2 sensing performance was achieved compared to other 2D materials under bent conditions. Our work demonstrates that creating nanoscale features in 2D materials through topochemical heteroepitaxy is promising to achieve both favorable electronic properties and surface activity toward practical applications.
Collapse
Affiliation(s)
- Zhiwei Wang
- Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Jie Dai
- Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Jian Wang
- Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Xinzhe Li
- Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Chengjie Pei
- Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Yanlei Liu
- Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Jiaxu Yan
- Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Lin Wang
- Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Shaozhou Li
- Key Laboratory for Organic Electronic & Information Displays (KLOEID) and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Hai Li
- Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Xiaoshan Wang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Xiao Huang
- Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Wei Huang
- Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
- Key Laboratory for Organic Electronic & Information Displays (KLOEID) and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|
16
|
Jo MK, Heo H, Lee JH, Choi S, Kim A, Jeong HB, Jeong HY, Yuk JM, Eom D, Jahng J, Lee ES, Jung IY, Cho SR, Kim J, Cho S, Kang K, Song S. Enhancement of Photoresponse on Narrow-Bandgap Mott Insulator α-RuCl 3 via Intercalation. ACS NANO 2021; 15:18113-18124. [PMID: 34734700 DOI: 10.1021/acsnano.1c06752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Charge doping to Mott insulators is critical to realize high-temperature superconductivity, quantum spin liquid state, and Majorana fermion, which would contribute to quantum computation. Mott insulators also have a great potential for optoelectronic applications; however, they showed insufficient photoresponse in previous reports. To enhance the photoresponse of Mott insulators, charge doping is a promising strategy since it leads to effective modification of electronic structure near the Fermi level. Intercalation, which is the ion insertion into the van der Waals gap of layered materials, is an effective charge-doping method without defect generation. Herein, we showed significant enhancement of optoelectronic properties of a layered Mott insulator, α-RuCl3, through electron doping by organic cation intercalation. The electron-doping results in substantial electronic structure change, leading to the bandgap shrinkage from 1.2 eV to 0.7 eV. Due to localized excessive electrons in RuCl3, distinct density of states is generated in the valence band, leading to the optical absorption change rather than metallic transition even in substantial doping concentration. The stable near-infrared photodetector using electronic modulated RuCl3 showed 50 times higher photoresponsivity and 3 times faster response time compared to those of pristine RuCl3, which contributes to overcoming the disadvantage of a Mott insulator as a promising optoelectronic device and expanding the material libraries.
Collapse
Affiliation(s)
- Min-Kyung Jo
- Operando Methodology and Measurement Team, Interdisciplinary Materials Measurement Institute, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Korea
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Hoseok Heo
- Inorganic Material Lab., Samsung Advanced Institute of Technology (SAIT), Suwon 16678, Korea
| | - Jung-Hoon Lee
- Computational Science Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| | - Seungwook Choi
- Operando Methodology and Measurement Team, Interdisciplinary Materials Measurement Institute, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Korea
| | - Ansoon Kim
- Operando Methodology and Measurement Team, Interdisciplinary Materials Measurement Institute, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Korea
| | - Han Beom Jeong
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Hu Young Jeong
- UNIST Central Research Facilities (UCRF) and Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Jong Min Yuk
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Daejin Eom
- Atom-scale Measurement Team, Advanced Instrumentation Institute, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Korea
| | - Junghoon Jahng
- Hyperspectral Nano-imaging Lab, Interdisciplinary Materials Measurement Institute, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Korea
| | - Eun Seong Lee
- Hyperspectral Nano-imaging Lab, Interdisciplinary Materials Measurement Institute, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Korea
| | - In-Young Jung
- Operando Methodology and Measurement Team, Interdisciplinary Materials Measurement Institute, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Korea
| | - Seong Rae Cho
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Jeongtae Kim
- Operando Methodology and Measurement Team, Interdisciplinary Materials Measurement Institute, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Korea
| | - Seorin Cho
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Kibum Kang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Seungwoo Song
- Operando Methodology and Measurement Team, Interdisciplinary Materials Measurement Institute, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Korea
| |
Collapse
|
17
|
Abstract
2D layered materials with diverse exciting properties have recently attracted tremendous interest in the scientific community. Layered topological insulator Bi2Se3 comes into the spotlight as an exotic state of quantum matter with insulating bulk states and metallic Dirac-like surface states. Its unique crystal and electronic structure offer attractive features such as broadband optical absorption, thickness-dependent surface bandgap and polarization-sensitive photoresponse, which enable 2D Bi2Se3 to be a promising candidate for optoelectronic applications. Herein, we present a comprehensive summary on the recent advances of 2D Bi2Se3 materials. The structure and inherent properties of Bi2Se3 are firstly described and its preparation approaches (i.e., solution synthesis and van der Waals epitaxy growth) are then introduced. Moreover, the optoelectronic applications of 2D Bi2Se3 materials in visible-infrared detection, terahertz detection, and opto-spintronic device are discussed in detail. Finally, the challenges and prospects in this field are expounded on the basis of current development.
Collapse
Affiliation(s)
- Fakun K. Wang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Sijie J. Yang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Tianyou Y. Zhai
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| |
Collapse
|
18
|
Li Z, Li D, Wang H, Chen P, Pi L, Zhou X, Zhai T. Intercalation Strategy in 2D Materials for Electronics and Optoelectronics. SMALL METHODS 2021; 5:e2100567. [PMID: 34928056 DOI: 10.1002/smtd.202100567] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/24/2021] [Indexed: 05/21/2023]
Abstract
Intercalation is an effective approach to tune the physical and chemical properties of 2D materials due to their abundant van der Waals gaps that can host high-density intercalated guest matters. This approach has been widely employed to modulate the optical, electrical, and photoelectrical properties of 2D materials for their applications in electronic and optoelectronic devices. Thus it is necessary to review the recent progress of the intercalation strategy in 2D materials and their applications in devices. Herein, various intercalation strategies and the novel properties of the intercalated 2D materials as well as their applications in electronics and optoelectronics are summarized. In the end, the development tendency of this promising approach for 2D materials is also outlined.
Collapse
Affiliation(s)
- Zexin Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Dongyan Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Haoyun Wang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Ping Chen
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Lejing Pi
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Xing Zhou
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
19
|
Stern C, Twitto A, Snitkoff RZ, Fleger Y, Saha S, Boddapati L, Jain A, Wang M, Koski KJ, Deepak FL, Ramasubramaniam A, Naveh D. Enhancing Light-Matter Interactions in MoS 2 by Copper Intercalation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008779. [PMID: 33955078 PMCID: PMC11469038 DOI: 10.1002/adma.202008779] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/21/2021] [Indexed: 06/12/2023]
Abstract
The intercalation of layered compounds opens up a vast space of new host-guest hybrids, providing new routes for tuning the properties of materials. Here, it is shown that uniform and continuous layers of copper can be intercalated within the van der Waals gap of bulk MoS2 resulting in a unique Cu-MoS2 hybrid. The new Cu-MoS2 hybrid, which remains semiconducting, possesses a unique plasmon resonance at an energy of ≈1eV, giving rise to enhanced optoelectronic activity. Compared with high-performance MoS2 photodetectors, copper-enhanced devices are superior in their spectral response, which extends into the infrared, and also in their total responsivity, which exceeds 104 A W-1 . The Cu-MoS2 hybrids hold promise for supplanting current night-vision technology with compact, advanced multicolor night vision.
Collapse
Affiliation(s)
- Chen Stern
- Faculty of EngineeringBar‐Ilan UniversityRamat‐Gan52900Israel
- Institute for Nanotechnology and Advanced MaterialsBar‐Ilan UniversityRamat‐Gan52900Israel
| | - Avraham Twitto
- Faculty of EngineeringBar‐Ilan UniversityRamat‐Gan52900Israel
- Institute for Nanotechnology and Advanced MaterialsBar‐Ilan UniversityRamat‐Gan52900Israel
| | - Rifael Z. Snitkoff
- Faculty of EngineeringBar‐Ilan UniversityRamat‐Gan52900Israel
- Institute for Nanotechnology and Advanced MaterialsBar‐Ilan UniversityRamat‐Gan52900Israel
| | - Yafit Fleger
- Institute for Nanotechnology and Advanced MaterialsBar‐Ilan UniversityRamat‐Gan52900Israel
| | - Sabyasachi Saha
- Nanostructured Materials GroupInternational Iberian Nanotechnology LaboratoryAvenida Mestre José Veiga s/nBraga4715‐330Portugal
- Electron Microscopy GroupDefence Metallurgical Research Laboratory (DMRL)Hyderabad500058India
| | - Loukya Boddapati
- Nanostructured Materials GroupInternational Iberian Nanotechnology LaboratoryAvenida Mestre José Veiga s/nBraga4715‐330Portugal
| | - Akash Jain
- Department of Chemical EngineeringUniversity of MassachusettsAmherstMA01003USA
| | - Mengjing Wang
- Department of ChemistryUniversity of California DavisDavisCA95616USA
| | - Kristie J. Koski
- Department of ChemistryUniversity of California DavisDavisCA95616USA
| | - Francis Leonard Deepak
- Nanostructured Materials GroupInternational Iberian Nanotechnology LaboratoryAvenida Mestre José Veiga s/nBraga4715‐330Portugal
| | - Ashwin Ramasubramaniam
- Department of Mechanical and Industrial EngineeringUniversity of MassachusettsAmherstMA01003USA
| | - Doron Naveh
- Faculty of EngineeringBar‐Ilan UniversityRamat‐Gan52900Israel
- Institute for Nanotechnology and Advanced MaterialsBar‐Ilan UniversityRamat‐Gan52900Israel
| |
Collapse
|
20
|
Zhou J, Lin Z, Ren H, Duan X, Shakir I, Huang Y, Duan X. Layered Intercalation Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2004557. [PMID: 33984164 DOI: 10.1002/adma.202004557] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 12/29/2020] [Indexed: 06/12/2023]
Abstract
2D layered materials typically feature strong in-plane covalent chemical bonding within each atomic layer and weak out-of-plane van der Waals (vdW) interactions between adjacent layers. The non-bonding nature between neighboring layers naturally results in a vdW gap, in which various foreign species may be inserted without breaking the in-plane covalent bonds. By tailoring the composition, size, structure, and electronic properties of the intercalated guest species and the hosting layered materials, an expansive family of layered intercalation materials may be produced with highly variable compositional and structural features as well as widely tunable physical/chemical properties, invoking unprecedented opportunities in fundamental studies of property modulation and potential applications in diverse technologies, including electronics, optics, superconductors, thermoelectrics, catalysis, and energy storage. Here, the principles and protocols for various intercalation methods, including wet chemical intercalation, gas-phase intercalation, electrochemical intercalation, and ion-exchange intercalation, are comprehensively reviewed and how the intercalated species alter the crystal structure and the interlayer coupling of the host 2D layered materials, introducing unusual physical and chemical properties and enabling devices with superior performance or unique functions, is discussed. To conclude, a brief summary on future research opportunities and emerging challenges in the layered intercalation materials is given.
Collapse
Affiliation(s)
- Jingyuan Zhou
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Zhaoyang Lin
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Huaying Ren
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Xidong Duan
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Imran Shakir
- Sustainable Energy Technologies Centre, College of Engineering, King Saud University, Riyadh, 11451, Saudi Arabia
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Yu Huang
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Xiangfeng Duan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
21
|
Rasouli HR, Kim J, Mehmood N, Sheraz A, Jo MK, Song S, Kang K, Kasirga TS. Electric-Field-Induced Reversible Phase Transitions in a Spontaneously Ion-Intercalated 2D Metal Oxide. NANO LETTERS 2021; 21:3997-4005. [PMID: 33881885 DOI: 10.1021/acs.nanolett.1c00735] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Electric field driven reversible phase transitions in two-dimensional (2D) materials are appealing for their potential in switching applications. Here, we introduce potassium intercalated MnO2 as an exemplary case. We demonstrate the synthesis of large-area single-crystal layered MnO2 via chemical vapor deposition as thin as 5 nm. These crystals are spontaneously intercalated by potassium ions during the synthesis. We showed that the charge transport in 2D K-MnO2 is dominated by motion of hydrated potassium ions in the interlayer space. Under a few volts bias, separation of potassium and the structural water leads to formation of different phases at the opposite terminals, and at larger biases K-MnO2 crystals exhibit reversible layered-to-spinel phase transition. These phase transitions are accompanied by electrical and optical changes in the material. We used the electric field driven ionic motion in K-MnO2 based devices to demonstrate the memristive capabilities of two terminal devices.
Collapse
Affiliation(s)
- Hamid Reza Rasouli
- Institute of Materials Science and Nanotechnology, Bilkent University UNAM, Ankara 06800, Turkey
| | - Jeongho Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Naveed Mehmood
- Institute of Materials Science and Nanotechnology, Bilkent University UNAM, Ankara 06800, Turkey
| | - Ali Sheraz
- Department of Physics, Bilkent University, Ankara 06800, Turkey
| | - Min-Kyung Jo
- Korea Research Institute of Standards & Science (KRISS), Daejeon 34113, Republic of Korea
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Seungwoo Song
- Korea Research Institute of Standards & Science (KRISS), Daejeon 34113, Republic of Korea
| | - Kibum Kang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Talip Serkan Kasirga
- Institute of Materials Science and Nanotechnology, Bilkent University UNAM, Ankara 06800, Turkey
- Department of Physics, Bilkent University, Ankara 06800, Turkey
| |
Collapse
|
22
|
Xiong Y, Zhou G, Lai NC, Wang X, Lu YC, Prezhdo OV, Xu D. Chemically Switchable n-Type and p-Type Conduction in Bismuth Selenide Nanoribbons for Thermoelectric Energy Harvesting. ACS NANO 2021; 15:2791-2799. [PMID: 33556241 DOI: 10.1021/acsnano.0c08685] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Realizing switchable n-type and p-type conduction in bismuth selenide (Bi2Se3), a traditional thermoelectric material and a topological insulator, is highly beneficial for the development of thermoelectric devices and also of great interest for spintronics and quantum computing. In this work, switching between n-type and p-type conduction in single Bi2Se3 nanoribbons is achieved by a reversible copper (Cu) intercalation method. Density functional theory calculations reveal that such a switchable behavior arises from the electronic band structure distortion caused by the high-concentration Cu intercalation and the Cu substitution for Bi sites in the host lattice. A proof-of-concept in-plane thermoelectric generator is fabricated with one pair of the pristine n-type and intercalated p-type Bi2Se3 nanoribbons on a microfabricated device, which gives rise to an open-circuit voltage of 4.8 mV and a maximum output power of 0.3 nW under a temperature difference of 29.2 K. This work demonstrates switchable n-type and p-type electrical conduction in Bi2Se3 nanoribbons via a facile chemical approach and the practical application of nanoribbons in a thermoelectric device.
Collapse
Affiliation(s)
- Yucheng Xiong
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, Special Administrative Region China
| | - Guoqing Zhou
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States
| | - Nien-Chu Lai
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, Special Administrative Region China
| | - Xiaomeng Wang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, Special Administrative Region China
| | - Yi-Chun Lu
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, Special Administrative Region China
| | - Oleg V Prezhdo
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Dongyan Xu
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, Special Administrative Region China
| |
Collapse
|
23
|
Li Y, Yan H, Xu B, Zhen L, Xu CY. Electrochemical Intercalation in Atomically Thin van der Waals Materials for Structural Phase Transition and Device Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2000581. [PMID: 32725672 DOI: 10.1002/adma.202000581] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 04/22/2020] [Indexed: 06/11/2023]
Abstract
In van der Waals (vdWs) materials and heterostructures, the interlayers are bonded by weak vdWs interactions due to the lack of dangling bonds. The vdWs gap at the homo- or heterointerface provides great freedom to enrich the tunability of electronic structures by external intercalation of foreign ions or atoms at the interface, leading to the discovery of new physics and functionalities. Herein, the recent progress on electrochemical intercalation of foreign species into atomically thin vdWs materials for structural phase transition and device applications is reviewed and future opportunities are discussed. First, several kinds of electrochemical intercalation platforms to achieve the intercalation in vdWs materials and heterostructures are introduced. Next, the in situ characterization of electrochemical intercalation dynamics by state-of-the-art techniques is summarized, including optical techniques, scanning probe techniques, and electrical transport. Moreover, particular attention is paid on the experimentally reported phase transition and multifunctional applications of intercalated devices. Finally, future applications and challenges of intercalation in vdWs materials and heterostructures are proposed, including the intrinsic intercalation mechanism of solid ion conductors, exact identification of intercalated foreign species by near-field optical techniques, and the tunability of intercalation kinetics for ultrafast switching.
Collapse
Affiliation(s)
- Yang Li
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
- MOE Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, Harbin Institute of Technology, Harbin, 150080, P. R. China
| | - Hang Yan
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
- MOE Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, Harbin Institute of Technology, Harbin, 150080, P. R. China
| | - Bo Xu
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
- MOE Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, Harbin Institute of Technology, Harbin, 150080, P. R. China
| | - Liang Zhen
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
- MOE Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, Harbin Institute of Technology, Harbin, 150080, P. R. China
| | - Cheng-Yan Xu
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
- MOE Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, Harbin Institute of Technology, Harbin, 150080, P. R. China
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, P. R. China
| |
Collapse
|
24
|
Song C, Noh G, Kim TS, Kang M, Song H, Ham A, Jo MK, Cho S, Chai HJ, Cho SR, Cho K, Park J, Song S, Song I, Bang S, Kwak JY, Kang K. Growth and Interlayer Engineering of 2D Layered Semiconductors for Future Electronics. ACS NANO 2020; 14:16266-16300. [PMID: 33301290 DOI: 10.1021/acsnano.0c06607] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Layered materials that do not form a covalent bond in a vertical direction can be prepared in a few atoms to one atom thickness without dangling bonds. This distinctive characteristic of limiting thickness around the sub-nanometer level allowed scientists to explore various physical phenomena in the quantum realm. In addition to the contribution to fundamental science, various applications were proposed. Representatively, they were suggested as a promising material for future electronics. This is because (i) the dangling-bond-free nature inhibits surface scattering, thus carrier mobility can be maintained at sub-nanometer range; (ii) the ultrathin nature allows the short-channel effect to be overcome. In order to establish fundamental discoveries and utilize them in practical applications, appropriate preparation methods are required. On the other hand, adjusting properties to fit the desired application properly is another critical issue. Hence, in this review, we first describe the preparation method of layered materials. Proper growth techniques for target applications and the growth of emerging materials at the beginning stage will be extensively discussed. In addition, we suggest interlayer engineering via intercalation as a method for the development of artificial crystal. Since infinite combinations of the host-intercalant combination are possible, it is expected to expand the material system from the current compound system. Finally, inevitable factors that layered materials must face to be used as electronic applications will be introduced with possible solutions. Emerging electronic devices realized by layered materials are also discussed.
Collapse
Affiliation(s)
- Chanwoo Song
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Gichang Noh
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Electronic Materials, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| | - Tae Soo Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Minsoo Kang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Hwayoung Song
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Ayoung Ham
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Min-Kyung Jo
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Operando Methodology and Measurement Team, Interdisciplinary Materials Measurement Institute, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Korea
| | - Seorin Cho
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Hyun-Jun Chai
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Seong Rae Cho
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Kiwon Cho
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Jeongwon Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Seungwoo Song
- Operando Methodology and Measurement Team, Interdisciplinary Materials Measurement Institute, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Korea
| | - Intek Song
- Department of Applied Chemistry, Andong National University, Andong 36728, Korea
| | - Sunghwan Bang
- Materials & Production Engineering Research Institute, LG Electronics, Pyeongtaek-si 17709, Korea
| | - Joon Young Kwak
- Center for Electronic Materials, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| | - Kibum Kang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| |
Collapse
|
25
|
Ryu YK, Frisenda R, Castellanos-Gomez A. Superlattices based on van der Waals 2D materials. Chem Commun (Camb) 2019; 55:11498-11510. [PMID: 31483427 DOI: 10.1039/c9cc04919c] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Two-dimensional (2D) materials exhibit a number of improved mechanical, optical, and electronic properties compared to their bulk counterparts. The absence of dangling bonds in the cleaved surfaces of these materials allows combining different 2D materials into van der Waals heterostructures to fabricate p-n junctions, photodetectors, and 2D-2D ohmic contacts that show unexpected performances. These intriguing results are regularly summarized in comprehensive reviews. A strategy to tailor their properties even further and to observe novel quantum phenomena consists in the fabrication of superlattices whose unit cell is formed either by two dissimilar 2D materials or by a 2D material subjected to a periodic perturbation, each component contributing with different characteristics. Furthermore, in a 2D material-based superlattice, the interlayer interaction between the layers mediated by van der Waals forces constitutes a key parameter to tune the global properties of the superlattice. The above-mentioned factors reflect the potential to devise countless combinations of van der Waals 2D material-based superlattices. In the present feature article, we explain in detail the state-of-the-art of 2D material-based superlattices and describe the different methods to fabricate them, classified as vertical stacking, intercalation with atoms or molecules, moiré patterning, strain engineering and lithographic design. We also aim to highlight some of the specific applications of each type of superlattices.
Collapse
Affiliation(s)
- Yu Kyoung Ryu
- Materials Science Factory, Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), Madrid, E-28049, Spain.
| | - Riccardo Frisenda
- Materials Science Factory, Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), Madrid, E-28049, Spain.
| | - Andres Castellanos-Gomez
- Materials Science Factory, Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), Madrid, E-28049, Spain.
| |
Collapse
|
26
|
Stark MS, Kuntz KL, Martens SJ, Warren SC. Intercalation of Layered Materials from Bulk to 2D. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1808213. [PMID: 31069852 DOI: 10.1002/adma.201808213] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/01/2019] [Indexed: 05/23/2023]
Abstract
Intercalation in few-layer (2D) materials is a rapidly growing area of research to develop next-generation energy-storage and optoelectronic devices, including batteries, sensors, transistors, and electrically tunable displays. Identifying fundamental differences between intercalation in bulk and 2D materials will play a key role in developing functional devices. Herein, advances in few-layer intercalation are addressed in the historical context of bulk intercalation. First, synthesis methods and structural properties are discussed, emphasizing electrochemical techniques, the mechanism of intercalation, and the formation of a solid-electrolyte interphase. To address fundamental differences between bulk and 2D materials, scaling relationships describe how intercalation kinetics, structure, and electronic and optical properties depend on material thickness and lateral dimension. Here, diffusion rates, pseudocapacity, limits of staging, and electronic structure are compared for bulk and 2D materials. Next, the optoelectronic properties are summarized, focusing on charge transfer, conductivity, and electronic structure. For energy devices, opportunities also emerge to design van der Waals heterostructures with high capacities and excellent cycling performance. Initial studies of heterostructured electrodes are compared to state-of-the-art battery materials. Finally, challenges and opportunities are presented for 2D materials in energy and optoelectronic applications, along with promising research directions in synthesis and characterization to engineer 2D materials for superior devices.
Collapse
Affiliation(s)
- Madeline S Stark
- University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Kaci L Kuntz
- University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Sean J Martens
- University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Scott C Warren
- University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
27
|
He R, Chen Z, Lai H, Zhang T, Wen J, Chen H, Xie F, Yue S, Liu P, Chen J, Xie W, Wang X, Xu J. van der Waals Transition-Metal Oxide for Vis-MIR Broadband Photodetection via Intercalation Strategy. ACS APPLIED MATERIALS & INTERFACES 2019; 11:15741-15747. [PMID: 30920195 DOI: 10.1021/acsami.9b00181] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Defects engineering can broaden the absorption band of wide band gap van der Waals (vdW) materials to the visible or near-IR regime at the expense of material stability and photoresponse speed. Herein, we introduce an atomic intercalation method that brings the wide band gap vdW α-MoO3 for vis-MIR broadband optoelectronic conversion. We confirm experimentally that intercalation significantly enhances photoabsorption and electrical conductivity buts effects negligible change to the lattice structure as compared with ion intercalation. Charge transfer from the Sn atom to the lattices induces an optoelectrical change. As a result, the Sn-intercalated α-MoO3 shows room temperature, air stable, broadband photodetection ability from 405 nm to 10 μm, with photoresponsivity better than 9.0 A W-1 in 405-1500 nm, ∼0.4 A W-1 at 3700 nm, and 0.16 A W-1 at 10 μm, response time of ∼0.1 s, and peak D* of 7.3 × 107 cm Hz0.5 W-1 at 520 nm. We further reveal that photothermal effect dominates in our detection range by real-time photothermal-electrical measurement, and the materials show a high temperature coefficient of resistance value of -1.658% K-1 at 300 K. These results provide feasible route for designing broadband absorption materials for photoelectrical, photothermal, or thermal-electrical application.
Collapse
Affiliation(s)
- Ruihui He
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics , Jinan University , Guangzhou , Guangdong 510632 , China
| | - Zefeng Chen
- Department of Electronic Engineering and Materials Science and Technology Research Center , The Chinese University of Hong Kong , Hong Kong SAR 999077 , China
| | - Haojie Lai
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics , Jinan University , Guangzhou , Guangdong 510632 , China
| | - Tiankai Zhang
- Department of Electronic Engineering and Materials Science and Technology Research Center , The Chinese University of Hong Kong , Hong Kong SAR 999077 , China
| | | | | | | | - Song Yue
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics , Jinan University , Guangzhou , Guangdong 510632 , China
| | - Pengyi Liu
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics , Jinan University , Guangzhou , Guangdong 510632 , China
| | | | - Weiguang Xie
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics , Jinan University , Guangzhou , Guangdong 510632 , China
| | - Xiaomu Wang
- School of Electronic Science and Technology , Nanjing University , Nanjing 210093 , China
| | - Jianbin Xu
- Department of Electronic Engineering and Materials Science and Technology Research Center , The Chinese University of Hong Kong , Hong Kong SAR 999077 , China
| |
Collapse
|
28
|
Luo P, Zhuge F, Zhang Q, Chen Y, Lv L, Huang Y, Li H, Zhai T. Doping engineering and functionalization of two-dimensional metal chalcogenides. NANOSCALE HORIZONS 2019; 4:26-51. [PMID: 32254144 DOI: 10.1039/c8nh00150b] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Two-dimensional (2D) layered metal chalcogenides (MXs) have significant potential for use in flexible transistors, optoelectronics, sensing and memory devices beyond the state-of-the-art technology. To pursue ultimate performance, precisely controlled doping engineering of 2D MXs is desired for tailoring their physical and chemical properties in functional devices. In this review, we highlight the recent progress in the doping engineering of 2D MXs, covering that enabled by substitution, exterior charge transfer, intercalation and the electrostatic doping mechanism. A variety of novel doping engineering examples leading to Janus structures, defect curing effects, zero-valent intercalation and deliberately devised floating gate modulation will be discussed together with their intriguing application prospects. The choice of doping strategies and sources for functionalizing MXs will be provided to facilitate ongoing research in this field toward multifunctional applications.
Collapse
Affiliation(s)
- Peng Luo
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Material Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Reversible and selective ion intercalation through the top surface of few-layer MoS 2. Nat Commun 2018; 9:5289. [PMID: 30538249 PMCID: PMC6290021 DOI: 10.1038/s41467-018-07710-z] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 11/07/2018] [Indexed: 11/08/2022] Open
Abstract
Electrochemical intercalation of ions into the van der Waals gap of two-dimensional (2D) layered materials is a promising low-temperature synthesis strategy to tune their physical and chemical properties. It is widely believed that ions prefer intercalation into the van der Waals gap through the edges of the 2D flake, which generally causes wrinkling and distortion. Here we demonstrate that the ions can also intercalate through the top surface of few-layer MoS2 and this type of intercalation is more reversible and stable compared to the intercalation through the edges. Density functional theory calculations show that this intercalation is enabled by the existence of natural defects in exfoliated MoS2 flakes. Furthermore, we reveal that sealed-edge MoS2 allows intercalation of small alkali metal ions (e.g., Li+ and Na+) and rejects large ions (e.g., K+). These findings imply potential applications in developing functional 2D-material-based devices with high tunability and ion selectivity.
Collapse
|
30
|
Zhang G, Cao J, Zhao C, Han B, Ma C, Gao Z, Zeng T. Facile synthesis and magnetic and electrical properties of layered chalcogenides K 2CoCu 3Q 4 (Q for S and Se). Dalton Trans 2018; 47:14968-14974. [PMID: 30298884 DOI: 10.1039/c8dt03294g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Layered transition-metal chalcogenides have attracted great interest due to their unique electronic and optical properties. Here, we represent two layered quaternary chalcogenides K2CoCu3S4 and K2CoCu3Se4 prepared by a convenient hydrothermal route. From powder XRD and TEM analyses, K2CoCu3Q4 possesses a tetragonal ThCr2Si2-type structure with a random arrangement of Co and Cu atoms. The phase purity of the samples was confirmed by ICP, SEM, and EDS analyses, and the oxidation states of Co and Cu atoms were determined to be +3 and +1 by XPS spectra. Both samples show a weak ferromagnetic behavior at low temperature induced by spin-canted antiferromagnetic ordering. The temperature dependent resistivity, ρ(T), reveals a metallic nature for stoichiometric K2CoCu3S4. The semiconducting behavior of K2CoCu3Se4 could be explained better by variable range hopping (VRH) rather than adiabatic small polaron hopping (SPH). This new series of layered chalcogenides may offer a promising candidate for potential electronic applications.
Collapse
Affiliation(s)
- Ganghua Zhang
- Shanghai Key Laboratory of Engineering Materials Application and Evaluation, Shanghai Research Institute of Materials, Shanghai 200437, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
31
|
Shao R, Chen S, Dou Z, Zhang J, Ma X, Zhu R, Xu J, Gao P, Yu D. Atomic-Scale Probing of Reversible Li Migration in 1T-V 1+ xSe 2 and the Interactions between Interstitial V and Li. NANO LETTERS 2018; 18:6094-6099. [PMID: 30142274 DOI: 10.1021/acs.nanolett.8b03154] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Ionic doping and migration in solids underpins a wide range of applications including lithium ion batteries, fuel cells, resistive memories, and catalysis. Here, by in situ transmission electron microscopy technique we directly track the structural evolution during Li ions insertion and extraction in transition metal dichalcogenide 1T-V1+ xSe2 nanostructures which feature spontaneous localized superstructures due to the periodical interstitial V atoms within the van der Waals interlayers. We find that lithium ion migration destroys the cationic orderings and leads to a phase transition from superstructure to nonsuperstructure. This phase transition is reversible, that is, the superstructure returns back after extraction of lithium ion from Li yV1+ xSe2. These findings provide valuable insights into understanding and controlling the structure and properties of 2D materials by general ionic and electric doping.
Collapse
Affiliation(s)
- Ruiwen Shao
- Electron Microscopy Laboratory, School of Physics , Peking University , Beijing 100871 , China
| | - Shulin Chen
- Electron Microscopy Laboratory, School of Physics , Peking University , Beijing 100871 , China
- State Key Laboratory of Advanced Welding and Joining , Harbin Institute of Technology , Harbin 150001 , China
| | - Zhipeng Dou
- Electron Microscopy Laboratory, School of Physics , Peking University , Beijing 100871 , China
- Key Laboratory for Micro-/Nano-Optoelectronic Devices of Ministry of Education, School of Physics and Electronics , Hunan University , Changsha 410082 , China
| | - Jingmin Zhang
- Electron Microscopy Laboratory, School of Physics , Peking University , Beijing 100871 , China
| | - Xiumei Ma
- Electron Microscopy Laboratory, School of Physics , Peking University , Beijing 100871 , China
| | - Rui Zhu
- Electron Microscopy Laboratory, School of Physics , Peking University , Beijing 100871 , China
| | - Jun Xu
- Electron Microscopy Laboratory, School of Physics , Peking University , Beijing 100871 , China
| | - Peng Gao
- Electron Microscopy Laboratory, School of Physics , Peking University , Beijing 100871 , China
- International Center for Quantum Materials, School of Physics , Peking University , Beijing 100871 , China
- Collaborative Innovation Center of Quantum Matter , Beijing 100871 , China
| | - Dapeng Yu
- Electron Microscopy Laboratory, School of Physics , Peking University , Beijing 100871 , China
- Collaborative Innovation Center of Quantum Matter , Beijing 100871 , China
- Department of Physics , South University of Science and Technology of China , Shenzhen 518055 , China
| |
Collapse
|
32
|
Wang M, Lahti G, Williams D, Koski KJ. Chemically Tunable Full Spectrum Optical Properties of 2D Silicon Telluride Nanoplates. ACS NANO 2018; 12:6163-6169. [PMID: 29878756 DOI: 10.1021/acsnano.8b02789] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Silicon telluride (Si2Te3) is a two-dimensional, layered, p-type semiconductor that shows broad near-infrared photoluminescence. We show how, through various means of chemical modification, Si2Te3 can have its optoelectronic properties modified in several independent ways without fundamentally altering the host crystalline lattice. Substitutional doping with Ge strongly red-shifts the photoluminescence while substantially lowering the direct and indirect band gaps and altering the optical phonon modes. Intercalation with Ge introduces a sharp 4.3 eV ultraviolet resonance and shifts the bulk plasmon even while leaving the infrared response and band gaps virtually unchanged. Intercalation with copper strengthens the photoluminescence without altering its spectral shape. Thus, silicon telluride is shown to be a chemically tunable platform of full spectrum optical properties promising for optoelectronic applications.
Collapse
Affiliation(s)
- Mengjing Wang
- Department of Chemistry , University of California Davis , Davis , California 95616 , United States
- Department of Chemistry , Brown University , Providence , Rhode Island 02912 , United States
| | - Gabriella Lahti
- Department of Chemistry , University of California Davis , Davis , California 95616 , United States
| | - David Williams
- Department of Chemistry , University of California Davis , Davis , California 95616 , United States
| | - Kristie J Koski
- Department of Chemistry , University of California Davis , Davis , California 95616 , United States
| |
Collapse
|
33
|
Gong Y, Yuan H, Wu CL, Tang P, Yang SZ, Yang A, Li G, Liu B, van de Groep J, Brongersma ML, Chisholm MF, Zhang SC, Zhou W, Cui Y. Spatially controlled doping of two-dimensional SnS 2 through intercalation for electronics. NATURE NANOTECHNOLOGY 2018; 13:294-299. [PMID: 29483599 DOI: 10.1038/s41565-018-0069-3] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 01/18/2018] [Indexed: 06/08/2023]
Abstract
Doped semiconductors are the most important building elements for modern electronic devices 1 . In silicon-based integrated circuits, facile and controllable fabrication and integration of these materials can be realized without introducing a high-resistance interface2,3. Besides, the emergence of two-dimensional (2D) materials enables the realization of atomically thin integrated circuits4-9. However, the 2D nature of these materials precludes the use of traditional ion implantation techniques for carrier doping and further hinders device development 10 . Here, we demonstrate a solvent-based intercalation method to achieve p-type, n-type and degenerately doped semiconductors in the same parent material at the atomically thin limit. In contrast to naturally grown n-type S-vacancy SnS2, Cu intercalated bilayer SnS2 obtained by this technique displays a hole field-effect mobility of ~40 cm2 V-1 s-1, and the obtained Co-SnS2 exhibits a metal-like behaviour with sheet resistance comparable to that of few-layer graphene 5 . Combining this intercalation technique with lithography, an atomically seamless p-n-metal junction could be further realized with precise size and spatial control, which makes in-plane heterostructures practically applicable for integrated devices and other 2D materials. Therefore, the presented intercalation method can open a new avenue connecting the previously disparate worlds of integrated circuits and atomically thin materials.
Collapse
Affiliation(s)
- Yongji Gong
- Department of Material Science and Engineering, Stanford University, Stanford, CA, USA
- School of Material Science and Engineering, Beihang University, Beijing, China
| | - Hongtao Yuan
- Department of Material Science and Engineering, Stanford University, Stanford, CA, USA
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- National Laboratory of Solid-State Microstructures, College of Engineering and Applied Sciences, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
| | - Chun-Lan Wu
- Department of Material Science and Engineering, Stanford University, Stanford, CA, USA
| | - Peizhe Tang
- Department of Physics, Stanford University, Stanford, CA, USA
| | - Shi-Ze Yang
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Ankun Yang
- Department of Material Science and Engineering, Stanford University, Stanford, CA, USA
| | - Guodong Li
- Department of Material Science and Engineering, Stanford University, Stanford, CA, USA
| | - Bofei Liu
- Department of Material Science and Engineering, Stanford University, Stanford, CA, USA
| | - Jorik van de Groep
- Department of Material Science and Engineering, Stanford University, Stanford, CA, USA
| | - Mark L Brongersma
- Department of Material Science and Engineering, Stanford University, Stanford, CA, USA
| | - Matthew F Chisholm
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Shou-Cheng Zhang
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Department of Physics, Stanford University, Stanford, CA, USA
| | - Wu Zhou
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- School of Physical Sciences, CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, China
| | - Yi Cui
- Department of Material Science and Engineering, Stanford University, Stanford, CA, USA.
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA, USA.
| |
Collapse
|
34
|
Wu C, Xie H, Li D, Liu D, Ding S, Tao S, Chen H, Liu Q, Chen S, Chu W, Zhang B, Song L. Atomically Intercalating Tin Ions into the Interlayer of Molybdenum Oxide Nanobelt toward Long-Cycling Lithium Battery. J Phys Chem Lett 2018; 9:817-824. [PMID: 29389134 DOI: 10.1021/acs.jpclett.7b03374] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Atomic intercalation of different agents into 2D layered materials can engineer the intrinsic structure on the atomic scale and thus tune the physical and chemical properties for specific applications. Here we successfully introduce tin (Sn) atoms into the interlayer of α-MoO3 nanobelts forming a new MoO3-Sn intercalation with ultrastable structure. Combining with theoretical calculations, our synchrotron radiation-based characterizations and electron microscope observations clearly reveal that the intercalated Sn atoms could bond with five O atoms, forming a pentahedral structure. Subsequently, the Sn-O bonds induce a less distorted [MoO6] octahedral structure, resulting in a unique structure that is distinct with pristine α-MoO3 or any other molybdenum oxides. Employed as anode for lithium-ion battery, the as-prepared MoO3-Sn nanobelts display a much higher capacity of 520 mAhg-1 at 500 mAg-1 than α-MoO3 nanobelts (291 mAhg-1), with a Coulombic efficiency of 99.5%. Moreover, owing to the strong intercalation from Sn ions, the MoO3-Sn nanobelts pose superior cyclability, durability, and reliability.
Collapse
Affiliation(s)
- Chuanqiang Wu
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China , Hefei, Anhui 230029, P. R. China
| | - Hui Xie
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China , Hefei, Anhui 230029, P. R. China
| | - Dongdong Li
- Institute of Amorphous Matter Science, School of Materials Science and Engineering, Hefei University of Technology , Hefei, Anhui 230009, P. R. China
| | - Daobin Liu
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China , Hefei, Anhui 230029, P. R. China
| | - Shiqing Ding
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China , Hefei, Anhui 230029, P. R. China
| | - Shi Tao
- Department of Physics and Electronic Engineering, Jiangsu Lab of Advanced Functional Materials, Changshu Institute of Technology , Changshu, Jiangsu 215500, China
| | - Heng Chen
- Institute of Amorphous Matter Science, School of Materials Science and Engineering, Hefei University of Technology , Hefei, Anhui 230009, P. R. China
| | - Qin Liu
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China , Hefei, Anhui 230029, P. R. China
| | - Shuangming Chen
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China , Hefei, Anhui 230029, P. R. China
| | - Wangsheng Chu
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China , Hefei, Anhui 230029, P. R. China
| | - Bo Zhang
- Institute of Amorphous Matter Science, School of Materials Science and Engineering, Hefei University of Technology , Hefei, Anhui 230009, P. R. China
| | - Li Song
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China , Hefei, Anhui 230029, P. R. China
| |
Collapse
|
35
|
Zeng M, Xiao Y, Liu J, Yang K, Fu L. Exploring Two-Dimensional Materials toward the Next-Generation Circuits: From Monomer Design to Assembly Control. Chem Rev 2018; 118:6236-6296. [DOI: 10.1021/acs.chemrev.7b00633] [Citation(s) in RCA: 298] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Mengqi Zeng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yao Xiao
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, China
| | - Jinxin Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Kena Yang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Lei Fu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, China
| |
Collapse
|
36
|
Wan J, Lacey SD, Dai J, Bao W, Fuhrer MS, Hu L. Tuning two-dimensional nanomaterials by intercalation: materials, properties and applications. Chem Soc Rev 2018; 45:6742-6765. [PMID: 27704060 DOI: 10.1039/c5cs00758e] [Citation(s) in RCA: 194] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
2D materials have attracted tremendous attention due to their unique physical and chemical properties since the discovery of graphene. Despite these intrinsic properties, various modification methods have been applied to 2D materials that yield even more exciting results in terms of tunable properties and device performance. Among all modification methods, intercalation of 2D materials has emerged as a particularly powerful tool: it provides the highest possible doping level and is capable of (ir)reversibly changing the phase of the material. Intercalated 2D materials exhibit extraordinary electrical transport as well as optical, thermal, magnetic, and catalytic properties, which are advantageous for optoelectronics, superconductors, thermoelectronics, catalysis and energy storage applications. The recent progress on host 2D materials, various intercalation species, and intercalation methods, as well as tunable properties and potential applications enabled by intercalation, are comprehensively reviewed.
Collapse
Affiliation(s)
- Jiayu Wan
- Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA.
| | - Steven D Lacey
- Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA.
| | - Jiaqi Dai
- Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA.
| | - Wenzhong Bao
- State Key Laboratory of ASIC and System, Department of Microelectronics, Fudan University, Shanghai 200433, China.
| | | | - Liangbing Hu
- Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
37
|
Liu G, Zhen C, Kang Y, Wang L, Cheng HM. Unique physicochemical properties of two-dimensional light absorbers facilitating photocatalysis. Chem Soc Rev 2018; 47:6410-6444. [DOI: 10.1039/c8cs00396c] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The emergence of two-dimensional (2D) materials with a large lateral size and extremely small thickness has significantly changed the development of many research areas by producing a variety of unusual physicochemical properties.
Collapse
Affiliation(s)
- Gang Liu
- Shenyang National Laboratory for Materials Science
- Institute of Metal Research
- Chinese Academy of Sciences
- Shenyang 110016
- China
| | - Chao Zhen
- Shenyang National Laboratory for Materials Science
- Institute of Metal Research
- Chinese Academy of Sciences
- Shenyang 110016
- China
| | - Yuyang Kang
- Shenyang National Laboratory for Materials Science
- Institute of Metal Research
- Chinese Academy of Sciences
- Shenyang 110016
- China
| | - Lianzhou Wang
- Nanomaterials Centre
- School of Chemical Engineering and AIBN
- The University of Queensland
- Brisbane
- Australia
| | - Hui-Ming Cheng
- Shenyang National Laboratory for Materials Science
- Institute of Metal Research
- Chinese Academy of Sciences
- Shenyang 110016
- China
| |
Collapse
|
38
|
Fashandi H, Dahlqvist M, Lu J, Palisaitis J, Simak SI, Abrikosov IA, Rosen J, Hultman L, Andersson M, Lloyd Spetz A, Eklund P. Synthesis of Ti 3AuC 2, Ti 3Au 2C 2 and Ti 3IrC 2 by noble metal substitution reaction in Ti 3SiC 2 for high-temperature-stable Ohmic contacts to SiC. NATURE MATERIALS 2017; 16:814-818. [PMID: 28459444 DOI: 10.1038/nmat4896] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 03/27/2017] [Indexed: 05/27/2023]
Abstract
The large class of layered ceramics encompasses both van der Waals (vdW) and non-vdW solids. While intercalation of noble metals in vdW solids is known, formation of compounds by incorporation of noble-metal layers in non-vdW layered solids is largely unexplored. Here, we show formation of Ti3AuC2 and Ti3Au2C2 phases with up to 31% lattice swelling by a substitutional solid-state reaction of Au into Ti3SiC2 single-crystal thin films with simultaneous out-diffusion of Si. Ti3IrC2 is subsequently produced by a substitution reaction of Ir for Au in Ti3Au2C2. These phases form Ohmic electrical contacts to SiC and remain stable after 1,000 h of ageing at 600 °C in air. The present results, by combined analytical electron microscopy and ab initio calculations, open avenues for processing of noble-metal-containing layered ceramics that have not been synthesized from elemental sources, along with tunable properties such as stable electrical contacts for high-temperature power electronics or gas sensors.
Collapse
Affiliation(s)
- Hossein Fashandi
- Department of Physics, Chemistry, and Biology (IFM), Linköping University, SE-581 83 Linköping, Sweden
| | - Martin Dahlqvist
- Department of Physics, Chemistry, and Biology (IFM), Linköping University, SE-581 83 Linköping, Sweden
| | - Jun Lu
- Department of Physics, Chemistry, and Biology (IFM), Linköping University, SE-581 83 Linköping, Sweden
| | - Justinas Palisaitis
- Department of Physics, Chemistry, and Biology (IFM), Linköping University, SE-581 83 Linköping, Sweden
| | - Sergei I Simak
- Department of Physics, Chemistry, and Biology (IFM), Linköping University, SE-581 83 Linköping, Sweden
| | - Igor A Abrikosov
- Department of Physics, Chemistry, and Biology (IFM), Linköping University, SE-581 83 Linköping, Sweden
| | - Johanna Rosen
- Department of Physics, Chemistry, and Biology (IFM), Linköping University, SE-581 83 Linköping, Sweden
| | - Lars Hultman
- Department of Physics, Chemistry, and Biology (IFM), Linköping University, SE-581 83 Linköping, Sweden
| | - Mike Andersson
- Department of Physics, Chemistry, and Biology (IFM), Linköping University, SE-581 83 Linköping, Sweden
| | - Anita Lloyd Spetz
- Department of Physics, Chemistry, and Biology (IFM), Linköping University, SE-581 83 Linköping, Sweden
| | - Per Eklund
- Department of Physics, Chemistry, and Biology (IFM), Linköping University, SE-581 83 Linköping, Sweden
| |
Collapse
|
39
|
Wan J, Xu Y, Ozdemir B, Xu L, Sushkov AB, Yang Z, Yang B, Drew D, Barone V, Hu L. Tunable Broadband Nanocarbon Transparent Conductor by Electrochemical Intercalation. ACS NANO 2017; 11:788-796. [PMID: 28033469 DOI: 10.1021/acsnano.6b07191] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Optical transparent and electrical conducting materials with broadband transmission are important for many applications in optoelectronic, telecommunications, and military devices. However, studies of broadband transparent conductors and their controlled modulation are scarce. In this study, we report that reversible transmittance modulation has been achieved with sandwiched nanocarbon thin films (containing carbon nanotubes (CNTs) and reduced graphene oxide (rGO)) via electrochemical alkali-ion intercalation/deintercalation. The transmittance modulation covers a broad range from the visible (450 nm) to the infrared (5 μm), which can be achieved only by rGO rather than pristine graphene films. The large broadband transmittance modulation is understood with DFT calculations, which suggest a decrease in interband transitions in the visible range as well as a reduced reflection in the IR range upon intercalation. We find that a larger interlayer distance in few-layer rGO results in a significant increase in transparency in the infrared region of the spectrum, in agreement with experimental results. Furthermore, a reduced plasma frequency in rGO compared to few-layer graphene is also important to understand the experimental results for broadband transparency in rGO. The broadband transmittance modulation of the CNT/rGO/CNT systems can potentially lead to electrochromic and thermal camouflage applications.
Collapse
Affiliation(s)
| | | | - Burak Ozdemir
- Department of Physics and Science of Advanced Materials Program, Central Michigan University , Mount Pleasant, Michigan 48859, United States
| | | | | | | | | | | | - Veronica Barone
- Department of Physics and Science of Advanced Materials Program, Central Michigan University , Mount Pleasant, Michigan 48859, United States
| | | |
Collapse
|
40
|
Fashandi H, Lai CC, Dahlqvist M, Lu J, Rosen J, Hultman L, Greczynski G, Andersson M, Lloyd Spetz A, Eklund P. Ti2Au2C and Ti3Au2C2 formed by solid state reaction of gold with Ti2AlC and Ti3AlC2. Chem Commun (Camb) 2017; 53:9554-9557. [DOI: 10.1039/c7cc04701k] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ti2Au2C and Ti3Au2C2 formation by Au/Ti2AlC and Au/Ti3AlC2 exchange-reactions imply thermodynamic guidelines for identifying materials where these reactions may occur.
Collapse
Affiliation(s)
- H. Fashandi
- Department of Physics
- Chemistry, and Biology (IFM)
- Linköping University
- SE-581 83 Linköping
- Sweden
| | - C.-C. Lai
- Department of Physics
- Chemistry, and Biology (IFM)
- Linköping University
- SE-581 83 Linköping
- Sweden
| | - M. Dahlqvist
- Department of Physics
- Chemistry, and Biology (IFM)
- Linköping University
- SE-581 83 Linköping
- Sweden
| | - J. Lu
- Department of Physics
- Chemistry, and Biology (IFM)
- Linköping University
- SE-581 83 Linköping
- Sweden
| | - J. Rosen
- Department of Physics
- Chemistry, and Biology (IFM)
- Linköping University
- SE-581 83 Linköping
- Sweden
| | - L. Hultman
- Department of Physics
- Chemistry, and Biology (IFM)
- Linköping University
- SE-581 83 Linköping
- Sweden
| | - G. Greczynski
- Department of Physics
- Chemistry, and Biology (IFM)
- Linköping University
- SE-581 83 Linköping
- Sweden
| | - M. Andersson
- Department of Physics
- Chemistry, and Biology (IFM)
- Linköping University
- SE-581 83 Linköping
- Sweden
| | - A. Lloyd Spetz
- Department of Physics
- Chemistry, and Biology (IFM)
- Linköping University
- SE-581 83 Linköping
- Sweden
| | - P. Eklund
- Department of Physics
- Chemistry, and Biology (IFM)
- Linköping University
- SE-581 83 Linköping
- Sweden
| |
Collapse
|
41
|
Wang M, Koski KJ. Polytypic phase transitions in metal intercalated Bi 2Se 3. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2016; 28:494002. [PMID: 27731305 DOI: 10.1088/0953-8984/28/49/494002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The temperature and concentration dependent phase diagrams of zero-valent copper, cobalt, and iron intercalated bismuth selenide are investigated using in situ transmission electron microscopy. Polytypic phase transitions associated with superlattice formation along with order-disorder transitions of the guest intercalant are determined. Dual-element intercalants of CuCo, CuFe, and CoFe-Bi2Se3 are also investigated. Hexagonal and striped domain formation consistent with two-dimensional ordering of the intercalant and Pokrovksy-Talapov theory is identified as a function of concentration. These studies provide a complete picture of the structural behavior of zero-valent metal intercalated Bi2Se3.
Collapse
Affiliation(s)
- Mengjing Wang
- Department of Chemistry, Brown University, Providence RI 02912, USA
| | | |
Collapse
|
42
|
Wang Q, Puntambekar A, Chakrapani V. Vacancy-Induced Semiconductor-Insulator-Metal Transitions in Nonstoichiometric Nickel and Tungsten Oxides. NANO LETTERS 2016; 16:7067-7077. [PMID: 27696859 DOI: 10.1021/acs.nanolett.6b03311] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Metal-insulator transitions in strongly correlated oxides induced by electrochemical charging have been attributed to formation of vacancy defects. However, the role of native defects in affecting these transitions is not clear. Here, we report a new type of phase transition in p-type, nonstoichiometric nickel oxide involving a semiconductor-to-insulator-to-metal transition along with the complete reversal of conductivity from p- to n-type at room temperature induced by electrochemical charging in a Li+-containing electrolyte. Direct observation of vacancy-ion interactions using in situ near-infrared photoluminescence spectroscopy show that the transition is a result of passivation of native nickel (cationic) vacancy defects and subsequent formation of oxygen (anionic) vacancy defects driven by Li+ insertion into the lattice. Changes in the oxidation states of nickel due to defect interactions probed by X-ray photoemission spectroscopy support the above conclusions. In contrast, n-type, nonstoichiometric tungsten oxide shows only insulator-to-metal transition, which is a result of oxygen vacancy formation. The defect-property correlations shown here in these model systems can be extended to other oxides.
Collapse
Affiliation(s)
- Qi Wang
- Howard P. Isermann Department of Chemical and Biological Engineering and ‡Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| | - Ajinkya Puntambekar
- Howard P. Isermann Department of Chemical and Biological Engineering and ‡Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| | - Vidhya Chakrapani
- Howard P. Isermann Department of Chemical and Biological Engineering and ‡Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| |
Collapse
|
43
|
Subbarao U, Sarkar S, Jana R, Bera SS, Peter SC. Enhanced Air Stability in REPb3 (RE = Rare Earths) by Dimensional Reduction Mediated Valence Transition. Inorg Chem 2016; 55:5603-11. [PMID: 27187579 DOI: 10.1021/acs.inorgchem.6b00676] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We conceptually selected the compounds REPb3 (RE = Eu, Yb), which are unstable in air, and converted them to the stable materials in ambient conditions by the chemical processes of "nanoparticle formation" and "dimensional reduction". The nanoparticles and the bulk counterparts were synthesized by the solvothermal and high-frequency induction furnace heating methods, respectively. The reduction of the particle size led to the valence transition of the rare earth atom, which was monitored through magnetic susceptibility and X-ray absorption near edge spectroscopy (XANES) measurements. The stability was checked by X-ray diffraction and thermogravimetric analysis over a period of seven months in oxygen and argon atmospheres and confirmed by XANES. The nanoparticles showed outstanding stability toward aerial oxidation over a period of seven months compared to the bulk counterpart, as the latter one is more prone to the oxidation within a few days.
Collapse
Affiliation(s)
- Udumula Subbarao
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research , Jakkur, Bangalore 560064, India
| | - Sumanta Sarkar
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research , Jakkur, Bangalore 560064, India
| | - Rajkumar Jana
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research , Jakkur, Bangalore 560064, India
| | - Sourav S Bera
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research , Jakkur, Bangalore 560064, India
| | - Sebastian C Peter
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research , Jakkur, Bangalore 560064, India
| |
Collapse
|
44
|
Liu Y, Tom K, Wang X, Huang C, Yuan H, Ding H, Ko C, Suh J, Pan L, Persson KA, Yao J. Dynamic Control of Optical Response in Layered Metal Chalcogenide Nanoplates. NANO LETTERS 2016; 16:488-96. [PMID: 26599063 DOI: 10.1021/acs.nanolett.5b04140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Tunable optical transitions in ultrathin layered 2-dimensional (2D) materials unveil the electronic structures of materials and provide exciting prospects for potential applications in optics and photonics. Here, we present our realization of dynamic optical modulation of layered metal chalcogenide nanoplates using ionic liquid (IL) gating over a wide spectral range. The IL gating significantly increased the tuning range of the Fermi level and, as a result, substantially altered the optical transitions in the nanoplates. Using heavily n-doped Bi2Se3 nanoplates, we substantially modulated the light transmission through the ultrathin layer. A tunable, high-transmission spectral window in the visible to near-infrared region has been observed due to simultaneous shifts of both the plasma edge and absorption edge of the material. On the other hand, optical response of multilayer MoSe2 flakes gated by IL has shown enhanced transmission in both positive and negative biases, which is consistent with their ambipolar electrical behavior. The electrically controlled optical property tuning in metal chalcogenide material systems provides new opportunities for potential applications, such as wide spectral range optical modulators, optical filters, and electrically controlled smart windows with extremely low material consumption.
Collapse
Affiliation(s)
- Yanping Liu
- Department of Materials Science and Engineering, University of California , Berkeley, California 94720, United States
| | - Kyle Tom
- Department of Materials Science and Engineering, University of California , Berkeley, California 94720, United States
| | - Xi Wang
- Department of Materials Science and Engineering, University of California , Berkeley, California 94720, United States
| | - Chunming Huang
- Department of Materials Science and Engineering, University of California , Berkeley, California 94720, United States
| | - Hongtao Yuan
- Geballe Laboratory for Advanced Materials, Stanford University , Stanford, California 94305, United States
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory , Menlo Park, California 94025, United States
| | | | - Changhyun Ko
- Department of Materials Science and Engineering, University of California , Berkeley, California 94720, United States
| | - Joonki Suh
- Department of Materials Science and Engineering, University of California , Berkeley, California 94720, United States
| | - Lawrence Pan
- Department of Materials Science and Engineering, University of California , Berkeley, California 94720, United States
| | - Kristin A Persson
- Department of Materials Science and Engineering, University of California , Berkeley, California 94720, United States
| | - Jie Yao
- Department of Materials Science and Engineering, University of California , Berkeley, California 94720, United States
| |
Collapse
|
45
|
Jung Y, Zhou Y, Cha JJ. Intercalation in two-dimensional transition metal chalcogenides. Inorg Chem Front 2016. [DOI: 10.1039/c5qi00242g] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We review various exfoliation methods and extensive tuning of chemical and physical properties for 2D layered nanomaterials based on intercalation chemistry.
Collapse
Affiliation(s)
- Yeonwoong Jung
- Nanoscience Technology Center
- Department of Materials Science and Engineering
- University of Central Florida
- Orlando
- USA
| | - Yu Zhou
- Department of Mechanical Engineering and Materials Science
- Yale University
- New Haven
- USA
- Energy Sciences Institute
| | - Judy J. Cha
- Department of Mechanical Engineering and Materials Science
- Yale University
- New Haven
- USA
- Energy Sciences Institute
| |
Collapse
|
46
|
Xiong F, Wang H, Liu X, Sun J, Brongersma M, Pop E, Cui Y. Li Intercalation in MoS2: In Situ Observation of Its Dynamics and Tuning Optical and Electrical Properties. NANO LETTERS 2015; 15:6777-6784. [PMID: 26352295 DOI: 10.1021/acs.nanolett.5b02619] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Two-dimensional layered materials like MoS2 have shown promise for nanoelectronics and energy storage, both as monolayers and as bulk van der Waals crystals with tunable properties. Here we present a platform to tune the physical and chemical properties of nanoscale MoS2 by electrochemically inserting a foreign species (Li(+) ions) into their interlayer spacing. We discover substantial enhancement of light transmission (up to 90% in 4 nm thick lithiated MoS2) and electrical conductivity (more than 200×) in ultrathin (∼2-50 nm) MoS2 nanosheets after Li intercalation due to changes in band structure that reduce absorption upon intercalation and the injection of large amounts of free carriers. We also capture the first in situ optical observations of Li intercalation in MoS2 nanosheets, shedding light on the dynamics of the intercalation process and the associated spatial inhomogeneity and cycling-induced structural defects.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yi Cui
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory , 2575 Sand Hill Road, Menlo Park, California 94025, United States
| |
Collapse
|
47
|
Novel graphite-carbon encased tungsten carbide nanocomposites by solid-state reaction and their ORR electrocatalytic performance in alkaline medium. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.05.152] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
48
|
Wan J, Gu F, Bao W, Dai J, Shen F, Luo W, Han X, Urban D, Hu L. Sodium-Ion Intercalated Transparent Conductors with Printed Reduced Graphene Oxide Networks. NANO LETTERS 2015; 15:3763-3769. [PMID: 25932654 DOI: 10.1021/acs.nanolett.5b00300] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In this work, we report for the first time that Na-ion intercalation of reduced graphene oxide (RGO) can significantly improve its printed network's performance as a transparent conductor. Unlike pristine graphene that inhibits Na-ion intercalation, the larger layer-layer distance of RGO allows Na-ion intercalation, leading to simultaneously much higher DC conductivity and higher optical transmittance. The typical increase of transmittance from 36% to 79% and decrease of sheet resistance from 83k to 311 Ohms/sq in the printed network was observed after Na-ion intercalation. Compared with Li-intercalated graphene, Na-ion intercalated RGO shows much better environmental stability, which is likely due to the self-terminating oxidation of Na ions on the RGO edges. This study demonstrated the great potential of metal-ion intercalation to improve the performance of printed RGO network for transparent conductor applications.
Collapse
Affiliation(s)
- Jiayu Wan
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Feng Gu
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Wenzhong Bao
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Jiaqi Dai
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Fei Shen
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Wei Luo
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Xiaogang Han
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Daniel Urban
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Liangbing Hu
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
49
|
Chen KP, Chung FR, Wang M, Koski KJ. Dual Element Intercalation into 2D Layered Bi2Se3 Nanoribbons. J Am Chem Soc 2015; 137:5431-7. [DOI: 10.1021/jacs.5b00666] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Karen P. Chen
- Department of Chemistry, Brown University, 324 Brook
St. Box H, Providence Rhode
Island 02912, United States
| | - Frank R. Chung
- Department of Chemistry, Brown University, 324 Brook
St. Box H, Providence Rhode
Island 02912, United States
| | - Mengjing Wang
- Department of Chemistry, Brown University, 324 Brook
St. Box H, Providence Rhode
Island 02912, United States
| | - Kristie J. Koski
- Department of Chemistry, Brown University, 324 Brook
St. Box H, Providence Rhode
Island 02912, United States
| |
Collapse
|
50
|
Yuan H, Wang H, Cui Y. Two-dimensional layered chalcogenides: from rational synthesis to property control via orbital occupation and electron filling. Acc Chem Res 2015; 48:81-90. [PMID: 25553585 DOI: 10.1021/ar5003297] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Electron occupation of orbitals in two-dimensional (2D) layered materials controls the magnitude and anisotropy of the interatomic electron transfer and exerts a key influence on the chemical bonding modes of 2D layered lattices. Therefore, their orbital occupations are believed to be responsible for massive variations of the physical and chemical properties from electrocatalysis and energy storage, to charge density waves, superconductivity, spin-orbit coupling, and valleytronics. Especially in nanoscale structures such as nanoribbons, nanoplates, and nanoflakes, 2D layered materials provide opportunities to exploit new quantum phenomena. In this Account, we report our recent progress in the rational design and chemical, electrochemical, and electrical modulations of the physical and chemical properties of layered nanomaterials via modification of the electron occupation in their electronic structures. Here, we start with the growth and fabrication of a group of layered chalcogenides with varied orbital occupation (from 4d/5d electron configuration to 5p/6p electron configuration). The growth techniques include bottom-up methods, such as vapor-liquid-solid growth and vapor-solid growth, and top-down methods, such as mechanical exfoliation with tape and AFM tip scanning. Next, we demonstrate the experimental strategies for the tuning of the chemical potential (orbital occupation tuned with electron filling) and the resulting modulation of the electronic states of layered materials, such as electric-double-layer gating, electrochemical intercalation, and chemical intercalation with molecule and zerovalence metal species. Since the properties of layered chalcogenides are normally dominated by the specific band structure around which the chemical potential is sitting, their desired electronic states and properties can be modulated in a large range, showing unique phenomena including quantum electronic transport and extraordinary optical transmittance. As the most important part of this Account, we further demonstrate some representative examples for the tuning of catalytic, optical, electronic, and spintronic properties of 2D layered chalcogenides, where one can see not only edge-state induced enhancement of catalysis, quantum Aharonov-Bohm interference of the topological surface states, intercalation modulated extraordinary transmittance, and surface plasmonics but also external gating induced superconductivity and spin-coupled valley photocurrent. Since our findings reflect the critical influences of the electron filling of orbital occupation to the properties in 2D layered chalcogenides, we thus last highlight the importance and the prospective of orbital occupation in 2D layered materials for further exploring potential functionalized applications.
Collapse
Affiliation(s)
- Hongtao Yuan
- Geballe Laboratory for Advanced Materials, Stanford University, Stanford, California 94305, United States
- Stanford Institute for Materials and Energy
Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Haotian Wang
- Department of Applied Physics, Stanford University, Stanford, California 94305, United States
| | - Yi Cui
- Geballe Laboratory for Advanced Materials, Stanford University, Stanford, California 94305, United States
- Stanford Institute for Materials and Energy
Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|